]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/namespace.c
clone_private_mount() doesn't need to touch namespace_sem
[mirror_ubuntu-zesty-kernel.git] / fs / namespace.c
1 /*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/idr.h>
19 #include <linux/init.h> /* init_rootfs */
20 #include <linux/fs_struct.h> /* get_fs_root et.al. */
21 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
22 #include <linux/uaccess.h>
23 #include <linux/proc_ns.h>
24 #include <linux/magic.h>
25 #include <linux/bootmem.h>
26 #include <linux/task_work.h>
27 #include "pnode.h"
28 #include "internal.h"
29
30 /* Maximum number of mounts in a mount namespace */
31 unsigned int sysctl_mount_max __read_mostly = 100000;
32
33 static unsigned int m_hash_mask __read_mostly;
34 static unsigned int m_hash_shift __read_mostly;
35 static unsigned int mp_hash_mask __read_mostly;
36 static unsigned int mp_hash_shift __read_mostly;
37
38 static __initdata unsigned long mhash_entries;
39 static int __init set_mhash_entries(char *str)
40 {
41 if (!str)
42 return 0;
43 mhash_entries = simple_strtoul(str, &str, 0);
44 return 1;
45 }
46 __setup("mhash_entries=", set_mhash_entries);
47
48 static __initdata unsigned long mphash_entries;
49 static int __init set_mphash_entries(char *str)
50 {
51 if (!str)
52 return 0;
53 mphash_entries = simple_strtoul(str, &str, 0);
54 return 1;
55 }
56 __setup("mphash_entries=", set_mphash_entries);
57
58 static u64 event;
59 static DEFINE_IDA(mnt_id_ida);
60 static DEFINE_IDA(mnt_group_ida);
61 static DEFINE_SPINLOCK(mnt_id_lock);
62 static int mnt_id_start = 0;
63 static int mnt_group_start = 1;
64
65 static struct hlist_head *mount_hashtable __read_mostly;
66 static struct hlist_head *mountpoint_hashtable __read_mostly;
67 static struct kmem_cache *mnt_cache __read_mostly;
68 static DECLARE_RWSEM(namespace_sem);
69
70 /* /sys/fs */
71 struct kobject *fs_kobj;
72 EXPORT_SYMBOL_GPL(fs_kobj);
73
74 /*
75 * vfsmount lock may be taken for read to prevent changes to the
76 * vfsmount hash, ie. during mountpoint lookups or walking back
77 * up the tree.
78 *
79 * It should be taken for write in all cases where the vfsmount
80 * tree or hash is modified or when a vfsmount structure is modified.
81 */
82 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
83
84 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
85 {
86 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
87 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
88 tmp = tmp + (tmp >> m_hash_shift);
89 return &mount_hashtable[tmp & m_hash_mask];
90 }
91
92 static inline struct hlist_head *mp_hash(struct dentry *dentry)
93 {
94 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
95 tmp = tmp + (tmp >> mp_hash_shift);
96 return &mountpoint_hashtable[tmp & mp_hash_mask];
97 }
98
99 static int mnt_alloc_id(struct mount *mnt)
100 {
101 int res;
102
103 retry:
104 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
105 spin_lock(&mnt_id_lock);
106 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
107 if (!res)
108 mnt_id_start = mnt->mnt_id + 1;
109 spin_unlock(&mnt_id_lock);
110 if (res == -EAGAIN)
111 goto retry;
112
113 return res;
114 }
115
116 static void mnt_free_id(struct mount *mnt)
117 {
118 int id = mnt->mnt_id;
119 spin_lock(&mnt_id_lock);
120 ida_remove(&mnt_id_ida, id);
121 if (mnt_id_start > id)
122 mnt_id_start = id;
123 spin_unlock(&mnt_id_lock);
124 }
125
126 /*
127 * Allocate a new peer group ID
128 *
129 * mnt_group_ida is protected by namespace_sem
130 */
131 static int mnt_alloc_group_id(struct mount *mnt)
132 {
133 int res;
134
135 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
136 return -ENOMEM;
137
138 res = ida_get_new_above(&mnt_group_ida,
139 mnt_group_start,
140 &mnt->mnt_group_id);
141 if (!res)
142 mnt_group_start = mnt->mnt_group_id + 1;
143
144 return res;
145 }
146
147 /*
148 * Release a peer group ID
149 */
150 void mnt_release_group_id(struct mount *mnt)
151 {
152 int id = mnt->mnt_group_id;
153 ida_remove(&mnt_group_ida, id);
154 if (mnt_group_start > id)
155 mnt_group_start = id;
156 mnt->mnt_group_id = 0;
157 }
158
159 /*
160 * vfsmount lock must be held for read
161 */
162 static inline void mnt_add_count(struct mount *mnt, int n)
163 {
164 #ifdef CONFIG_SMP
165 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
166 #else
167 preempt_disable();
168 mnt->mnt_count += n;
169 preempt_enable();
170 #endif
171 }
172
173 /*
174 * vfsmount lock must be held for write
175 */
176 unsigned int mnt_get_count(struct mount *mnt)
177 {
178 #ifdef CONFIG_SMP
179 unsigned int count = 0;
180 int cpu;
181
182 for_each_possible_cpu(cpu) {
183 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
184 }
185
186 return count;
187 #else
188 return mnt->mnt_count;
189 #endif
190 }
191
192 static void drop_mountpoint(struct fs_pin *p)
193 {
194 struct mount *m = container_of(p, struct mount, mnt_umount);
195 dput(m->mnt_ex_mountpoint);
196 pin_remove(p);
197 mntput(&m->mnt);
198 }
199
200 static struct mount *alloc_vfsmnt(const char *name)
201 {
202 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
203 if (mnt) {
204 int err;
205
206 err = mnt_alloc_id(mnt);
207 if (err)
208 goto out_free_cache;
209
210 if (name) {
211 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
212 if (!mnt->mnt_devname)
213 goto out_free_id;
214 }
215
216 #ifdef CONFIG_SMP
217 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
218 if (!mnt->mnt_pcp)
219 goto out_free_devname;
220
221 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
222 #else
223 mnt->mnt_count = 1;
224 mnt->mnt_writers = 0;
225 #endif
226
227 INIT_HLIST_NODE(&mnt->mnt_hash);
228 INIT_LIST_HEAD(&mnt->mnt_child);
229 INIT_LIST_HEAD(&mnt->mnt_mounts);
230 INIT_LIST_HEAD(&mnt->mnt_list);
231 INIT_LIST_HEAD(&mnt->mnt_expire);
232 INIT_LIST_HEAD(&mnt->mnt_share);
233 INIT_LIST_HEAD(&mnt->mnt_slave_list);
234 INIT_LIST_HEAD(&mnt->mnt_slave);
235 INIT_HLIST_NODE(&mnt->mnt_mp_list);
236 #ifdef CONFIG_FSNOTIFY
237 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
238 #endif
239 init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
240 }
241 return mnt;
242
243 #ifdef CONFIG_SMP
244 out_free_devname:
245 kfree_const(mnt->mnt_devname);
246 #endif
247 out_free_id:
248 mnt_free_id(mnt);
249 out_free_cache:
250 kmem_cache_free(mnt_cache, mnt);
251 return NULL;
252 }
253
254 /*
255 * Most r/o checks on a fs are for operations that take
256 * discrete amounts of time, like a write() or unlink().
257 * We must keep track of when those operations start
258 * (for permission checks) and when they end, so that
259 * we can determine when writes are able to occur to
260 * a filesystem.
261 */
262 /*
263 * __mnt_is_readonly: check whether a mount is read-only
264 * @mnt: the mount to check for its write status
265 *
266 * This shouldn't be used directly ouside of the VFS.
267 * It does not guarantee that the filesystem will stay
268 * r/w, just that it is right *now*. This can not and
269 * should not be used in place of IS_RDONLY(inode).
270 * mnt_want/drop_write() will _keep_ the filesystem
271 * r/w.
272 */
273 int __mnt_is_readonly(struct vfsmount *mnt)
274 {
275 if (mnt->mnt_flags & MNT_READONLY)
276 return 1;
277 if (mnt->mnt_sb->s_flags & MS_RDONLY)
278 return 1;
279 return 0;
280 }
281 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
282
283 static inline void mnt_inc_writers(struct mount *mnt)
284 {
285 #ifdef CONFIG_SMP
286 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
287 #else
288 mnt->mnt_writers++;
289 #endif
290 }
291
292 static inline void mnt_dec_writers(struct mount *mnt)
293 {
294 #ifdef CONFIG_SMP
295 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
296 #else
297 mnt->mnt_writers--;
298 #endif
299 }
300
301 static unsigned int mnt_get_writers(struct mount *mnt)
302 {
303 #ifdef CONFIG_SMP
304 unsigned int count = 0;
305 int cpu;
306
307 for_each_possible_cpu(cpu) {
308 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
309 }
310
311 return count;
312 #else
313 return mnt->mnt_writers;
314 #endif
315 }
316
317 static int mnt_is_readonly(struct vfsmount *mnt)
318 {
319 if (mnt->mnt_sb->s_readonly_remount)
320 return 1;
321 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
322 smp_rmb();
323 return __mnt_is_readonly(mnt);
324 }
325
326 /*
327 * Most r/o & frozen checks on a fs are for operations that take discrete
328 * amounts of time, like a write() or unlink(). We must keep track of when
329 * those operations start (for permission checks) and when they end, so that we
330 * can determine when writes are able to occur to a filesystem.
331 */
332 /**
333 * __mnt_want_write - get write access to a mount without freeze protection
334 * @m: the mount on which to take a write
335 *
336 * This tells the low-level filesystem that a write is about to be performed to
337 * it, and makes sure that writes are allowed (mnt it read-write) before
338 * returning success. This operation does not protect against filesystem being
339 * frozen. When the write operation is finished, __mnt_drop_write() must be
340 * called. This is effectively a refcount.
341 */
342 int __mnt_want_write(struct vfsmount *m)
343 {
344 struct mount *mnt = real_mount(m);
345 int ret = 0;
346
347 preempt_disable();
348 mnt_inc_writers(mnt);
349 /*
350 * The store to mnt_inc_writers must be visible before we pass
351 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
352 * incremented count after it has set MNT_WRITE_HOLD.
353 */
354 smp_mb();
355 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
356 cpu_relax();
357 /*
358 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
359 * be set to match its requirements. So we must not load that until
360 * MNT_WRITE_HOLD is cleared.
361 */
362 smp_rmb();
363 if (mnt_is_readonly(m)) {
364 mnt_dec_writers(mnt);
365 ret = -EROFS;
366 }
367 preempt_enable();
368
369 return ret;
370 }
371
372 /**
373 * mnt_want_write - get write access to a mount
374 * @m: the mount on which to take a write
375 *
376 * This tells the low-level filesystem that a write is about to be performed to
377 * it, and makes sure that writes are allowed (mount is read-write, filesystem
378 * is not frozen) before returning success. When the write operation is
379 * finished, mnt_drop_write() must be called. This is effectively a refcount.
380 */
381 int mnt_want_write(struct vfsmount *m)
382 {
383 int ret;
384
385 sb_start_write(m->mnt_sb);
386 ret = __mnt_want_write(m);
387 if (ret)
388 sb_end_write(m->mnt_sb);
389 return ret;
390 }
391 EXPORT_SYMBOL_GPL(mnt_want_write);
392
393 /**
394 * mnt_clone_write - get write access to a mount
395 * @mnt: the mount on which to take a write
396 *
397 * This is effectively like mnt_want_write, except
398 * it must only be used to take an extra write reference
399 * on a mountpoint that we already know has a write reference
400 * on it. This allows some optimisation.
401 *
402 * After finished, mnt_drop_write must be called as usual to
403 * drop the reference.
404 */
405 int mnt_clone_write(struct vfsmount *mnt)
406 {
407 /* superblock may be r/o */
408 if (__mnt_is_readonly(mnt))
409 return -EROFS;
410 preempt_disable();
411 mnt_inc_writers(real_mount(mnt));
412 preempt_enable();
413 return 0;
414 }
415 EXPORT_SYMBOL_GPL(mnt_clone_write);
416
417 /**
418 * __mnt_want_write_file - get write access to a file's mount
419 * @file: the file who's mount on which to take a write
420 *
421 * This is like __mnt_want_write, but it takes a file and can
422 * do some optimisations if the file is open for write already
423 */
424 int __mnt_want_write_file(struct file *file)
425 {
426 if (!(file->f_mode & FMODE_WRITER))
427 return __mnt_want_write(file->f_path.mnt);
428 else
429 return mnt_clone_write(file->f_path.mnt);
430 }
431
432 /**
433 * mnt_want_write_file - get write access to a file's mount
434 * @file: the file who's mount on which to take a write
435 *
436 * This is like mnt_want_write, but it takes a file and can
437 * do some optimisations if the file is open for write already
438 */
439 int mnt_want_write_file(struct file *file)
440 {
441 int ret;
442
443 sb_start_write(file->f_path.mnt->mnt_sb);
444 ret = __mnt_want_write_file(file);
445 if (ret)
446 sb_end_write(file->f_path.mnt->mnt_sb);
447 return ret;
448 }
449 EXPORT_SYMBOL_GPL(mnt_want_write_file);
450
451 /**
452 * __mnt_drop_write - give up write access to a mount
453 * @mnt: the mount on which to give up write access
454 *
455 * Tells the low-level filesystem that we are done
456 * performing writes to it. Must be matched with
457 * __mnt_want_write() call above.
458 */
459 void __mnt_drop_write(struct vfsmount *mnt)
460 {
461 preempt_disable();
462 mnt_dec_writers(real_mount(mnt));
463 preempt_enable();
464 }
465
466 /**
467 * mnt_drop_write - give up write access to a mount
468 * @mnt: the mount on which to give up write access
469 *
470 * Tells the low-level filesystem that we are done performing writes to it and
471 * also allows filesystem to be frozen again. Must be matched with
472 * mnt_want_write() call above.
473 */
474 void mnt_drop_write(struct vfsmount *mnt)
475 {
476 __mnt_drop_write(mnt);
477 sb_end_write(mnt->mnt_sb);
478 }
479 EXPORT_SYMBOL_GPL(mnt_drop_write);
480
481 void __mnt_drop_write_file(struct file *file)
482 {
483 __mnt_drop_write(file->f_path.mnt);
484 }
485
486 void mnt_drop_write_file(struct file *file)
487 {
488 mnt_drop_write(file->f_path.mnt);
489 }
490 EXPORT_SYMBOL(mnt_drop_write_file);
491
492 static int mnt_make_readonly(struct mount *mnt)
493 {
494 int ret = 0;
495
496 lock_mount_hash();
497 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
498 /*
499 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
500 * should be visible before we do.
501 */
502 smp_mb();
503
504 /*
505 * With writers on hold, if this value is zero, then there are
506 * definitely no active writers (although held writers may subsequently
507 * increment the count, they'll have to wait, and decrement it after
508 * seeing MNT_READONLY).
509 *
510 * It is OK to have counter incremented on one CPU and decremented on
511 * another: the sum will add up correctly. The danger would be when we
512 * sum up each counter, if we read a counter before it is incremented,
513 * but then read another CPU's count which it has been subsequently
514 * decremented from -- we would see more decrements than we should.
515 * MNT_WRITE_HOLD protects against this scenario, because
516 * mnt_want_write first increments count, then smp_mb, then spins on
517 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
518 * we're counting up here.
519 */
520 if (mnt_get_writers(mnt) > 0)
521 ret = -EBUSY;
522 else
523 mnt->mnt.mnt_flags |= MNT_READONLY;
524 /*
525 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
526 * that become unheld will see MNT_READONLY.
527 */
528 smp_wmb();
529 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
530 unlock_mount_hash();
531 return ret;
532 }
533
534 static void __mnt_unmake_readonly(struct mount *mnt)
535 {
536 lock_mount_hash();
537 mnt->mnt.mnt_flags &= ~MNT_READONLY;
538 unlock_mount_hash();
539 }
540
541 int sb_prepare_remount_readonly(struct super_block *sb)
542 {
543 struct mount *mnt;
544 int err = 0;
545
546 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
547 if (atomic_long_read(&sb->s_remove_count))
548 return -EBUSY;
549
550 lock_mount_hash();
551 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
552 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
553 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
554 smp_mb();
555 if (mnt_get_writers(mnt) > 0) {
556 err = -EBUSY;
557 break;
558 }
559 }
560 }
561 if (!err && atomic_long_read(&sb->s_remove_count))
562 err = -EBUSY;
563
564 if (!err) {
565 sb->s_readonly_remount = 1;
566 smp_wmb();
567 }
568 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
569 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
570 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
571 }
572 unlock_mount_hash();
573
574 return err;
575 }
576
577 static void free_vfsmnt(struct mount *mnt)
578 {
579 kfree_const(mnt->mnt_devname);
580 #ifdef CONFIG_SMP
581 free_percpu(mnt->mnt_pcp);
582 #endif
583 kmem_cache_free(mnt_cache, mnt);
584 }
585
586 static void delayed_free_vfsmnt(struct rcu_head *head)
587 {
588 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
589 }
590
591 /* call under rcu_read_lock */
592 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
593 {
594 struct mount *mnt;
595 if (read_seqretry(&mount_lock, seq))
596 return 1;
597 if (bastard == NULL)
598 return 0;
599 mnt = real_mount(bastard);
600 mnt_add_count(mnt, 1);
601 if (likely(!read_seqretry(&mount_lock, seq)))
602 return 0;
603 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
604 mnt_add_count(mnt, -1);
605 return 1;
606 }
607 return -1;
608 }
609
610 /* call under rcu_read_lock */
611 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
612 {
613 int res = __legitimize_mnt(bastard, seq);
614 if (likely(!res))
615 return true;
616 if (unlikely(res < 0)) {
617 rcu_read_unlock();
618 mntput(bastard);
619 rcu_read_lock();
620 }
621 return false;
622 }
623
624 /*
625 * find the first mount at @dentry on vfsmount @mnt.
626 * call under rcu_read_lock()
627 */
628 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
629 {
630 struct hlist_head *head = m_hash(mnt, dentry);
631 struct mount *p;
632
633 hlist_for_each_entry_rcu(p, head, mnt_hash)
634 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
635 return p;
636 return NULL;
637 }
638
639 /*
640 * find the last mount at @dentry on vfsmount @mnt.
641 * mount_lock must be held.
642 */
643 struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
644 {
645 struct mount *p, *res = NULL;
646 p = __lookup_mnt(mnt, dentry);
647 if (!p)
648 goto out;
649 if (!(p->mnt.mnt_flags & MNT_UMOUNT))
650 res = p;
651 hlist_for_each_entry_continue(p, mnt_hash) {
652 if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry)
653 break;
654 if (!(p->mnt.mnt_flags & MNT_UMOUNT))
655 res = p;
656 }
657 out:
658 return res;
659 }
660
661 /*
662 * lookup_mnt - Return the first child mount mounted at path
663 *
664 * "First" means first mounted chronologically. If you create the
665 * following mounts:
666 *
667 * mount /dev/sda1 /mnt
668 * mount /dev/sda2 /mnt
669 * mount /dev/sda3 /mnt
670 *
671 * Then lookup_mnt() on the base /mnt dentry in the root mount will
672 * return successively the root dentry and vfsmount of /dev/sda1, then
673 * /dev/sda2, then /dev/sda3, then NULL.
674 *
675 * lookup_mnt takes a reference to the found vfsmount.
676 */
677 struct vfsmount *lookup_mnt(struct path *path)
678 {
679 struct mount *child_mnt;
680 struct vfsmount *m;
681 unsigned seq;
682
683 rcu_read_lock();
684 do {
685 seq = read_seqbegin(&mount_lock);
686 child_mnt = __lookup_mnt(path->mnt, path->dentry);
687 m = child_mnt ? &child_mnt->mnt : NULL;
688 } while (!legitimize_mnt(m, seq));
689 rcu_read_unlock();
690 return m;
691 }
692
693 /*
694 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
695 * current mount namespace.
696 *
697 * The common case is dentries are not mountpoints at all and that
698 * test is handled inline. For the slow case when we are actually
699 * dealing with a mountpoint of some kind, walk through all of the
700 * mounts in the current mount namespace and test to see if the dentry
701 * is a mountpoint.
702 *
703 * The mount_hashtable is not usable in the context because we
704 * need to identify all mounts that may be in the current mount
705 * namespace not just a mount that happens to have some specified
706 * parent mount.
707 */
708 bool __is_local_mountpoint(struct dentry *dentry)
709 {
710 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
711 struct mount *mnt;
712 bool is_covered = false;
713
714 if (!d_mountpoint(dentry))
715 goto out;
716
717 down_read(&namespace_sem);
718 list_for_each_entry(mnt, &ns->list, mnt_list) {
719 is_covered = (mnt->mnt_mountpoint == dentry);
720 if (is_covered)
721 break;
722 }
723 up_read(&namespace_sem);
724 out:
725 return is_covered;
726 }
727
728 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
729 {
730 struct hlist_head *chain = mp_hash(dentry);
731 struct mountpoint *mp;
732
733 hlist_for_each_entry(mp, chain, m_hash) {
734 if (mp->m_dentry == dentry) {
735 /* might be worth a WARN_ON() */
736 if (d_unlinked(dentry))
737 return ERR_PTR(-ENOENT);
738 mp->m_count++;
739 return mp;
740 }
741 }
742 return NULL;
743 }
744
745 static struct mountpoint *new_mountpoint(struct dentry *dentry)
746 {
747 struct hlist_head *chain = mp_hash(dentry);
748 struct mountpoint *mp;
749 int ret;
750
751 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
752 if (!mp)
753 return ERR_PTR(-ENOMEM);
754
755 ret = d_set_mounted(dentry);
756 if (ret) {
757 kfree(mp);
758 return ERR_PTR(ret);
759 }
760
761 mp->m_dentry = dentry;
762 mp->m_count = 1;
763 hlist_add_head(&mp->m_hash, chain);
764 INIT_HLIST_HEAD(&mp->m_list);
765 return mp;
766 }
767
768 static void put_mountpoint(struct mountpoint *mp)
769 {
770 if (!--mp->m_count) {
771 struct dentry *dentry = mp->m_dentry;
772 BUG_ON(!hlist_empty(&mp->m_list));
773 spin_lock(&dentry->d_lock);
774 dentry->d_flags &= ~DCACHE_MOUNTED;
775 spin_unlock(&dentry->d_lock);
776 hlist_del(&mp->m_hash);
777 kfree(mp);
778 }
779 }
780
781 static inline int check_mnt(struct mount *mnt)
782 {
783 return mnt->mnt_ns == current->nsproxy->mnt_ns;
784 }
785
786 /*
787 * vfsmount lock must be held for write
788 */
789 static void touch_mnt_namespace(struct mnt_namespace *ns)
790 {
791 if (ns) {
792 ns->event = ++event;
793 wake_up_interruptible(&ns->poll);
794 }
795 }
796
797 /*
798 * vfsmount lock must be held for write
799 */
800 static void __touch_mnt_namespace(struct mnt_namespace *ns)
801 {
802 if (ns && ns->event != event) {
803 ns->event = event;
804 wake_up_interruptible(&ns->poll);
805 }
806 }
807
808 /*
809 * vfsmount lock must be held for write
810 */
811 static void unhash_mnt(struct mount *mnt)
812 {
813 mnt->mnt_parent = mnt;
814 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
815 list_del_init(&mnt->mnt_child);
816 hlist_del_init_rcu(&mnt->mnt_hash);
817 hlist_del_init(&mnt->mnt_mp_list);
818 put_mountpoint(mnt->mnt_mp);
819 mnt->mnt_mp = NULL;
820 }
821
822 /*
823 * vfsmount lock must be held for write
824 */
825 static void detach_mnt(struct mount *mnt, struct path *old_path)
826 {
827 old_path->dentry = mnt->mnt_mountpoint;
828 old_path->mnt = &mnt->mnt_parent->mnt;
829 unhash_mnt(mnt);
830 }
831
832 /*
833 * vfsmount lock must be held for write
834 */
835 static void umount_mnt(struct mount *mnt)
836 {
837 /* old mountpoint will be dropped when we can do that */
838 mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
839 unhash_mnt(mnt);
840 }
841
842 /*
843 * vfsmount lock must be held for write
844 */
845 void mnt_set_mountpoint(struct mount *mnt,
846 struct mountpoint *mp,
847 struct mount *child_mnt)
848 {
849 mp->m_count++;
850 mnt_add_count(mnt, 1); /* essentially, that's mntget */
851 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
852 child_mnt->mnt_parent = mnt;
853 child_mnt->mnt_mp = mp;
854 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
855 }
856
857 /*
858 * vfsmount lock must be held for write
859 */
860 static void attach_mnt(struct mount *mnt,
861 struct mount *parent,
862 struct mountpoint *mp)
863 {
864 mnt_set_mountpoint(parent, mp, mnt);
865 hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
866 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
867 }
868
869 static void attach_shadowed(struct mount *mnt,
870 struct mount *parent,
871 struct mount *shadows)
872 {
873 if (shadows) {
874 hlist_add_behind_rcu(&mnt->mnt_hash, &shadows->mnt_hash);
875 list_add(&mnt->mnt_child, &shadows->mnt_child);
876 } else {
877 hlist_add_head_rcu(&mnt->mnt_hash,
878 m_hash(&parent->mnt, mnt->mnt_mountpoint));
879 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
880 }
881 }
882
883 /*
884 * vfsmount lock must be held for write
885 */
886 static void commit_tree(struct mount *mnt, struct mount *shadows)
887 {
888 struct mount *parent = mnt->mnt_parent;
889 struct mount *m;
890 LIST_HEAD(head);
891 struct mnt_namespace *n = parent->mnt_ns;
892
893 BUG_ON(parent == mnt);
894
895 list_add_tail(&head, &mnt->mnt_list);
896 list_for_each_entry(m, &head, mnt_list)
897 m->mnt_ns = n;
898
899 list_splice(&head, n->list.prev);
900
901 n->mounts += n->pending_mounts;
902 n->pending_mounts = 0;
903
904 attach_shadowed(mnt, parent, shadows);
905 touch_mnt_namespace(n);
906 }
907
908 static struct mount *next_mnt(struct mount *p, struct mount *root)
909 {
910 struct list_head *next = p->mnt_mounts.next;
911 if (next == &p->mnt_mounts) {
912 while (1) {
913 if (p == root)
914 return NULL;
915 next = p->mnt_child.next;
916 if (next != &p->mnt_parent->mnt_mounts)
917 break;
918 p = p->mnt_parent;
919 }
920 }
921 return list_entry(next, struct mount, mnt_child);
922 }
923
924 static struct mount *skip_mnt_tree(struct mount *p)
925 {
926 struct list_head *prev = p->mnt_mounts.prev;
927 while (prev != &p->mnt_mounts) {
928 p = list_entry(prev, struct mount, mnt_child);
929 prev = p->mnt_mounts.prev;
930 }
931 return p;
932 }
933
934 struct vfsmount *
935 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
936 {
937 struct mount *mnt;
938 struct dentry *root;
939
940 if (!type)
941 return ERR_PTR(-ENODEV);
942
943 mnt = alloc_vfsmnt(name);
944 if (!mnt)
945 return ERR_PTR(-ENOMEM);
946
947 if (flags & MS_KERNMOUNT)
948 mnt->mnt.mnt_flags = MNT_INTERNAL;
949
950 root = mount_fs(type, flags, name, data);
951 if (IS_ERR(root)) {
952 mnt_free_id(mnt);
953 free_vfsmnt(mnt);
954 return ERR_CAST(root);
955 }
956
957 mnt->mnt.mnt_root = root;
958 mnt->mnt.mnt_sb = root->d_sb;
959 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
960 mnt->mnt_parent = mnt;
961 lock_mount_hash();
962 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
963 unlock_mount_hash();
964 return &mnt->mnt;
965 }
966 EXPORT_SYMBOL_GPL(vfs_kern_mount);
967
968 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
969 int flag)
970 {
971 struct super_block *sb = old->mnt.mnt_sb;
972 struct mount *mnt;
973 int err;
974
975 mnt = alloc_vfsmnt(old->mnt_devname);
976 if (!mnt)
977 return ERR_PTR(-ENOMEM);
978
979 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
980 mnt->mnt_group_id = 0; /* not a peer of original */
981 else
982 mnt->mnt_group_id = old->mnt_group_id;
983
984 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
985 err = mnt_alloc_group_id(mnt);
986 if (err)
987 goto out_free;
988 }
989
990 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
991 /* Don't allow unprivileged users to change mount flags */
992 if (flag & CL_UNPRIVILEGED) {
993 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
994
995 if (mnt->mnt.mnt_flags & MNT_READONLY)
996 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
997
998 if (mnt->mnt.mnt_flags & MNT_NODEV)
999 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
1000
1001 if (mnt->mnt.mnt_flags & MNT_NOSUID)
1002 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
1003
1004 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
1005 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
1006 }
1007
1008 /* Don't allow unprivileged users to reveal what is under a mount */
1009 if ((flag & CL_UNPRIVILEGED) &&
1010 (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
1011 mnt->mnt.mnt_flags |= MNT_LOCKED;
1012
1013 atomic_inc(&sb->s_active);
1014 mnt->mnt.mnt_sb = sb;
1015 mnt->mnt.mnt_root = dget(root);
1016 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1017 mnt->mnt_parent = mnt;
1018 lock_mount_hash();
1019 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1020 unlock_mount_hash();
1021
1022 if ((flag & CL_SLAVE) ||
1023 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1024 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1025 mnt->mnt_master = old;
1026 CLEAR_MNT_SHARED(mnt);
1027 } else if (!(flag & CL_PRIVATE)) {
1028 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1029 list_add(&mnt->mnt_share, &old->mnt_share);
1030 if (IS_MNT_SLAVE(old))
1031 list_add(&mnt->mnt_slave, &old->mnt_slave);
1032 mnt->mnt_master = old->mnt_master;
1033 }
1034 if (flag & CL_MAKE_SHARED)
1035 set_mnt_shared(mnt);
1036
1037 /* stick the duplicate mount on the same expiry list
1038 * as the original if that was on one */
1039 if (flag & CL_EXPIRE) {
1040 if (!list_empty(&old->mnt_expire))
1041 list_add(&mnt->mnt_expire, &old->mnt_expire);
1042 }
1043
1044 return mnt;
1045
1046 out_free:
1047 mnt_free_id(mnt);
1048 free_vfsmnt(mnt);
1049 return ERR_PTR(err);
1050 }
1051
1052 static void cleanup_mnt(struct mount *mnt)
1053 {
1054 /*
1055 * This probably indicates that somebody messed
1056 * up a mnt_want/drop_write() pair. If this
1057 * happens, the filesystem was probably unable
1058 * to make r/w->r/o transitions.
1059 */
1060 /*
1061 * The locking used to deal with mnt_count decrement provides barriers,
1062 * so mnt_get_writers() below is safe.
1063 */
1064 WARN_ON(mnt_get_writers(mnt));
1065 if (unlikely(mnt->mnt_pins.first))
1066 mnt_pin_kill(mnt);
1067 fsnotify_vfsmount_delete(&mnt->mnt);
1068 dput(mnt->mnt.mnt_root);
1069 deactivate_super(mnt->mnt.mnt_sb);
1070 mnt_free_id(mnt);
1071 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1072 }
1073
1074 static void __cleanup_mnt(struct rcu_head *head)
1075 {
1076 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1077 }
1078
1079 static LLIST_HEAD(delayed_mntput_list);
1080 static void delayed_mntput(struct work_struct *unused)
1081 {
1082 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1083 struct llist_node *next;
1084
1085 for (; node; node = next) {
1086 next = llist_next(node);
1087 cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
1088 }
1089 }
1090 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1091
1092 static void mntput_no_expire(struct mount *mnt)
1093 {
1094 rcu_read_lock();
1095 mnt_add_count(mnt, -1);
1096 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
1097 rcu_read_unlock();
1098 return;
1099 }
1100 lock_mount_hash();
1101 if (mnt_get_count(mnt)) {
1102 rcu_read_unlock();
1103 unlock_mount_hash();
1104 return;
1105 }
1106 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1107 rcu_read_unlock();
1108 unlock_mount_hash();
1109 return;
1110 }
1111 mnt->mnt.mnt_flags |= MNT_DOOMED;
1112 rcu_read_unlock();
1113
1114 list_del(&mnt->mnt_instance);
1115
1116 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1117 struct mount *p, *tmp;
1118 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1119 umount_mnt(p);
1120 }
1121 }
1122 unlock_mount_hash();
1123
1124 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1125 struct task_struct *task = current;
1126 if (likely(!(task->flags & PF_KTHREAD))) {
1127 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1128 if (!task_work_add(task, &mnt->mnt_rcu, true))
1129 return;
1130 }
1131 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1132 schedule_delayed_work(&delayed_mntput_work, 1);
1133 return;
1134 }
1135 cleanup_mnt(mnt);
1136 }
1137
1138 void mntput(struct vfsmount *mnt)
1139 {
1140 if (mnt) {
1141 struct mount *m = real_mount(mnt);
1142 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1143 if (unlikely(m->mnt_expiry_mark))
1144 m->mnt_expiry_mark = 0;
1145 mntput_no_expire(m);
1146 }
1147 }
1148 EXPORT_SYMBOL(mntput);
1149
1150 struct vfsmount *mntget(struct vfsmount *mnt)
1151 {
1152 if (mnt)
1153 mnt_add_count(real_mount(mnt), 1);
1154 return mnt;
1155 }
1156 EXPORT_SYMBOL(mntget);
1157
1158 struct vfsmount *mnt_clone_internal(struct path *path)
1159 {
1160 struct mount *p;
1161 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1162 if (IS_ERR(p))
1163 return ERR_CAST(p);
1164 p->mnt.mnt_flags |= MNT_INTERNAL;
1165 return &p->mnt;
1166 }
1167
1168 static inline void mangle(struct seq_file *m, const char *s)
1169 {
1170 seq_escape(m, s, " \t\n\\");
1171 }
1172
1173 /*
1174 * Simple .show_options callback for filesystems which don't want to
1175 * implement more complex mount option showing.
1176 *
1177 * See also save_mount_options().
1178 */
1179 int generic_show_options(struct seq_file *m, struct dentry *root)
1180 {
1181 const char *options;
1182
1183 rcu_read_lock();
1184 options = rcu_dereference(root->d_sb->s_options);
1185
1186 if (options != NULL && options[0]) {
1187 seq_putc(m, ',');
1188 mangle(m, options);
1189 }
1190 rcu_read_unlock();
1191
1192 return 0;
1193 }
1194 EXPORT_SYMBOL(generic_show_options);
1195
1196 /*
1197 * If filesystem uses generic_show_options(), this function should be
1198 * called from the fill_super() callback.
1199 *
1200 * The .remount_fs callback usually needs to be handled in a special
1201 * way, to make sure, that previous options are not overwritten if the
1202 * remount fails.
1203 *
1204 * Also note, that if the filesystem's .remount_fs function doesn't
1205 * reset all options to their default value, but changes only newly
1206 * given options, then the displayed options will not reflect reality
1207 * any more.
1208 */
1209 void save_mount_options(struct super_block *sb, char *options)
1210 {
1211 BUG_ON(sb->s_options);
1212 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
1213 }
1214 EXPORT_SYMBOL(save_mount_options);
1215
1216 void replace_mount_options(struct super_block *sb, char *options)
1217 {
1218 char *old = sb->s_options;
1219 rcu_assign_pointer(sb->s_options, options);
1220 if (old) {
1221 synchronize_rcu();
1222 kfree(old);
1223 }
1224 }
1225 EXPORT_SYMBOL(replace_mount_options);
1226
1227 #ifdef CONFIG_PROC_FS
1228 /* iterator; we want it to have access to namespace_sem, thus here... */
1229 static void *m_start(struct seq_file *m, loff_t *pos)
1230 {
1231 struct proc_mounts *p = m->private;
1232
1233 down_read(&namespace_sem);
1234 if (p->cached_event == p->ns->event) {
1235 void *v = p->cached_mount;
1236 if (*pos == p->cached_index)
1237 return v;
1238 if (*pos == p->cached_index + 1) {
1239 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1240 return p->cached_mount = v;
1241 }
1242 }
1243
1244 p->cached_event = p->ns->event;
1245 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1246 p->cached_index = *pos;
1247 return p->cached_mount;
1248 }
1249
1250 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1251 {
1252 struct proc_mounts *p = m->private;
1253
1254 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1255 p->cached_index = *pos;
1256 return p->cached_mount;
1257 }
1258
1259 static void m_stop(struct seq_file *m, void *v)
1260 {
1261 up_read(&namespace_sem);
1262 }
1263
1264 static int m_show(struct seq_file *m, void *v)
1265 {
1266 struct proc_mounts *p = m->private;
1267 struct mount *r = list_entry(v, struct mount, mnt_list);
1268 return p->show(m, &r->mnt);
1269 }
1270
1271 const struct seq_operations mounts_op = {
1272 .start = m_start,
1273 .next = m_next,
1274 .stop = m_stop,
1275 .show = m_show,
1276 };
1277 #endif /* CONFIG_PROC_FS */
1278
1279 /**
1280 * may_umount_tree - check if a mount tree is busy
1281 * @mnt: root of mount tree
1282 *
1283 * This is called to check if a tree of mounts has any
1284 * open files, pwds, chroots or sub mounts that are
1285 * busy.
1286 */
1287 int may_umount_tree(struct vfsmount *m)
1288 {
1289 struct mount *mnt = real_mount(m);
1290 int actual_refs = 0;
1291 int minimum_refs = 0;
1292 struct mount *p;
1293 BUG_ON(!m);
1294
1295 /* write lock needed for mnt_get_count */
1296 lock_mount_hash();
1297 for (p = mnt; p; p = next_mnt(p, mnt)) {
1298 actual_refs += mnt_get_count(p);
1299 minimum_refs += 2;
1300 }
1301 unlock_mount_hash();
1302
1303 if (actual_refs > minimum_refs)
1304 return 0;
1305
1306 return 1;
1307 }
1308
1309 EXPORT_SYMBOL(may_umount_tree);
1310
1311 /**
1312 * may_umount - check if a mount point is busy
1313 * @mnt: root of mount
1314 *
1315 * This is called to check if a mount point has any
1316 * open files, pwds, chroots or sub mounts. If the
1317 * mount has sub mounts this will return busy
1318 * regardless of whether the sub mounts are busy.
1319 *
1320 * Doesn't take quota and stuff into account. IOW, in some cases it will
1321 * give false negatives. The main reason why it's here is that we need
1322 * a non-destructive way to look for easily umountable filesystems.
1323 */
1324 int may_umount(struct vfsmount *mnt)
1325 {
1326 int ret = 1;
1327 down_read(&namespace_sem);
1328 lock_mount_hash();
1329 if (propagate_mount_busy(real_mount(mnt), 2))
1330 ret = 0;
1331 unlock_mount_hash();
1332 up_read(&namespace_sem);
1333 return ret;
1334 }
1335
1336 EXPORT_SYMBOL(may_umount);
1337
1338 static HLIST_HEAD(unmounted); /* protected by namespace_sem */
1339
1340 static void namespace_unlock(void)
1341 {
1342 struct hlist_head head;
1343
1344 hlist_move_list(&unmounted, &head);
1345
1346 up_write(&namespace_sem);
1347
1348 if (likely(hlist_empty(&head)))
1349 return;
1350
1351 synchronize_rcu();
1352
1353 group_pin_kill(&head);
1354 }
1355
1356 static inline void namespace_lock(void)
1357 {
1358 down_write(&namespace_sem);
1359 }
1360
1361 enum umount_tree_flags {
1362 UMOUNT_SYNC = 1,
1363 UMOUNT_PROPAGATE = 2,
1364 UMOUNT_CONNECTED = 4,
1365 };
1366
1367 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1368 {
1369 /* Leaving mounts connected is only valid for lazy umounts */
1370 if (how & UMOUNT_SYNC)
1371 return true;
1372
1373 /* A mount without a parent has nothing to be connected to */
1374 if (!mnt_has_parent(mnt))
1375 return true;
1376
1377 /* Because the reference counting rules change when mounts are
1378 * unmounted and connected, umounted mounts may not be
1379 * connected to mounted mounts.
1380 */
1381 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1382 return true;
1383
1384 /* Has it been requested that the mount remain connected? */
1385 if (how & UMOUNT_CONNECTED)
1386 return false;
1387
1388 /* Is the mount locked such that it needs to remain connected? */
1389 if (IS_MNT_LOCKED(mnt))
1390 return false;
1391
1392 /* By default disconnect the mount */
1393 return true;
1394 }
1395
1396 /*
1397 * mount_lock must be held
1398 * namespace_sem must be held for write
1399 */
1400 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1401 {
1402 LIST_HEAD(tmp_list);
1403 struct mount *p;
1404
1405 if (how & UMOUNT_PROPAGATE)
1406 propagate_mount_unlock(mnt);
1407
1408 /* Gather the mounts to umount */
1409 for (p = mnt; p; p = next_mnt(p, mnt)) {
1410 p->mnt.mnt_flags |= MNT_UMOUNT;
1411 list_move(&p->mnt_list, &tmp_list);
1412 }
1413
1414 /* Hide the mounts from mnt_mounts */
1415 list_for_each_entry(p, &tmp_list, mnt_list) {
1416 list_del_init(&p->mnt_child);
1417 }
1418
1419 /* Add propogated mounts to the tmp_list */
1420 if (how & UMOUNT_PROPAGATE)
1421 propagate_umount(&tmp_list);
1422
1423 while (!list_empty(&tmp_list)) {
1424 struct mnt_namespace *ns;
1425 bool disconnect;
1426 p = list_first_entry(&tmp_list, struct mount, mnt_list);
1427 list_del_init(&p->mnt_expire);
1428 list_del_init(&p->mnt_list);
1429 ns = p->mnt_ns;
1430 if (ns) {
1431 ns->mounts--;
1432 __touch_mnt_namespace(ns);
1433 }
1434 p->mnt_ns = NULL;
1435 if (how & UMOUNT_SYNC)
1436 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1437
1438 disconnect = disconnect_mount(p, how);
1439
1440 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1441 disconnect ? &unmounted : NULL);
1442 if (mnt_has_parent(p)) {
1443 mnt_add_count(p->mnt_parent, -1);
1444 if (!disconnect) {
1445 /* Don't forget about p */
1446 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1447 } else {
1448 umount_mnt(p);
1449 }
1450 }
1451 change_mnt_propagation(p, MS_PRIVATE);
1452 }
1453 }
1454
1455 static void shrink_submounts(struct mount *mnt);
1456
1457 static int do_umount(struct mount *mnt, int flags)
1458 {
1459 struct super_block *sb = mnt->mnt.mnt_sb;
1460 int retval;
1461
1462 retval = security_sb_umount(&mnt->mnt, flags);
1463 if (retval)
1464 return retval;
1465
1466 /*
1467 * Allow userspace to request a mountpoint be expired rather than
1468 * unmounting unconditionally. Unmount only happens if:
1469 * (1) the mark is already set (the mark is cleared by mntput())
1470 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1471 */
1472 if (flags & MNT_EXPIRE) {
1473 if (&mnt->mnt == current->fs->root.mnt ||
1474 flags & (MNT_FORCE | MNT_DETACH))
1475 return -EINVAL;
1476
1477 /*
1478 * probably don't strictly need the lock here if we examined
1479 * all race cases, but it's a slowpath.
1480 */
1481 lock_mount_hash();
1482 if (mnt_get_count(mnt) != 2) {
1483 unlock_mount_hash();
1484 return -EBUSY;
1485 }
1486 unlock_mount_hash();
1487
1488 if (!xchg(&mnt->mnt_expiry_mark, 1))
1489 return -EAGAIN;
1490 }
1491
1492 /*
1493 * If we may have to abort operations to get out of this
1494 * mount, and they will themselves hold resources we must
1495 * allow the fs to do things. In the Unix tradition of
1496 * 'Gee thats tricky lets do it in userspace' the umount_begin
1497 * might fail to complete on the first run through as other tasks
1498 * must return, and the like. Thats for the mount program to worry
1499 * about for the moment.
1500 */
1501
1502 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1503 sb->s_op->umount_begin(sb);
1504 }
1505
1506 /*
1507 * No sense to grab the lock for this test, but test itself looks
1508 * somewhat bogus. Suggestions for better replacement?
1509 * Ho-hum... In principle, we might treat that as umount + switch
1510 * to rootfs. GC would eventually take care of the old vfsmount.
1511 * Actually it makes sense, especially if rootfs would contain a
1512 * /reboot - static binary that would close all descriptors and
1513 * call reboot(9). Then init(8) could umount root and exec /reboot.
1514 */
1515 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1516 /*
1517 * Special case for "unmounting" root ...
1518 * we just try to remount it readonly.
1519 */
1520 if (!capable(CAP_SYS_ADMIN))
1521 return -EPERM;
1522 down_write(&sb->s_umount);
1523 if (!(sb->s_flags & MS_RDONLY))
1524 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1525 up_write(&sb->s_umount);
1526 return retval;
1527 }
1528
1529 namespace_lock();
1530 lock_mount_hash();
1531 event++;
1532
1533 if (flags & MNT_DETACH) {
1534 if (!list_empty(&mnt->mnt_list))
1535 umount_tree(mnt, UMOUNT_PROPAGATE);
1536 retval = 0;
1537 } else {
1538 shrink_submounts(mnt);
1539 retval = -EBUSY;
1540 if (!propagate_mount_busy(mnt, 2)) {
1541 if (!list_empty(&mnt->mnt_list))
1542 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1543 retval = 0;
1544 }
1545 }
1546 unlock_mount_hash();
1547 namespace_unlock();
1548 return retval;
1549 }
1550
1551 /*
1552 * __detach_mounts - lazily unmount all mounts on the specified dentry
1553 *
1554 * During unlink, rmdir, and d_drop it is possible to loose the path
1555 * to an existing mountpoint, and wind up leaking the mount.
1556 * detach_mounts allows lazily unmounting those mounts instead of
1557 * leaking them.
1558 *
1559 * The caller may hold dentry->d_inode->i_mutex.
1560 */
1561 void __detach_mounts(struct dentry *dentry)
1562 {
1563 struct mountpoint *mp;
1564 struct mount *mnt;
1565
1566 namespace_lock();
1567 mp = lookup_mountpoint(dentry);
1568 if (IS_ERR_OR_NULL(mp))
1569 goto out_unlock;
1570
1571 lock_mount_hash();
1572 event++;
1573 while (!hlist_empty(&mp->m_list)) {
1574 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1575 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1576 hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1577 umount_mnt(mnt);
1578 }
1579 else umount_tree(mnt, UMOUNT_CONNECTED);
1580 }
1581 unlock_mount_hash();
1582 put_mountpoint(mp);
1583 out_unlock:
1584 namespace_unlock();
1585 }
1586
1587 /*
1588 * Is the caller allowed to modify his namespace?
1589 */
1590 static inline bool may_mount(void)
1591 {
1592 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1593 }
1594
1595 static inline bool may_mandlock(void)
1596 {
1597 #ifndef CONFIG_MANDATORY_FILE_LOCKING
1598 return false;
1599 #endif
1600 return capable(CAP_SYS_ADMIN);
1601 }
1602
1603 /*
1604 * Now umount can handle mount points as well as block devices.
1605 * This is important for filesystems which use unnamed block devices.
1606 *
1607 * We now support a flag for forced unmount like the other 'big iron'
1608 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1609 */
1610
1611 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1612 {
1613 struct path path;
1614 struct mount *mnt;
1615 int retval;
1616 int lookup_flags = 0;
1617
1618 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1619 return -EINVAL;
1620
1621 if (!may_mount())
1622 return -EPERM;
1623
1624 if (!(flags & UMOUNT_NOFOLLOW))
1625 lookup_flags |= LOOKUP_FOLLOW;
1626
1627 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1628 if (retval)
1629 goto out;
1630 mnt = real_mount(path.mnt);
1631 retval = -EINVAL;
1632 if (path.dentry != path.mnt->mnt_root)
1633 goto dput_and_out;
1634 if (!check_mnt(mnt))
1635 goto dput_and_out;
1636 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1637 goto dput_and_out;
1638 retval = -EPERM;
1639 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1640 goto dput_and_out;
1641
1642 retval = do_umount(mnt, flags);
1643 dput_and_out:
1644 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1645 dput(path.dentry);
1646 mntput_no_expire(mnt);
1647 out:
1648 return retval;
1649 }
1650
1651 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1652
1653 /*
1654 * The 2.0 compatible umount. No flags.
1655 */
1656 SYSCALL_DEFINE1(oldumount, char __user *, name)
1657 {
1658 return sys_umount(name, 0);
1659 }
1660
1661 #endif
1662
1663 static bool is_mnt_ns_file(struct dentry *dentry)
1664 {
1665 /* Is this a proxy for a mount namespace? */
1666 return dentry->d_op == &ns_dentry_operations &&
1667 dentry->d_fsdata == &mntns_operations;
1668 }
1669
1670 struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1671 {
1672 return container_of(ns, struct mnt_namespace, ns);
1673 }
1674
1675 static bool mnt_ns_loop(struct dentry *dentry)
1676 {
1677 /* Could bind mounting the mount namespace inode cause a
1678 * mount namespace loop?
1679 */
1680 struct mnt_namespace *mnt_ns;
1681 if (!is_mnt_ns_file(dentry))
1682 return false;
1683
1684 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1685 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1686 }
1687
1688 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1689 int flag)
1690 {
1691 struct mount *res, *p, *q, *r, *parent;
1692
1693 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1694 return ERR_PTR(-EINVAL);
1695
1696 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1697 return ERR_PTR(-EINVAL);
1698
1699 res = q = clone_mnt(mnt, dentry, flag);
1700 if (IS_ERR(q))
1701 return q;
1702
1703 q->mnt_mountpoint = mnt->mnt_mountpoint;
1704
1705 p = mnt;
1706 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1707 struct mount *s;
1708 if (!is_subdir(r->mnt_mountpoint, dentry))
1709 continue;
1710
1711 for (s = r; s; s = next_mnt(s, r)) {
1712 struct mount *t = NULL;
1713 if (!(flag & CL_COPY_UNBINDABLE) &&
1714 IS_MNT_UNBINDABLE(s)) {
1715 s = skip_mnt_tree(s);
1716 continue;
1717 }
1718 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1719 is_mnt_ns_file(s->mnt.mnt_root)) {
1720 s = skip_mnt_tree(s);
1721 continue;
1722 }
1723 while (p != s->mnt_parent) {
1724 p = p->mnt_parent;
1725 q = q->mnt_parent;
1726 }
1727 p = s;
1728 parent = q;
1729 q = clone_mnt(p, p->mnt.mnt_root, flag);
1730 if (IS_ERR(q))
1731 goto out;
1732 lock_mount_hash();
1733 list_add_tail(&q->mnt_list, &res->mnt_list);
1734 mnt_set_mountpoint(parent, p->mnt_mp, q);
1735 if (!list_empty(&parent->mnt_mounts)) {
1736 t = list_last_entry(&parent->mnt_mounts,
1737 struct mount, mnt_child);
1738 if (t->mnt_mp != p->mnt_mp)
1739 t = NULL;
1740 }
1741 attach_shadowed(q, parent, t);
1742 unlock_mount_hash();
1743 }
1744 }
1745 return res;
1746 out:
1747 if (res) {
1748 lock_mount_hash();
1749 umount_tree(res, UMOUNT_SYNC);
1750 unlock_mount_hash();
1751 }
1752 return q;
1753 }
1754
1755 /* Caller should check returned pointer for errors */
1756
1757 struct vfsmount *collect_mounts(struct path *path)
1758 {
1759 struct mount *tree;
1760 namespace_lock();
1761 if (!check_mnt(real_mount(path->mnt)))
1762 tree = ERR_PTR(-EINVAL);
1763 else
1764 tree = copy_tree(real_mount(path->mnt), path->dentry,
1765 CL_COPY_ALL | CL_PRIVATE);
1766 namespace_unlock();
1767 if (IS_ERR(tree))
1768 return ERR_CAST(tree);
1769 return &tree->mnt;
1770 }
1771
1772 void drop_collected_mounts(struct vfsmount *mnt)
1773 {
1774 namespace_lock();
1775 lock_mount_hash();
1776 umount_tree(real_mount(mnt), UMOUNT_SYNC);
1777 unlock_mount_hash();
1778 namespace_unlock();
1779 }
1780
1781 /**
1782 * clone_private_mount - create a private clone of a path
1783 *
1784 * This creates a new vfsmount, which will be the clone of @path. The new will
1785 * not be attached anywhere in the namespace and will be private (i.e. changes
1786 * to the originating mount won't be propagated into this).
1787 *
1788 * Release with mntput().
1789 */
1790 struct vfsmount *clone_private_mount(struct path *path)
1791 {
1792 struct mount *old_mnt = real_mount(path->mnt);
1793 struct mount *new_mnt;
1794
1795 if (IS_MNT_UNBINDABLE(old_mnt))
1796 return ERR_PTR(-EINVAL);
1797
1798 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1799 if (IS_ERR(new_mnt))
1800 return ERR_CAST(new_mnt);
1801
1802 return &new_mnt->mnt;
1803 }
1804 EXPORT_SYMBOL_GPL(clone_private_mount);
1805
1806 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1807 struct vfsmount *root)
1808 {
1809 struct mount *mnt;
1810 int res = f(root, arg);
1811 if (res)
1812 return res;
1813 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1814 res = f(&mnt->mnt, arg);
1815 if (res)
1816 return res;
1817 }
1818 return 0;
1819 }
1820
1821 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1822 {
1823 struct mount *p;
1824
1825 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1826 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1827 mnt_release_group_id(p);
1828 }
1829 }
1830
1831 static int invent_group_ids(struct mount *mnt, bool recurse)
1832 {
1833 struct mount *p;
1834
1835 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1836 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1837 int err = mnt_alloc_group_id(p);
1838 if (err) {
1839 cleanup_group_ids(mnt, p);
1840 return err;
1841 }
1842 }
1843 }
1844
1845 return 0;
1846 }
1847
1848 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1849 {
1850 unsigned int max = READ_ONCE(sysctl_mount_max);
1851 unsigned int mounts = 0, old, pending, sum;
1852 struct mount *p;
1853
1854 for (p = mnt; p; p = next_mnt(p, mnt))
1855 mounts++;
1856
1857 old = ns->mounts;
1858 pending = ns->pending_mounts;
1859 sum = old + pending;
1860 if ((old > sum) ||
1861 (pending > sum) ||
1862 (max < sum) ||
1863 (mounts > (max - sum)))
1864 return -ENOSPC;
1865
1866 ns->pending_mounts = pending + mounts;
1867 return 0;
1868 }
1869
1870 /*
1871 * @source_mnt : mount tree to be attached
1872 * @nd : place the mount tree @source_mnt is attached
1873 * @parent_nd : if non-null, detach the source_mnt from its parent and
1874 * store the parent mount and mountpoint dentry.
1875 * (done when source_mnt is moved)
1876 *
1877 * NOTE: in the table below explains the semantics when a source mount
1878 * of a given type is attached to a destination mount of a given type.
1879 * ---------------------------------------------------------------------------
1880 * | BIND MOUNT OPERATION |
1881 * |**************************************************************************
1882 * | source-->| shared | private | slave | unbindable |
1883 * | dest | | | | |
1884 * | | | | | | |
1885 * | v | | | | |
1886 * |**************************************************************************
1887 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1888 * | | | | | |
1889 * |non-shared| shared (+) | private | slave (*) | invalid |
1890 * ***************************************************************************
1891 * A bind operation clones the source mount and mounts the clone on the
1892 * destination mount.
1893 *
1894 * (++) the cloned mount is propagated to all the mounts in the propagation
1895 * tree of the destination mount and the cloned mount is added to
1896 * the peer group of the source mount.
1897 * (+) the cloned mount is created under the destination mount and is marked
1898 * as shared. The cloned mount is added to the peer group of the source
1899 * mount.
1900 * (+++) the mount is propagated to all the mounts in the propagation tree
1901 * of the destination mount and the cloned mount is made slave
1902 * of the same master as that of the source mount. The cloned mount
1903 * is marked as 'shared and slave'.
1904 * (*) the cloned mount is made a slave of the same master as that of the
1905 * source mount.
1906 *
1907 * ---------------------------------------------------------------------------
1908 * | MOVE MOUNT OPERATION |
1909 * |**************************************************************************
1910 * | source-->| shared | private | slave | unbindable |
1911 * | dest | | | | |
1912 * | | | | | | |
1913 * | v | | | | |
1914 * |**************************************************************************
1915 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1916 * | | | | | |
1917 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1918 * ***************************************************************************
1919 *
1920 * (+) the mount is moved to the destination. And is then propagated to
1921 * all the mounts in the propagation tree of the destination mount.
1922 * (+*) the mount is moved to the destination.
1923 * (+++) the mount is moved to the destination and is then propagated to
1924 * all the mounts belonging to the destination mount's propagation tree.
1925 * the mount is marked as 'shared and slave'.
1926 * (*) the mount continues to be a slave at the new location.
1927 *
1928 * if the source mount is a tree, the operations explained above is
1929 * applied to each mount in the tree.
1930 * Must be called without spinlocks held, since this function can sleep
1931 * in allocations.
1932 */
1933 static int attach_recursive_mnt(struct mount *source_mnt,
1934 struct mount *dest_mnt,
1935 struct mountpoint *dest_mp,
1936 struct path *parent_path)
1937 {
1938 HLIST_HEAD(tree_list);
1939 struct mnt_namespace *ns = dest_mnt->mnt_ns;
1940 struct mount *child, *p;
1941 struct hlist_node *n;
1942 int err;
1943
1944 /* Is there space to add these mounts to the mount namespace? */
1945 if (!parent_path) {
1946 err = count_mounts(ns, source_mnt);
1947 if (err)
1948 goto out;
1949 }
1950
1951 if (IS_MNT_SHARED(dest_mnt)) {
1952 err = invent_group_ids(source_mnt, true);
1953 if (err)
1954 goto out;
1955 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
1956 lock_mount_hash();
1957 if (err)
1958 goto out_cleanup_ids;
1959 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1960 set_mnt_shared(p);
1961 } else {
1962 lock_mount_hash();
1963 }
1964 if (parent_path) {
1965 detach_mnt(source_mnt, parent_path);
1966 attach_mnt(source_mnt, dest_mnt, dest_mp);
1967 touch_mnt_namespace(source_mnt->mnt_ns);
1968 } else {
1969 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1970 commit_tree(source_mnt, NULL);
1971 }
1972
1973 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1974 struct mount *q;
1975 hlist_del_init(&child->mnt_hash);
1976 q = __lookup_mnt_last(&child->mnt_parent->mnt,
1977 child->mnt_mountpoint);
1978 commit_tree(child, q);
1979 }
1980 unlock_mount_hash();
1981
1982 return 0;
1983
1984 out_cleanup_ids:
1985 while (!hlist_empty(&tree_list)) {
1986 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
1987 child->mnt_parent->mnt_ns->pending_mounts = 0;
1988 umount_tree(child, UMOUNT_SYNC);
1989 }
1990 unlock_mount_hash();
1991 cleanup_group_ids(source_mnt, NULL);
1992 out:
1993 ns->pending_mounts = 0;
1994 return err;
1995 }
1996
1997 static struct mountpoint *lock_mount(struct path *path)
1998 {
1999 struct vfsmount *mnt;
2000 struct dentry *dentry = path->dentry;
2001 retry:
2002 inode_lock(dentry->d_inode);
2003 if (unlikely(cant_mount(dentry))) {
2004 inode_unlock(dentry->d_inode);
2005 return ERR_PTR(-ENOENT);
2006 }
2007 namespace_lock();
2008 mnt = lookup_mnt(path);
2009 if (likely(!mnt)) {
2010 struct mountpoint *mp = lookup_mountpoint(dentry);
2011 if (!mp)
2012 mp = new_mountpoint(dentry);
2013 if (IS_ERR(mp)) {
2014 namespace_unlock();
2015 inode_unlock(dentry->d_inode);
2016 return mp;
2017 }
2018 return mp;
2019 }
2020 namespace_unlock();
2021 inode_unlock(path->dentry->d_inode);
2022 path_put(path);
2023 path->mnt = mnt;
2024 dentry = path->dentry = dget(mnt->mnt_root);
2025 goto retry;
2026 }
2027
2028 static void unlock_mount(struct mountpoint *where)
2029 {
2030 struct dentry *dentry = where->m_dentry;
2031 put_mountpoint(where);
2032 namespace_unlock();
2033 inode_unlock(dentry->d_inode);
2034 }
2035
2036 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2037 {
2038 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
2039 return -EINVAL;
2040
2041 if (d_is_dir(mp->m_dentry) !=
2042 d_is_dir(mnt->mnt.mnt_root))
2043 return -ENOTDIR;
2044
2045 return attach_recursive_mnt(mnt, p, mp, NULL);
2046 }
2047
2048 /*
2049 * Sanity check the flags to change_mnt_propagation.
2050 */
2051
2052 static int flags_to_propagation_type(int flags)
2053 {
2054 int type = flags & ~(MS_REC | MS_SILENT);
2055
2056 /* Fail if any non-propagation flags are set */
2057 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2058 return 0;
2059 /* Only one propagation flag should be set */
2060 if (!is_power_of_2(type))
2061 return 0;
2062 return type;
2063 }
2064
2065 /*
2066 * recursively change the type of the mountpoint.
2067 */
2068 static int do_change_type(struct path *path, int flag)
2069 {
2070 struct mount *m;
2071 struct mount *mnt = real_mount(path->mnt);
2072 int recurse = flag & MS_REC;
2073 int type;
2074 int err = 0;
2075
2076 if (path->dentry != path->mnt->mnt_root)
2077 return -EINVAL;
2078
2079 type = flags_to_propagation_type(flag);
2080 if (!type)
2081 return -EINVAL;
2082
2083 namespace_lock();
2084 if (type == MS_SHARED) {
2085 err = invent_group_ids(mnt, recurse);
2086 if (err)
2087 goto out_unlock;
2088 }
2089
2090 lock_mount_hash();
2091 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2092 change_mnt_propagation(m, type);
2093 unlock_mount_hash();
2094
2095 out_unlock:
2096 namespace_unlock();
2097 return err;
2098 }
2099
2100 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2101 {
2102 struct mount *child;
2103 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2104 if (!is_subdir(child->mnt_mountpoint, dentry))
2105 continue;
2106
2107 if (child->mnt.mnt_flags & MNT_LOCKED)
2108 return true;
2109 }
2110 return false;
2111 }
2112
2113 /*
2114 * do loopback mount.
2115 */
2116 static int do_loopback(struct path *path, const char *old_name,
2117 int recurse)
2118 {
2119 struct path old_path;
2120 struct mount *mnt = NULL, *old, *parent;
2121 struct mountpoint *mp;
2122 int err;
2123 if (!old_name || !*old_name)
2124 return -EINVAL;
2125 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2126 if (err)
2127 return err;
2128
2129 err = -EINVAL;
2130 if (mnt_ns_loop(old_path.dentry))
2131 goto out;
2132
2133 mp = lock_mount(path);
2134 err = PTR_ERR(mp);
2135 if (IS_ERR(mp))
2136 goto out;
2137
2138 old = real_mount(old_path.mnt);
2139 parent = real_mount(path->mnt);
2140
2141 err = -EINVAL;
2142 if (IS_MNT_UNBINDABLE(old))
2143 goto out2;
2144
2145 if (!check_mnt(parent))
2146 goto out2;
2147
2148 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
2149 goto out2;
2150
2151 if (!recurse && has_locked_children(old, old_path.dentry))
2152 goto out2;
2153
2154 if (recurse)
2155 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
2156 else
2157 mnt = clone_mnt(old, old_path.dentry, 0);
2158
2159 if (IS_ERR(mnt)) {
2160 err = PTR_ERR(mnt);
2161 goto out2;
2162 }
2163
2164 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2165
2166 err = graft_tree(mnt, parent, mp);
2167 if (err) {
2168 lock_mount_hash();
2169 umount_tree(mnt, UMOUNT_SYNC);
2170 unlock_mount_hash();
2171 }
2172 out2:
2173 unlock_mount(mp);
2174 out:
2175 path_put(&old_path);
2176 return err;
2177 }
2178
2179 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2180 {
2181 int error = 0;
2182 int readonly_request = 0;
2183
2184 if (ms_flags & MS_RDONLY)
2185 readonly_request = 1;
2186 if (readonly_request == __mnt_is_readonly(mnt))
2187 return 0;
2188
2189 if (readonly_request)
2190 error = mnt_make_readonly(real_mount(mnt));
2191 else
2192 __mnt_unmake_readonly(real_mount(mnt));
2193 return error;
2194 }
2195
2196 /*
2197 * change filesystem flags. dir should be a physical root of filesystem.
2198 * If you've mounted a non-root directory somewhere and want to do remount
2199 * on it - tough luck.
2200 */
2201 static int do_remount(struct path *path, int flags, int mnt_flags,
2202 void *data)
2203 {
2204 int err;
2205 struct super_block *sb = path->mnt->mnt_sb;
2206 struct mount *mnt = real_mount(path->mnt);
2207
2208 if (!check_mnt(mnt))
2209 return -EINVAL;
2210
2211 if (path->dentry != path->mnt->mnt_root)
2212 return -EINVAL;
2213
2214 /* Don't allow changing of locked mnt flags.
2215 *
2216 * No locks need to be held here while testing the various
2217 * MNT_LOCK flags because those flags can never be cleared
2218 * once they are set.
2219 */
2220 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2221 !(mnt_flags & MNT_READONLY)) {
2222 return -EPERM;
2223 }
2224 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2225 !(mnt_flags & MNT_NODEV)) {
2226 return -EPERM;
2227 }
2228 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2229 !(mnt_flags & MNT_NOSUID)) {
2230 return -EPERM;
2231 }
2232 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2233 !(mnt_flags & MNT_NOEXEC)) {
2234 return -EPERM;
2235 }
2236 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2237 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2238 return -EPERM;
2239 }
2240
2241 err = security_sb_remount(sb, data);
2242 if (err)
2243 return err;
2244
2245 down_write(&sb->s_umount);
2246 if (flags & MS_BIND)
2247 err = change_mount_flags(path->mnt, flags);
2248 else if (!capable(CAP_SYS_ADMIN))
2249 err = -EPERM;
2250 else
2251 err = do_remount_sb(sb, flags, data, 0);
2252 if (!err) {
2253 lock_mount_hash();
2254 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2255 mnt->mnt.mnt_flags = mnt_flags;
2256 touch_mnt_namespace(mnt->mnt_ns);
2257 unlock_mount_hash();
2258 }
2259 up_write(&sb->s_umount);
2260 return err;
2261 }
2262
2263 static inline int tree_contains_unbindable(struct mount *mnt)
2264 {
2265 struct mount *p;
2266 for (p = mnt; p; p = next_mnt(p, mnt)) {
2267 if (IS_MNT_UNBINDABLE(p))
2268 return 1;
2269 }
2270 return 0;
2271 }
2272
2273 static int do_move_mount(struct path *path, const char *old_name)
2274 {
2275 struct path old_path, parent_path;
2276 struct mount *p;
2277 struct mount *old;
2278 struct mountpoint *mp;
2279 int err;
2280 if (!old_name || !*old_name)
2281 return -EINVAL;
2282 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2283 if (err)
2284 return err;
2285
2286 mp = lock_mount(path);
2287 err = PTR_ERR(mp);
2288 if (IS_ERR(mp))
2289 goto out;
2290
2291 old = real_mount(old_path.mnt);
2292 p = real_mount(path->mnt);
2293
2294 err = -EINVAL;
2295 if (!check_mnt(p) || !check_mnt(old))
2296 goto out1;
2297
2298 if (old->mnt.mnt_flags & MNT_LOCKED)
2299 goto out1;
2300
2301 err = -EINVAL;
2302 if (old_path.dentry != old_path.mnt->mnt_root)
2303 goto out1;
2304
2305 if (!mnt_has_parent(old))
2306 goto out1;
2307
2308 if (d_is_dir(path->dentry) !=
2309 d_is_dir(old_path.dentry))
2310 goto out1;
2311 /*
2312 * Don't move a mount residing in a shared parent.
2313 */
2314 if (IS_MNT_SHARED(old->mnt_parent))
2315 goto out1;
2316 /*
2317 * Don't move a mount tree containing unbindable mounts to a destination
2318 * mount which is shared.
2319 */
2320 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2321 goto out1;
2322 err = -ELOOP;
2323 for (; mnt_has_parent(p); p = p->mnt_parent)
2324 if (p == old)
2325 goto out1;
2326
2327 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2328 if (err)
2329 goto out1;
2330
2331 /* if the mount is moved, it should no longer be expire
2332 * automatically */
2333 list_del_init(&old->mnt_expire);
2334 out1:
2335 unlock_mount(mp);
2336 out:
2337 if (!err)
2338 path_put(&parent_path);
2339 path_put(&old_path);
2340 return err;
2341 }
2342
2343 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2344 {
2345 int err;
2346 const char *subtype = strchr(fstype, '.');
2347 if (subtype) {
2348 subtype++;
2349 err = -EINVAL;
2350 if (!subtype[0])
2351 goto err;
2352 } else
2353 subtype = "";
2354
2355 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2356 err = -ENOMEM;
2357 if (!mnt->mnt_sb->s_subtype)
2358 goto err;
2359 return mnt;
2360
2361 err:
2362 mntput(mnt);
2363 return ERR_PTR(err);
2364 }
2365
2366 /*
2367 * add a mount into a namespace's mount tree
2368 */
2369 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2370 {
2371 struct mountpoint *mp;
2372 struct mount *parent;
2373 int err;
2374
2375 mnt_flags &= ~MNT_INTERNAL_FLAGS;
2376
2377 mp = lock_mount(path);
2378 if (IS_ERR(mp))
2379 return PTR_ERR(mp);
2380
2381 parent = real_mount(path->mnt);
2382 err = -EINVAL;
2383 if (unlikely(!check_mnt(parent))) {
2384 /* that's acceptable only for automounts done in private ns */
2385 if (!(mnt_flags & MNT_SHRINKABLE))
2386 goto unlock;
2387 /* ... and for those we'd better have mountpoint still alive */
2388 if (!parent->mnt_ns)
2389 goto unlock;
2390 }
2391
2392 /* Refuse the same filesystem on the same mount point */
2393 err = -EBUSY;
2394 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2395 path->mnt->mnt_root == path->dentry)
2396 goto unlock;
2397
2398 err = -EINVAL;
2399 if (d_is_symlink(newmnt->mnt.mnt_root))
2400 goto unlock;
2401
2402 newmnt->mnt.mnt_flags = mnt_flags;
2403 err = graft_tree(newmnt, parent, mp);
2404
2405 unlock:
2406 unlock_mount(mp);
2407 return err;
2408 }
2409
2410 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags);
2411
2412 /*
2413 * create a new mount for userspace and request it to be added into the
2414 * namespace's tree
2415 */
2416 static int do_new_mount(struct path *path, const char *fstype, int flags,
2417 int mnt_flags, const char *name, void *data)
2418 {
2419 struct file_system_type *type;
2420 struct vfsmount *mnt;
2421 int err;
2422
2423 if (!fstype)
2424 return -EINVAL;
2425
2426 type = get_fs_type(fstype);
2427 if (!type)
2428 return -ENODEV;
2429
2430 mnt = vfs_kern_mount(type, flags, name, data);
2431 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2432 !mnt->mnt_sb->s_subtype)
2433 mnt = fs_set_subtype(mnt, fstype);
2434
2435 put_filesystem(type);
2436 if (IS_ERR(mnt))
2437 return PTR_ERR(mnt);
2438
2439 if (mount_too_revealing(mnt, &mnt_flags)) {
2440 mntput(mnt);
2441 return -EPERM;
2442 }
2443
2444 err = do_add_mount(real_mount(mnt), path, mnt_flags);
2445 if (err)
2446 mntput(mnt);
2447 return err;
2448 }
2449
2450 int finish_automount(struct vfsmount *m, struct path *path)
2451 {
2452 struct mount *mnt = real_mount(m);
2453 int err;
2454 /* The new mount record should have at least 2 refs to prevent it being
2455 * expired before we get a chance to add it
2456 */
2457 BUG_ON(mnt_get_count(mnt) < 2);
2458
2459 if (m->mnt_sb == path->mnt->mnt_sb &&
2460 m->mnt_root == path->dentry) {
2461 err = -ELOOP;
2462 goto fail;
2463 }
2464
2465 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2466 if (!err)
2467 return 0;
2468 fail:
2469 /* remove m from any expiration list it may be on */
2470 if (!list_empty(&mnt->mnt_expire)) {
2471 namespace_lock();
2472 list_del_init(&mnt->mnt_expire);
2473 namespace_unlock();
2474 }
2475 mntput(m);
2476 mntput(m);
2477 return err;
2478 }
2479
2480 /**
2481 * mnt_set_expiry - Put a mount on an expiration list
2482 * @mnt: The mount to list.
2483 * @expiry_list: The list to add the mount to.
2484 */
2485 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2486 {
2487 namespace_lock();
2488
2489 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2490
2491 namespace_unlock();
2492 }
2493 EXPORT_SYMBOL(mnt_set_expiry);
2494
2495 /*
2496 * process a list of expirable mountpoints with the intent of discarding any
2497 * mountpoints that aren't in use and haven't been touched since last we came
2498 * here
2499 */
2500 void mark_mounts_for_expiry(struct list_head *mounts)
2501 {
2502 struct mount *mnt, *next;
2503 LIST_HEAD(graveyard);
2504
2505 if (list_empty(mounts))
2506 return;
2507
2508 namespace_lock();
2509 lock_mount_hash();
2510
2511 /* extract from the expiration list every vfsmount that matches the
2512 * following criteria:
2513 * - only referenced by its parent vfsmount
2514 * - still marked for expiry (marked on the last call here; marks are
2515 * cleared by mntput())
2516 */
2517 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2518 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2519 propagate_mount_busy(mnt, 1))
2520 continue;
2521 list_move(&mnt->mnt_expire, &graveyard);
2522 }
2523 while (!list_empty(&graveyard)) {
2524 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2525 touch_mnt_namespace(mnt->mnt_ns);
2526 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2527 }
2528 unlock_mount_hash();
2529 namespace_unlock();
2530 }
2531
2532 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2533
2534 /*
2535 * Ripoff of 'select_parent()'
2536 *
2537 * search the list of submounts for a given mountpoint, and move any
2538 * shrinkable submounts to the 'graveyard' list.
2539 */
2540 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2541 {
2542 struct mount *this_parent = parent;
2543 struct list_head *next;
2544 int found = 0;
2545
2546 repeat:
2547 next = this_parent->mnt_mounts.next;
2548 resume:
2549 while (next != &this_parent->mnt_mounts) {
2550 struct list_head *tmp = next;
2551 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2552
2553 next = tmp->next;
2554 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2555 continue;
2556 /*
2557 * Descend a level if the d_mounts list is non-empty.
2558 */
2559 if (!list_empty(&mnt->mnt_mounts)) {
2560 this_parent = mnt;
2561 goto repeat;
2562 }
2563
2564 if (!propagate_mount_busy(mnt, 1)) {
2565 list_move_tail(&mnt->mnt_expire, graveyard);
2566 found++;
2567 }
2568 }
2569 /*
2570 * All done at this level ... ascend and resume the search
2571 */
2572 if (this_parent != parent) {
2573 next = this_parent->mnt_child.next;
2574 this_parent = this_parent->mnt_parent;
2575 goto resume;
2576 }
2577 return found;
2578 }
2579
2580 /*
2581 * process a list of expirable mountpoints with the intent of discarding any
2582 * submounts of a specific parent mountpoint
2583 *
2584 * mount_lock must be held for write
2585 */
2586 static void shrink_submounts(struct mount *mnt)
2587 {
2588 LIST_HEAD(graveyard);
2589 struct mount *m;
2590
2591 /* extract submounts of 'mountpoint' from the expiration list */
2592 while (select_submounts(mnt, &graveyard)) {
2593 while (!list_empty(&graveyard)) {
2594 m = list_first_entry(&graveyard, struct mount,
2595 mnt_expire);
2596 touch_mnt_namespace(m->mnt_ns);
2597 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2598 }
2599 }
2600 }
2601
2602 /*
2603 * Some copy_from_user() implementations do not return the exact number of
2604 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2605 * Note that this function differs from copy_from_user() in that it will oops
2606 * on bad values of `to', rather than returning a short copy.
2607 */
2608 static long exact_copy_from_user(void *to, const void __user * from,
2609 unsigned long n)
2610 {
2611 char *t = to;
2612 const char __user *f = from;
2613 char c;
2614
2615 if (!access_ok(VERIFY_READ, from, n))
2616 return n;
2617
2618 while (n) {
2619 if (__get_user(c, f)) {
2620 memset(t, 0, n);
2621 break;
2622 }
2623 *t++ = c;
2624 f++;
2625 n--;
2626 }
2627 return n;
2628 }
2629
2630 void *copy_mount_options(const void __user * data)
2631 {
2632 int i;
2633 unsigned long size;
2634 char *copy;
2635
2636 if (!data)
2637 return NULL;
2638
2639 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
2640 if (!copy)
2641 return ERR_PTR(-ENOMEM);
2642
2643 /* We only care that *some* data at the address the user
2644 * gave us is valid. Just in case, we'll zero
2645 * the remainder of the page.
2646 */
2647 /* copy_from_user cannot cross TASK_SIZE ! */
2648 size = TASK_SIZE - (unsigned long)data;
2649 if (size > PAGE_SIZE)
2650 size = PAGE_SIZE;
2651
2652 i = size - exact_copy_from_user(copy, data, size);
2653 if (!i) {
2654 kfree(copy);
2655 return ERR_PTR(-EFAULT);
2656 }
2657 if (i != PAGE_SIZE)
2658 memset(copy + i, 0, PAGE_SIZE - i);
2659 return copy;
2660 }
2661
2662 char *copy_mount_string(const void __user *data)
2663 {
2664 return data ? strndup_user(data, PAGE_SIZE) : NULL;
2665 }
2666
2667 /*
2668 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2669 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2670 *
2671 * data is a (void *) that can point to any structure up to
2672 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2673 * information (or be NULL).
2674 *
2675 * Pre-0.97 versions of mount() didn't have a flags word.
2676 * When the flags word was introduced its top half was required
2677 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2678 * Therefore, if this magic number is present, it carries no information
2679 * and must be discarded.
2680 */
2681 long do_mount(const char *dev_name, const char __user *dir_name,
2682 const char *type_page, unsigned long flags, void *data_page)
2683 {
2684 struct path path;
2685 int retval = 0;
2686 int mnt_flags = 0;
2687
2688 /* Discard magic */
2689 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2690 flags &= ~MS_MGC_MSK;
2691
2692 /* Basic sanity checks */
2693 if (data_page)
2694 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2695
2696 /* ... and get the mountpoint */
2697 retval = user_path(dir_name, &path);
2698 if (retval)
2699 return retval;
2700
2701 retval = security_sb_mount(dev_name, &path,
2702 type_page, flags, data_page);
2703 if (!retval && !may_mount())
2704 retval = -EPERM;
2705 if (!retval && (flags & MS_MANDLOCK) && !may_mandlock())
2706 retval = -EPERM;
2707 if (retval)
2708 goto dput_out;
2709
2710 /* Default to relatime unless overriden */
2711 if (!(flags & MS_NOATIME))
2712 mnt_flags |= MNT_RELATIME;
2713
2714 /* Separate the per-mountpoint flags */
2715 if (flags & MS_NOSUID)
2716 mnt_flags |= MNT_NOSUID;
2717 if (flags & MS_NODEV)
2718 mnt_flags |= MNT_NODEV;
2719 if (flags & MS_NOEXEC)
2720 mnt_flags |= MNT_NOEXEC;
2721 if (flags & MS_NOATIME)
2722 mnt_flags |= MNT_NOATIME;
2723 if (flags & MS_NODIRATIME)
2724 mnt_flags |= MNT_NODIRATIME;
2725 if (flags & MS_STRICTATIME)
2726 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2727 if (flags & MS_RDONLY)
2728 mnt_flags |= MNT_READONLY;
2729
2730 /* The default atime for remount is preservation */
2731 if ((flags & MS_REMOUNT) &&
2732 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2733 MS_STRICTATIME)) == 0)) {
2734 mnt_flags &= ~MNT_ATIME_MASK;
2735 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2736 }
2737
2738 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2739 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2740 MS_STRICTATIME | MS_NOREMOTELOCK);
2741
2742 if (flags & MS_REMOUNT)
2743 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2744 data_page);
2745 else if (flags & MS_BIND)
2746 retval = do_loopback(&path, dev_name, flags & MS_REC);
2747 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2748 retval = do_change_type(&path, flags);
2749 else if (flags & MS_MOVE)
2750 retval = do_move_mount(&path, dev_name);
2751 else
2752 retval = do_new_mount(&path, type_page, flags, mnt_flags,
2753 dev_name, data_page);
2754 dput_out:
2755 path_put(&path);
2756 return retval;
2757 }
2758
2759 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
2760 {
2761 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
2762 }
2763
2764 static void dec_mnt_namespaces(struct ucounts *ucounts)
2765 {
2766 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
2767 }
2768
2769 static void free_mnt_ns(struct mnt_namespace *ns)
2770 {
2771 ns_free_inum(&ns->ns);
2772 dec_mnt_namespaces(ns->ucounts);
2773 put_user_ns(ns->user_ns);
2774 kfree(ns);
2775 }
2776
2777 /*
2778 * Assign a sequence number so we can detect when we attempt to bind
2779 * mount a reference to an older mount namespace into the current
2780 * mount namespace, preventing reference counting loops. A 64bit
2781 * number incrementing at 10Ghz will take 12,427 years to wrap which
2782 * is effectively never, so we can ignore the possibility.
2783 */
2784 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2785
2786 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2787 {
2788 struct mnt_namespace *new_ns;
2789 struct ucounts *ucounts;
2790 int ret;
2791
2792 ucounts = inc_mnt_namespaces(user_ns);
2793 if (!ucounts)
2794 return ERR_PTR(-ENOSPC);
2795
2796 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2797 if (!new_ns) {
2798 dec_mnt_namespaces(ucounts);
2799 return ERR_PTR(-ENOMEM);
2800 }
2801 ret = ns_alloc_inum(&new_ns->ns);
2802 if (ret) {
2803 kfree(new_ns);
2804 dec_mnt_namespaces(ucounts);
2805 return ERR_PTR(ret);
2806 }
2807 new_ns->ns.ops = &mntns_operations;
2808 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2809 atomic_set(&new_ns->count, 1);
2810 new_ns->root = NULL;
2811 INIT_LIST_HEAD(&new_ns->list);
2812 init_waitqueue_head(&new_ns->poll);
2813 new_ns->event = 0;
2814 new_ns->user_ns = get_user_ns(user_ns);
2815 new_ns->ucounts = ucounts;
2816 new_ns->mounts = 0;
2817 new_ns->pending_mounts = 0;
2818 return new_ns;
2819 }
2820
2821 __latent_entropy
2822 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2823 struct user_namespace *user_ns, struct fs_struct *new_fs)
2824 {
2825 struct mnt_namespace *new_ns;
2826 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2827 struct mount *p, *q;
2828 struct mount *old;
2829 struct mount *new;
2830 int copy_flags;
2831
2832 BUG_ON(!ns);
2833
2834 if (likely(!(flags & CLONE_NEWNS))) {
2835 get_mnt_ns(ns);
2836 return ns;
2837 }
2838
2839 old = ns->root;
2840
2841 new_ns = alloc_mnt_ns(user_ns);
2842 if (IS_ERR(new_ns))
2843 return new_ns;
2844
2845 namespace_lock();
2846 /* First pass: copy the tree topology */
2847 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2848 if (user_ns != ns->user_ns)
2849 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2850 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2851 if (IS_ERR(new)) {
2852 namespace_unlock();
2853 free_mnt_ns(new_ns);
2854 return ERR_CAST(new);
2855 }
2856 new_ns->root = new;
2857 list_add_tail(&new_ns->list, &new->mnt_list);
2858
2859 /*
2860 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2861 * as belonging to new namespace. We have already acquired a private
2862 * fs_struct, so tsk->fs->lock is not needed.
2863 */
2864 p = old;
2865 q = new;
2866 while (p) {
2867 q->mnt_ns = new_ns;
2868 new_ns->mounts++;
2869 if (new_fs) {
2870 if (&p->mnt == new_fs->root.mnt) {
2871 new_fs->root.mnt = mntget(&q->mnt);
2872 rootmnt = &p->mnt;
2873 }
2874 if (&p->mnt == new_fs->pwd.mnt) {
2875 new_fs->pwd.mnt = mntget(&q->mnt);
2876 pwdmnt = &p->mnt;
2877 }
2878 }
2879 p = next_mnt(p, old);
2880 q = next_mnt(q, new);
2881 if (!q)
2882 break;
2883 while (p->mnt.mnt_root != q->mnt.mnt_root)
2884 p = next_mnt(p, old);
2885 }
2886 namespace_unlock();
2887
2888 if (rootmnt)
2889 mntput(rootmnt);
2890 if (pwdmnt)
2891 mntput(pwdmnt);
2892
2893 return new_ns;
2894 }
2895
2896 /**
2897 * create_mnt_ns - creates a private namespace and adds a root filesystem
2898 * @mnt: pointer to the new root filesystem mountpoint
2899 */
2900 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2901 {
2902 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2903 if (!IS_ERR(new_ns)) {
2904 struct mount *mnt = real_mount(m);
2905 mnt->mnt_ns = new_ns;
2906 new_ns->root = mnt;
2907 new_ns->mounts++;
2908 list_add(&mnt->mnt_list, &new_ns->list);
2909 } else {
2910 mntput(m);
2911 }
2912 return new_ns;
2913 }
2914
2915 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2916 {
2917 struct mnt_namespace *ns;
2918 struct super_block *s;
2919 struct path path;
2920 int err;
2921
2922 ns = create_mnt_ns(mnt);
2923 if (IS_ERR(ns))
2924 return ERR_CAST(ns);
2925
2926 err = vfs_path_lookup(mnt->mnt_root, mnt,
2927 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2928
2929 put_mnt_ns(ns);
2930
2931 if (err)
2932 return ERR_PTR(err);
2933
2934 /* trade a vfsmount reference for active sb one */
2935 s = path.mnt->mnt_sb;
2936 atomic_inc(&s->s_active);
2937 mntput(path.mnt);
2938 /* lock the sucker */
2939 down_write(&s->s_umount);
2940 /* ... and return the root of (sub)tree on it */
2941 return path.dentry;
2942 }
2943 EXPORT_SYMBOL(mount_subtree);
2944
2945 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2946 char __user *, type, unsigned long, flags, void __user *, data)
2947 {
2948 int ret;
2949 char *kernel_type;
2950 char *kernel_dev;
2951 void *options;
2952
2953 kernel_type = copy_mount_string(type);
2954 ret = PTR_ERR(kernel_type);
2955 if (IS_ERR(kernel_type))
2956 goto out_type;
2957
2958 kernel_dev = copy_mount_string(dev_name);
2959 ret = PTR_ERR(kernel_dev);
2960 if (IS_ERR(kernel_dev))
2961 goto out_dev;
2962
2963 options = copy_mount_options(data);
2964 ret = PTR_ERR(options);
2965 if (IS_ERR(options))
2966 goto out_data;
2967
2968 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
2969
2970 kfree(options);
2971 out_data:
2972 kfree(kernel_dev);
2973 out_dev:
2974 kfree(kernel_type);
2975 out_type:
2976 return ret;
2977 }
2978
2979 /*
2980 * Return true if path is reachable from root
2981 *
2982 * namespace_sem or mount_lock is held
2983 */
2984 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
2985 const struct path *root)
2986 {
2987 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
2988 dentry = mnt->mnt_mountpoint;
2989 mnt = mnt->mnt_parent;
2990 }
2991 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
2992 }
2993
2994 bool path_is_under(struct path *path1, struct path *path2)
2995 {
2996 bool res;
2997 read_seqlock_excl(&mount_lock);
2998 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
2999 read_sequnlock_excl(&mount_lock);
3000 return res;
3001 }
3002 EXPORT_SYMBOL(path_is_under);
3003
3004 /*
3005 * pivot_root Semantics:
3006 * Moves the root file system of the current process to the directory put_old,
3007 * makes new_root as the new root file system of the current process, and sets
3008 * root/cwd of all processes which had them on the current root to new_root.
3009 *
3010 * Restrictions:
3011 * The new_root and put_old must be directories, and must not be on the
3012 * same file system as the current process root. The put_old must be
3013 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3014 * pointed to by put_old must yield the same directory as new_root. No other
3015 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3016 *
3017 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3018 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3019 * in this situation.
3020 *
3021 * Notes:
3022 * - we don't move root/cwd if they are not at the root (reason: if something
3023 * cared enough to change them, it's probably wrong to force them elsewhere)
3024 * - it's okay to pick a root that isn't the root of a file system, e.g.
3025 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3026 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3027 * first.
3028 */
3029 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3030 const char __user *, put_old)
3031 {
3032 struct path new, old, parent_path, root_parent, root;
3033 struct mount *new_mnt, *root_mnt, *old_mnt;
3034 struct mountpoint *old_mp, *root_mp;
3035 int error;
3036
3037 if (!may_mount())
3038 return -EPERM;
3039
3040 error = user_path_dir(new_root, &new);
3041 if (error)
3042 goto out0;
3043
3044 error = user_path_dir(put_old, &old);
3045 if (error)
3046 goto out1;
3047
3048 error = security_sb_pivotroot(&old, &new);
3049 if (error)
3050 goto out2;
3051
3052 get_fs_root(current->fs, &root);
3053 old_mp = lock_mount(&old);
3054 error = PTR_ERR(old_mp);
3055 if (IS_ERR(old_mp))
3056 goto out3;
3057
3058 error = -EINVAL;
3059 new_mnt = real_mount(new.mnt);
3060 root_mnt = real_mount(root.mnt);
3061 old_mnt = real_mount(old.mnt);
3062 if (IS_MNT_SHARED(old_mnt) ||
3063 IS_MNT_SHARED(new_mnt->mnt_parent) ||
3064 IS_MNT_SHARED(root_mnt->mnt_parent))
3065 goto out4;
3066 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3067 goto out4;
3068 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3069 goto out4;
3070 error = -ENOENT;
3071 if (d_unlinked(new.dentry))
3072 goto out4;
3073 error = -EBUSY;
3074 if (new_mnt == root_mnt || old_mnt == root_mnt)
3075 goto out4; /* loop, on the same file system */
3076 error = -EINVAL;
3077 if (root.mnt->mnt_root != root.dentry)
3078 goto out4; /* not a mountpoint */
3079 if (!mnt_has_parent(root_mnt))
3080 goto out4; /* not attached */
3081 root_mp = root_mnt->mnt_mp;
3082 if (new.mnt->mnt_root != new.dentry)
3083 goto out4; /* not a mountpoint */
3084 if (!mnt_has_parent(new_mnt))
3085 goto out4; /* not attached */
3086 /* make sure we can reach put_old from new_root */
3087 if (!is_path_reachable(old_mnt, old.dentry, &new))
3088 goto out4;
3089 /* make certain new is below the root */
3090 if (!is_path_reachable(new_mnt, new.dentry, &root))
3091 goto out4;
3092 root_mp->m_count++; /* pin it so it won't go away */
3093 lock_mount_hash();
3094 detach_mnt(new_mnt, &parent_path);
3095 detach_mnt(root_mnt, &root_parent);
3096 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3097 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3098 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3099 }
3100 /* mount old root on put_old */
3101 attach_mnt(root_mnt, old_mnt, old_mp);
3102 /* mount new_root on / */
3103 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
3104 touch_mnt_namespace(current->nsproxy->mnt_ns);
3105 /* A moved mount should not expire automatically */
3106 list_del_init(&new_mnt->mnt_expire);
3107 unlock_mount_hash();
3108 chroot_fs_refs(&root, &new);
3109 put_mountpoint(root_mp);
3110 error = 0;
3111 out4:
3112 unlock_mount(old_mp);
3113 if (!error) {
3114 path_put(&root_parent);
3115 path_put(&parent_path);
3116 }
3117 out3:
3118 path_put(&root);
3119 out2:
3120 path_put(&old);
3121 out1:
3122 path_put(&new);
3123 out0:
3124 return error;
3125 }
3126
3127 static void __init init_mount_tree(void)
3128 {
3129 struct vfsmount *mnt;
3130 struct mnt_namespace *ns;
3131 struct path root;
3132 struct file_system_type *type;
3133
3134 type = get_fs_type("rootfs");
3135 if (!type)
3136 panic("Can't find rootfs type");
3137 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3138 put_filesystem(type);
3139 if (IS_ERR(mnt))
3140 panic("Can't create rootfs");
3141
3142 ns = create_mnt_ns(mnt);
3143 if (IS_ERR(ns))
3144 panic("Can't allocate initial namespace");
3145
3146 init_task.nsproxy->mnt_ns = ns;
3147 get_mnt_ns(ns);
3148
3149 root.mnt = mnt;
3150 root.dentry = mnt->mnt_root;
3151 mnt->mnt_flags |= MNT_LOCKED;
3152
3153 set_fs_pwd(current->fs, &root);
3154 set_fs_root(current->fs, &root);
3155 }
3156
3157 void __init mnt_init(void)
3158 {
3159 unsigned u;
3160 int err;
3161
3162 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3163 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3164
3165 mount_hashtable = alloc_large_system_hash("Mount-cache",
3166 sizeof(struct hlist_head),
3167 mhash_entries, 19,
3168 0,
3169 &m_hash_shift, &m_hash_mask, 0, 0);
3170 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3171 sizeof(struct hlist_head),
3172 mphash_entries, 19,
3173 0,
3174 &mp_hash_shift, &mp_hash_mask, 0, 0);
3175
3176 if (!mount_hashtable || !mountpoint_hashtable)
3177 panic("Failed to allocate mount hash table\n");
3178
3179 for (u = 0; u <= m_hash_mask; u++)
3180 INIT_HLIST_HEAD(&mount_hashtable[u]);
3181 for (u = 0; u <= mp_hash_mask; u++)
3182 INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
3183
3184 kernfs_init();
3185
3186 err = sysfs_init();
3187 if (err)
3188 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3189 __func__, err);
3190 fs_kobj = kobject_create_and_add("fs", NULL);
3191 if (!fs_kobj)
3192 printk(KERN_WARNING "%s: kobj create error\n", __func__);
3193 init_rootfs();
3194 init_mount_tree();
3195 }
3196
3197 void put_mnt_ns(struct mnt_namespace *ns)
3198 {
3199 if (!atomic_dec_and_test(&ns->count))
3200 return;
3201 drop_collected_mounts(&ns->root->mnt);
3202 free_mnt_ns(ns);
3203 }
3204
3205 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3206 {
3207 struct vfsmount *mnt;
3208 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
3209 if (!IS_ERR(mnt)) {
3210 /*
3211 * it is a longterm mount, don't release mnt until
3212 * we unmount before file sys is unregistered
3213 */
3214 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3215 }
3216 return mnt;
3217 }
3218 EXPORT_SYMBOL_GPL(kern_mount_data);
3219
3220 void kern_unmount(struct vfsmount *mnt)
3221 {
3222 /* release long term mount so mount point can be released */
3223 if (!IS_ERR_OR_NULL(mnt)) {
3224 real_mount(mnt)->mnt_ns = NULL;
3225 synchronize_rcu(); /* yecchhh... */
3226 mntput(mnt);
3227 }
3228 }
3229 EXPORT_SYMBOL(kern_unmount);
3230
3231 bool our_mnt(struct vfsmount *mnt)
3232 {
3233 return check_mnt(real_mount(mnt));
3234 }
3235
3236 bool current_chrooted(void)
3237 {
3238 /* Does the current process have a non-standard root */
3239 struct path ns_root;
3240 struct path fs_root;
3241 bool chrooted;
3242
3243 /* Find the namespace root */
3244 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3245 ns_root.dentry = ns_root.mnt->mnt_root;
3246 path_get(&ns_root);
3247 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3248 ;
3249
3250 get_fs_root(current->fs, &fs_root);
3251
3252 chrooted = !path_equal(&fs_root, &ns_root);
3253
3254 path_put(&fs_root);
3255 path_put(&ns_root);
3256
3257 return chrooted;
3258 }
3259
3260 static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new,
3261 int *new_mnt_flags)
3262 {
3263 int new_flags = *new_mnt_flags;
3264 struct mount *mnt;
3265 bool visible = false;
3266
3267 down_read(&namespace_sem);
3268 list_for_each_entry(mnt, &ns->list, mnt_list) {
3269 struct mount *child;
3270 int mnt_flags;
3271
3272 if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type)
3273 continue;
3274
3275 /* This mount is not fully visible if it's root directory
3276 * is not the root directory of the filesystem.
3277 */
3278 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3279 continue;
3280
3281 /* A local view of the mount flags */
3282 mnt_flags = mnt->mnt.mnt_flags;
3283
3284 /* Don't miss readonly hidden in the superblock flags */
3285 if (mnt->mnt.mnt_sb->s_flags & MS_RDONLY)
3286 mnt_flags |= MNT_LOCK_READONLY;
3287
3288 /* Verify the mount flags are equal to or more permissive
3289 * than the proposed new mount.
3290 */
3291 if ((mnt_flags & MNT_LOCK_READONLY) &&
3292 !(new_flags & MNT_READONLY))
3293 continue;
3294 if ((mnt_flags & MNT_LOCK_ATIME) &&
3295 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3296 continue;
3297
3298 /* This mount is not fully visible if there are any
3299 * locked child mounts that cover anything except for
3300 * empty directories.
3301 */
3302 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3303 struct inode *inode = child->mnt_mountpoint->d_inode;
3304 /* Only worry about locked mounts */
3305 if (!(child->mnt.mnt_flags & MNT_LOCKED))
3306 continue;
3307 /* Is the directory permanetly empty? */
3308 if (!is_empty_dir_inode(inode))
3309 goto next;
3310 }
3311 /* Preserve the locked attributes */
3312 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
3313 MNT_LOCK_ATIME);
3314 visible = true;
3315 goto found;
3316 next: ;
3317 }
3318 found:
3319 up_read(&namespace_sem);
3320 return visible;
3321 }
3322
3323 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags)
3324 {
3325 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
3326 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3327 unsigned long s_iflags;
3328
3329 if (ns->user_ns == &init_user_ns)
3330 return false;
3331
3332 /* Can this filesystem be too revealing? */
3333 s_iflags = mnt->mnt_sb->s_iflags;
3334 if (!(s_iflags & SB_I_USERNS_VISIBLE))
3335 return false;
3336
3337 if ((s_iflags & required_iflags) != required_iflags) {
3338 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3339 required_iflags);
3340 return true;
3341 }
3342
3343 return !mnt_already_visible(ns, mnt, new_mnt_flags);
3344 }
3345
3346 bool mnt_may_suid(struct vfsmount *mnt)
3347 {
3348 /*
3349 * Foreign mounts (accessed via fchdir or through /proc
3350 * symlinks) are always treated as if they are nosuid. This
3351 * prevents namespaces from trusting potentially unsafe
3352 * suid/sgid bits, file caps, or security labels that originate
3353 * in other namespaces.
3354 */
3355 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3356 current_in_userns(mnt->mnt_sb->s_user_ns);
3357 }
3358
3359 static struct ns_common *mntns_get(struct task_struct *task)
3360 {
3361 struct ns_common *ns = NULL;
3362 struct nsproxy *nsproxy;
3363
3364 task_lock(task);
3365 nsproxy = task->nsproxy;
3366 if (nsproxy) {
3367 ns = &nsproxy->mnt_ns->ns;
3368 get_mnt_ns(to_mnt_ns(ns));
3369 }
3370 task_unlock(task);
3371
3372 return ns;
3373 }
3374
3375 static void mntns_put(struct ns_common *ns)
3376 {
3377 put_mnt_ns(to_mnt_ns(ns));
3378 }
3379
3380 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3381 {
3382 struct fs_struct *fs = current->fs;
3383 struct mnt_namespace *mnt_ns = to_mnt_ns(ns);
3384 struct path root;
3385
3386 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3387 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3388 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3389 return -EPERM;
3390
3391 if (fs->users != 1)
3392 return -EINVAL;
3393
3394 get_mnt_ns(mnt_ns);
3395 put_mnt_ns(nsproxy->mnt_ns);
3396 nsproxy->mnt_ns = mnt_ns;
3397
3398 /* Find the root */
3399 root.mnt = &mnt_ns->root->mnt;
3400 root.dentry = mnt_ns->root->mnt.mnt_root;
3401 path_get(&root);
3402 while(d_mountpoint(root.dentry) && follow_down_one(&root))
3403 ;
3404
3405 /* Update the pwd and root */
3406 set_fs_pwd(fs, &root);
3407 set_fs_root(fs, &root);
3408
3409 path_put(&root);
3410 return 0;
3411 }
3412
3413 static struct user_namespace *mntns_owner(struct ns_common *ns)
3414 {
3415 return to_mnt_ns(ns)->user_ns;
3416 }
3417
3418 const struct proc_ns_operations mntns_operations = {
3419 .name = "mnt",
3420 .type = CLONE_NEWNS,
3421 .get = mntns_get,
3422 .put = mntns_put,
3423 .install = mntns_install,
3424 .owner = mntns_owner,
3425 };