]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - fs/namespace.c
clone_private_mount() doesn't need to touch namespace_sem
[mirror_ubuntu-zesty-kernel.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4 11#include <linux/syscalls.h>
d10577a8 12#include <linux/export.h>
16f7e0fe 13#include <linux/capability.h>
6b3286ed 14#include <linux/mnt_namespace.h>
771b1371 15#include <linux/user_namespace.h>
1da177e4
LT
16#include <linux/namei.h>
17#include <linux/security.h>
73cd49ec 18#include <linux/idr.h>
57f150a5 19#include <linux/init.h> /* init_rootfs */
d10577a8
AV
20#include <linux/fs_struct.h> /* get_fs_root et.al. */
21#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
22#include <linux/uaccess.h>
0bb80f24 23#include <linux/proc_ns.h>
20b4fb48 24#include <linux/magic.h>
0818bf27 25#include <linux/bootmem.h>
9ea459e1 26#include <linux/task_work.h>
07b20889 27#include "pnode.h"
948730b0 28#include "internal.h"
1da177e4 29
d2921684
EB
30/* Maximum number of mounts in a mount namespace */
31unsigned int sysctl_mount_max __read_mostly = 100000;
32
0818bf27
AV
33static unsigned int m_hash_mask __read_mostly;
34static unsigned int m_hash_shift __read_mostly;
35static unsigned int mp_hash_mask __read_mostly;
36static unsigned int mp_hash_shift __read_mostly;
37
38static __initdata unsigned long mhash_entries;
39static int __init set_mhash_entries(char *str)
40{
41 if (!str)
42 return 0;
43 mhash_entries = simple_strtoul(str, &str, 0);
44 return 1;
45}
46__setup("mhash_entries=", set_mhash_entries);
47
48static __initdata unsigned long mphash_entries;
49static int __init set_mphash_entries(char *str)
50{
51 if (!str)
52 return 0;
53 mphash_entries = simple_strtoul(str, &str, 0);
54 return 1;
55}
56__setup("mphash_entries=", set_mphash_entries);
13f14b4d 57
c7999c36 58static u64 event;
73cd49ec 59static DEFINE_IDA(mnt_id_ida);
719f5d7f 60static DEFINE_IDA(mnt_group_ida);
99b7db7b 61static DEFINE_SPINLOCK(mnt_id_lock);
f21f6220
AV
62static int mnt_id_start = 0;
63static int mnt_group_start = 1;
1da177e4 64
38129a13 65static struct hlist_head *mount_hashtable __read_mostly;
0818bf27 66static struct hlist_head *mountpoint_hashtable __read_mostly;
e18b890b 67static struct kmem_cache *mnt_cache __read_mostly;
59aa0da8 68static DECLARE_RWSEM(namespace_sem);
1da177e4 69
f87fd4c2 70/* /sys/fs */
00d26666
GKH
71struct kobject *fs_kobj;
72EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 73
99b7db7b
NP
74/*
75 * vfsmount lock may be taken for read to prevent changes to the
76 * vfsmount hash, ie. during mountpoint lookups or walking back
77 * up the tree.
78 *
79 * It should be taken for write in all cases where the vfsmount
80 * tree or hash is modified or when a vfsmount structure is modified.
81 */
48a066e7 82__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
99b7db7b 83
38129a13 84static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 85{
b58fed8b
RP
86 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
87 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
0818bf27
AV
88 tmp = tmp + (tmp >> m_hash_shift);
89 return &mount_hashtable[tmp & m_hash_mask];
90}
91
92static inline struct hlist_head *mp_hash(struct dentry *dentry)
93{
94 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
95 tmp = tmp + (tmp >> mp_hash_shift);
96 return &mountpoint_hashtable[tmp & mp_hash_mask];
1da177e4
LT
97}
98
b105e270 99static int mnt_alloc_id(struct mount *mnt)
73cd49ec
MS
100{
101 int res;
102
103retry:
104 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
99b7db7b 105 spin_lock(&mnt_id_lock);
15169fe7 106 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
f21f6220 107 if (!res)
15169fe7 108 mnt_id_start = mnt->mnt_id + 1;
99b7db7b 109 spin_unlock(&mnt_id_lock);
73cd49ec
MS
110 if (res == -EAGAIN)
111 goto retry;
112
113 return res;
114}
115
b105e270 116static void mnt_free_id(struct mount *mnt)
73cd49ec 117{
15169fe7 118 int id = mnt->mnt_id;
99b7db7b 119 spin_lock(&mnt_id_lock);
f21f6220
AV
120 ida_remove(&mnt_id_ida, id);
121 if (mnt_id_start > id)
122 mnt_id_start = id;
99b7db7b 123 spin_unlock(&mnt_id_lock);
73cd49ec
MS
124}
125
719f5d7f
MS
126/*
127 * Allocate a new peer group ID
128 *
129 * mnt_group_ida is protected by namespace_sem
130 */
4b8b21f4 131static int mnt_alloc_group_id(struct mount *mnt)
719f5d7f 132{
f21f6220
AV
133 int res;
134
719f5d7f
MS
135 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
136 return -ENOMEM;
137
f21f6220
AV
138 res = ida_get_new_above(&mnt_group_ida,
139 mnt_group_start,
15169fe7 140 &mnt->mnt_group_id);
f21f6220 141 if (!res)
15169fe7 142 mnt_group_start = mnt->mnt_group_id + 1;
f21f6220
AV
143
144 return res;
719f5d7f
MS
145}
146
147/*
148 * Release a peer group ID
149 */
4b8b21f4 150void mnt_release_group_id(struct mount *mnt)
719f5d7f 151{
15169fe7 152 int id = mnt->mnt_group_id;
f21f6220
AV
153 ida_remove(&mnt_group_ida, id);
154 if (mnt_group_start > id)
155 mnt_group_start = id;
15169fe7 156 mnt->mnt_group_id = 0;
719f5d7f
MS
157}
158
b3e19d92
NP
159/*
160 * vfsmount lock must be held for read
161 */
83adc753 162static inline void mnt_add_count(struct mount *mnt, int n)
b3e19d92
NP
163{
164#ifdef CONFIG_SMP
68e8a9fe 165 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
b3e19d92
NP
166#else
167 preempt_disable();
68e8a9fe 168 mnt->mnt_count += n;
b3e19d92
NP
169 preempt_enable();
170#endif
171}
172
b3e19d92
NP
173/*
174 * vfsmount lock must be held for write
175 */
83adc753 176unsigned int mnt_get_count(struct mount *mnt)
b3e19d92
NP
177{
178#ifdef CONFIG_SMP
f03c6599 179 unsigned int count = 0;
b3e19d92
NP
180 int cpu;
181
182 for_each_possible_cpu(cpu) {
68e8a9fe 183 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
b3e19d92
NP
184 }
185
186 return count;
187#else
68e8a9fe 188 return mnt->mnt_count;
b3e19d92
NP
189#endif
190}
191
87b95ce0
AV
192static void drop_mountpoint(struct fs_pin *p)
193{
194 struct mount *m = container_of(p, struct mount, mnt_umount);
195 dput(m->mnt_ex_mountpoint);
196 pin_remove(p);
197 mntput(&m->mnt);
198}
199
b105e270 200static struct mount *alloc_vfsmnt(const char *name)
1da177e4 201{
c63181e6
AV
202 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
203 if (mnt) {
73cd49ec
MS
204 int err;
205
c63181e6 206 err = mnt_alloc_id(mnt);
88b38782
LZ
207 if (err)
208 goto out_free_cache;
209
210 if (name) {
fcc139ae 211 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
c63181e6 212 if (!mnt->mnt_devname)
88b38782 213 goto out_free_id;
73cd49ec
MS
214 }
215
b3e19d92 216#ifdef CONFIG_SMP
c63181e6
AV
217 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
218 if (!mnt->mnt_pcp)
b3e19d92
NP
219 goto out_free_devname;
220
c63181e6 221 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
b3e19d92 222#else
c63181e6
AV
223 mnt->mnt_count = 1;
224 mnt->mnt_writers = 0;
b3e19d92
NP
225#endif
226
38129a13 227 INIT_HLIST_NODE(&mnt->mnt_hash);
c63181e6
AV
228 INIT_LIST_HEAD(&mnt->mnt_child);
229 INIT_LIST_HEAD(&mnt->mnt_mounts);
230 INIT_LIST_HEAD(&mnt->mnt_list);
231 INIT_LIST_HEAD(&mnt->mnt_expire);
232 INIT_LIST_HEAD(&mnt->mnt_share);
233 INIT_LIST_HEAD(&mnt->mnt_slave_list);
234 INIT_LIST_HEAD(&mnt->mnt_slave);
0a5eb7c8 235 INIT_HLIST_NODE(&mnt->mnt_mp_list);
2504c5d6
AG
236#ifdef CONFIG_FSNOTIFY
237 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
d3ef3d73 238#endif
87b95ce0 239 init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
1da177e4 240 }
c63181e6 241 return mnt;
88b38782 242
d3ef3d73 243#ifdef CONFIG_SMP
244out_free_devname:
fcc139ae 245 kfree_const(mnt->mnt_devname);
d3ef3d73 246#endif
88b38782 247out_free_id:
c63181e6 248 mnt_free_id(mnt);
88b38782 249out_free_cache:
c63181e6 250 kmem_cache_free(mnt_cache, mnt);
88b38782 251 return NULL;
1da177e4
LT
252}
253
3d733633
DH
254/*
255 * Most r/o checks on a fs are for operations that take
256 * discrete amounts of time, like a write() or unlink().
257 * We must keep track of when those operations start
258 * (for permission checks) and when they end, so that
259 * we can determine when writes are able to occur to
260 * a filesystem.
261 */
262/*
263 * __mnt_is_readonly: check whether a mount is read-only
264 * @mnt: the mount to check for its write status
265 *
266 * This shouldn't be used directly ouside of the VFS.
267 * It does not guarantee that the filesystem will stay
268 * r/w, just that it is right *now*. This can not and
269 * should not be used in place of IS_RDONLY(inode).
270 * mnt_want/drop_write() will _keep_ the filesystem
271 * r/w.
272 */
273int __mnt_is_readonly(struct vfsmount *mnt)
274{
2e4b7fcd
DH
275 if (mnt->mnt_flags & MNT_READONLY)
276 return 1;
277 if (mnt->mnt_sb->s_flags & MS_RDONLY)
278 return 1;
279 return 0;
3d733633
DH
280}
281EXPORT_SYMBOL_GPL(__mnt_is_readonly);
282
83adc753 283static inline void mnt_inc_writers(struct mount *mnt)
d3ef3d73 284{
285#ifdef CONFIG_SMP
68e8a9fe 286 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
d3ef3d73 287#else
68e8a9fe 288 mnt->mnt_writers++;
d3ef3d73 289#endif
290}
3d733633 291
83adc753 292static inline void mnt_dec_writers(struct mount *mnt)
3d733633 293{
d3ef3d73 294#ifdef CONFIG_SMP
68e8a9fe 295 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
d3ef3d73 296#else
68e8a9fe 297 mnt->mnt_writers--;
d3ef3d73 298#endif
3d733633 299}
3d733633 300
83adc753 301static unsigned int mnt_get_writers(struct mount *mnt)
3d733633 302{
d3ef3d73 303#ifdef CONFIG_SMP
304 unsigned int count = 0;
3d733633 305 int cpu;
3d733633
DH
306
307 for_each_possible_cpu(cpu) {
68e8a9fe 308 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
3d733633 309 }
3d733633 310
d3ef3d73 311 return count;
312#else
313 return mnt->mnt_writers;
314#endif
3d733633
DH
315}
316
4ed5e82f
MS
317static int mnt_is_readonly(struct vfsmount *mnt)
318{
319 if (mnt->mnt_sb->s_readonly_remount)
320 return 1;
321 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
322 smp_rmb();
323 return __mnt_is_readonly(mnt);
324}
325
8366025e 326/*
eb04c282
JK
327 * Most r/o & frozen checks on a fs are for operations that take discrete
328 * amounts of time, like a write() or unlink(). We must keep track of when
329 * those operations start (for permission checks) and when they end, so that we
330 * can determine when writes are able to occur to a filesystem.
8366025e
DH
331 */
332/**
eb04c282 333 * __mnt_want_write - get write access to a mount without freeze protection
83adc753 334 * @m: the mount on which to take a write
8366025e 335 *
eb04c282
JK
336 * This tells the low-level filesystem that a write is about to be performed to
337 * it, and makes sure that writes are allowed (mnt it read-write) before
338 * returning success. This operation does not protect against filesystem being
339 * frozen. When the write operation is finished, __mnt_drop_write() must be
340 * called. This is effectively a refcount.
8366025e 341 */
eb04c282 342int __mnt_want_write(struct vfsmount *m)
8366025e 343{
83adc753 344 struct mount *mnt = real_mount(m);
3d733633 345 int ret = 0;
3d733633 346
d3ef3d73 347 preempt_disable();
c6653a83 348 mnt_inc_writers(mnt);
d3ef3d73 349 /*
c6653a83 350 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73 351 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
352 * incremented count after it has set MNT_WRITE_HOLD.
353 */
354 smp_mb();
1e75529e 355 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
d3ef3d73 356 cpu_relax();
357 /*
358 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
359 * be set to match its requirements. So we must not load that until
360 * MNT_WRITE_HOLD is cleared.
361 */
362 smp_rmb();
4ed5e82f 363 if (mnt_is_readonly(m)) {
c6653a83 364 mnt_dec_writers(mnt);
3d733633 365 ret = -EROFS;
3d733633 366 }
d3ef3d73 367 preempt_enable();
eb04c282
JK
368
369 return ret;
370}
371
372/**
373 * mnt_want_write - get write access to a mount
374 * @m: the mount on which to take a write
375 *
376 * This tells the low-level filesystem that a write is about to be performed to
377 * it, and makes sure that writes are allowed (mount is read-write, filesystem
378 * is not frozen) before returning success. When the write operation is
379 * finished, mnt_drop_write() must be called. This is effectively a refcount.
380 */
381int mnt_want_write(struct vfsmount *m)
382{
383 int ret;
384
385 sb_start_write(m->mnt_sb);
386 ret = __mnt_want_write(m);
387 if (ret)
388 sb_end_write(m->mnt_sb);
3d733633 389 return ret;
8366025e
DH
390}
391EXPORT_SYMBOL_GPL(mnt_want_write);
392
96029c4e 393/**
394 * mnt_clone_write - get write access to a mount
395 * @mnt: the mount on which to take a write
396 *
397 * This is effectively like mnt_want_write, except
398 * it must only be used to take an extra write reference
399 * on a mountpoint that we already know has a write reference
400 * on it. This allows some optimisation.
401 *
402 * After finished, mnt_drop_write must be called as usual to
403 * drop the reference.
404 */
405int mnt_clone_write(struct vfsmount *mnt)
406{
407 /* superblock may be r/o */
408 if (__mnt_is_readonly(mnt))
409 return -EROFS;
410 preempt_disable();
83adc753 411 mnt_inc_writers(real_mount(mnt));
96029c4e 412 preempt_enable();
413 return 0;
414}
415EXPORT_SYMBOL_GPL(mnt_clone_write);
416
417/**
eb04c282 418 * __mnt_want_write_file - get write access to a file's mount
96029c4e 419 * @file: the file who's mount on which to take a write
420 *
eb04c282 421 * This is like __mnt_want_write, but it takes a file and can
96029c4e 422 * do some optimisations if the file is open for write already
423 */
eb04c282 424int __mnt_want_write_file(struct file *file)
96029c4e 425{
83f936c7 426 if (!(file->f_mode & FMODE_WRITER))
eb04c282 427 return __mnt_want_write(file->f_path.mnt);
96029c4e 428 else
429 return mnt_clone_write(file->f_path.mnt);
430}
eb04c282
JK
431
432/**
433 * mnt_want_write_file - get write access to a file's mount
434 * @file: the file who's mount on which to take a write
435 *
436 * This is like mnt_want_write, but it takes a file and can
437 * do some optimisations if the file is open for write already
438 */
439int mnt_want_write_file(struct file *file)
440{
441 int ret;
442
443 sb_start_write(file->f_path.mnt->mnt_sb);
444 ret = __mnt_want_write_file(file);
445 if (ret)
446 sb_end_write(file->f_path.mnt->mnt_sb);
447 return ret;
448}
96029c4e 449EXPORT_SYMBOL_GPL(mnt_want_write_file);
450
8366025e 451/**
eb04c282 452 * __mnt_drop_write - give up write access to a mount
8366025e
DH
453 * @mnt: the mount on which to give up write access
454 *
455 * Tells the low-level filesystem that we are done
456 * performing writes to it. Must be matched with
eb04c282 457 * __mnt_want_write() call above.
8366025e 458 */
eb04c282 459void __mnt_drop_write(struct vfsmount *mnt)
8366025e 460{
d3ef3d73 461 preempt_disable();
83adc753 462 mnt_dec_writers(real_mount(mnt));
d3ef3d73 463 preempt_enable();
8366025e 464}
eb04c282
JK
465
466/**
467 * mnt_drop_write - give up write access to a mount
468 * @mnt: the mount on which to give up write access
469 *
470 * Tells the low-level filesystem that we are done performing writes to it and
471 * also allows filesystem to be frozen again. Must be matched with
472 * mnt_want_write() call above.
473 */
474void mnt_drop_write(struct vfsmount *mnt)
475{
476 __mnt_drop_write(mnt);
477 sb_end_write(mnt->mnt_sb);
478}
8366025e
DH
479EXPORT_SYMBOL_GPL(mnt_drop_write);
480
eb04c282
JK
481void __mnt_drop_write_file(struct file *file)
482{
483 __mnt_drop_write(file->f_path.mnt);
484}
485
2a79f17e
AV
486void mnt_drop_write_file(struct file *file)
487{
488 mnt_drop_write(file->f_path.mnt);
489}
490EXPORT_SYMBOL(mnt_drop_write_file);
491
83adc753 492static int mnt_make_readonly(struct mount *mnt)
8366025e 493{
3d733633
DH
494 int ret = 0;
495
719ea2fb 496 lock_mount_hash();
83adc753 497 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
3d733633 498 /*
d3ef3d73 499 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
500 * should be visible before we do.
3d733633 501 */
d3ef3d73 502 smp_mb();
503
3d733633 504 /*
d3ef3d73 505 * With writers on hold, if this value is zero, then there are
506 * definitely no active writers (although held writers may subsequently
507 * increment the count, they'll have to wait, and decrement it after
508 * seeing MNT_READONLY).
509 *
510 * It is OK to have counter incremented on one CPU and decremented on
511 * another: the sum will add up correctly. The danger would be when we
512 * sum up each counter, if we read a counter before it is incremented,
513 * but then read another CPU's count which it has been subsequently
514 * decremented from -- we would see more decrements than we should.
515 * MNT_WRITE_HOLD protects against this scenario, because
516 * mnt_want_write first increments count, then smp_mb, then spins on
517 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
518 * we're counting up here.
3d733633 519 */
c6653a83 520 if (mnt_get_writers(mnt) > 0)
d3ef3d73 521 ret = -EBUSY;
522 else
83adc753 523 mnt->mnt.mnt_flags |= MNT_READONLY;
d3ef3d73 524 /*
525 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
526 * that become unheld will see MNT_READONLY.
527 */
528 smp_wmb();
83adc753 529 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
719ea2fb 530 unlock_mount_hash();
3d733633 531 return ret;
8366025e 532}
8366025e 533
83adc753 534static void __mnt_unmake_readonly(struct mount *mnt)
2e4b7fcd 535{
719ea2fb 536 lock_mount_hash();
83adc753 537 mnt->mnt.mnt_flags &= ~MNT_READONLY;
719ea2fb 538 unlock_mount_hash();
2e4b7fcd
DH
539}
540
4ed5e82f
MS
541int sb_prepare_remount_readonly(struct super_block *sb)
542{
543 struct mount *mnt;
544 int err = 0;
545
8e8b8796
MS
546 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
547 if (atomic_long_read(&sb->s_remove_count))
548 return -EBUSY;
549
719ea2fb 550 lock_mount_hash();
4ed5e82f
MS
551 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
552 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
553 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
554 smp_mb();
555 if (mnt_get_writers(mnt) > 0) {
556 err = -EBUSY;
557 break;
558 }
559 }
560 }
8e8b8796
MS
561 if (!err && atomic_long_read(&sb->s_remove_count))
562 err = -EBUSY;
563
4ed5e82f
MS
564 if (!err) {
565 sb->s_readonly_remount = 1;
566 smp_wmb();
567 }
568 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
569 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
570 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
571 }
719ea2fb 572 unlock_mount_hash();
4ed5e82f
MS
573
574 return err;
575}
576
b105e270 577static void free_vfsmnt(struct mount *mnt)
1da177e4 578{
fcc139ae 579 kfree_const(mnt->mnt_devname);
d3ef3d73 580#ifdef CONFIG_SMP
68e8a9fe 581 free_percpu(mnt->mnt_pcp);
d3ef3d73 582#endif
b105e270 583 kmem_cache_free(mnt_cache, mnt);
1da177e4
LT
584}
585
8ffcb32e
DH
586static void delayed_free_vfsmnt(struct rcu_head *head)
587{
588 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
589}
590
48a066e7 591/* call under rcu_read_lock */
294d71ff 592int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
48a066e7
AV
593{
594 struct mount *mnt;
595 if (read_seqretry(&mount_lock, seq))
294d71ff 596 return 1;
48a066e7 597 if (bastard == NULL)
294d71ff 598 return 0;
48a066e7
AV
599 mnt = real_mount(bastard);
600 mnt_add_count(mnt, 1);
601 if (likely(!read_seqretry(&mount_lock, seq)))
294d71ff 602 return 0;
48a066e7
AV
603 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
604 mnt_add_count(mnt, -1);
294d71ff
AV
605 return 1;
606 }
607 return -1;
608}
609
610/* call under rcu_read_lock */
611bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
612{
613 int res = __legitimize_mnt(bastard, seq);
614 if (likely(!res))
615 return true;
616 if (unlikely(res < 0)) {
617 rcu_read_unlock();
618 mntput(bastard);
619 rcu_read_lock();
48a066e7 620 }
48a066e7
AV
621 return false;
622}
623
1da177e4 624/*
474279dc 625 * find the first mount at @dentry on vfsmount @mnt.
48a066e7 626 * call under rcu_read_lock()
1da177e4 627 */
474279dc 628struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 629{
38129a13 630 struct hlist_head *head = m_hash(mnt, dentry);
474279dc
AV
631 struct mount *p;
632
38129a13 633 hlist_for_each_entry_rcu(p, head, mnt_hash)
474279dc
AV
634 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
635 return p;
636 return NULL;
637}
638
639/*
640 * find the last mount at @dentry on vfsmount @mnt.
48a066e7 641 * mount_lock must be held.
474279dc
AV
642 */
643struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
644{
411a938b
EB
645 struct mount *p, *res = NULL;
646 p = __lookup_mnt(mnt, dentry);
38129a13
AV
647 if (!p)
648 goto out;
411a938b
EB
649 if (!(p->mnt.mnt_flags & MNT_UMOUNT))
650 res = p;
38129a13 651 hlist_for_each_entry_continue(p, mnt_hash) {
1d6a32ac
AV
652 if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry)
653 break;
411a938b
EB
654 if (!(p->mnt.mnt_flags & MNT_UMOUNT))
655 res = p;
1d6a32ac 656 }
38129a13 657out:
1d6a32ac 658 return res;
1da177e4
LT
659}
660
a05964f3 661/*
f015f126
DH
662 * lookup_mnt - Return the first child mount mounted at path
663 *
664 * "First" means first mounted chronologically. If you create the
665 * following mounts:
666 *
667 * mount /dev/sda1 /mnt
668 * mount /dev/sda2 /mnt
669 * mount /dev/sda3 /mnt
670 *
671 * Then lookup_mnt() on the base /mnt dentry in the root mount will
672 * return successively the root dentry and vfsmount of /dev/sda1, then
673 * /dev/sda2, then /dev/sda3, then NULL.
674 *
675 * lookup_mnt takes a reference to the found vfsmount.
a05964f3 676 */
1c755af4 677struct vfsmount *lookup_mnt(struct path *path)
a05964f3 678{
c7105365 679 struct mount *child_mnt;
48a066e7
AV
680 struct vfsmount *m;
681 unsigned seq;
99b7db7b 682
48a066e7
AV
683 rcu_read_lock();
684 do {
685 seq = read_seqbegin(&mount_lock);
686 child_mnt = __lookup_mnt(path->mnt, path->dentry);
687 m = child_mnt ? &child_mnt->mnt : NULL;
688 } while (!legitimize_mnt(m, seq));
689 rcu_read_unlock();
690 return m;
a05964f3
RP
691}
692
7af1364f
EB
693/*
694 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
695 * current mount namespace.
696 *
697 * The common case is dentries are not mountpoints at all and that
698 * test is handled inline. For the slow case when we are actually
699 * dealing with a mountpoint of some kind, walk through all of the
700 * mounts in the current mount namespace and test to see if the dentry
701 * is a mountpoint.
702 *
703 * The mount_hashtable is not usable in the context because we
704 * need to identify all mounts that may be in the current mount
705 * namespace not just a mount that happens to have some specified
706 * parent mount.
707 */
708bool __is_local_mountpoint(struct dentry *dentry)
709{
710 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
711 struct mount *mnt;
712 bool is_covered = false;
713
714 if (!d_mountpoint(dentry))
715 goto out;
716
717 down_read(&namespace_sem);
718 list_for_each_entry(mnt, &ns->list, mnt_list) {
719 is_covered = (mnt->mnt_mountpoint == dentry);
720 if (is_covered)
721 break;
722 }
723 up_read(&namespace_sem);
724out:
725 return is_covered;
726}
727
e2dfa935 728static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
84d17192 729{
0818bf27 730 struct hlist_head *chain = mp_hash(dentry);
84d17192
AV
731 struct mountpoint *mp;
732
0818bf27 733 hlist_for_each_entry(mp, chain, m_hash) {
84d17192
AV
734 if (mp->m_dentry == dentry) {
735 /* might be worth a WARN_ON() */
736 if (d_unlinked(dentry))
737 return ERR_PTR(-ENOENT);
738 mp->m_count++;
739 return mp;
740 }
741 }
e2dfa935
EB
742 return NULL;
743}
744
745static struct mountpoint *new_mountpoint(struct dentry *dentry)
746{
747 struct hlist_head *chain = mp_hash(dentry);
748 struct mountpoint *mp;
749 int ret;
84d17192
AV
750
751 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
752 if (!mp)
753 return ERR_PTR(-ENOMEM);
754
eed81007
MS
755 ret = d_set_mounted(dentry);
756 if (ret) {
84d17192 757 kfree(mp);
eed81007 758 return ERR_PTR(ret);
84d17192 759 }
eed81007 760
84d17192
AV
761 mp->m_dentry = dentry;
762 mp->m_count = 1;
0818bf27 763 hlist_add_head(&mp->m_hash, chain);
0a5eb7c8 764 INIT_HLIST_HEAD(&mp->m_list);
84d17192
AV
765 return mp;
766}
767
768static void put_mountpoint(struct mountpoint *mp)
769{
770 if (!--mp->m_count) {
771 struct dentry *dentry = mp->m_dentry;
0a5eb7c8 772 BUG_ON(!hlist_empty(&mp->m_list));
84d17192
AV
773 spin_lock(&dentry->d_lock);
774 dentry->d_flags &= ~DCACHE_MOUNTED;
775 spin_unlock(&dentry->d_lock);
0818bf27 776 hlist_del(&mp->m_hash);
84d17192
AV
777 kfree(mp);
778 }
779}
780
143c8c91 781static inline int check_mnt(struct mount *mnt)
1da177e4 782{
6b3286ed 783 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
784}
785
99b7db7b
NP
786/*
787 * vfsmount lock must be held for write
788 */
6b3286ed 789static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
790{
791 if (ns) {
792 ns->event = ++event;
793 wake_up_interruptible(&ns->poll);
794 }
795}
796
99b7db7b
NP
797/*
798 * vfsmount lock must be held for write
799 */
6b3286ed 800static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
801{
802 if (ns && ns->event != event) {
803 ns->event = event;
804 wake_up_interruptible(&ns->poll);
805 }
806}
807
99b7db7b
NP
808/*
809 * vfsmount lock must be held for write
810 */
7bdb11de 811static void unhash_mnt(struct mount *mnt)
419148da 812{
0714a533 813 mnt->mnt_parent = mnt;
a73324da 814 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
6b41d536 815 list_del_init(&mnt->mnt_child);
38129a13 816 hlist_del_init_rcu(&mnt->mnt_hash);
0a5eb7c8 817 hlist_del_init(&mnt->mnt_mp_list);
84d17192
AV
818 put_mountpoint(mnt->mnt_mp);
819 mnt->mnt_mp = NULL;
1da177e4
LT
820}
821
7bdb11de
EB
822/*
823 * vfsmount lock must be held for write
824 */
825static void detach_mnt(struct mount *mnt, struct path *old_path)
826{
827 old_path->dentry = mnt->mnt_mountpoint;
828 old_path->mnt = &mnt->mnt_parent->mnt;
829 unhash_mnt(mnt);
830}
831
6a46c573
EB
832/*
833 * vfsmount lock must be held for write
834 */
835static void umount_mnt(struct mount *mnt)
836{
837 /* old mountpoint will be dropped when we can do that */
838 mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
839 unhash_mnt(mnt);
840}
841
99b7db7b
NP
842/*
843 * vfsmount lock must be held for write
844 */
84d17192
AV
845void mnt_set_mountpoint(struct mount *mnt,
846 struct mountpoint *mp,
44d964d6 847 struct mount *child_mnt)
b90fa9ae 848{
84d17192 849 mp->m_count++;
3a2393d7 850 mnt_add_count(mnt, 1); /* essentially, that's mntget */
84d17192 851 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
3a2393d7 852 child_mnt->mnt_parent = mnt;
84d17192 853 child_mnt->mnt_mp = mp;
0a5eb7c8 854 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
b90fa9ae
RP
855}
856
99b7db7b
NP
857/*
858 * vfsmount lock must be held for write
859 */
84d17192
AV
860static void attach_mnt(struct mount *mnt,
861 struct mount *parent,
862 struct mountpoint *mp)
1da177e4 863{
84d17192 864 mnt_set_mountpoint(parent, mp, mnt);
38129a13 865 hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
84d17192 866 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
b90fa9ae
RP
867}
868
12a5b529
AV
869static void attach_shadowed(struct mount *mnt,
870 struct mount *parent,
871 struct mount *shadows)
872{
873 if (shadows) {
f6f99332 874 hlist_add_behind_rcu(&mnt->mnt_hash, &shadows->mnt_hash);
12a5b529
AV
875 list_add(&mnt->mnt_child, &shadows->mnt_child);
876 } else {
877 hlist_add_head_rcu(&mnt->mnt_hash,
878 m_hash(&parent->mnt, mnt->mnt_mountpoint));
879 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
880 }
881}
882
b90fa9ae 883/*
99b7db7b 884 * vfsmount lock must be held for write
b90fa9ae 885 */
1d6a32ac 886static void commit_tree(struct mount *mnt, struct mount *shadows)
b90fa9ae 887{
0714a533 888 struct mount *parent = mnt->mnt_parent;
83adc753 889 struct mount *m;
b90fa9ae 890 LIST_HEAD(head);
143c8c91 891 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae 892
0714a533 893 BUG_ON(parent == mnt);
b90fa9ae 894
1a4eeaf2 895 list_add_tail(&head, &mnt->mnt_list);
f7a99c5b 896 list_for_each_entry(m, &head, mnt_list)
143c8c91 897 m->mnt_ns = n;
f03c6599 898
b90fa9ae
RP
899 list_splice(&head, n->list.prev);
900
d2921684
EB
901 n->mounts += n->pending_mounts;
902 n->pending_mounts = 0;
903
12a5b529 904 attach_shadowed(mnt, parent, shadows);
6b3286ed 905 touch_mnt_namespace(n);
1da177e4
LT
906}
907
909b0a88 908static struct mount *next_mnt(struct mount *p, struct mount *root)
1da177e4 909{
6b41d536
AV
910 struct list_head *next = p->mnt_mounts.next;
911 if (next == &p->mnt_mounts) {
1da177e4 912 while (1) {
909b0a88 913 if (p == root)
1da177e4 914 return NULL;
6b41d536
AV
915 next = p->mnt_child.next;
916 if (next != &p->mnt_parent->mnt_mounts)
1da177e4 917 break;
0714a533 918 p = p->mnt_parent;
1da177e4
LT
919 }
920 }
6b41d536 921 return list_entry(next, struct mount, mnt_child);
1da177e4
LT
922}
923
315fc83e 924static struct mount *skip_mnt_tree(struct mount *p)
9676f0c6 925{
6b41d536
AV
926 struct list_head *prev = p->mnt_mounts.prev;
927 while (prev != &p->mnt_mounts) {
928 p = list_entry(prev, struct mount, mnt_child);
929 prev = p->mnt_mounts.prev;
9676f0c6
RP
930 }
931 return p;
932}
933
9d412a43
AV
934struct vfsmount *
935vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
936{
b105e270 937 struct mount *mnt;
9d412a43
AV
938 struct dentry *root;
939
940 if (!type)
941 return ERR_PTR(-ENODEV);
942
943 mnt = alloc_vfsmnt(name);
944 if (!mnt)
945 return ERR_PTR(-ENOMEM);
946
947 if (flags & MS_KERNMOUNT)
b105e270 948 mnt->mnt.mnt_flags = MNT_INTERNAL;
9d412a43
AV
949
950 root = mount_fs(type, flags, name, data);
951 if (IS_ERR(root)) {
8ffcb32e 952 mnt_free_id(mnt);
9d412a43
AV
953 free_vfsmnt(mnt);
954 return ERR_CAST(root);
955 }
956
b105e270
AV
957 mnt->mnt.mnt_root = root;
958 mnt->mnt.mnt_sb = root->d_sb;
a73324da 959 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 960 mnt->mnt_parent = mnt;
719ea2fb 961 lock_mount_hash();
39f7c4db 962 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
719ea2fb 963 unlock_mount_hash();
b105e270 964 return &mnt->mnt;
9d412a43
AV
965}
966EXPORT_SYMBOL_GPL(vfs_kern_mount);
967
87129cc0 968static struct mount *clone_mnt(struct mount *old, struct dentry *root,
36341f64 969 int flag)
1da177e4 970{
87129cc0 971 struct super_block *sb = old->mnt.mnt_sb;
be34d1a3
DH
972 struct mount *mnt;
973 int err;
1da177e4 974
be34d1a3
DH
975 mnt = alloc_vfsmnt(old->mnt_devname);
976 if (!mnt)
977 return ERR_PTR(-ENOMEM);
719f5d7f 978
7a472ef4 979 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
be34d1a3
DH
980 mnt->mnt_group_id = 0; /* not a peer of original */
981 else
982 mnt->mnt_group_id = old->mnt_group_id;
b90fa9ae 983
be34d1a3
DH
984 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
985 err = mnt_alloc_group_id(mnt);
986 if (err)
987 goto out_free;
1da177e4 988 }
be34d1a3 989
f2ebb3a9 990 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
132c94e3 991 /* Don't allow unprivileged users to change mount flags */
9566d674
EB
992 if (flag & CL_UNPRIVILEGED) {
993 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
994
995 if (mnt->mnt.mnt_flags & MNT_READONLY)
996 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
997
998 if (mnt->mnt.mnt_flags & MNT_NODEV)
999 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
1000
1001 if (mnt->mnt.mnt_flags & MNT_NOSUID)
1002 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
1003
1004 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
1005 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
1006 }
132c94e3 1007
5ff9d8a6 1008 /* Don't allow unprivileged users to reveal what is under a mount */
381cacb1
EB
1009 if ((flag & CL_UNPRIVILEGED) &&
1010 (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
5ff9d8a6
EB
1011 mnt->mnt.mnt_flags |= MNT_LOCKED;
1012
be34d1a3
DH
1013 atomic_inc(&sb->s_active);
1014 mnt->mnt.mnt_sb = sb;
1015 mnt->mnt.mnt_root = dget(root);
1016 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1017 mnt->mnt_parent = mnt;
719ea2fb 1018 lock_mount_hash();
be34d1a3 1019 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
719ea2fb 1020 unlock_mount_hash();
be34d1a3 1021
7a472ef4
EB
1022 if ((flag & CL_SLAVE) ||
1023 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
be34d1a3
DH
1024 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1025 mnt->mnt_master = old;
1026 CLEAR_MNT_SHARED(mnt);
1027 } else if (!(flag & CL_PRIVATE)) {
1028 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1029 list_add(&mnt->mnt_share, &old->mnt_share);
1030 if (IS_MNT_SLAVE(old))
1031 list_add(&mnt->mnt_slave, &old->mnt_slave);
1032 mnt->mnt_master = old->mnt_master;
1033 }
1034 if (flag & CL_MAKE_SHARED)
1035 set_mnt_shared(mnt);
1036
1037 /* stick the duplicate mount on the same expiry list
1038 * as the original if that was on one */
1039 if (flag & CL_EXPIRE) {
1040 if (!list_empty(&old->mnt_expire))
1041 list_add(&mnt->mnt_expire, &old->mnt_expire);
1042 }
1043
cb338d06 1044 return mnt;
719f5d7f
MS
1045
1046 out_free:
8ffcb32e 1047 mnt_free_id(mnt);
719f5d7f 1048 free_vfsmnt(mnt);
be34d1a3 1049 return ERR_PTR(err);
1da177e4
LT
1050}
1051
9ea459e1
AV
1052static void cleanup_mnt(struct mount *mnt)
1053{
1054 /*
1055 * This probably indicates that somebody messed
1056 * up a mnt_want/drop_write() pair. If this
1057 * happens, the filesystem was probably unable
1058 * to make r/w->r/o transitions.
1059 */
1060 /*
1061 * The locking used to deal with mnt_count decrement provides barriers,
1062 * so mnt_get_writers() below is safe.
1063 */
1064 WARN_ON(mnt_get_writers(mnt));
1065 if (unlikely(mnt->mnt_pins.first))
1066 mnt_pin_kill(mnt);
1067 fsnotify_vfsmount_delete(&mnt->mnt);
1068 dput(mnt->mnt.mnt_root);
1069 deactivate_super(mnt->mnt.mnt_sb);
1070 mnt_free_id(mnt);
1071 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1072}
1073
1074static void __cleanup_mnt(struct rcu_head *head)
1075{
1076 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1077}
1078
1079static LLIST_HEAD(delayed_mntput_list);
1080static void delayed_mntput(struct work_struct *unused)
1081{
1082 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1083 struct llist_node *next;
1084
1085 for (; node; node = next) {
1086 next = llist_next(node);
1087 cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
1088 }
1089}
1090static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1091
900148dc 1092static void mntput_no_expire(struct mount *mnt)
b3e19d92 1093{
48a066e7
AV
1094 rcu_read_lock();
1095 mnt_add_count(mnt, -1);
1096 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
1097 rcu_read_unlock();
f03c6599 1098 return;
b3e19d92 1099 }
719ea2fb 1100 lock_mount_hash();
b3e19d92 1101 if (mnt_get_count(mnt)) {
48a066e7 1102 rcu_read_unlock();
719ea2fb 1103 unlock_mount_hash();
99b7db7b
NP
1104 return;
1105 }
48a066e7
AV
1106 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1107 rcu_read_unlock();
1108 unlock_mount_hash();
1109 return;
1110 }
1111 mnt->mnt.mnt_flags |= MNT_DOOMED;
1112 rcu_read_unlock();
962830df 1113
39f7c4db 1114 list_del(&mnt->mnt_instance);
ce07d891
EB
1115
1116 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1117 struct mount *p, *tmp;
1118 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1119 umount_mnt(p);
1120 }
1121 }
719ea2fb 1122 unlock_mount_hash();
649a795a 1123
9ea459e1
AV
1124 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1125 struct task_struct *task = current;
1126 if (likely(!(task->flags & PF_KTHREAD))) {
1127 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1128 if (!task_work_add(task, &mnt->mnt_rcu, true))
1129 return;
1130 }
1131 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1132 schedule_delayed_work(&delayed_mntput_work, 1);
1133 return;
1134 }
1135 cleanup_mnt(mnt);
b3e19d92 1136}
b3e19d92
NP
1137
1138void mntput(struct vfsmount *mnt)
1139{
1140 if (mnt) {
863d684f 1141 struct mount *m = real_mount(mnt);
b3e19d92 1142 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
863d684f
AV
1143 if (unlikely(m->mnt_expiry_mark))
1144 m->mnt_expiry_mark = 0;
1145 mntput_no_expire(m);
b3e19d92
NP
1146 }
1147}
1148EXPORT_SYMBOL(mntput);
1149
1150struct vfsmount *mntget(struct vfsmount *mnt)
1151{
1152 if (mnt)
83adc753 1153 mnt_add_count(real_mount(mnt), 1);
b3e19d92
NP
1154 return mnt;
1155}
1156EXPORT_SYMBOL(mntget);
1157
3064c356 1158struct vfsmount *mnt_clone_internal(struct path *path)
7b7b1ace 1159{
3064c356
AV
1160 struct mount *p;
1161 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1162 if (IS_ERR(p))
1163 return ERR_CAST(p);
1164 p->mnt.mnt_flags |= MNT_INTERNAL;
1165 return &p->mnt;
7b7b1ace 1166}
1da177e4 1167
b3b304a2
MS
1168static inline void mangle(struct seq_file *m, const char *s)
1169{
1170 seq_escape(m, s, " \t\n\\");
1171}
1172
1173/*
1174 * Simple .show_options callback for filesystems which don't want to
1175 * implement more complex mount option showing.
1176 *
1177 * See also save_mount_options().
1178 */
34c80b1d 1179int generic_show_options(struct seq_file *m, struct dentry *root)
b3b304a2 1180{
2a32cebd
AV
1181 const char *options;
1182
1183 rcu_read_lock();
34c80b1d 1184 options = rcu_dereference(root->d_sb->s_options);
b3b304a2
MS
1185
1186 if (options != NULL && options[0]) {
1187 seq_putc(m, ',');
1188 mangle(m, options);
1189 }
2a32cebd 1190 rcu_read_unlock();
b3b304a2
MS
1191
1192 return 0;
1193}
1194EXPORT_SYMBOL(generic_show_options);
1195
1196/*
1197 * If filesystem uses generic_show_options(), this function should be
1198 * called from the fill_super() callback.
1199 *
1200 * The .remount_fs callback usually needs to be handled in a special
1201 * way, to make sure, that previous options are not overwritten if the
1202 * remount fails.
1203 *
1204 * Also note, that if the filesystem's .remount_fs function doesn't
1205 * reset all options to their default value, but changes only newly
1206 * given options, then the displayed options will not reflect reality
1207 * any more.
1208 */
1209void save_mount_options(struct super_block *sb, char *options)
1210{
2a32cebd
AV
1211 BUG_ON(sb->s_options);
1212 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
b3b304a2
MS
1213}
1214EXPORT_SYMBOL(save_mount_options);
1215
2a32cebd
AV
1216void replace_mount_options(struct super_block *sb, char *options)
1217{
1218 char *old = sb->s_options;
1219 rcu_assign_pointer(sb->s_options, options);
1220 if (old) {
1221 synchronize_rcu();
1222 kfree(old);
1223 }
1224}
1225EXPORT_SYMBOL(replace_mount_options);
1226
a1a2c409 1227#ifdef CONFIG_PROC_FS
0226f492 1228/* iterator; we want it to have access to namespace_sem, thus here... */
1da177e4
LT
1229static void *m_start(struct seq_file *m, loff_t *pos)
1230{
ede1bf0d 1231 struct proc_mounts *p = m->private;
1da177e4 1232
390c6843 1233 down_read(&namespace_sem);
c7999c36
AV
1234 if (p->cached_event == p->ns->event) {
1235 void *v = p->cached_mount;
1236 if (*pos == p->cached_index)
1237 return v;
1238 if (*pos == p->cached_index + 1) {
1239 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1240 return p->cached_mount = v;
1241 }
1242 }
1243
1244 p->cached_event = p->ns->event;
1245 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1246 p->cached_index = *pos;
1247 return p->cached_mount;
1da177e4
LT
1248}
1249
1250static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1251{
ede1bf0d 1252 struct proc_mounts *p = m->private;
b0765fb8 1253
c7999c36
AV
1254 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1255 p->cached_index = *pos;
1256 return p->cached_mount;
1da177e4
LT
1257}
1258
1259static void m_stop(struct seq_file *m, void *v)
1260{
390c6843 1261 up_read(&namespace_sem);
1da177e4
LT
1262}
1263
0226f492 1264static int m_show(struct seq_file *m, void *v)
2d4d4864 1265{
ede1bf0d 1266 struct proc_mounts *p = m->private;
1a4eeaf2 1267 struct mount *r = list_entry(v, struct mount, mnt_list);
0226f492 1268 return p->show(m, &r->mnt);
1da177e4
LT
1269}
1270
a1a2c409 1271const struct seq_operations mounts_op = {
1da177e4
LT
1272 .start = m_start,
1273 .next = m_next,
1274 .stop = m_stop,
0226f492 1275 .show = m_show,
b4629fe2 1276};
a1a2c409 1277#endif /* CONFIG_PROC_FS */
b4629fe2 1278
1da177e4
LT
1279/**
1280 * may_umount_tree - check if a mount tree is busy
1281 * @mnt: root of mount tree
1282 *
1283 * This is called to check if a tree of mounts has any
1284 * open files, pwds, chroots or sub mounts that are
1285 * busy.
1286 */
909b0a88 1287int may_umount_tree(struct vfsmount *m)
1da177e4 1288{
909b0a88 1289 struct mount *mnt = real_mount(m);
36341f64
RP
1290 int actual_refs = 0;
1291 int minimum_refs = 0;
315fc83e 1292 struct mount *p;
909b0a88 1293 BUG_ON(!m);
1da177e4 1294
b3e19d92 1295 /* write lock needed for mnt_get_count */
719ea2fb 1296 lock_mount_hash();
909b0a88 1297 for (p = mnt; p; p = next_mnt(p, mnt)) {
83adc753 1298 actual_refs += mnt_get_count(p);
1da177e4 1299 minimum_refs += 2;
1da177e4 1300 }
719ea2fb 1301 unlock_mount_hash();
1da177e4
LT
1302
1303 if (actual_refs > minimum_refs)
e3474a8e 1304 return 0;
1da177e4 1305
e3474a8e 1306 return 1;
1da177e4
LT
1307}
1308
1309EXPORT_SYMBOL(may_umount_tree);
1310
1311/**
1312 * may_umount - check if a mount point is busy
1313 * @mnt: root of mount
1314 *
1315 * This is called to check if a mount point has any
1316 * open files, pwds, chroots or sub mounts. If the
1317 * mount has sub mounts this will return busy
1318 * regardless of whether the sub mounts are busy.
1319 *
1320 * Doesn't take quota and stuff into account. IOW, in some cases it will
1321 * give false negatives. The main reason why it's here is that we need
1322 * a non-destructive way to look for easily umountable filesystems.
1323 */
1324int may_umount(struct vfsmount *mnt)
1325{
e3474a8e 1326 int ret = 1;
8ad08d8a 1327 down_read(&namespace_sem);
719ea2fb 1328 lock_mount_hash();
1ab59738 1329 if (propagate_mount_busy(real_mount(mnt), 2))
e3474a8e 1330 ret = 0;
719ea2fb 1331 unlock_mount_hash();
8ad08d8a 1332 up_read(&namespace_sem);
a05964f3 1333 return ret;
1da177e4
LT
1334}
1335
1336EXPORT_SYMBOL(may_umount);
1337
38129a13 1338static HLIST_HEAD(unmounted); /* protected by namespace_sem */
e3197d83 1339
97216be0 1340static void namespace_unlock(void)
70fbcdf4 1341{
a3b3c562 1342 struct hlist_head head;
97216be0 1343
a3b3c562 1344 hlist_move_list(&unmounted, &head);
97216be0 1345
97216be0
AV
1346 up_write(&namespace_sem);
1347
a3b3c562
EB
1348 if (likely(hlist_empty(&head)))
1349 return;
1350
48a066e7
AV
1351 synchronize_rcu();
1352
87b95ce0 1353 group_pin_kill(&head);
70fbcdf4
RP
1354}
1355
97216be0 1356static inline void namespace_lock(void)
e3197d83 1357{
97216be0 1358 down_write(&namespace_sem);
e3197d83
AV
1359}
1360
e819f152
EB
1361enum umount_tree_flags {
1362 UMOUNT_SYNC = 1,
1363 UMOUNT_PROPAGATE = 2,
e0c9c0af 1364 UMOUNT_CONNECTED = 4,
e819f152 1365};
f2d0a123
EB
1366
1367static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1368{
1369 /* Leaving mounts connected is only valid for lazy umounts */
1370 if (how & UMOUNT_SYNC)
1371 return true;
1372
1373 /* A mount without a parent has nothing to be connected to */
1374 if (!mnt_has_parent(mnt))
1375 return true;
1376
1377 /* Because the reference counting rules change when mounts are
1378 * unmounted and connected, umounted mounts may not be
1379 * connected to mounted mounts.
1380 */
1381 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1382 return true;
1383
1384 /* Has it been requested that the mount remain connected? */
1385 if (how & UMOUNT_CONNECTED)
1386 return false;
1387
1388 /* Is the mount locked such that it needs to remain connected? */
1389 if (IS_MNT_LOCKED(mnt))
1390 return false;
1391
1392 /* By default disconnect the mount */
1393 return true;
1394}
1395
99b7db7b 1396/*
48a066e7 1397 * mount_lock must be held
99b7db7b
NP
1398 * namespace_sem must be held for write
1399 */
e819f152 1400static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1da177e4 1401{
c003b26f 1402 LIST_HEAD(tmp_list);
315fc83e 1403 struct mount *p;
1da177e4 1404
5d88457e
EB
1405 if (how & UMOUNT_PROPAGATE)
1406 propagate_mount_unlock(mnt);
1407
c003b26f 1408 /* Gather the mounts to umount */
590ce4bc
EB
1409 for (p = mnt; p; p = next_mnt(p, mnt)) {
1410 p->mnt.mnt_flags |= MNT_UMOUNT;
c003b26f 1411 list_move(&p->mnt_list, &tmp_list);
590ce4bc 1412 }
1da177e4 1413
411a938b 1414 /* Hide the mounts from mnt_mounts */
c003b26f 1415 list_for_each_entry(p, &tmp_list, mnt_list) {
88b368f2 1416 list_del_init(&p->mnt_child);
c003b26f 1417 }
88b368f2 1418
c003b26f 1419 /* Add propogated mounts to the tmp_list */
e819f152 1420 if (how & UMOUNT_PROPAGATE)
7b8a53fd 1421 propagate_umount(&tmp_list);
a05964f3 1422
c003b26f 1423 while (!list_empty(&tmp_list)) {
d2921684 1424 struct mnt_namespace *ns;
ce07d891 1425 bool disconnect;
c003b26f 1426 p = list_first_entry(&tmp_list, struct mount, mnt_list);
6776db3d 1427 list_del_init(&p->mnt_expire);
1a4eeaf2 1428 list_del_init(&p->mnt_list);
d2921684
EB
1429 ns = p->mnt_ns;
1430 if (ns) {
1431 ns->mounts--;
1432 __touch_mnt_namespace(ns);
1433 }
143c8c91 1434 p->mnt_ns = NULL;
e819f152 1435 if (how & UMOUNT_SYNC)
48a066e7 1436 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
87b95ce0 1437
f2d0a123 1438 disconnect = disconnect_mount(p, how);
ce07d891
EB
1439
1440 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1441 disconnect ? &unmounted : NULL);
676da58d 1442 if (mnt_has_parent(p)) {
81b6b061 1443 mnt_add_count(p->mnt_parent, -1);
ce07d891
EB
1444 if (!disconnect) {
1445 /* Don't forget about p */
1446 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1447 } else {
1448 umount_mnt(p);
1449 }
7c4b93d8 1450 }
0f0afb1d 1451 change_mnt_propagation(p, MS_PRIVATE);
1da177e4
LT
1452 }
1453}
1454
b54b9be7 1455static void shrink_submounts(struct mount *mnt);
c35038be 1456
1ab59738 1457static int do_umount(struct mount *mnt, int flags)
1da177e4 1458{
1ab59738 1459 struct super_block *sb = mnt->mnt.mnt_sb;
1da177e4
LT
1460 int retval;
1461
1ab59738 1462 retval = security_sb_umount(&mnt->mnt, flags);
1da177e4
LT
1463 if (retval)
1464 return retval;
1465
1466 /*
1467 * Allow userspace to request a mountpoint be expired rather than
1468 * unmounting unconditionally. Unmount only happens if:
1469 * (1) the mark is already set (the mark is cleared by mntput())
1470 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1471 */
1472 if (flags & MNT_EXPIRE) {
1ab59738 1473 if (&mnt->mnt == current->fs->root.mnt ||
1da177e4
LT
1474 flags & (MNT_FORCE | MNT_DETACH))
1475 return -EINVAL;
1476
b3e19d92
NP
1477 /*
1478 * probably don't strictly need the lock here if we examined
1479 * all race cases, but it's a slowpath.
1480 */
719ea2fb 1481 lock_mount_hash();
83adc753 1482 if (mnt_get_count(mnt) != 2) {
719ea2fb 1483 unlock_mount_hash();
1da177e4 1484 return -EBUSY;
b3e19d92 1485 }
719ea2fb 1486 unlock_mount_hash();
1da177e4 1487
863d684f 1488 if (!xchg(&mnt->mnt_expiry_mark, 1))
1da177e4
LT
1489 return -EAGAIN;
1490 }
1491
1492 /*
1493 * If we may have to abort operations to get out of this
1494 * mount, and they will themselves hold resources we must
1495 * allow the fs to do things. In the Unix tradition of
1496 * 'Gee thats tricky lets do it in userspace' the umount_begin
1497 * might fail to complete on the first run through as other tasks
1498 * must return, and the like. Thats for the mount program to worry
1499 * about for the moment.
1500 */
1501
42faad99 1502 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1503 sb->s_op->umount_begin(sb);
42faad99 1504 }
1da177e4
LT
1505
1506 /*
1507 * No sense to grab the lock for this test, but test itself looks
1508 * somewhat bogus. Suggestions for better replacement?
1509 * Ho-hum... In principle, we might treat that as umount + switch
1510 * to rootfs. GC would eventually take care of the old vfsmount.
1511 * Actually it makes sense, especially if rootfs would contain a
1512 * /reboot - static binary that would close all descriptors and
1513 * call reboot(9). Then init(8) could umount root and exec /reboot.
1514 */
1ab59738 1515 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1516 /*
1517 * Special case for "unmounting" root ...
1518 * we just try to remount it readonly.
1519 */
a1480dcc
AL
1520 if (!capable(CAP_SYS_ADMIN))
1521 return -EPERM;
1da177e4 1522 down_write(&sb->s_umount);
4aa98cf7 1523 if (!(sb->s_flags & MS_RDONLY))
1da177e4 1524 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1da177e4
LT
1525 up_write(&sb->s_umount);
1526 return retval;
1527 }
1528
97216be0 1529 namespace_lock();
719ea2fb 1530 lock_mount_hash();
5addc5dd 1531 event++;
1da177e4 1532
48a066e7 1533 if (flags & MNT_DETACH) {
1a4eeaf2 1534 if (!list_empty(&mnt->mnt_list))
e819f152 1535 umount_tree(mnt, UMOUNT_PROPAGATE);
1da177e4 1536 retval = 0;
48a066e7
AV
1537 } else {
1538 shrink_submounts(mnt);
1539 retval = -EBUSY;
1540 if (!propagate_mount_busy(mnt, 2)) {
1541 if (!list_empty(&mnt->mnt_list))
e819f152 1542 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
48a066e7
AV
1543 retval = 0;
1544 }
1da177e4 1545 }
719ea2fb 1546 unlock_mount_hash();
e3197d83 1547 namespace_unlock();
1da177e4
LT
1548 return retval;
1549}
1550
80b5dce8
EB
1551/*
1552 * __detach_mounts - lazily unmount all mounts on the specified dentry
1553 *
1554 * During unlink, rmdir, and d_drop it is possible to loose the path
1555 * to an existing mountpoint, and wind up leaking the mount.
1556 * detach_mounts allows lazily unmounting those mounts instead of
1557 * leaking them.
1558 *
1559 * The caller may hold dentry->d_inode->i_mutex.
1560 */
1561void __detach_mounts(struct dentry *dentry)
1562{
1563 struct mountpoint *mp;
1564 struct mount *mnt;
1565
1566 namespace_lock();
1567 mp = lookup_mountpoint(dentry);
f53e5797 1568 if (IS_ERR_OR_NULL(mp))
80b5dce8
EB
1569 goto out_unlock;
1570
1571 lock_mount_hash();
e06b933e 1572 event++;
80b5dce8
EB
1573 while (!hlist_empty(&mp->m_list)) {
1574 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
ce07d891 1575 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
fe78fcc8
EB
1576 hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1577 umount_mnt(mnt);
ce07d891 1578 }
e0c9c0af 1579 else umount_tree(mnt, UMOUNT_CONNECTED);
80b5dce8
EB
1580 }
1581 unlock_mount_hash();
1582 put_mountpoint(mp);
1583out_unlock:
1584 namespace_unlock();
1585}
1586
9b40bc90
AV
1587/*
1588 * Is the caller allowed to modify his namespace?
1589 */
1590static inline bool may_mount(void)
1591{
1592 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1593}
1594
9e8925b6
JL
1595static inline bool may_mandlock(void)
1596{
1597#ifndef CONFIG_MANDATORY_FILE_LOCKING
1598 return false;
1599#endif
95ace754 1600 return capable(CAP_SYS_ADMIN);
9e8925b6
JL
1601}
1602
1da177e4
LT
1603/*
1604 * Now umount can handle mount points as well as block devices.
1605 * This is important for filesystems which use unnamed block devices.
1606 *
1607 * We now support a flag for forced unmount like the other 'big iron'
1608 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1609 */
1610
bdc480e3 1611SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1da177e4 1612{
2d8f3038 1613 struct path path;
900148dc 1614 struct mount *mnt;
1da177e4 1615 int retval;
db1f05bb 1616 int lookup_flags = 0;
1da177e4 1617
db1f05bb
MS
1618 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1619 return -EINVAL;
1620
9b40bc90
AV
1621 if (!may_mount())
1622 return -EPERM;
1623
db1f05bb
MS
1624 if (!(flags & UMOUNT_NOFOLLOW))
1625 lookup_flags |= LOOKUP_FOLLOW;
1626
197df04c 1627 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1da177e4
LT
1628 if (retval)
1629 goto out;
900148dc 1630 mnt = real_mount(path.mnt);
1da177e4 1631 retval = -EINVAL;
2d8f3038 1632 if (path.dentry != path.mnt->mnt_root)
1da177e4 1633 goto dput_and_out;
143c8c91 1634 if (!check_mnt(mnt))
1da177e4 1635 goto dput_and_out;
5ff9d8a6
EB
1636 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1637 goto dput_and_out;
b2f5d4dc
EB
1638 retval = -EPERM;
1639 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1640 goto dput_and_out;
1da177e4 1641
900148dc 1642 retval = do_umount(mnt, flags);
1da177e4 1643dput_and_out:
429731b1 1644 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038 1645 dput(path.dentry);
900148dc 1646 mntput_no_expire(mnt);
1da177e4
LT
1647out:
1648 return retval;
1649}
1650
1651#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1652
1653/*
b58fed8b 1654 * The 2.0 compatible umount. No flags.
1da177e4 1655 */
bdc480e3 1656SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1657{
b58fed8b 1658 return sys_umount(name, 0);
1da177e4
LT
1659}
1660
1661#endif
1662
4ce5d2b1 1663static bool is_mnt_ns_file(struct dentry *dentry)
8823c079 1664{
4ce5d2b1 1665 /* Is this a proxy for a mount namespace? */
e149ed2b
AV
1666 return dentry->d_op == &ns_dentry_operations &&
1667 dentry->d_fsdata == &mntns_operations;
4ce5d2b1
EB
1668}
1669
58be2825
AV
1670struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1671{
1672 return container_of(ns, struct mnt_namespace, ns);
1673}
1674
4ce5d2b1
EB
1675static bool mnt_ns_loop(struct dentry *dentry)
1676{
1677 /* Could bind mounting the mount namespace inode cause a
1678 * mount namespace loop?
1679 */
1680 struct mnt_namespace *mnt_ns;
1681 if (!is_mnt_ns_file(dentry))
1682 return false;
1683
f77c8014 1684 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
8823c079
EB
1685 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1686}
1687
87129cc0 1688struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
36341f64 1689 int flag)
1da177e4 1690{
84d17192 1691 struct mount *res, *p, *q, *r, *parent;
1da177e4 1692
4ce5d2b1
EB
1693 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1694 return ERR_PTR(-EINVAL);
1695
1696 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
be34d1a3 1697 return ERR_PTR(-EINVAL);
9676f0c6 1698
36341f64 1699 res = q = clone_mnt(mnt, dentry, flag);
be34d1a3
DH
1700 if (IS_ERR(q))
1701 return q;
1702
a73324da 1703 q->mnt_mountpoint = mnt->mnt_mountpoint;
1da177e4
LT
1704
1705 p = mnt;
6b41d536 1706 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
315fc83e 1707 struct mount *s;
7ec02ef1 1708 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1709 continue;
1710
909b0a88 1711 for (s = r; s; s = next_mnt(s, r)) {
12a5b529 1712 struct mount *t = NULL;
4ce5d2b1
EB
1713 if (!(flag & CL_COPY_UNBINDABLE) &&
1714 IS_MNT_UNBINDABLE(s)) {
1715 s = skip_mnt_tree(s);
1716 continue;
1717 }
1718 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1719 is_mnt_ns_file(s->mnt.mnt_root)) {
9676f0c6
RP
1720 s = skip_mnt_tree(s);
1721 continue;
1722 }
0714a533
AV
1723 while (p != s->mnt_parent) {
1724 p = p->mnt_parent;
1725 q = q->mnt_parent;
1da177e4 1726 }
87129cc0 1727 p = s;
84d17192 1728 parent = q;
87129cc0 1729 q = clone_mnt(p, p->mnt.mnt_root, flag);
be34d1a3
DH
1730 if (IS_ERR(q))
1731 goto out;
719ea2fb 1732 lock_mount_hash();
1a4eeaf2 1733 list_add_tail(&q->mnt_list, &res->mnt_list);
12a5b529
AV
1734 mnt_set_mountpoint(parent, p->mnt_mp, q);
1735 if (!list_empty(&parent->mnt_mounts)) {
1736 t = list_last_entry(&parent->mnt_mounts,
1737 struct mount, mnt_child);
1738 if (t->mnt_mp != p->mnt_mp)
1739 t = NULL;
1740 }
1741 attach_shadowed(q, parent, t);
719ea2fb 1742 unlock_mount_hash();
1da177e4
LT
1743 }
1744 }
1745 return res;
be34d1a3 1746out:
1da177e4 1747 if (res) {
719ea2fb 1748 lock_mount_hash();
e819f152 1749 umount_tree(res, UMOUNT_SYNC);
719ea2fb 1750 unlock_mount_hash();
1da177e4 1751 }
be34d1a3 1752 return q;
1da177e4
LT
1753}
1754
be34d1a3
DH
1755/* Caller should check returned pointer for errors */
1756
589ff870 1757struct vfsmount *collect_mounts(struct path *path)
8aec0809 1758{
cb338d06 1759 struct mount *tree;
97216be0 1760 namespace_lock();
cd4a4017
EB
1761 if (!check_mnt(real_mount(path->mnt)))
1762 tree = ERR_PTR(-EINVAL);
1763 else
1764 tree = copy_tree(real_mount(path->mnt), path->dentry,
1765 CL_COPY_ALL | CL_PRIVATE);
328e6d90 1766 namespace_unlock();
be34d1a3 1767 if (IS_ERR(tree))
52e220d3 1768 return ERR_CAST(tree);
be34d1a3 1769 return &tree->mnt;
8aec0809
AV
1770}
1771
1772void drop_collected_mounts(struct vfsmount *mnt)
1773{
97216be0 1774 namespace_lock();
719ea2fb 1775 lock_mount_hash();
e819f152 1776 umount_tree(real_mount(mnt), UMOUNT_SYNC);
719ea2fb 1777 unlock_mount_hash();
3ab6abee 1778 namespace_unlock();
8aec0809
AV
1779}
1780
c771d683
MS
1781/**
1782 * clone_private_mount - create a private clone of a path
1783 *
1784 * This creates a new vfsmount, which will be the clone of @path. The new will
1785 * not be attached anywhere in the namespace and will be private (i.e. changes
1786 * to the originating mount won't be propagated into this).
1787 *
1788 * Release with mntput().
1789 */
1790struct vfsmount *clone_private_mount(struct path *path)
1791{
1792 struct mount *old_mnt = real_mount(path->mnt);
1793 struct mount *new_mnt;
1794
1795 if (IS_MNT_UNBINDABLE(old_mnt))
1796 return ERR_PTR(-EINVAL);
1797
c771d683 1798 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
c771d683
MS
1799 if (IS_ERR(new_mnt))
1800 return ERR_CAST(new_mnt);
1801
1802 return &new_mnt->mnt;
1803}
1804EXPORT_SYMBOL_GPL(clone_private_mount);
1805
1f707137
AV
1806int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1807 struct vfsmount *root)
1808{
1a4eeaf2 1809 struct mount *mnt;
1f707137
AV
1810 int res = f(root, arg);
1811 if (res)
1812 return res;
1a4eeaf2
AV
1813 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1814 res = f(&mnt->mnt, arg);
1f707137
AV
1815 if (res)
1816 return res;
1817 }
1818 return 0;
1819}
1820
4b8b21f4 1821static void cleanup_group_ids(struct mount *mnt, struct mount *end)
719f5d7f 1822{
315fc83e 1823 struct mount *p;
719f5d7f 1824
909b0a88 1825 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
fc7be130 1826 if (p->mnt_group_id && !IS_MNT_SHARED(p))
4b8b21f4 1827 mnt_release_group_id(p);
719f5d7f
MS
1828 }
1829}
1830
4b8b21f4 1831static int invent_group_ids(struct mount *mnt, bool recurse)
719f5d7f 1832{
315fc83e 1833 struct mount *p;
719f5d7f 1834
909b0a88 1835 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
fc7be130 1836 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
4b8b21f4 1837 int err = mnt_alloc_group_id(p);
719f5d7f 1838 if (err) {
4b8b21f4 1839 cleanup_group_ids(mnt, p);
719f5d7f
MS
1840 return err;
1841 }
1842 }
1843 }
1844
1845 return 0;
1846}
1847
d2921684
EB
1848int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1849{
1850 unsigned int max = READ_ONCE(sysctl_mount_max);
1851 unsigned int mounts = 0, old, pending, sum;
1852 struct mount *p;
1853
1854 for (p = mnt; p; p = next_mnt(p, mnt))
1855 mounts++;
1856
1857 old = ns->mounts;
1858 pending = ns->pending_mounts;
1859 sum = old + pending;
1860 if ((old > sum) ||
1861 (pending > sum) ||
1862 (max < sum) ||
1863 (mounts > (max - sum)))
1864 return -ENOSPC;
1865
1866 ns->pending_mounts = pending + mounts;
1867 return 0;
1868}
1869
b90fa9ae
RP
1870/*
1871 * @source_mnt : mount tree to be attached
21444403
RP
1872 * @nd : place the mount tree @source_mnt is attached
1873 * @parent_nd : if non-null, detach the source_mnt from its parent and
1874 * store the parent mount and mountpoint dentry.
1875 * (done when source_mnt is moved)
b90fa9ae
RP
1876 *
1877 * NOTE: in the table below explains the semantics when a source mount
1878 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1879 * ---------------------------------------------------------------------------
1880 * | BIND MOUNT OPERATION |
1881 * |**************************************************************************
1882 * | source-->| shared | private | slave | unbindable |
1883 * | dest | | | | |
1884 * | | | | | | |
1885 * | v | | | | |
1886 * |**************************************************************************
1887 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1888 * | | | | | |
1889 * |non-shared| shared (+) | private | slave (*) | invalid |
1890 * ***************************************************************************
b90fa9ae
RP
1891 * A bind operation clones the source mount and mounts the clone on the
1892 * destination mount.
1893 *
1894 * (++) the cloned mount is propagated to all the mounts in the propagation
1895 * tree of the destination mount and the cloned mount is added to
1896 * the peer group of the source mount.
1897 * (+) the cloned mount is created under the destination mount and is marked
1898 * as shared. The cloned mount is added to the peer group of the source
1899 * mount.
5afe0022
RP
1900 * (+++) the mount is propagated to all the mounts in the propagation tree
1901 * of the destination mount and the cloned mount is made slave
1902 * of the same master as that of the source mount. The cloned mount
1903 * is marked as 'shared and slave'.
1904 * (*) the cloned mount is made a slave of the same master as that of the
1905 * source mount.
1906 *
9676f0c6
RP
1907 * ---------------------------------------------------------------------------
1908 * | MOVE MOUNT OPERATION |
1909 * |**************************************************************************
1910 * | source-->| shared | private | slave | unbindable |
1911 * | dest | | | | |
1912 * | | | | | | |
1913 * | v | | | | |
1914 * |**************************************************************************
1915 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1916 * | | | | | |
1917 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1918 * ***************************************************************************
5afe0022
RP
1919 *
1920 * (+) the mount is moved to the destination. And is then propagated to
1921 * all the mounts in the propagation tree of the destination mount.
21444403 1922 * (+*) the mount is moved to the destination.
5afe0022
RP
1923 * (+++) the mount is moved to the destination and is then propagated to
1924 * all the mounts belonging to the destination mount's propagation tree.
1925 * the mount is marked as 'shared and slave'.
1926 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
1927 *
1928 * if the source mount is a tree, the operations explained above is
1929 * applied to each mount in the tree.
1930 * Must be called without spinlocks held, since this function can sleep
1931 * in allocations.
1932 */
0fb54e50 1933static int attach_recursive_mnt(struct mount *source_mnt,
84d17192
AV
1934 struct mount *dest_mnt,
1935 struct mountpoint *dest_mp,
1936 struct path *parent_path)
b90fa9ae 1937{
38129a13 1938 HLIST_HEAD(tree_list);
d2921684 1939 struct mnt_namespace *ns = dest_mnt->mnt_ns;
315fc83e 1940 struct mount *child, *p;
38129a13 1941 struct hlist_node *n;
719f5d7f 1942 int err;
b90fa9ae 1943
d2921684
EB
1944 /* Is there space to add these mounts to the mount namespace? */
1945 if (!parent_path) {
1946 err = count_mounts(ns, source_mnt);
1947 if (err)
1948 goto out;
1949 }
1950
fc7be130 1951 if (IS_MNT_SHARED(dest_mnt)) {
0fb54e50 1952 err = invent_group_ids(source_mnt, true);
719f5d7f
MS
1953 if (err)
1954 goto out;
0b1b901b 1955 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
f2ebb3a9 1956 lock_mount_hash();
0b1b901b
AV
1957 if (err)
1958 goto out_cleanup_ids;
909b0a88 1959 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
0f0afb1d 1960 set_mnt_shared(p);
0b1b901b
AV
1961 } else {
1962 lock_mount_hash();
b90fa9ae 1963 }
1a390689 1964 if (parent_path) {
0fb54e50 1965 detach_mnt(source_mnt, parent_path);
84d17192 1966 attach_mnt(source_mnt, dest_mnt, dest_mp);
143c8c91 1967 touch_mnt_namespace(source_mnt->mnt_ns);
21444403 1968 } else {
84d17192 1969 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1d6a32ac 1970 commit_tree(source_mnt, NULL);
21444403 1971 }
b90fa9ae 1972
38129a13 1973 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1d6a32ac 1974 struct mount *q;
38129a13 1975 hlist_del_init(&child->mnt_hash);
1d6a32ac
AV
1976 q = __lookup_mnt_last(&child->mnt_parent->mnt,
1977 child->mnt_mountpoint);
1978 commit_tree(child, q);
b90fa9ae 1979 }
719ea2fb 1980 unlock_mount_hash();
99b7db7b 1981
b90fa9ae 1982 return 0;
719f5d7f
MS
1983
1984 out_cleanup_ids:
f2ebb3a9
AV
1985 while (!hlist_empty(&tree_list)) {
1986 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
d2921684 1987 child->mnt_parent->mnt_ns->pending_mounts = 0;
e819f152 1988 umount_tree(child, UMOUNT_SYNC);
f2ebb3a9
AV
1989 }
1990 unlock_mount_hash();
0b1b901b 1991 cleanup_group_ids(source_mnt, NULL);
719f5d7f 1992 out:
d2921684 1993 ns->pending_mounts = 0;
719f5d7f 1994 return err;
b90fa9ae
RP
1995}
1996
84d17192 1997static struct mountpoint *lock_mount(struct path *path)
b12cea91
AV
1998{
1999 struct vfsmount *mnt;
84d17192 2000 struct dentry *dentry = path->dentry;
b12cea91 2001retry:
5955102c 2002 inode_lock(dentry->d_inode);
84d17192 2003 if (unlikely(cant_mount(dentry))) {
5955102c 2004 inode_unlock(dentry->d_inode);
84d17192 2005 return ERR_PTR(-ENOENT);
b12cea91 2006 }
97216be0 2007 namespace_lock();
b12cea91 2008 mnt = lookup_mnt(path);
84d17192 2009 if (likely(!mnt)) {
e2dfa935
EB
2010 struct mountpoint *mp = lookup_mountpoint(dentry);
2011 if (!mp)
2012 mp = new_mountpoint(dentry);
84d17192 2013 if (IS_ERR(mp)) {
97216be0 2014 namespace_unlock();
5955102c 2015 inode_unlock(dentry->d_inode);
84d17192
AV
2016 return mp;
2017 }
2018 return mp;
2019 }
97216be0 2020 namespace_unlock();
5955102c 2021 inode_unlock(path->dentry->d_inode);
b12cea91
AV
2022 path_put(path);
2023 path->mnt = mnt;
84d17192 2024 dentry = path->dentry = dget(mnt->mnt_root);
b12cea91
AV
2025 goto retry;
2026}
2027
84d17192 2028static void unlock_mount(struct mountpoint *where)
b12cea91 2029{
84d17192
AV
2030 struct dentry *dentry = where->m_dentry;
2031 put_mountpoint(where);
328e6d90 2032 namespace_unlock();
5955102c 2033 inode_unlock(dentry->d_inode);
b12cea91
AV
2034}
2035
84d17192 2036static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1da177e4 2037{
95bc5f25 2038 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1da177e4
LT
2039 return -EINVAL;
2040
e36cb0b8
DH
2041 if (d_is_dir(mp->m_dentry) !=
2042 d_is_dir(mnt->mnt.mnt_root))
1da177e4
LT
2043 return -ENOTDIR;
2044
84d17192 2045 return attach_recursive_mnt(mnt, p, mp, NULL);
1da177e4
LT
2046}
2047
7a2e8a8f
VA
2048/*
2049 * Sanity check the flags to change_mnt_propagation.
2050 */
2051
2052static int flags_to_propagation_type(int flags)
2053{
7c6e984d 2054 int type = flags & ~(MS_REC | MS_SILENT);
7a2e8a8f
VA
2055
2056 /* Fail if any non-propagation flags are set */
2057 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2058 return 0;
2059 /* Only one propagation flag should be set */
2060 if (!is_power_of_2(type))
2061 return 0;
2062 return type;
2063}
2064
07b20889
RP
2065/*
2066 * recursively change the type of the mountpoint.
2067 */
0a0d8a46 2068static int do_change_type(struct path *path, int flag)
07b20889 2069{
315fc83e 2070 struct mount *m;
4b8b21f4 2071 struct mount *mnt = real_mount(path->mnt);
07b20889 2072 int recurse = flag & MS_REC;
7a2e8a8f 2073 int type;
719f5d7f 2074 int err = 0;
07b20889 2075
2d92ab3c 2076 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
2077 return -EINVAL;
2078
7a2e8a8f
VA
2079 type = flags_to_propagation_type(flag);
2080 if (!type)
2081 return -EINVAL;
2082
97216be0 2083 namespace_lock();
719f5d7f
MS
2084 if (type == MS_SHARED) {
2085 err = invent_group_ids(mnt, recurse);
2086 if (err)
2087 goto out_unlock;
2088 }
2089
719ea2fb 2090 lock_mount_hash();
909b0a88 2091 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
0f0afb1d 2092 change_mnt_propagation(m, type);
719ea2fb 2093 unlock_mount_hash();
719f5d7f
MS
2094
2095 out_unlock:
97216be0 2096 namespace_unlock();
719f5d7f 2097 return err;
07b20889
RP
2098}
2099
5ff9d8a6
EB
2100static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2101{
2102 struct mount *child;
2103 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2104 if (!is_subdir(child->mnt_mountpoint, dentry))
2105 continue;
2106
2107 if (child->mnt.mnt_flags & MNT_LOCKED)
2108 return true;
2109 }
2110 return false;
2111}
2112
1da177e4
LT
2113/*
2114 * do loopback mount.
2115 */
808d4e3c 2116static int do_loopback(struct path *path, const char *old_name,
2dafe1c4 2117 int recurse)
1da177e4 2118{
2d92ab3c 2119 struct path old_path;
84d17192
AV
2120 struct mount *mnt = NULL, *old, *parent;
2121 struct mountpoint *mp;
57eccb83 2122 int err;
1da177e4
LT
2123 if (!old_name || !*old_name)
2124 return -EINVAL;
815d405c 2125 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1da177e4
LT
2126 if (err)
2127 return err;
2128
8823c079 2129 err = -EINVAL;
4ce5d2b1 2130 if (mnt_ns_loop(old_path.dentry))
8823c079
EB
2131 goto out;
2132
84d17192
AV
2133 mp = lock_mount(path);
2134 err = PTR_ERR(mp);
2135 if (IS_ERR(mp))
b12cea91
AV
2136 goto out;
2137
87129cc0 2138 old = real_mount(old_path.mnt);
84d17192 2139 parent = real_mount(path->mnt);
87129cc0 2140
1da177e4 2141 err = -EINVAL;
fc7be130 2142 if (IS_MNT_UNBINDABLE(old))
b12cea91 2143 goto out2;
9676f0c6 2144
e149ed2b
AV
2145 if (!check_mnt(parent))
2146 goto out2;
2147
2148 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
b12cea91 2149 goto out2;
1da177e4 2150
5ff9d8a6
EB
2151 if (!recurse && has_locked_children(old, old_path.dentry))
2152 goto out2;
2153
ccd48bc7 2154 if (recurse)
4ce5d2b1 2155 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
ccd48bc7 2156 else
87129cc0 2157 mnt = clone_mnt(old, old_path.dentry, 0);
ccd48bc7 2158
be34d1a3
DH
2159 if (IS_ERR(mnt)) {
2160 err = PTR_ERR(mnt);
e9c5d8a5 2161 goto out2;
be34d1a3 2162 }
ccd48bc7 2163
5ff9d8a6
EB
2164 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2165
84d17192 2166 err = graft_tree(mnt, parent, mp);
ccd48bc7 2167 if (err) {
719ea2fb 2168 lock_mount_hash();
e819f152 2169 umount_tree(mnt, UMOUNT_SYNC);
719ea2fb 2170 unlock_mount_hash();
5b83d2c5 2171 }
b12cea91 2172out2:
84d17192 2173 unlock_mount(mp);
ccd48bc7 2174out:
2d92ab3c 2175 path_put(&old_path);
1da177e4
LT
2176 return err;
2177}
2178
2e4b7fcd
DH
2179static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2180{
2181 int error = 0;
2182 int readonly_request = 0;
2183
2184 if (ms_flags & MS_RDONLY)
2185 readonly_request = 1;
2186 if (readonly_request == __mnt_is_readonly(mnt))
2187 return 0;
2188
2189 if (readonly_request)
83adc753 2190 error = mnt_make_readonly(real_mount(mnt));
2e4b7fcd 2191 else
83adc753 2192 __mnt_unmake_readonly(real_mount(mnt));
2e4b7fcd
DH
2193 return error;
2194}
2195
1da177e4
LT
2196/*
2197 * change filesystem flags. dir should be a physical root of filesystem.
2198 * If you've mounted a non-root directory somewhere and want to do remount
2199 * on it - tough luck.
2200 */
0a0d8a46 2201static int do_remount(struct path *path, int flags, int mnt_flags,
1da177e4
LT
2202 void *data)
2203{
2204 int err;
2d92ab3c 2205 struct super_block *sb = path->mnt->mnt_sb;
143c8c91 2206 struct mount *mnt = real_mount(path->mnt);
1da177e4 2207
143c8c91 2208 if (!check_mnt(mnt))
1da177e4
LT
2209 return -EINVAL;
2210
2d92ab3c 2211 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
2212 return -EINVAL;
2213
07b64558
EB
2214 /* Don't allow changing of locked mnt flags.
2215 *
2216 * No locks need to be held here while testing the various
2217 * MNT_LOCK flags because those flags can never be cleared
2218 * once they are set.
2219 */
2220 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2221 !(mnt_flags & MNT_READONLY)) {
2222 return -EPERM;
2223 }
9566d674
EB
2224 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2225 !(mnt_flags & MNT_NODEV)) {
67690f93 2226 return -EPERM;
9566d674
EB
2227 }
2228 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2229 !(mnt_flags & MNT_NOSUID)) {
2230 return -EPERM;
2231 }
2232 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2233 !(mnt_flags & MNT_NOEXEC)) {
2234 return -EPERM;
2235 }
2236 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2237 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2238 return -EPERM;
2239 }
2240
ff36fe2c
EP
2241 err = security_sb_remount(sb, data);
2242 if (err)
2243 return err;
2244
1da177e4 2245 down_write(&sb->s_umount);
2e4b7fcd 2246 if (flags & MS_BIND)
2d92ab3c 2247 err = change_mount_flags(path->mnt, flags);
57eccb83
AV
2248 else if (!capable(CAP_SYS_ADMIN))
2249 err = -EPERM;
4aa98cf7 2250 else
2e4b7fcd 2251 err = do_remount_sb(sb, flags, data, 0);
7b43a79f 2252 if (!err) {
719ea2fb 2253 lock_mount_hash();
a6138db8 2254 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
143c8c91 2255 mnt->mnt.mnt_flags = mnt_flags;
143c8c91 2256 touch_mnt_namespace(mnt->mnt_ns);
719ea2fb 2257 unlock_mount_hash();
0e55a7cc 2258 }
6339dab8 2259 up_write(&sb->s_umount);
1da177e4
LT
2260 return err;
2261}
2262
cbbe362c 2263static inline int tree_contains_unbindable(struct mount *mnt)
9676f0c6 2264{
315fc83e 2265 struct mount *p;
909b0a88 2266 for (p = mnt; p; p = next_mnt(p, mnt)) {
fc7be130 2267 if (IS_MNT_UNBINDABLE(p))
9676f0c6
RP
2268 return 1;
2269 }
2270 return 0;
2271}
2272
808d4e3c 2273static int do_move_mount(struct path *path, const char *old_name)
1da177e4 2274{
2d92ab3c 2275 struct path old_path, parent_path;
676da58d 2276 struct mount *p;
0fb54e50 2277 struct mount *old;
84d17192 2278 struct mountpoint *mp;
57eccb83 2279 int err;
1da177e4
LT
2280 if (!old_name || !*old_name)
2281 return -EINVAL;
2d92ab3c 2282 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
2283 if (err)
2284 return err;
2285
84d17192
AV
2286 mp = lock_mount(path);
2287 err = PTR_ERR(mp);
2288 if (IS_ERR(mp))
cc53ce53
DH
2289 goto out;
2290
143c8c91 2291 old = real_mount(old_path.mnt);
fc7be130 2292 p = real_mount(path->mnt);
143c8c91 2293
1da177e4 2294 err = -EINVAL;
fc7be130 2295 if (!check_mnt(p) || !check_mnt(old))
1da177e4
LT
2296 goto out1;
2297
5ff9d8a6
EB
2298 if (old->mnt.mnt_flags & MNT_LOCKED)
2299 goto out1;
2300
1da177e4 2301 err = -EINVAL;
2d92ab3c 2302 if (old_path.dentry != old_path.mnt->mnt_root)
21444403 2303 goto out1;
1da177e4 2304
676da58d 2305 if (!mnt_has_parent(old))
21444403 2306 goto out1;
1da177e4 2307
e36cb0b8
DH
2308 if (d_is_dir(path->dentry) !=
2309 d_is_dir(old_path.dentry))
21444403
RP
2310 goto out1;
2311 /*
2312 * Don't move a mount residing in a shared parent.
2313 */
fc7be130 2314 if (IS_MNT_SHARED(old->mnt_parent))
21444403 2315 goto out1;
9676f0c6
RP
2316 /*
2317 * Don't move a mount tree containing unbindable mounts to a destination
2318 * mount which is shared.
2319 */
fc7be130 2320 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
9676f0c6 2321 goto out1;
1da177e4 2322 err = -ELOOP;
fc7be130 2323 for (; mnt_has_parent(p); p = p->mnt_parent)
676da58d 2324 if (p == old)
21444403 2325 goto out1;
1da177e4 2326
84d17192 2327 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
4ac91378 2328 if (err)
21444403 2329 goto out1;
1da177e4
LT
2330
2331 /* if the mount is moved, it should no longer be expire
2332 * automatically */
6776db3d 2333 list_del_init(&old->mnt_expire);
1da177e4 2334out1:
84d17192 2335 unlock_mount(mp);
1da177e4 2336out:
1da177e4 2337 if (!err)
1a390689 2338 path_put(&parent_path);
2d92ab3c 2339 path_put(&old_path);
1da177e4
LT
2340 return err;
2341}
2342
9d412a43
AV
2343static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2344{
2345 int err;
2346 const char *subtype = strchr(fstype, '.');
2347 if (subtype) {
2348 subtype++;
2349 err = -EINVAL;
2350 if (!subtype[0])
2351 goto err;
2352 } else
2353 subtype = "";
2354
2355 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2356 err = -ENOMEM;
2357 if (!mnt->mnt_sb->s_subtype)
2358 goto err;
2359 return mnt;
2360
2361 err:
2362 mntput(mnt);
2363 return ERR_PTR(err);
2364}
2365
9d412a43
AV
2366/*
2367 * add a mount into a namespace's mount tree
2368 */
95bc5f25 2369static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
9d412a43 2370{
84d17192
AV
2371 struct mountpoint *mp;
2372 struct mount *parent;
9d412a43
AV
2373 int err;
2374
f2ebb3a9 2375 mnt_flags &= ~MNT_INTERNAL_FLAGS;
9d412a43 2376
84d17192
AV
2377 mp = lock_mount(path);
2378 if (IS_ERR(mp))
2379 return PTR_ERR(mp);
9d412a43 2380
84d17192 2381 parent = real_mount(path->mnt);
9d412a43 2382 err = -EINVAL;
84d17192 2383 if (unlikely(!check_mnt(parent))) {
156cacb1
AV
2384 /* that's acceptable only for automounts done in private ns */
2385 if (!(mnt_flags & MNT_SHRINKABLE))
2386 goto unlock;
2387 /* ... and for those we'd better have mountpoint still alive */
84d17192 2388 if (!parent->mnt_ns)
156cacb1
AV
2389 goto unlock;
2390 }
9d412a43
AV
2391
2392 /* Refuse the same filesystem on the same mount point */
2393 err = -EBUSY;
95bc5f25 2394 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
9d412a43
AV
2395 path->mnt->mnt_root == path->dentry)
2396 goto unlock;
2397
2398 err = -EINVAL;
e36cb0b8 2399 if (d_is_symlink(newmnt->mnt.mnt_root))
9d412a43
AV
2400 goto unlock;
2401
95bc5f25 2402 newmnt->mnt.mnt_flags = mnt_flags;
84d17192 2403 err = graft_tree(newmnt, parent, mp);
9d412a43
AV
2404
2405unlock:
84d17192 2406 unlock_mount(mp);
9d412a43
AV
2407 return err;
2408}
b1e75df4 2409
8654df4e 2410static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags);
1b852bce 2411
1da177e4
LT
2412/*
2413 * create a new mount for userspace and request it to be added into the
2414 * namespace's tree
2415 */
0c55cfc4 2416static int do_new_mount(struct path *path, const char *fstype, int flags,
808d4e3c 2417 int mnt_flags, const char *name, void *data)
1da177e4 2418{
0c55cfc4 2419 struct file_system_type *type;
1da177e4 2420 struct vfsmount *mnt;
15f9a3f3 2421 int err;
1da177e4 2422
0c55cfc4 2423 if (!fstype)
1da177e4
LT
2424 return -EINVAL;
2425
0c55cfc4
EB
2426 type = get_fs_type(fstype);
2427 if (!type)
2428 return -ENODEV;
2429
0c55cfc4
EB
2430 mnt = vfs_kern_mount(type, flags, name, data);
2431 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2432 !mnt->mnt_sb->s_subtype)
2433 mnt = fs_set_subtype(mnt, fstype);
2434
2435 put_filesystem(type);
1da177e4
LT
2436 if (IS_ERR(mnt))
2437 return PTR_ERR(mnt);
2438
8654df4e
EB
2439 if (mount_too_revealing(mnt, &mnt_flags)) {
2440 mntput(mnt);
2441 return -EPERM;
2442 }
2443
95bc5f25 2444 err = do_add_mount(real_mount(mnt), path, mnt_flags);
15f9a3f3
AV
2445 if (err)
2446 mntput(mnt);
2447 return err;
1da177e4
LT
2448}
2449
19a167af
AV
2450int finish_automount(struct vfsmount *m, struct path *path)
2451{
6776db3d 2452 struct mount *mnt = real_mount(m);
19a167af
AV
2453 int err;
2454 /* The new mount record should have at least 2 refs to prevent it being
2455 * expired before we get a chance to add it
2456 */
6776db3d 2457 BUG_ON(mnt_get_count(mnt) < 2);
19a167af
AV
2458
2459 if (m->mnt_sb == path->mnt->mnt_sb &&
2460 m->mnt_root == path->dentry) {
b1e75df4
AV
2461 err = -ELOOP;
2462 goto fail;
19a167af
AV
2463 }
2464
95bc5f25 2465 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
b1e75df4
AV
2466 if (!err)
2467 return 0;
2468fail:
2469 /* remove m from any expiration list it may be on */
6776db3d 2470 if (!list_empty(&mnt->mnt_expire)) {
97216be0 2471 namespace_lock();
6776db3d 2472 list_del_init(&mnt->mnt_expire);
97216be0 2473 namespace_unlock();
19a167af 2474 }
b1e75df4
AV
2475 mntput(m);
2476 mntput(m);
19a167af
AV
2477 return err;
2478}
2479
ea5b778a
DH
2480/**
2481 * mnt_set_expiry - Put a mount on an expiration list
2482 * @mnt: The mount to list.
2483 * @expiry_list: The list to add the mount to.
2484 */
2485void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2486{
97216be0 2487 namespace_lock();
ea5b778a 2488
6776db3d 2489 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
ea5b778a 2490
97216be0 2491 namespace_unlock();
ea5b778a
DH
2492}
2493EXPORT_SYMBOL(mnt_set_expiry);
2494
1da177e4
LT
2495/*
2496 * process a list of expirable mountpoints with the intent of discarding any
2497 * mountpoints that aren't in use and haven't been touched since last we came
2498 * here
2499 */
2500void mark_mounts_for_expiry(struct list_head *mounts)
2501{
761d5c38 2502 struct mount *mnt, *next;
1da177e4
LT
2503 LIST_HEAD(graveyard);
2504
2505 if (list_empty(mounts))
2506 return;
2507
97216be0 2508 namespace_lock();
719ea2fb 2509 lock_mount_hash();
1da177e4
LT
2510
2511 /* extract from the expiration list every vfsmount that matches the
2512 * following criteria:
2513 * - only referenced by its parent vfsmount
2514 * - still marked for expiry (marked on the last call here; marks are
2515 * cleared by mntput())
2516 */
6776db3d 2517 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
863d684f 2518 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1ab59738 2519 propagate_mount_busy(mnt, 1))
1da177e4 2520 continue;
6776db3d 2521 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 2522 }
bcc5c7d2 2523 while (!list_empty(&graveyard)) {
6776db3d 2524 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
143c8c91 2525 touch_mnt_namespace(mnt->mnt_ns);
e819f152 2526 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
bcc5c7d2 2527 }
719ea2fb 2528 unlock_mount_hash();
3ab6abee 2529 namespace_unlock();
5528f911
TM
2530}
2531
2532EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2533
2534/*
2535 * Ripoff of 'select_parent()'
2536 *
2537 * search the list of submounts for a given mountpoint, and move any
2538 * shrinkable submounts to the 'graveyard' list.
2539 */
692afc31 2540static int select_submounts(struct mount *parent, struct list_head *graveyard)
5528f911 2541{
692afc31 2542 struct mount *this_parent = parent;
5528f911
TM
2543 struct list_head *next;
2544 int found = 0;
2545
2546repeat:
6b41d536 2547 next = this_parent->mnt_mounts.next;
5528f911 2548resume:
6b41d536 2549 while (next != &this_parent->mnt_mounts) {
5528f911 2550 struct list_head *tmp = next;
6b41d536 2551 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
5528f911
TM
2552
2553 next = tmp->next;
692afc31 2554 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1da177e4 2555 continue;
5528f911
TM
2556 /*
2557 * Descend a level if the d_mounts list is non-empty.
2558 */
6b41d536 2559 if (!list_empty(&mnt->mnt_mounts)) {
5528f911
TM
2560 this_parent = mnt;
2561 goto repeat;
2562 }
1da177e4 2563
1ab59738 2564 if (!propagate_mount_busy(mnt, 1)) {
6776db3d 2565 list_move_tail(&mnt->mnt_expire, graveyard);
5528f911
TM
2566 found++;
2567 }
1da177e4 2568 }
5528f911
TM
2569 /*
2570 * All done at this level ... ascend and resume the search
2571 */
2572 if (this_parent != parent) {
6b41d536 2573 next = this_parent->mnt_child.next;
0714a533 2574 this_parent = this_parent->mnt_parent;
5528f911
TM
2575 goto resume;
2576 }
2577 return found;
2578}
2579
2580/*
2581 * process a list of expirable mountpoints with the intent of discarding any
2582 * submounts of a specific parent mountpoint
99b7db7b 2583 *
48a066e7 2584 * mount_lock must be held for write
5528f911 2585 */
b54b9be7 2586static void shrink_submounts(struct mount *mnt)
5528f911
TM
2587{
2588 LIST_HEAD(graveyard);
761d5c38 2589 struct mount *m;
5528f911 2590
5528f911 2591 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 2592 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 2593 while (!list_empty(&graveyard)) {
761d5c38 2594 m = list_first_entry(&graveyard, struct mount,
6776db3d 2595 mnt_expire);
143c8c91 2596 touch_mnt_namespace(m->mnt_ns);
e819f152 2597 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
bcc5c7d2
AV
2598 }
2599 }
1da177e4
LT
2600}
2601
1da177e4
LT
2602/*
2603 * Some copy_from_user() implementations do not return the exact number of
2604 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2605 * Note that this function differs from copy_from_user() in that it will oops
2606 * on bad values of `to', rather than returning a short copy.
2607 */
b58fed8b
RP
2608static long exact_copy_from_user(void *to, const void __user * from,
2609 unsigned long n)
1da177e4
LT
2610{
2611 char *t = to;
2612 const char __user *f = from;
2613 char c;
2614
2615 if (!access_ok(VERIFY_READ, from, n))
2616 return n;
2617
2618 while (n) {
2619 if (__get_user(c, f)) {
2620 memset(t, 0, n);
2621 break;
2622 }
2623 *t++ = c;
2624 f++;
2625 n--;
2626 }
2627 return n;
2628}
2629
b40ef869 2630void *copy_mount_options(const void __user * data)
1da177e4
LT
2631{
2632 int i;
1da177e4 2633 unsigned long size;
b40ef869 2634 char *copy;
b58fed8b 2635
1da177e4 2636 if (!data)
b40ef869 2637 return NULL;
1da177e4 2638
b40ef869
AV
2639 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
2640 if (!copy)
2641 return ERR_PTR(-ENOMEM);
1da177e4
LT
2642
2643 /* We only care that *some* data at the address the user
2644 * gave us is valid. Just in case, we'll zero
2645 * the remainder of the page.
2646 */
2647 /* copy_from_user cannot cross TASK_SIZE ! */
2648 size = TASK_SIZE - (unsigned long)data;
2649 if (size > PAGE_SIZE)
2650 size = PAGE_SIZE;
2651
b40ef869 2652 i = size - exact_copy_from_user(copy, data, size);
1da177e4 2653 if (!i) {
b40ef869
AV
2654 kfree(copy);
2655 return ERR_PTR(-EFAULT);
1da177e4
LT
2656 }
2657 if (i != PAGE_SIZE)
b40ef869
AV
2658 memset(copy + i, 0, PAGE_SIZE - i);
2659 return copy;
1da177e4
LT
2660}
2661
b8850d1f 2662char *copy_mount_string(const void __user *data)
eca6f534 2663{
b8850d1f 2664 return data ? strndup_user(data, PAGE_SIZE) : NULL;
eca6f534
VN
2665}
2666
1da177e4
LT
2667/*
2668 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2669 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2670 *
2671 * data is a (void *) that can point to any structure up to
2672 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2673 * information (or be NULL).
2674 *
2675 * Pre-0.97 versions of mount() didn't have a flags word.
2676 * When the flags word was introduced its top half was required
2677 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2678 * Therefore, if this magic number is present, it carries no information
2679 * and must be discarded.
2680 */
5e6123f3 2681long do_mount(const char *dev_name, const char __user *dir_name,
808d4e3c 2682 const char *type_page, unsigned long flags, void *data_page)
1da177e4 2683{
2d92ab3c 2684 struct path path;
1da177e4
LT
2685 int retval = 0;
2686 int mnt_flags = 0;
2687
2688 /* Discard magic */
2689 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2690 flags &= ~MS_MGC_MSK;
2691
2692 /* Basic sanity checks */
1da177e4
LT
2693 if (data_page)
2694 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2695
a27ab9f2 2696 /* ... and get the mountpoint */
5e6123f3 2697 retval = user_path(dir_name, &path);
a27ab9f2
TH
2698 if (retval)
2699 return retval;
2700
2701 retval = security_sb_mount(dev_name, &path,
2702 type_page, flags, data_page);
0d5cadb8
AV
2703 if (!retval && !may_mount())
2704 retval = -EPERM;
9e8925b6
JL
2705 if (!retval && (flags & MS_MANDLOCK) && !may_mandlock())
2706 retval = -EPERM;
a27ab9f2
TH
2707 if (retval)
2708 goto dput_out;
2709
613cbe3d
AK
2710 /* Default to relatime unless overriden */
2711 if (!(flags & MS_NOATIME))
2712 mnt_flags |= MNT_RELATIME;
0a1c01c9 2713
1da177e4
LT
2714 /* Separate the per-mountpoint flags */
2715 if (flags & MS_NOSUID)
2716 mnt_flags |= MNT_NOSUID;
2717 if (flags & MS_NODEV)
2718 mnt_flags |= MNT_NODEV;
2719 if (flags & MS_NOEXEC)
2720 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
2721 if (flags & MS_NOATIME)
2722 mnt_flags |= MNT_NOATIME;
2723 if (flags & MS_NODIRATIME)
2724 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
2725 if (flags & MS_STRICTATIME)
2726 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2e4b7fcd
DH
2727 if (flags & MS_RDONLY)
2728 mnt_flags |= MNT_READONLY;
fc33a7bb 2729
ffbc6f0e
EB
2730 /* The default atime for remount is preservation */
2731 if ((flags & MS_REMOUNT) &&
2732 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2733 MS_STRICTATIME)) == 0)) {
2734 mnt_flags &= ~MNT_ATIME_MASK;
2735 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2736 }
2737
7a4dec53 2738 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
d0adde57 2739 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
c568d683 2740 MS_STRICTATIME | MS_NOREMOTELOCK);
1da177e4 2741
1da177e4 2742 if (flags & MS_REMOUNT)
2d92ab3c 2743 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
1da177e4
LT
2744 data_page);
2745 else if (flags & MS_BIND)
2d92ab3c 2746 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 2747 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 2748 retval = do_change_type(&path, flags);
1da177e4 2749 else if (flags & MS_MOVE)
2d92ab3c 2750 retval = do_move_mount(&path, dev_name);
1da177e4 2751 else
2d92ab3c 2752 retval = do_new_mount(&path, type_page, flags, mnt_flags,
1da177e4
LT
2753 dev_name, data_page);
2754dput_out:
2d92ab3c 2755 path_put(&path);
1da177e4
LT
2756 return retval;
2757}
2758
537f7ccb
EB
2759static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
2760{
2761 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
2762}
2763
2764static void dec_mnt_namespaces(struct ucounts *ucounts)
2765{
2766 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
2767}
2768
771b1371
EB
2769static void free_mnt_ns(struct mnt_namespace *ns)
2770{
6344c433 2771 ns_free_inum(&ns->ns);
537f7ccb 2772 dec_mnt_namespaces(ns->ucounts);
771b1371
EB
2773 put_user_ns(ns->user_ns);
2774 kfree(ns);
2775}
2776
8823c079
EB
2777/*
2778 * Assign a sequence number so we can detect when we attempt to bind
2779 * mount a reference to an older mount namespace into the current
2780 * mount namespace, preventing reference counting loops. A 64bit
2781 * number incrementing at 10Ghz will take 12,427 years to wrap which
2782 * is effectively never, so we can ignore the possibility.
2783 */
2784static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2785
771b1371 2786static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
cf8d2c11
TM
2787{
2788 struct mnt_namespace *new_ns;
537f7ccb 2789 struct ucounts *ucounts;
98f842e6 2790 int ret;
cf8d2c11 2791
537f7ccb
EB
2792 ucounts = inc_mnt_namespaces(user_ns);
2793 if (!ucounts)
df75e774 2794 return ERR_PTR(-ENOSPC);
537f7ccb 2795
cf8d2c11 2796 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
537f7ccb
EB
2797 if (!new_ns) {
2798 dec_mnt_namespaces(ucounts);
cf8d2c11 2799 return ERR_PTR(-ENOMEM);
537f7ccb 2800 }
6344c433 2801 ret = ns_alloc_inum(&new_ns->ns);
98f842e6
EB
2802 if (ret) {
2803 kfree(new_ns);
537f7ccb 2804 dec_mnt_namespaces(ucounts);
98f842e6
EB
2805 return ERR_PTR(ret);
2806 }
33c42940 2807 new_ns->ns.ops = &mntns_operations;
8823c079 2808 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
cf8d2c11
TM
2809 atomic_set(&new_ns->count, 1);
2810 new_ns->root = NULL;
2811 INIT_LIST_HEAD(&new_ns->list);
2812 init_waitqueue_head(&new_ns->poll);
2813 new_ns->event = 0;
771b1371 2814 new_ns->user_ns = get_user_ns(user_ns);
537f7ccb 2815 new_ns->ucounts = ucounts;
d2921684
EB
2816 new_ns->mounts = 0;
2817 new_ns->pending_mounts = 0;
cf8d2c11
TM
2818 return new_ns;
2819}
2820
0766f788 2821__latent_entropy
9559f689
AV
2822struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2823 struct user_namespace *user_ns, struct fs_struct *new_fs)
1da177e4 2824{
6b3286ed 2825 struct mnt_namespace *new_ns;
7f2da1e7 2826 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
315fc83e 2827 struct mount *p, *q;
9559f689 2828 struct mount *old;
cb338d06 2829 struct mount *new;
7a472ef4 2830 int copy_flags;
1da177e4 2831
9559f689
AV
2832 BUG_ON(!ns);
2833
2834 if (likely(!(flags & CLONE_NEWNS))) {
2835 get_mnt_ns(ns);
2836 return ns;
2837 }
2838
2839 old = ns->root;
2840
771b1371 2841 new_ns = alloc_mnt_ns(user_ns);
cf8d2c11
TM
2842 if (IS_ERR(new_ns))
2843 return new_ns;
1da177e4 2844
97216be0 2845 namespace_lock();
1da177e4 2846 /* First pass: copy the tree topology */
4ce5d2b1 2847 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
9559f689 2848 if (user_ns != ns->user_ns)
132c94e3 2849 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
7a472ef4 2850 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
be34d1a3 2851 if (IS_ERR(new)) {
328e6d90 2852 namespace_unlock();
771b1371 2853 free_mnt_ns(new_ns);
be34d1a3 2854 return ERR_CAST(new);
1da177e4 2855 }
be08d6d2 2856 new_ns->root = new;
1a4eeaf2 2857 list_add_tail(&new_ns->list, &new->mnt_list);
1da177e4
LT
2858
2859 /*
2860 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2861 * as belonging to new namespace. We have already acquired a private
2862 * fs_struct, so tsk->fs->lock is not needed.
2863 */
909b0a88 2864 p = old;
cb338d06 2865 q = new;
1da177e4 2866 while (p) {
143c8c91 2867 q->mnt_ns = new_ns;
d2921684 2868 new_ns->mounts++;
9559f689
AV
2869 if (new_fs) {
2870 if (&p->mnt == new_fs->root.mnt) {
2871 new_fs->root.mnt = mntget(&q->mnt);
315fc83e 2872 rootmnt = &p->mnt;
1da177e4 2873 }
9559f689
AV
2874 if (&p->mnt == new_fs->pwd.mnt) {
2875 new_fs->pwd.mnt = mntget(&q->mnt);
315fc83e 2876 pwdmnt = &p->mnt;
1da177e4 2877 }
1da177e4 2878 }
909b0a88
AV
2879 p = next_mnt(p, old);
2880 q = next_mnt(q, new);
4ce5d2b1
EB
2881 if (!q)
2882 break;
2883 while (p->mnt.mnt_root != q->mnt.mnt_root)
2884 p = next_mnt(p, old);
1da177e4 2885 }
328e6d90 2886 namespace_unlock();
1da177e4 2887
1da177e4 2888 if (rootmnt)
f03c6599 2889 mntput(rootmnt);
1da177e4 2890 if (pwdmnt)
f03c6599 2891 mntput(pwdmnt);
1da177e4 2892
741a2951 2893 return new_ns;
1da177e4
LT
2894}
2895
cf8d2c11
TM
2896/**
2897 * create_mnt_ns - creates a private namespace and adds a root filesystem
2898 * @mnt: pointer to the new root filesystem mountpoint
2899 */
1a4eeaf2 2900static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
cf8d2c11 2901{
771b1371 2902 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
cf8d2c11 2903 if (!IS_ERR(new_ns)) {
1a4eeaf2
AV
2904 struct mount *mnt = real_mount(m);
2905 mnt->mnt_ns = new_ns;
be08d6d2 2906 new_ns->root = mnt;
d2921684 2907 new_ns->mounts++;
b1983cd8 2908 list_add(&mnt->mnt_list, &new_ns->list);
c1334495 2909 } else {
1a4eeaf2 2910 mntput(m);
cf8d2c11
TM
2911 }
2912 return new_ns;
2913}
cf8d2c11 2914
ea441d11
AV
2915struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2916{
2917 struct mnt_namespace *ns;
d31da0f0 2918 struct super_block *s;
ea441d11
AV
2919 struct path path;
2920 int err;
2921
2922 ns = create_mnt_ns(mnt);
2923 if (IS_ERR(ns))
2924 return ERR_CAST(ns);
2925
2926 err = vfs_path_lookup(mnt->mnt_root, mnt,
2927 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2928
2929 put_mnt_ns(ns);
2930
2931 if (err)
2932 return ERR_PTR(err);
2933
2934 /* trade a vfsmount reference for active sb one */
d31da0f0
AV
2935 s = path.mnt->mnt_sb;
2936 atomic_inc(&s->s_active);
ea441d11
AV
2937 mntput(path.mnt);
2938 /* lock the sucker */
d31da0f0 2939 down_write(&s->s_umount);
ea441d11
AV
2940 /* ... and return the root of (sub)tree on it */
2941 return path.dentry;
2942}
2943EXPORT_SYMBOL(mount_subtree);
2944
bdc480e3
HC
2945SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2946 char __user *, type, unsigned long, flags, void __user *, data)
1da177e4 2947{
eca6f534
VN
2948 int ret;
2949 char *kernel_type;
eca6f534 2950 char *kernel_dev;
b40ef869 2951 void *options;
1da177e4 2952
b8850d1f
TG
2953 kernel_type = copy_mount_string(type);
2954 ret = PTR_ERR(kernel_type);
2955 if (IS_ERR(kernel_type))
eca6f534 2956 goto out_type;
1da177e4 2957
b8850d1f
TG
2958 kernel_dev = copy_mount_string(dev_name);
2959 ret = PTR_ERR(kernel_dev);
2960 if (IS_ERR(kernel_dev))
eca6f534 2961 goto out_dev;
1da177e4 2962
b40ef869
AV
2963 options = copy_mount_options(data);
2964 ret = PTR_ERR(options);
2965 if (IS_ERR(options))
eca6f534 2966 goto out_data;
1da177e4 2967
b40ef869 2968 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
1da177e4 2969
b40ef869 2970 kfree(options);
eca6f534
VN
2971out_data:
2972 kfree(kernel_dev);
2973out_dev:
eca6f534
VN
2974 kfree(kernel_type);
2975out_type:
2976 return ret;
1da177e4
LT
2977}
2978
afac7cba
AV
2979/*
2980 * Return true if path is reachable from root
2981 *
48a066e7 2982 * namespace_sem or mount_lock is held
afac7cba 2983 */
643822b4 2984bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
afac7cba
AV
2985 const struct path *root)
2986{
643822b4 2987 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
a73324da 2988 dentry = mnt->mnt_mountpoint;
0714a533 2989 mnt = mnt->mnt_parent;
afac7cba 2990 }
643822b4 2991 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
afac7cba
AV
2992}
2993
25ab4c9b 2994bool path_is_under(struct path *path1, struct path *path2)
afac7cba 2995{
25ab4c9b 2996 bool res;
48a066e7 2997 read_seqlock_excl(&mount_lock);
643822b4 2998 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
48a066e7 2999 read_sequnlock_excl(&mount_lock);
afac7cba
AV
3000 return res;
3001}
3002EXPORT_SYMBOL(path_is_under);
3003
1da177e4
LT
3004/*
3005 * pivot_root Semantics:
3006 * Moves the root file system of the current process to the directory put_old,
3007 * makes new_root as the new root file system of the current process, and sets
3008 * root/cwd of all processes which had them on the current root to new_root.
3009 *
3010 * Restrictions:
3011 * The new_root and put_old must be directories, and must not be on the
3012 * same file system as the current process root. The put_old must be
3013 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3014 * pointed to by put_old must yield the same directory as new_root. No other
3015 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3016 *
4a0d11fa
NB
3017 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3018 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3019 * in this situation.
3020 *
1da177e4
LT
3021 * Notes:
3022 * - we don't move root/cwd if they are not at the root (reason: if something
3023 * cared enough to change them, it's probably wrong to force them elsewhere)
3024 * - it's okay to pick a root that isn't the root of a file system, e.g.
3025 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3026 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3027 * first.
3028 */
3480b257
HC
3029SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3030 const char __user *, put_old)
1da177e4 3031{
2d8f3038 3032 struct path new, old, parent_path, root_parent, root;
84d17192
AV
3033 struct mount *new_mnt, *root_mnt, *old_mnt;
3034 struct mountpoint *old_mp, *root_mp;
1da177e4
LT
3035 int error;
3036
9b40bc90 3037 if (!may_mount())
1da177e4
LT
3038 return -EPERM;
3039
2d8f3038 3040 error = user_path_dir(new_root, &new);
1da177e4
LT
3041 if (error)
3042 goto out0;
1da177e4 3043
2d8f3038 3044 error = user_path_dir(put_old, &old);
1da177e4
LT
3045 if (error)
3046 goto out1;
3047
2d8f3038 3048 error = security_sb_pivotroot(&old, &new);
b12cea91
AV
3049 if (error)
3050 goto out2;
1da177e4 3051
f7ad3c6b 3052 get_fs_root(current->fs, &root);
84d17192
AV
3053 old_mp = lock_mount(&old);
3054 error = PTR_ERR(old_mp);
3055 if (IS_ERR(old_mp))
b12cea91
AV
3056 goto out3;
3057
1da177e4 3058 error = -EINVAL;
419148da
AV
3059 new_mnt = real_mount(new.mnt);
3060 root_mnt = real_mount(root.mnt);
84d17192
AV
3061 old_mnt = real_mount(old.mnt);
3062 if (IS_MNT_SHARED(old_mnt) ||
fc7be130
AV
3063 IS_MNT_SHARED(new_mnt->mnt_parent) ||
3064 IS_MNT_SHARED(root_mnt->mnt_parent))
b12cea91 3065 goto out4;
143c8c91 3066 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
b12cea91 3067 goto out4;
5ff9d8a6
EB
3068 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3069 goto out4;
1da177e4 3070 error = -ENOENT;
f3da392e 3071 if (d_unlinked(new.dentry))
b12cea91 3072 goto out4;
1da177e4 3073 error = -EBUSY;
84d17192 3074 if (new_mnt == root_mnt || old_mnt == root_mnt)
b12cea91 3075 goto out4; /* loop, on the same file system */
1da177e4 3076 error = -EINVAL;
8c3ee42e 3077 if (root.mnt->mnt_root != root.dentry)
b12cea91 3078 goto out4; /* not a mountpoint */
676da58d 3079 if (!mnt_has_parent(root_mnt))
b12cea91 3080 goto out4; /* not attached */
84d17192 3081 root_mp = root_mnt->mnt_mp;
2d8f3038 3082 if (new.mnt->mnt_root != new.dentry)
b12cea91 3083 goto out4; /* not a mountpoint */
676da58d 3084 if (!mnt_has_parent(new_mnt))
b12cea91 3085 goto out4; /* not attached */
4ac91378 3086 /* make sure we can reach put_old from new_root */
84d17192 3087 if (!is_path_reachable(old_mnt, old.dentry, &new))
b12cea91 3088 goto out4;
0d082601
EB
3089 /* make certain new is below the root */
3090 if (!is_path_reachable(new_mnt, new.dentry, &root))
3091 goto out4;
84d17192 3092 root_mp->m_count++; /* pin it so it won't go away */
719ea2fb 3093 lock_mount_hash();
419148da
AV
3094 detach_mnt(new_mnt, &parent_path);
3095 detach_mnt(root_mnt, &root_parent);
5ff9d8a6
EB
3096 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3097 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3098 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3099 }
4ac91378 3100 /* mount old root on put_old */
84d17192 3101 attach_mnt(root_mnt, old_mnt, old_mp);
4ac91378 3102 /* mount new_root on / */
84d17192 3103 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
6b3286ed 3104 touch_mnt_namespace(current->nsproxy->mnt_ns);
4fed655c
EB
3105 /* A moved mount should not expire automatically */
3106 list_del_init(&new_mnt->mnt_expire);
719ea2fb 3107 unlock_mount_hash();
2d8f3038 3108 chroot_fs_refs(&root, &new);
84d17192 3109 put_mountpoint(root_mp);
1da177e4 3110 error = 0;
b12cea91 3111out4:
84d17192 3112 unlock_mount(old_mp);
b12cea91
AV
3113 if (!error) {
3114 path_put(&root_parent);
3115 path_put(&parent_path);
3116 }
3117out3:
8c3ee42e 3118 path_put(&root);
b12cea91 3119out2:
2d8f3038 3120 path_put(&old);
1da177e4 3121out1:
2d8f3038 3122 path_put(&new);
1da177e4 3123out0:
1da177e4 3124 return error;
1da177e4
LT
3125}
3126
3127static void __init init_mount_tree(void)
3128{
3129 struct vfsmount *mnt;
6b3286ed 3130 struct mnt_namespace *ns;
ac748a09 3131 struct path root;
0c55cfc4 3132 struct file_system_type *type;
1da177e4 3133
0c55cfc4
EB
3134 type = get_fs_type("rootfs");
3135 if (!type)
3136 panic("Can't find rootfs type");
3137 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3138 put_filesystem(type);
1da177e4
LT
3139 if (IS_ERR(mnt))
3140 panic("Can't create rootfs");
b3e19d92 3141
3b22edc5
TM
3142 ns = create_mnt_ns(mnt);
3143 if (IS_ERR(ns))
1da177e4 3144 panic("Can't allocate initial namespace");
6b3286ed
KK
3145
3146 init_task.nsproxy->mnt_ns = ns;
3147 get_mnt_ns(ns);
3148
be08d6d2
AV
3149 root.mnt = mnt;
3150 root.dentry = mnt->mnt_root;
da362b09 3151 mnt->mnt_flags |= MNT_LOCKED;
ac748a09
JB
3152
3153 set_fs_pwd(current->fs, &root);
3154 set_fs_root(current->fs, &root);
1da177e4
LT
3155}
3156
74bf17cf 3157void __init mnt_init(void)
1da177e4 3158{
13f14b4d 3159 unsigned u;
15a67dd8 3160 int err;
1da177e4 3161
7d6fec45 3162 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
20c2df83 3163 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 3164
0818bf27 3165 mount_hashtable = alloc_large_system_hash("Mount-cache",
38129a13 3166 sizeof(struct hlist_head),
0818bf27
AV
3167 mhash_entries, 19,
3168 0,
3169 &m_hash_shift, &m_hash_mask, 0, 0);
3170 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3171 sizeof(struct hlist_head),
3172 mphash_entries, 19,
3173 0,
3174 &mp_hash_shift, &mp_hash_mask, 0, 0);
1da177e4 3175
84d17192 3176 if (!mount_hashtable || !mountpoint_hashtable)
1da177e4
LT
3177 panic("Failed to allocate mount hash table\n");
3178
0818bf27 3179 for (u = 0; u <= m_hash_mask; u++)
38129a13 3180 INIT_HLIST_HEAD(&mount_hashtable[u]);
0818bf27
AV
3181 for (u = 0; u <= mp_hash_mask; u++)
3182 INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
1da177e4 3183
4b93dc9b
TH
3184 kernfs_init();
3185
15a67dd8
RD
3186 err = sysfs_init();
3187 if (err)
3188 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 3189 __func__, err);
00d26666
GKH
3190 fs_kobj = kobject_create_and_add("fs", NULL);
3191 if (!fs_kobj)
8e24eea7 3192 printk(KERN_WARNING "%s: kobj create error\n", __func__);
1da177e4
LT
3193 init_rootfs();
3194 init_mount_tree();
3195}
3196
616511d0 3197void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 3198{
d498b25a 3199 if (!atomic_dec_and_test(&ns->count))
616511d0 3200 return;
7b00ed6f 3201 drop_collected_mounts(&ns->root->mnt);
771b1371 3202 free_mnt_ns(ns);
1da177e4 3203}
9d412a43
AV
3204
3205struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3206{
423e0ab0
TC
3207 struct vfsmount *mnt;
3208 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
3209 if (!IS_ERR(mnt)) {
3210 /*
3211 * it is a longterm mount, don't release mnt until
3212 * we unmount before file sys is unregistered
3213 */
f7a99c5b 3214 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
423e0ab0
TC
3215 }
3216 return mnt;
9d412a43
AV
3217}
3218EXPORT_SYMBOL_GPL(kern_mount_data);
423e0ab0
TC
3219
3220void kern_unmount(struct vfsmount *mnt)
3221{
3222 /* release long term mount so mount point can be released */
3223 if (!IS_ERR_OR_NULL(mnt)) {
f7a99c5b 3224 real_mount(mnt)->mnt_ns = NULL;
48a066e7 3225 synchronize_rcu(); /* yecchhh... */
423e0ab0
TC
3226 mntput(mnt);
3227 }
3228}
3229EXPORT_SYMBOL(kern_unmount);
02125a82
AV
3230
3231bool our_mnt(struct vfsmount *mnt)
3232{
143c8c91 3233 return check_mnt(real_mount(mnt));
02125a82 3234}
8823c079 3235
3151527e
EB
3236bool current_chrooted(void)
3237{
3238 /* Does the current process have a non-standard root */
3239 struct path ns_root;
3240 struct path fs_root;
3241 bool chrooted;
3242
3243 /* Find the namespace root */
3244 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3245 ns_root.dentry = ns_root.mnt->mnt_root;
3246 path_get(&ns_root);
3247 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3248 ;
3249
3250 get_fs_root(current->fs, &fs_root);
3251
3252 chrooted = !path_equal(&fs_root, &ns_root);
3253
3254 path_put(&fs_root);
3255 path_put(&ns_root);
3256
3257 return chrooted;
3258}
3259
8654df4e
EB
3260static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new,
3261 int *new_mnt_flags)
87a8ebd6 3262{
8c6cf9cc 3263 int new_flags = *new_mnt_flags;
87a8ebd6 3264 struct mount *mnt;
e51db735 3265 bool visible = false;
87a8ebd6 3266
44bb4385 3267 down_read(&namespace_sem);
87a8ebd6 3268 list_for_each_entry(mnt, &ns->list, mnt_list) {
e51db735 3269 struct mount *child;
77b1a97d
EB
3270 int mnt_flags;
3271
8654df4e 3272 if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type)
e51db735
EB
3273 continue;
3274
7e96c1b0
EB
3275 /* This mount is not fully visible if it's root directory
3276 * is not the root directory of the filesystem.
3277 */
3278 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3279 continue;
3280
a1935c17 3281 /* A local view of the mount flags */
77b1a97d 3282 mnt_flags = mnt->mnt.mnt_flags;
77b1a97d 3283
695e9df0
EB
3284 /* Don't miss readonly hidden in the superblock flags */
3285 if (mnt->mnt.mnt_sb->s_flags & MS_RDONLY)
3286 mnt_flags |= MNT_LOCK_READONLY;
3287
8c6cf9cc
EB
3288 /* Verify the mount flags are equal to or more permissive
3289 * than the proposed new mount.
3290 */
77b1a97d 3291 if ((mnt_flags & MNT_LOCK_READONLY) &&
8c6cf9cc
EB
3292 !(new_flags & MNT_READONLY))
3293 continue;
77b1a97d
EB
3294 if ((mnt_flags & MNT_LOCK_ATIME) &&
3295 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
8c6cf9cc
EB
3296 continue;
3297
ceeb0e5d
EB
3298 /* This mount is not fully visible if there are any
3299 * locked child mounts that cover anything except for
3300 * empty directories.
e51db735
EB
3301 */
3302 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3303 struct inode *inode = child->mnt_mountpoint->d_inode;
ceeb0e5d 3304 /* Only worry about locked mounts */
d71ed6c9 3305 if (!(child->mnt.mnt_flags & MNT_LOCKED))
ceeb0e5d 3306 continue;
7236c85e
EB
3307 /* Is the directory permanetly empty? */
3308 if (!is_empty_dir_inode(inode))
e51db735 3309 goto next;
87a8ebd6 3310 }
8c6cf9cc 3311 /* Preserve the locked attributes */
77b1a97d 3312 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
77b1a97d 3313 MNT_LOCK_ATIME);
e51db735
EB
3314 visible = true;
3315 goto found;
3316 next: ;
87a8ebd6 3317 }
e51db735 3318found:
44bb4385 3319 up_read(&namespace_sem);
e51db735 3320 return visible;
87a8ebd6
EB
3321}
3322
8654df4e
EB
3323static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags)
3324{
a1935c17 3325 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
8654df4e
EB
3326 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3327 unsigned long s_iflags;
3328
3329 if (ns->user_ns == &init_user_ns)
3330 return false;
3331
3332 /* Can this filesystem be too revealing? */
3333 s_iflags = mnt->mnt_sb->s_iflags;
3334 if (!(s_iflags & SB_I_USERNS_VISIBLE))
3335 return false;
3336
a1935c17
EB
3337 if ((s_iflags & required_iflags) != required_iflags) {
3338 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3339 required_iflags);
3340 return true;
3341 }
3342
8654df4e
EB
3343 return !mnt_already_visible(ns, mnt, new_mnt_flags);
3344}
3345
380cf5ba
AL
3346bool mnt_may_suid(struct vfsmount *mnt)
3347{
3348 /*
3349 * Foreign mounts (accessed via fchdir or through /proc
3350 * symlinks) are always treated as if they are nosuid. This
3351 * prevents namespaces from trusting potentially unsafe
3352 * suid/sgid bits, file caps, or security labels that originate
3353 * in other namespaces.
3354 */
3355 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3356 current_in_userns(mnt->mnt_sb->s_user_ns);
3357}
3358
64964528 3359static struct ns_common *mntns_get(struct task_struct *task)
8823c079 3360{
58be2825 3361 struct ns_common *ns = NULL;
8823c079
EB
3362 struct nsproxy *nsproxy;
3363
728dba3a
EB
3364 task_lock(task);
3365 nsproxy = task->nsproxy;
8823c079 3366 if (nsproxy) {
58be2825
AV
3367 ns = &nsproxy->mnt_ns->ns;
3368 get_mnt_ns(to_mnt_ns(ns));
8823c079 3369 }
728dba3a 3370 task_unlock(task);
8823c079
EB
3371
3372 return ns;
3373}
3374
64964528 3375static void mntns_put(struct ns_common *ns)
8823c079 3376{
58be2825 3377 put_mnt_ns(to_mnt_ns(ns));
8823c079
EB
3378}
3379
64964528 3380static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
8823c079
EB
3381{
3382 struct fs_struct *fs = current->fs;
58be2825 3383 struct mnt_namespace *mnt_ns = to_mnt_ns(ns);
8823c079
EB
3384 struct path root;
3385
0c55cfc4 3386 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
c7b96acf
EB
3387 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3388 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
ae11e0f1 3389 return -EPERM;
8823c079
EB
3390
3391 if (fs->users != 1)
3392 return -EINVAL;
3393
3394 get_mnt_ns(mnt_ns);
3395 put_mnt_ns(nsproxy->mnt_ns);
3396 nsproxy->mnt_ns = mnt_ns;
3397
3398 /* Find the root */
3399 root.mnt = &mnt_ns->root->mnt;
3400 root.dentry = mnt_ns->root->mnt.mnt_root;
3401 path_get(&root);
3402 while(d_mountpoint(root.dentry) && follow_down_one(&root))
3403 ;
3404
3405 /* Update the pwd and root */
3406 set_fs_pwd(fs, &root);
3407 set_fs_root(fs, &root);
3408
3409 path_put(&root);
3410 return 0;
3411}
3412
bcac25a5
AV
3413static struct user_namespace *mntns_owner(struct ns_common *ns)
3414{
3415 return to_mnt_ns(ns)->user_ns;
3416}
3417
8823c079
EB
3418const struct proc_ns_operations mntns_operations = {
3419 .name = "mnt",
3420 .type = CLONE_NEWNS,
3421 .get = mntns_get,
3422 .put = mntns_put,
3423 .install = mntns_install,
bcac25a5 3424 .owner = mntns_owner,
8823c079 3425};