]> git.proxmox.com Git - mirror_ubuntu-disco-kernel.git/blob - fs/ext4/inode.c
Merge tag 'ext4_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso...
[mirror_ubuntu-disco-kernel.git] / fs / ext4 / inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/ext4/inode.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/inode.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
16 * 64-bit file support on 64-bit platforms by Jakub Jelinek
17 * (jj@sunsite.ms.mff.cuni.cz)
18 *
19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20 */
21
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/dax.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/bitops.h>
41 #include <linux/iomap.h>
42 #include <linux/iversion.h>
43
44 #include "ext4_jbd2.h"
45 #include "xattr.h"
46 #include "acl.h"
47 #include "truncate.h"
48
49 #include <trace/events/ext4.h>
50
51 #define MPAGE_DA_EXTENT_TAIL 0x01
52
53 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
54 struct ext4_inode_info *ei)
55 {
56 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
57 __u32 csum;
58 __u16 dummy_csum = 0;
59 int offset = offsetof(struct ext4_inode, i_checksum_lo);
60 unsigned int csum_size = sizeof(dummy_csum);
61
62 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
63 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
64 offset += csum_size;
65 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
66 EXT4_GOOD_OLD_INODE_SIZE - offset);
67
68 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
69 offset = offsetof(struct ext4_inode, i_checksum_hi);
70 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
71 EXT4_GOOD_OLD_INODE_SIZE,
72 offset - EXT4_GOOD_OLD_INODE_SIZE);
73 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
74 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
75 csum_size);
76 offset += csum_size;
77 }
78 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
79 EXT4_INODE_SIZE(inode->i_sb) - offset);
80 }
81
82 return csum;
83 }
84
85 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
86 struct ext4_inode_info *ei)
87 {
88 __u32 provided, calculated;
89
90 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
91 cpu_to_le32(EXT4_OS_LINUX) ||
92 !ext4_has_metadata_csum(inode->i_sb))
93 return 1;
94
95 provided = le16_to_cpu(raw->i_checksum_lo);
96 calculated = ext4_inode_csum(inode, raw, ei);
97 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
98 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
99 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
100 else
101 calculated &= 0xFFFF;
102
103 return provided == calculated;
104 }
105
106 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
107 struct ext4_inode_info *ei)
108 {
109 __u32 csum;
110
111 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
112 cpu_to_le32(EXT4_OS_LINUX) ||
113 !ext4_has_metadata_csum(inode->i_sb))
114 return;
115
116 csum = ext4_inode_csum(inode, raw, ei);
117 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
118 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
119 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
120 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
121 }
122
123 static inline int ext4_begin_ordered_truncate(struct inode *inode,
124 loff_t new_size)
125 {
126 trace_ext4_begin_ordered_truncate(inode, new_size);
127 /*
128 * If jinode is zero, then we never opened the file for
129 * writing, so there's no need to call
130 * jbd2_journal_begin_ordered_truncate() since there's no
131 * outstanding writes we need to flush.
132 */
133 if (!EXT4_I(inode)->jinode)
134 return 0;
135 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
136 EXT4_I(inode)->jinode,
137 new_size);
138 }
139
140 static void ext4_invalidatepage(struct page *page, unsigned int offset,
141 unsigned int length);
142 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
143 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
144 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
145 int pextents);
146
147 /*
148 * Test whether an inode is a fast symlink.
149 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
150 */
151 int ext4_inode_is_fast_symlink(struct inode *inode)
152 {
153 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
154 int ea_blocks = EXT4_I(inode)->i_file_acl ?
155 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
156
157 if (ext4_has_inline_data(inode))
158 return 0;
159
160 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
161 }
162 return S_ISLNK(inode->i_mode) && inode->i_size &&
163 (inode->i_size < EXT4_N_BLOCKS * 4);
164 }
165
166 /*
167 * Restart the transaction associated with *handle. This does a commit,
168 * so before we call here everything must be consistently dirtied against
169 * this transaction.
170 */
171 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
172 int nblocks)
173 {
174 int ret;
175
176 /*
177 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
178 * moment, get_block can be called only for blocks inside i_size since
179 * page cache has been already dropped and writes are blocked by
180 * i_mutex. So we can safely drop the i_data_sem here.
181 */
182 BUG_ON(EXT4_JOURNAL(inode) == NULL);
183 jbd_debug(2, "restarting handle %p\n", handle);
184 up_write(&EXT4_I(inode)->i_data_sem);
185 ret = ext4_journal_restart(handle, nblocks);
186 down_write(&EXT4_I(inode)->i_data_sem);
187 ext4_discard_preallocations(inode);
188
189 return ret;
190 }
191
192 /*
193 * Called at the last iput() if i_nlink is zero.
194 */
195 void ext4_evict_inode(struct inode *inode)
196 {
197 handle_t *handle;
198 int err;
199 int extra_credits = 3;
200 struct ext4_xattr_inode_array *ea_inode_array = NULL;
201
202 trace_ext4_evict_inode(inode);
203
204 if (inode->i_nlink) {
205 /*
206 * When journalling data dirty buffers are tracked only in the
207 * journal. So although mm thinks everything is clean and
208 * ready for reaping the inode might still have some pages to
209 * write in the running transaction or waiting to be
210 * checkpointed. Thus calling jbd2_journal_invalidatepage()
211 * (via truncate_inode_pages()) to discard these buffers can
212 * cause data loss. Also even if we did not discard these
213 * buffers, we would have no way to find them after the inode
214 * is reaped and thus user could see stale data if he tries to
215 * read them before the transaction is checkpointed. So be
216 * careful and force everything to disk here... We use
217 * ei->i_datasync_tid to store the newest transaction
218 * containing inode's data.
219 *
220 * Note that directories do not have this problem because they
221 * don't use page cache.
222 */
223 if (inode->i_ino != EXT4_JOURNAL_INO &&
224 ext4_should_journal_data(inode) &&
225 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
226 inode->i_data.nrpages) {
227 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
228 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
229
230 jbd2_complete_transaction(journal, commit_tid);
231 filemap_write_and_wait(&inode->i_data);
232 }
233 truncate_inode_pages_final(&inode->i_data);
234
235 goto no_delete;
236 }
237
238 if (is_bad_inode(inode))
239 goto no_delete;
240 dquot_initialize(inode);
241
242 if (ext4_should_order_data(inode))
243 ext4_begin_ordered_truncate(inode, 0);
244 truncate_inode_pages_final(&inode->i_data);
245
246 /*
247 * Protect us against freezing - iput() caller didn't have to have any
248 * protection against it
249 */
250 sb_start_intwrite(inode->i_sb);
251
252 if (!IS_NOQUOTA(inode))
253 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
254
255 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
256 ext4_blocks_for_truncate(inode)+extra_credits);
257 if (IS_ERR(handle)) {
258 ext4_std_error(inode->i_sb, PTR_ERR(handle));
259 /*
260 * If we're going to skip the normal cleanup, we still need to
261 * make sure that the in-core orphan linked list is properly
262 * cleaned up.
263 */
264 ext4_orphan_del(NULL, inode);
265 sb_end_intwrite(inode->i_sb);
266 goto no_delete;
267 }
268
269 if (IS_SYNC(inode))
270 ext4_handle_sync(handle);
271
272 /*
273 * Set inode->i_size to 0 before calling ext4_truncate(). We need
274 * special handling of symlinks here because i_size is used to
275 * determine whether ext4_inode_info->i_data contains symlink data or
276 * block mappings. Setting i_size to 0 will remove its fast symlink
277 * status. Erase i_data so that it becomes a valid empty block map.
278 */
279 if (ext4_inode_is_fast_symlink(inode))
280 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
281 inode->i_size = 0;
282 err = ext4_mark_inode_dirty(handle, inode);
283 if (err) {
284 ext4_warning(inode->i_sb,
285 "couldn't mark inode dirty (err %d)", err);
286 goto stop_handle;
287 }
288 if (inode->i_blocks) {
289 err = ext4_truncate(inode);
290 if (err) {
291 ext4_error(inode->i_sb,
292 "couldn't truncate inode %lu (err %d)",
293 inode->i_ino, err);
294 goto stop_handle;
295 }
296 }
297
298 /* Remove xattr references. */
299 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
300 extra_credits);
301 if (err) {
302 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
303 stop_handle:
304 ext4_journal_stop(handle);
305 ext4_orphan_del(NULL, inode);
306 sb_end_intwrite(inode->i_sb);
307 ext4_xattr_inode_array_free(ea_inode_array);
308 goto no_delete;
309 }
310
311 /*
312 * Kill off the orphan record which ext4_truncate created.
313 * AKPM: I think this can be inside the above `if'.
314 * Note that ext4_orphan_del() has to be able to cope with the
315 * deletion of a non-existent orphan - this is because we don't
316 * know if ext4_truncate() actually created an orphan record.
317 * (Well, we could do this if we need to, but heck - it works)
318 */
319 ext4_orphan_del(handle, inode);
320 EXT4_I(inode)->i_dtime = get_seconds();
321
322 /*
323 * One subtle ordering requirement: if anything has gone wrong
324 * (transaction abort, IO errors, whatever), then we can still
325 * do these next steps (the fs will already have been marked as
326 * having errors), but we can't free the inode if the mark_dirty
327 * fails.
328 */
329 if (ext4_mark_inode_dirty(handle, inode))
330 /* If that failed, just do the required in-core inode clear. */
331 ext4_clear_inode(inode);
332 else
333 ext4_free_inode(handle, inode);
334 ext4_journal_stop(handle);
335 sb_end_intwrite(inode->i_sb);
336 ext4_xattr_inode_array_free(ea_inode_array);
337 return;
338 no_delete:
339 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
340 }
341
342 #ifdef CONFIG_QUOTA
343 qsize_t *ext4_get_reserved_space(struct inode *inode)
344 {
345 return &EXT4_I(inode)->i_reserved_quota;
346 }
347 #endif
348
349 /*
350 * Called with i_data_sem down, which is important since we can call
351 * ext4_discard_preallocations() from here.
352 */
353 void ext4_da_update_reserve_space(struct inode *inode,
354 int used, int quota_claim)
355 {
356 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
357 struct ext4_inode_info *ei = EXT4_I(inode);
358
359 spin_lock(&ei->i_block_reservation_lock);
360 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
361 if (unlikely(used > ei->i_reserved_data_blocks)) {
362 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
363 "with only %d reserved data blocks",
364 __func__, inode->i_ino, used,
365 ei->i_reserved_data_blocks);
366 WARN_ON(1);
367 used = ei->i_reserved_data_blocks;
368 }
369
370 /* Update per-inode reservations */
371 ei->i_reserved_data_blocks -= used;
372 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
373
374 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
375
376 /* Update quota subsystem for data blocks */
377 if (quota_claim)
378 dquot_claim_block(inode, EXT4_C2B(sbi, used));
379 else {
380 /*
381 * We did fallocate with an offset that is already delayed
382 * allocated. So on delayed allocated writeback we should
383 * not re-claim the quota for fallocated blocks.
384 */
385 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
386 }
387
388 /*
389 * If we have done all the pending block allocations and if
390 * there aren't any writers on the inode, we can discard the
391 * inode's preallocations.
392 */
393 if ((ei->i_reserved_data_blocks == 0) &&
394 (atomic_read(&inode->i_writecount) == 0))
395 ext4_discard_preallocations(inode);
396 }
397
398 static int __check_block_validity(struct inode *inode, const char *func,
399 unsigned int line,
400 struct ext4_map_blocks *map)
401 {
402 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
403 map->m_len)) {
404 ext4_error_inode(inode, func, line, map->m_pblk,
405 "lblock %lu mapped to illegal pblock "
406 "(length %d)", (unsigned long) map->m_lblk,
407 map->m_len);
408 return -EFSCORRUPTED;
409 }
410 return 0;
411 }
412
413 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
414 ext4_lblk_t len)
415 {
416 int ret;
417
418 if (ext4_encrypted_inode(inode))
419 return fscrypt_zeroout_range(inode, lblk, pblk, len);
420
421 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
422 if (ret > 0)
423 ret = 0;
424
425 return ret;
426 }
427
428 #define check_block_validity(inode, map) \
429 __check_block_validity((inode), __func__, __LINE__, (map))
430
431 #ifdef ES_AGGRESSIVE_TEST
432 static void ext4_map_blocks_es_recheck(handle_t *handle,
433 struct inode *inode,
434 struct ext4_map_blocks *es_map,
435 struct ext4_map_blocks *map,
436 int flags)
437 {
438 int retval;
439
440 map->m_flags = 0;
441 /*
442 * There is a race window that the result is not the same.
443 * e.g. xfstests #223 when dioread_nolock enables. The reason
444 * is that we lookup a block mapping in extent status tree with
445 * out taking i_data_sem. So at the time the unwritten extent
446 * could be converted.
447 */
448 down_read(&EXT4_I(inode)->i_data_sem);
449 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
450 retval = ext4_ext_map_blocks(handle, inode, map, flags &
451 EXT4_GET_BLOCKS_KEEP_SIZE);
452 } else {
453 retval = ext4_ind_map_blocks(handle, inode, map, flags &
454 EXT4_GET_BLOCKS_KEEP_SIZE);
455 }
456 up_read((&EXT4_I(inode)->i_data_sem));
457
458 /*
459 * We don't check m_len because extent will be collpased in status
460 * tree. So the m_len might not equal.
461 */
462 if (es_map->m_lblk != map->m_lblk ||
463 es_map->m_flags != map->m_flags ||
464 es_map->m_pblk != map->m_pblk) {
465 printk("ES cache assertion failed for inode: %lu "
466 "es_cached ex [%d/%d/%llu/%x] != "
467 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
468 inode->i_ino, es_map->m_lblk, es_map->m_len,
469 es_map->m_pblk, es_map->m_flags, map->m_lblk,
470 map->m_len, map->m_pblk, map->m_flags,
471 retval, flags);
472 }
473 }
474 #endif /* ES_AGGRESSIVE_TEST */
475
476 /*
477 * The ext4_map_blocks() function tries to look up the requested blocks,
478 * and returns if the blocks are already mapped.
479 *
480 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
481 * and store the allocated blocks in the result buffer head and mark it
482 * mapped.
483 *
484 * If file type is extents based, it will call ext4_ext_map_blocks(),
485 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
486 * based files
487 *
488 * On success, it returns the number of blocks being mapped or allocated. if
489 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
490 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
491 *
492 * It returns 0 if plain look up failed (blocks have not been allocated), in
493 * that case, @map is returned as unmapped but we still do fill map->m_len to
494 * indicate the length of a hole starting at map->m_lblk.
495 *
496 * It returns the error in case of allocation failure.
497 */
498 int ext4_map_blocks(handle_t *handle, struct inode *inode,
499 struct ext4_map_blocks *map, int flags)
500 {
501 struct extent_status es;
502 int retval;
503 int ret = 0;
504 #ifdef ES_AGGRESSIVE_TEST
505 struct ext4_map_blocks orig_map;
506
507 memcpy(&orig_map, map, sizeof(*map));
508 #endif
509
510 map->m_flags = 0;
511 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
512 "logical block %lu\n", inode->i_ino, flags, map->m_len,
513 (unsigned long) map->m_lblk);
514
515 /*
516 * ext4_map_blocks returns an int, and m_len is an unsigned int
517 */
518 if (unlikely(map->m_len > INT_MAX))
519 map->m_len = INT_MAX;
520
521 /* We can handle the block number less than EXT_MAX_BLOCKS */
522 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
523 return -EFSCORRUPTED;
524
525 /* Lookup extent status tree firstly */
526 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
527 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
528 map->m_pblk = ext4_es_pblock(&es) +
529 map->m_lblk - es.es_lblk;
530 map->m_flags |= ext4_es_is_written(&es) ?
531 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
532 retval = es.es_len - (map->m_lblk - es.es_lblk);
533 if (retval > map->m_len)
534 retval = map->m_len;
535 map->m_len = retval;
536 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
537 map->m_pblk = 0;
538 retval = es.es_len - (map->m_lblk - es.es_lblk);
539 if (retval > map->m_len)
540 retval = map->m_len;
541 map->m_len = retval;
542 retval = 0;
543 } else {
544 BUG_ON(1);
545 }
546 #ifdef ES_AGGRESSIVE_TEST
547 ext4_map_blocks_es_recheck(handle, inode, map,
548 &orig_map, flags);
549 #endif
550 goto found;
551 }
552
553 /*
554 * Try to see if we can get the block without requesting a new
555 * file system block.
556 */
557 down_read(&EXT4_I(inode)->i_data_sem);
558 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
559 retval = ext4_ext_map_blocks(handle, inode, map, flags &
560 EXT4_GET_BLOCKS_KEEP_SIZE);
561 } else {
562 retval = ext4_ind_map_blocks(handle, inode, map, flags &
563 EXT4_GET_BLOCKS_KEEP_SIZE);
564 }
565 if (retval > 0) {
566 unsigned int status;
567
568 if (unlikely(retval != map->m_len)) {
569 ext4_warning(inode->i_sb,
570 "ES len assertion failed for inode "
571 "%lu: retval %d != map->m_len %d",
572 inode->i_ino, retval, map->m_len);
573 WARN_ON(1);
574 }
575
576 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
577 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
578 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
579 !(status & EXTENT_STATUS_WRITTEN) &&
580 ext4_find_delalloc_range(inode, map->m_lblk,
581 map->m_lblk + map->m_len - 1))
582 status |= EXTENT_STATUS_DELAYED;
583 ret = ext4_es_insert_extent(inode, map->m_lblk,
584 map->m_len, map->m_pblk, status);
585 if (ret < 0)
586 retval = ret;
587 }
588 up_read((&EXT4_I(inode)->i_data_sem));
589
590 found:
591 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
592 ret = check_block_validity(inode, map);
593 if (ret != 0)
594 return ret;
595 }
596
597 /* If it is only a block(s) look up */
598 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
599 return retval;
600
601 /*
602 * Returns if the blocks have already allocated
603 *
604 * Note that if blocks have been preallocated
605 * ext4_ext_get_block() returns the create = 0
606 * with buffer head unmapped.
607 */
608 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
609 /*
610 * If we need to convert extent to unwritten
611 * we continue and do the actual work in
612 * ext4_ext_map_blocks()
613 */
614 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
615 return retval;
616
617 /*
618 * Here we clear m_flags because after allocating an new extent,
619 * it will be set again.
620 */
621 map->m_flags &= ~EXT4_MAP_FLAGS;
622
623 /*
624 * New blocks allocate and/or writing to unwritten extent
625 * will possibly result in updating i_data, so we take
626 * the write lock of i_data_sem, and call get_block()
627 * with create == 1 flag.
628 */
629 down_write(&EXT4_I(inode)->i_data_sem);
630
631 /*
632 * We need to check for EXT4 here because migrate
633 * could have changed the inode type in between
634 */
635 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
636 retval = ext4_ext_map_blocks(handle, inode, map, flags);
637 } else {
638 retval = ext4_ind_map_blocks(handle, inode, map, flags);
639
640 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
641 /*
642 * We allocated new blocks which will result in
643 * i_data's format changing. Force the migrate
644 * to fail by clearing migrate flags
645 */
646 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
647 }
648
649 /*
650 * Update reserved blocks/metadata blocks after successful
651 * block allocation which had been deferred till now. We don't
652 * support fallocate for non extent files. So we can update
653 * reserve space here.
654 */
655 if ((retval > 0) &&
656 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
657 ext4_da_update_reserve_space(inode, retval, 1);
658 }
659
660 if (retval > 0) {
661 unsigned int status;
662
663 if (unlikely(retval != map->m_len)) {
664 ext4_warning(inode->i_sb,
665 "ES len assertion failed for inode "
666 "%lu: retval %d != map->m_len %d",
667 inode->i_ino, retval, map->m_len);
668 WARN_ON(1);
669 }
670
671 /*
672 * We have to zeroout blocks before inserting them into extent
673 * status tree. Otherwise someone could look them up there and
674 * use them before they are really zeroed. We also have to
675 * unmap metadata before zeroing as otherwise writeback can
676 * overwrite zeros with stale data from block device.
677 */
678 if (flags & EXT4_GET_BLOCKS_ZERO &&
679 map->m_flags & EXT4_MAP_MAPPED &&
680 map->m_flags & EXT4_MAP_NEW) {
681 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
682 map->m_len);
683 ret = ext4_issue_zeroout(inode, map->m_lblk,
684 map->m_pblk, map->m_len);
685 if (ret) {
686 retval = ret;
687 goto out_sem;
688 }
689 }
690
691 /*
692 * If the extent has been zeroed out, we don't need to update
693 * extent status tree.
694 */
695 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
696 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
697 if (ext4_es_is_written(&es))
698 goto out_sem;
699 }
700 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
701 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
702 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
703 !(status & EXTENT_STATUS_WRITTEN) &&
704 ext4_find_delalloc_range(inode, map->m_lblk,
705 map->m_lblk + map->m_len - 1))
706 status |= EXTENT_STATUS_DELAYED;
707 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
708 map->m_pblk, status);
709 if (ret < 0) {
710 retval = ret;
711 goto out_sem;
712 }
713 }
714
715 out_sem:
716 up_write((&EXT4_I(inode)->i_data_sem));
717 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
718 ret = check_block_validity(inode, map);
719 if (ret != 0)
720 return ret;
721
722 /*
723 * Inodes with freshly allocated blocks where contents will be
724 * visible after transaction commit must be on transaction's
725 * ordered data list.
726 */
727 if (map->m_flags & EXT4_MAP_NEW &&
728 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
729 !(flags & EXT4_GET_BLOCKS_ZERO) &&
730 !ext4_is_quota_file(inode) &&
731 ext4_should_order_data(inode)) {
732 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
733 ret = ext4_jbd2_inode_add_wait(handle, inode);
734 else
735 ret = ext4_jbd2_inode_add_write(handle, inode);
736 if (ret)
737 return ret;
738 }
739 }
740 return retval;
741 }
742
743 /*
744 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
745 * we have to be careful as someone else may be manipulating b_state as well.
746 */
747 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
748 {
749 unsigned long old_state;
750 unsigned long new_state;
751
752 flags &= EXT4_MAP_FLAGS;
753
754 /* Dummy buffer_head? Set non-atomically. */
755 if (!bh->b_page) {
756 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
757 return;
758 }
759 /*
760 * Someone else may be modifying b_state. Be careful! This is ugly but
761 * once we get rid of using bh as a container for mapping information
762 * to pass to / from get_block functions, this can go away.
763 */
764 do {
765 old_state = READ_ONCE(bh->b_state);
766 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
767 } while (unlikely(
768 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
769 }
770
771 static int _ext4_get_block(struct inode *inode, sector_t iblock,
772 struct buffer_head *bh, int flags)
773 {
774 struct ext4_map_blocks map;
775 int ret = 0;
776
777 if (ext4_has_inline_data(inode))
778 return -ERANGE;
779
780 map.m_lblk = iblock;
781 map.m_len = bh->b_size >> inode->i_blkbits;
782
783 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
784 flags);
785 if (ret > 0) {
786 map_bh(bh, inode->i_sb, map.m_pblk);
787 ext4_update_bh_state(bh, map.m_flags);
788 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
789 ret = 0;
790 } else if (ret == 0) {
791 /* hole case, need to fill in bh->b_size */
792 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
793 }
794 return ret;
795 }
796
797 int ext4_get_block(struct inode *inode, sector_t iblock,
798 struct buffer_head *bh, int create)
799 {
800 return _ext4_get_block(inode, iblock, bh,
801 create ? EXT4_GET_BLOCKS_CREATE : 0);
802 }
803
804 /*
805 * Get block function used when preparing for buffered write if we require
806 * creating an unwritten extent if blocks haven't been allocated. The extent
807 * will be converted to written after the IO is complete.
808 */
809 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
810 struct buffer_head *bh_result, int create)
811 {
812 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
813 inode->i_ino, create);
814 return _ext4_get_block(inode, iblock, bh_result,
815 EXT4_GET_BLOCKS_IO_CREATE_EXT);
816 }
817
818 /* Maximum number of blocks we map for direct IO at once. */
819 #define DIO_MAX_BLOCKS 4096
820
821 /*
822 * Get blocks function for the cases that need to start a transaction -
823 * generally difference cases of direct IO and DAX IO. It also handles retries
824 * in case of ENOSPC.
825 */
826 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
827 struct buffer_head *bh_result, int flags)
828 {
829 int dio_credits;
830 handle_t *handle;
831 int retries = 0;
832 int ret;
833
834 /* Trim mapping request to maximum we can map at once for DIO */
835 if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
836 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
837 dio_credits = ext4_chunk_trans_blocks(inode,
838 bh_result->b_size >> inode->i_blkbits);
839 retry:
840 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
841 if (IS_ERR(handle))
842 return PTR_ERR(handle);
843
844 ret = _ext4_get_block(inode, iblock, bh_result, flags);
845 ext4_journal_stop(handle);
846
847 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
848 goto retry;
849 return ret;
850 }
851
852 /* Get block function for DIO reads and writes to inodes without extents */
853 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
854 struct buffer_head *bh, int create)
855 {
856 /* We don't expect handle for direct IO */
857 WARN_ON_ONCE(ext4_journal_current_handle());
858
859 if (!create)
860 return _ext4_get_block(inode, iblock, bh, 0);
861 return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
862 }
863
864 /*
865 * Get block function for AIO DIO writes when we create unwritten extent if
866 * blocks are not allocated yet. The extent will be converted to written
867 * after IO is complete.
868 */
869 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
870 sector_t iblock, struct buffer_head *bh_result, int create)
871 {
872 int ret;
873
874 /* We don't expect handle for direct IO */
875 WARN_ON_ONCE(ext4_journal_current_handle());
876
877 ret = ext4_get_block_trans(inode, iblock, bh_result,
878 EXT4_GET_BLOCKS_IO_CREATE_EXT);
879
880 /*
881 * When doing DIO using unwritten extents, we need io_end to convert
882 * unwritten extents to written on IO completion. We allocate io_end
883 * once we spot unwritten extent and store it in b_private. Generic
884 * DIO code keeps b_private set and furthermore passes the value to
885 * our completion callback in 'private' argument.
886 */
887 if (!ret && buffer_unwritten(bh_result)) {
888 if (!bh_result->b_private) {
889 ext4_io_end_t *io_end;
890
891 io_end = ext4_init_io_end(inode, GFP_KERNEL);
892 if (!io_end)
893 return -ENOMEM;
894 bh_result->b_private = io_end;
895 ext4_set_io_unwritten_flag(inode, io_end);
896 }
897 set_buffer_defer_completion(bh_result);
898 }
899
900 return ret;
901 }
902
903 /*
904 * Get block function for non-AIO DIO writes when we create unwritten extent if
905 * blocks are not allocated yet. The extent will be converted to written
906 * after IO is complete by ext4_direct_IO_write().
907 */
908 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
909 sector_t iblock, struct buffer_head *bh_result, int create)
910 {
911 int ret;
912
913 /* We don't expect handle for direct IO */
914 WARN_ON_ONCE(ext4_journal_current_handle());
915
916 ret = ext4_get_block_trans(inode, iblock, bh_result,
917 EXT4_GET_BLOCKS_IO_CREATE_EXT);
918
919 /*
920 * Mark inode as having pending DIO writes to unwritten extents.
921 * ext4_direct_IO_write() checks this flag and converts extents to
922 * written.
923 */
924 if (!ret && buffer_unwritten(bh_result))
925 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
926
927 return ret;
928 }
929
930 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
931 struct buffer_head *bh_result, int create)
932 {
933 int ret;
934
935 ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
936 inode->i_ino, create);
937 /* We don't expect handle for direct IO */
938 WARN_ON_ONCE(ext4_journal_current_handle());
939
940 ret = _ext4_get_block(inode, iblock, bh_result, 0);
941 /*
942 * Blocks should have been preallocated! ext4_file_write_iter() checks
943 * that.
944 */
945 WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
946
947 return ret;
948 }
949
950
951 /*
952 * `handle' can be NULL if create is zero
953 */
954 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
955 ext4_lblk_t block, int map_flags)
956 {
957 struct ext4_map_blocks map;
958 struct buffer_head *bh;
959 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
960 int err;
961
962 J_ASSERT(handle != NULL || create == 0);
963
964 map.m_lblk = block;
965 map.m_len = 1;
966 err = ext4_map_blocks(handle, inode, &map, map_flags);
967
968 if (err == 0)
969 return create ? ERR_PTR(-ENOSPC) : NULL;
970 if (err < 0)
971 return ERR_PTR(err);
972
973 bh = sb_getblk(inode->i_sb, map.m_pblk);
974 if (unlikely(!bh))
975 return ERR_PTR(-ENOMEM);
976 if (map.m_flags & EXT4_MAP_NEW) {
977 J_ASSERT(create != 0);
978 J_ASSERT(handle != NULL);
979
980 /*
981 * Now that we do not always journal data, we should
982 * keep in mind whether this should always journal the
983 * new buffer as metadata. For now, regular file
984 * writes use ext4_get_block instead, so it's not a
985 * problem.
986 */
987 lock_buffer(bh);
988 BUFFER_TRACE(bh, "call get_create_access");
989 err = ext4_journal_get_create_access(handle, bh);
990 if (unlikely(err)) {
991 unlock_buffer(bh);
992 goto errout;
993 }
994 if (!buffer_uptodate(bh)) {
995 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
996 set_buffer_uptodate(bh);
997 }
998 unlock_buffer(bh);
999 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1000 err = ext4_handle_dirty_metadata(handle, inode, bh);
1001 if (unlikely(err))
1002 goto errout;
1003 } else
1004 BUFFER_TRACE(bh, "not a new buffer");
1005 return bh;
1006 errout:
1007 brelse(bh);
1008 return ERR_PTR(err);
1009 }
1010
1011 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1012 ext4_lblk_t block, int map_flags)
1013 {
1014 struct buffer_head *bh;
1015
1016 bh = ext4_getblk(handle, inode, block, map_flags);
1017 if (IS_ERR(bh))
1018 return bh;
1019 if (!bh || buffer_uptodate(bh))
1020 return bh;
1021 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1022 wait_on_buffer(bh);
1023 if (buffer_uptodate(bh))
1024 return bh;
1025 put_bh(bh);
1026 return ERR_PTR(-EIO);
1027 }
1028
1029 /* Read a contiguous batch of blocks. */
1030 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
1031 bool wait, struct buffer_head **bhs)
1032 {
1033 int i, err;
1034
1035 for (i = 0; i < bh_count; i++) {
1036 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
1037 if (IS_ERR(bhs[i])) {
1038 err = PTR_ERR(bhs[i]);
1039 bh_count = i;
1040 goto out_brelse;
1041 }
1042 }
1043
1044 for (i = 0; i < bh_count; i++)
1045 /* Note that NULL bhs[i] is valid because of holes. */
1046 if (bhs[i] && !buffer_uptodate(bhs[i]))
1047 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
1048 &bhs[i]);
1049
1050 if (!wait)
1051 return 0;
1052
1053 for (i = 0; i < bh_count; i++)
1054 if (bhs[i])
1055 wait_on_buffer(bhs[i]);
1056
1057 for (i = 0; i < bh_count; i++) {
1058 if (bhs[i] && !buffer_uptodate(bhs[i])) {
1059 err = -EIO;
1060 goto out_brelse;
1061 }
1062 }
1063 return 0;
1064
1065 out_brelse:
1066 for (i = 0; i < bh_count; i++) {
1067 brelse(bhs[i]);
1068 bhs[i] = NULL;
1069 }
1070 return err;
1071 }
1072
1073 int ext4_walk_page_buffers(handle_t *handle,
1074 struct buffer_head *head,
1075 unsigned from,
1076 unsigned to,
1077 int *partial,
1078 int (*fn)(handle_t *handle,
1079 struct buffer_head *bh))
1080 {
1081 struct buffer_head *bh;
1082 unsigned block_start, block_end;
1083 unsigned blocksize = head->b_size;
1084 int err, ret = 0;
1085 struct buffer_head *next;
1086
1087 for (bh = head, block_start = 0;
1088 ret == 0 && (bh != head || !block_start);
1089 block_start = block_end, bh = next) {
1090 next = bh->b_this_page;
1091 block_end = block_start + blocksize;
1092 if (block_end <= from || block_start >= to) {
1093 if (partial && !buffer_uptodate(bh))
1094 *partial = 1;
1095 continue;
1096 }
1097 err = (*fn)(handle, bh);
1098 if (!ret)
1099 ret = err;
1100 }
1101 return ret;
1102 }
1103
1104 /*
1105 * To preserve ordering, it is essential that the hole instantiation and
1106 * the data write be encapsulated in a single transaction. We cannot
1107 * close off a transaction and start a new one between the ext4_get_block()
1108 * and the commit_write(). So doing the jbd2_journal_start at the start of
1109 * prepare_write() is the right place.
1110 *
1111 * Also, this function can nest inside ext4_writepage(). In that case, we
1112 * *know* that ext4_writepage() has generated enough buffer credits to do the
1113 * whole page. So we won't block on the journal in that case, which is good,
1114 * because the caller may be PF_MEMALLOC.
1115 *
1116 * By accident, ext4 can be reentered when a transaction is open via
1117 * quota file writes. If we were to commit the transaction while thus
1118 * reentered, there can be a deadlock - we would be holding a quota
1119 * lock, and the commit would never complete if another thread had a
1120 * transaction open and was blocking on the quota lock - a ranking
1121 * violation.
1122 *
1123 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1124 * will _not_ run commit under these circumstances because handle->h_ref
1125 * is elevated. We'll still have enough credits for the tiny quotafile
1126 * write.
1127 */
1128 int do_journal_get_write_access(handle_t *handle,
1129 struct buffer_head *bh)
1130 {
1131 int dirty = buffer_dirty(bh);
1132 int ret;
1133
1134 if (!buffer_mapped(bh) || buffer_freed(bh))
1135 return 0;
1136 /*
1137 * __block_write_begin() could have dirtied some buffers. Clean
1138 * the dirty bit as jbd2_journal_get_write_access() could complain
1139 * otherwise about fs integrity issues. Setting of the dirty bit
1140 * by __block_write_begin() isn't a real problem here as we clear
1141 * the bit before releasing a page lock and thus writeback cannot
1142 * ever write the buffer.
1143 */
1144 if (dirty)
1145 clear_buffer_dirty(bh);
1146 BUFFER_TRACE(bh, "get write access");
1147 ret = ext4_journal_get_write_access(handle, bh);
1148 if (!ret && dirty)
1149 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1150 return ret;
1151 }
1152
1153 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1154 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1155 get_block_t *get_block)
1156 {
1157 unsigned from = pos & (PAGE_SIZE - 1);
1158 unsigned to = from + len;
1159 struct inode *inode = page->mapping->host;
1160 unsigned block_start, block_end;
1161 sector_t block;
1162 int err = 0;
1163 unsigned blocksize = inode->i_sb->s_blocksize;
1164 unsigned bbits;
1165 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1166 bool decrypt = false;
1167
1168 BUG_ON(!PageLocked(page));
1169 BUG_ON(from > PAGE_SIZE);
1170 BUG_ON(to > PAGE_SIZE);
1171 BUG_ON(from > to);
1172
1173 if (!page_has_buffers(page))
1174 create_empty_buffers(page, blocksize, 0);
1175 head = page_buffers(page);
1176 bbits = ilog2(blocksize);
1177 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1178
1179 for (bh = head, block_start = 0; bh != head || !block_start;
1180 block++, block_start = block_end, bh = bh->b_this_page) {
1181 block_end = block_start + blocksize;
1182 if (block_end <= from || block_start >= to) {
1183 if (PageUptodate(page)) {
1184 if (!buffer_uptodate(bh))
1185 set_buffer_uptodate(bh);
1186 }
1187 continue;
1188 }
1189 if (buffer_new(bh))
1190 clear_buffer_new(bh);
1191 if (!buffer_mapped(bh)) {
1192 WARN_ON(bh->b_size != blocksize);
1193 err = get_block(inode, block, bh, 1);
1194 if (err)
1195 break;
1196 if (buffer_new(bh)) {
1197 clean_bdev_bh_alias(bh);
1198 if (PageUptodate(page)) {
1199 clear_buffer_new(bh);
1200 set_buffer_uptodate(bh);
1201 mark_buffer_dirty(bh);
1202 continue;
1203 }
1204 if (block_end > to || block_start < from)
1205 zero_user_segments(page, to, block_end,
1206 block_start, from);
1207 continue;
1208 }
1209 }
1210 if (PageUptodate(page)) {
1211 if (!buffer_uptodate(bh))
1212 set_buffer_uptodate(bh);
1213 continue;
1214 }
1215 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1216 !buffer_unwritten(bh) &&
1217 (block_start < from || block_end > to)) {
1218 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1219 *wait_bh++ = bh;
1220 decrypt = ext4_encrypted_inode(inode) &&
1221 S_ISREG(inode->i_mode);
1222 }
1223 }
1224 /*
1225 * If we issued read requests, let them complete.
1226 */
1227 while (wait_bh > wait) {
1228 wait_on_buffer(*--wait_bh);
1229 if (!buffer_uptodate(*wait_bh))
1230 err = -EIO;
1231 }
1232 if (unlikely(err))
1233 page_zero_new_buffers(page, from, to);
1234 else if (decrypt)
1235 err = fscrypt_decrypt_page(page->mapping->host, page,
1236 PAGE_SIZE, 0, page->index);
1237 return err;
1238 }
1239 #endif
1240
1241 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1242 loff_t pos, unsigned len, unsigned flags,
1243 struct page **pagep, void **fsdata)
1244 {
1245 struct inode *inode = mapping->host;
1246 int ret, needed_blocks;
1247 handle_t *handle;
1248 int retries = 0;
1249 struct page *page;
1250 pgoff_t index;
1251 unsigned from, to;
1252
1253 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1254 return -EIO;
1255
1256 trace_ext4_write_begin(inode, pos, len, flags);
1257 /*
1258 * Reserve one block more for addition to orphan list in case
1259 * we allocate blocks but write fails for some reason
1260 */
1261 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1262 index = pos >> PAGE_SHIFT;
1263 from = pos & (PAGE_SIZE - 1);
1264 to = from + len;
1265
1266 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1267 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1268 flags, pagep);
1269 if (ret < 0)
1270 return ret;
1271 if (ret == 1)
1272 return 0;
1273 }
1274
1275 /*
1276 * grab_cache_page_write_begin() can take a long time if the
1277 * system is thrashing due to memory pressure, or if the page
1278 * is being written back. So grab it first before we start
1279 * the transaction handle. This also allows us to allocate
1280 * the page (if needed) without using GFP_NOFS.
1281 */
1282 retry_grab:
1283 page = grab_cache_page_write_begin(mapping, index, flags);
1284 if (!page)
1285 return -ENOMEM;
1286 unlock_page(page);
1287
1288 retry_journal:
1289 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1290 if (IS_ERR(handle)) {
1291 put_page(page);
1292 return PTR_ERR(handle);
1293 }
1294
1295 lock_page(page);
1296 if (page->mapping != mapping) {
1297 /* The page got truncated from under us */
1298 unlock_page(page);
1299 put_page(page);
1300 ext4_journal_stop(handle);
1301 goto retry_grab;
1302 }
1303 /* In case writeback began while the page was unlocked */
1304 wait_for_stable_page(page);
1305
1306 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1307 if (ext4_should_dioread_nolock(inode))
1308 ret = ext4_block_write_begin(page, pos, len,
1309 ext4_get_block_unwritten);
1310 else
1311 ret = ext4_block_write_begin(page, pos, len,
1312 ext4_get_block);
1313 #else
1314 if (ext4_should_dioread_nolock(inode))
1315 ret = __block_write_begin(page, pos, len,
1316 ext4_get_block_unwritten);
1317 else
1318 ret = __block_write_begin(page, pos, len, ext4_get_block);
1319 #endif
1320 if (!ret && ext4_should_journal_data(inode)) {
1321 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1322 from, to, NULL,
1323 do_journal_get_write_access);
1324 }
1325
1326 if (ret) {
1327 unlock_page(page);
1328 /*
1329 * __block_write_begin may have instantiated a few blocks
1330 * outside i_size. Trim these off again. Don't need
1331 * i_size_read because we hold i_mutex.
1332 *
1333 * Add inode to orphan list in case we crash before
1334 * truncate finishes
1335 */
1336 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1337 ext4_orphan_add(handle, inode);
1338
1339 ext4_journal_stop(handle);
1340 if (pos + len > inode->i_size) {
1341 ext4_truncate_failed_write(inode);
1342 /*
1343 * If truncate failed early the inode might
1344 * still be on the orphan list; we need to
1345 * make sure the inode is removed from the
1346 * orphan list in that case.
1347 */
1348 if (inode->i_nlink)
1349 ext4_orphan_del(NULL, inode);
1350 }
1351
1352 if (ret == -ENOSPC &&
1353 ext4_should_retry_alloc(inode->i_sb, &retries))
1354 goto retry_journal;
1355 put_page(page);
1356 return ret;
1357 }
1358 *pagep = page;
1359 return ret;
1360 }
1361
1362 /* For write_end() in data=journal mode */
1363 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1364 {
1365 int ret;
1366 if (!buffer_mapped(bh) || buffer_freed(bh))
1367 return 0;
1368 set_buffer_uptodate(bh);
1369 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1370 clear_buffer_meta(bh);
1371 clear_buffer_prio(bh);
1372 return ret;
1373 }
1374
1375 /*
1376 * We need to pick up the new inode size which generic_commit_write gave us
1377 * `file' can be NULL - eg, when called from page_symlink().
1378 *
1379 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1380 * buffers are managed internally.
1381 */
1382 static int ext4_write_end(struct file *file,
1383 struct address_space *mapping,
1384 loff_t pos, unsigned len, unsigned copied,
1385 struct page *page, void *fsdata)
1386 {
1387 handle_t *handle = ext4_journal_current_handle();
1388 struct inode *inode = mapping->host;
1389 loff_t old_size = inode->i_size;
1390 int ret = 0, ret2;
1391 int i_size_changed = 0;
1392
1393 trace_ext4_write_end(inode, pos, len, copied);
1394 if (ext4_has_inline_data(inode)) {
1395 ret = ext4_write_inline_data_end(inode, pos, len,
1396 copied, page);
1397 if (ret < 0) {
1398 unlock_page(page);
1399 put_page(page);
1400 goto errout;
1401 }
1402 copied = ret;
1403 } else
1404 copied = block_write_end(file, mapping, pos,
1405 len, copied, page, fsdata);
1406 /*
1407 * it's important to update i_size while still holding page lock:
1408 * page writeout could otherwise come in and zero beyond i_size.
1409 */
1410 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1411 unlock_page(page);
1412 put_page(page);
1413
1414 if (old_size < pos)
1415 pagecache_isize_extended(inode, old_size, pos);
1416 /*
1417 * Don't mark the inode dirty under page lock. First, it unnecessarily
1418 * makes the holding time of page lock longer. Second, it forces lock
1419 * ordering of page lock and transaction start for journaling
1420 * filesystems.
1421 */
1422 if (i_size_changed)
1423 ext4_mark_inode_dirty(handle, inode);
1424
1425 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1426 /* if we have allocated more blocks and copied
1427 * less. We will have blocks allocated outside
1428 * inode->i_size. So truncate them
1429 */
1430 ext4_orphan_add(handle, inode);
1431 errout:
1432 ret2 = ext4_journal_stop(handle);
1433 if (!ret)
1434 ret = ret2;
1435
1436 if (pos + len > inode->i_size) {
1437 ext4_truncate_failed_write(inode);
1438 /*
1439 * If truncate failed early the inode might still be
1440 * on the orphan list; we need to make sure the inode
1441 * is removed from the orphan list in that case.
1442 */
1443 if (inode->i_nlink)
1444 ext4_orphan_del(NULL, inode);
1445 }
1446
1447 return ret ? ret : copied;
1448 }
1449
1450 /*
1451 * This is a private version of page_zero_new_buffers() which doesn't
1452 * set the buffer to be dirty, since in data=journalled mode we need
1453 * to call ext4_handle_dirty_metadata() instead.
1454 */
1455 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1456 struct page *page,
1457 unsigned from, unsigned to)
1458 {
1459 unsigned int block_start = 0, block_end;
1460 struct buffer_head *head, *bh;
1461
1462 bh = head = page_buffers(page);
1463 do {
1464 block_end = block_start + bh->b_size;
1465 if (buffer_new(bh)) {
1466 if (block_end > from && block_start < to) {
1467 if (!PageUptodate(page)) {
1468 unsigned start, size;
1469
1470 start = max(from, block_start);
1471 size = min(to, block_end) - start;
1472
1473 zero_user(page, start, size);
1474 write_end_fn(handle, bh);
1475 }
1476 clear_buffer_new(bh);
1477 }
1478 }
1479 block_start = block_end;
1480 bh = bh->b_this_page;
1481 } while (bh != head);
1482 }
1483
1484 static int ext4_journalled_write_end(struct file *file,
1485 struct address_space *mapping,
1486 loff_t pos, unsigned len, unsigned copied,
1487 struct page *page, void *fsdata)
1488 {
1489 handle_t *handle = ext4_journal_current_handle();
1490 struct inode *inode = mapping->host;
1491 loff_t old_size = inode->i_size;
1492 int ret = 0, ret2;
1493 int partial = 0;
1494 unsigned from, to;
1495 int size_changed = 0;
1496
1497 trace_ext4_journalled_write_end(inode, pos, len, copied);
1498 from = pos & (PAGE_SIZE - 1);
1499 to = from + len;
1500
1501 BUG_ON(!ext4_handle_valid(handle));
1502
1503 if (ext4_has_inline_data(inode)) {
1504 ret = ext4_write_inline_data_end(inode, pos, len,
1505 copied, page);
1506 if (ret < 0) {
1507 unlock_page(page);
1508 put_page(page);
1509 goto errout;
1510 }
1511 copied = ret;
1512 } else if (unlikely(copied < len) && !PageUptodate(page)) {
1513 copied = 0;
1514 ext4_journalled_zero_new_buffers(handle, page, from, to);
1515 } else {
1516 if (unlikely(copied < len))
1517 ext4_journalled_zero_new_buffers(handle, page,
1518 from + copied, to);
1519 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1520 from + copied, &partial,
1521 write_end_fn);
1522 if (!partial)
1523 SetPageUptodate(page);
1524 }
1525 size_changed = ext4_update_inode_size(inode, pos + copied);
1526 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1527 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1528 unlock_page(page);
1529 put_page(page);
1530
1531 if (old_size < pos)
1532 pagecache_isize_extended(inode, old_size, pos);
1533
1534 if (size_changed) {
1535 ret2 = ext4_mark_inode_dirty(handle, inode);
1536 if (!ret)
1537 ret = ret2;
1538 }
1539
1540 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1541 /* if we have allocated more blocks and copied
1542 * less. We will have blocks allocated outside
1543 * inode->i_size. So truncate them
1544 */
1545 ext4_orphan_add(handle, inode);
1546
1547 errout:
1548 ret2 = ext4_journal_stop(handle);
1549 if (!ret)
1550 ret = ret2;
1551 if (pos + len > inode->i_size) {
1552 ext4_truncate_failed_write(inode);
1553 /*
1554 * If truncate failed early the inode might still be
1555 * on the orphan list; we need to make sure the inode
1556 * is removed from the orphan list in that case.
1557 */
1558 if (inode->i_nlink)
1559 ext4_orphan_del(NULL, inode);
1560 }
1561
1562 return ret ? ret : copied;
1563 }
1564
1565 /*
1566 * Reserve space for a single cluster
1567 */
1568 static int ext4_da_reserve_space(struct inode *inode)
1569 {
1570 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1571 struct ext4_inode_info *ei = EXT4_I(inode);
1572 int ret;
1573
1574 /*
1575 * We will charge metadata quota at writeout time; this saves
1576 * us from metadata over-estimation, though we may go over by
1577 * a small amount in the end. Here we just reserve for data.
1578 */
1579 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1580 if (ret)
1581 return ret;
1582
1583 spin_lock(&ei->i_block_reservation_lock);
1584 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1585 spin_unlock(&ei->i_block_reservation_lock);
1586 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1587 return -ENOSPC;
1588 }
1589 ei->i_reserved_data_blocks++;
1590 trace_ext4_da_reserve_space(inode);
1591 spin_unlock(&ei->i_block_reservation_lock);
1592
1593 return 0; /* success */
1594 }
1595
1596 static void ext4_da_release_space(struct inode *inode, int to_free)
1597 {
1598 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1599 struct ext4_inode_info *ei = EXT4_I(inode);
1600
1601 if (!to_free)
1602 return; /* Nothing to release, exit */
1603
1604 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1605
1606 trace_ext4_da_release_space(inode, to_free);
1607 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1608 /*
1609 * if there aren't enough reserved blocks, then the
1610 * counter is messed up somewhere. Since this
1611 * function is called from invalidate page, it's
1612 * harmless to return without any action.
1613 */
1614 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1615 "ino %lu, to_free %d with only %d reserved "
1616 "data blocks", inode->i_ino, to_free,
1617 ei->i_reserved_data_blocks);
1618 WARN_ON(1);
1619 to_free = ei->i_reserved_data_blocks;
1620 }
1621 ei->i_reserved_data_blocks -= to_free;
1622
1623 /* update fs dirty data blocks counter */
1624 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1625
1626 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1627
1628 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1629 }
1630
1631 static void ext4_da_page_release_reservation(struct page *page,
1632 unsigned int offset,
1633 unsigned int length)
1634 {
1635 int to_release = 0, contiguous_blks = 0;
1636 struct buffer_head *head, *bh;
1637 unsigned int curr_off = 0;
1638 struct inode *inode = page->mapping->host;
1639 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1640 unsigned int stop = offset + length;
1641 int num_clusters;
1642 ext4_fsblk_t lblk;
1643
1644 BUG_ON(stop > PAGE_SIZE || stop < length);
1645
1646 head = page_buffers(page);
1647 bh = head;
1648 do {
1649 unsigned int next_off = curr_off + bh->b_size;
1650
1651 if (next_off > stop)
1652 break;
1653
1654 if ((offset <= curr_off) && (buffer_delay(bh))) {
1655 to_release++;
1656 contiguous_blks++;
1657 clear_buffer_delay(bh);
1658 } else if (contiguous_blks) {
1659 lblk = page->index <<
1660 (PAGE_SHIFT - inode->i_blkbits);
1661 lblk += (curr_off >> inode->i_blkbits) -
1662 contiguous_blks;
1663 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1664 contiguous_blks = 0;
1665 }
1666 curr_off = next_off;
1667 } while ((bh = bh->b_this_page) != head);
1668
1669 if (contiguous_blks) {
1670 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1671 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1672 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1673 }
1674
1675 /* If we have released all the blocks belonging to a cluster, then we
1676 * need to release the reserved space for that cluster. */
1677 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1678 while (num_clusters > 0) {
1679 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1680 ((num_clusters - 1) << sbi->s_cluster_bits);
1681 if (sbi->s_cluster_ratio == 1 ||
1682 !ext4_find_delalloc_cluster(inode, lblk))
1683 ext4_da_release_space(inode, 1);
1684
1685 num_clusters--;
1686 }
1687 }
1688
1689 /*
1690 * Delayed allocation stuff
1691 */
1692
1693 struct mpage_da_data {
1694 struct inode *inode;
1695 struct writeback_control *wbc;
1696
1697 pgoff_t first_page; /* The first page to write */
1698 pgoff_t next_page; /* Current page to examine */
1699 pgoff_t last_page; /* Last page to examine */
1700 /*
1701 * Extent to map - this can be after first_page because that can be
1702 * fully mapped. We somewhat abuse m_flags to store whether the extent
1703 * is delalloc or unwritten.
1704 */
1705 struct ext4_map_blocks map;
1706 struct ext4_io_submit io_submit; /* IO submission data */
1707 unsigned int do_map:1;
1708 };
1709
1710 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1711 bool invalidate)
1712 {
1713 int nr_pages, i;
1714 pgoff_t index, end;
1715 struct pagevec pvec;
1716 struct inode *inode = mpd->inode;
1717 struct address_space *mapping = inode->i_mapping;
1718
1719 /* This is necessary when next_page == 0. */
1720 if (mpd->first_page >= mpd->next_page)
1721 return;
1722
1723 index = mpd->first_page;
1724 end = mpd->next_page - 1;
1725 if (invalidate) {
1726 ext4_lblk_t start, last;
1727 start = index << (PAGE_SHIFT - inode->i_blkbits);
1728 last = end << (PAGE_SHIFT - inode->i_blkbits);
1729 ext4_es_remove_extent(inode, start, last - start + 1);
1730 }
1731
1732 pagevec_init(&pvec);
1733 while (index <= end) {
1734 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1735 if (nr_pages == 0)
1736 break;
1737 for (i = 0; i < nr_pages; i++) {
1738 struct page *page = pvec.pages[i];
1739
1740 BUG_ON(!PageLocked(page));
1741 BUG_ON(PageWriteback(page));
1742 if (invalidate) {
1743 if (page_mapped(page))
1744 clear_page_dirty_for_io(page);
1745 block_invalidatepage(page, 0, PAGE_SIZE);
1746 ClearPageUptodate(page);
1747 }
1748 unlock_page(page);
1749 }
1750 pagevec_release(&pvec);
1751 }
1752 }
1753
1754 static void ext4_print_free_blocks(struct inode *inode)
1755 {
1756 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1757 struct super_block *sb = inode->i_sb;
1758 struct ext4_inode_info *ei = EXT4_I(inode);
1759
1760 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1761 EXT4_C2B(EXT4_SB(inode->i_sb),
1762 ext4_count_free_clusters(sb)));
1763 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1764 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1765 (long long) EXT4_C2B(EXT4_SB(sb),
1766 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1767 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1768 (long long) EXT4_C2B(EXT4_SB(sb),
1769 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1770 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1771 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1772 ei->i_reserved_data_blocks);
1773 return;
1774 }
1775
1776 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1777 {
1778 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1779 }
1780
1781 /*
1782 * This function is grabs code from the very beginning of
1783 * ext4_map_blocks, but assumes that the caller is from delayed write
1784 * time. This function looks up the requested blocks and sets the
1785 * buffer delay bit under the protection of i_data_sem.
1786 */
1787 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1788 struct ext4_map_blocks *map,
1789 struct buffer_head *bh)
1790 {
1791 struct extent_status es;
1792 int retval;
1793 sector_t invalid_block = ~((sector_t) 0xffff);
1794 #ifdef ES_AGGRESSIVE_TEST
1795 struct ext4_map_blocks orig_map;
1796
1797 memcpy(&orig_map, map, sizeof(*map));
1798 #endif
1799
1800 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1801 invalid_block = ~0;
1802
1803 map->m_flags = 0;
1804 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1805 "logical block %lu\n", inode->i_ino, map->m_len,
1806 (unsigned long) map->m_lblk);
1807
1808 /* Lookup extent status tree firstly */
1809 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1810 if (ext4_es_is_hole(&es)) {
1811 retval = 0;
1812 down_read(&EXT4_I(inode)->i_data_sem);
1813 goto add_delayed;
1814 }
1815
1816 /*
1817 * Delayed extent could be allocated by fallocate.
1818 * So we need to check it.
1819 */
1820 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1821 map_bh(bh, inode->i_sb, invalid_block);
1822 set_buffer_new(bh);
1823 set_buffer_delay(bh);
1824 return 0;
1825 }
1826
1827 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1828 retval = es.es_len - (iblock - es.es_lblk);
1829 if (retval > map->m_len)
1830 retval = map->m_len;
1831 map->m_len = retval;
1832 if (ext4_es_is_written(&es))
1833 map->m_flags |= EXT4_MAP_MAPPED;
1834 else if (ext4_es_is_unwritten(&es))
1835 map->m_flags |= EXT4_MAP_UNWRITTEN;
1836 else
1837 BUG_ON(1);
1838
1839 #ifdef ES_AGGRESSIVE_TEST
1840 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1841 #endif
1842 return retval;
1843 }
1844
1845 /*
1846 * Try to see if we can get the block without requesting a new
1847 * file system block.
1848 */
1849 down_read(&EXT4_I(inode)->i_data_sem);
1850 if (ext4_has_inline_data(inode))
1851 retval = 0;
1852 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1853 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1854 else
1855 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1856
1857 add_delayed:
1858 if (retval == 0) {
1859 int ret;
1860 /*
1861 * XXX: __block_prepare_write() unmaps passed block,
1862 * is it OK?
1863 */
1864 /*
1865 * If the block was allocated from previously allocated cluster,
1866 * then we don't need to reserve it again. However we still need
1867 * to reserve metadata for every block we're going to write.
1868 */
1869 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1870 !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1871 ret = ext4_da_reserve_space(inode);
1872 if (ret) {
1873 /* not enough space to reserve */
1874 retval = ret;
1875 goto out_unlock;
1876 }
1877 }
1878
1879 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1880 ~0, EXTENT_STATUS_DELAYED);
1881 if (ret) {
1882 retval = ret;
1883 goto out_unlock;
1884 }
1885
1886 map_bh(bh, inode->i_sb, invalid_block);
1887 set_buffer_new(bh);
1888 set_buffer_delay(bh);
1889 } else if (retval > 0) {
1890 int ret;
1891 unsigned int status;
1892
1893 if (unlikely(retval != map->m_len)) {
1894 ext4_warning(inode->i_sb,
1895 "ES len assertion failed for inode "
1896 "%lu: retval %d != map->m_len %d",
1897 inode->i_ino, retval, map->m_len);
1898 WARN_ON(1);
1899 }
1900
1901 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1902 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1903 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1904 map->m_pblk, status);
1905 if (ret != 0)
1906 retval = ret;
1907 }
1908
1909 out_unlock:
1910 up_read((&EXT4_I(inode)->i_data_sem));
1911
1912 return retval;
1913 }
1914
1915 /*
1916 * This is a special get_block_t callback which is used by
1917 * ext4_da_write_begin(). It will either return mapped block or
1918 * reserve space for a single block.
1919 *
1920 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1921 * We also have b_blocknr = -1 and b_bdev initialized properly
1922 *
1923 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1924 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1925 * initialized properly.
1926 */
1927 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1928 struct buffer_head *bh, int create)
1929 {
1930 struct ext4_map_blocks map;
1931 int ret = 0;
1932
1933 BUG_ON(create == 0);
1934 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1935
1936 map.m_lblk = iblock;
1937 map.m_len = 1;
1938
1939 /*
1940 * first, we need to know whether the block is allocated already
1941 * preallocated blocks are unmapped but should treated
1942 * the same as allocated blocks.
1943 */
1944 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1945 if (ret <= 0)
1946 return ret;
1947
1948 map_bh(bh, inode->i_sb, map.m_pblk);
1949 ext4_update_bh_state(bh, map.m_flags);
1950
1951 if (buffer_unwritten(bh)) {
1952 /* A delayed write to unwritten bh should be marked
1953 * new and mapped. Mapped ensures that we don't do
1954 * get_block multiple times when we write to the same
1955 * offset and new ensures that we do proper zero out
1956 * for partial write.
1957 */
1958 set_buffer_new(bh);
1959 set_buffer_mapped(bh);
1960 }
1961 return 0;
1962 }
1963
1964 static int bget_one(handle_t *handle, struct buffer_head *bh)
1965 {
1966 get_bh(bh);
1967 return 0;
1968 }
1969
1970 static int bput_one(handle_t *handle, struct buffer_head *bh)
1971 {
1972 put_bh(bh);
1973 return 0;
1974 }
1975
1976 static int __ext4_journalled_writepage(struct page *page,
1977 unsigned int len)
1978 {
1979 struct address_space *mapping = page->mapping;
1980 struct inode *inode = mapping->host;
1981 struct buffer_head *page_bufs = NULL;
1982 handle_t *handle = NULL;
1983 int ret = 0, err = 0;
1984 int inline_data = ext4_has_inline_data(inode);
1985 struct buffer_head *inode_bh = NULL;
1986
1987 ClearPageChecked(page);
1988
1989 if (inline_data) {
1990 BUG_ON(page->index != 0);
1991 BUG_ON(len > ext4_get_max_inline_size(inode));
1992 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1993 if (inode_bh == NULL)
1994 goto out;
1995 } else {
1996 page_bufs = page_buffers(page);
1997 if (!page_bufs) {
1998 BUG();
1999 goto out;
2000 }
2001 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2002 NULL, bget_one);
2003 }
2004 /*
2005 * We need to release the page lock before we start the
2006 * journal, so grab a reference so the page won't disappear
2007 * out from under us.
2008 */
2009 get_page(page);
2010 unlock_page(page);
2011
2012 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2013 ext4_writepage_trans_blocks(inode));
2014 if (IS_ERR(handle)) {
2015 ret = PTR_ERR(handle);
2016 put_page(page);
2017 goto out_no_pagelock;
2018 }
2019 BUG_ON(!ext4_handle_valid(handle));
2020
2021 lock_page(page);
2022 put_page(page);
2023 if (page->mapping != mapping) {
2024 /* The page got truncated from under us */
2025 ext4_journal_stop(handle);
2026 ret = 0;
2027 goto out;
2028 }
2029
2030 if (inline_data) {
2031 BUFFER_TRACE(inode_bh, "get write access");
2032 ret = ext4_journal_get_write_access(handle, inode_bh);
2033
2034 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
2035
2036 } else {
2037 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2038 do_journal_get_write_access);
2039
2040 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2041 write_end_fn);
2042 }
2043 if (ret == 0)
2044 ret = err;
2045 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2046 err = ext4_journal_stop(handle);
2047 if (!ret)
2048 ret = err;
2049
2050 if (!ext4_has_inline_data(inode))
2051 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
2052 NULL, bput_one);
2053 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2054 out:
2055 unlock_page(page);
2056 out_no_pagelock:
2057 brelse(inode_bh);
2058 return ret;
2059 }
2060
2061 /*
2062 * Note that we don't need to start a transaction unless we're journaling data
2063 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2064 * need to file the inode to the transaction's list in ordered mode because if
2065 * we are writing back data added by write(), the inode is already there and if
2066 * we are writing back data modified via mmap(), no one guarantees in which
2067 * transaction the data will hit the disk. In case we are journaling data, we
2068 * cannot start transaction directly because transaction start ranks above page
2069 * lock so we have to do some magic.
2070 *
2071 * This function can get called via...
2072 * - ext4_writepages after taking page lock (have journal handle)
2073 * - journal_submit_inode_data_buffers (no journal handle)
2074 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2075 * - grab_page_cache when doing write_begin (have journal handle)
2076 *
2077 * We don't do any block allocation in this function. If we have page with
2078 * multiple blocks we need to write those buffer_heads that are mapped. This
2079 * is important for mmaped based write. So if we do with blocksize 1K
2080 * truncate(f, 1024);
2081 * a = mmap(f, 0, 4096);
2082 * a[0] = 'a';
2083 * truncate(f, 4096);
2084 * we have in the page first buffer_head mapped via page_mkwrite call back
2085 * but other buffer_heads would be unmapped but dirty (dirty done via the
2086 * do_wp_page). So writepage should write the first block. If we modify
2087 * the mmap area beyond 1024 we will again get a page_fault and the
2088 * page_mkwrite callback will do the block allocation and mark the
2089 * buffer_heads mapped.
2090 *
2091 * We redirty the page if we have any buffer_heads that is either delay or
2092 * unwritten in the page.
2093 *
2094 * We can get recursively called as show below.
2095 *
2096 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2097 * ext4_writepage()
2098 *
2099 * But since we don't do any block allocation we should not deadlock.
2100 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2101 */
2102 static int ext4_writepage(struct page *page,
2103 struct writeback_control *wbc)
2104 {
2105 int ret = 0;
2106 loff_t size;
2107 unsigned int len;
2108 struct buffer_head *page_bufs = NULL;
2109 struct inode *inode = page->mapping->host;
2110 struct ext4_io_submit io_submit;
2111 bool keep_towrite = false;
2112
2113 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2114 ext4_invalidatepage(page, 0, PAGE_SIZE);
2115 unlock_page(page);
2116 return -EIO;
2117 }
2118
2119 trace_ext4_writepage(page);
2120 size = i_size_read(inode);
2121 if (page->index == size >> PAGE_SHIFT)
2122 len = size & ~PAGE_MASK;
2123 else
2124 len = PAGE_SIZE;
2125
2126 page_bufs = page_buffers(page);
2127 /*
2128 * We cannot do block allocation or other extent handling in this
2129 * function. If there are buffers needing that, we have to redirty
2130 * the page. But we may reach here when we do a journal commit via
2131 * journal_submit_inode_data_buffers() and in that case we must write
2132 * allocated buffers to achieve data=ordered mode guarantees.
2133 *
2134 * Also, if there is only one buffer per page (the fs block
2135 * size == the page size), if one buffer needs block
2136 * allocation or needs to modify the extent tree to clear the
2137 * unwritten flag, we know that the page can't be written at
2138 * all, so we might as well refuse the write immediately.
2139 * Unfortunately if the block size != page size, we can't as
2140 * easily detect this case using ext4_walk_page_buffers(), but
2141 * for the extremely common case, this is an optimization that
2142 * skips a useless round trip through ext4_bio_write_page().
2143 */
2144 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2145 ext4_bh_delay_or_unwritten)) {
2146 redirty_page_for_writepage(wbc, page);
2147 if ((current->flags & PF_MEMALLOC) ||
2148 (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2149 /*
2150 * For memory cleaning there's no point in writing only
2151 * some buffers. So just bail out. Warn if we came here
2152 * from direct reclaim.
2153 */
2154 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2155 == PF_MEMALLOC);
2156 unlock_page(page);
2157 return 0;
2158 }
2159 keep_towrite = true;
2160 }
2161
2162 if (PageChecked(page) && ext4_should_journal_data(inode))
2163 /*
2164 * It's mmapped pagecache. Add buffers and journal it. There
2165 * doesn't seem much point in redirtying the page here.
2166 */
2167 return __ext4_journalled_writepage(page, len);
2168
2169 ext4_io_submit_init(&io_submit, wbc);
2170 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2171 if (!io_submit.io_end) {
2172 redirty_page_for_writepage(wbc, page);
2173 unlock_page(page);
2174 return -ENOMEM;
2175 }
2176 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2177 ext4_io_submit(&io_submit);
2178 /* Drop io_end reference we got from init */
2179 ext4_put_io_end_defer(io_submit.io_end);
2180 return ret;
2181 }
2182
2183 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2184 {
2185 int len;
2186 loff_t size;
2187 int err;
2188
2189 BUG_ON(page->index != mpd->first_page);
2190 clear_page_dirty_for_io(page);
2191 /*
2192 * We have to be very careful here! Nothing protects writeback path
2193 * against i_size changes and the page can be writeably mapped into
2194 * page tables. So an application can be growing i_size and writing
2195 * data through mmap while writeback runs. clear_page_dirty_for_io()
2196 * write-protects our page in page tables and the page cannot get
2197 * written to again until we release page lock. So only after
2198 * clear_page_dirty_for_io() we are safe to sample i_size for
2199 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2200 * on the barrier provided by TestClearPageDirty in
2201 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2202 * after page tables are updated.
2203 */
2204 size = i_size_read(mpd->inode);
2205 if (page->index == size >> PAGE_SHIFT)
2206 len = size & ~PAGE_MASK;
2207 else
2208 len = PAGE_SIZE;
2209 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2210 if (!err)
2211 mpd->wbc->nr_to_write--;
2212 mpd->first_page++;
2213
2214 return err;
2215 }
2216
2217 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2218
2219 /*
2220 * mballoc gives us at most this number of blocks...
2221 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2222 * The rest of mballoc seems to handle chunks up to full group size.
2223 */
2224 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2225
2226 /*
2227 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2228 *
2229 * @mpd - extent of blocks
2230 * @lblk - logical number of the block in the file
2231 * @bh - buffer head we want to add to the extent
2232 *
2233 * The function is used to collect contig. blocks in the same state. If the
2234 * buffer doesn't require mapping for writeback and we haven't started the
2235 * extent of buffers to map yet, the function returns 'true' immediately - the
2236 * caller can write the buffer right away. Otherwise the function returns true
2237 * if the block has been added to the extent, false if the block couldn't be
2238 * added.
2239 */
2240 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2241 struct buffer_head *bh)
2242 {
2243 struct ext4_map_blocks *map = &mpd->map;
2244
2245 /* Buffer that doesn't need mapping for writeback? */
2246 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2247 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2248 /* So far no extent to map => we write the buffer right away */
2249 if (map->m_len == 0)
2250 return true;
2251 return false;
2252 }
2253
2254 /* First block in the extent? */
2255 if (map->m_len == 0) {
2256 /* We cannot map unless handle is started... */
2257 if (!mpd->do_map)
2258 return false;
2259 map->m_lblk = lblk;
2260 map->m_len = 1;
2261 map->m_flags = bh->b_state & BH_FLAGS;
2262 return true;
2263 }
2264
2265 /* Don't go larger than mballoc is willing to allocate */
2266 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2267 return false;
2268
2269 /* Can we merge the block to our big extent? */
2270 if (lblk == map->m_lblk + map->m_len &&
2271 (bh->b_state & BH_FLAGS) == map->m_flags) {
2272 map->m_len++;
2273 return true;
2274 }
2275 return false;
2276 }
2277
2278 /*
2279 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2280 *
2281 * @mpd - extent of blocks for mapping
2282 * @head - the first buffer in the page
2283 * @bh - buffer we should start processing from
2284 * @lblk - logical number of the block in the file corresponding to @bh
2285 *
2286 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2287 * the page for IO if all buffers in this page were mapped and there's no
2288 * accumulated extent of buffers to map or add buffers in the page to the
2289 * extent of buffers to map. The function returns 1 if the caller can continue
2290 * by processing the next page, 0 if it should stop adding buffers to the
2291 * extent to map because we cannot extend it anymore. It can also return value
2292 * < 0 in case of error during IO submission.
2293 */
2294 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2295 struct buffer_head *head,
2296 struct buffer_head *bh,
2297 ext4_lblk_t lblk)
2298 {
2299 struct inode *inode = mpd->inode;
2300 int err;
2301 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2302 >> inode->i_blkbits;
2303
2304 do {
2305 BUG_ON(buffer_locked(bh));
2306
2307 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2308 /* Found extent to map? */
2309 if (mpd->map.m_len)
2310 return 0;
2311 /* Buffer needs mapping and handle is not started? */
2312 if (!mpd->do_map)
2313 return 0;
2314 /* Everything mapped so far and we hit EOF */
2315 break;
2316 }
2317 } while (lblk++, (bh = bh->b_this_page) != head);
2318 /* So far everything mapped? Submit the page for IO. */
2319 if (mpd->map.m_len == 0) {
2320 err = mpage_submit_page(mpd, head->b_page);
2321 if (err < 0)
2322 return err;
2323 }
2324 return lblk < blocks;
2325 }
2326
2327 /*
2328 * mpage_map_buffers - update buffers corresponding to changed extent and
2329 * submit fully mapped pages for IO
2330 *
2331 * @mpd - description of extent to map, on return next extent to map
2332 *
2333 * Scan buffers corresponding to changed extent (we expect corresponding pages
2334 * to be already locked) and update buffer state according to new extent state.
2335 * We map delalloc buffers to their physical location, clear unwritten bits,
2336 * and mark buffers as uninit when we perform writes to unwritten extents
2337 * and do extent conversion after IO is finished. If the last page is not fully
2338 * mapped, we update @map to the next extent in the last page that needs
2339 * mapping. Otherwise we submit the page for IO.
2340 */
2341 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2342 {
2343 struct pagevec pvec;
2344 int nr_pages, i;
2345 struct inode *inode = mpd->inode;
2346 struct buffer_head *head, *bh;
2347 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2348 pgoff_t start, end;
2349 ext4_lblk_t lblk;
2350 sector_t pblock;
2351 int err;
2352
2353 start = mpd->map.m_lblk >> bpp_bits;
2354 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2355 lblk = start << bpp_bits;
2356 pblock = mpd->map.m_pblk;
2357
2358 pagevec_init(&pvec);
2359 while (start <= end) {
2360 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2361 &start, end);
2362 if (nr_pages == 0)
2363 break;
2364 for (i = 0; i < nr_pages; i++) {
2365 struct page *page = pvec.pages[i];
2366
2367 bh = head = page_buffers(page);
2368 do {
2369 if (lblk < mpd->map.m_lblk)
2370 continue;
2371 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2372 /*
2373 * Buffer after end of mapped extent.
2374 * Find next buffer in the page to map.
2375 */
2376 mpd->map.m_len = 0;
2377 mpd->map.m_flags = 0;
2378 /*
2379 * FIXME: If dioread_nolock supports
2380 * blocksize < pagesize, we need to make
2381 * sure we add size mapped so far to
2382 * io_end->size as the following call
2383 * can submit the page for IO.
2384 */
2385 err = mpage_process_page_bufs(mpd, head,
2386 bh, lblk);
2387 pagevec_release(&pvec);
2388 if (err > 0)
2389 err = 0;
2390 return err;
2391 }
2392 if (buffer_delay(bh)) {
2393 clear_buffer_delay(bh);
2394 bh->b_blocknr = pblock++;
2395 }
2396 clear_buffer_unwritten(bh);
2397 } while (lblk++, (bh = bh->b_this_page) != head);
2398
2399 /*
2400 * FIXME: This is going to break if dioread_nolock
2401 * supports blocksize < pagesize as we will try to
2402 * convert potentially unmapped parts of inode.
2403 */
2404 mpd->io_submit.io_end->size += PAGE_SIZE;
2405 /* Page fully mapped - let IO run! */
2406 err = mpage_submit_page(mpd, page);
2407 if (err < 0) {
2408 pagevec_release(&pvec);
2409 return err;
2410 }
2411 }
2412 pagevec_release(&pvec);
2413 }
2414 /* Extent fully mapped and matches with page boundary. We are done. */
2415 mpd->map.m_len = 0;
2416 mpd->map.m_flags = 0;
2417 return 0;
2418 }
2419
2420 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2421 {
2422 struct inode *inode = mpd->inode;
2423 struct ext4_map_blocks *map = &mpd->map;
2424 int get_blocks_flags;
2425 int err, dioread_nolock;
2426
2427 trace_ext4_da_write_pages_extent(inode, map);
2428 /*
2429 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2430 * to convert an unwritten extent to be initialized (in the case
2431 * where we have written into one or more preallocated blocks). It is
2432 * possible that we're going to need more metadata blocks than
2433 * previously reserved. However we must not fail because we're in
2434 * writeback and there is nothing we can do about it so it might result
2435 * in data loss. So use reserved blocks to allocate metadata if
2436 * possible.
2437 *
2438 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2439 * the blocks in question are delalloc blocks. This indicates
2440 * that the blocks and quotas has already been checked when
2441 * the data was copied into the page cache.
2442 */
2443 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2444 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2445 EXT4_GET_BLOCKS_IO_SUBMIT;
2446 dioread_nolock = ext4_should_dioread_nolock(inode);
2447 if (dioread_nolock)
2448 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2449 if (map->m_flags & (1 << BH_Delay))
2450 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2451
2452 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2453 if (err < 0)
2454 return err;
2455 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2456 if (!mpd->io_submit.io_end->handle &&
2457 ext4_handle_valid(handle)) {
2458 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2459 handle->h_rsv_handle = NULL;
2460 }
2461 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2462 }
2463
2464 BUG_ON(map->m_len == 0);
2465 if (map->m_flags & EXT4_MAP_NEW) {
2466 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
2467 map->m_len);
2468 }
2469 return 0;
2470 }
2471
2472 /*
2473 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2474 * mpd->len and submit pages underlying it for IO
2475 *
2476 * @handle - handle for journal operations
2477 * @mpd - extent to map
2478 * @give_up_on_write - we set this to true iff there is a fatal error and there
2479 * is no hope of writing the data. The caller should discard
2480 * dirty pages to avoid infinite loops.
2481 *
2482 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2483 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2484 * them to initialized or split the described range from larger unwritten
2485 * extent. Note that we need not map all the described range since allocation
2486 * can return less blocks or the range is covered by more unwritten extents. We
2487 * cannot map more because we are limited by reserved transaction credits. On
2488 * the other hand we always make sure that the last touched page is fully
2489 * mapped so that it can be written out (and thus forward progress is
2490 * guaranteed). After mapping we submit all mapped pages for IO.
2491 */
2492 static int mpage_map_and_submit_extent(handle_t *handle,
2493 struct mpage_da_data *mpd,
2494 bool *give_up_on_write)
2495 {
2496 struct inode *inode = mpd->inode;
2497 struct ext4_map_blocks *map = &mpd->map;
2498 int err;
2499 loff_t disksize;
2500 int progress = 0;
2501
2502 mpd->io_submit.io_end->offset =
2503 ((loff_t)map->m_lblk) << inode->i_blkbits;
2504 do {
2505 err = mpage_map_one_extent(handle, mpd);
2506 if (err < 0) {
2507 struct super_block *sb = inode->i_sb;
2508
2509 if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2510 EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2511 goto invalidate_dirty_pages;
2512 /*
2513 * Let the uper layers retry transient errors.
2514 * In the case of ENOSPC, if ext4_count_free_blocks()
2515 * is non-zero, a commit should free up blocks.
2516 */
2517 if ((err == -ENOMEM) ||
2518 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2519 if (progress)
2520 goto update_disksize;
2521 return err;
2522 }
2523 ext4_msg(sb, KERN_CRIT,
2524 "Delayed block allocation failed for "
2525 "inode %lu at logical offset %llu with"
2526 " max blocks %u with error %d",
2527 inode->i_ino,
2528 (unsigned long long)map->m_lblk,
2529 (unsigned)map->m_len, -err);
2530 ext4_msg(sb, KERN_CRIT,
2531 "This should not happen!! Data will "
2532 "be lost\n");
2533 if (err == -ENOSPC)
2534 ext4_print_free_blocks(inode);
2535 invalidate_dirty_pages:
2536 *give_up_on_write = true;
2537 return err;
2538 }
2539 progress = 1;
2540 /*
2541 * Update buffer state, submit mapped pages, and get us new
2542 * extent to map
2543 */
2544 err = mpage_map_and_submit_buffers(mpd);
2545 if (err < 0)
2546 goto update_disksize;
2547 } while (map->m_len);
2548
2549 update_disksize:
2550 /*
2551 * Update on-disk size after IO is submitted. Races with
2552 * truncate are avoided by checking i_size under i_data_sem.
2553 */
2554 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2555 if (disksize > EXT4_I(inode)->i_disksize) {
2556 int err2;
2557 loff_t i_size;
2558
2559 down_write(&EXT4_I(inode)->i_data_sem);
2560 i_size = i_size_read(inode);
2561 if (disksize > i_size)
2562 disksize = i_size;
2563 if (disksize > EXT4_I(inode)->i_disksize)
2564 EXT4_I(inode)->i_disksize = disksize;
2565 up_write(&EXT4_I(inode)->i_data_sem);
2566 err2 = ext4_mark_inode_dirty(handle, inode);
2567 if (err2)
2568 ext4_error(inode->i_sb,
2569 "Failed to mark inode %lu dirty",
2570 inode->i_ino);
2571 if (!err)
2572 err = err2;
2573 }
2574 return err;
2575 }
2576
2577 /*
2578 * Calculate the total number of credits to reserve for one writepages
2579 * iteration. This is called from ext4_writepages(). We map an extent of
2580 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2581 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2582 * bpp - 1 blocks in bpp different extents.
2583 */
2584 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2585 {
2586 int bpp = ext4_journal_blocks_per_page(inode);
2587
2588 return ext4_meta_trans_blocks(inode,
2589 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2590 }
2591
2592 /*
2593 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2594 * and underlying extent to map
2595 *
2596 * @mpd - where to look for pages
2597 *
2598 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2599 * IO immediately. When we find a page which isn't mapped we start accumulating
2600 * extent of buffers underlying these pages that needs mapping (formed by
2601 * either delayed or unwritten buffers). We also lock the pages containing
2602 * these buffers. The extent found is returned in @mpd structure (starting at
2603 * mpd->lblk with length mpd->len blocks).
2604 *
2605 * Note that this function can attach bios to one io_end structure which are
2606 * neither logically nor physically contiguous. Although it may seem as an
2607 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2608 * case as we need to track IO to all buffers underlying a page in one io_end.
2609 */
2610 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2611 {
2612 struct address_space *mapping = mpd->inode->i_mapping;
2613 struct pagevec pvec;
2614 unsigned int nr_pages;
2615 long left = mpd->wbc->nr_to_write;
2616 pgoff_t index = mpd->first_page;
2617 pgoff_t end = mpd->last_page;
2618 int tag;
2619 int i, err = 0;
2620 int blkbits = mpd->inode->i_blkbits;
2621 ext4_lblk_t lblk;
2622 struct buffer_head *head;
2623
2624 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2625 tag = PAGECACHE_TAG_TOWRITE;
2626 else
2627 tag = PAGECACHE_TAG_DIRTY;
2628
2629 pagevec_init(&pvec);
2630 mpd->map.m_len = 0;
2631 mpd->next_page = index;
2632 while (index <= end) {
2633 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2634 tag);
2635 if (nr_pages == 0)
2636 goto out;
2637
2638 for (i = 0; i < nr_pages; i++) {
2639 struct page *page = pvec.pages[i];
2640
2641 /*
2642 * Accumulated enough dirty pages? This doesn't apply
2643 * to WB_SYNC_ALL mode. For integrity sync we have to
2644 * keep going because someone may be concurrently
2645 * dirtying pages, and we might have synced a lot of
2646 * newly appeared dirty pages, but have not synced all
2647 * of the old dirty pages.
2648 */
2649 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2650 goto out;
2651
2652 /* If we can't merge this page, we are done. */
2653 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2654 goto out;
2655
2656 lock_page(page);
2657 /*
2658 * If the page is no longer dirty, or its mapping no
2659 * longer corresponds to inode we are writing (which
2660 * means it has been truncated or invalidated), or the
2661 * page is already under writeback and we are not doing
2662 * a data integrity writeback, skip the page
2663 */
2664 if (!PageDirty(page) ||
2665 (PageWriteback(page) &&
2666 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2667 unlikely(page->mapping != mapping)) {
2668 unlock_page(page);
2669 continue;
2670 }
2671
2672 wait_on_page_writeback(page);
2673 BUG_ON(PageWriteback(page));
2674
2675 if (mpd->map.m_len == 0)
2676 mpd->first_page = page->index;
2677 mpd->next_page = page->index + 1;
2678 /* Add all dirty buffers to mpd */
2679 lblk = ((ext4_lblk_t)page->index) <<
2680 (PAGE_SHIFT - blkbits);
2681 head = page_buffers(page);
2682 err = mpage_process_page_bufs(mpd, head, head, lblk);
2683 if (err <= 0)
2684 goto out;
2685 err = 0;
2686 left--;
2687 }
2688 pagevec_release(&pvec);
2689 cond_resched();
2690 }
2691 return 0;
2692 out:
2693 pagevec_release(&pvec);
2694 return err;
2695 }
2696
2697 static int __writepage(struct page *page, struct writeback_control *wbc,
2698 void *data)
2699 {
2700 struct address_space *mapping = data;
2701 int ret = ext4_writepage(page, wbc);
2702 mapping_set_error(mapping, ret);
2703 return ret;
2704 }
2705
2706 static int ext4_writepages(struct address_space *mapping,
2707 struct writeback_control *wbc)
2708 {
2709 pgoff_t writeback_index = 0;
2710 long nr_to_write = wbc->nr_to_write;
2711 int range_whole = 0;
2712 int cycled = 1;
2713 handle_t *handle = NULL;
2714 struct mpage_da_data mpd;
2715 struct inode *inode = mapping->host;
2716 int needed_blocks, rsv_blocks = 0, ret = 0;
2717 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2718 bool done;
2719 struct blk_plug plug;
2720 bool give_up_on_write = false;
2721
2722 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2723 return -EIO;
2724
2725 percpu_down_read(&sbi->s_journal_flag_rwsem);
2726 trace_ext4_writepages(inode, wbc);
2727
2728 if (dax_mapping(mapping)) {
2729 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2730 wbc);
2731 goto out_writepages;
2732 }
2733
2734 /*
2735 * No pages to write? This is mainly a kludge to avoid starting
2736 * a transaction for special inodes like journal inode on last iput()
2737 * because that could violate lock ordering on umount
2738 */
2739 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2740 goto out_writepages;
2741
2742 if (ext4_should_journal_data(inode)) {
2743 struct blk_plug plug;
2744
2745 blk_start_plug(&plug);
2746 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2747 blk_finish_plug(&plug);
2748 goto out_writepages;
2749 }
2750
2751 /*
2752 * If the filesystem has aborted, it is read-only, so return
2753 * right away instead of dumping stack traces later on that
2754 * will obscure the real source of the problem. We test
2755 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2756 * the latter could be true if the filesystem is mounted
2757 * read-only, and in that case, ext4_writepages should
2758 * *never* be called, so if that ever happens, we would want
2759 * the stack trace.
2760 */
2761 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2762 sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2763 ret = -EROFS;
2764 goto out_writepages;
2765 }
2766
2767 if (ext4_should_dioread_nolock(inode)) {
2768 /*
2769 * We may need to convert up to one extent per block in
2770 * the page and we may dirty the inode.
2771 */
2772 rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
2773 }
2774
2775 /*
2776 * If we have inline data and arrive here, it means that
2777 * we will soon create the block for the 1st page, so
2778 * we'd better clear the inline data here.
2779 */
2780 if (ext4_has_inline_data(inode)) {
2781 /* Just inode will be modified... */
2782 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2783 if (IS_ERR(handle)) {
2784 ret = PTR_ERR(handle);
2785 goto out_writepages;
2786 }
2787 BUG_ON(ext4_test_inode_state(inode,
2788 EXT4_STATE_MAY_INLINE_DATA));
2789 ext4_destroy_inline_data(handle, inode);
2790 ext4_journal_stop(handle);
2791 }
2792
2793 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2794 range_whole = 1;
2795
2796 if (wbc->range_cyclic) {
2797 writeback_index = mapping->writeback_index;
2798 if (writeback_index)
2799 cycled = 0;
2800 mpd.first_page = writeback_index;
2801 mpd.last_page = -1;
2802 } else {
2803 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2804 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2805 }
2806
2807 mpd.inode = inode;
2808 mpd.wbc = wbc;
2809 ext4_io_submit_init(&mpd.io_submit, wbc);
2810 retry:
2811 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2812 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2813 done = false;
2814 blk_start_plug(&plug);
2815
2816 /*
2817 * First writeback pages that don't need mapping - we can avoid
2818 * starting a transaction unnecessarily and also avoid being blocked
2819 * in the block layer on device congestion while having transaction
2820 * started.
2821 */
2822 mpd.do_map = 0;
2823 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2824 if (!mpd.io_submit.io_end) {
2825 ret = -ENOMEM;
2826 goto unplug;
2827 }
2828 ret = mpage_prepare_extent_to_map(&mpd);
2829 /* Submit prepared bio */
2830 ext4_io_submit(&mpd.io_submit);
2831 ext4_put_io_end_defer(mpd.io_submit.io_end);
2832 mpd.io_submit.io_end = NULL;
2833 /* Unlock pages we didn't use */
2834 mpage_release_unused_pages(&mpd, false);
2835 if (ret < 0)
2836 goto unplug;
2837
2838 while (!done && mpd.first_page <= mpd.last_page) {
2839 /* For each extent of pages we use new io_end */
2840 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2841 if (!mpd.io_submit.io_end) {
2842 ret = -ENOMEM;
2843 break;
2844 }
2845
2846 /*
2847 * We have two constraints: We find one extent to map and we
2848 * must always write out whole page (makes a difference when
2849 * blocksize < pagesize) so that we don't block on IO when we
2850 * try to write out the rest of the page. Journalled mode is
2851 * not supported by delalloc.
2852 */
2853 BUG_ON(ext4_should_journal_data(inode));
2854 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2855
2856 /* start a new transaction */
2857 handle = ext4_journal_start_with_reserve(inode,
2858 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2859 if (IS_ERR(handle)) {
2860 ret = PTR_ERR(handle);
2861 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2862 "%ld pages, ino %lu; err %d", __func__,
2863 wbc->nr_to_write, inode->i_ino, ret);
2864 /* Release allocated io_end */
2865 ext4_put_io_end(mpd.io_submit.io_end);
2866 mpd.io_submit.io_end = NULL;
2867 break;
2868 }
2869 mpd.do_map = 1;
2870
2871 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2872 ret = mpage_prepare_extent_to_map(&mpd);
2873 if (!ret) {
2874 if (mpd.map.m_len)
2875 ret = mpage_map_and_submit_extent(handle, &mpd,
2876 &give_up_on_write);
2877 else {
2878 /*
2879 * We scanned the whole range (or exhausted
2880 * nr_to_write), submitted what was mapped and
2881 * didn't find anything needing mapping. We are
2882 * done.
2883 */
2884 done = true;
2885 }
2886 }
2887 /*
2888 * Caution: If the handle is synchronous,
2889 * ext4_journal_stop() can wait for transaction commit
2890 * to finish which may depend on writeback of pages to
2891 * complete or on page lock to be released. In that
2892 * case, we have to wait until after after we have
2893 * submitted all the IO, released page locks we hold,
2894 * and dropped io_end reference (for extent conversion
2895 * to be able to complete) before stopping the handle.
2896 */
2897 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2898 ext4_journal_stop(handle);
2899 handle = NULL;
2900 mpd.do_map = 0;
2901 }
2902 /* Submit prepared bio */
2903 ext4_io_submit(&mpd.io_submit);
2904 /* Unlock pages we didn't use */
2905 mpage_release_unused_pages(&mpd, give_up_on_write);
2906 /*
2907 * Drop our io_end reference we got from init. We have
2908 * to be careful and use deferred io_end finishing if
2909 * we are still holding the transaction as we can
2910 * release the last reference to io_end which may end
2911 * up doing unwritten extent conversion.
2912 */
2913 if (handle) {
2914 ext4_put_io_end_defer(mpd.io_submit.io_end);
2915 ext4_journal_stop(handle);
2916 } else
2917 ext4_put_io_end(mpd.io_submit.io_end);
2918 mpd.io_submit.io_end = NULL;
2919
2920 if (ret == -ENOSPC && sbi->s_journal) {
2921 /*
2922 * Commit the transaction which would
2923 * free blocks released in the transaction
2924 * and try again
2925 */
2926 jbd2_journal_force_commit_nested(sbi->s_journal);
2927 ret = 0;
2928 continue;
2929 }
2930 /* Fatal error - ENOMEM, EIO... */
2931 if (ret)
2932 break;
2933 }
2934 unplug:
2935 blk_finish_plug(&plug);
2936 if (!ret && !cycled && wbc->nr_to_write > 0) {
2937 cycled = 1;
2938 mpd.last_page = writeback_index - 1;
2939 mpd.first_page = 0;
2940 goto retry;
2941 }
2942
2943 /* Update index */
2944 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2945 /*
2946 * Set the writeback_index so that range_cyclic
2947 * mode will write it back later
2948 */
2949 mapping->writeback_index = mpd.first_page;
2950
2951 out_writepages:
2952 trace_ext4_writepages_result(inode, wbc, ret,
2953 nr_to_write - wbc->nr_to_write);
2954 percpu_up_read(&sbi->s_journal_flag_rwsem);
2955 return ret;
2956 }
2957
2958 static int ext4_nonda_switch(struct super_block *sb)
2959 {
2960 s64 free_clusters, dirty_clusters;
2961 struct ext4_sb_info *sbi = EXT4_SB(sb);
2962
2963 /*
2964 * switch to non delalloc mode if we are running low
2965 * on free block. The free block accounting via percpu
2966 * counters can get slightly wrong with percpu_counter_batch getting
2967 * accumulated on each CPU without updating global counters
2968 * Delalloc need an accurate free block accounting. So switch
2969 * to non delalloc when we are near to error range.
2970 */
2971 free_clusters =
2972 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2973 dirty_clusters =
2974 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2975 /*
2976 * Start pushing delalloc when 1/2 of free blocks are dirty.
2977 */
2978 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2979 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2980
2981 if (2 * free_clusters < 3 * dirty_clusters ||
2982 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2983 /*
2984 * free block count is less than 150% of dirty blocks
2985 * or free blocks is less than watermark
2986 */
2987 return 1;
2988 }
2989 return 0;
2990 }
2991
2992 /* We always reserve for an inode update; the superblock could be there too */
2993 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2994 {
2995 if (likely(ext4_has_feature_large_file(inode->i_sb)))
2996 return 1;
2997
2998 if (pos + len <= 0x7fffffffULL)
2999 return 1;
3000
3001 /* We might need to update the superblock to set LARGE_FILE */
3002 return 2;
3003 }
3004
3005 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3006 loff_t pos, unsigned len, unsigned flags,
3007 struct page **pagep, void **fsdata)
3008 {
3009 int ret, retries = 0;
3010 struct page *page;
3011 pgoff_t index;
3012 struct inode *inode = mapping->host;
3013 handle_t *handle;
3014
3015 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3016 return -EIO;
3017
3018 index = pos >> PAGE_SHIFT;
3019
3020 if (ext4_nonda_switch(inode->i_sb) ||
3021 S_ISLNK(inode->i_mode)) {
3022 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3023 return ext4_write_begin(file, mapping, pos,
3024 len, flags, pagep, fsdata);
3025 }
3026 *fsdata = (void *)0;
3027 trace_ext4_da_write_begin(inode, pos, len, flags);
3028
3029 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3030 ret = ext4_da_write_inline_data_begin(mapping, inode,
3031 pos, len, flags,
3032 pagep, fsdata);
3033 if (ret < 0)
3034 return ret;
3035 if (ret == 1)
3036 return 0;
3037 }
3038
3039 /*
3040 * grab_cache_page_write_begin() can take a long time if the
3041 * system is thrashing due to memory pressure, or if the page
3042 * is being written back. So grab it first before we start
3043 * the transaction handle. This also allows us to allocate
3044 * the page (if needed) without using GFP_NOFS.
3045 */
3046 retry_grab:
3047 page = grab_cache_page_write_begin(mapping, index, flags);
3048 if (!page)
3049 return -ENOMEM;
3050 unlock_page(page);
3051
3052 /*
3053 * With delayed allocation, we don't log the i_disksize update
3054 * if there is delayed block allocation. But we still need
3055 * to journalling the i_disksize update if writes to the end
3056 * of file which has an already mapped buffer.
3057 */
3058 retry_journal:
3059 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3060 ext4_da_write_credits(inode, pos, len));
3061 if (IS_ERR(handle)) {
3062 put_page(page);
3063 return PTR_ERR(handle);
3064 }
3065
3066 lock_page(page);
3067 if (page->mapping != mapping) {
3068 /* The page got truncated from under us */
3069 unlock_page(page);
3070 put_page(page);
3071 ext4_journal_stop(handle);
3072 goto retry_grab;
3073 }
3074 /* In case writeback began while the page was unlocked */
3075 wait_for_stable_page(page);
3076
3077 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3078 ret = ext4_block_write_begin(page, pos, len,
3079 ext4_da_get_block_prep);
3080 #else
3081 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3082 #endif
3083 if (ret < 0) {
3084 unlock_page(page);
3085 ext4_journal_stop(handle);
3086 /*
3087 * block_write_begin may have instantiated a few blocks
3088 * outside i_size. Trim these off again. Don't need
3089 * i_size_read because we hold i_mutex.
3090 */
3091 if (pos + len > inode->i_size)
3092 ext4_truncate_failed_write(inode);
3093
3094 if (ret == -ENOSPC &&
3095 ext4_should_retry_alloc(inode->i_sb, &retries))
3096 goto retry_journal;
3097
3098 put_page(page);
3099 return ret;
3100 }
3101
3102 *pagep = page;
3103 return ret;
3104 }
3105
3106 /*
3107 * Check if we should update i_disksize
3108 * when write to the end of file but not require block allocation
3109 */
3110 static int ext4_da_should_update_i_disksize(struct page *page,
3111 unsigned long offset)
3112 {
3113 struct buffer_head *bh;
3114 struct inode *inode = page->mapping->host;
3115 unsigned int idx;
3116 int i;
3117
3118 bh = page_buffers(page);
3119 idx = offset >> inode->i_blkbits;
3120
3121 for (i = 0; i < idx; i++)
3122 bh = bh->b_this_page;
3123
3124 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3125 return 0;
3126 return 1;
3127 }
3128
3129 static int ext4_da_write_end(struct file *file,
3130 struct address_space *mapping,
3131 loff_t pos, unsigned len, unsigned copied,
3132 struct page *page, void *fsdata)
3133 {
3134 struct inode *inode = mapping->host;
3135 int ret = 0, ret2;
3136 handle_t *handle = ext4_journal_current_handle();
3137 loff_t new_i_size;
3138 unsigned long start, end;
3139 int write_mode = (int)(unsigned long)fsdata;
3140
3141 if (write_mode == FALL_BACK_TO_NONDELALLOC)
3142 return ext4_write_end(file, mapping, pos,
3143 len, copied, page, fsdata);
3144
3145 trace_ext4_da_write_end(inode, pos, len, copied);
3146 start = pos & (PAGE_SIZE - 1);
3147 end = start + copied - 1;
3148
3149 /*
3150 * generic_write_end() will run mark_inode_dirty() if i_size
3151 * changes. So let's piggyback the i_disksize mark_inode_dirty
3152 * into that.
3153 */
3154 new_i_size = pos + copied;
3155 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3156 if (ext4_has_inline_data(inode) ||
3157 ext4_da_should_update_i_disksize(page, end)) {
3158 ext4_update_i_disksize(inode, new_i_size);
3159 /* We need to mark inode dirty even if
3160 * new_i_size is less that inode->i_size
3161 * bu greater than i_disksize.(hint delalloc)
3162 */
3163 ext4_mark_inode_dirty(handle, inode);
3164 }
3165 }
3166
3167 if (write_mode != CONVERT_INLINE_DATA &&
3168 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3169 ext4_has_inline_data(inode))
3170 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3171 page);
3172 else
3173 ret2 = generic_write_end(file, mapping, pos, len, copied,
3174 page, fsdata);
3175
3176 copied = ret2;
3177 if (ret2 < 0)
3178 ret = ret2;
3179 ret2 = ext4_journal_stop(handle);
3180 if (!ret)
3181 ret = ret2;
3182
3183 return ret ? ret : copied;
3184 }
3185
3186 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3187 unsigned int length)
3188 {
3189 /*
3190 * Drop reserved blocks
3191 */
3192 BUG_ON(!PageLocked(page));
3193 if (!page_has_buffers(page))
3194 goto out;
3195
3196 ext4_da_page_release_reservation(page, offset, length);
3197
3198 out:
3199 ext4_invalidatepage(page, offset, length);
3200
3201 return;
3202 }
3203
3204 /*
3205 * Force all delayed allocation blocks to be allocated for a given inode.
3206 */
3207 int ext4_alloc_da_blocks(struct inode *inode)
3208 {
3209 trace_ext4_alloc_da_blocks(inode);
3210
3211 if (!EXT4_I(inode)->i_reserved_data_blocks)
3212 return 0;
3213
3214 /*
3215 * We do something simple for now. The filemap_flush() will
3216 * also start triggering a write of the data blocks, which is
3217 * not strictly speaking necessary (and for users of
3218 * laptop_mode, not even desirable). However, to do otherwise
3219 * would require replicating code paths in:
3220 *
3221 * ext4_writepages() ->
3222 * write_cache_pages() ---> (via passed in callback function)
3223 * __mpage_da_writepage() -->
3224 * mpage_add_bh_to_extent()
3225 * mpage_da_map_blocks()
3226 *
3227 * The problem is that write_cache_pages(), located in
3228 * mm/page-writeback.c, marks pages clean in preparation for
3229 * doing I/O, which is not desirable if we're not planning on
3230 * doing I/O at all.
3231 *
3232 * We could call write_cache_pages(), and then redirty all of
3233 * the pages by calling redirty_page_for_writepage() but that
3234 * would be ugly in the extreme. So instead we would need to
3235 * replicate parts of the code in the above functions,
3236 * simplifying them because we wouldn't actually intend to
3237 * write out the pages, but rather only collect contiguous
3238 * logical block extents, call the multi-block allocator, and
3239 * then update the buffer heads with the block allocations.
3240 *
3241 * For now, though, we'll cheat by calling filemap_flush(),
3242 * which will map the blocks, and start the I/O, but not
3243 * actually wait for the I/O to complete.
3244 */
3245 return filemap_flush(inode->i_mapping);
3246 }
3247
3248 /*
3249 * bmap() is special. It gets used by applications such as lilo and by
3250 * the swapper to find the on-disk block of a specific piece of data.
3251 *
3252 * Naturally, this is dangerous if the block concerned is still in the
3253 * journal. If somebody makes a swapfile on an ext4 data-journaling
3254 * filesystem and enables swap, then they may get a nasty shock when the
3255 * data getting swapped to that swapfile suddenly gets overwritten by
3256 * the original zero's written out previously to the journal and
3257 * awaiting writeback in the kernel's buffer cache.
3258 *
3259 * So, if we see any bmap calls here on a modified, data-journaled file,
3260 * take extra steps to flush any blocks which might be in the cache.
3261 */
3262 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3263 {
3264 struct inode *inode = mapping->host;
3265 journal_t *journal;
3266 int err;
3267
3268 /*
3269 * We can get here for an inline file via the FIBMAP ioctl
3270 */
3271 if (ext4_has_inline_data(inode))
3272 return 0;
3273
3274 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3275 test_opt(inode->i_sb, DELALLOC)) {
3276 /*
3277 * With delalloc we want to sync the file
3278 * so that we can make sure we allocate
3279 * blocks for file
3280 */
3281 filemap_write_and_wait(mapping);
3282 }
3283
3284 if (EXT4_JOURNAL(inode) &&
3285 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3286 /*
3287 * This is a REALLY heavyweight approach, but the use of
3288 * bmap on dirty files is expected to be extremely rare:
3289 * only if we run lilo or swapon on a freshly made file
3290 * do we expect this to happen.
3291 *
3292 * (bmap requires CAP_SYS_RAWIO so this does not
3293 * represent an unprivileged user DOS attack --- we'd be
3294 * in trouble if mortal users could trigger this path at
3295 * will.)
3296 *
3297 * NB. EXT4_STATE_JDATA is not set on files other than
3298 * regular files. If somebody wants to bmap a directory
3299 * or symlink and gets confused because the buffer
3300 * hasn't yet been flushed to disk, they deserve
3301 * everything they get.
3302 */
3303
3304 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3305 journal = EXT4_JOURNAL(inode);
3306 jbd2_journal_lock_updates(journal);
3307 err = jbd2_journal_flush(journal);
3308 jbd2_journal_unlock_updates(journal);
3309
3310 if (err)
3311 return 0;
3312 }
3313
3314 return generic_block_bmap(mapping, block, ext4_get_block);
3315 }
3316
3317 static int ext4_readpage(struct file *file, struct page *page)
3318 {
3319 int ret = -EAGAIN;
3320 struct inode *inode = page->mapping->host;
3321
3322 trace_ext4_readpage(page);
3323
3324 if (ext4_has_inline_data(inode))
3325 ret = ext4_readpage_inline(inode, page);
3326
3327 if (ret == -EAGAIN)
3328 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3329
3330 return ret;
3331 }
3332
3333 static int
3334 ext4_readpages(struct file *file, struct address_space *mapping,
3335 struct list_head *pages, unsigned nr_pages)
3336 {
3337 struct inode *inode = mapping->host;
3338
3339 /* If the file has inline data, no need to do readpages. */
3340 if (ext4_has_inline_data(inode))
3341 return 0;
3342
3343 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3344 }
3345
3346 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3347 unsigned int length)
3348 {
3349 trace_ext4_invalidatepage(page, offset, length);
3350
3351 /* No journalling happens on data buffers when this function is used */
3352 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3353
3354 block_invalidatepage(page, offset, length);
3355 }
3356
3357 static int __ext4_journalled_invalidatepage(struct page *page,
3358 unsigned int offset,
3359 unsigned int length)
3360 {
3361 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3362
3363 trace_ext4_journalled_invalidatepage(page, offset, length);
3364
3365 /*
3366 * If it's a full truncate we just forget about the pending dirtying
3367 */
3368 if (offset == 0 && length == PAGE_SIZE)
3369 ClearPageChecked(page);
3370
3371 return jbd2_journal_invalidatepage(journal, page, offset, length);
3372 }
3373
3374 /* Wrapper for aops... */
3375 static void ext4_journalled_invalidatepage(struct page *page,
3376 unsigned int offset,
3377 unsigned int length)
3378 {
3379 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3380 }
3381
3382 static int ext4_releasepage(struct page *page, gfp_t wait)
3383 {
3384 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3385
3386 trace_ext4_releasepage(page);
3387
3388 /* Page has dirty journalled data -> cannot release */
3389 if (PageChecked(page))
3390 return 0;
3391 if (journal)
3392 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3393 else
3394 return try_to_free_buffers(page);
3395 }
3396
3397 static bool ext4_inode_datasync_dirty(struct inode *inode)
3398 {
3399 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3400
3401 if (journal)
3402 return !jbd2_transaction_committed(journal,
3403 EXT4_I(inode)->i_datasync_tid);
3404 /* Any metadata buffers to write? */
3405 if (!list_empty(&inode->i_mapping->private_list))
3406 return true;
3407 return inode->i_state & I_DIRTY_DATASYNC;
3408 }
3409
3410 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3411 unsigned flags, struct iomap *iomap)
3412 {
3413 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3414 unsigned int blkbits = inode->i_blkbits;
3415 unsigned long first_block = offset >> blkbits;
3416 unsigned long last_block = (offset + length - 1) >> blkbits;
3417 struct ext4_map_blocks map;
3418 bool delalloc = false;
3419 int ret;
3420
3421
3422 if (flags & IOMAP_REPORT) {
3423 if (ext4_has_inline_data(inode)) {
3424 ret = ext4_inline_data_iomap(inode, iomap);
3425 if (ret != -EAGAIN) {
3426 if (ret == 0 && offset >= iomap->length)
3427 ret = -ENOENT;
3428 return ret;
3429 }
3430 }
3431 } else {
3432 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3433 return -ERANGE;
3434 }
3435
3436 map.m_lblk = first_block;
3437 map.m_len = last_block - first_block + 1;
3438
3439 if (flags & IOMAP_REPORT) {
3440 ret = ext4_map_blocks(NULL, inode, &map, 0);
3441 if (ret < 0)
3442 return ret;
3443
3444 if (ret == 0) {
3445 ext4_lblk_t end = map.m_lblk + map.m_len - 1;
3446 struct extent_status es;
3447
3448 ext4_es_find_delayed_extent_range(inode, map.m_lblk, end, &es);
3449
3450 if (!es.es_len || es.es_lblk > end) {
3451 /* entire range is a hole */
3452 } else if (es.es_lblk > map.m_lblk) {
3453 /* range starts with a hole */
3454 map.m_len = es.es_lblk - map.m_lblk;
3455 } else {
3456 ext4_lblk_t offs = 0;
3457
3458 if (es.es_lblk < map.m_lblk)
3459 offs = map.m_lblk - es.es_lblk;
3460 map.m_lblk = es.es_lblk + offs;
3461 map.m_len = es.es_len - offs;
3462 delalloc = true;
3463 }
3464 }
3465 } else if (flags & IOMAP_WRITE) {
3466 int dio_credits;
3467 handle_t *handle;
3468 int retries = 0;
3469
3470 /* Trim mapping request to maximum we can map at once for DIO */
3471 if (map.m_len > DIO_MAX_BLOCKS)
3472 map.m_len = DIO_MAX_BLOCKS;
3473 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3474 retry:
3475 /*
3476 * Either we allocate blocks and then we don't get unwritten
3477 * extent so we have reserved enough credits, or the blocks
3478 * are already allocated and unwritten and in that case
3479 * extent conversion fits in the credits as well.
3480 */
3481 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3482 dio_credits);
3483 if (IS_ERR(handle))
3484 return PTR_ERR(handle);
3485
3486 ret = ext4_map_blocks(handle, inode, &map,
3487 EXT4_GET_BLOCKS_CREATE_ZERO);
3488 if (ret < 0) {
3489 ext4_journal_stop(handle);
3490 if (ret == -ENOSPC &&
3491 ext4_should_retry_alloc(inode->i_sb, &retries))
3492 goto retry;
3493 return ret;
3494 }
3495
3496 /*
3497 * If we added blocks beyond i_size, we need to make sure they
3498 * will get truncated if we crash before updating i_size in
3499 * ext4_iomap_end(). For faults we don't need to do that (and
3500 * even cannot because for orphan list operations inode_lock is
3501 * required) - if we happen to instantiate block beyond i_size,
3502 * it is because we race with truncate which has already added
3503 * the inode to the orphan list.
3504 */
3505 if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3506 (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3507 int err;
3508
3509 err = ext4_orphan_add(handle, inode);
3510 if (err < 0) {
3511 ext4_journal_stop(handle);
3512 return err;
3513 }
3514 }
3515 ext4_journal_stop(handle);
3516 } else {
3517 ret = ext4_map_blocks(NULL, inode, &map, 0);
3518 if (ret < 0)
3519 return ret;
3520 }
3521
3522 iomap->flags = 0;
3523 if (ext4_inode_datasync_dirty(inode))
3524 iomap->flags |= IOMAP_F_DIRTY;
3525 iomap->bdev = inode->i_sb->s_bdev;
3526 iomap->dax_dev = sbi->s_daxdev;
3527 iomap->offset = first_block << blkbits;
3528 iomap->length = (u64)map.m_len << blkbits;
3529
3530 if (ret == 0) {
3531 iomap->type = delalloc ? IOMAP_DELALLOC : IOMAP_HOLE;
3532 iomap->addr = IOMAP_NULL_ADDR;
3533 } else {
3534 if (map.m_flags & EXT4_MAP_MAPPED) {
3535 iomap->type = IOMAP_MAPPED;
3536 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3537 iomap->type = IOMAP_UNWRITTEN;
3538 } else {
3539 WARN_ON_ONCE(1);
3540 return -EIO;
3541 }
3542 iomap->addr = (u64)map.m_pblk << blkbits;
3543 }
3544
3545 if (map.m_flags & EXT4_MAP_NEW)
3546 iomap->flags |= IOMAP_F_NEW;
3547
3548 return 0;
3549 }
3550
3551 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3552 ssize_t written, unsigned flags, struct iomap *iomap)
3553 {
3554 int ret = 0;
3555 handle_t *handle;
3556 int blkbits = inode->i_blkbits;
3557 bool truncate = false;
3558
3559 if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3560 return 0;
3561
3562 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3563 if (IS_ERR(handle)) {
3564 ret = PTR_ERR(handle);
3565 goto orphan_del;
3566 }
3567 if (ext4_update_inode_size(inode, offset + written))
3568 ext4_mark_inode_dirty(handle, inode);
3569 /*
3570 * We may need to truncate allocated but not written blocks beyond EOF.
3571 */
3572 if (iomap->offset + iomap->length >
3573 ALIGN(inode->i_size, 1 << blkbits)) {
3574 ext4_lblk_t written_blk, end_blk;
3575
3576 written_blk = (offset + written) >> blkbits;
3577 end_blk = (offset + length) >> blkbits;
3578 if (written_blk < end_blk && ext4_can_truncate(inode))
3579 truncate = true;
3580 }
3581 /*
3582 * Remove inode from orphan list if we were extending a inode and
3583 * everything went fine.
3584 */
3585 if (!truncate && inode->i_nlink &&
3586 !list_empty(&EXT4_I(inode)->i_orphan))
3587 ext4_orphan_del(handle, inode);
3588 ext4_journal_stop(handle);
3589 if (truncate) {
3590 ext4_truncate_failed_write(inode);
3591 orphan_del:
3592 /*
3593 * If truncate failed early the inode might still be on the
3594 * orphan list; we need to make sure the inode is removed from
3595 * the orphan list in that case.
3596 */
3597 if (inode->i_nlink)
3598 ext4_orphan_del(NULL, inode);
3599 }
3600 return ret;
3601 }
3602
3603 const struct iomap_ops ext4_iomap_ops = {
3604 .iomap_begin = ext4_iomap_begin,
3605 .iomap_end = ext4_iomap_end,
3606 };
3607
3608 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3609 ssize_t size, void *private)
3610 {
3611 ext4_io_end_t *io_end = private;
3612
3613 /* if not async direct IO just return */
3614 if (!io_end)
3615 return 0;
3616
3617 ext_debug("ext4_end_io_dio(): io_end 0x%p "
3618 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3619 io_end, io_end->inode->i_ino, iocb, offset, size);
3620
3621 /*
3622 * Error during AIO DIO. We cannot convert unwritten extents as the
3623 * data was not written. Just clear the unwritten flag and drop io_end.
3624 */
3625 if (size <= 0) {
3626 ext4_clear_io_unwritten_flag(io_end);
3627 size = 0;
3628 }
3629 io_end->offset = offset;
3630 io_end->size = size;
3631 ext4_put_io_end(io_end);
3632
3633 return 0;
3634 }
3635
3636 /*
3637 * Handling of direct IO writes.
3638 *
3639 * For ext4 extent files, ext4 will do direct-io write even to holes,
3640 * preallocated extents, and those write extend the file, no need to
3641 * fall back to buffered IO.
3642 *
3643 * For holes, we fallocate those blocks, mark them as unwritten
3644 * If those blocks were preallocated, we mark sure they are split, but
3645 * still keep the range to write as unwritten.
3646 *
3647 * The unwritten extents will be converted to written when DIO is completed.
3648 * For async direct IO, since the IO may still pending when return, we
3649 * set up an end_io call back function, which will do the conversion
3650 * when async direct IO completed.
3651 *
3652 * If the O_DIRECT write will extend the file then add this inode to the
3653 * orphan list. So recovery will truncate it back to the original size
3654 * if the machine crashes during the write.
3655 *
3656 */
3657 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3658 {
3659 struct file *file = iocb->ki_filp;
3660 struct inode *inode = file->f_mapping->host;
3661 struct ext4_inode_info *ei = EXT4_I(inode);
3662 ssize_t ret;
3663 loff_t offset = iocb->ki_pos;
3664 size_t count = iov_iter_count(iter);
3665 int overwrite = 0;
3666 get_block_t *get_block_func = NULL;
3667 int dio_flags = 0;
3668 loff_t final_size = offset + count;
3669 int orphan = 0;
3670 handle_t *handle;
3671
3672 if (final_size > inode->i_size) {
3673 /* Credits for sb + inode write */
3674 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3675 if (IS_ERR(handle)) {
3676 ret = PTR_ERR(handle);
3677 goto out;
3678 }
3679 ret = ext4_orphan_add(handle, inode);
3680 if (ret) {
3681 ext4_journal_stop(handle);
3682 goto out;
3683 }
3684 orphan = 1;
3685 ei->i_disksize = inode->i_size;
3686 ext4_journal_stop(handle);
3687 }
3688
3689 BUG_ON(iocb->private == NULL);
3690
3691 /*
3692 * Make all waiters for direct IO properly wait also for extent
3693 * conversion. This also disallows race between truncate() and
3694 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3695 */
3696 inode_dio_begin(inode);
3697
3698 /* If we do a overwrite dio, i_mutex locking can be released */
3699 overwrite = *((int *)iocb->private);
3700
3701 if (overwrite)
3702 inode_unlock(inode);
3703
3704 /*
3705 * For extent mapped files we could direct write to holes and fallocate.
3706 *
3707 * Allocated blocks to fill the hole are marked as unwritten to prevent
3708 * parallel buffered read to expose the stale data before DIO complete
3709 * the data IO.
3710 *
3711 * As to previously fallocated extents, ext4 get_block will just simply
3712 * mark the buffer mapped but still keep the extents unwritten.
3713 *
3714 * For non AIO case, we will convert those unwritten extents to written
3715 * after return back from blockdev_direct_IO. That way we save us from
3716 * allocating io_end structure and also the overhead of offloading
3717 * the extent convertion to a workqueue.
3718 *
3719 * For async DIO, the conversion needs to be deferred when the
3720 * IO is completed. The ext4 end_io callback function will be
3721 * called to take care of the conversion work. Here for async
3722 * case, we allocate an io_end structure to hook to the iocb.
3723 */
3724 iocb->private = NULL;
3725 if (overwrite)
3726 get_block_func = ext4_dio_get_block_overwrite;
3727 else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3728 round_down(offset, i_blocksize(inode)) >= inode->i_size) {
3729 get_block_func = ext4_dio_get_block;
3730 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3731 } else if (is_sync_kiocb(iocb)) {
3732 get_block_func = ext4_dio_get_block_unwritten_sync;
3733 dio_flags = DIO_LOCKING;
3734 } else {
3735 get_block_func = ext4_dio_get_block_unwritten_async;
3736 dio_flags = DIO_LOCKING;
3737 }
3738 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3739 get_block_func, ext4_end_io_dio, NULL,
3740 dio_flags);
3741
3742 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3743 EXT4_STATE_DIO_UNWRITTEN)) {
3744 int err;
3745 /*
3746 * for non AIO case, since the IO is already
3747 * completed, we could do the conversion right here
3748 */
3749 err = ext4_convert_unwritten_extents(NULL, inode,
3750 offset, ret);
3751 if (err < 0)
3752 ret = err;
3753 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3754 }
3755
3756 inode_dio_end(inode);
3757 /* take i_mutex locking again if we do a ovewrite dio */
3758 if (overwrite)
3759 inode_lock(inode);
3760
3761 if (ret < 0 && final_size > inode->i_size)
3762 ext4_truncate_failed_write(inode);
3763
3764 /* Handle extending of i_size after direct IO write */
3765 if (orphan) {
3766 int err;
3767
3768 /* Credits for sb + inode write */
3769 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3770 if (IS_ERR(handle)) {
3771 /*
3772 * We wrote the data but cannot extend
3773 * i_size. Bail out. In async io case, we do
3774 * not return error here because we have
3775 * already submmitted the corresponding
3776 * bio. Returning error here makes the caller
3777 * think that this IO is done and failed
3778 * resulting in race with bio's completion
3779 * handler.
3780 */
3781 if (!ret)
3782 ret = PTR_ERR(handle);
3783 if (inode->i_nlink)
3784 ext4_orphan_del(NULL, inode);
3785
3786 goto out;
3787 }
3788 if (inode->i_nlink)
3789 ext4_orphan_del(handle, inode);
3790 if (ret > 0) {
3791 loff_t end = offset + ret;
3792 if (end > inode->i_size) {
3793 ei->i_disksize = end;
3794 i_size_write(inode, end);
3795 /*
3796 * We're going to return a positive `ret'
3797 * here due to non-zero-length I/O, so there's
3798 * no way of reporting error returns from
3799 * ext4_mark_inode_dirty() to userspace. So
3800 * ignore it.
3801 */
3802 ext4_mark_inode_dirty(handle, inode);
3803 }
3804 }
3805 err = ext4_journal_stop(handle);
3806 if (ret == 0)
3807 ret = err;
3808 }
3809 out:
3810 return ret;
3811 }
3812
3813 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3814 {
3815 struct address_space *mapping = iocb->ki_filp->f_mapping;
3816 struct inode *inode = mapping->host;
3817 size_t count = iov_iter_count(iter);
3818 ssize_t ret;
3819
3820 /*
3821 * Shared inode_lock is enough for us - it protects against concurrent
3822 * writes & truncates and since we take care of writing back page cache,
3823 * we are protected against page writeback as well.
3824 */
3825 inode_lock_shared(inode);
3826 ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3827 iocb->ki_pos + count - 1);
3828 if (ret)
3829 goto out_unlock;
3830 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3831 iter, ext4_dio_get_block, NULL, NULL, 0);
3832 out_unlock:
3833 inode_unlock_shared(inode);
3834 return ret;
3835 }
3836
3837 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3838 {
3839 struct file *file = iocb->ki_filp;
3840 struct inode *inode = file->f_mapping->host;
3841 size_t count = iov_iter_count(iter);
3842 loff_t offset = iocb->ki_pos;
3843 ssize_t ret;
3844
3845 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3846 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3847 return 0;
3848 #endif
3849
3850 /*
3851 * If we are doing data journalling we don't support O_DIRECT
3852 */
3853 if (ext4_should_journal_data(inode))
3854 return 0;
3855
3856 /* Let buffer I/O handle the inline data case. */
3857 if (ext4_has_inline_data(inode))
3858 return 0;
3859
3860 /* DAX uses iomap path now */
3861 if (WARN_ON_ONCE(IS_DAX(inode)))
3862 return 0;
3863
3864 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3865 if (iov_iter_rw(iter) == READ)
3866 ret = ext4_direct_IO_read(iocb, iter);
3867 else
3868 ret = ext4_direct_IO_write(iocb, iter);
3869 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3870 return ret;
3871 }
3872
3873 /*
3874 * Pages can be marked dirty completely asynchronously from ext4's journalling
3875 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3876 * much here because ->set_page_dirty is called under VFS locks. The page is
3877 * not necessarily locked.
3878 *
3879 * We cannot just dirty the page and leave attached buffers clean, because the
3880 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3881 * or jbddirty because all the journalling code will explode.
3882 *
3883 * So what we do is to mark the page "pending dirty" and next time writepage
3884 * is called, propagate that into the buffers appropriately.
3885 */
3886 static int ext4_journalled_set_page_dirty(struct page *page)
3887 {
3888 SetPageChecked(page);
3889 return __set_page_dirty_nobuffers(page);
3890 }
3891
3892 static int ext4_set_page_dirty(struct page *page)
3893 {
3894 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3895 WARN_ON_ONCE(!page_has_buffers(page));
3896 return __set_page_dirty_buffers(page);
3897 }
3898
3899 static const struct address_space_operations ext4_aops = {
3900 .readpage = ext4_readpage,
3901 .readpages = ext4_readpages,
3902 .writepage = ext4_writepage,
3903 .writepages = ext4_writepages,
3904 .write_begin = ext4_write_begin,
3905 .write_end = ext4_write_end,
3906 .set_page_dirty = ext4_set_page_dirty,
3907 .bmap = ext4_bmap,
3908 .invalidatepage = ext4_invalidatepage,
3909 .releasepage = ext4_releasepage,
3910 .direct_IO = ext4_direct_IO,
3911 .migratepage = buffer_migrate_page,
3912 .is_partially_uptodate = block_is_partially_uptodate,
3913 .error_remove_page = generic_error_remove_page,
3914 };
3915
3916 static const struct address_space_operations ext4_journalled_aops = {
3917 .readpage = ext4_readpage,
3918 .readpages = ext4_readpages,
3919 .writepage = ext4_writepage,
3920 .writepages = ext4_writepages,
3921 .write_begin = ext4_write_begin,
3922 .write_end = ext4_journalled_write_end,
3923 .set_page_dirty = ext4_journalled_set_page_dirty,
3924 .bmap = ext4_bmap,
3925 .invalidatepage = ext4_journalled_invalidatepage,
3926 .releasepage = ext4_releasepage,
3927 .direct_IO = ext4_direct_IO,
3928 .is_partially_uptodate = block_is_partially_uptodate,
3929 .error_remove_page = generic_error_remove_page,
3930 };
3931
3932 static const struct address_space_operations ext4_da_aops = {
3933 .readpage = ext4_readpage,
3934 .readpages = ext4_readpages,
3935 .writepage = ext4_writepage,
3936 .writepages = ext4_writepages,
3937 .write_begin = ext4_da_write_begin,
3938 .write_end = ext4_da_write_end,
3939 .set_page_dirty = ext4_set_page_dirty,
3940 .bmap = ext4_bmap,
3941 .invalidatepage = ext4_da_invalidatepage,
3942 .releasepage = ext4_releasepage,
3943 .direct_IO = ext4_direct_IO,
3944 .migratepage = buffer_migrate_page,
3945 .is_partially_uptodate = block_is_partially_uptodate,
3946 .error_remove_page = generic_error_remove_page,
3947 };
3948
3949 void ext4_set_aops(struct inode *inode)
3950 {
3951 switch (ext4_inode_journal_mode(inode)) {
3952 case EXT4_INODE_ORDERED_DATA_MODE:
3953 case EXT4_INODE_WRITEBACK_DATA_MODE:
3954 break;
3955 case EXT4_INODE_JOURNAL_DATA_MODE:
3956 inode->i_mapping->a_ops = &ext4_journalled_aops;
3957 return;
3958 default:
3959 BUG();
3960 }
3961 if (test_opt(inode->i_sb, DELALLOC))
3962 inode->i_mapping->a_ops = &ext4_da_aops;
3963 else
3964 inode->i_mapping->a_ops = &ext4_aops;
3965 }
3966
3967 static int __ext4_block_zero_page_range(handle_t *handle,
3968 struct address_space *mapping, loff_t from, loff_t length)
3969 {
3970 ext4_fsblk_t index = from >> PAGE_SHIFT;
3971 unsigned offset = from & (PAGE_SIZE-1);
3972 unsigned blocksize, pos;
3973 ext4_lblk_t iblock;
3974 struct inode *inode = mapping->host;
3975 struct buffer_head *bh;
3976 struct page *page;
3977 int err = 0;
3978
3979 page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3980 mapping_gfp_constraint(mapping, ~__GFP_FS));
3981 if (!page)
3982 return -ENOMEM;
3983
3984 blocksize = inode->i_sb->s_blocksize;
3985
3986 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3987
3988 if (!page_has_buffers(page))
3989 create_empty_buffers(page, blocksize, 0);
3990
3991 /* Find the buffer that contains "offset" */
3992 bh = page_buffers(page);
3993 pos = blocksize;
3994 while (offset >= pos) {
3995 bh = bh->b_this_page;
3996 iblock++;
3997 pos += blocksize;
3998 }
3999 if (buffer_freed(bh)) {
4000 BUFFER_TRACE(bh, "freed: skip");
4001 goto unlock;
4002 }
4003 if (!buffer_mapped(bh)) {
4004 BUFFER_TRACE(bh, "unmapped");
4005 ext4_get_block(inode, iblock, bh, 0);
4006 /* unmapped? It's a hole - nothing to do */
4007 if (!buffer_mapped(bh)) {
4008 BUFFER_TRACE(bh, "still unmapped");
4009 goto unlock;
4010 }
4011 }
4012
4013 /* Ok, it's mapped. Make sure it's up-to-date */
4014 if (PageUptodate(page))
4015 set_buffer_uptodate(bh);
4016
4017 if (!buffer_uptodate(bh)) {
4018 err = -EIO;
4019 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
4020 wait_on_buffer(bh);
4021 /* Uhhuh. Read error. Complain and punt. */
4022 if (!buffer_uptodate(bh))
4023 goto unlock;
4024 if (S_ISREG(inode->i_mode) &&
4025 ext4_encrypted_inode(inode)) {
4026 /* We expect the key to be set. */
4027 BUG_ON(!fscrypt_has_encryption_key(inode));
4028 BUG_ON(blocksize != PAGE_SIZE);
4029 WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
4030 page, PAGE_SIZE, 0, page->index));
4031 }
4032 }
4033 if (ext4_should_journal_data(inode)) {
4034 BUFFER_TRACE(bh, "get write access");
4035 err = ext4_journal_get_write_access(handle, bh);
4036 if (err)
4037 goto unlock;
4038 }
4039 zero_user(page, offset, length);
4040 BUFFER_TRACE(bh, "zeroed end of block");
4041
4042 if (ext4_should_journal_data(inode)) {
4043 err = ext4_handle_dirty_metadata(handle, inode, bh);
4044 } else {
4045 err = 0;
4046 mark_buffer_dirty(bh);
4047 if (ext4_should_order_data(inode))
4048 err = ext4_jbd2_inode_add_write(handle, inode);
4049 }
4050
4051 unlock:
4052 unlock_page(page);
4053 put_page(page);
4054 return err;
4055 }
4056
4057 /*
4058 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
4059 * starting from file offset 'from'. The range to be zero'd must
4060 * be contained with in one block. If the specified range exceeds
4061 * the end of the block it will be shortened to end of the block
4062 * that cooresponds to 'from'
4063 */
4064 static int ext4_block_zero_page_range(handle_t *handle,
4065 struct address_space *mapping, loff_t from, loff_t length)
4066 {
4067 struct inode *inode = mapping->host;
4068 unsigned offset = from & (PAGE_SIZE-1);
4069 unsigned blocksize = inode->i_sb->s_blocksize;
4070 unsigned max = blocksize - (offset & (blocksize - 1));
4071
4072 /*
4073 * correct length if it does not fall between
4074 * 'from' and the end of the block
4075 */
4076 if (length > max || length < 0)
4077 length = max;
4078
4079 if (IS_DAX(inode)) {
4080 return iomap_zero_range(inode, from, length, NULL,
4081 &ext4_iomap_ops);
4082 }
4083 return __ext4_block_zero_page_range(handle, mapping, from, length);
4084 }
4085
4086 /*
4087 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4088 * up to the end of the block which corresponds to `from'.
4089 * This required during truncate. We need to physically zero the tail end
4090 * of that block so it doesn't yield old data if the file is later grown.
4091 */
4092 static int ext4_block_truncate_page(handle_t *handle,
4093 struct address_space *mapping, loff_t from)
4094 {
4095 unsigned offset = from & (PAGE_SIZE-1);
4096 unsigned length;
4097 unsigned blocksize;
4098 struct inode *inode = mapping->host;
4099
4100 /* If we are processing an encrypted inode during orphan list handling */
4101 if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode))
4102 return 0;
4103
4104 blocksize = inode->i_sb->s_blocksize;
4105 length = blocksize - (offset & (blocksize - 1));
4106
4107 return ext4_block_zero_page_range(handle, mapping, from, length);
4108 }
4109
4110 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4111 loff_t lstart, loff_t length)
4112 {
4113 struct super_block *sb = inode->i_sb;
4114 struct address_space *mapping = inode->i_mapping;
4115 unsigned partial_start, partial_end;
4116 ext4_fsblk_t start, end;
4117 loff_t byte_end = (lstart + length - 1);
4118 int err = 0;
4119
4120 partial_start = lstart & (sb->s_blocksize - 1);
4121 partial_end = byte_end & (sb->s_blocksize - 1);
4122
4123 start = lstart >> sb->s_blocksize_bits;
4124 end = byte_end >> sb->s_blocksize_bits;
4125
4126 /* Handle partial zero within the single block */
4127 if (start == end &&
4128 (partial_start || (partial_end != sb->s_blocksize - 1))) {
4129 err = ext4_block_zero_page_range(handle, mapping,
4130 lstart, length);
4131 return err;
4132 }
4133 /* Handle partial zero out on the start of the range */
4134 if (partial_start) {
4135 err = ext4_block_zero_page_range(handle, mapping,
4136 lstart, sb->s_blocksize);
4137 if (err)
4138 return err;
4139 }
4140 /* Handle partial zero out on the end of the range */
4141 if (partial_end != sb->s_blocksize - 1)
4142 err = ext4_block_zero_page_range(handle, mapping,
4143 byte_end - partial_end,
4144 partial_end + 1);
4145 return err;
4146 }
4147
4148 int ext4_can_truncate(struct inode *inode)
4149 {
4150 if (S_ISREG(inode->i_mode))
4151 return 1;
4152 if (S_ISDIR(inode->i_mode))
4153 return 1;
4154 if (S_ISLNK(inode->i_mode))
4155 return !ext4_inode_is_fast_symlink(inode);
4156 return 0;
4157 }
4158
4159 /*
4160 * We have to make sure i_disksize gets properly updated before we truncate
4161 * page cache due to hole punching or zero range. Otherwise i_disksize update
4162 * can get lost as it may have been postponed to submission of writeback but
4163 * that will never happen after we truncate page cache.
4164 */
4165 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4166 loff_t len)
4167 {
4168 handle_t *handle;
4169 loff_t size = i_size_read(inode);
4170
4171 WARN_ON(!inode_is_locked(inode));
4172 if (offset > size || offset + len < size)
4173 return 0;
4174
4175 if (EXT4_I(inode)->i_disksize >= size)
4176 return 0;
4177
4178 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4179 if (IS_ERR(handle))
4180 return PTR_ERR(handle);
4181 ext4_update_i_disksize(inode, size);
4182 ext4_mark_inode_dirty(handle, inode);
4183 ext4_journal_stop(handle);
4184
4185 return 0;
4186 }
4187
4188 /*
4189 * ext4_punch_hole: punches a hole in a file by releasing the blocks
4190 * associated with the given offset and length
4191 *
4192 * @inode: File inode
4193 * @offset: The offset where the hole will begin
4194 * @len: The length of the hole
4195 *
4196 * Returns: 0 on success or negative on failure
4197 */
4198
4199 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4200 {
4201 struct super_block *sb = inode->i_sb;
4202 ext4_lblk_t first_block, stop_block;
4203 struct address_space *mapping = inode->i_mapping;
4204 loff_t first_block_offset, last_block_offset;
4205 handle_t *handle;
4206 unsigned int credits;
4207 int ret = 0;
4208
4209 if (!S_ISREG(inode->i_mode))
4210 return -EOPNOTSUPP;
4211
4212 trace_ext4_punch_hole(inode, offset, length, 0);
4213
4214 /*
4215 * Write out all dirty pages to avoid race conditions
4216 * Then release them.
4217 */
4218 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4219 ret = filemap_write_and_wait_range(mapping, offset,
4220 offset + length - 1);
4221 if (ret)
4222 return ret;
4223 }
4224
4225 inode_lock(inode);
4226
4227 /* No need to punch hole beyond i_size */
4228 if (offset >= inode->i_size)
4229 goto out_mutex;
4230
4231 /*
4232 * If the hole extends beyond i_size, set the hole
4233 * to end after the page that contains i_size
4234 */
4235 if (offset + length > inode->i_size) {
4236 length = inode->i_size +
4237 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4238 offset;
4239 }
4240
4241 if (offset & (sb->s_blocksize - 1) ||
4242 (offset + length) & (sb->s_blocksize - 1)) {
4243 /*
4244 * Attach jinode to inode for jbd2 if we do any zeroing of
4245 * partial block
4246 */
4247 ret = ext4_inode_attach_jinode(inode);
4248 if (ret < 0)
4249 goto out_mutex;
4250
4251 }
4252
4253 /* Wait all existing dio workers, newcomers will block on i_mutex */
4254 ext4_inode_block_unlocked_dio(inode);
4255 inode_dio_wait(inode);
4256
4257 /*
4258 * Prevent page faults from reinstantiating pages we have released from
4259 * page cache.
4260 */
4261 down_write(&EXT4_I(inode)->i_mmap_sem);
4262 first_block_offset = round_up(offset, sb->s_blocksize);
4263 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4264
4265 /* Now release the pages and zero block aligned part of pages*/
4266 if (last_block_offset > first_block_offset) {
4267 ret = ext4_update_disksize_before_punch(inode, offset, length);
4268 if (ret)
4269 goto out_dio;
4270 truncate_pagecache_range(inode, first_block_offset,
4271 last_block_offset);
4272 }
4273
4274 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4275 credits = ext4_writepage_trans_blocks(inode);
4276 else
4277 credits = ext4_blocks_for_truncate(inode);
4278 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4279 if (IS_ERR(handle)) {
4280 ret = PTR_ERR(handle);
4281 ext4_std_error(sb, ret);
4282 goto out_dio;
4283 }
4284
4285 ret = ext4_zero_partial_blocks(handle, inode, offset,
4286 length);
4287 if (ret)
4288 goto out_stop;
4289
4290 first_block = (offset + sb->s_blocksize - 1) >>
4291 EXT4_BLOCK_SIZE_BITS(sb);
4292 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4293
4294 /* If there are no blocks to remove, return now */
4295 if (first_block >= stop_block)
4296 goto out_stop;
4297
4298 down_write(&EXT4_I(inode)->i_data_sem);
4299 ext4_discard_preallocations(inode);
4300
4301 ret = ext4_es_remove_extent(inode, first_block,
4302 stop_block - first_block);
4303 if (ret) {
4304 up_write(&EXT4_I(inode)->i_data_sem);
4305 goto out_stop;
4306 }
4307
4308 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4309 ret = ext4_ext_remove_space(inode, first_block,
4310 stop_block - 1);
4311 else
4312 ret = ext4_ind_remove_space(handle, inode, first_block,
4313 stop_block);
4314
4315 up_write(&EXT4_I(inode)->i_data_sem);
4316 if (IS_SYNC(inode))
4317 ext4_handle_sync(handle);
4318
4319 inode->i_mtime = inode->i_ctime = current_time(inode);
4320 ext4_mark_inode_dirty(handle, inode);
4321 if (ret >= 0)
4322 ext4_update_inode_fsync_trans(handle, inode, 1);
4323 out_stop:
4324 ext4_journal_stop(handle);
4325 out_dio:
4326 up_write(&EXT4_I(inode)->i_mmap_sem);
4327 ext4_inode_resume_unlocked_dio(inode);
4328 out_mutex:
4329 inode_unlock(inode);
4330 return ret;
4331 }
4332
4333 int ext4_inode_attach_jinode(struct inode *inode)
4334 {
4335 struct ext4_inode_info *ei = EXT4_I(inode);
4336 struct jbd2_inode *jinode;
4337
4338 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4339 return 0;
4340
4341 jinode = jbd2_alloc_inode(GFP_KERNEL);
4342 spin_lock(&inode->i_lock);
4343 if (!ei->jinode) {
4344 if (!jinode) {
4345 spin_unlock(&inode->i_lock);
4346 return -ENOMEM;
4347 }
4348 ei->jinode = jinode;
4349 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4350 jinode = NULL;
4351 }
4352 spin_unlock(&inode->i_lock);
4353 if (unlikely(jinode != NULL))
4354 jbd2_free_inode(jinode);
4355 return 0;
4356 }
4357
4358 /*
4359 * ext4_truncate()
4360 *
4361 * We block out ext4_get_block() block instantiations across the entire
4362 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4363 * simultaneously on behalf of the same inode.
4364 *
4365 * As we work through the truncate and commit bits of it to the journal there
4366 * is one core, guiding principle: the file's tree must always be consistent on
4367 * disk. We must be able to restart the truncate after a crash.
4368 *
4369 * The file's tree may be transiently inconsistent in memory (although it
4370 * probably isn't), but whenever we close off and commit a journal transaction,
4371 * the contents of (the filesystem + the journal) must be consistent and
4372 * restartable. It's pretty simple, really: bottom up, right to left (although
4373 * left-to-right works OK too).
4374 *
4375 * Note that at recovery time, journal replay occurs *before* the restart of
4376 * truncate against the orphan inode list.
4377 *
4378 * The committed inode has the new, desired i_size (which is the same as
4379 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4380 * that this inode's truncate did not complete and it will again call
4381 * ext4_truncate() to have another go. So there will be instantiated blocks
4382 * to the right of the truncation point in a crashed ext4 filesystem. But
4383 * that's fine - as long as they are linked from the inode, the post-crash
4384 * ext4_truncate() run will find them and release them.
4385 */
4386 int ext4_truncate(struct inode *inode)
4387 {
4388 struct ext4_inode_info *ei = EXT4_I(inode);
4389 unsigned int credits;
4390 int err = 0;
4391 handle_t *handle;
4392 struct address_space *mapping = inode->i_mapping;
4393
4394 /*
4395 * There is a possibility that we're either freeing the inode
4396 * or it's a completely new inode. In those cases we might not
4397 * have i_mutex locked because it's not necessary.
4398 */
4399 if (!(inode->i_state & (I_NEW|I_FREEING)))
4400 WARN_ON(!inode_is_locked(inode));
4401 trace_ext4_truncate_enter(inode);
4402
4403 if (!ext4_can_truncate(inode))
4404 return 0;
4405
4406 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4407
4408 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4409 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4410
4411 if (ext4_has_inline_data(inode)) {
4412 int has_inline = 1;
4413
4414 err = ext4_inline_data_truncate(inode, &has_inline);
4415 if (err)
4416 return err;
4417 if (has_inline)
4418 return 0;
4419 }
4420
4421 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4422 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4423 if (ext4_inode_attach_jinode(inode) < 0)
4424 return 0;
4425 }
4426
4427 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4428 credits = ext4_writepage_trans_blocks(inode);
4429 else
4430 credits = ext4_blocks_for_truncate(inode);
4431
4432 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4433 if (IS_ERR(handle))
4434 return PTR_ERR(handle);
4435
4436 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4437 ext4_block_truncate_page(handle, mapping, inode->i_size);
4438
4439 /*
4440 * We add the inode to the orphan list, so that if this
4441 * truncate spans multiple transactions, and we crash, we will
4442 * resume the truncate when the filesystem recovers. It also
4443 * marks the inode dirty, to catch the new size.
4444 *
4445 * Implication: the file must always be in a sane, consistent
4446 * truncatable state while each transaction commits.
4447 */
4448 err = ext4_orphan_add(handle, inode);
4449 if (err)
4450 goto out_stop;
4451
4452 down_write(&EXT4_I(inode)->i_data_sem);
4453
4454 ext4_discard_preallocations(inode);
4455
4456 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4457 err = ext4_ext_truncate(handle, inode);
4458 else
4459 ext4_ind_truncate(handle, inode);
4460
4461 up_write(&ei->i_data_sem);
4462 if (err)
4463 goto out_stop;
4464
4465 if (IS_SYNC(inode))
4466 ext4_handle_sync(handle);
4467
4468 out_stop:
4469 /*
4470 * If this was a simple ftruncate() and the file will remain alive,
4471 * then we need to clear up the orphan record which we created above.
4472 * However, if this was a real unlink then we were called by
4473 * ext4_evict_inode(), and we allow that function to clean up the
4474 * orphan info for us.
4475 */
4476 if (inode->i_nlink)
4477 ext4_orphan_del(handle, inode);
4478
4479 inode->i_mtime = inode->i_ctime = current_time(inode);
4480 ext4_mark_inode_dirty(handle, inode);
4481 ext4_journal_stop(handle);
4482
4483 trace_ext4_truncate_exit(inode);
4484 return err;
4485 }
4486
4487 /*
4488 * ext4_get_inode_loc returns with an extra refcount against the inode's
4489 * underlying buffer_head on success. If 'in_mem' is true, we have all
4490 * data in memory that is needed to recreate the on-disk version of this
4491 * inode.
4492 */
4493 static int __ext4_get_inode_loc(struct inode *inode,
4494 struct ext4_iloc *iloc, int in_mem)
4495 {
4496 struct ext4_group_desc *gdp;
4497 struct buffer_head *bh;
4498 struct super_block *sb = inode->i_sb;
4499 ext4_fsblk_t block;
4500 int inodes_per_block, inode_offset;
4501
4502 iloc->bh = NULL;
4503 if (!ext4_valid_inum(sb, inode->i_ino))
4504 return -EFSCORRUPTED;
4505
4506 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4507 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4508 if (!gdp)
4509 return -EIO;
4510
4511 /*
4512 * Figure out the offset within the block group inode table
4513 */
4514 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4515 inode_offset = ((inode->i_ino - 1) %
4516 EXT4_INODES_PER_GROUP(sb));
4517 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4518 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4519
4520 bh = sb_getblk(sb, block);
4521 if (unlikely(!bh))
4522 return -ENOMEM;
4523 if (!buffer_uptodate(bh)) {
4524 lock_buffer(bh);
4525
4526 /*
4527 * If the buffer has the write error flag, we have failed
4528 * to write out another inode in the same block. In this
4529 * case, we don't have to read the block because we may
4530 * read the old inode data successfully.
4531 */
4532 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4533 set_buffer_uptodate(bh);
4534
4535 if (buffer_uptodate(bh)) {
4536 /* someone brought it uptodate while we waited */
4537 unlock_buffer(bh);
4538 goto has_buffer;
4539 }
4540
4541 /*
4542 * If we have all information of the inode in memory and this
4543 * is the only valid inode in the block, we need not read the
4544 * block.
4545 */
4546 if (in_mem) {
4547 struct buffer_head *bitmap_bh;
4548 int i, start;
4549
4550 start = inode_offset & ~(inodes_per_block - 1);
4551
4552 /* Is the inode bitmap in cache? */
4553 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4554 if (unlikely(!bitmap_bh))
4555 goto make_io;
4556
4557 /*
4558 * If the inode bitmap isn't in cache then the
4559 * optimisation may end up performing two reads instead
4560 * of one, so skip it.
4561 */
4562 if (!buffer_uptodate(bitmap_bh)) {
4563 brelse(bitmap_bh);
4564 goto make_io;
4565 }
4566 for (i = start; i < start + inodes_per_block; i++) {
4567 if (i == inode_offset)
4568 continue;
4569 if (ext4_test_bit(i, bitmap_bh->b_data))
4570 break;
4571 }
4572 brelse(bitmap_bh);
4573 if (i == start + inodes_per_block) {
4574 /* all other inodes are free, so skip I/O */
4575 memset(bh->b_data, 0, bh->b_size);
4576 set_buffer_uptodate(bh);
4577 unlock_buffer(bh);
4578 goto has_buffer;
4579 }
4580 }
4581
4582 make_io:
4583 /*
4584 * If we need to do any I/O, try to pre-readahead extra
4585 * blocks from the inode table.
4586 */
4587 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4588 ext4_fsblk_t b, end, table;
4589 unsigned num;
4590 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4591
4592 table = ext4_inode_table(sb, gdp);
4593 /* s_inode_readahead_blks is always a power of 2 */
4594 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4595 if (table > b)
4596 b = table;
4597 end = b + ra_blks;
4598 num = EXT4_INODES_PER_GROUP(sb);
4599 if (ext4_has_group_desc_csum(sb))
4600 num -= ext4_itable_unused_count(sb, gdp);
4601 table += num / inodes_per_block;
4602 if (end > table)
4603 end = table;
4604 while (b <= end)
4605 sb_breadahead(sb, b++);
4606 }
4607
4608 /*
4609 * There are other valid inodes in the buffer, this inode
4610 * has in-inode xattrs, or we don't have this inode in memory.
4611 * Read the block from disk.
4612 */
4613 trace_ext4_load_inode(inode);
4614 get_bh(bh);
4615 bh->b_end_io = end_buffer_read_sync;
4616 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4617 wait_on_buffer(bh);
4618 if (!buffer_uptodate(bh)) {
4619 EXT4_ERROR_INODE_BLOCK(inode, block,
4620 "unable to read itable block");
4621 brelse(bh);
4622 return -EIO;
4623 }
4624 }
4625 has_buffer:
4626 iloc->bh = bh;
4627 return 0;
4628 }
4629
4630 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4631 {
4632 /* We have all inode data except xattrs in memory here. */
4633 return __ext4_get_inode_loc(inode, iloc,
4634 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4635 }
4636
4637 static bool ext4_should_use_dax(struct inode *inode)
4638 {
4639 if (!test_opt(inode->i_sb, DAX))
4640 return false;
4641 if (!S_ISREG(inode->i_mode))
4642 return false;
4643 if (ext4_should_journal_data(inode))
4644 return false;
4645 if (ext4_has_inline_data(inode))
4646 return false;
4647 if (ext4_encrypted_inode(inode))
4648 return false;
4649 return true;
4650 }
4651
4652 void ext4_set_inode_flags(struct inode *inode)
4653 {
4654 unsigned int flags = EXT4_I(inode)->i_flags;
4655 unsigned int new_fl = 0;
4656
4657 if (flags & EXT4_SYNC_FL)
4658 new_fl |= S_SYNC;
4659 if (flags & EXT4_APPEND_FL)
4660 new_fl |= S_APPEND;
4661 if (flags & EXT4_IMMUTABLE_FL)
4662 new_fl |= S_IMMUTABLE;
4663 if (flags & EXT4_NOATIME_FL)
4664 new_fl |= S_NOATIME;
4665 if (flags & EXT4_DIRSYNC_FL)
4666 new_fl |= S_DIRSYNC;
4667 if (ext4_should_use_dax(inode))
4668 new_fl |= S_DAX;
4669 if (flags & EXT4_ENCRYPT_FL)
4670 new_fl |= S_ENCRYPTED;
4671 inode_set_flags(inode, new_fl,
4672 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4673 S_ENCRYPTED);
4674 }
4675
4676 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4677 struct ext4_inode_info *ei)
4678 {
4679 blkcnt_t i_blocks ;
4680 struct inode *inode = &(ei->vfs_inode);
4681 struct super_block *sb = inode->i_sb;
4682
4683 if (ext4_has_feature_huge_file(sb)) {
4684 /* we are using combined 48 bit field */
4685 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4686 le32_to_cpu(raw_inode->i_blocks_lo);
4687 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4688 /* i_blocks represent file system block size */
4689 return i_blocks << (inode->i_blkbits - 9);
4690 } else {
4691 return i_blocks;
4692 }
4693 } else {
4694 return le32_to_cpu(raw_inode->i_blocks_lo);
4695 }
4696 }
4697
4698 static inline void ext4_iget_extra_inode(struct inode *inode,
4699 struct ext4_inode *raw_inode,
4700 struct ext4_inode_info *ei)
4701 {
4702 __le32 *magic = (void *)raw_inode +
4703 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4704 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4705 EXT4_INODE_SIZE(inode->i_sb) &&
4706 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4707 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4708 ext4_find_inline_data_nolock(inode);
4709 } else
4710 EXT4_I(inode)->i_inline_off = 0;
4711 }
4712
4713 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4714 {
4715 if (!ext4_has_feature_project(inode->i_sb))
4716 return -EOPNOTSUPP;
4717 *projid = EXT4_I(inode)->i_projid;
4718 return 0;
4719 }
4720
4721 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4722 {
4723 struct ext4_iloc iloc;
4724 struct ext4_inode *raw_inode;
4725 struct ext4_inode_info *ei;
4726 struct inode *inode;
4727 journal_t *journal = EXT4_SB(sb)->s_journal;
4728 long ret;
4729 loff_t size;
4730 int block;
4731 uid_t i_uid;
4732 gid_t i_gid;
4733 projid_t i_projid;
4734
4735 inode = iget_locked(sb, ino);
4736 if (!inode)
4737 return ERR_PTR(-ENOMEM);
4738 if (!(inode->i_state & I_NEW))
4739 return inode;
4740
4741 ei = EXT4_I(inode);
4742 iloc.bh = NULL;
4743
4744 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4745 if (ret < 0)
4746 goto bad_inode;
4747 raw_inode = ext4_raw_inode(&iloc);
4748
4749 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4750 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4751 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4752 EXT4_INODE_SIZE(inode->i_sb) ||
4753 (ei->i_extra_isize & 3)) {
4754 EXT4_ERROR_INODE(inode,
4755 "bad extra_isize %u (inode size %u)",
4756 ei->i_extra_isize,
4757 EXT4_INODE_SIZE(inode->i_sb));
4758 ret = -EFSCORRUPTED;
4759 goto bad_inode;
4760 }
4761 } else
4762 ei->i_extra_isize = 0;
4763
4764 /* Precompute checksum seed for inode metadata */
4765 if (ext4_has_metadata_csum(sb)) {
4766 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4767 __u32 csum;
4768 __le32 inum = cpu_to_le32(inode->i_ino);
4769 __le32 gen = raw_inode->i_generation;
4770 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4771 sizeof(inum));
4772 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4773 sizeof(gen));
4774 }
4775
4776 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4777 EXT4_ERROR_INODE(inode, "checksum invalid");
4778 ret = -EFSBADCRC;
4779 goto bad_inode;
4780 }
4781
4782 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4783 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4784 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4785 if (ext4_has_feature_project(sb) &&
4786 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4787 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4788 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4789 else
4790 i_projid = EXT4_DEF_PROJID;
4791
4792 if (!(test_opt(inode->i_sb, NO_UID32))) {
4793 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4794 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4795 }
4796 i_uid_write(inode, i_uid);
4797 i_gid_write(inode, i_gid);
4798 ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4799 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4800
4801 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4802 ei->i_inline_off = 0;
4803 ei->i_dir_start_lookup = 0;
4804 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4805 /* We now have enough fields to check if the inode was active or not.
4806 * This is needed because nfsd might try to access dead inodes
4807 * the test is that same one that e2fsck uses
4808 * NeilBrown 1999oct15
4809 */
4810 if (inode->i_nlink == 0) {
4811 if ((inode->i_mode == 0 ||
4812 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4813 ino != EXT4_BOOT_LOADER_INO) {
4814 /* this inode is deleted */
4815 ret = -ESTALE;
4816 goto bad_inode;
4817 }
4818 /* The only unlinked inodes we let through here have
4819 * valid i_mode and are being read by the orphan
4820 * recovery code: that's fine, we're about to complete
4821 * the process of deleting those.
4822 * OR it is the EXT4_BOOT_LOADER_INO which is
4823 * not initialized on a new filesystem. */
4824 }
4825 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4826 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4827 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4828 if (ext4_has_feature_64bit(sb))
4829 ei->i_file_acl |=
4830 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4831 inode->i_size = ext4_isize(sb, raw_inode);
4832 if ((size = i_size_read(inode)) < 0) {
4833 EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size);
4834 ret = -EFSCORRUPTED;
4835 goto bad_inode;
4836 }
4837 ei->i_disksize = inode->i_size;
4838 #ifdef CONFIG_QUOTA
4839 ei->i_reserved_quota = 0;
4840 #endif
4841 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4842 ei->i_block_group = iloc.block_group;
4843 ei->i_last_alloc_group = ~0;
4844 /*
4845 * NOTE! The in-memory inode i_data array is in little-endian order
4846 * even on big-endian machines: we do NOT byteswap the block numbers!
4847 */
4848 for (block = 0; block < EXT4_N_BLOCKS; block++)
4849 ei->i_data[block] = raw_inode->i_block[block];
4850 INIT_LIST_HEAD(&ei->i_orphan);
4851
4852 /*
4853 * Set transaction id's of transactions that have to be committed
4854 * to finish f[data]sync. We set them to currently running transaction
4855 * as we cannot be sure that the inode or some of its metadata isn't
4856 * part of the transaction - the inode could have been reclaimed and
4857 * now it is reread from disk.
4858 */
4859 if (journal) {
4860 transaction_t *transaction;
4861 tid_t tid;
4862
4863 read_lock(&journal->j_state_lock);
4864 if (journal->j_running_transaction)
4865 transaction = journal->j_running_transaction;
4866 else
4867 transaction = journal->j_committing_transaction;
4868 if (transaction)
4869 tid = transaction->t_tid;
4870 else
4871 tid = journal->j_commit_sequence;
4872 read_unlock(&journal->j_state_lock);
4873 ei->i_sync_tid = tid;
4874 ei->i_datasync_tid = tid;
4875 }
4876
4877 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4878 if (ei->i_extra_isize == 0) {
4879 /* The extra space is currently unused. Use it. */
4880 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4881 ei->i_extra_isize = sizeof(struct ext4_inode) -
4882 EXT4_GOOD_OLD_INODE_SIZE;
4883 } else {
4884 ext4_iget_extra_inode(inode, raw_inode, ei);
4885 }
4886 }
4887
4888 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4889 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4890 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4891 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4892
4893 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4894 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4895
4896 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4897 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4898 ivers |=
4899 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4900 }
4901 inode_set_iversion_queried(inode, ivers);
4902 }
4903
4904 ret = 0;
4905 if (ei->i_file_acl &&
4906 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4907 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4908 ei->i_file_acl);
4909 ret = -EFSCORRUPTED;
4910 goto bad_inode;
4911 } else if (!ext4_has_inline_data(inode)) {
4912 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4913 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4914 (S_ISLNK(inode->i_mode) &&
4915 !ext4_inode_is_fast_symlink(inode))))
4916 /* Validate extent which is part of inode */
4917 ret = ext4_ext_check_inode(inode);
4918 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4919 (S_ISLNK(inode->i_mode) &&
4920 !ext4_inode_is_fast_symlink(inode))) {
4921 /* Validate block references which are part of inode */
4922 ret = ext4_ind_check_inode(inode);
4923 }
4924 }
4925 if (ret)
4926 goto bad_inode;
4927
4928 if (S_ISREG(inode->i_mode)) {
4929 inode->i_op = &ext4_file_inode_operations;
4930 inode->i_fop = &ext4_file_operations;
4931 ext4_set_aops(inode);
4932 } else if (S_ISDIR(inode->i_mode)) {
4933 inode->i_op = &ext4_dir_inode_operations;
4934 inode->i_fop = &ext4_dir_operations;
4935 } else if (S_ISLNK(inode->i_mode)) {
4936 if (ext4_encrypted_inode(inode)) {
4937 inode->i_op = &ext4_encrypted_symlink_inode_operations;
4938 ext4_set_aops(inode);
4939 } else if (ext4_inode_is_fast_symlink(inode)) {
4940 inode->i_link = (char *)ei->i_data;
4941 inode->i_op = &ext4_fast_symlink_inode_operations;
4942 nd_terminate_link(ei->i_data, inode->i_size,
4943 sizeof(ei->i_data) - 1);
4944 } else {
4945 inode->i_op = &ext4_symlink_inode_operations;
4946 ext4_set_aops(inode);
4947 }
4948 inode_nohighmem(inode);
4949 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4950 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4951 inode->i_op = &ext4_special_inode_operations;
4952 if (raw_inode->i_block[0])
4953 init_special_inode(inode, inode->i_mode,
4954 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4955 else
4956 init_special_inode(inode, inode->i_mode,
4957 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4958 } else if (ino == EXT4_BOOT_LOADER_INO) {
4959 make_bad_inode(inode);
4960 } else {
4961 ret = -EFSCORRUPTED;
4962 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4963 goto bad_inode;
4964 }
4965 brelse(iloc.bh);
4966 ext4_set_inode_flags(inode);
4967
4968 unlock_new_inode(inode);
4969 return inode;
4970
4971 bad_inode:
4972 brelse(iloc.bh);
4973 iget_failed(inode);
4974 return ERR_PTR(ret);
4975 }
4976
4977 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4978 {
4979 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4980 return ERR_PTR(-EFSCORRUPTED);
4981 return ext4_iget(sb, ino);
4982 }
4983
4984 static int ext4_inode_blocks_set(handle_t *handle,
4985 struct ext4_inode *raw_inode,
4986 struct ext4_inode_info *ei)
4987 {
4988 struct inode *inode = &(ei->vfs_inode);
4989 u64 i_blocks = inode->i_blocks;
4990 struct super_block *sb = inode->i_sb;
4991
4992 if (i_blocks <= ~0U) {
4993 /*
4994 * i_blocks can be represented in a 32 bit variable
4995 * as multiple of 512 bytes
4996 */
4997 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4998 raw_inode->i_blocks_high = 0;
4999 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5000 return 0;
5001 }
5002 if (!ext4_has_feature_huge_file(sb))
5003 return -EFBIG;
5004
5005 if (i_blocks <= 0xffffffffffffULL) {
5006 /*
5007 * i_blocks can be represented in a 48 bit variable
5008 * as multiple of 512 bytes
5009 */
5010 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5011 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5012 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5013 } else {
5014 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5015 /* i_block is stored in file system block size */
5016 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5017 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5018 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5019 }
5020 return 0;
5021 }
5022
5023 struct other_inode {
5024 unsigned long orig_ino;
5025 struct ext4_inode *raw_inode;
5026 };
5027
5028 static int other_inode_match(struct inode * inode, unsigned long ino,
5029 void *data)
5030 {
5031 struct other_inode *oi = (struct other_inode *) data;
5032
5033 if ((inode->i_ino != ino) ||
5034 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5035 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
5036 ((inode->i_state & I_DIRTY_TIME) == 0))
5037 return 0;
5038 spin_lock(&inode->i_lock);
5039 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5040 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
5041 (inode->i_state & I_DIRTY_TIME)) {
5042 struct ext4_inode_info *ei = EXT4_I(inode);
5043
5044 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
5045 spin_unlock(&inode->i_lock);
5046
5047 spin_lock(&ei->i_raw_lock);
5048 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
5049 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
5050 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
5051 ext4_inode_csum_set(inode, oi->raw_inode, ei);
5052 spin_unlock(&ei->i_raw_lock);
5053 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
5054 return -1;
5055 }
5056 spin_unlock(&inode->i_lock);
5057 return -1;
5058 }
5059
5060 /*
5061 * Opportunistically update the other time fields for other inodes in
5062 * the same inode table block.
5063 */
5064 static void ext4_update_other_inodes_time(struct super_block *sb,
5065 unsigned long orig_ino, char *buf)
5066 {
5067 struct other_inode oi;
5068 unsigned long ino;
5069 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5070 int inode_size = EXT4_INODE_SIZE(sb);
5071
5072 oi.orig_ino = orig_ino;
5073 /*
5074 * Calculate the first inode in the inode table block. Inode
5075 * numbers are one-based. That is, the first inode in a block
5076 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5077 */
5078 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5079 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5080 if (ino == orig_ino)
5081 continue;
5082 oi.raw_inode = (struct ext4_inode *) buf;
5083 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
5084 }
5085 }
5086
5087 /*
5088 * Post the struct inode info into an on-disk inode location in the
5089 * buffer-cache. This gobbles the caller's reference to the
5090 * buffer_head in the inode location struct.
5091 *
5092 * The caller must have write access to iloc->bh.
5093 */
5094 static int ext4_do_update_inode(handle_t *handle,
5095 struct inode *inode,
5096 struct ext4_iloc *iloc)
5097 {
5098 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5099 struct ext4_inode_info *ei = EXT4_I(inode);
5100 struct buffer_head *bh = iloc->bh;
5101 struct super_block *sb = inode->i_sb;
5102 int err = 0, rc, block;
5103 int need_datasync = 0, set_large_file = 0;
5104 uid_t i_uid;
5105 gid_t i_gid;
5106 projid_t i_projid;
5107
5108 spin_lock(&ei->i_raw_lock);
5109
5110 /* For fields not tracked in the in-memory inode,
5111 * initialise them to zero for new inodes. */
5112 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5113 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5114
5115 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5116 i_uid = i_uid_read(inode);
5117 i_gid = i_gid_read(inode);
5118 i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5119 if (!(test_opt(inode->i_sb, NO_UID32))) {
5120 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5121 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5122 /*
5123 * Fix up interoperability with old kernels. Otherwise, old inodes get
5124 * re-used with the upper 16 bits of the uid/gid intact
5125 */
5126 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5127 raw_inode->i_uid_high = 0;
5128 raw_inode->i_gid_high = 0;
5129 } else {
5130 raw_inode->i_uid_high =
5131 cpu_to_le16(high_16_bits(i_uid));
5132 raw_inode->i_gid_high =
5133 cpu_to_le16(high_16_bits(i_gid));
5134 }
5135 } else {
5136 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5137 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5138 raw_inode->i_uid_high = 0;
5139 raw_inode->i_gid_high = 0;
5140 }
5141 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5142
5143 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5144 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5145 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5146 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5147
5148 err = ext4_inode_blocks_set(handle, raw_inode, ei);
5149 if (err) {
5150 spin_unlock(&ei->i_raw_lock);
5151 goto out_brelse;
5152 }
5153 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5154 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5155 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5156 raw_inode->i_file_acl_high =
5157 cpu_to_le16(ei->i_file_acl >> 32);
5158 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5159 if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) {
5160 ext4_isize_set(raw_inode, ei->i_disksize);
5161 need_datasync = 1;
5162 }
5163 if (ei->i_disksize > 0x7fffffffULL) {
5164 if (!ext4_has_feature_large_file(sb) ||
5165 EXT4_SB(sb)->s_es->s_rev_level ==
5166 cpu_to_le32(EXT4_GOOD_OLD_REV))
5167 set_large_file = 1;
5168 }
5169 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5170 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5171 if (old_valid_dev(inode->i_rdev)) {
5172 raw_inode->i_block[0] =
5173 cpu_to_le32(old_encode_dev(inode->i_rdev));
5174 raw_inode->i_block[1] = 0;
5175 } else {
5176 raw_inode->i_block[0] = 0;
5177 raw_inode->i_block[1] =
5178 cpu_to_le32(new_encode_dev(inode->i_rdev));
5179 raw_inode->i_block[2] = 0;
5180 }
5181 } else if (!ext4_has_inline_data(inode)) {
5182 for (block = 0; block < EXT4_N_BLOCKS; block++)
5183 raw_inode->i_block[block] = ei->i_data[block];
5184 }
5185
5186 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5187 u64 ivers = inode_peek_iversion(inode);
5188
5189 raw_inode->i_disk_version = cpu_to_le32(ivers);
5190 if (ei->i_extra_isize) {
5191 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5192 raw_inode->i_version_hi =
5193 cpu_to_le32(ivers >> 32);
5194 raw_inode->i_extra_isize =
5195 cpu_to_le16(ei->i_extra_isize);
5196 }
5197 }
5198
5199 BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5200 i_projid != EXT4_DEF_PROJID);
5201
5202 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5203 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5204 raw_inode->i_projid = cpu_to_le32(i_projid);
5205
5206 ext4_inode_csum_set(inode, raw_inode, ei);
5207 spin_unlock(&ei->i_raw_lock);
5208 if (inode->i_sb->s_flags & SB_LAZYTIME)
5209 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5210 bh->b_data);
5211
5212 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5213 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5214 if (!err)
5215 err = rc;
5216 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5217 if (set_large_file) {
5218 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5219 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5220 if (err)
5221 goto out_brelse;
5222 ext4_update_dynamic_rev(sb);
5223 ext4_set_feature_large_file(sb);
5224 ext4_handle_sync(handle);
5225 err = ext4_handle_dirty_super(handle, sb);
5226 }
5227 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5228 out_brelse:
5229 brelse(bh);
5230 ext4_std_error(inode->i_sb, err);
5231 return err;
5232 }
5233
5234 /*
5235 * ext4_write_inode()
5236 *
5237 * We are called from a few places:
5238 *
5239 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5240 * Here, there will be no transaction running. We wait for any running
5241 * transaction to commit.
5242 *
5243 * - Within flush work (sys_sync(), kupdate and such).
5244 * We wait on commit, if told to.
5245 *
5246 * - Within iput_final() -> write_inode_now()
5247 * We wait on commit, if told to.
5248 *
5249 * In all cases it is actually safe for us to return without doing anything,
5250 * because the inode has been copied into a raw inode buffer in
5251 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
5252 * writeback.
5253 *
5254 * Note that we are absolutely dependent upon all inode dirtiers doing the
5255 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5256 * which we are interested.
5257 *
5258 * It would be a bug for them to not do this. The code:
5259 *
5260 * mark_inode_dirty(inode)
5261 * stuff();
5262 * inode->i_size = expr;
5263 *
5264 * is in error because write_inode() could occur while `stuff()' is running,
5265 * and the new i_size will be lost. Plus the inode will no longer be on the
5266 * superblock's dirty inode list.
5267 */
5268 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5269 {
5270 int err;
5271
5272 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5273 return 0;
5274
5275 if (EXT4_SB(inode->i_sb)->s_journal) {
5276 if (ext4_journal_current_handle()) {
5277 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5278 dump_stack();
5279 return -EIO;
5280 }
5281
5282 /*
5283 * No need to force transaction in WB_SYNC_NONE mode. Also
5284 * ext4_sync_fs() will force the commit after everything is
5285 * written.
5286 */
5287 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5288 return 0;
5289
5290 err = ext4_force_commit(inode->i_sb);
5291 } else {
5292 struct ext4_iloc iloc;
5293
5294 err = __ext4_get_inode_loc(inode, &iloc, 0);
5295 if (err)
5296 return err;
5297 /*
5298 * sync(2) will flush the whole buffer cache. No need to do
5299 * it here separately for each inode.
5300 */
5301 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5302 sync_dirty_buffer(iloc.bh);
5303 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5304 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5305 "IO error syncing inode");
5306 err = -EIO;
5307 }
5308 brelse(iloc.bh);
5309 }
5310 return err;
5311 }
5312
5313 /*
5314 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5315 * buffers that are attached to a page stradding i_size and are undergoing
5316 * commit. In that case we have to wait for commit to finish and try again.
5317 */
5318 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5319 {
5320 struct page *page;
5321 unsigned offset;
5322 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5323 tid_t commit_tid = 0;
5324 int ret;
5325
5326 offset = inode->i_size & (PAGE_SIZE - 1);
5327 /*
5328 * All buffers in the last page remain valid? Then there's nothing to
5329 * do. We do the check mainly to optimize the common PAGE_SIZE ==
5330 * blocksize case
5331 */
5332 if (offset > PAGE_SIZE - i_blocksize(inode))
5333 return;
5334 while (1) {
5335 page = find_lock_page(inode->i_mapping,
5336 inode->i_size >> PAGE_SHIFT);
5337 if (!page)
5338 return;
5339 ret = __ext4_journalled_invalidatepage(page, offset,
5340 PAGE_SIZE - offset);
5341 unlock_page(page);
5342 put_page(page);
5343 if (ret != -EBUSY)
5344 return;
5345 commit_tid = 0;
5346 read_lock(&journal->j_state_lock);
5347 if (journal->j_committing_transaction)
5348 commit_tid = journal->j_committing_transaction->t_tid;
5349 read_unlock(&journal->j_state_lock);
5350 if (commit_tid)
5351 jbd2_log_wait_commit(journal, commit_tid);
5352 }
5353 }
5354
5355 /*
5356 * ext4_setattr()
5357 *
5358 * Called from notify_change.
5359 *
5360 * We want to trap VFS attempts to truncate the file as soon as
5361 * possible. In particular, we want to make sure that when the VFS
5362 * shrinks i_size, we put the inode on the orphan list and modify
5363 * i_disksize immediately, so that during the subsequent flushing of
5364 * dirty pages and freeing of disk blocks, we can guarantee that any
5365 * commit will leave the blocks being flushed in an unused state on
5366 * disk. (On recovery, the inode will get truncated and the blocks will
5367 * be freed, so we have a strong guarantee that no future commit will
5368 * leave these blocks visible to the user.)
5369 *
5370 * Another thing we have to assure is that if we are in ordered mode
5371 * and inode is still attached to the committing transaction, we must
5372 * we start writeout of all the dirty pages which are being truncated.
5373 * This way we are sure that all the data written in the previous
5374 * transaction are already on disk (truncate waits for pages under
5375 * writeback).
5376 *
5377 * Called with inode->i_mutex down.
5378 */
5379 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5380 {
5381 struct inode *inode = d_inode(dentry);
5382 int error, rc = 0;
5383 int orphan = 0;
5384 const unsigned int ia_valid = attr->ia_valid;
5385
5386 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5387 return -EIO;
5388
5389 error = setattr_prepare(dentry, attr);
5390 if (error)
5391 return error;
5392
5393 error = fscrypt_prepare_setattr(dentry, attr);
5394 if (error)
5395 return error;
5396
5397 if (is_quota_modification(inode, attr)) {
5398 error = dquot_initialize(inode);
5399 if (error)
5400 return error;
5401 }
5402 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5403 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5404 handle_t *handle;
5405
5406 /* (user+group)*(old+new) structure, inode write (sb,
5407 * inode block, ? - but truncate inode update has it) */
5408 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5409 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5410 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5411 if (IS_ERR(handle)) {
5412 error = PTR_ERR(handle);
5413 goto err_out;
5414 }
5415
5416 /* dquot_transfer() calls back ext4_get_inode_usage() which
5417 * counts xattr inode references.
5418 */
5419 down_read(&EXT4_I(inode)->xattr_sem);
5420 error = dquot_transfer(inode, attr);
5421 up_read(&EXT4_I(inode)->xattr_sem);
5422
5423 if (error) {
5424 ext4_journal_stop(handle);
5425 return error;
5426 }
5427 /* Update corresponding info in inode so that everything is in
5428 * one transaction */
5429 if (attr->ia_valid & ATTR_UID)
5430 inode->i_uid = attr->ia_uid;
5431 if (attr->ia_valid & ATTR_GID)
5432 inode->i_gid = attr->ia_gid;
5433 error = ext4_mark_inode_dirty(handle, inode);
5434 ext4_journal_stop(handle);
5435 }
5436
5437 if (attr->ia_valid & ATTR_SIZE) {
5438 handle_t *handle;
5439 loff_t oldsize = inode->i_size;
5440 int shrink = (attr->ia_size <= inode->i_size);
5441
5442 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5443 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5444
5445 if (attr->ia_size > sbi->s_bitmap_maxbytes)
5446 return -EFBIG;
5447 }
5448 if (!S_ISREG(inode->i_mode))
5449 return -EINVAL;
5450
5451 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5452 inode_inc_iversion(inode);
5453
5454 if (ext4_should_order_data(inode) &&
5455 (attr->ia_size < inode->i_size)) {
5456 error = ext4_begin_ordered_truncate(inode,
5457 attr->ia_size);
5458 if (error)
5459 goto err_out;
5460 }
5461 if (attr->ia_size != inode->i_size) {
5462 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5463 if (IS_ERR(handle)) {
5464 error = PTR_ERR(handle);
5465 goto err_out;
5466 }
5467 if (ext4_handle_valid(handle) && shrink) {
5468 error = ext4_orphan_add(handle, inode);
5469 orphan = 1;
5470 }
5471 /*
5472 * Update c/mtime on truncate up, ext4_truncate() will
5473 * update c/mtime in shrink case below
5474 */
5475 if (!shrink) {
5476 inode->i_mtime = current_time(inode);
5477 inode->i_ctime = inode->i_mtime;
5478 }
5479 down_write(&EXT4_I(inode)->i_data_sem);
5480 EXT4_I(inode)->i_disksize = attr->ia_size;
5481 rc = ext4_mark_inode_dirty(handle, inode);
5482 if (!error)
5483 error = rc;
5484 /*
5485 * We have to update i_size under i_data_sem together
5486 * with i_disksize to avoid races with writeback code
5487 * running ext4_wb_update_i_disksize().
5488 */
5489 if (!error)
5490 i_size_write(inode, attr->ia_size);
5491 up_write(&EXT4_I(inode)->i_data_sem);
5492 ext4_journal_stop(handle);
5493 if (error) {
5494 if (orphan)
5495 ext4_orphan_del(NULL, inode);
5496 goto err_out;
5497 }
5498 }
5499 if (!shrink)
5500 pagecache_isize_extended(inode, oldsize, inode->i_size);
5501
5502 /*
5503 * Blocks are going to be removed from the inode. Wait
5504 * for dio in flight. Temporarily disable
5505 * dioread_nolock to prevent livelock.
5506 */
5507 if (orphan) {
5508 if (!ext4_should_journal_data(inode)) {
5509 ext4_inode_block_unlocked_dio(inode);
5510 inode_dio_wait(inode);
5511 ext4_inode_resume_unlocked_dio(inode);
5512 } else
5513 ext4_wait_for_tail_page_commit(inode);
5514 }
5515 down_write(&EXT4_I(inode)->i_mmap_sem);
5516 /*
5517 * Truncate pagecache after we've waited for commit
5518 * in data=journal mode to make pages freeable.
5519 */
5520 truncate_pagecache(inode, inode->i_size);
5521 if (shrink) {
5522 rc = ext4_truncate(inode);
5523 if (rc)
5524 error = rc;
5525 }
5526 up_write(&EXT4_I(inode)->i_mmap_sem);
5527 }
5528
5529 if (!error) {
5530 setattr_copy(inode, attr);
5531 mark_inode_dirty(inode);
5532 }
5533
5534 /*
5535 * If the call to ext4_truncate failed to get a transaction handle at
5536 * all, we need to clean up the in-core orphan list manually.
5537 */
5538 if (orphan && inode->i_nlink)
5539 ext4_orphan_del(NULL, inode);
5540
5541 if (!error && (ia_valid & ATTR_MODE))
5542 rc = posix_acl_chmod(inode, inode->i_mode);
5543
5544 err_out:
5545 ext4_std_error(inode->i_sb, error);
5546 if (!error)
5547 error = rc;
5548 return error;
5549 }
5550
5551 int ext4_getattr(const struct path *path, struct kstat *stat,
5552 u32 request_mask, unsigned int query_flags)
5553 {
5554 struct inode *inode = d_inode(path->dentry);
5555 struct ext4_inode *raw_inode;
5556 struct ext4_inode_info *ei = EXT4_I(inode);
5557 unsigned int flags;
5558
5559 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5560 stat->result_mask |= STATX_BTIME;
5561 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5562 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5563 }
5564
5565 flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5566 if (flags & EXT4_APPEND_FL)
5567 stat->attributes |= STATX_ATTR_APPEND;
5568 if (flags & EXT4_COMPR_FL)
5569 stat->attributes |= STATX_ATTR_COMPRESSED;
5570 if (flags & EXT4_ENCRYPT_FL)
5571 stat->attributes |= STATX_ATTR_ENCRYPTED;
5572 if (flags & EXT4_IMMUTABLE_FL)
5573 stat->attributes |= STATX_ATTR_IMMUTABLE;
5574 if (flags & EXT4_NODUMP_FL)
5575 stat->attributes |= STATX_ATTR_NODUMP;
5576
5577 stat->attributes_mask |= (STATX_ATTR_APPEND |
5578 STATX_ATTR_COMPRESSED |
5579 STATX_ATTR_ENCRYPTED |
5580 STATX_ATTR_IMMUTABLE |
5581 STATX_ATTR_NODUMP);
5582
5583 generic_fillattr(inode, stat);
5584 return 0;
5585 }
5586
5587 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5588 u32 request_mask, unsigned int query_flags)
5589 {
5590 struct inode *inode = d_inode(path->dentry);
5591 u64 delalloc_blocks;
5592
5593 ext4_getattr(path, stat, request_mask, query_flags);
5594
5595 /*
5596 * If there is inline data in the inode, the inode will normally not
5597 * have data blocks allocated (it may have an external xattr block).
5598 * Report at least one sector for such files, so tools like tar, rsync,
5599 * others don't incorrectly think the file is completely sparse.
5600 */
5601 if (unlikely(ext4_has_inline_data(inode)))
5602 stat->blocks += (stat->size + 511) >> 9;
5603
5604 /*
5605 * We can't update i_blocks if the block allocation is delayed
5606 * otherwise in the case of system crash before the real block
5607 * allocation is done, we will have i_blocks inconsistent with
5608 * on-disk file blocks.
5609 * We always keep i_blocks updated together with real
5610 * allocation. But to not confuse with user, stat
5611 * will return the blocks that include the delayed allocation
5612 * blocks for this file.
5613 */
5614 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5615 EXT4_I(inode)->i_reserved_data_blocks);
5616 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5617 return 0;
5618 }
5619
5620 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5621 int pextents)
5622 {
5623 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5624 return ext4_ind_trans_blocks(inode, lblocks);
5625 return ext4_ext_index_trans_blocks(inode, pextents);
5626 }
5627
5628 /*
5629 * Account for index blocks, block groups bitmaps and block group
5630 * descriptor blocks if modify datablocks and index blocks
5631 * worse case, the indexs blocks spread over different block groups
5632 *
5633 * If datablocks are discontiguous, they are possible to spread over
5634 * different block groups too. If they are contiguous, with flexbg,
5635 * they could still across block group boundary.
5636 *
5637 * Also account for superblock, inode, quota and xattr blocks
5638 */
5639 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5640 int pextents)
5641 {
5642 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5643 int gdpblocks;
5644 int idxblocks;
5645 int ret = 0;
5646
5647 /*
5648 * How many index blocks need to touch to map @lblocks logical blocks
5649 * to @pextents physical extents?
5650 */
5651 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5652
5653 ret = idxblocks;
5654
5655 /*
5656 * Now let's see how many group bitmaps and group descriptors need
5657 * to account
5658 */
5659 groups = idxblocks + pextents;
5660 gdpblocks = groups;
5661 if (groups > ngroups)
5662 groups = ngroups;
5663 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5664 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5665
5666 /* bitmaps and block group descriptor blocks */
5667 ret += groups + gdpblocks;
5668
5669 /* Blocks for super block, inode, quota and xattr blocks */
5670 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5671
5672 return ret;
5673 }
5674
5675 /*
5676 * Calculate the total number of credits to reserve to fit
5677 * the modification of a single pages into a single transaction,
5678 * which may include multiple chunks of block allocations.
5679 *
5680 * This could be called via ext4_write_begin()
5681 *
5682 * We need to consider the worse case, when
5683 * one new block per extent.
5684 */
5685 int ext4_writepage_trans_blocks(struct inode *inode)
5686 {
5687 int bpp = ext4_journal_blocks_per_page(inode);
5688 int ret;
5689
5690 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5691
5692 /* Account for data blocks for journalled mode */
5693 if (ext4_should_journal_data(inode))
5694 ret += bpp;
5695 return ret;
5696 }
5697
5698 /*
5699 * Calculate the journal credits for a chunk of data modification.
5700 *
5701 * This is called from DIO, fallocate or whoever calling
5702 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5703 *
5704 * journal buffers for data blocks are not included here, as DIO
5705 * and fallocate do no need to journal data buffers.
5706 */
5707 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5708 {
5709 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5710 }
5711
5712 /*
5713 * The caller must have previously called ext4_reserve_inode_write().
5714 * Give this, we know that the caller already has write access to iloc->bh.
5715 */
5716 int ext4_mark_iloc_dirty(handle_t *handle,
5717 struct inode *inode, struct ext4_iloc *iloc)
5718 {
5719 int err = 0;
5720
5721 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5722 return -EIO;
5723
5724 if (IS_I_VERSION(inode))
5725 inode_inc_iversion(inode);
5726
5727 /* the do_update_inode consumes one bh->b_count */
5728 get_bh(iloc->bh);
5729
5730 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5731 err = ext4_do_update_inode(handle, inode, iloc);
5732 put_bh(iloc->bh);
5733 return err;
5734 }
5735
5736 /*
5737 * On success, We end up with an outstanding reference count against
5738 * iloc->bh. This _must_ be cleaned up later.
5739 */
5740
5741 int
5742 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5743 struct ext4_iloc *iloc)
5744 {
5745 int err;
5746
5747 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5748 return -EIO;
5749
5750 err = ext4_get_inode_loc(inode, iloc);
5751 if (!err) {
5752 BUFFER_TRACE(iloc->bh, "get_write_access");
5753 err = ext4_journal_get_write_access(handle, iloc->bh);
5754 if (err) {
5755 brelse(iloc->bh);
5756 iloc->bh = NULL;
5757 }
5758 }
5759 ext4_std_error(inode->i_sb, err);
5760 return err;
5761 }
5762
5763 static int __ext4_expand_extra_isize(struct inode *inode,
5764 unsigned int new_extra_isize,
5765 struct ext4_iloc *iloc,
5766 handle_t *handle, int *no_expand)
5767 {
5768 struct ext4_inode *raw_inode;
5769 struct ext4_xattr_ibody_header *header;
5770 int error;
5771
5772 raw_inode = ext4_raw_inode(iloc);
5773
5774 header = IHDR(inode, raw_inode);
5775
5776 /* No extended attributes present */
5777 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5778 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5779 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5780 EXT4_I(inode)->i_extra_isize, 0,
5781 new_extra_isize - EXT4_I(inode)->i_extra_isize);
5782 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5783 return 0;
5784 }
5785
5786 /* try to expand with EAs present */
5787 error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5788 raw_inode, handle);
5789 if (error) {
5790 /*
5791 * Inode size expansion failed; don't try again
5792 */
5793 *no_expand = 1;
5794 }
5795
5796 return error;
5797 }
5798
5799 /*
5800 * Expand an inode by new_extra_isize bytes.
5801 * Returns 0 on success or negative error number on failure.
5802 */
5803 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5804 unsigned int new_extra_isize,
5805 struct ext4_iloc iloc,
5806 handle_t *handle)
5807 {
5808 int no_expand;
5809 int error;
5810
5811 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5812 return -EOVERFLOW;
5813
5814 /*
5815 * In nojournal mode, we can immediately attempt to expand
5816 * the inode. When journaled, we first need to obtain extra
5817 * buffer credits since we may write into the EA block
5818 * with this same handle. If journal_extend fails, then it will
5819 * only result in a minor loss of functionality for that inode.
5820 * If this is felt to be critical, then e2fsck should be run to
5821 * force a large enough s_min_extra_isize.
5822 */
5823 if (ext4_handle_valid(handle) &&
5824 jbd2_journal_extend(handle,
5825 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) != 0)
5826 return -ENOSPC;
5827
5828 if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5829 return -EBUSY;
5830
5831 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5832 handle, &no_expand);
5833 ext4_write_unlock_xattr(inode, &no_expand);
5834
5835 return error;
5836 }
5837
5838 int ext4_expand_extra_isize(struct inode *inode,
5839 unsigned int new_extra_isize,
5840 struct ext4_iloc *iloc)
5841 {
5842 handle_t *handle;
5843 int no_expand;
5844 int error, rc;
5845
5846 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5847 brelse(iloc->bh);
5848 return -EOVERFLOW;
5849 }
5850
5851 handle = ext4_journal_start(inode, EXT4_HT_INODE,
5852 EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5853 if (IS_ERR(handle)) {
5854 error = PTR_ERR(handle);
5855 brelse(iloc->bh);
5856 return error;
5857 }
5858
5859 ext4_write_lock_xattr(inode, &no_expand);
5860
5861 BUFFER_TRACE(iloc.bh, "get_write_access");
5862 error = ext4_journal_get_write_access(handle, iloc->bh);
5863 if (error) {
5864 brelse(iloc->bh);
5865 goto out_stop;
5866 }
5867
5868 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5869 handle, &no_expand);
5870
5871 rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5872 if (!error)
5873 error = rc;
5874
5875 ext4_write_unlock_xattr(inode, &no_expand);
5876 out_stop:
5877 ext4_journal_stop(handle);
5878 return error;
5879 }
5880
5881 /*
5882 * What we do here is to mark the in-core inode as clean with respect to inode
5883 * dirtiness (it may still be data-dirty).
5884 * This means that the in-core inode may be reaped by prune_icache
5885 * without having to perform any I/O. This is a very good thing,
5886 * because *any* task may call prune_icache - even ones which
5887 * have a transaction open against a different journal.
5888 *
5889 * Is this cheating? Not really. Sure, we haven't written the
5890 * inode out, but prune_icache isn't a user-visible syncing function.
5891 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5892 * we start and wait on commits.
5893 */
5894 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5895 {
5896 struct ext4_iloc iloc;
5897 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5898 int err;
5899
5900 might_sleep();
5901 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5902 err = ext4_reserve_inode_write(handle, inode, &iloc);
5903 if (err)
5904 return err;
5905
5906 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5907 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5908 iloc, handle);
5909
5910 return ext4_mark_iloc_dirty(handle, inode, &iloc);
5911 }
5912
5913 /*
5914 * ext4_dirty_inode() is called from __mark_inode_dirty()
5915 *
5916 * We're really interested in the case where a file is being extended.
5917 * i_size has been changed by generic_commit_write() and we thus need
5918 * to include the updated inode in the current transaction.
5919 *
5920 * Also, dquot_alloc_block() will always dirty the inode when blocks
5921 * are allocated to the file.
5922 *
5923 * If the inode is marked synchronous, we don't honour that here - doing
5924 * so would cause a commit on atime updates, which we don't bother doing.
5925 * We handle synchronous inodes at the highest possible level.
5926 *
5927 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
5928 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5929 * to copy into the on-disk inode structure are the timestamp files.
5930 */
5931 void ext4_dirty_inode(struct inode *inode, int flags)
5932 {
5933 handle_t *handle;
5934
5935 if (flags == I_DIRTY_TIME)
5936 return;
5937 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5938 if (IS_ERR(handle))
5939 goto out;
5940
5941 ext4_mark_inode_dirty(handle, inode);
5942
5943 ext4_journal_stop(handle);
5944 out:
5945 return;
5946 }
5947
5948 #if 0
5949 /*
5950 * Bind an inode's backing buffer_head into this transaction, to prevent
5951 * it from being flushed to disk early. Unlike
5952 * ext4_reserve_inode_write, this leaves behind no bh reference and
5953 * returns no iloc structure, so the caller needs to repeat the iloc
5954 * lookup to mark the inode dirty later.
5955 */
5956 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5957 {
5958 struct ext4_iloc iloc;
5959
5960 int err = 0;
5961 if (handle) {
5962 err = ext4_get_inode_loc(inode, &iloc);
5963 if (!err) {
5964 BUFFER_TRACE(iloc.bh, "get_write_access");
5965 err = jbd2_journal_get_write_access(handle, iloc.bh);
5966 if (!err)
5967 err = ext4_handle_dirty_metadata(handle,
5968 NULL,
5969 iloc.bh);
5970 brelse(iloc.bh);
5971 }
5972 }
5973 ext4_std_error(inode->i_sb, err);
5974 return err;
5975 }
5976 #endif
5977
5978 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5979 {
5980 journal_t *journal;
5981 handle_t *handle;
5982 int err;
5983 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5984
5985 /*
5986 * We have to be very careful here: changing a data block's
5987 * journaling status dynamically is dangerous. If we write a
5988 * data block to the journal, change the status and then delete
5989 * that block, we risk forgetting to revoke the old log record
5990 * from the journal and so a subsequent replay can corrupt data.
5991 * So, first we make sure that the journal is empty and that
5992 * nobody is changing anything.
5993 */
5994
5995 journal = EXT4_JOURNAL(inode);
5996 if (!journal)
5997 return 0;
5998 if (is_journal_aborted(journal))
5999 return -EROFS;
6000
6001 /* Wait for all existing dio workers */
6002 ext4_inode_block_unlocked_dio(inode);
6003 inode_dio_wait(inode);
6004
6005 /*
6006 * Before flushing the journal and switching inode's aops, we have
6007 * to flush all dirty data the inode has. There can be outstanding
6008 * delayed allocations, there can be unwritten extents created by
6009 * fallocate or buffered writes in dioread_nolock mode covered by
6010 * dirty data which can be converted only after flushing the dirty
6011 * data (and journalled aops don't know how to handle these cases).
6012 */
6013 if (val) {
6014 down_write(&EXT4_I(inode)->i_mmap_sem);
6015 err = filemap_write_and_wait(inode->i_mapping);
6016 if (err < 0) {
6017 up_write(&EXT4_I(inode)->i_mmap_sem);
6018 ext4_inode_resume_unlocked_dio(inode);
6019 return err;
6020 }
6021 }
6022
6023 percpu_down_write(&sbi->s_journal_flag_rwsem);
6024 jbd2_journal_lock_updates(journal);
6025
6026 /*
6027 * OK, there are no updates running now, and all cached data is
6028 * synced to disk. We are now in a completely consistent state
6029 * which doesn't have anything in the journal, and we know that
6030 * no filesystem updates are running, so it is safe to modify
6031 * the inode's in-core data-journaling state flag now.
6032 */
6033
6034 if (val)
6035 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6036 else {
6037 err = jbd2_journal_flush(journal);
6038 if (err < 0) {
6039 jbd2_journal_unlock_updates(journal);
6040 percpu_up_write(&sbi->s_journal_flag_rwsem);
6041 ext4_inode_resume_unlocked_dio(inode);
6042 return err;
6043 }
6044 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6045 }
6046 ext4_set_aops(inode);
6047
6048 jbd2_journal_unlock_updates(journal);
6049 percpu_up_write(&sbi->s_journal_flag_rwsem);
6050
6051 if (val)
6052 up_write(&EXT4_I(inode)->i_mmap_sem);
6053 ext4_inode_resume_unlocked_dio(inode);
6054
6055 /* Finally we can mark the inode as dirty. */
6056
6057 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6058 if (IS_ERR(handle))
6059 return PTR_ERR(handle);
6060
6061 err = ext4_mark_inode_dirty(handle, inode);
6062 ext4_handle_sync(handle);
6063 ext4_journal_stop(handle);
6064 ext4_std_error(inode->i_sb, err);
6065
6066 return err;
6067 }
6068
6069 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6070 {
6071 return !buffer_mapped(bh);
6072 }
6073
6074 int ext4_page_mkwrite(struct vm_fault *vmf)
6075 {
6076 struct vm_area_struct *vma = vmf->vma;
6077 struct page *page = vmf->page;
6078 loff_t size;
6079 unsigned long len;
6080 int ret;
6081 struct file *file = vma->vm_file;
6082 struct inode *inode = file_inode(file);
6083 struct address_space *mapping = inode->i_mapping;
6084 handle_t *handle;
6085 get_block_t *get_block;
6086 int retries = 0;
6087
6088 sb_start_pagefault(inode->i_sb);
6089 file_update_time(vma->vm_file);
6090
6091 down_read(&EXT4_I(inode)->i_mmap_sem);
6092
6093 ret = ext4_convert_inline_data(inode);
6094 if (ret)
6095 goto out_ret;
6096
6097 /* Delalloc case is easy... */
6098 if (test_opt(inode->i_sb, DELALLOC) &&
6099 !ext4_should_journal_data(inode) &&
6100 !ext4_nonda_switch(inode->i_sb)) {
6101 do {
6102 ret = block_page_mkwrite(vma, vmf,
6103 ext4_da_get_block_prep);
6104 } while (ret == -ENOSPC &&
6105 ext4_should_retry_alloc(inode->i_sb, &retries));
6106 goto out_ret;
6107 }
6108
6109 lock_page(page);
6110 size = i_size_read(inode);
6111 /* Page got truncated from under us? */
6112 if (page->mapping != mapping || page_offset(page) > size) {
6113 unlock_page(page);
6114 ret = VM_FAULT_NOPAGE;
6115 goto out;
6116 }
6117
6118 if (page->index == size >> PAGE_SHIFT)
6119 len = size & ~PAGE_MASK;
6120 else
6121 len = PAGE_SIZE;
6122 /*
6123 * Return if we have all the buffers mapped. This avoids the need to do
6124 * journal_start/journal_stop which can block and take a long time
6125 */
6126 if (page_has_buffers(page)) {
6127 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6128 0, len, NULL,
6129 ext4_bh_unmapped)) {
6130 /* Wait so that we don't change page under IO */
6131 wait_for_stable_page(page);
6132 ret = VM_FAULT_LOCKED;
6133 goto out;
6134 }
6135 }
6136 unlock_page(page);
6137 /* OK, we need to fill the hole... */
6138 if (ext4_should_dioread_nolock(inode))
6139 get_block = ext4_get_block_unwritten;
6140 else
6141 get_block = ext4_get_block;
6142 retry_alloc:
6143 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6144 ext4_writepage_trans_blocks(inode));
6145 if (IS_ERR(handle)) {
6146 ret = VM_FAULT_SIGBUS;
6147 goto out;
6148 }
6149 ret = block_page_mkwrite(vma, vmf, get_block);
6150 if (!ret && ext4_should_journal_data(inode)) {
6151 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
6152 PAGE_SIZE, NULL, do_journal_get_write_access)) {
6153 unlock_page(page);
6154 ret = VM_FAULT_SIGBUS;
6155 ext4_journal_stop(handle);
6156 goto out;
6157 }
6158 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6159 }
6160 ext4_journal_stop(handle);
6161 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6162 goto retry_alloc;
6163 out_ret:
6164 ret = block_page_mkwrite_return(ret);
6165 out:
6166 up_read(&EXT4_I(inode)->i_mmap_sem);
6167 sb_end_pagefault(inode->i_sb);
6168 return ret;
6169 }
6170
6171 int ext4_filemap_fault(struct vm_fault *vmf)
6172 {
6173 struct inode *inode = file_inode(vmf->vma->vm_file);
6174 int err;
6175
6176 down_read(&EXT4_I(inode)->i_mmap_sem);
6177 err = filemap_fault(vmf);
6178 up_read(&EXT4_I(inode)->i_mmap_sem);
6179
6180 return err;
6181 }