]> git.proxmox.com Git - mirror_ubuntu-disco-kernel.git/blob - fs/btrfs/super.c
block: Cleanup license notice
[mirror_ubuntu-disco-kernel.git] / fs / btrfs / super.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/blkdev.h>
7 #include <linux/module.h>
8 #include <linux/fs.h>
9 #include <linux/pagemap.h>
10 #include <linux/highmem.h>
11 #include <linux/time.h>
12 #include <linux/init.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/writeback.h>
18 #include <linux/statfs.h>
19 #include <linux/compat.h>
20 #include <linux/parser.h>
21 #include <linux/ctype.h>
22 #include <linux/namei.h>
23 #include <linux/miscdevice.h>
24 #include <linux/magic.h>
25 #include <linux/slab.h>
26 #include <linux/cleancache.h>
27 #include <linux/ratelimit.h>
28 #include <linux/crc32c.h>
29 #include <linux/btrfs.h>
30 #include "delayed-inode.h"
31 #include "ctree.h"
32 #include "disk-io.h"
33 #include "transaction.h"
34 #include "btrfs_inode.h"
35 #include "print-tree.h"
36 #include "props.h"
37 #include "xattr.h"
38 #include "volumes.h"
39 #include "export.h"
40 #include "compression.h"
41 #include "rcu-string.h"
42 #include "dev-replace.h"
43 #include "free-space-cache.h"
44 #include "backref.h"
45 #include "tests/btrfs-tests.h"
46
47 #include "qgroup.h"
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/btrfs.h>
50
51 static const struct super_operations btrfs_super_ops;
52
53 /*
54 * Types for mounting the default subvolume and a subvolume explicitly
55 * requested by subvol=/path. That way the callchain is straightforward and we
56 * don't have to play tricks with the mount options and recursive calls to
57 * btrfs_mount.
58 *
59 * The new btrfs_root_fs_type also servers as a tag for the bdev_holder.
60 */
61 static struct file_system_type btrfs_fs_type;
62 static struct file_system_type btrfs_root_fs_type;
63
64 static int btrfs_remount(struct super_block *sb, int *flags, char *data);
65
66 const char *btrfs_decode_error(int errno)
67 {
68 char *errstr = "unknown";
69
70 switch (errno) {
71 case -EIO:
72 errstr = "IO failure";
73 break;
74 case -ENOMEM:
75 errstr = "Out of memory";
76 break;
77 case -EROFS:
78 errstr = "Readonly filesystem";
79 break;
80 case -EEXIST:
81 errstr = "Object already exists";
82 break;
83 case -ENOSPC:
84 errstr = "No space left";
85 break;
86 case -ENOENT:
87 errstr = "No such entry";
88 break;
89 }
90
91 return errstr;
92 }
93
94 /*
95 * __btrfs_handle_fs_error decodes expected errors from the caller and
96 * invokes the appropriate error response.
97 */
98 __cold
99 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
100 unsigned int line, int errno, const char *fmt, ...)
101 {
102 struct super_block *sb = fs_info->sb;
103 #ifdef CONFIG_PRINTK
104 const char *errstr;
105 #endif
106
107 /*
108 * Special case: if the error is EROFS, and we're already
109 * under SB_RDONLY, then it is safe here.
110 */
111 if (errno == -EROFS && sb_rdonly(sb))
112 return;
113
114 #ifdef CONFIG_PRINTK
115 errstr = btrfs_decode_error(errno);
116 if (fmt) {
117 struct va_format vaf;
118 va_list args;
119
120 va_start(args, fmt);
121 vaf.fmt = fmt;
122 vaf.va = &args;
123
124 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
125 sb->s_id, function, line, errno, errstr, &vaf);
126 va_end(args);
127 } else {
128 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
129 sb->s_id, function, line, errno, errstr);
130 }
131 #endif
132
133 /*
134 * Today we only save the error info to memory. Long term we'll
135 * also send it down to the disk
136 */
137 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
138
139 /* Don't go through full error handling during mount */
140 if (!(sb->s_flags & SB_BORN))
141 return;
142
143 if (sb_rdonly(sb))
144 return;
145
146 /* btrfs handle error by forcing the filesystem readonly */
147 sb->s_flags |= SB_RDONLY;
148 btrfs_info(fs_info, "forced readonly");
149 /*
150 * Note that a running device replace operation is not canceled here
151 * although there is no way to update the progress. It would add the
152 * risk of a deadlock, therefore the canceling is omitted. The only
153 * penalty is that some I/O remains active until the procedure
154 * completes. The next time when the filesystem is mounted writable
155 * again, the device replace operation continues.
156 */
157 }
158
159 #ifdef CONFIG_PRINTK
160 static const char * const logtypes[] = {
161 "emergency",
162 "alert",
163 "critical",
164 "error",
165 "warning",
166 "notice",
167 "info",
168 "debug",
169 };
170
171
172 /*
173 * Use one ratelimit state per log level so that a flood of less important
174 * messages doesn't cause more important ones to be dropped.
175 */
176 static struct ratelimit_state printk_limits[] = {
177 RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100),
178 RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100),
179 RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100),
180 RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100),
181 RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100),
182 RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100),
183 RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100),
184 RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100),
185 };
186
187 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
188 {
189 char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0";
190 struct va_format vaf;
191 va_list args;
192 int kern_level;
193 const char *type = logtypes[4];
194 struct ratelimit_state *ratelimit = &printk_limits[4];
195
196 va_start(args, fmt);
197
198 while ((kern_level = printk_get_level(fmt)) != 0) {
199 size_t size = printk_skip_level(fmt) - fmt;
200
201 if (kern_level >= '0' && kern_level <= '7') {
202 memcpy(lvl, fmt, size);
203 lvl[size] = '\0';
204 type = logtypes[kern_level - '0'];
205 ratelimit = &printk_limits[kern_level - '0'];
206 }
207 fmt += size;
208 }
209
210 vaf.fmt = fmt;
211 vaf.va = &args;
212
213 if (__ratelimit(ratelimit))
214 printk("%sBTRFS %s (device %s): %pV\n", lvl, type,
215 fs_info ? fs_info->sb->s_id : "<unknown>", &vaf);
216
217 va_end(args);
218 }
219 #endif
220
221 /*
222 * We only mark the transaction aborted and then set the file system read-only.
223 * This will prevent new transactions from starting or trying to join this
224 * one.
225 *
226 * This means that error recovery at the call site is limited to freeing
227 * any local memory allocations and passing the error code up without
228 * further cleanup. The transaction should complete as it normally would
229 * in the call path but will return -EIO.
230 *
231 * We'll complete the cleanup in btrfs_end_transaction and
232 * btrfs_commit_transaction.
233 */
234 __cold
235 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
236 const char *function,
237 unsigned int line, int errno)
238 {
239 struct btrfs_fs_info *fs_info = trans->fs_info;
240
241 trans->aborted = errno;
242 /* Nothing used. The other threads that have joined this
243 * transaction may be able to continue. */
244 if (!trans->dirty && list_empty(&trans->new_bgs)) {
245 const char *errstr;
246
247 errstr = btrfs_decode_error(errno);
248 btrfs_warn(fs_info,
249 "%s:%d: Aborting unused transaction(%s).",
250 function, line, errstr);
251 return;
252 }
253 WRITE_ONCE(trans->transaction->aborted, errno);
254 /* Wake up anybody who may be waiting on this transaction */
255 wake_up(&fs_info->transaction_wait);
256 wake_up(&fs_info->transaction_blocked_wait);
257 __btrfs_handle_fs_error(fs_info, function, line, errno, NULL);
258 }
259 /*
260 * __btrfs_panic decodes unexpected, fatal errors from the caller,
261 * issues an alert, and either panics or BUGs, depending on mount options.
262 */
263 __cold
264 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
265 unsigned int line, int errno, const char *fmt, ...)
266 {
267 char *s_id = "<unknown>";
268 const char *errstr;
269 struct va_format vaf = { .fmt = fmt };
270 va_list args;
271
272 if (fs_info)
273 s_id = fs_info->sb->s_id;
274
275 va_start(args, fmt);
276 vaf.va = &args;
277
278 errstr = btrfs_decode_error(errno);
279 if (fs_info && (btrfs_test_opt(fs_info, PANIC_ON_FATAL_ERROR)))
280 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
281 s_id, function, line, &vaf, errno, errstr);
282
283 btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
284 function, line, &vaf, errno, errstr);
285 va_end(args);
286 /* Caller calls BUG() */
287 }
288
289 static void btrfs_put_super(struct super_block *sb)
290 {
291 close_ctree(btrfs_sb(sb));
292 }
293
294 enum {
295 Opt_acl, Opt_noacl,
296 Opt_clear_cache,
297 Opt_commit_interval,
298 Opt_compress,
299 Opt_compress_force,
300 Opt_compress_force_type,
301 Opt_compress_type,
302 Opt_degraded,
303 Opt_device,
304 Opt_fatal_errors,
305 Opt_flushoncommit, Opt_noflushoncommit,
306 Opt_inode_cache, Opt_noinode_cache,
307 Opt_max_inline,
308 Opt_barrier, Opt_nobarrier,
309 Opt_datacow, Opt_nodatacow,
310 Opt_datasum, Opt_nodatasum,
311 Opt_defrag, Opt_nodefrag,
312 Opt_discard, Opt_nodiscard,
313 Opt_nologreplay,
314 Opt_norecovery,
315 Opt_ratio,
316 Opt_rescan_uuid_tree,
317 Opt_skip_balance,
318 Opt_space_cache, Opt_no_space_cache,
319 Opt_space_cache_version,
320 Opt_ssd, Opt_nossd,
321 Opt_ssd_spread, Opt_nossd_spread,
322 Opt_subvol,
323 Opt_subvol_empty,
324 Opt_subvolid,
325 Opt_thread_pool,
326 Opt_treelog, Opt_notreelog,
327 Opt_usebackuproot,
328 Opt_user_subvol_rm_allowed,
329
330 /* Deprecated options */
331 Opt_alloc_start,
332 Opt_recovery,
333 Opt_subvolrootid,
334
335 /* Debugging options */
336 Opt_check_integrity,
337 Opt_check_integrity_including_extent_data,
338 Opt_check_integrity_print_mask,
339 Opt_enospc_debug, Opt_noenospc_debug,
340 #ifdef CONFIG_BTRFS_DEBUG
341 Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
342 #endif
343 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
344 Opt_ref_verify,
345 #endif
346 Opt_err,
347 };
348
349 static const match_table_t tokens = {
350 {Opt_acl, "acl"},
351 {Opt_noacl, "noacl"},
352 {Opt_clear_cache, "clear_cache"},
353 {Opt_commit_interval, "commit=%u"},
354 {Opt_compress, "compress"},
355 {Opt_compress_type, "compress=%s"},
356 {Opt_compress_force, "compress-force"},
357 {Opt_compress_force_type, "compress-force=%s"},
358 {Opt_degraded, "degraded"},
359 {Opt_device, "device=%s"},
360 {Opt_fatal_errors, "fatal_errors=%s"},
361 {Opt_flushoncommit, "flushoncommit"},
362 {Opt_noflushoncommit, "noflushoncommit"},
363 {Opt_inode_cache, "inode_cache"},
364 {Opt_noinode_cache, "noinode_cache"},
365 {Opt_max_inline, "max_inline=%s"},
366 {Opt_barrier, "barrier"},
367 {Opt_nobarrier, "nobarrier"},
368 {Opt_datacow, "datacow"},
369 {Opt_nodatacow, "nodatacow"},
370 {Opt_datasum, "datasum"},
371 {Opt_nodatasum, "nodatasum"},
372 {Opt_defrag, "autodefrag"},
373 {Opt_nodefrag, "noautodefrag"},
374 {Opt_discard, "discard"},
375 {Opt_nodiscard, "nodiscard"},
376 {Opt_nologreplay, "nologreplay"},
377 {Opt_norecovery, "norecovery"},
378 {Opt_ratio, "metadata_ratio=%u"},
379 {Opt_rescan_uuid_tree, "rescan_uuid_tree"},
380 {Opt_skip_balance, "skip_balance"},
381 {Opt_space_cache, "space_cache"},
382 {Opt_no_space_cache, "nospace_cache"},
383 {Opt_space_cache_version, "space_cache=%s"},
384 {Opt_ssd, "ssd"},
385 {Opt_nossd, "nossd"},
386 {Opt_ssd_spread, "ssd_spread"},
387 {Opt_nossd_spread, "nossd_spread"},
388 {Opt_subvol, "subvol=%s"},
389 {Opt_subvol_empty, "subvol="},
390 {Opt_subvolid, "subvolid=%s"},
391 {Opt_thread_pool, "thread_pool=%u"},
392 {Opt_treelog, "treelog"},
393 {Opt_notreelog, "notreelog"},
394 {Opt_usebackuproot, "usebackuproot"},
395 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
396
397 /* Deprecated options */
398 {Opt_alloc_start, "alloc_start=%s"},
399 {Opt_recovery, "recovery"},
400 {Opt_subvolrootid, "subvolrootid=%d"},
401
402 /* Debugging options */
403 {Opt_check_integrity, "check_int"},
404 {Opt_check_integrity_including_extent_data, "check_int_data"},
405 {Opt_check_integrity_print_mask, "check_int_print_mask=%u"},
406 {Opt_enospc_debug, "enospc_debug"},
407 {Opt_noenospc_debug, "noenospc_debug"},
408 #ifdef CONFIG_BTRFS_DEBUG
409 {Opt_fragment_data, "fragment=data"},
410 {Opt_fragment_metadata, "fragment=metadata"},
411 {Opt_fragment_all, "fragment=all"},
412 #endif
413 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
414 {Opt_ref_verify, "ref_verify"},
415 #endif
416 {Opt_err, NULL},
417 };
418
419 /*
420 * Regular mount options parser. Everything that is needed only when
421 * reading in a new superblock is parsed here.
422 * XXX JDM: This needs to be cleaned up for remount.
423 */
424 int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
425 unsigned long new_flags)
426 {
427 substring_t args[MAX_OPT_ARGS];
428 char *p, *num;
429 u64 cache_gen;
430 int intarg;
431 int ret = 0;
432 char *compress_type;
433 bool compress_force = false;
434 enum btrfs_compression_type saved_compress_type;
435 bool saved_compress_force;
436 int no_compress = 0;
437
438 cache_gen = btrfs_super_cache_generation(info->super_copy);
439 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
440 btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE);
441 else if (cache_gen)
442 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
443
444 /*
445 * Even the options are empty, we still need to do extra check
446 * against new flags
447 */
448 if (!options)
449 goto check;
450
451 while ((p = strsep(&options, ",")) != NULL) {
452 int token;
453 if (!*p)
454 continue;
455
456 token = match_token(p, tokens, args);
457 switch (token) {
458 case Opt_degraded:
459 btrfs_info(info, "allowing degraded mounts");
460 btrfs_set_opt(info->mount_opt, DEGRADED);
461 break;
462 case Opt_subvol:
463 case Opt_subvol_empty:
464 case Opt_subvolid:
465 case Opt_subvolrootid:
466 case Opt_device:
467 /*
468 * These are parsed by btrfs_parse_subvol_options or
469 * btrfs_parse_device_options and can be ignored here.
470 */
471 break;
472 case Opt_nodatasum:
473 btrfs_set_and_info(info, NODATASUM,
474 "setting nodatasum");
475 break;
476 case Opt_datasum:
477 if (btrfs_test_opt(info, NODATASUM)) {
478 if (btrfs_test_opt(info, NODATACOW))
479 btrfs_info(info,
480 "setting datasum, datacow enabled");
481 else
482 btrfs_info(info, "setting datasum");
483 }
484 btrfs_clear_opt(info->mount_opt, NODATACOW);
485 btrfs_clear_opt(info->mount_opt, NODATASUM);
486 break;
487 case Opt_nodatacow:
488 if (!btrfs_test_opt(info, NODATACOW)) {
489 if (!btrfs_test_opt(info, COMPRESS) ||
490 !btrfs_test_opt(info, FORCE_COMPRESS)) {
491 btrfs_info(info,
492 "setting nodatacow, compression disabled");
493 } else {
494 btrfs_info(info, "setting nodatacow");
495 }
496 }
497 btrfs_clear_opt(info->mount_opt, COMPRESS);
498 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
499 btrfs_set_opt(info->mount_opt, NODATACOW);
500 btrfs_set_opt(info->mount_opt, NODATASUM);
501 break;
502 case Opt_datacow:
503 btrfs_clear_and_info(info, NODATACOW,
504 "setting datacow");
505 break;
506 case Opt_compress_force:
507 case Opt_compress_force_type:
508 compress_force = true;
509 /* Fallthrough */
510 case Opt_compress:
511 case Opt_compress_type:
512 saved_compress_type = btrfs_test_opt(info,
513 COMPRESS) ?
514 info->compress_type : BTRFS_COMPRESS_NONE;
515 saved_compress_force =
516 btrfs_test_opt(info, FORCE_COMPRESS);
517 if (token == Opt_compress ||
518 token == Opt_compress_force ||
519 strncmp(args[0].from, "zlib", 4) == 0) {
520 compress_type = "zlib";
521
522 info->compress_type = BTRFS_COMPRESS_ZLIB;
523 info->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL;
524 /*
525 * args[0] contains uninitialized data since
526 * for these tokens we don't expect any
527 * parameter.
528 */
529 if (token != Opt_compress &&
530 token != Opt_compress_force)
531 info->compress_level =
532 btrfs_compress_str2level(args[0].from);
533 btrfs_set_opt(info->mount_opt, COMPRESS);
534 btrfs_clear_opt(info->mount_opt, NODATACOW);
535 btrfs_clear_opt(info->mount_opt, NODATASUM);
536 no_compress = 0;
537 } else if (strncmp(args[0].from, "lzo", 3) == 0) {
538 compress_type = "lzo";
539 info->compress_type = BTRFS_COMPRESS_LZO;
540 btrfs_set_opt(info->mount_opt, COMPRESS);
541 btrfs_clear_opt(info->mount_opt, NODATACOW);
542 btrfs_clear_opt(info->mount_opt, NODATASUM);
543 btrfs_set_fs_incompat(info, COMPRESS_LZO);
544 no_compress = 0;
545 } else if (strcmp(args[0].from, "zstd") == 0) {
546 compress_type = "zstd";
547 info->compress_type = BTRFS_COMPRESS_ZSTD;
548 btrfs_set_opt(info->mount_opt, COMPRESS);
549 btrfs_clear_opt(info->mount_opt, NODATACOW);
550 btrfs_clear_opt(info->mount_opt, NODATASUM);
551 btrfs_set_fs_incompat(info, COMPRESS_ZSTD);
552 no_compress = 0;
553 } else if (strncmp(args[0].from, "no", 2) == 0) {
554 compress_type = "no";
555 btrfs_clear_opt(info->mount_opt, COMPRESS);
556 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
557 compress_force = false;
558 no_compress++;
559 } else {
560 ret = -EINVAL;
561 goto out;
562 }
563
564 if (compress_force) {
565 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
566 } else {
567 /*
568 * If we remount from compress-force=xxx to
569 * compress=xxx, we need clear FORCE_COMPRESS
570 * flag, otherwise, there is no way for users
571 * to disable forcible compression separately.
572 */
573 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
574 }
575 if ((btrfs_test_opt(info, COMPRESS) &&
576 (info->compress_type != saved_compress_type ||
577 compress_force != saved_compress_force)) ||
578 (!btrfs_test_opt(info, COMPRESS) &&
579 no_compress == 1)) {
580 btrfs_info(info, "%s %s compression, level %d",
581 (compress_force) ? "force" : "use",
582 compress_type, info->compress_level);
583 }
584 compress_force = false;
585 break;
586 case Opt_ssd:
587 btrfs_set_and_info(info, SSD,
588 "enabling ssd optimizations");
589 btrfs_clear_opt(info->mount_opt, NOSSD);
590 break;
591 case Opt_ssd_spread:
592 btrfs_set_and_info(info, SSD,
593 "enabling ssd optimizations");
594 btrfs_set_and_info(info, SSD_SPREAD,
595 "using spread ssd allocation scheme");
596 btrfs_clear_opt(info->mount_opt, NOSSD);
597 break;
598 case Opt_nossd:
599 btrfs_set_opt(info->mount_opt, NOSSD);
600 btrfs_clear_and_info(info, SSD,
601 "not using ssd optimizations");
602 /* Fallthrough */
603 case Opt_nossd_spread:
604 btrfs_clear_and_info(info, SSD_SPREAD,
605 "not using spread ssd allocation scheme");
606 break;
607 case Opt_barrier:
608 btrfs_clear_and_info(info, NOBARRIER,
609 "turning on barriers");
610 break;
611 case Opt_nobarrier:
612 btrfs_set_and_info(info, NOBARRIER,
613 "turning off barriers");
614 break;
615 case Opt_thread_pool:
616 ret = match_int(&args[0], &intarg);
617 if (ret) {
618 goto out;
619 } else if (intarg == 0) {
620 ret = -EINVAL;
621 goto out;
622 }
623 info->thread_pool_size = intarg;
624 break;
625 case Opt_max_inline:
626 num = match_strdup(&args[0]);
627 if (num) {
628 info->max_inline = memparse(num, NULL);
629 kfree(num);
630
631 if (info->max_inline) {
632 info->max_inline = min_t(u64,
633 info->max_inline,
634 info->sectorsize);
635 }
636 btrfs_info(info, "max_inline at %llu",
637 info->max_inline);
638 } else {
639 ret = -ENOMEM;
640 goto out;
641 }
642 break;
643 case Opt_alloc_start:
644 btrfs_info(info,
645 "option alloc_start is obsolete, ignored");
646 break;
647 case Opt_acl:
648 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
649 info->sb->s_flags |= SB_POSIXACL;
650 break;
651 #else
652 btrfs_err(info, "support for ACL not compiled in!");
653 ret = -EINVAL;
654 goto out;
655 #endif
656 case Opt_noacl:
657 info->sb->s_flags &= ~SB_POSIXACL;
658 break;
659 case Opt_notreelog:
660 btrfs_set_and_info(info, NOTREELOG,
661 "disabling tree log");
662 break;
663 case Opt_treelog:
664 btrfs_clear_and_info(info, NOTREELOG,
665 "enabling tree log");
666 break;
667 case Opt_norecovery:
668 case Opt_nologreplay:
669 btrfs_set_and_info(info, NOLOGREPLAY,
670 "disabling log replay at mount time");
671 break;
672 case Opt_flushoncommit:
673 btrfs_set_and_info(info, FLUSHONCOMMIT,
674 "turning on flush-on-commit");
675 break;
676 case Opt_noflushoncommit:
677 btrfs_clear_and_info(info, FLUSHONCOMMIT,
678 "turning off flush-on-commit");
679 break;
680 case Opt_ratio:
681 ret = match_int(&args[0], &intarg);
682 if (ret)
683 goto out;
684 info->metadata_ratio = intarg;
685 btrfs_info(info, "metadata ratio %u",
686 info->metadata_ratio);
687 break;
688 case Opt_discard:
689 btrfs_set_and_info(info, DISCARD,
690 "turning on discard");
691 break;
692 case Opt_nodiscard:
693 btrfs_clear_and_info(info, DISCARD,
694 "turning off discard");
695 break;
696 case Opt_space_cache:
697 case Opt_space_cache_version:
698 if (token == Opt_space_cache ||
699 strcmp(args[0].from, "v1") == 0) {
700 btrfs_clear_opt(info->mount_opt,
701 FREE_SPACE_TREE);
702 btrfs_set_and_info(info, SPACE_CACHE,
703 "enabling disk space caching");
704 } else if (strcmp(args[0].from, "v2") == 0) {
705 btrfs_clear_opt(info->mount_opt,
706 SPACE_CACHE);
707 btrfs_set_and_info(info, FREE_SPACE_TREE,
708 "enabling free space tree");
709 } else {
710 ret = -EINVAL;
711 goto out;
712 }
713 break;
714 case Opt_rescan_uuid_tree:
715 btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
716 break;
717 case Opt_no_space_cache:
718 if (btrfs_test_opt(info, SPACE_CACHE)) {
719 btrfs_clear_and_info(info, SPACE_CACHE,
720 "disabling disk space caching");
721 }
722 if (btrfs_test_opt(info, FREE_SPACE_TREE)) {
723 btrfs_clear_and_info(info, FREE_SPACE_TREE,
724 "disabling free space tree");
725 }
726 break;
727 case Opt_inode_cache:
728 btrfs_set_pending_and_info(info, INODE_MAP_CACHE,
729 "enabling inode map caching");
730 break;
731 case Opt_noinode_cache:
732 btrfs_clear_pending_and_info(info, INODE_MAP_CACHE,
733 "disabling inode map caching");
734 break;
735 case Opt_clear_cache:
736 btrfs_set_and_info(info, CLEAR_CACHE,
737 "force clearing of disk cache");
738 break;
739 case Opt_user_subvol_rm_allowed:
740 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
741 break;
742 case Opt_enospc_debug:
743 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
744 break;
745 case Opt_noenospc_debug:
746 btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
747 break;
748 case Opt_defrag:
749 btrfs_set_and_info(info, AUTO_DEFRAG,
750 "enabling auto defrag");
751 break;
752 case Opt_nodefrag:
753 btrfs_clear_and_info(info, AUTO_DEFRAG,
754 "disabling auto defrag");
755 break;
756 case Opt_recovery:
757 btrfs_warn(info,
758 "'recovery' is deprecated, use 'usebackuproot' instead");
759 /* fall through */
760 case Opt_usebackuproot:
761 btrfs_info(info,
762 "trying to use backup root at mount time");
763 btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
764 break;
765 case Opt_skip_balance:
766 btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
767 break;
768 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
769 case Opt_check_integrity_including_extent_data:
770 btrfs_info(info,
771 "enabling check integrity including extent data");
772 btrfs_set_opt(info->mount_opt,
773 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
774 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
775 break;
776 case Opt_check_integrity:
777 btrfs_info(info, "enabling check integrity");
778 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
779 break;
780 case Opt_check_integrity_print_mask:
781 ret = match_int(&args[0], &intarg);
782 if (ret)
783 goto out;
784 info->check_integrity_print_mask = intarg;
785 btrfs_info(info, "check_integrity_print_mask 0x%x",
786 info->check_integrity_print_mask);
787 break;
788 #else
789 case Opt_check_integrity_including_extent_data:
790 case Opt_check_integrity:
791 case Opt_check_integrity_print_mask:
792 btrfs_err(info,
793 "support for check_integrity* not compiled in!");
794 ret = -EINVAL;
795 goto out;
796 #endif
797 case Opt_fatal_errors:
798 if (strcmp(args[0].from, "panic") == 0)
799 btrfs_set_opt(info->mount_opt,
800 PANIC_ON_FATAL_ERROR);
801 else if (strcmp(args[0].from, "bug") == 0)
802 btrfs_clear_opt(info->mount_opt,
803 PANIC_ON_FATAL_ERROR);
804 else {
805 ret = -EINVAL;
806 goto out;
807 }
808 break;
809 case Opt_commit_interval:
810 intarg = 0;
811 ret = match_int(&args[0], &intarg);
812 if (ret)
813 goto out;
814 if (intarg == 0) {
815 btrfs_info(info,
816 "using default commit interval %us",
817 BTRFS_DEFAULT_COMMIT_INTERVAL);
818 intarg = BTRFS_DEFAULT_COMMIT_INTERVAL;
819 } else if (intarg > 300) {
820 btrfs_warn(info, "excessive commit interval %d",
821 intarg);
822 }
823 info->commit_interval = intarg;
824 break;
825 #ifdef CONFIG_BTRFS_DEBUG
826 case Opt_fragment_all:
827 btrfs_info(info, "fragmenting all space");
828 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
829 btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA);
830 break;
831 case Opt_fragment_metadata:
832 btrfs_info(info, "fragmenting metadata");
833 btrfs_set_opt(info->mount_opt,
834 FRAGMENT_METADATA);
835 break;
836 case Opt_fragment_data:
837 btrfs_info(info, "fragmenting data");
838 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
839 break;
840 #endif
841 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
842 case Opt_ref_verify:
843 btrfs_info(info, "doing ref verification");
844 btrfs_set_opt(info->mount_opt, REF_VERIFY);
845 break;
846 #endif
847 case Opt_err:
848 btrfs_info(info, "unrecognized mount option '%s'", p);
849 ret = -EINVAL;
850 goto out;
851 default:
852 break;
853 }
854 }
855 check:
856 /*
857 * Extra check for current option against current flag
858 */
859 if (btrfs_test_opt(info, NOLOGREPLAY) && !(new_flags & SB_RDONLY)) {
860 btrfs_err(info,
861 "nologreplay must be used with ro mount option");
862 ret = -EINVAL;
863 }
864 out:
865 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
866 !btrfs_test_opt(info, FREE_SPACE_TREE) &&
867 !btrfs_test_opt(info, CLEAR_CACHE)) {
868 btrfs_err(info, "cannot disable free space tree");
869 ret = -EINVAL;
870
871 }
872 if (!ret && btrfs_test_opt(info, SPACE_CACHE))
873 btrfs_info(info, "disk space caching is enabled");
874 if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE))
875 btrfs_info(info, "using free space tree");
876 return ret;
877 }
878
879 /*
880 * Parse mount options that are required early in the mount process.
881 *
882 * All other options will be parsed on much later in the mount process and
883 * only when we need to allocate a new super block.
884 */
885 static int btrfs_parse_device_options(const char *options, fmode_t flags,
886 void *holder)
887 {
888 substring_t args[MAX_OPT_ARGS];
889 char *device_name, *opts, *orig, *p;
890 struct btrfs_device *device = NULL;
891 int error = 0;
892
893 lockdep_assert_held(&uuid_mutex);
894
895 if (!options)
896 return 0;
897
898 /*
899 * strsep changes the string, duplicate it because btrfs_parse_options
900 * gets called later
901 */
902 opts = kstrdup(options, GFP_KERNEL);
903 if (!opts)
904 return -ENOMEM;
905 orig = opts;
906
907 while ((p = strsep(&opts, ",")) != NULL) {
908 int token;
909
910 if (!*p)
911 continue;
912
913 token = match_token(p, tokens, args);
914 if (token == Opt_device) {
915 device_name = match_strdup(&args[0]);
916 if (!device_name) {
917 error = -ENOMEM;
918 goto out;
919 }
920 device = btrfs_scan_one_device(device_name, flags,
921 holder);
922 kfree(device_name);
923 if (IS_ERR(device)) {
924 error = PTR_ERR(device);
925 goto out;
926 }
927 }
928 }
929
930 out:
931 kfree(orig);
932 return error;
933 }
934
935 /*
936 * Parse mount options that are related to subvolume id
937 *
938 * The value is later passed to mount_subvol()
939 */
940 static int btrfs_parse_subvol_options(const char *options, char **subvol_name,
941 u64 *subvol_objectid)
942 {
943 substring_t args[MAX_OPT_ARGS];
944 char *opts, *orig, *p;
945 int error = 0;
946 u64 subvolid;
947
948 if (!options)
949 return 0;
950
951 /*
952 * strsep changes the string, duplicate it because
953 * btrfs_parse_device_options gets called later
954 */
955 opts = kstrdup(options, GFP_KERNEL);
956 if (!opts)
957 return -ENOMEM;
958 orig = opts;
959
960 while ((p = strsep(&opts, ",")) != NULL) {
961 int token;
962 if (!*p)
963 continue;
964
965 token = match_token(p, tokens, args);
966 switch (token) {
967 case Opt_subvol:
968 kfree(*subvol_name);
969 *subvol_name = match_strdup(&args[0]);
970 if (!*subvol_name) {
971 error = -ENOMEM;
972 goto out;
973 }
974 break;
975 case Opt_subvolid:
976 error = match_u64(&args[0], &subvolid);
977 if (error)
978 goto out;
979
980 /* we want the original fs_tree */
981 if (subvolid == 0)
982 subvolid = BTRFS_FS_TREE_OBJECTID;
983
984 *subvol_objectid = subvolid;
985 break;
986 case Opt_subvolrootid:
987 pr_warn("BTRFS: 'subvolrootid' mount option is deprecated and has no effect\n");
988 break;
989 default:
990 break;
991 }
992 }
993
994 out:
995 kfree(orig);
996 return error;
997 }
998
999 static char *get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
1000 u64 subvol_objectid)
1001 {
1002 struct btrfs_root *root = fs_info->tree_root;
1003 struct btrfs_root *fs_root;
1004 struct btrfs_root_ref *root_ref;
1005 struct btrfs_inode_ref *inode_ref;
1006 struct btrfs_key key;
1007 struct btrfs_path *path = NULL;
1008 char *name = NULL, *ptr;
1009 u64 dirid;
1010 int len;
1011 int ret;
1012
1013 path = btrfs_alloc_path();
1014 if (!path) {
1015 ret = -ENOMEM;
1016 goto err;
1017 }
1018 path->leave_spinning = 1;
1019
1020 name = kmalloc(PATH_MAX, GFP_KERNEL);
1021 if (!name) {
1022 ret = -ENOMEM;
1023 goto err;
1024 }
1025 ptr = name + PATH_MAX - 1;
1026 ptr[0] = '\0';
1027
1028 /*
1029 * Walk up the subvolume trees in the tree of tree roots by root
1030 * backrefs until we hit the top-level subvolume.
1031 */
1032 while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
1033 key.objectid = subvol_objectid;
1034 key.type = BTRFS_ROOT_BACKREF_KEY;
1035 key.offset = (u64)-1;
1036
1037 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1038 if (ret < 0) {
1039 goto err;
1040 } else if (ret > 0) {
1041 ret = btrfs_previous_item(root, path, subvol_objectid,
1042 BTRFS_ROOT_BACKREF_KEY);
1043 if (ret < 0) {
1044 goto err;
1045 } else if (ret > 0) {
1046 ret = -ENOENT;
1047 goto err;
1048 }
1049 }
1050
1051 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1052 subvol_objectid = key.offset;
1053
1054 root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1055 struct btrfs_root_ref);
1056 len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
1057 ptr -= len + 1;
1058 if (ptr < name) {
1059 ret = -ENAMETOOLONG;
1060 goto err;
1061 }
1062 read_extent_buffer(path->nodes[0], ptr + 1,
1063 (unsigned long)(root_ref + 1), len);
1064 ptr[0] = '/';
1065 dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
1066 btrfs_release_path(path);
1067
1068 key.objectid = subvol_objectid;
1069 key.type = BTRFS_ROOT_ITEM_KEY;
1070 key.offset = (u64)-1;
1071 fs_root = btrfs_read_fs_root_no_name(fs_info, &key);
1072 if (IS_ERR(fs_root)) {
1073 ret = PTR_ERR(fs_root);
1074 goto err;
1075 }
1076
1077 /*
1078 * Walk up the filesystem tree by inode refs until we hit the
1079 * root directory.
1080 */
1081 while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
1082 key.objectid = dirid;
1083 key.type = BTRFS_INODE_REF_KEY;
1084 key.offset = (u64)-1;
1085
1086 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1087 if (ret < 0) {
1088 goto err;
1089 } else if (ret > 0) {
1090 ret = btrfs_previous_item(fs_root, path, dirid,
1091 BTRFS_INODE_REF_KEY);
1092 if (ret < 0) {
1093 goto err;
1094 } else if (ret > 0) {
1095 ret = -ENOENT;
1096 goto err;
1097 }
1098 }
1099
1100 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1101 dirid = key.offset;
1102
1103 inode_ref = btrfs_item_ptr(path->nodes[0],
1104 path->slots[0],
1105 struct btrfs_inode_ref);
1106 len = btrfs_inode_ref_name_len(path->nodes[0],
1107 inode_ref);
1108 ptr -= len + 1;
1109 if (ptr < name) {
1110 ret = -ENAMETOOLONG;
1111 goto err;
1112 }
1113 read_extent_buffer(path->nodes[0], ptr + 1,
1114 (unsigned long)(inode_ref + 1), len);
1115 ptr[0] = '/';
1116 btrfs_release_path(path);
1117 }
1118 }
1119
1120 btrfs_free_path(path);
1121 if (ptr == name + PATH_MAX - 1) {
1122 name[0] = '/';
1123 name[1] = '\0';
1124 } else {
1125 memmove(name, ptr, name + PATH_MAX - ptr);
1126 }
1127 return name;
1128
1129 err:
1130 btrfs_free_path(path);
1131 kfree(name);
1132 return ERR_PTR(ret);
1133 }
1134
1135 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
1136 {
1137 struct btrfs_root *root = fs_info->tree_root;
1138 struct btrfs_dir_item *di;
1139 struct btrfs_path *path;
1140 struct btrfs_key location;
1141 u64 dir_id;
1142
1143 path = btrfs_alloc_path();
1144 if (!path)
1145 return -ENOMEM;
1146 path->leave_spinning = 1;
1147
1148 /*
1149 * Find the "default" dir item which points to the root item that we
1150 * will mount by default if we haven't been given a specific subvolume
1151 * to mount.
1152 */
1153 dir_id = btrfs_super_root_dir(fs_info->super_copy);
1154 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
1155 if (IS_ERR(di)) {
1156 btrfs_free_path(path);
1157 return PTR_ERR(di);
1158 }
1159 if (!di) {
1160 /*
1161 * Ok the default dir item isn't there. This is weird since
1162 * it's always been there, but don't freak out, just try and
1163 * mount the top-level subvolume.
1164 */
1165 btrfs_free_path(path);
1166 *objectid = BTRFS_FS_TREE_OBJECTID;
1167 return 0;
1168 }
1169
1170 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1171 btrfs_free_path(path);
1172 *objectid = location.objectid;
1173 return 0;
1174 }
1175
1176 static int btrfs_fill_super(struct super_block *sb,
1177 struct btrfs_fs_devices *fs_devices,
1178 void *data)
1179 {
1180 struct inode *inode;
1181 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1182 struct btrfs_key key;
1183 int err;
1184
1185 sb->s_maxbytes = MAX_LFS_FILESIZE;
1186 sb->s_magic = BTRFS_SUPER_MAGIC;
1187 sb->s_op = &btrfs_super_ops;
1188 sb->s_d_op = &btrfs_dentry_operations;
1189 sb->s_export_op = &btrfs_export_ops;
1190 sb->s_xattr = btrfs_xattr_handlers;
1191 sb->s_time_gran = 1;
1192 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
1193 sb->s_flags |= SB_POSIXACL;
1194 #endif
1195 sb->s_flags |= SB_I_VERSION;
1196 sb->s_iflags |= SB_I_CGROUPWB;
1197
1198 err = super_setup_bdi(sb);
1199 if (err) {
1200 btrfs_err(fs_info, "super_setup_bdi failed");
1201 return err;
1202 }
1203
1204 err = open_ctree(sb, fs_devices, (char *)data);
1205 if (err) {
1206 btrfs_err(fs_info, "open_ctree failed");
1207 return err;
1208 }
1209
1210 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
1211 key.type = BTRFS_INODE_ITEM_KEY;
1212 key.offset = 0;
1213 inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
1214 if (IS_ERR(inode)) {
1215 err = PTR_ERR(inode);
1216 goto fail_close;
1217 }
1218
1219 sb->s_root = d_make_root(inode);
1220 if (!sb->s_root) {
1221 err = -ENOMEM;
1222 goto fail_close;
1223 }
1224
1225 cleancache_init_fs(sb);
1226 sb->s_flags |= SB_ACTIVE;
1227 return 0;
1228
1229 fail_close:
1230 close_ctree(fs_info);
1231 return err;
1232 }
1233
1234 int btrfs_sync_fs(struct super_block *sb, int wait)
1235 {
1236 struct btrfs_trans_handle *trans;
1237 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1238 struct btrfs_root *root = fs_info->tree_root;
1239
1240 trace_btrfs_sync_fs(fs_info, wait);
1241
1242 if (!wait) {
1243 filemap_flush(fs_info->btree_inode->i_mapping);
1244 return 0;
1245 }
1246
1247 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1248
1249 trans = btrfs_attach_transaction_barrier(root);
1250 if (IS_ERR(trans)) {
1251 /* no transaction, don't bother */
1252 if (PTR_ERR(trans) == -ENOENT) {
1253 /*
1254 * Exit unless we have some pending changes
1255 * that need to go through commit
1256 */
1257 if (fs_info->pending_changes == 0)
1258 return 0;
1259 /*
1260 * A non-blocking test if the fs is frozen. We must not
1261 * start a new transaction here otherwise a deadlock
1262 * happens. The pending operations are delayed to the
1263 * next commit after thawing.
1264 */
1265 if (sb_start_write_trylock(sb))
1266 sb_end_write(sb);
1267 else
1268 return 0;
1269 trans = btrfs_start_transaction(root, 0);
1270 }
1271 if (IS_ERR(trans))
1272 return PTR_ERR(trans);
1273 }
1274 return btrfs_commit_transaction(trans);
1275 }
1276
1277 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1278 {
1279 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1280 const char *compress_type;
1281
1282 if (btrfs_test_opt(info, DEGRADED))
1283 seq_puts(seq, ",degraded");
1284 if (btrfs_test_opt(info, NODATASUM))
1285 seq_puts(seq, ",nodatasum");
1286 if (btrfs_test_opt(info, NODATACOW))
1287 seq_puts(seq, ",nodatacow");
1288 if (btrfs_test_opt(info, NOBARRIER))
1289 seq_puts(seq, ",nobarrier");
1290 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1291 seq_printf(seq, ",max_inline=%llu", info->max_inline);
1292 if (info->thread_pool_size != min_t(unsigned long,
1293 num_online_cpus() + 2, 8))
1294 seq_printf(seq, ",thread_pool=%u", info->thread_pool_size);
1295 if (btrfs_test_opt(info, COMPRESS)) {
1296 compress_type = btrfs_compress_type2str(info->compress_type);
1297 if (btrfs_test_opt(info, FORCE_COMPRESS))
1298 seq_printf(seq, ",compress-force=%s", compress_type);
1299 else
1300 seq_printf(seq, ",compress=%s", compress_type);
1301 if (info->compress_level)
1302 seq_printf(seq, ":%d", info->compress_level);
1303 }
1304 if (btrfs_test_opt(info, NOSSD))
1305 seq_puts(seq, ",nossd");
1306 if (btrfs_test_opt(info, SSD_SPREAD))
1307 seq_puts(seq, ",ssd_spread");
1308 else if (btrfs_test_opt(info, SSD))
1309 seq_puts(seq, ",ssd");
1310 if (btrfs_test_opt(info, NOTREELOG))
1311 seq_puts(seq, ",notreelog");
1312 if (btrfs_test_opt(info, NOLOGREPLAY))
1313 seq_puts(seq, ",nologreplay");
1314 if (btrfs_test_opt(info, FLUSHONCOMMIT))
1315 seq_puts(seq, ",flushoncommit");
1316 if (btrfs_test_opt(info, DISCARD))
1317 seq_puts(seq, ",discard");
1318 if (!(info->sb->s_flags & SB_POSIXACL))
1319 seq_puts(seq, ",noacl");
1320 if (btrfs_test_opt(info, SPACE_CACHE))
1321 seq_puts(seq, ",space_cache");
1322 else if (btrfs_test_opt(info, FREE_SPACE_TREE))
1323 seq_puts(seq, ",space_cache=v2");
1324 else
1325 seq_puts(seq, ",nospace_cache");
1326 if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1327 seq_puts(seq, ",rescan_uuid_tree");
1328 if (btrfs_test_opt(info, CLEAR_CACHE))
1329 seq_puts(seq, ",clear_cache");
1330 if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1331 seq_puts(seq, ",user_subvol_rm_allowed");
1332 if (btrfs_test_opt(info, ENOSPC_DEBUG))
1333 seq_puts(seq, ",enospc_debug");
1334 if (btrfs_test_opt(info, AUTO_DEFRAG))
1335 seq_puts(seq, ",autodefrag");
1336 if (btrfs_test_opt(info, INODE_MAP_CACHE))
1337 seq_puts(seq, ",inode_cache");
1338 if (btrfs_test_opt(info, SKIP_BALANCE))
1339 seq_puts(seq, ",skip_balance");
1340 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1341 if (btrfs_test_opt(info, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA))
1342 seq_puts(seq, ",check_int_data");
1343 else if (btrfs_test_opt(info, CHECK_INTEGRITY))
1344 seq_puts(seq, ",check_int");
1345 if (info->check_integrity_print_mask)
1346 seq_printf(seq, ",check_int_print_mask=%d",
1347 info->check_integrity_print_mask);
1348 #endif
1349 if (info->metadata_ratio)
1350 seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio);
1351 if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1352 seq_puts(seq, ",fatal_errors=panic");
1353 if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1354 seq_printf(seq, ",commit=%u", info->commit_interval);
1355 #ifdef CONFIG_BTRFS_DEBUG
1356 if (btrfs_test_opt(info, FRAGMENT_DATA))
1357 seq_puts(seq, ",fragment=data");
1358 if (btrfs_test_opt(info, FRAGMENT_METADATA))
1359 seq_puts(seq, ",fragment=metadata");
1360 #endif
1361 if (btrfs_test_opt(info, REF_VERIFY))
1362 seq_puts(seq, ",ref_verify");
1363 seq_printf(seq, ",subvolid=%llu",
1364 BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1365 seq_puts(seq, ",subvol=");
1366 seq_dentry(seq, dentry, " \t\n\\");
1367 return 0;
1368 }
1369
1370 static int btrfs_test_super(struct super_block *s, void *data)
1371 {
1372 struct btrfs_fs_info *p = data;
1373 struct btrfs_fs_info *fs_info = btrfs_sb(s);
1374
1375 return fs_info->fs_devices == p->fs_devices;
1376 }
1377
1378 static int btrfs_set_super(struct super_block *s, void *data)
1379 {
1380 int err = set_anon_super(s, data);
1381 if (!err)
1382 s->s_fs_info = data;
1383 return err;
1384 }
1385
1386 /*
1387 * subvolumes are identified by ino 256
1388 */
1389 static inline int is_subvolume_inode(struct inode *inode)
1390 {
1391 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1392 return 1;
1393 return 0;
1394 }
1395
1396 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1397 const char *device_name, struct vfsmount *mnt)
1398 {
1399 struct dentry *root;
1400 int ret;
1401
1402 if (!subvol_name) {
1403 if (!subvol_objectid) {
1404 ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1405 &subvol_objectid);
1406 if (ret) {
1407 root = ERR_PTR(ret);
1408 goto out;
1409 }
1410 }
1411 subvol_name = get_subvol_name_from_objectid(btrfs_sb(mnt->mnt_sb),
1412 subvol_objectid);
1413 if (IS_ERR(subvol_name)) {
1414 root = ERR_CAST(subvol_name);
1415 subvol_name = NULL;
1416 goto out;
1417 }
1418
1419 }
1420
1421 root = mount_subtree(mnt, subvol_name);
1422 /* mount_subtree() drops our reference on the vfsmount. */
1423 mnt = NULL;
1424
1425 if (!IS_ERR(root)) {
1426 struct super_block *s = root->d_sb;
1427 struct btrfs_fs_info *fs_info = btrfs_sb(s);
1428 struct inode *root_inode = d_inode(root);
1429 u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
1430
1431 ret = 0;
1432 if (!is_subvolume_inode(root_inode)) {
1433 btrfs_err(fs_info, "'%s' is not a valid subvolume",
1434 subvol_name);
1435 ret = -EINVAL;
1436 }
1437 if (subvol_objectid && root_objectid != subvol_objectid) {
1438 /*
1439 * This will also catch a race condition where a
1440 * subvolume which was passed by ID is renamed and
1441 * another subvolume is renamed over the old location.
1442 */
1443 btrfs_err(fs_info,
1444 "subvol '%s' does not match subvolid %llu",
1445 subvol_name, subvol_objectid);
1446 ret = -EINVAL;
1447 }
1448 if (ret) {
1449 dput(root);
1450 root = ERR_PTR(ret);
1451 deactivate_locked_super(s);
1452 }
1453 }
1454
1455 out:
1456 mntput(mnt);
1457 kfree(subvol_name);
1458 return root;
1459 }
1460
1461 static int parse_security_options(char *orig_opts,
1462 struct security_mnt_opts *sec_opts)
1463 {
1464 char *secdata = NULL;
1465 int ret = 0;
1466
1467 secdata = alloc_secdata();
1468 if (!secdata)
1469 return -ENOMEM;
1470 ret = security_sb_copy_data(orig_opts, secdata);
1471 if (ret) {
1472 free_secdata(secdata);
1473 return ret;
1474 }
1475 ret = security_sb_parse_opts_str(secdata, sec_opts);
1476 free_secdata(secdata);
1477 return ret;
1478 }
1479
1480 static int setup_security_options(struct btrfs_fs_info *fs_info,
1481 struct super_block *sb,
1482 struct security_mnt_opts *sec_opts)
1483 {
1484 int ret = 0;
1485
1486 /*
1487 * Call security_sb_set_mnt_opts() to check whether new sec_opts
1488 * is valid.
1489 */
1490 ret = security_sb_set_mnt_opts(sb, sec_opts, 0, NULL);
1491 if (ret)
1492 return ret;
1493
1494 #ifdef CONFIG_SECURITY
1495 if (!fs_info->security_opts.num_mnt_opts) {
1496 /* first time security setup, copy sec_opts to fs_info */
1497 memcpy(&fs_info->security_opts, sec_opts, sizeof(*sec_opts));
1498 } else {
1499 /*
1500 * Since SELinux (the only one supporting security_mnt_opts)
1501 * does NOT support changing context during remount/mount of
1502 * the same sb, this must be the same or part of the same
1503 * security options, just free it.
1504 */
1505 security_free_mnt_opts(sec_opts);
1506 }
1507 #endif
1508 return ret;
1509 }
1510
1511 /*
1512 * Find a superblock for the given device / mount point.
1513 *
1514 * Note: This is based on mount_bdev from fs/super.c with a few additions
1515 * for multiple device setup. Make sure to keep it in sync.
1516 */
1517 static struct dentry *btrfs_mount_root(struct file_system_type *fs_type,
1518 int flags, const char *device_name, void *data)
1519 {
1520 struct block_device *bdev = NULL;
1521 struct super_block *s;
1522 struct btrfs_device *device = NULL;
1523 struct btrfs_fs_devices *fs_devices = NULL;
1524 struct btrfs_fs_info *fs_info = NULL;
1525 struct security_mnt_opts new_sec_opts;
1526 fmode_t mode = FMODE_READ;
1527 int error = 0;
1528
1529 if (!(flags & SB_RDONLY))
1530 mode |= FMODE_WRITE;
1531
1532 security_init_mnt_opts(&new_sec_opts);
1533 if (data) {
1534 error = parse_security_options(data, &new_sec_opts);
1535 if (error)
1536 return ERR_PTR(error);
1537 }
1538
1539 /*
1540 * Setup a dummy root and fs_info for test/set super. This is because
1541 * we don't actually fill this stuff out until open_ctree, but we need
1542 * it for searching for existing supers, so this lets us do that and
1543 * then open_ctree will properly initialize everything later.
1544 */
1545 fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
1546 if (!fs_info) {
1547 error = -ENOMEM;
1548 goto error_sec_opts;
1549 }
1550
1551 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1552 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1553 security_init_mnt_opts(&fs_info->security_opts);
1554 if (!fs_info->super_copy || !fs_info->super_for_commit) {
1555 error = -ENOMEM;
1556 goto error_fs_info;
1557 }
1558
1559 mutex_lock(&uuid_mutex);
1560 error = btrfs_parse_device_options(data, mode, fs_type);
1561 if (error) {
1562 mutex_unlock(&uuid_mutex);
1563 goto error_fs_info;
1564 }
1565
1566 device = btrfs_scan_one_device(device_name, mode, fs_type);
1567 if (IS_ERR(device)) {
1568 mutex_unlock(&uuid_mutex);
1569 error = PTR_ERR(device);
1570 goto error_fs_info;
1571 }
1572
1573 fs_devices = device->fs_devices;
1574 fs_info->fs_devices = fs_devices;
1575
1576 error = btrfs_open_devices(fs_devices, mode, fs_type);
1577 mutex_unlock(&uuid_mutex);
1578 if (error)
1579 goto error_fs_info;
1580
1581 if (!(flags & SB_RDONLY) && fs_devices->rw_devices == 0) {
1582 error = -EACCES;
1583 goto error_close_devices;
1584 }
1585
1586 bdev = fs_devices->latest_bdev;
1587 s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | SB_NOSEC,
1588 fs_info);
1589 if (IS_ERR(s)) {
1590 error = PTR_ERR(s);
1591 goto error_close_devices;
1592 }
1593
1594 if (s->s_root) {
1595 btrfs_close_devices(fs_devices);
1596 free_fs_info(fs_info);
1597 if ((flags ^ s->s_flags) & SB_RDONLY)
1598 error = -EBUSY;
1599 } else {
1600 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1601 btrfs_sb(s)->bdev_holder = fs_type;
1602 error = btrfs_fill_super(s, fs_devices, data);
1603 }
1604 if (error) {
1605 deactivate_locked_super(s);
1606 goto error_sec_opts;
1607 }
1608
1609 fs_info = btrfs_sb(s);
1610 error = setup_security_options(fs_info, s, &new_sec_opts);
1611 if (error) {
1612 deactivate_locked_super(s);
1613 goto error_sec_opts;
1614 }
1615
1616 return dget(s->s_root);
1617
1618 error_close_devices:
1619 btrfs_close_devices(fs_devices);
1620 error_fs_info:
1621 free_fs_info(fs_info);
1622 error_sec_opts:
1623 security_free_mnt_opts(&new_sec_opts);
1624 return ERR_PTR(error);
1625 }
1626
1627 /*
1628 * Mount function which is called by VFS layer.
1629 *
1630 * In order to allow mounting a subvolume directly, btrfs uses mount_subtree()
1631 * which needs vfsmount* of device's root (/). This means device's root has to
1632 * be mounted internally in any case.
1633 *
1634 * Operation flow:
1635 * 1. Parse subvol id related options for later use in mount_subvol().
1636 *
1637 * 2. Mount device's root (/) by calling vfs_kern_mount().
1638 *
1639 * NOTE: vfs_kern_mount() is used by VFS to call btrfs_mount() in the
1640 * first place. In order to avoid calling btrfs_mount() again, we use
1641 * different file_system_type which is not registered to VFS by
1642 * register_filesystem() (btrfs_root_fs_type). As a result,
1643 * btrfs_mount_root() is called. The return value will be used by
1644 * mount_subtree() in mount_subvol().
1645 *
1646 * 3. Call mount_subvol() to get the dentry of subvolume. Since there is
1647 * "btrfs subvolume set-default", mount_subvol() is called always.
1648 */
1649 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1650 const char *device_name, void *data)
1651 {
1652 struct vfsmount *mnt_root;
1653 struct dentry *root;
1654 fmode_t mode = FMODE_READ;
1655 char *subvol_name = NULL;
1656 u64 subvol_objectid = 0;
1657 int error = 0;
1658
1659 if (!(flags & SB_RDONLY))
1660 mode |= FMODE_WRITE;
1661
1662 error = btrfs_parse_subvol_options(data, &subvol_name,
1663 &subvol_objectid);
1664 if (error) {
1665 kfree(subvol_name);
1666 return ERR_PTR(error);
1667 }
1668
1669 /* mount device's root (/) */
1670 mnt_root = vfs_kern_mount(&btrfs_root_fs_type, flags, device_name, data);
1671 if (PTR_ERR_OR_ZERO(mnt_root) == -EBUSY) {
1672 if (flags & SB_RDONLY) {
1673 mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1674 flags & ~SB_RDONLY, device_name, data);
1675 } else {
1676 mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1677 flags | SB_RDONLY, device_name, data);
1678 if (IS_ERR(mnt_root)) {
1679 root = ERR_CAST(mnt_root);
1680 goto out;
1681 }
1682
1683 down_write(&mnt_root->mnt_sb->s_umount);
1684 error = btrfs_remount(mnt_root->mnt_sb, &flags, NULL);
1685 up_write(&mnt_root->mnt_sb->s_umount);
1686 if (error < 0) {
1687 root = ERR_PTR(error);
1688 mntput(mnt_root);
1689 goto out;
1690 }
1691 }
1692 }
1693 if (IS_ERR(mnt_root)) {
1694 root = ERR_CAST(mnt_root);
1695 goto out;
1696 }
1697
1698 /* mount_subvol() will free subvol_name and mnt_root */
1699 root = mount_subvol(subvol_name, subvol_objectid, device_name, mnt_root);
1700
1701 out:
1702 return root;
1703 }
1704
1705 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1706 u32 new_pool_size, u32 old_pool_size)
1707 {
1708 if (new_pool_size == old_pool_size)
1709 return;
1710
1711 fs_info->thread_pool_size = new_pool_size;
1712
1713 btrfs_info(fs_info, "resize thread pool %d -> %d",
1714 old_pool_size, new_pool_size);
1715
1716 btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1717 btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1718 btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size);
1719 btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1720 btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size);
1721 btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size);
1722 btrfs_workqueue_set_max(fs_info->endio_meta_write_workers,
1723 new_pool_size);
1724 btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1725 btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1726 btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1727 btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size);
1728 btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers,
1729 new_pool_size);
1730 }
1731
1732 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info)
1733 {
1734 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1735 }
1736
1737 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1738 unsigned long old_opts, int flags)
1739 {
1740 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1741 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1742 (flags & SB_RDONLY))) {
1743 /* wait for any defraggers to finish */
1744 wait_event(fs_info->transaction_wait,
1745 (atomic_read(&fs_info->defrag_running) == 0));
1746 if (flags & SB_RDONLY)
1747 sync_filesystem(fs_info->sb);
1748 }
1749 }
1750
1751 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1752 unsigned long old_opts)
1753 {
1754 /*
1755 * We need to cleanup all defragable inodes if the autodefragment is
1756 * close or the filesystem is read only.
1757 */
1758 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1759 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
1760 btrfs_cleanup_defrag_inodes(fs_info);
1761 }
1762
1763 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1764 }
1765
1766 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1767 {
1768 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1769 struct btrfs_root *root = fs_info->tree_root;
1770 unsigned old_flags = sb->s_flags;
1771 unsigned long old_opts = fs_info->mount_opt;
1772 unsigned long old_compress_type = fs_info->compress_type;
1773 u64 old_max_inline = fs_info->max_inline;
1774 u32 old_thread_pool_size = fs_info->thread_pool_size;
1775 u32 old_metadata_ratio = fs_info->metadata_ratio;
1776 int ret;
1777
1778 sync_filesystem(sb);
1779 btrfs_remount_prepare(fs_info);
1780
1781 if (data) {
1782 struct security_mnt_opts new_sec_opts;
1783
1784 security_init_mnt_opts(&new_sec_opts);
1785 ret = parse_security_options(data, &new_sec_opts);
1786 if (ret)
1787 goto restore;
1788 ret = setup_security_options(fs_info, sb,
1789 &new_sec_opts);
1790 if (ret) {
1791 security_free_mnt_opts(&new_sec_opts);
1792 goto restore;
1793 }
1794 }
1795
1796 ret = btrfs_parse_options(fs_info, data, *flags);
1797 if (ret)
1798 goto restore;
1799
1800 btrfs_remount_begin(fs_info, old_opts, *flags);
1801 btrfs_resize_thread_pool(fs_info,
1802 fs_info->thread_pool_size, old_thread_pool_size);
1803
1804 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
1805 goto out;
1806
1807 if (*flags & SB_RDONLY) {
1808 /*
1809 * this also happens on 'umount -rf' or on shutdown, when
1810 * the filesystem is busy.
1811 */
1812 cancel_work_sync(&fs_info->async_reclaim_work);
1813
1814 /* wait for the uuid_scan task to finish */
1815 down(&fs_info->uuid_tree_rescan_sem);
1816 /* avoid complains from lockdep et al. */
1817 up(&fs_info->uuid_tree_rescan_sem);
1818
1819 sb->s_flags |= SB_RDONLY;
1820
1821 /*
1822 * Setting SB_RDONLY will put the cleaner thread to
1823 * sleep at the next loop if it's already active.
1824 * If it's already asleep, we'll leave unused block
1825 * groups on disk until we're mounted read-write again
1826 * unless we clean them up here.
1827 */
1828 btrfs_delete_unused_bgs(fs_info);
1829
1830 btrfs_dev_replace_suspend_for_unmount(fs_info);
1831 btrfs_scrub_cancel(fs_info);
1832 btrfs_pause_balance(fs_info);
1833
1834 ret = btrfs_commit_super(fs_info);
1835 if (ret)
1836 goto restore;
1837 } else {
1838 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1839 btrfs_err(fs_info,
1840 "Remounting read-write after error is not allowed");
1841 ret = -EINVAL;
1842 goto restore;
1843 }
1844 if (fs_info->fs_devices->rw_devices == 0) {
1845 ret = -EACCES;
1846 goto restore;
1847 }
1848
1849 if (!btrfs_check_rw_degradable(fs_info, NULL)) {
1850 btrfs_warn(fs_info,
1851 "too many missing devices, writable remount is not allowed");
1852 ret = -EACCES;
1853 goto restore;
1854 }
1855
1856 if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1857 ret = -EINVAL;
1858 goto restore;
1859 }
1860
1861 ret = btrfs_cleanup_fs_roots(fs_info);
1862 if (ret)
1863 goto restore;
1864
1865 /* recover relocation */
1866 mutex_lock(&fs_info->cleaner_mutex);
1867 ret = btrfs_recover_relocation(root);
1868 mutex_unlock(&fs_info->cleaner_mutex);
1869 if (ret)
1870 goto restore;
1871
1872 ret = btrfs_resume_balance_async(fs_info);
1873 if (ret)
1874 goto restore;
1875
1876 ret = btrfs_resume_dev_replace_async(fs_info);
1877 if (ret) {
1878 btrfs_warn(fs_info, "failed to resume dev_replace");
1879 goto restore;
1880 }
1881
1882 btrfs_qgroup_rescan_resume(fs_info);
1883
1884 if (!fs_info->uuid_root) {
1885 btrfs_info(fs_info, "creating UUID tree");
1886 ret = btrfs_create_uuid_tree(fs_info);
1887 if (ret) {
1888 btrfs_warn(fs_info,
1889 "failed to create the UUID tree %d",
1890 ret);
1891 goto restore;
1892 }
1893 }
1894 sb->s_flags &= ~SB_RDONLY;
1895
1896 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
1897 }
1898 out:
1899 wake_up_process(fs_info->transaction_kthread);
1900 btrfs_remount_cleanup(fs_info, old_opts);
1901 return 0;
1902
1903 restore:
1904 /* We've hit an error - don't reset SB_RDONLY */
1905 if (sb_rdonly(sb))
1906 old_flags |= SB_RDONLY;
1907 sb->s_flags = old_flags;
1908 fs_info->mount_opt = old_opts;
1909 fs_info->compress_type = old_compress_type;
1910 fs_info->max_inline = old_max_inline;
1911 btrfs_resize_thread_pool(fs_info,
1912 old_thread_pool_size, fs_info->thread_pool_size);
1913 fs_info->metadata_ratio = old_metadata_ratio;
1914 btrfs_remount_cleanup(fs_info, old_opts);
1915 return ret;
1916 }
1917
1918 /* Used to sort the devices by max_avail(descending sort) */
1919 static inline int btrfs_cmp_device_free_bytes(const void *dev_info1,
1920 const void *dev_info2)
1921 {
1922 if (((struct btrfs_device_info *)dev_info1)->max_avail >
1923 ((struct btrfs_device_info *)dev_info2)->max_avail)
1924 return -1;
1925 else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1926 ((struct btrfs_device_info *)dev_info2)->max_avail)
1927 return 1;
1928 else
1929 return 0;
1930 }
1931
1932 /*
1933 * sort the devices by max_avail, in which max free extent size of each device
1934 * is stored.(Descending Sort)
1935 */
1936 static inline void btrfs_descending_sort_devices(
1937 struct btrfs_device_info *devices,
1938 size_t nr_devices)
1939 {
1940 sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1941 btrfs_cmp_device_free_bytes, NULL);
1942 }
1943
1944 /*
1945 * The helper to calc the free space on the devices that can be used to store
1946 * file data.
1947 */
1948 static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
1949 u64 *free_bytes)
1950 {
1951 struct btrfs_device_info *devices_info;
1952 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1953 struct btrfs_device *device;
1954 u64 skip_space;
1955 u64 type;
1956 u64 avail_space;
1957 u64 min_stripe_size;
1958 int min_stripes = 1, num_stripes = 1;
1959 int i = 0, nr_devices;
1960
1961 /*
1962 * We aren't under the device list lock, so this is racy-ish, but good
1963 * enough for our purposes.
1964 */
1965 nr_devices = fs_info->fs_devices->open_devices;
1966 if (!nr_devices) {
1967 smp_mb();
1968 nr_devices = fs_info->fs_devices->open_devices;
1969 ASSERT(nr_devices);
1970 if (!nr_devices) {
1971 *free_bytes = 0;
1972 return 0;
1973 }
1974 }
1975
1976 devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1977 GFP_KERNEL);
1978 if (!devices_info)
1979 return -ENOMEM;
1980
1981 /* calc min stripe number for data space allocation */
1982 type = btrfs_data_alloc_profile(fs_info);
1983 if (type & BTRFS_BLOCK_GROUP_RAID0) {
1984 min_stripes = 2;
1985 num_stripes = nr_devices;
1986 } else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1987 min_stripes = 2;
1988 num_stripes = 2;
1989 } else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1990 min_stripes = 4;
1991 num_stripes = 4;
1992 }
1993
1994 if (type & BTRFS_BLOCK_GROUP_DUP)
1995 min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1996 else
1997 min_stripe_size = BTRFS_STRIPE_LEN;
1998
1999 rcu_read_lock();
2000 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2001 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2002 &device->dev_state) ||
2003 !device->bdev ||
2004 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2005 continue;
2006
2007 if (i >= nr_devices)
2008 break;
2009
2010 avail_space = device->total_bytes - device->bytes_used;
2011
2012 /* align with stripe_len */
2013 avail_space = div_u64(avail_space, BTRFS_STRIPE_LEN);
2014 avail_space *= BTRFS_STRIPE_LEN;
2015
2016 /*
2017 * In order to avoid overwriting the superblock on the drive,
2018 * btrfs starts at an offset of at least 1MB when doing chunk
2019 * allocation.
2020 */
2021 skip_space = SZ_1M;
2022
2023 /*
2024 * we can use the free space in [0, skip_space - 1], subtract
2025 * it from the total.
2026 */
2027 if (avail_space && avail_space >= skip_space)
2028 avail_space -= skip_space;
2029 else
2030 avail_space = 0;
2031
2032 if (avail_space < min_stripe_size)
2033 continue;
2034
2035 devices_info[i].dev = device;
2036 devices_info[i].max_avail = avail_space;
2037
2038 i++;
2039 }
2040 rcu_read_unlock();
2041
2042 nr_devices = i;
2043
2044 btrfs_descending_sort_devices(devices_info, nr_devices);
2045
2046 i = nr_devices - 1;
2047 avail_space = 0;
2048 while (nr_devices >= min_stripes) {
2049 if (num_stripes > nr_devices)
2050 num_stripes = nr_devices;
2051
2052 if (devices_info[i].max_avail >= min_stripe_size) {
2053 int j;
2054 u64 alloc_size;
2055
2056 avail_space += devices_info[i].max_avail * num_stripes;
2057 alloc_size = devices_info[i].max_avail;
2058 for (j = i + 1 - num_stripes; j <= i; j++)
2059 devices_info[j].max_avail -= alloc_size;
2060 }
2061 i--;
2062 nr_devices--;
2063 }
2064
2065 kfree(devices_info);
2066 *free_bytes = avail_space;
2067 return 0;
2068 }
2069
2070 /*
2071 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
2072 *
2073 * If there's a redundant raid level at DATA block groups, use the respective
2074 * multiplier to scale the sizes.
2075 *
2076 * Unused device space usage is based on simulating the chunk allocator
2077 * algorithm that respects the device sizes and order of allocations. This is
2078 * a close approximation of the actual use but there are other factors that may
2079 * change the result (like a new metadata chunk).
2080 *
2081 * If metadata is exhausted, f_bavail will be 0.
2082 */
2083 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
2084 {
2085 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
2086 struct btrfs_super_block *disk_super = fs_info->super_copy;
2087 struct list_head *head = &fs_info->space_info;
2088 struct btrfs_space_info *found;
2089 u64 total_used = 0;
2090 u64 total_free_data = 0;
2091 u64 total_free_meta = 0;
2092 int bits = dentry->d_sb->s_blocksize_bits;
2093 __be32 *fsid = (__be32 *)fs_info->fs_devices->fsid;
2094 unsigned factor = 1;
2095 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
2096 int ret;
2097 u64 thresh = 0;
2098 int mixed = 0;
2099
2100 rcu_read_lock();
2101 list_for_each_entry_rcu(found, head, list) {
2102 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
2103 int i;
2104
2105 total_free_data += found->disk_total - found->disk_used;
2106 total_free_data -=
2107 btrfs_account_ro_block_groups_free_space(found);
2108
2109 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2110 if (!list_empty(&found->block_groups[i]))
2111 factor = btrfs_bg_type_to_factor(
2112 btrfs_raid_array[i].bg_flag);
2113 }
2114 }
2115
2116 /*
2117 * Metadata in mixed block goup profiles are accounted in data
2118 */
2119 if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
2120 if (found->flags & BTRFS_BLOCK_GROUP_DATA)
2121 mixed = 1;
2122 else
2123 total_free_meta += found->disk_total -
2124 found->disk_used;
2125 }
2126
2127 total_used += found->disk_used;
2128 }
2129
2130 rcu_read_unlock();
2131
2132 buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
2133 buf->f_blocks >>= bits;
2134 buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
2135
2136 /* Account global block reserve as used, it's in logical size already */
2137 spin_lock(&block_rsv->lock);
2138 /* Mixed block groups accounting is not byte-accurate, avoid overflow */
2139 if (buf->f_bfree >= block_rsv->size >> bits)
2140 buf->f_bfree -= block_rsv->size >> bits;
2141 else
2142 buf->f_bfree = 0;
2143 spin_unlock(&block_rsv->lock);
2144
2145 buf->f_bavail = div_u64(total_free_data, factor);
2146 ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
2147 if (ret)
2148 return ret;
2149 buf->f_bavail += div_u64(total_free_data, factor);
2150 buf->f_bavail = buf->f_bavail >> bits;
2151
2152 /*
2153 * We calculate the remaining metadata space minus global reserve. If
2154 * this is (supposedly) smaller than zero, there's no space. But this
2155 * does not hold in practice, the exhausted state happens where's still
2156 * some positive delta. So we apply some guesswork and compare the
2157 * delta to a 4M threshold. (Practically observed delta was ~2M.)
2158 *
2159 * We probably cannot calculate the exact threshold value because this
2160 * depends on the internal reservations requested by various
2161 * operations, so some operations that consume a few metadata will
2162 * succeed even if the Avail is zero. But this is better than the other
2163 * way around.
2164 */
2165 thresh = SZ_4M;
2166
2167 if (!mixed && total_free_meta - thresh < block_rsv->size)
2168 buf->f_bavail = 0;
2169
2170 buf->f_type = BTRFS_SUPER_MAGIC;
2171 buf->f_bsize = dentry->d_sb->s_blocksize;
2172 buf->f_namelen = BTRFS_NAME_LEN;
2173
2174 /* We treat it as constant endianness (it doesn't matter _which_)
2175 because we want the fsid to come out the same whether mounted
2176 on a big-endian or little-endian host */
2177 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
2178 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
2179 /* Mask in the root object ID too, to disambiguate subvols */
2180 buf->f_fsid.val[0] ^=
2181 BTRFS_I(d_inode(dentry))->root->root_key.objectid >> 32;
2182 buf->f_fsid.val[1] ^=
2183 BTRFS_I(d_inode(dentry))->root->root_key.objectid;
2184
2185 return 0;
2186 }
2187
2188 static void btrfs_kill_super(struct super_block *sb)
2189 {
2190 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2191 kill_anon_super(sb);
2192 free_fs_info(fs_info);
2193 }
2194
2195 static struct file_system_type btrfs_fs_type = {
2196 .owner = THIS_MODULE,
2197 .name = "btrfs",
2198 .mount = btrfs_mount,
2199 .kill_sb = btrfs_kill_super,
2200 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2201 };
2202
2203 static struct file_system_type btrfs_root_fs_type = {
2204 .owner = THIS_MODULE,
2205 .name = "btrfs",
2206 .mount = btrfs_mount_root,
2207 .kill_sb = btrfs_kill_super,
2208 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2209 };
2210
2211 MODULE_ALIAS_FS("btrfs");
2212
2213 static int btrfs_control_open(struct inode *inode, struct file *file)
2214 {
2215 /*
2216 * The control file's private_data is used to hold the
2217 * transaction when it is started and is used to keep
2218 * track of whether a transaction is already in progress.
2219 */
2220 file->private_data = NULL;
2221 return 0;
2222 }
2223
2224 /*
2225 * used by btrfsctl to scan devices when no FS is mounted
2226 */
2227 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2228 unsigned long arg)
2229 {
2230 struct btrfs_ioctl_vol_args *vol;
2231 struct btrfs_device *device = NULL;
2232 int ret = -ENOTTY;
2233
2234 if (!capable(CAP_SYS_ADMIN))
2235 return -EPERM;
2236
2237 vol = memdup_user((void __user *)arg, sizeof(*vol));
2238 if (IS_ERR(vol))
2239 return PTR_ERR(vol);
2240 vol->name[BTRFS_PATH_NAME_MAX] = '\0';
2241
2242 switch (cmd) {
2243 case BTRFS_IOC_SCAN_DEV:
2244 mutex_lock(&uuid_mutex);
2245 device = btrfs_scan_one_device(vol->name, FMODE_READ,
2246 &btrfs_root_fs_type);
2247 ret = PTR_ERR_OR_ZERO(device);
2248 mutex_unlock(&uuid_mutex);
2249 break;
2250 case BTRFS_IOC_DEVICES_READY:
2251 mutex_lock(&uuid_mutex);
2252 device = btrfs_scan_one_device(vol->name, FMODE_READ,
2253 &btrfs_root_fs_type);
2254 if (IS_ERR(device)) {
2255 mutex_unlock(&uuid_mutex);
2256 ret = PTR_ERR(device);
2257 break;
2258 }
2259 ret = !(device->fs_devices->num_devices ==
2260 device->fs_devices->total_devices);
2261 mutex_unlock(&uuid_mutex);
2262 break;
2263 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2264 ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2265 break;
2266 }
2267
2268 kfree(vol);
2269 return ret;
2270 }
2271
2272 static int btrfs_freeze(struct super_block *sb)
2273 {
2274 struct btrfs_trans_handle *trans;
2275 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2276 struct btrfs_root *root = fs_info->tree_root;
2277
2278 set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2279 /*
2280 * We don't need a barrier here, we'll wait for any transaction that
2281 * could be in progress on other threads (and do delayed iputs that
2282 * we want to avoid on a frozen filesystem), or do the commit
2283 * ourselves.
2284 */
2285 trans = btrfs_attach_transaction_barrier(root);
2286 if (IS_ERR(trans)) {
2287 /* no transaction, don't bother */
2288 if (PTR_ERR(trans) == -ENOENT)
2289 return 0;
2290 return PTR_ERR(trans);
2291 }
2292 return btrfs_commit_transaction(trans);
2293 }
2294
2295 static int btrfs_unfreeze(struct super_block *sb)
2296 {
2297 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2298
2299 clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2300 return 0;
2301 }
2302
2303 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2304 {
2305 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2306 struct btrfs_fs_devices *cur_devices;
2307 struct btrfs_device *dev, *first_dev = NULL;
2308 struct list_head *head;
2309
2310 /*
2311 * Lightweight locking of the devices. We should not need
2312 * device_list_mutex here as we only read the device data and the list
2313 * is protected by RCU. Even if a device is deleted during the list
2314 * traversals, we'll get valid data, the freeing callback will wait at
2315 * least until the rcu_read_unlock.
2316 */
2317 rcu_read_lock();
2318 cur_devices = fs_info->fs_devices;
2319 while (cur_devices) {
2320 head = &cur_devices->devices;
2321 list_for_each_entry_rcu(dev, head, dev_list) {
2322 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
2323 continue;
2324 if (!dev->name)
2325 continue;
2326 if (!first_dev || dev->devid < first_dev->devid)
2327 first_dev = dev;
2328 }
2329 cur_devices = cur_devices->seed;
2330 }
2331
2332 if (first_dev)
2333 seq_escape(m, rcu_str_deref(first_dev->name), " \t\n\\");
2334 else
2335 WARN_ON(1);
2336 rcu_read_unlock();
2337 return 0;
2338 }
2339
2340 static const struct super_operations btrfs_super_ops = {
2341 .drop_inode = btrfs_drop_inode,
2342 .evict_inode = btrfs_evict_inode,
2343 .put_super = btrfs_put_super,
2344 .sync_fs = btrfs_sync_fs,
2345 .show_options = btrfs_show_options,
2346 .show_devname = btrfs_show_devname,
2347 .alloc_inode = btrfs_alloc_inode,
2348 .destroy_inode = btrfs_destroy_inode,
2349 .statfs = btrfs_statfs,
2350 .remount_fs = btrfs_remount,
2351 .freeze_fs = btrfs_freeze,
2352 .unfreeze_fs = btrfs_unfreeze,
2353 };
2354
2355 static const struct file_operations btrfs_ctl_fops = {
2356 .open = btrfs_control_open,
2357 .unlocked_ioctl = btrfs_control_ioctl,
2358 .compat_ioctl = btrfs_control_ioctl,
2359 .owner = THIS_MODULE,
2360 .llseek = noop_llseek,
2361 };
2362
2363 static struct miscdevice btrfs_misc = {
2364 .minor = BTRFS_MINOR,
2365 .name = "btrfs-control",
2366 .fops = &btrfs_ctl_fops
2367 };
2368
2369 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2370 MODULE_ALIAS("devname:btrfs-control");
2371
2372 static int __init btrfs_interface_init(void)
2373 {
2374 return misc_register(&btrfs_misc);
2375 }
2376
2377 static __cold void btrfs_interface_exit(void)
2378 {
2379 misc_deregister(&btrfs_misc);
2380 }
2381
2382 static void __init btrfs_print_mod_info(void)
2383 {
2384 static const char options[] = ""
2385 #ifdef CONFIG_BTRFS_DEBUG
2386 ", debug=on"
2387 #endif
2388 #ifdef CONFIG_BTRFS_ASSERT
2389 ", assert=on"
2390 #endif
2391 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2392 ", integrity-checker=on"
2393 #endif
2394 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
2395 ", ref-verify=on"
2396 #endif
2397 ;
2398 pr_info("Btrfs loaded, crc32c=%s%s\n", crc32c_impl(), options);
2399 }
2400
2401 static int __init init_btrfs_fs(void)
2402 {
2403 int err;
2404
2405 btrfs_props_init();
2406
2407 err = btrfs_init_sysfs();
2408 if (err)
2409 return err;
2410
2411 btrfs_init_compress();
2412
2413 err = btrfs_init_cachep();
2414 if (err)
2415 goto free_compress;
2416
2417 err = extent_io_init();
2418 if (err)
2419 goto free_cachep;
2420
2421 err = extent_map_init();
2422 if (err)
2423 goto free_extent_io;
2424
2425 err = ordered_data_init();
2426 if (err)
2427 goto free_extent_map;
2428
2429 err = btrfs_delayed_inode_init();
2430 if (err)
2431 goto free_ordered_data;
2432
2433 err = btrfs_auto_defrag_init();
2434 if (err)
2435 goto free_delayed_inode;
2436
2437 err = btrfs_delayed_ref_init();
2438 if (err)
2439 goto free_auto_defrag;
2440
2441 err = btrfs_prelim_ref_init();
2442 if (err)
2443 goto free_delayed_ref;
2444
2445 err = btrfs_end_io_wq_init();
2446 if (err)
2447 goto free_prelim_ref;
2448
2449 err = btrfs_interface_init();
2450 if (err)
2451 goto free_end_io_wq;
2452
2453 btrfs_init_lockdep();
2454
2455 btrfs_print_mod_info();
2456
2457 err = btrfs_run_sanity_tests();
2458 if (err)
2459 goto unregister_ioctl;
2460
2461 err = register_filesystem(&btrfs_fs_type);
2462 if (err)
2463 goto unregister_ioctl;
2464
2465 return 0;
2466
2467 unregister_ioctl:
2468 btrfs_interface_exit();
2469 free_end_io_wq:
2470 btrfs_end_io_wq_exit();
2471 free_prelim_ref:
2472 btrfs_prelim_ref_exit();
2473 free_delayed_ref:
2474 btrfs_delayed_ref_exit();
2475 free_auto_defrag:
2476 btrfs_auto_defrag_exit();
2477 free_delayed_inode:
2478 btrfs_delayed_inode_exit();
2479 free_ordered_data:
2480 ordered_data_exit();
2481 free_extent_map:
2482 extent_map_exit();
2483 free_extent_io:
2484 extent_io_exit();
2485 free_cachep:
2486 btrfs_destroy_cachep();
2487 free_compress:
2488 btrfs_exit_compress();
2489 btrfs_exit_sysfs();
2490
2491 return err;
2492 }
2493
2494 static void __exit exit_btrfs_fs(void)
2495 {
2496 btrfs_destroy_cachep();
2497 btrfs_delayed_ref_exit();
2498 btrfs_auto_defrag_exit();
2499 btrfs_delayed_inode_exit();
2500 btrfs_prelim_ref_exit();
2501 ordered_data_exit();
2502 extent_map_exit();
2503 extent_io_exit();
2504 btrfs_interface_exit();
2505 btrfs_end_io_wq_exit();
2506 unregister_filesystem(&btrfs_fs_type);
2507 btrfs_exit_sysfs();
2508 btrfs_cleanup_fs_uuids();
2509 btrfs_exit_compress();
2510 }
2511
2512 late_initcall(init_btrfs_fs);
2513 module_exit(exit_btrfs_fs)
2514
2515 MODULE_LICENSE("GPL");