]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - fs/namespace.c
saner perf_atoll()
[mirror_ubuntu-zesty-kernel.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4 11#include <linux/syscalls.h>
d10577a8 12#include <linux/export.h>
16f7e0fe 13#include <linux/capability.h>
6b3286ed 14#include <linux/mnt_namespace.h>
771b1371 15#include <linux/user_namespace.h>
1da177e4
LT
16#include <linux/namei.h>
17#include <linux/security.h>
73cd49ec 18#include <linux/idr.h>
57f150a5 19#include <linux/init.h> /* init_rootfs */
d10577a8
AV
20#include <linux/fs_struct.h> /* get_fs_root et.al. */
21#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
22#include <linux/uaccess.h>
0bb80f24 23#include <linux/proc_ns.h>
20b4fb48 24#include <linux/magic.h>
0818bf27 25#include <linux/bootmem.h>
9ea459e1 26#include <linux/task_work.h>
07b20889 27#include "pnode.h"
948730b0 28#include "internal.h"
1da177e4 29
0818bf27
AV
30static unsigned int m_hash_mask __read_mostly;
31static unsigned int m_hash_shift __read_mostly;
32static unsigned int mp_hash_mask __read_mostly;
33static unsigned int mp_hash_shift __read_mostly;
34
35static __initdata unsigned long mhash_entries;
36static int __init set_mhash_entries(char *str)
37{
38 if (!str)
39 return 0;
40 mhash_entries = simple_strtoul(str, &str, 0);
41 return 1;
42}
43__setup("mhash_entries=", set_mhash_entries);
44
45static __initdata unsigned long mphash_entries;
46static int __init set_mphash_entries(char *str)
47{
48 if (!str)
49 return 0;
50 mphash_entries = simple_strtoul(str, &str, 0);
51 return 1;
52}
53__setup("mphash_entries=", set_mphash_entries);
13f14b4d 54
c7999c36 55static u64 event;
73cd49ec 56static DEFINE_IDA(mnt_id_ida);
719f5d7f 57static DEFINE_IDA(mnt_group_ida);
99b7db7b 58static DEFINE_SPINLOCK(mnt_id_lock);
f21f6220
AV
59static int mnt_id_start = 0;
60static int mnt_group_start = 1;
1da177e4 61
38129a13 62static struct hlist_head *mount_hashtable __read_mostly;
0818bf27 63static struct hlist_head *mountpoint_hashtable __read_mostly;
e18b890b 64static struct kmem_cache *mnt_cache __read_mostly;
59aa0da8 65static DECLARE_RWSEM(namespace_sem);
1da177e4 66
f87fd4c2 67/* /sys/fs */
00d26666
GKH
68struct kobject *fs_kobj;
69EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 70
99b7db7b
NP
71/*
72 * vfsmount lock may be taken for read to prevent changes to the
73 * vfsmount hash, ie. during mountpoint lookups or walking back
74 * up the tree.
75 *
76 * It should be taken for write in all cases where the vfsmount
77 * tree or hash is modified or when a vfsmount structure is modified.
78 */
48a066e7 79__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
99b7db7b 80
38129a13 81static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 82{
b58fed8b
RP
83 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
84 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
0818bf27
AV
85 tmp = tmp + (tmp >> m_hash_shift);
86 return &mount_hashtable[tmp & m_hash_mask];
87}
88
89static inline struct hlist_head *mp_hash(struct dentry *dentry)
90{
91 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
92 tmp = tmp + (tmp >> mp_hash_shift);
93 return &mountpoint_hashtable[tmp & mp_hash_mask];
1da177e4
LT
94}
95
99b7db7b
NP
96/*
97 * allocation is serialized by namespace_sem, but we need the spinlock to
98 * serialize with freeing.
99 */
b105e270 100static int mnt_alloc_id(struct mount *mnt)
73cd49ec
MS
101{
102 int res;
103
104retry:
105 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
99b7db7b 106 spin_lock(&mnt_id_lock);
15169fe7 107 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
f21f6220 108 if (!res)
15169fe7 109 mnt_id_start = mnt->mnt_id + 1;
99b7db7b 110 spin_unlock(&mnt_id_lock);
73cd49ec
MS
111 if (res == -EAGAIN)
112 goto retry;
113
114 return res;
115}
116
b105e270 117static void mnt_free_id(struct mount *mnt)
73cd49ec 118{
15169fe7 119 int id = mnt->mnt_id;
99b7db7b 120 spin_lock(&mnt_id_lock);
f21f6220
AV
121 ida_remove(&mnt_id_ida, id);
122 if (mnt_id_start > id)
123 mnt_id_start = id;
99b7db7b 124 spin_unlock(&mnt_id_lock);
73cd49ec
MS
125}
126
719f5d7f
MS
127/*
128 * Allocate a new peer group ID
129 *
130 * mnt_group_ida is protected by namespace_sem
131 */
4b8b21f4 132static int mnt_alloc_group_id(struct mount *mnt)
719f5d7f 133{
f21f6220
AV
134 int res;
135
719f5d7f
MS
136 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
137 return -ENOMEM;
138
f21f6220
AV
139 res = ida_get_new_above(&mnt_group_ida,
140 mnt_group_start,
15169fe7 141 &mnt->mnt_group_id);
f21f6220 142 if (!res)
15169fe7 143 mnt_group_start = mnt->mnt_group_id + 1;
f21f6220
AV
144
145 return res;
719f5d7f
MS
146}
147
148/*
149 * Release a peer group ID
150 */
4b8b21f4 151void mnt_release_group_id(struct mount *mnt)
719f5d7f 152{
15169fe7 153 int id = mnt->mnt_group_id;
f21f6220
AV
154 ida_remove(&mnt_group_ida, id);
155 if (mnt_group_start > id)
156 mnt_group_start = id;
15169fe7 157 mnt->mnt_group_id = 0;
719f5d7f
MS
158}
159
b3e19d92
NP
160/*
161 * vfsmount lock must be held for read
162 */
83adc753 163static inline void mnt_add_count(struct mount *mnt, int n)
b3e19d92
NP
164{
165#ifdef CONFIG_SMP
68e8a9fe 166 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
b3e19d92
NP
167#else
168 preempt_disable();
68e8a9fe 169 mnt->mnt_count += n;
b3e19d92
NP
170 preempt_enable();
171#endif
172}
173
b3e19d92
NP
174/*
175 * vfsmount lock must be held for write
176 */
83adc753 177unsigned int mnt_get_count(struct mount *mnt)
b3e19d92
NP
178{
179#ifdef CONFIG_SMP
f03c6599 180 unsigned int count = 0;
b3e19d92
NP
181 int cpu;
182
183 for_each_possible_cpu(cpu) {
68e8a9fe 184 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
b3e19d92
NP
185 }
186
187 return count;
188#else
68e8a9fe 189 return mnt->mnt_count;
b3e19d92
NP
190#endif
191}
192
b105e270 193static struct mount *alloc_vfsmnt(const char *name)
1da177e4 194{
c63181e6
AV
195 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
196 if (mnt) {
73cd49ec
MS
197 int err;
198
c63181e6 199 err = mnt_alloc_id(mnt);
88b38782
LZ
200 if (err)
201 goto out_free_cache;
202
203 if (name) {
c63181e6
AV
204 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
205 if (!mnt->mnt_devname)
88b38782 206 goto out_free_id;
73cd49ec
MS
207 }
208
b3e19d92 209#ifdef CONFIG_SMP
c63181e6
AV
210 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
211 if (!mnt->mnt_pcp)
b3e19d92
NP
212 goto out_free_devname;
213
c63181e6 214 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
b3e19d92 215#else
c63181e6
AV
216 mnt->mnt_count = 1;
217 mnt->mnt_writers = 0;
b3e19d92
NP
218#endif
219
38129a13 220 INIT_HLIST_NODE(&mnt->mnt_hash);
c63181e6
AV
221 INIT_LIST_HEAD(&mnt->mnt_child);
222 INIT_LIST_HEAD(&mnt->mnt_mounts);
223 INIT_LIST_HEAD(&mnt->mnt_list);
224 INIT_LIST_HEAD(&mnt->mnt_expire);
225 INIT_LIST_HEAD(&mnt->mnt_share);
226 INIT_LIST_HEAD(&mnt->mnt_slave_list);
227 INIT_LIST_HEAD(&mnt->mnt_slave);
0a5eb7c8 228 INIT_HLIST_NODE(&mnt->mnt_mp_list);
2504c5d6
AG
229#ifdef CONFIG_FSNOTIFY
230 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
d3ef3d73 231#endif
1da177e4 232 }
c63181e6 233 return mnt;
88b38782 234
d3ef3d73 235#ifdef CONFIG_SMP
236out_free_devname:
c63181e6 237 kfree(mnt->mnt_devname);
d3ef3d73 238#endif
88b38782 239out_free_id:
c63181e6 240 mnt_free_id(mnt);
88b38782 241out_free_cache:
c63181e6 242 kmem_cache_free(mnt_cache, mnt);
88b38782 243 return NULL;
1da177e4
LT
244}
245
3d733633
DH
246/*
247 * Most r/o checks on a fs are for operations that take
248 * discrete amounts of time, like a write() or unlink().
249 * We must keep track of when those operations start
250 * (for permission checks) and when they end, so that
251 * we can determine when writes are able to occur to
252 * a filesystem.
253 */
254/*
255 * __mnt_is_readonly: check whether a mount is read-only
256 * @mnt: the mount to check for its write status
257 *
258 * This shouldn't be used directly ouside of the VFS.
259 * It does not guarantee that the filesystem will stay
260 * r/w, just that it is right *now*. This can not and
261 * should not be used in place of IS_RDONLY(inode).
262 * mnt_want/drop_write() will _keep_ the filesystem
263 * r/w.
264 */
265int __mnt_is_readonly(struct vfsmount *mnt)
266{
2e4b7fcd
DH
267 if (mnt->mnt_flags & MNT_READONLY)
268 return 1;
269 if (mnt->mnt_sb->s_flags & MS_RDONLY)
270 return 1;
271 return 0;
3d733633
DH
272}
273EXPORT_SYMBOL_GPL(__mnt_is_readonly);
274
83adc753 275static inline void mnt_inc_writers(struct mount *mnt)
d3ef3d73 276{
277#ifdef CONFIG_SMP
68e8a9fe 278 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
d3ef3d73 279#else
68e8a9fe 280 mnt->mnt_writers++;
d3ef3d73 281#endif
282}
3d733633 283
83adc753 284static inline void mnt_dec_writers(struct mount *mnt)
3d733633 285{
d3ef3d73 286#ifdef CONFIG_SMP
68e8a9fe 287 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
d3ef3d73 288#else
68e8a9fe 289 mnt->mnt_writers--;
d3ef3d73 290#endif
3d733633 291}
3d733633 292
83adc753 293static unsigned int mnt_get_writers(struct mount *mnt)
3d733633 294{
d3ef3d73 295#ifdef CONFIG_SMP
296 unsigned int count = 0;
3d733633 297 int cpu;
3d733633
DH
298
299 for_each_possible_cpu(cpu) {
68e8a9fe 300 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
3d733633 301 }
3d733633 302
d3ef3d73 303 return count;
304#else
305 return mnt->mnt_writers;
306#endif
3d733633
DH
307}
308
4ed5e82f
MS
309static int mnt_is_readonly(struct vfsmount *mnt)
310{
311 if (mnt->mnt_sb->s_readonly_remount)
312 return 1;
313 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
314 smp_rmb();
315 return __mnt_is_readonly(mnt);
316}
317
8366025e 318/*
eb04c282
JK
319 * Most r/o & frozen checks on a fs are for operations that take discrete
320 * amounts of time, like a write() or unlink(). We must keep track of when
321 * those operations start (for permission checks) and when they end, so that we
322 * can determine when writes are able to occur to a filesystem.
8366025e
DH
323 */
324/**
eb04c282 325 * __mnt_want_write - get write access to a mount without freeze protection
83adc753 326 * @m: the mount on which to take a write
8366025e 327 *
eb04c282
JK
328 * This tells the low-level filesystem that a write is about to be performed to
329 * it, and makes sure that writes are allowed (mnt it read-write) before
330 * returning success. This operation does not protect against filesystem being
331 * frozen. When the write operation is finished, __mnt_drop_write() must be
332 * called. This is effectively a refcount.
8366025e 333 */
eb04c282 334int __mnt_want_write(struct vfsmount *m)
8366025e 335{
83adc753 336 struct mount *mnt = real_mount(m);
3d733633 337 int ret = 0;
3d733633 338
d3ef3d73 339 preempt_disable();
c6653a83 340 mnt_inc_writers(mnt);
d3ef3d73 341 /*
c6653a83 342 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73 343 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
344 * incremented count after it has set MNT_WRITE_HOLD.
345 */
346 smp_mb();
1e75529e 347 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
d3ef3d73 348 cpu_relax();
349 /*
350 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
351 * be set to match its requirements. So we must not load that until
352 * MNT_WRITE_HOLD is cleared.
353 */
354 smp_rmb();
4ed5e82f 355 if (mnt_is_readonly(m)) {
c6653a83 356 mnt_dec_writers(mnt);
3d733633 357 ret = -EROFS;
3d733633 358 }
d3ef3d73 359 preempt_enable();
eb04c282
JK
360
361 return ret;
362}
363
364/**
365 * mnt_want_write - get write access to a mount
366 * @m: the mount on which to take a write
367 *
368 * This tells the low-level filesystem that a write is about to be performed to
369 * it, and makes sure that writes are allowed (mount is read-write, filesystem
370 * is not frozen) before returning success. When the write operation is
371 * finished, mnt_drop_write() must be called. This is effectively a refcount.
372 */
373int mnt_want_write(struct vfsmount *m)
374{
375 int ret;
376
377 sb_start_write(m->mnt_sb);
378 ret = __mnt_want_write(m);
379 if (ret)
380 sb_end_write(m->mnt_sb);
3d733633 381 return ret;
8366025e
DH
382}
383EXPORT_SYMBOL_GPL(mnt_want_write);
384
96029c4e 385/**
386 * mnt_clone_write - get write access to a mount
387 * @mnt: the mount on which to take a write
388 *
389 * This is effectively like mnt_want_write, except
390 * it must only be used to take an extra write reference
391 * on a mountpoint that we already know has a write reference
392 * on it. This allows some optimisation.
393 *
394 * After finished, mnt_drop_write must be called as usual to
395 * drop the reference.
396 */
397int mnt_clone_write(struct vfsmount *mnt)
398{
399 /* superblock may be r/o */
400 if (__mnt_is_readonly(mnt))
401 return -EROFS;
402 preempt_disable();
83adc753 403 mnt_inc_writers(real_mount(mnt));
96029c4e 404 preempt_enable();
405 return 0;
406}
407EXPORT_SYMBOL_GPL(mnt_clone_write);
408
409/**
eb04c282 410 * __mnt_want_write_file - get write access to a file's mount
96029c4e 411 * @file: the file who's mount on which to take a write
412 *
eb04c282 413 * This is like __mnt_want_write, but it takes a file and can
96029c4e 414 * do some optimisations if the file is open for write already
415 */
eb04c282 416int __mnt_want_write_file(struct file *file)
96029c4e 417{
83f936c7 418 if (!(file->f_mode & FMODE_WRITER))
eb04c282 419 return __mnt_want_write(file->f_path.mnt);
96029c4e 420 else
421 return mnt_clone_write(file->f_path.mnt);
422}
eb04c282
JK
423
424/**
425 * mnt_want_write_file - get write access to a file's mount
426 * @file: the file who's mount on which to take a write
427 *
428 * This is like mnt_want_write, but it takes a file and can
429 * do some optimisations if the file is open for write already
430 */
431int mnt_want_write_file(struct file *file)
432{
433 int ret;
434
435 sb_start_write(file->f_path.mnt->mnt_sb);
436 ret = __mnt_want_write_file(file);
437 if (ret)
438 sb_end_write(file->f_path.mnt->mnt_sb);
439 return ret;
440}
96029c4e 441EXPORT_SYMBOL_GPL(mnt_want_write_file);
442
8366025e 443/**
eb04c282 444 * __mnt_drop_write - give up write access to a mount
8366025e
DH
445 * @mnt: the mount on which to give up write access
446 *
447 * Tells the low-level filesystem that we are done
448 * performing writes to it. Must be matched with
eb04c282 449 * __mnt_want_write() call above.
8366025e 450 */
eb04c282 451void __mnt_drop_write(struct vfsmount *mnt)
8366025e 452{
d3ef3d73 453 preempt_disable();
83adc753 454 mnt_dec_writers(real_mount(mnt));
d3ef3d73 455 preempt_enable();
8366025e 456}
eb04c282
JK
457
458/**
459 * mnt_drop_write - give up write access to a mount
460 * @mnt: the mount on which to give up write access
461 *
462 * Tells the low-level filesystem that we are done performing writes to it and
463 * also allows filesystem to be frozen again. Must be matched with
464 * mnt_want_write() call above.
465 */
466void mnt_drop_write(struct vfsmount *mnt)
467{
468 __mnt_drop_write(mnt);
469 sb_end_write(mnt->mnt_sb);
470}
8366025e
DH
471EXPORT_SYMBOL_GPL(mnt_drop_write);
472
eb04c282
JK
473void __mnt_drop_write_file(struct file *file)
474{
475 __mnt_drop_write(file->f_path.mnt);
476}
477
2a79f17e
AV
478void mnt_drop_write_file(struct file *file)
479{
480 mnt_drop_write(file->f_path.mnt);
481}
482EXPORT_SYMBOL(mnt_drop_write_file);
483
83adc753 484static int mnt_make_readonly(struct mount *mnt)
8366025e 485{
3d733633
DH
486 int ret = 0;
487
719ea2fb 488 lock_mount_hash();
83adc753 489 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
3d733633 490 /*
d3ef3d73 491 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
492 * should be visible before we do.
3d733633 493 */
d3ef3d73 494 smp_mb();
495
3d733633 496 /*
d3ef3d73 497 * With writers on hold, if this value is zero, then there are
498 * definitely no active writers (although held writers may subsequently
499 * increment the count, they'll have to wait, and decrement it after
500 * seeing MNT_READONLY).
501 *
502 * It is OK to have counter incremented on one CPU and decremented on
503 * another: the sum will add up correctly. The danger would be when we
504 * sum up each counter, if we read a counter before it is incremented,
505 * but then read another CPU's count which it has been subsequently
506 * decremented from -- we would see more decrements than we should.
507 * MNT_WRITE_HOLD protects against this scenario, because
508 * mnt_want_write first increments count, then smp_mb, then spins on
509 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
510 * we're counting up here.
3d733633 511 */
c6653a83 512 if (mnt_get_writers(mnt) > 0)
d3ef3d73 513 ret = -EBUSY;
514 else
83adc753 515 mnt->mnt.mnt_flags |= MNT_READONLY;
d3ef3d73 516 /*
517 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
518 * that become unheld will see MNT_READONLY.
519 */
520 smp_wmb();
83adc753 521 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
719ea2fb 522 unlock_mount_hash();
3d733633 523 return ret;
8366025e 524}
8366025e 525
83adc753 526static void __mnt_unmake_readonly(struct mount *mnt)
2e4b7fcd 527{
719ea2fb 528 lock_mount_hash();
83adc753 529 mnt->mnt.mnt_flags &= ~MNT_READONLY;
719ea2fb 530 unlock_mount_hash();
2e4b7fcd
DH
531}
532
4ed5e82f
MS
533int sb_prepare_remount_readonly(struct super_block *sb)
534{
535 struct mount *mnt;
536 int err = 0;
537
8e8b8796
MS
538 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
539 if (atomic_long_read(&sb->s_remove_count))
540 return -EBUSY;
541
719ea2fb 542 lock_mount_hash();
4ed5e82f
MS
543 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
544 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
545 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
546 smp_mb();
547 if (mnt_get_writers(mnt) > 0) {
548 err = -EBUSY;
549 break;
550 }
551 }
552 }
8e8b8796
MS
553 if (!err && atomic_long_read(&sb->s_remove_count))
554 err = -EBUSY;
555
4ed5e82f
MS
556 if (!err) {
557 sb->s_readonly_remount = 1;
558 smp_wmb();
559 }
560 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
561 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
562 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
563 }
719ea2fb 564 unlock_mount_hash();
4ed5e82f
MS
565
566 return err;
567}
568
b105e270 569static void free_vfsmnt(struct mount *mnt)
1da177e4 570{
52ba1621 571 kfree(mnt->mnt_devname);
d3ef3d73 572#ifdef CONFIG_SMP
68e8a9fe 573 free_percpu(mnt->mnt_pcp);
d3ef3d73 574#endif
b105e270 575 kmem_cache_free(mnt_cache, mnt);
1da177e4
LT
576}
577
8ffcb32e
DH
578static void delayed_free_vfsmnt(struct rcu_head *head)
579{
580 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
581}
582
48a066e7
AV
583/* call under rcu_read_lock */
584bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
585{
586 struct mount *mnt;
587 if (read_seqretry(&mount_lock, seq))
588 return false;
589 if (bastard == NULL)
590 return true;
591 mnt = real_mount(bastard);
592 mnt_add_count(mnt, 1);
593 if (likely(!read_seqretry(&mount_lock, seq)))
594 return true;
595 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
596 mnt_add_count(mnt, -1);
597 return false;
598 }
599 rcu_read_unlock();
600 mntput(bastard);
601 rcu_read_lock();
602 return false;
603}
604
1da177e4 605/*
474279dc 606 * find the first mount at @dentry on vfsmount @mnt.
48a066e7 607 * call under rcu_read_lock()
1da177e4 608 */
474279dc 609struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 610{
38129a13 611 struct hlist_head *head = m_hash(mnt, dentry);
474279dc
AV
612 struct mount *p;
613
38129a13 614 hlist_for_each_entry_rcu(p, head, mnt_hash)
474279dc
AV
615 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
616 return p;
617 return NULL;
618}
619
620/*
621 * find the last mount at @dentry on vfsmount @mnt.
48a066e7 622 * mount_lock must be held.
474279dc
AV
623 */
624struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
625{
38129a13
AV
626 struct mount *p, *res;
627 res = p = __lookup_mnt(mnt, dentry);
628 if (!p)
629 goto out;
630 hlist_for_each_entry_continue(p, mnt_hash) {
1d6a32ac
AV
631 if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry)
632 break;
633 res = p;
634 }
38129a13 635out:
1d6a32ac 636 return res;
1da177e4
LT
637}
638
a05964f3 639/*
f015f126
DH
640 * lookup_mnt - Return the first child mount mounted at path
641 *
642 * "First" means first mounted chronologically. If you create the
643 * following mounts:
644 *
645 * mount /dev/sda1 /mnt
646 * mount /dev/sda2 /mnt
647 * mount /dev/sda3 /mnt
648 *
649 * Then lookup_mnt() on the base /mnt dentry in the root mount will
650 * return successively the root dentry and vfsmount of /dev/sda1, then
651 * /dev/sda2, then /dev/sda3, then NULL.
652 *
653 * lookup_mnt takes a reference to the found vfsmount.
a05964f3 654 */
1c755af4 655struct vfsmount *lookup_mnt(struct path *path)
a05964f3 656{
c7105365 657 struct mount *child_mnt;
48a066e7
AV
658 struct vfsmount *m;
659 unsigned seq;
99b7db7b 660
48a066e7
AV
661 rcu_read_lock();
662 do {
663 seq = read_seqbegin(&mount_lock);
664 child_mnt = __lookup_mnt(path->mnt, path->dentry);
665 m = child_mnt ? &child_mnt->mnt : NULL;
666 } while (!legitimize_mnt(m, seq));
667 rcu_read_unlock();
668 return m;
a05964f3
RP
669}
670
7af1364f
EB
671/*
672 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
673 * current mount namespace.
674 *
675 * The common case is dentries are not mountpoints at all and that
676 * test is handled inline. For the slow case when we are actually
677 * dealing with a mountpoint of some kind, walk through all of the
678 * mounts in the current mount namespace and test to see if the dentry
679 * is a mountpoint.
680 *
681 * The mount_hashtable is not usable in the context because we
682 * need to identify all mounts that may be in the current mount
683 * namespace not just a mount that happens to have some specified
684 * parent mount.
685 */
686bool __is_local_mountpoint(struct dentry *dentry)
687{
688 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
689 struct mount *mnt;
690 bool is_covered = false;
691
692 if (!d_mountpoint(dentry))
693 goto out;
694
695 down_read(&namespace_sem);
696 list_for_each_entry(mnt, &ns->list, mnt_list) {
697 is_covered = (mnt->mnt_mountpoint == dentry);
698 if (is_covered)
699 break;
700 }
701 up_read(&namespace_sem);
702out:
703 return is_covered;
704}
705
e2dfa935 706static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
84d17192 707{
0818bf27 708 struct hlist_head *chain = mp_hash(dentry);
84d17192
AV
709 struct mountpoint *mp;
710
0818bf27 711 hlist_for_each_entry(mp, chain, m_hash) {
84d17192
AV
712 if (mp->m_dentry == dentry) {
713 /* might be worth a WARN_ON() */
714 if (d_unlinked(dentry))
715 return ERR_PTR(-ENOENT);
716 mp->m_count++;
717 return mp;
718 }
719 }
e2dfa935
EB
720 return NULL;
721}
722
723static struct mountpoint *new_mountpoint(struct dentry *dentry)
724{
725 struct hlist_head *chain = mp_hash(dentry);
726 struct mountpoint *mp;
727 int ret;
84d17192
AV
728
729 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
730 if (!mp)
731 return ERR_PTR(-ENOMEM);
732
eed81007
MS
733 ret = d_set_mounted(dentry);
734 if (ret) {
84d17192 735 kfree(mp);
eed81007 736 return ERR_PTR(ret);
84d17192 737 }
eed81007 738
84d17192
AV
739 mp->m_dentry = dentry;
740 mp->m_count = 1;
0818bf27 741 hlist_add_head(&mp->m_hash, chain);
0a5eb7c8 742 INIT_HLIST_HEAD(&mp->m_list);
84d17192
AV
743 return mp;
744}
745
746static void put_mountpoint(struct mountpoint *mp)
747{
748 if (!--mp->m_count) {
749 struct dentry *dentry = mp->m_dentry;
0a5eb7c8 750 BUG_ON(!hlist_empty(&mp->m_list));
84d17192
AV
751 spin_lock(&dentry->d_lock);
752 dentry->d_flags &= ~DCACHE_MOUNTED;
753 spin_unlock(&dentry->d_lock);
0818bf27 754 hlist_del(&mp->m_hash);
84d17192
AV
755 kfree(mp);
756 }
757}
758
143c8c91 759static inline int check_mnt(struct mount *mnt)
1da177e4 760{
6b3286ed 761 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
762}
763
99b7db7b
NP
764/*
765 * vfsmount lock must be held for write
766 */
6b3286ed 767static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
768{
769 if (ns) {
770 ns->event = ++event;
771 wake_up_interruptible(&ns->poll);
772 }
773}
774
99b7db7b
NP
775/*
776 * vfsmount lock must be held for write
777 */
6b3286ed 778static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
779{
780 if (ns && ns->event != event) {
781 ns->event = event;
782 wake_up_interruptible(&ns->poll);
783 }
784}
785
99b7db7b
NP
786/*
787 * vfsmount lock must be held for write
788 */
419148da
AV
789static void detach_mnt(struct mount *mnt, struct path *old_path)
790{
a73324da 791 old_path->dentry = mnt->mnt_mountpoint;
0714a533
AV
792 old_path->mnt = &mnt->mnt_parent->mnt;
793 mnt->mnt_parent = mnt;
a73324da 794 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
6b41d536 795 list_del_init(&mnt->mnt_child);
38129a13 796 hlist_del_init_rcu(&mnt->mnt_hash);
0a5eb7c8 797 hlist_del_init(&mnt->mnt_mp_list);
84d17192
AV
798 put_mountpoint(mnt->mnt_mp);
799 mnt->mnt_mp = NULL;
1da177e4
LT
800}
801
99b7db7b
NP
802/*
803 * vfsmount lock must be held for write
804 */
84d17192
AV
805void mnt_set_mountpoint(struct mount *mnt,
806 struct mountpoint *mp,
44d964d6 807 struct mount *child_mnt)
b90fa9ae 808{
84d17192 809 mp->m_count++;
3a2393d7 810 mnt_add_count(mnt, 1); /* essentially, that's mntget */
84d17192 811 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
3a2393d7 812 child_mnt->mnt_parent = mnt;
84d17192 813 child_mnt->mnt_mp = mp;
0a5eb7c8 814 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
b90fa9ae
RP
815}
816
99b7db7b
NP
817/*
818 * vfsmount lock must be held for write
819 */
84d17192
AV
820static void attach_mnt(struct mount *mnt,
821 struct mount *parent,
822 struct mountpoint *mp)
1da177e4 823{
84d17192 824 mnt_set_mountpoint(parent, mp, mnt);
38129a13 825 hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
84d17192 826 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
b90fa9ae
RP
827}
828
12a5b529
AV
829static void attach_shadowed(struct mount *mnt,
830 struct mount *parent,
831 struct mount *shadows)
832{
833 if (shadows) {
f6f99332 834 hlist_add_behind_rcu(&mnt->mnt_hash, &shadows->mnt_hash);
12a5b529
AV
835 list_add(&mnt->mnt_child, &shadows->mnt_child);
836 } else {
837 hlist_add_head_rcu(&mnt->mnt_hash,
838 m_hash(&parent->mnt, mnt->mnt_mountpoint));
839 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
840 }
841}
842
b90fa9ae 843/*
99b7db7b 844 * vfsmount lock must be held for write
b90fa9ae 845 */
1d6a32ac 846static void commit_tree(struct mount *mnt, struct mount *shadows)
b90fa9ae 847{
0714a533 848 struct mount *parent = mnt->mnt_parent;
83adc753 849 struct mount *m;
b90fa9ae 850 LIST_HEAD(head);
143c8c91 851 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae 852
0714a533 853 BUG_ON(parent == mnt);
b90fa9ae 854
1a4eeaf2 855 list_add_tail(&head, &mnt->mnt_list);
f7a99c5b 856 list_for_each_entry(m, &head, mnt_list)
143c8c91 857 m->mnt_ns = n;
f03c6599 858
b90fa9ae
RP
859 list_splice(&head, n->list.prev);
860
12a5b529 861 attach_shadowed(mnt, parent, shadows);
6b3286ed 862 touch_mnt_namespace(n);
1da177e4
LT
863}
864
909b0a88 865static struct mount *next_mnt(struct mount *p, struct mount *root)
1da177e4 866{
6b41d536
AV
867 struct list_head *next = p->mnt_mounts.next;
868 if (next == &p->mnt_mounts) {
1da177e4 869 while (1) {
909b0a88 870 if (p == root)
1da177e4 871 return NULL;
6b41d536
AV
872 next = p->mnt_child.next;
873 if (next != &p->mnt_parent->mnt_mounts)
1da177e4 874 break;
0714a533 875 p = p->mnt_parent;
1da177e4
LT
876 }
877 }
6b41d536 878 return list_entry(next, struct mount, mnt_child);
1da177e4
LT
879}
880
315fc83e 881static struct mount *skip_mnt_tree(struct mount *p)
9676f0c6 882{
6b41d536
AV
883 struct list_head *prev = p->mnt_mounts.prev;
884 while (prev != &p->mnt_mounts) {
885 p = list_entry(prev, struct mount, mnt_child);
886 prev = p->mnt_mounts.prev;
9676f0c6
RP
887 }
888 return p;
889}
890
9d412a43
AV
891struct vfsmount *
892vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
893{
b105e270 894 struct mount *mnt;
9d412a43
AV
895 struct dentry *root;
896
897 if (!type)
898 return ERR_PTR(-ENODEV);
899
900 mnt = alloc_vfsmnt(name);
901 if (!mnt)
902 return ERR_PTR(-ENOMEM);
903
904 if (flags & MS_KERNMOUNT)
b105e270 905 mnt->mnt.mnt_flags = MNT_INTERNAL;
9d412a43
AV
906
907 root = mount_fs(type, flags, name, data);
908 if (IS_ERR(root)) {
8ffcb32e 909 mnt_free_id(mnt);
9d412a43
AV
910 free_vfsmnt(mnt);
911 return ERR_CAST(root);
912 }
913
b105e270
AV
914 mnt->mnt.mnt_root = root;
915 mnt->mnt.mnt_sb = root->d_sb;
a73324da 916 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 917 mnt->mnt_parent = mnt;
719ea2fb 918 lock_mount_hash();
39f7c4db 919 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
719ea2fb 920 unlock_mount_hash();
b105e270 921 return &mnt->mnt;
9d412a43
AV
922}
923EXPORT_SYMBOL_GPL(vfs_kern_mount);
924
87129cc0 925static struct mount *clone_mnt(struct mount *old, struct dentry *root,
36341f64 926 int flag)
1da177e4 927{
87129cc0 928 struct super_block *sb = old->mnt.mnt_sb;
be34d1a3
DH
929 struct mount *mnt;
930 int err;
1da177e4 931
be34d1a3
DH
932 mnt = alloc_vfsmnt(old->mnt_devname);
933 if (!mnt)
934 return ERR_PTR(-ENOMEM);
719f5d7f 935
7a472ef4 936 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
be34d1a3
DH
937 mnt->mnt_group_id = 0; /* not a peer of original */
938 else
939 mnt->mnt_group_id = old->mnt_group_id;
b90fa9ae 940
be34d1a3
DH
941 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
942 err = mnt_alloc_group_id(mnt);
943 if (err)
944 goto out_free;
1da177e4 945 }
be34d1a3 946
f2ebb3a9 947 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
132c94e3 948 /* Don't allow unprivileged users to change mount flags */
9566d674
EB
949 if (flag & CL_UNPRIVILEGED) {
950 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
951
952 if (mnt->mnt.mnt_flags & MNT_READONLY)
953 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
954
955 if (mnt->mnt.mnt_flags & MNT_NODEV)
956 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
957
958 if (mnt->mnt.mnt_flags & MNT_NOSUID)
959 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
960
961 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
962 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
963 }
132c94e3 964
5ff9d8a6
EB
965 /* Don't allow unprivileged users to reveal what is under a mount */
966 if ((flag & CL_UNPRIVILEGED) && list_empty(&old->mnt_expire))
967 mnt->mnt.mnt_flags |= MNT_LOCKED;
968
be34d1a3
DH
969 atomic_inc(&sb->s_active);
970 mnt->mnt.mnt_sb = sb;
971 mnt->mnt.mnt_root = dget(root);
972 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
973 mnt->mnt_parent = mnt;
719ea2fb 974 lock_mount_hash();
be34d1a3 975 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
719ea2fb 976 unlock_mount_hash();
be34d1a3 977
7a472ef4
EB
978 if ((flag & CL_SLAVE) ||
979 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
be34d1a3
DH
980 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
981 mnt->mnt_master = old;
982 CLEAR_MNT_SHARED(mnt);
983 } else if (!(flag & CL_PRIVATE)) {
984 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
985 list_add(&mnt->mnt_share, &old->mnt_share);
986 if (IS_MNT_SLAVE(old))
987 list_add(&mnt->mnt_slave, &old->mnt_slave);
988 mnt->mnt_master = old->mnt_master;
989 }
990 if (flag & CL_MAKE_SHARED)
991 set_mnt_shared(mnt);
992
993 /* stick the duplicate mount on the same expiry list
994 * as the original if that was on one */
995 if (flag & CL_EXPIRE) {
996 if (!list_empty(&old->mnt_expire))
997 list_add(&mnt->mnt_expire, &old->mnt_expire);
998 }
999
cb338d06 1000 return mnt;
719f5d7f
MS
1001
1002 out_free:
8ffcb32e 1003 mnt_free_id(mnt);
719f5d7f 1004 free_vfsmnt(mnt);
be34d1a3 1005 return ERR_PTR(err);
1da177e4
LT
1006}
1007
9ea459e1
AV
1008static void cleanup_mnt(struct mount *mnt)
1009{
1010 /*
1011 * This probably indicates that somebody messed
1012 * up a mnt_want/drop_write() pair. If this
1013 * happens, the filesystem was probably unable
1014 * to make r/w->r/o transitions.
1015 */
1016 /*
1017 * The locking used to deal with mnt_count decrement provides barriers,
1018 * so mnt_get_writers() below is safe.
1019 */
1020 WARN_ON(mnt_get_writers(mnt));
1021 if (unlikely(mnt->mnt_pins.first))
1022 mnt_pin_kill(mnt);
1023 fsnotify_vfsmount_delete(&mnt->mnt);
1024 dput(mnt->mnt.mnt_root);
1025 deactivate_super(mnt->mnt.mnt_sb);
1026 mnt_free_id(mnt);
1027 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1028}
1029
1030static void __cleanup_mnt(struct rcu_head *head)
1031{
1032 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1033}
1034
1035static LLIST_HEAD(delayed_mntput_list);
1036static void delayed_mntput(struct work_struct *unused)
1037{
1038 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1039 struct llist_node *next;
1040
1041 for (; node; node = next) {
1042 next = llist_next(node);
1043 cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
1044 }
1045}
1046static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1047
900148dc 1048static void mntput_no_expire(struct mount *mnt)
b3e19d92 1049{
48a066e7
AV
1050 rcu_read_lock();
1051 mnt_add_count(mnt, -1);
1052 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
1053 rcu_read_unlock();
f03c6599 1054 return;
b3e19d92 1055 }
719ea2fb 1056 lock_mount_hash();
b3e19d92 1057 if (mnt_get_count(mnt)) {
48a066e7 1058 rcu_read_unlock();
719ea2fb 1059 unlock_mount_hash();
99b7db7b
NP
1060 return;
1061 }
48a066e7
AV
1062 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1063 rcu_read_unlock();
1064 unlock_mount_hash();
1065 return;
1066 }
1067 mnt->mnt.mnt_flags |= MNT_DOOMED;
1068 rcu_read_unlock();
962830df 1069
39f7c4db 1070 list_del(&mnt->mnt_instance);
719ea2fb 1071 unlock_mount_hash();
649a795a 1072
9ea459e1
AV
1073 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1074 struct task_struct *task = current;
1075 if (likely(!(task->flags & PF_KTHREAD))) {
1076 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1077 if (!task_work_add(task, &mnt->mnt_rcu, true))
1078 return;
1079 }
1080 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1081 schedule_delayed_work(&delayed_mntput_work, 1);
1082 return;
1083 }
1084 cleanup_mnt(mnt);
b3e19d92 1085}
b3e19d92
NP
1086
1087void mntput(struct vfsmount *mnt)
1088{
1089 if (mnt) {
863d684f 1090 struct mount *m = real_mount(mnt);
b3e19d92 1091 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
863d684f
AV
1092 if (unlikely(m->mnt_expiry_mark))
1093 m->mnt_expiry_mark = 0;
1094 mntput_no_expire(m);
b3e19d92
NP
1095 }
1096}
1097EXPORT_SYMBOL(mntput);
1098
1099struct vfsmount *mntget(struct vfsmount *mnt)
1100{
1101 if (mnt)
83adc753 1102 mnt_add_count(real_mount(mnt), 1);
b3e19d92
NP
1103 return mnt;
1104}
1105EXPORT_SYMBOL(mntget);
1106
3064c356 1107struct vfsmount *mnt_clone_internal(struct path *path)
7b7b1ace 1108{
3064c356
AV
1109 struct mount *p;
1110 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1111 if (IS_ERR(p))
1112 return ERR_CAST(p);
1113 p->mnt.mnt_flags |= MNT_INTERNAL;
1114 return &p->mnt;
7b7b1ace 1115}
1da177e4 1116
b3b304a2
MS
1117static inline void mangle(struct seq_file *m, const char *s)
1118{
1119 seq_escape(m, s, " \t\n\\");
1120}
1121
1122/*
1123 * Simple .show_options callback for filesystems which don't want to
1124 * implement more complex mount option showing.
1125 *
1126 * See also save_mount_options().
1127 */
34c80b1d 1128int generic_show_options(struct seq_file *m, struct dentry *root)
b3b304a2 1129{
2a32cebd
AV
1130 const char *options;
1131
1132 rcu_read_lock();
34c80b1d 1133 options = rcu_dereference(root->d_sb->s_options);
b3b304a2
MS
1134
1135 if (options != NULL && options[0]) {
1136 seq_putc(m, ',');
1137 mangle(m, options);
1138 }
2a32cebd 1139 rcu_read_unlock();
b3b304a2
MS
1140
1141 return 0;
1142}
1143EXPORT_SYMBOL(generic_show_options);
1144
1145/*
1146 * If filesystem uses generic_show_options(), this function should be
1147 * called from the fill_super() callback.
1148 *
1149 * The .remount_fs callback usually needs to be handled in a special
1150 * way, to make sure, that previous options are not overwritten if the
1151 * remount fails.
1152 *
1153 * Also note, that if the filesystem's .remount_fs function doesn't
1154 * reset all options to their default value, but changes only newly
1155 * given options, then the displayed options will not reflect reality
1156 * any more.
1157 */
1158void save_mount_options(struct super_block *sb, char *options)
1159{
2a32cebd
AV
1160 BUG_ON(sb->s_options);
1161 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
b3b304a2
MS
1162}
1163EXPORT_SYMBOL(save_mount_options);
1164
2a32cebd
AV
1165void replace_mount_options(struct super_block *sb, char *options)
1166{
1167 char *old = sb->s_options;
1168 rcu_assign_pointer(sb->s_options, options);
1169 if (old) {
1170 synchronize_rcu();
1171 kfree(old);
1172 }
1173}
1174EXPORT_SYMBOL(replace_mount_options);
1175
a1a2c409 1176#ifdef CONFIG_PROC_FS
0226f492 1177/* iterator; we want it to have access to namespace_sem, thus here... */
1da177e4
LT
1178static void *m_start(struct seq_file *m, loff_t *pos)
1179{
6ce6e24e 1180 struct proc_mounts *p = proc_mounts(m);
1da177e4 1181
390c6843 1182 down_read(&namespace_sem);
c7999c36
AV
1183 if (p->cached_event == p->ns->event) {
1184 void *v = p->cached_mount;
1185 if (*pos == p->cached_index)
1186 return v;
1187 if (*pos == p->cached_index + 1) {
1188 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1189 return p->cached_mount = v;
1190 }
1191 }
1192
1193 p->cached_event = p->ns->event;
1194 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1195 p->cached_index = *pos;
1196 return p->cached_mount;
1da177e4
LT
1197}
1198
1199static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1200{
6ce6e24e 1201 struct proc_mounts *p = proc_mounts(m);
b0765fb8 1202
c7999c36
AV
1203 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1204 p->cached_index = *pos;
1205 return p->cached_mount;
1da177e4
LT
1206}
1207
1208static void m_stop(struct seq_file *m, void *v)
1209{
390c6843 1210 up_read(&namespace_sem);
1da177e4
LT
1211}
1212
0226f492 1213static int m_show(struct seq_file *m, void *v)
2d4d4864 1214{
6ce6e24e 1215 struct proc_mounts *p = proc_mounts(m);
1a4eeaf2 1216 struct mount *r = list_entry(v, struct mount, mnt_list);
0226f492 1217 return p->show(m, &r->mnt);
1da177e4
LT
1218}
1219
a1a2c409 1220const struct seq_operations mounts_op = {
1da177e4
LT
1221 .start = m_start,
1222 .next = m_next,
1223 .stop = m_stop,
0226f492 1224 .show = m_show,
b4629fe2 1225};
a1a2c409 1226#endif /* CONFIG_PROC_FS */
b4629fe2 1227
1da177e4
LT
1228/**
1229 * may_umount_tree - check if a mount tree is busy
1230 * @mnt: root of mount tree
1231 *
1232 * This is called to check if a tree of mounts has any
1233 * open files, pwds, chroots or sub mounts that are
1234 * busy.
1235 */
909b0a88 1236int may_umount_tree(struct vfsmount *m)
1da177e4 1237{
909b0a88 1238 struct mount *mnt = real_mount(m);
36341f64
RP
1239 int actual_refs = 0;
1240 int minimum_refs = 0;
315fc83e 1241 struct mount *p;
909b0a88 1242 BUG_ON(!m);
1da177e4 1243
b3e19d92 1244 /* write lock needed for mnt_get_count */
719ea2fb 1245 lock_mount_hash();
909b0a88 1246 for (p = mnt; p; p = next_mnt(p, mnt)) {
83adc753 1247 actual_refs += mnt_get_count(p);
1da177e4 1248 minimum_refs += 2;
1da177e4 1249 }
719ea2fb 1250 unlock_mount_hash();
1da177e4
LT
1251
1252 if (actual_refs > minimum_refs)
e3474a8e 1253 return 0;
1da177e4 1254
e3474a8e 1255 return 1;
1da177e4
LT
1256}
1257
1258EXPORT_SYMBOL(may_umount_tree);
1259
1260/**
1261 * may_umount - check if a mount point is busy
1262 * @mnt: root of mount
1263 *
1264 * This is called to check if a mount point has any
1265 * open files, pwds, chroots or sub mounts. If the
1266 * mount has sub mounts this will return busy
1267 * regardless of whether the sub mounts are busy.
1268 *
1269 * Doesn't take quota and stuff into account. IOW, in some cases it will
1270 * give false negatives. The main reason why it's here is that we need
1271 * a non-destructive way to look for easily umountable filesystems.
1272 */
1273int may_umount(struct vfsmount *mnt)
1274{
e3474a8e 1275 int ret = 1;
8ad08d8a 1276 down_read(&namespace_sem);
719ea2fb 1277 lock_mount_hash();
1ab59738 1278 if (propagate_mount_busy(real_mount(mnt), 2))
e3474a8e 1279 ret = 0;
719ea2fb 1280 unlock_mount_hash();
8ad08d8a 1281 up_read(&namespace_sem);
a05964f3 1282 return ret;
1da177e4
LT
1283}
1284
1285EXPORT_SYMBOL(may_umount);
1286
38129a13 1287static HLIST_HEAD(unmounted); /* protected by namespace_sem */
e3197d83 1288
97216be0 1289static void namespace_unlock(void)
70fbcdf4 1290{
d5e50f74 1291 struct mount *mnt;
38129a13 1292 struct hlist_head head = unmounted;
97216be0 1293
38129a13 1294 if (likely(hlist_empty(&head))) {
97216be0
AV
1295 up_write(&namespace_sem);
1296 return;
1297 }
1298
38129a13
AV
1299 head.first->pprev = &head.first;
1300 INIT_HLIST_HEAD(&unmounted);
1301
81b6b061
AV
1302 /* undo decrements we'd done in umount_tree() */
1303 hlist_for_each_entry(mnt, &head, mnt_hash)
1304 if (mnt->mnt_ex_mountpoint.mnt)
1305 mntget(mnt->mnt_ex_mountpoint.mnt);
1306
97216be0
AV
1307 up_write(&namespace_sem);
1308
48a066e7
AV
1309 synchronize_rcu();
1310
38129a13
AV
1311 while (!hlist_empty(&head)) {
1312 mnt = hlist_entry(head.first, struct mount, mnt_hash);
1313 hlist_del_init(&mnt->mnt_hash);
aba809cf
AV
1314 if (mnt->mnt_ex_mountpoint.mnt)
1315 path_put(&mnt->mnt_ex_mountpoint);
d5e50f74 1316 mntput(&mnt->mnt);
70fbcdf4
RP
1317 }
1318}
1319
97216be0 1320static inline void namespace_lock(void)
e3197d83 1321{
97216be0 1322 down_write(&namespace_sem);
e3197d83
AV
1323}
1324
99b7db7b 1325/*
48a066e7 1326 * mount_lock must be held
99b7db7b 1327 * namespace_sem must be held for write
48a066e7
AV
1328 * how = 0 => just this tree, don't propagate
1329 * how = 1 => propagate; we know that nobody else has reference to any victims
1330 * how = 2 => lazy umount
99b7db7b 1331 */
48a066e7 1332void umount_tree(struct mount *mnt, int how)
1da177e4 1333{
38129a13 1334 HLIST_HEAD(tmp_list);
315fc83e 1335 struct mount *p;
38129a13 1336 struct mount *last = NULL;
1da177e4 1337
38129a13
AV
1338 for (p = mnt; p; p = next_mnt(p, mnt)) {
1339 hlist_del_init_rcu(&p->mnt_hash);
1340 hlist_add_head(&p->mnt_hash, &tmp_list);
1341 }
1da177e4 1342
88b368f2
AV
1343 hlist_for_each_entry(p, &tmp_list, mnt_hash)
1344 list_del_init(&p->mnt_child);
1345
48a066e7 1346 if (how)
7b8a53fd 1347 propagate_umount(&tmp_list);
a05964f3 1348
38129a13 1349 hlist_for_each_entry(p, &tmp_list, mnt_hash) {
6776db3d 1350 list_del_init(&p->mnt_expire);
1a4eeaf2 1351 list_del_init(&p->mnt_list);
143c8c91
AV
1352 __touch_mnt_namespace(p->mnt_ns);
1353 p->mnt_ns = NULL;
48a066e7
AV
1354 if (how < 2)
1355 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
676da58d 1356 if (mnt_has_parent(p)) {
0a5eb7c8 1357 hlist_del_init(&p->mnt_mp_list);
84d17192 1358 put_mountpoint(p->mnt_mp);
81b6b061 1359 mnt_add_count(p->mnt_parent, -1);
aba809cf
AV
1360 /* move the reference to mountpoint into ->mnt_ex_mountpoint */
1361 p->mnt_ex_mountpoint.dentry = p->mnt_mountpoint;
1362 p->mnt_ex_mountpoint.mnt = &p->mnt_parent->mnt;
1363 p->mnt_mountpoint = p->mnt.mnt_root;
1364 p->mnt_parent = p;
84d17192 1365 p->mnt_mp = NULL;
7c4b93d8 1366 }
0f0afb1d 1367 change_mnt_propagation(p, MS_PRIVATE);
38129a13
AV
1368 last = p;
1369 }
1370 if (last) {
1371 last->mnt_hash.next = unmounted.first;
1372 unmounted.first = tmp_list.first;
1373 unmounted.first->pprev = &unmounted.first;
1da177e4
LT
1374 }
1375}
1376
b54b9be7 1377static void shrink_submounts(struct mount *mnt);
c35038be 1378
1ab59738 1379static int do_umount(struct mount *mnt, int flags)
1da177e4 1380{
1ab59738 1381 struct super_block *sb = mnt->mnt.mnt_sb;
1da177e4
LT
1382 int retval;
1383
1ab59738 1384 retval = security_sb_umount(&mnt->mnt, flags);
1da177e4
LT
1385 if (retval)
1386 return retval;
1387
1388 /*
1389 * Allow userspace to request a mountpoint be expired rather than
1390 * unmounting unconditionally. Unmount only happens if:
1391 * (1) the mark is already set (the mark is cleared by mntput())
1392 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1393 */
1394 if (flags & MNT_EXPIRE) {
1ab59738 1395 if (&mnt->mnt == current->fs->root.mnt ||
1da177e4
LT
1396 flags & (MNT_FORCE | MNT_DETACH))
1397 return -EINVAL;
1398
b3e19d92
NP
1399 /*
1400 * probably don't strictly need the lock here if we examined
1401 * all race cases, but it's a slowpath.
1402 */
719ea2fb 1403 lock_mount_hash();
83adc753 1404 if (mnt_get_count(mnt) != 2) {
719ea2fb 1405 unlock_mount_hash();
1da177e4 1406 return -EBUSY;
b3e19d92 1407 }
719ea2fb 1408 unlock_mount_hash();
1da177e4 1409
863d684f 1410 if (!xchg(&mnt->mnt_expiry_mark, 1))
1da177e4
LT
1411 return -EAGAIN;
1412 }
1413
1414 /*
1415 * If we may have to abort operations to get out of this
1416 * mount, and they will themselves hold resources we must
1417 * allow the fs to do things. In the Unix tradition of
1418 * 'Gee thats tricky lets do it in userspace' the umount_begin
1419 * might fail to complete on the first run through as other tasks
1420 * must return, and the like. Thats for the mount program to worry
1421 * about for the moment.
1422 */
1423
42faad99 1424 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1425 sb->s_op->umount_begin(sb);
42faad99 1426 }
1da177e4
LT
1427
1428 /*
1429 * No sense to grab the lock for this test, but test itself looks
1430 * somewhat bogus. Suggestions for better replacement?
1431 * Ho-hum... In principle, we might treat that as umount + switch
1432 * to rootfs. GC would eventually take care of the old vfsmount.
1433 * Actually it makes sense, especially if rootfs would contain a
1434 * /reboot - static binary that would close all descriptors and
1435 * call reboot(9). Then init(8) could umount root and exec /reboot.
1436 */
1ab59738 1437 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1438 /*
1439 * Special case for "unmounting" root ...
1440 * we just try to remount it readonly.
1441 */
1442 down_write(&sb->s_umount);
4aa98cf7 1443 if (!(sb->s_flags & MS_RDONLY))
1da177e4 1444 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1da177e4
LT
1445 up_write(&sb->s_umount);
1446 return retval;
1447 }
1448
97216be0 1449 namespace_lock();
719ea2fb 1450 lock_mount_hash();
5addc5dd 1451 event++;
1da177e4 1452
48a066e7 1453 if (flags & MNT_DETACH) {
1a4eeaf2 1454 if (!list_empty(&mnt->mnt_list))
48a066e7 1455 umount_tree(mnt, 2);
1da177e4 1456 retval = 0;
48a066e7
AV
1457 } else {
1458 shrink_submounts(mnt);
1459 retval = -EBUSY;
1460 if (!propagate_mount_busy(mnt, 2)) {
1461 if (!list_empty(&mnt->mnt_list))
1462 umount_tree(mnt, 1);
1463 retval = 0;
1464 }
1da177e4 1465 }
719ea2fb 1466 unlock_mount_hash();
e3197d83 1467 namespace_unlock();
1da177e4
LT
1468 return retval;
1469}
1470
80b5dce8
EB
1471/*
1472 * __detach_mounts - lazily unmount all mounts on the specified dentry
1473 *
1474 * During unlink, rmdir, and d_drop it is possible to loose the path
1475 * to an existing mountpoint, and wind up leaking the mount.
1476 * detach_mounts allows lazily unmounting those mounts instead of
1477 * leaking them.
1478 *
1479 * The caller may hold dentry->d_inode->i_mutex.
1480 */
1481void __detach_mounts(struct dentry *dentry)
1482{
1483 struct mountpoint *mp;
1484 struct mount *mnt;
1485
1486 namespace_lock();
1487 mp = lookup_mountpoint(dentry);
1488 if (!mp)
1489 goto out_unlock;
1490
1491 lock_mount_hash();
1492 while (!hlist_empty(&mp->m_list)) {
1493 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1494 umount_tree(mnt, 2);
1495 }
1496 unlock_mount_hash();
1497 put_mountpoint(mp);
1498out_unlock:
1499 namespace_unlock();
1500}
1501
9b40bc90
AV
1502/*
1503 * Is the caller allowed to modify his namespace?
1504 */
1505static inline bool may_mount(void)
1506{
1507 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1508}
1509
1da177e4
LT
1510/*
1511 * Now umount can handle mount points as well as block devices.
1512 * This is important for filesystems which use unnamed block devices.
1513 *
1514 * We now support a flag for forced unmount like the other 'big iron'
1515 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1516 */
1517
bdc480e3 1518SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1da177e4 1519{
2d8f3038 1520 struct path path;
900148dc 1521 struct mount *mnt;
1da177e4 1522 int retval;
db1f05bb 1523 int lookup_flags = 0;
1da177e4 1524
db1f05bb
MS
1525 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1526 return -EINVAL;
1527
9b40bc90
AV
1528 if (!may_mount())
1529 return -EPERM;
1530
db1f05bb
MS
1531 if (!(flags & UMOUNT_NOFOLLOW))
1532 lookup_flags |= LOOKUP_FOLLOW;
1533
197df04c 1534 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1da177e4
LT
1535 if (retval)
1536 goto out;
900148dc 1537 mnt = real_mount(path.mnt);
1da177e4 1538 retval = -EINVAL;
2d8f3038 1539 if (path.dentry != path.mnt->mnt_root)
1da177e4 1540 goto dput_and_out;
143c8c91 1541 if (!check_mnt(mnt))
1da177e4 1542 goto dput_and_out;
5ff9d8a6
EB
1543 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1544 goto dput_and_out;
1da177e4 1545
900148dc 1546 retval = do_umount(mnt, flags);
1da177e4 1547dput_and_out:
429731b1 1548 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038 1549 dput(path.dentry);
900148dc 1550 mntput_no_expire(mnt);
1da177e4
LT
1551out:
1552 return retval;
1553}
1554
1555#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1556
1557/*
b58fed8b 1558 * The 2.0 compatible umount. No flags.
1da177e4 1559 */
bdc480e3 1560SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1561{
b58fed8b 1562 return sys_umount(name, 0);
1da177e4
LT
1563}
1564
1565#endif
1566
4ce5d2b1 1567static bool is_mnt_ns_file(struct dentry *dentry)
8823c079 1568{
4ce5d2b1
EB
1569 /* Is this a proxy for a mount namespace? */
1570 struct inode *inode = dentry->d_inode;
0bb80f24 1571 struct proc_ns *ei;
8823c079
EB
1572
1573 if (!proc_ns_inode(inode))
1574 return false;
1575
0bb80f24 1576 ei = get_proc_ns(inode);
8823c079
EB
1577 if (ei->ns_ops != &mntns_operations)
1578 return false;
1579
4ce5d2b1
EB
1580 return true;
1581}
1582
1583static bool mnt_ns_loop(struct dentry *dentry)
1584{
1585 /* Could bind mounting the mount namespace inode cause a
1586 * mount namespace loop?
1587 */
1588 struct mnt_namespace *mnt_ns;
1589 if (!is_mnt_ns_file(dentry))
1590 return false;
1591
1592 mnt_ns = get_proc_ns(dentry->d_inode)->ns;
8823c079
EB
1593 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1594}
1595
87129cc0 1596struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
36341f64 1597 int flag)
1da177e4 1598{
84d17192 1599 struct mount *res, *p, *q, *r, *parent;
1da177e4 1600
4ce5d2b1
EB
1601 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1602 return ERR_PTR(-EINVAL);
1603
1604 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
be34d1a3 1605 return ERR_PTR(-EINVAL);
9676f0c6 1606
36341f64 1607 res = q = clone_mnt(mnt, dentry, flag);
be34d1a3
DH
1608 if (IS_ERR(q))
1609 return q;
1610
5ff9d8a6 1611 q->mnt.mnt_flags &= ~MNT_LOCKED;
a73324da 1612 q->mnt_mountpoint = mnt->mnt_mountpoint;
1da177e4
LT
1613
1614 p = mnt;
6b41d536 1615 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
315fc83e 1616 struct mount *s;
7ec02ef1 1617 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1618 continue;
1619
909b0a88 1620 for (s = r; s; s = next_mnt(s, r)) {
12a5b529 1621 struct mount *t = NULL;
4ce5d2b1
EB
1622 if (!(flag & CL_COPY_UNBINDABLE) &&
1623 IS_MNT_UNBINDABLE(s)) {
1624 s = skip_mnt_tree(s);
1625 continue;
1626 }
1627 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1628 is_mnt_ns_file(s->mnt.mnt_root)) {
9676f0c6
RP
1629 s = skip_mnt_tree(s);
1630 continue;
1631 }
0714a533
AV
1632 while (p != s->mnt_parent) {
1633 p = p->mnt_parent;
1634 q = q->mnt_parent;
1da177e4 1635 }
87129cc0 1636 p = s;
84d17192 1637 parent = q;
87129cc0 1638 q = clone_mnt(p, p->mnt.mnt_root, flag);
be34d1a3
DH
1639 if (IS_ERR(q))
1640 goto out;
719ea2fb 1641 lock_mount_hash();
1a4eeaf2 1642 list_add_tail(&q->mnt_list, &res->mnt_list);
12a5b529
AV
1643 mnt_set_mountpoint(parent, p->mnt_mp, q);
1644 if (!list_empty(&parent->mnt_mounts)) {
1645 t = list_last_entry(&parent->mnt_mounts,
1646 struct mount, mnt_child);
1647 if (t->mnt_mp != p->mnt_mp)
1648 t = NULL;
1649 }
1650 attach_shadowed(q, parent, t);
719ea2fb 1651 unlock_mount_hash();
1da177e4
LT
1652 }
1653 }
1654 return res;
be34d1a3 1655out:
1da177e4 1656 if (res) {
719ea2fb 1657 lock_mount_hash();
328e6d90 1658 umount_tree(res, 0);
719ea2fb 1659 unlock_mount_hash();
1da177e4 1660 }
be34d1a3 1661 return q;
1da177e4
LT
1662}
1663
be34d1a3
DH
1664/* Caller should check returned pointer for errors */
1665
589ff870 1666struct vfsmount *collect_mounts(struct path *path)
8aec0809 1667{
cb338d06 1668 struct mount *tree;
97216be0 1669 namespace_lock();
87129cc0
AV
1670 tree = copy_tree(real_mount(path->mnt), path->dentry,
1671 CL_COPY_ALL | CL_PRIVATE);
328e6d90 1672 namespace_unlock();
be34d1a3 1673 if (IS_ERR(tree))
52e220d3 1674 return ERR_CAST(tree);
be34d1a3 1675 return &tree->mnt;
8aec0809
AV
1676}
1677
1678void drop_collected_mounts(struct vfsmount *mnt)
1679{
97216be0 1680 namespace_lock();
719ea2fb 1681 lock_mount_hash();
328e6d90 1682 umount_tree(real_mount(mnt), 0);
719ea2fb 1683 unlock_mount_hash();
3ab6abee 1684 namespace_unlock();
8aec0809
AV
1685}
1686
1f707137
AV
1687int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1688 struct vfsmount *root)
1689{
1a4eeaf2 1690 struct mount *mnt;
1f707137
AV
1691 int res = f(root, arg);
1692 if (res)
1693 return res;
1a4eeaf2
AV
1694 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1695 res = f(&mnt->mnt, arg);
1f707137
AV
1696 if (res)
1697 return res;
1698 }
1699 return 0;
1700}
1701
4b8b21f4 1702static void cleanup_group_ids(struct mount *mnt, struct mount *end)
719f5d7f 1703{
315fc83e 1704 struct mount *p;
719f5d7f 1705
909b0a88 1706 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
fc7be130 1707 if (p->mnt_group_id && !IS_MNT_SHARED(p))
4b8b21f4 1708 mnt_release_group_id(p);
719f5d7f
MS
1709 }
1710}
1711
4b8b21f4 1712static int invent_group_ids(struct mount *mnt, bool recurse)
719f5d7f 1713{
315fc83e 1714 struct mount *p;
719f5d7f 1715
909b0a88 1716 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
fc7be130 1717 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
4b8b21f4 1718 int err = mnt_alloc_group_id(p);
719f5d7f 1719 if (err) {
4b8b21f4 1720 cleanup_group_ids(mnt, p);
719f5d7f
MS
1721 return err;
1722 }
1723 }
1724 }
1725
1726 return 0;
1727}
1728
b90fa9ae
RP
1729/*
1730 * @source_mnt : mount tree to be attached
21444403
RP
1731 * @nd : place the mount tree @source_mnt is attached
1732 * @parent_nd : if non-null, detach the source_mnt from its parent and
1733 * store the parent mount and mountpoint dentry.
1734 * (done when source_mnt is moved)
b90fa9ae
RP
1735 *
1736 * NOTE: in the table below explains the semantics when a source mount
1737 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1738 * ---------------------------------------------------------------------------
1739 * | BIND MOUNT OPERATION |
1740 * |**************************************************************************
1741 * | source-->| shared | private | slave | unbindable |
1742 * | dest | | | | |
1743 * | | | | | | |
1744 * | v | | | | |
1745 * |**************************************************************************
1746 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1747 * | | | | | |
1748 * |non-shared| shared (+) | private | slave (*) | invalid |
1749 * ***************************************************************************
b90fa9ae
RP
1750 * A bind operation clones the source mount and mounts the clone on the
1751 * destination mount.
1752 *
1753 * (++) the cloned mount is propagated to all the mounts in the propagation
1754 * tree of the destination mount and the cloned mount is added to
1755 * the peer group of the source mount.
1756 * (+) the cloned mount is created under the destination mount and is marked
1757 * as shared. The cloned mount is added to the peer group of the source
1758 * mount.
5afe0022
RP
1759 * (+++) the mount is propagated to all the mounts in the propagation tree
1760 * of the destination mount and the cloned mount is made slave
1761 * of the same master as that of the source mount. The cloned mount
1762 * is marked as 'shared and slave'.
1763 * (*) the cloned mount is made a slave of the same master as that of the
1764 * source mount.
1765 *
9676f0c6
RP
1766 * ---------------------------------------------------------------------------
1767 * | MOVE MOUNT OPERATION |
1768 * |**************************************************************************
1769 * | source-->| shared | private | slave | unbindable |
1770 * | dest | | | | |
1771 * | | | | | | |
1772 * | v | | | | |
1773 * |**************************************************************************
1774 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1775 * | | | | | |
1776 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1777 * ***************************************************************************
5afe0022
RP
1778 *
1779 * (+) the mount is moved to the destination. And is then propagated to
1780 * all the mounts in the propagation tree of the destination mount.
21444403 1781 * (+*) the mount is moved to the destination.
5afe0022
RP
1782 * (+++) the mount is moved to the destination and is then propagated to
1783 * all the mounts belonging to the destination mount's propagation tree.
1784 * the mount is marked as 'shared and slave'.
1785 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
1786 *
1787 * if the source mount is a tree, the operations explained above is
1788 * applied to each mount in the tree.
1789 * Must be called without spinlocks held, since this function can sleep
1790 * in allocations.
1791 */
0fb54e50 1792static int attach_recursive_mnt(struct mount *source_mnt,
84d17192
AV
1793 struct mount *dest_mnt,
1794 struct mountpoint *dest_mp,
1795 struct path *parent_path)
b90fa9ae 1796{
38129a13 1797 HLIST_HEAD(tree_list);
315fc83e 1798 struct mount *child, *p;
38129a13 1799 struct hlist_node *n;
719f5d7f 1800 int err;
b90fa9ae 1801
fc7be130 1802 if (IS_MNT_SHARED(dest_mnt)) {
0fb54e50 1803 err = invent_group_ids(source_mnt, true);
719f5d7f
MS
1804 if (err)
1805 goto out;
0b1b901b 1806 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
f2ebb3a9 1807 lock_mount_hash();
0b1b901b
AV
1808 if (err)
1809 goto out_cleanup_ids;
909b0a88 1810 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
0f0afb1d 1811 set_mnt_shared(p);
0b1b901b
AV
1812 } else {
1813 lock_mount_hash();
b90fa9ae 1814 }
1a390689 1815 if (parent_path) {
0fb54e50 1816 detach_mnt(source_mnt, parent_path);
84d17192 1817 attach_mnt(source_mnt, dest_mnt, dest_mp);
143c8c91 1818 touch_mnt_namespace(source_mnt->mnt_ns);
21444403 1819 } else {
84d17192 1820 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1d6a32ac 1821 commit_tree(source_mnt, NULL);
21444403 1822 }
b90fa9ae 1823
38129a13 1824 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1d6a32ac 1825 struct mount *q;
38129a13 1826 hlist_del_init(&child->mnt_hash);
1d6a32ac
AV
1827 q = __lookup_mnt_last(&child->mnt_parent->mnt,
1828 child->mnt_mountpoint);
1829 commit_tree(child, q);
b90fa9ae 1830 }
719ea2fb 1831 unlock_mount_hash();
99b7db7b 1832
b90fa9ae 1833 return 0;
719f5d7f
MS
1834
1835 out_cleanup_ids:
f2ebb3a9
AV
1836 while (!hlist_empty(&tree_list)) {
1837 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
1838 umount_tree(child, 0);
1839 }
1840 unlock_mount_hash();
0b1b901b 1841 cleanup_group_ids(source_mnt, NULL);
719f5d7f
MS
1842 out:
1843 return err;
b90fa9ae
RP
1844}
1845
84d17192 1846static struct mountpoint *lock_mount(struct path *path)
b12cea91
AV
1847{
1848 struct vfsmount *mnt;
84d17192 1849 struct dentry *dentry = path->dentry;
b12cea91 1850retry:
84d17192
AV
1851 mutex_lock(&dentry->d_inode->i_mutex);
1852 if (unlikely(cant_mount(dentry))) {
1853 mutex_unlock(&dentry->d_inode->i_mutex);
1854 return ERR_PTR(-ENOENT);
b12cea91 1855 }
97216be0 1856 namespace_lock();
b12cea91 1857 mnt = lookup_mnt(path);
84d17192 1858 if (likely(!mnt)) {
e2dfa935
EB
1859 struct mountpoint *mp = lookup_mountpoint(dentry);
1860 if (!mp)
1861 mp = new_mountpoint(dentry);
84d17192 1862 if (IS_ERR(mp)) {
97216be0 1863 namespace_unlock();
84d17192
AV
1864 mutex_unlock(&dentry->d_inode->i_mutex);
1865 return mp;
1866 }
1867 return mp;
1868 }
97216be0 1869 namespace_unlock();
b12cea91
AV
1870 mutex_unlock(&path->dentry->d_inode->i_mutex);
1871 path_put(path);
1872 path->mnt = mnt;
84d17192 1873 dentry = path->dentry = dget(mnt->mnt_root);
b12cea91
AV
1874 goto retry;
1875}
1876
84d17192 1877static void unlock_mount(struct mountpoint *where)
b12cea91 1878{
84d17192
AV
1879 struct dentry *dentry = where->m_dentry;
1880 put_mountpoint(where);
328e6d90 1881 namespace_unlock();
84d17192 1882 mutex_unlock(&dentry->d_inode->i_mutex);
b12cea91
AV
1883}
1884
84d17192 1885static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1da177e4 1886{
95bc5f25 1887 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1da177e4
LT
1888 return -EINVAL;
1889
84d17192 1890 if (S_ISDIR(mp->m_dentry->d_inode->i_mode) !=
95bc5f25 1891 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1da177e4
LT
1892 return -ENOTDIR;
1893
84d17192 1894 return attach_recursive_mnt(mnt, p, mp, NULL);
1da177e4
LT
1895}
1896
7a2e8a8f
VA
1897/*
1898 * Sanity check the flags to change_mnt_propagation.
1899 */
1900
1901static int flags_to_propagation_type(int flags)
1902{
7c6e984d 1903 int type = flags & ~(MS_REC | MS_SILENT);
7a2e8a8f
VA
1904
1905 /* Fail if any non-propagation flags are set */
1906 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1907 return 0;
1908 /* Only one propagation flag should be set */
1909 if (!is_power_of_2(type))
1910 return 0;
1911 return type;
1912}
1913
07b20889
RP
1914/*
1915 * recursively change the type of the mountpoint.
1916 */
0a0d8a46 1917static int do_change_type(struct path *path, int flag)
07b20889 1918{
315fc83e 1919 struct mount *m;
4b8b21f4 1920 struct mount *mnt = real_mount(path->mnt);
07b20889 1921 int recurse = flag & MS_REC;
7a2e8a8f 1922 int type;
719f5d7f 1923 int err = 0;
07b20889 1924
2d92ab3c 1925 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
1926 return -EINVAL;
1927
7a2e8a8f
VA
1928 type = flags_to_propagation_type(flag);
1929 if (!type)
1930 return -EINVAL;
1931
97216be0 1932 namespace_lock();
719f5d7f
MS
1933 if (type == MS_SHARED) {
1934 err = invent_group_ids(mnt, recurse);
1935 if (err)
1936 goto out_unlock;
1937 }
1938
719ea2fb 1939 lock_mount_hash();
909b0a88 1940 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
0f0afb1d 1941 change_mnt_propagation(m, type);
719ea2fb 1942 unlock_mount_hash();
719f5d7f
MS
1943
1944 out_unlock:
97216be0 1945 namespace_unlock();
719f5d7f 1946 return err;
07b20889
RP
1947}
1948
5ff9d8a6
EB
1949static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
1950{
1951 struct mount *child;
1952 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
1953 if (!is_subdir(child->mnt_mountpoint, dentry))
1954 continue;
1955
1956 if (child->mnt.mnt_flags & MNT_LOCKED)
1957 return true;
1958 }
1959 return false;
1960}
1961
1da177e4
LT
1962/*
1963 * do loopback mount.
1964 */
808d4e3c 1965static int do_loopback(struct path *path, const char *old_name,
2dafe1c4 1966 int recurse)
1da177e4 1967{
2d92ab3c 1968 struct path old_path;
84d17192
AV
1969 struct mount *mnt = NULL, *old, *parent;
1970 struct mountpoint *mp;
57eccb83 1971 int err;
1da177e4
LT
1972 if (!old_name || !*old_name)
1973 return -EINVAL;
815d405c 1974 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1da177e4
LT
1975 if (err)
1976 return err;
1977
8823c079 1978 err = -EINVAL;
4ce5d2b1 1979 if (mnt_ns_loop(old_path.dentry))
8823c079
EB
1980 goto out;
1981
84d17192
AV
1982 mp = lock_mount(path);
1983 err = PTR_ERR(mp);
1984 if (IS_ERR(mp))
b12cea91
AV
1985 goto out;
1986
87129cc0 1987 old = real_mount(old_path.mnt);
84d17192 1988 parent = real_mount(path->mnt);
87129cc0 1989
1da177e4 1990 err = -EINVAL;
fc7be130 1991 if (IS_MNT_UNBINDABLE(old))
b12cea91 1992 goto out2;
9676f0c6 1993
84d17192 1994 if (!check_mnt(parent) || !check_mnt(old))
b12cea91 1995 goto out2;
1da177e4 1996
5ff9d8a6
EB
1997 if (!recurse && has_locked_children(old, old_path.dentry))
1998 goto out2;
1999
ccd48bc7 2000 if (recurse)
4ce5d2b1 2001 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
ccd48bc7 2002 else
87129cc0 2003 mnt = clone_mnt(old, old_path.dentry, 0);
ccd48bc7 2004
be34d1a3
DH
2005 if (IS_ERR(mnt)) {
2006 err = PTR_ERR(mnt);
e9c5d8a5 2007 goto out2;
be34d1a3 2008 }
ccd48bc7 2009
5ff9d8a6
EB
2010 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2011
84d17192 2012 err = graft_tree(mnt, parent, mp);
ccd48bc7 2013 if (err) {
719ea2fb 2014 lock_mount_hash();
328e6d90 2015 umount_tree(mnt, 0);
719ea2fb 2016 unlock_mount_hash();
5b83d2c5 2017 }
b12cea91 2018out2:
84d17192 2019 unlock_mount(mp);
ccd48bc7 2020out:
2d92ab3c 2021 path_put(&old_path);
1da177e4
LT
2022 return err;
2023}
2024
2e4b7fcd
DH
2025static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2026{
2027 int error = 0;
2028 int readonly_request = 0;
2029
2030 if (ms_flags & MS_RDONLY)
2031 readonly_request = 1;
2032 if (readonly_request == __mnt_is_readonly(mnt))
2033 return 0;
2034
2035 if (readonly_request)
83adc753 2036 error = mnt_make_readonly(real_mount(mnt));
2e4b7fcd 2037 else
83adc753 2038 __mnt_unmake_readonly(real_mount(mnt));
2e4b7fcd
DH
2039 return error;
2040}
2041
1da177e4
LT
2042/*
2043 * change filesystem flags. dir should be a physical root of filesystem.
2044 * If you've mounted a non-root directory somewhere and want to do remount
2045 * on it - tough luck.
2046 */
0a0d8a46 2047static int do_remount(struct path *path, int flags, int mnt_flags,
1da177e4
LT
2048 void *data)
2049{
2050 int err;
2d92ab3c 2051 struct super_block *sb = path->mnt->mnt_sb;
143c8c91 2052 struct mount *mnt = real_mount(path->mnt);
1da177e4 2053
143c8c91 2054 if (!check_mnt(mnt))
1da177e4
LT
2055 return -EINVAL;
2056
2d92ab3c 2057 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
2058 return -EINVAL;
2059
07b64558
EB
2060 /* Don't allow changing of locked mnt flags.
2061 *
2062 * No locks need to be held here while testing the various
2063 * MNT_LOCK flags because those flags can never be cleared
2064 * once they are set.
2065 */
2066 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2067 !(mnt_flags & MNT_READONLY)) {
2068 return -EPERM;
2069 }
9566d674
EB
2070 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2071 !(mnt_flags & MNT_NODEV)) {
2072 return -EPERM;
2073 }
2074 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2075 !(mnt_flags & MNT_NOSUID)) {
2076 return -EPERM;
2077 }
2078 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2079 !(mnt_flags & MNT_NOEXEC)) {
2080 return -EPERM;
2081 }
2082 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2083 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2084 return -EPERM;
2085 }
2086
ff36fe2c
EP
2087 err = security_sb_remount(sb, data);
2088 if (err)
2089 return err;
2090
1da177e4 2091 down_write(&sb->s_umount);
2e4b7fcd 2092 if (flags & MS_BIND)
2d92ab3c 2093 err = change_mount_flags(path->mnt, flags);
57eccb83
AV
2094 else if (!capable(CAP_SYS_ADMIN))
2095 err = -EPERM;
4aa98cf7 2096 else
2e4b7fcd 2097 err = do_remount_sb(sb, flags, data, 0);
7b43a79f 2098 if (!err) {
719ea2fb 2099 lock_mount_hash();
a6138db8 2100 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
143c8c91 2101 mnt->mnt.mnt_flags = mnt_flags;
143c8c91 2102 touch_mnt_namespace(mnt->mnt_ns);
719ea2fb 2103 unlock_mount_hash();
0e55a7cc 2104 }
6339dab8 2105 up_write(&sb->s_umount);
1da177e4
LT
2106 return err;
2107}
2108
cbbe362c 2109static inline int tree_contains_unbindable(struct mount *mnt)
9676f0c6 2110{
315fc83e 2111 struct mount *p;
909b0a88 2112 for (p = mnt; p; p = next_mnt(p, mnt)) {
fc7be130 2113 if (IS_MNT_UNBINDABLE(p))
9676f0c6
RP
2114 return 1;
2115 }
2116 return 0;
2117}
2118
808d4e3c 2119static int do_move_mount(struct path *path, const char *old_name)
1da177e4 2120{
2d92ab3c 2121 struct path old_path, parent_path;
676da58d 2122 struct mount *p;
0fb54e50 2123 struct mount *old;
84d17192 2124 struct mountpoint *mp;
57eccb83 2125 int err;
1da177e4
LT
2126 if (!old_name || !*old_name)
2127 return -EINVAL;
2d92ab3c 2128 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
2129 if (err)
2130 return err;
2131
84d17192
AV
2132 mp = lock_mount(path);
2133 err = PTR_ERR(mp);
2134 if (IS_ERR(mp))
cc53ce53
DH
2135 goto out;
2136
143c8c91 2137 old = real_mount(old_path.mnt);
fc7be130 2138 p = real_mount(path->mnt);
143c8c91 2139
1da177e4 2140 err = -EINVAL;
fc7be130 2141 if (!check_mnt(p) || !check_mnt(old))
1da177e4
LT
2142 goto out1;
2143
5ff9d8a6
EB
2144 if (old->mnt.mnt_flags & MNT_LOCKED)
2145 goto out1;
2146
1da177e4 2147 err = -EINVAL;
2d92ab3c 2148 if (old_path.dentry != old_path.mnt->mnt_root)
21444403 2149 goto out1;
1da177e4 2150
676da58d 2151 if (!mnt_has_parent(old))
21444403 2152 goto out1;
1da177e4 2153
2d92ab3c
AV
2154 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
2155 S_ISDIR(old_path.dentry->d_inode->i_mode))
21444403
RP
2156 goto out1;
2157 /*
2158 * Don't move a mount residing in a shared parent.
2159 */
fc7be130 2160 if (IS_MNT_SHARED(old->mnt_parent))
21444403 2161 goto out1;
9676f0c6
RP
2162 /*
2163 * Don't move a mount tree containing unbindable mounts to a destination
2164 * mount which is shared.
2165 */
fc7be130 2166 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
9676f0c6 2167 goto out1;
1da177e4 2168 err = -ELOOP;
fc7be130 2169 for (; mnt_has_parent(p); p = p->mnt_parent)
676da58d 2170 if (p == old)
21444403 2171 goto out1;
1da177e4 2172
84d17192 2173 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
4ac91378 2174 if (err)
21444403 2175 goto out1;
1da177e4
LT
2176
2177 /* if the mount is moved, it should no longer be expire
2178 * automatically */
6776db3d 2179 list_del_init(&old->mnt_expire);
1da177e4 2180out1:
84d17192 2181 unlock_mount(mp);
1da177e4 2182out:
1da177e4 2183 if (!err)
1a390689 2184 path_put(&parent_path);
2d92ab3c 2185 path_put(&old_path);
1da177e4
LT
2186 return err;
2187}
2188
9d412a43
AV
2189static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2190{
2191 int err;
2192 const char *subtype = strchr(fstype, '.');
2193 if (subtype) {
2194 subtype++;
2195 err = -EINVAL;
2196 if (!subtype[0])
2197 goto err;
2198 } else
2199 subtype = "";
2200
2201 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2202 err = -ENOMEM;
2203 if (!mnt->mnt_sb->s_subtype)
2204 goto err;
2205 return mnt;
2206
2207 err:
2208 mntput(mnt);
2209 return ERR_PTR(err);
2210}
2211
9d412a43
AV
2212/*
2213 * add a mount into a namespace's mount tree
2214 */
95bc5f25 2215static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
9d412a43 2216{
84d17192
AV
2217 struct mountpoint *mp;
2218 struct mount *parent;
9d412a43
AV
2219 int err;
2220
f2ebb3a9 2221 mnt_flags &= ~MNT_INTERNAL_FLAGS;
9d412a43 2222
84d17192
AV
2223 mp = lock_mount(path);
2224 if (IS_ERR(mp))
2225 return PTR_ERR(mp);
9d412a43 2226
84d17192 2227 parent = real_mount(path->mnt);
9d412a43 2228 err = -EINVAL;
84d17192 2229 if (unlikely(!check_mnt(parent))) {
156cacb1
AV
2230 /* that's acceptable only for automounts done in private ns */
2231 if (!(mnt_flags & MNT_SHRINKABLE))
2232 goto unlock;
2233 /* ... and for those we'd better have mountpoint still alive */
84d17192 2234 if (!parent->mnt_ns)
156cacb1
AV
2235 goto unlock;
2236 }
9d412a43
AV
2237
2238 /* Refuse the same filesystem on the same mount point */
2239 err = -EBUSY;
95bc5f25 2240 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
9d412a43
AV
2241 path->mnt->mnt_root == path->dentry)
2242 goto unlock;
2243
2244 err = -EINVAL;
95bc5f25 2245 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
9d412a43
AV
2246 goto unlock;
2247
95bc5f25 2248 newmnt->mnt.mnt_flags = mnt_flags;
84d17192 2249 err = graft_tree(newmnt, parent, mp);
9d412a43
AV
2250
2251unlock:
84d17192 2252 unlock_mount(mp);
9d412a43
AV
2253 return err;
2254}
b1e75df4 2255
1da177e4
LT
2256/*
2257 * create a new mount for userspace and request it to be added into the
2258 * namespace's tree
2259 */
0c55cfc4 2260static int do_new_mount(struct path *path, const char *fstype, int flags,
808d4e3c 2261 int mnt_flags, const char *name, void *data)
1da177e4 2262{
0c55cfc4 2263 struct file_system_type *type;
9b40bc90 2264 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
1da177e4 2265 struct vfsmount *mnt;
15f9a3f3 2266 int err;
1da177e4 2267
0c55cfc4 2268 if (!fstype)
1da177e4
LT
2269 return -EINVAL;
2270
0c55cfc4
EB
2271 type = get_fs_type(fstype);
2272 if (!type)
2273 return -ENODEV;
2274
2275 if (user_ns != &init_user_ns) {
2276 if (!(type->fs_flags & FS_USERNS_MOUNT)) {
2277 put_filesystem(type);
2278 return -EPERM;
2279 }
2280 /* Only in special cases allow devices from mounts
2281 * created outside the initial user namespace.
2282 */
2283 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2284 flags |= MS_NODEV;
9566d674 2285 mnt_flags |= MNT_NODEV | MNT_LOCK_NODEV;
0c55cfc4
EB
2286 }
2287 }
2288
2289 mnt = vfs_kern_mount(type, flags, name, data);
2290 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2291 !mnt->mnt_sb->s_subtype)
2292 mnt = fs_set_subtype(mnt, fstype);
2293
2294 put_filesystem(type);
1da177e4
LT
2295 if (IS_ERR(mnt))
2296 return PTR_ERR(mnt);
2297
95bc5f25 2298 err = do_add_mount(real_mount(mnt), path, mnt_flags);
15f9a3f3
AV
2299 if (err)
2300 mntput(mnt);
2301 return err;
1da177e4
LT
2302}
2303
19a167af
AV
2304int finish_automount(struct vfsmount *m, struct path *path)
2305{
6776db3d 2306 struct mount *mnt = real_mount(m);
19a167af
AV
2307 int err;
2308 /* The new mount record should have at least 2 refs to prevent it being
2309 * expired before we get a chance to add it
2310 */
6776db3d 2311 BUG_ON(mnt_get_count(mnt) < 2);
19a167af
AV
2312
2313 if (m->mnt_sb == path->mnt->mnt_sb &&
2314 m->mnt_root == path->dentry) {
b1e75df4
AV
2315 err = -ELOOP;
2316 goto fail;
19a167af
AV
2317 }
2318
95bc5f25 2319 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
b1e75df4
AV
2320 if (!err)
2321 return 0;
2322fail:
2323 /* remove m from any expiration list it may be on */
6776db3d 2324 if (!list_empty(&mnt->mnt_expire)) {
97216be0 2325 namespace_lock();
6776db3d 2326 list_del_init(&mnt->mnt_expire);
97216be0 2327 namespace_unlock();
19a167af 2328 }
b1e75df4
AV
2329 mntput(m);
2330 mntput(m);
19a167af
AV
2331 return err;
2332}
2333
ea5b778a
DH
2334/**
2335 * mnt_set_expiry - Put a mount on an expiration list
2336 * @mnt: The mount to list.
2337 * @expiry_list: The list to add the mount to.
2338 */
2339void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2340{
97216be0 2341 namespace_lock();
ea5b778a 2342
6776db3d 2343 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
ea5b778a 2344
97216be0 2345 namespace_unlock();
ea5b778a
DH
2346}
2347EXPORT_SYMBOL(mnt_set_expiry);
2348
1da177e4
LT
2349/*
2350 * process a list of expirable mountpoints with the intent of discarding any
2351 * mountpoints that aren't in use and haven't been touched since last we came
2352 * here
2353 */
2354void mark_mounts_for_expiry(struct list_head *mounts)
2355{
761d5c38 2356 struct mount *mnt, *next;
1da177e4
LT
2357 LIST_HEAD(graveyard);
2358
2359 if (list_empty(mounts))
2360 return;
2361
97216be0 2362 namespace_lock();
719ea2fb 2363 lock_mount_hash();
1da177e4
LT
2364
2365 /* extract from the expiration list every vfsmount that matches the
2366 * following criteria:
2367 * - only referenced by its parent vfsmount
2368 * - still marked for expiry (marked on the last call here; marks are
2369 * cleared by mntput())
2370 */
6776db3d 2371 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
863d684f 2372 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1ab59738 2373 propagate_mount_busy(mnt, 1))
1da177e4 2374 continue;
6776db3d 2375 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 2376 }
bcc5c7d2 2377 while (!list_empty(&graveyard)) {
6776db3d 2378 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
143c8c91 2379 touch_mnt_namespace(mnt->mnt_ns);
328e6d90 2380 umount_tree(mnt, 1);
bcc5c7d2 2381 }
719ea2fb 2382 unlock_mount_hash();
3ab6abee 2383 namespace_unlock();
5528f911
TM
2384}
2385
2386EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2387
2388/*
2389 * Ripoff of 'select_parent()'
2390 *
2391 * search the list of submounts for a given mountpoint, and move any
2392 * shrinkable submounts to the 'graveyard' list.
2393 */
692afc31 2394static int select_submounts(struct mount *parent, struct list_head *graveyard)
5528f911 2395{
692afc31 2396 struct mount *this_parent = parent;
5528f911
TM
2397 struct list_head *next;
2398 int found = 0;
2399
2400repeat:
6b41d536 2401 next = this_parent->mnt_mounts.next;
5528f911 2402resume:
6b41d536 2403 while (next != &this_parent->mnt_mounts) {
5528f911 2404 struct list_head *tmp = next;
6b41d536 2405 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
5528f911
TM
2406
2407 next = tmp->next;
692afc31 2408 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1da177e4 2409 continue;
5528f911
TM
2410 /*
2411 * Descend a level if the d_mounts list is non-empty.
2412 */
6b41d536 2413 if (!list_empty(&mnt->mnt_mounts)) {
5528f911
TM
2414 this_parent = mnt;
2415 goto repeat;
2416 }
1da177e4 2417
1ab59738 2418 if (!propagate_mount_busy(mnt, 1)) {
6776db3d 2419 list_move_tail(&mnt->mnt_expire, graveyard);
5528f911
TM
2420 found++;
2421 }
1da177e4 2422 }
5528f911
TM
2423 /*
2424 * All done at this level ... ascend and resume the search
2425 */
2426 if (this_parent != parent) {
6b41d536 2427 next = this_parent->mnt_child.next;
0714a533 2428 this_parent = this_parent->mnt_parent;
5528f911
TM
2429 goto resume;
2430 }
2431 return found;
2432}
2433
2434/*
2435 * process a list of expirable mountpoints with the intent of discarding any
2436 * submounts of a specific parent mountpoint
99b7db7b 2437 *
48a066e7 2438 * mount_lock must be held for write
5528f911 2439 */
b54b9be7 2440static void shrink_submounts(struct mount *mnt)
5528f911
TM
2441{
2442 LIST_HEAD(graveyard);
761d5c38 2443 struct mount *m;
5528f911 2444
5528f911 2445 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 2446 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 2447 while (!list_empty(&graveyard)) {
761d5c38 2448 m = list_first_entry(&graveyard, struct mount,
6776db3d 2449 mnt_expire);
143c8c91 2450 touch_mnt_namespace(m->mnt_ns);
328e6d90 2451 umount_tree(m, 1);
bcc5c7d2
AV
2452 }
2453 }
1da177e4
LT
2454}
2455
1da177e4
LT
2456/*
2457 * Some copy_from_user() implementations do not return the exact number of
2458 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2459 * Note that this function differs from copy_from_user() in that it will oops
2460 * on bad values of `to', rather than returning a short copy.
2461 */
b58fed8b
RP
2462static long exact_copy_from_user(void *to, const void __user * from,
2463 unsigned long n)
1da177e4
LT
2464{
2465 char *t = to;
2466 const char __user *f = from;
2467 char c;
2468
2469 if (!access_ok(VERIFY_READ, from, n))
2470 return n;
2471
2472 while (n) {
2473 if (__get_user(c, f)) {
2474 memset(t, 0, n);
2475 break;
2476 }
2477 *t++ = c;
2478 f++;
2479 n--;
2480 }
2481 return n;
2482}
2483
b58fed8b 2484int copy_mount_options(const void __user * data, unsigned long *where)
1da177e4
LT
2485{
2486 int i;
2487 unsigned long page;
2488 unsigned long size;
b58fed8b 2489
1da177e4
LT
2490 *where = 0;
2491 if (!data)
2492 return 0;
2493
2494 if (!(page = __get_free_page(GFP_KERNEL)))
2495 return -ENOMEM;
2496
2497 /* We only care that *some* data at the address the user
2498 * gave us is valid. Just in case, we'll zero
2499 * the remainder of the page.
2500 */
2501 /* copy_from_user cannot cross TASK_SIZE ! */
2502 size = TASK_SIZE - (unsigned long)data;
2503 if (size > PAGE_SIZE)
2504 size = PAGE_SIZE;
2505
2506 i = size - exact_copy_from_user((void *)page, data, size);
2507 if (!i) {
b58fed8b 2508 free_page(page);
1da177e4
LT
2509 return -EFAULT;
2510 }
2511 if (i != PAGE_SIZE)
2512 memset((char *)page + i, 0, PAGE_SIZE - i);
2513 *where = page;
2514 return 0;
2515}
2516
eca6f534
VN
2517int copy_mount_string(const void __user *data, char **where)
2518{
2519 char *tmp;
2520
2521 if (!data) {
2522 *where = NULL;
2523 return 0;
2524 }
2525
2526 tmp = strndup_user(data, PAGE_SIZE);
2527 if (IS_ERR(tmp))
2528 return PTR_ERR(tmp);
2529
2530 *where = tmp;
2531 return 0;
2532}
2533
1da177e4
LT
2534/*
2535 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2536 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2537 *
2538 * data is a (void *) that can point to any structure up to
2539 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2540 * information (or be NULL).
2541 *
2542 * Pre-0.97 versions of mount() didn't have a flags word.
2543 * When the flags word was introduced its top half was required
2544 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2545 * Therefore, if this magic number is present, it carries no information
2546 * and must be discarded.
2547 */
808d4e3c
AV
2548long do_mount(const char *dev_name, const char *dir_name,
2549 const char *type_page, unsigned long flags, void *data_page)
1da177e4 2550{
2d92ab3c 2551 struct path path;
1da177e4
LT
2552 int retval = 0;
2553 int mnt_flags = 0;
2554
2555 /* Discard magic */
2556 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2557 flags &= ~MS_MGC_MSK;
2558
2559 /* Basic sanity checks */
2560
2561 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2562 return -EINVAL;
1da177e4
LT
2563
2564 if (data_page)
2565 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2566
a27ab9f2
TH
2567 /* ... and get the mountpoint */
2568 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2569 if (retval)
2570 return retval;
2571
2572 retval = security_sb_mount(dev_name, &path,
2573 type_page, flags, data_page);
0d5cadb8
AV
2574 if (!retval && !may_mount())
2575 retval = -EPERM;
a27ab9f2
TH
2576 if (retval)
2577 goto dput_out;
2578
613cbe3d
AK
2579 /* Default to relatime unless overriden */
2580 if (!(flags & MS_NOATIME))
2581 mnt_flags |= MNT_RELATIME;
0a1c01c9 2582
1da177e4
LT
2583 /* Separate the per-mountpoint flags */
2584 if (flags & MS_NOSUID)
2585 mnt_flags |= MNT_NOSUID;
2586 if (flags & MS_NODEV)
2587 mnt_flags |= MNT_NODEV;
2588 if (flags & MS_NOEXEC)
2589 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
2590 if (flags & MS_NOATIME)
2591 mnt_flags |= MNT_NOATIME;
2592 if (flags & MS_NODIRATIME)
2593 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
2594 if (flags & MS_STRICTATIME)
2595 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2e4b7fcd
DH
2596 if (flags & MS_RDONLY)
2597 mnt_flags |= MNT_READONLY;
fc33a7bb 2598
ffbc6f0e
EB
2599 /* The default atime for remount is preservation */
2600 if ((flags & MS_REMOUNT) &&
2601 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2602 MS_STRICTATIME)) == 0)) {
2603 mnt_flags &= ~MNT_ATIME_MASK;
2604 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2605 }
2606
7a4dec53 2607 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
d0adde57
MG
2608 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2609 MS_STRICTATIME);
1da177e4 2610
1da177e4 2611 if (flags & MS_REMOUNT)
2d92ab3c 2612 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
1da177e4
LT
2613 data_page);
2614 else if (flags & MS_BIND)
2d92ab3c 2615 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 2616 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 2617 retval = do_change_type(&path, flags);
1da177e4 2618 else if (flags & MS_MOVE)
2d92ab3c 2619 retval = do_move_mount(&path, dev_name);
1da177e4 2620 else
2d92ab3c 2621 retval = do_new_mount(&path, type_page, flags, mnt_flags,
1da177e4
LT
2622 dev_name, data_page);
2623dput_out:
2d92ab3c 2624 path_put(&path);
1da177e4
LT
2625 return retval;
2626}
2627
771b1371
EB
2628static void free_mnt_ns(struct mnt_namespace *ns)
2629{
98f842e6 2630 proc_free_inum(ns->proc_inum);
771b1371
EB
2631 put_user_ns(ns->user_ns);
2632 kfree(ns);
2633}
2634
8823c079
EB
2635/*
2636 * Assign a sequence number so we can detect when we attempt to bind
2637 * mount a reference to an older mount namespace into the current
2638 * mount namespace, preventing reference counting loops. A 64bit
2639 * number incrementing at 10Ghz will take 12,427 years to wrap which
2640 * is effectively never, so we can ignore the possibility.
2641 */
2642static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2643
771b1371 2644static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
cf8d2c11
TM
2645{
2646 struct mnt_namespace *new_ns;
98f842e6 2647 int ret;
cf8d2c11
TM
2648
2649 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2650 if (!new_ns)
2651 return ERR_PTR(-ENOMEM);
98f842e6
EB
2652 ret = proc_alloc_inum(&new_ns->proc_inum);
2653 if (ret) {
2654 kfree(new_ns);
2655 return ERR_PTR(ret);
2656 }
8823c079 2657 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
cf8d2c11
TM
2658 atomic_set(&new_ns->count, 1);
2659 new_ns->root = NULL;
2660 INIT_LIST_HEAD(&new_ns->list);
2661 init_waitqueue_head(&new_ns->poll);
2662 new_ns->event = 0;
771b1371 2663 new_ns->user_ns = get_user_ns(user_ns);
cf8d2c11
TM
2664 return new_ns;
2665}
2666
9559f689
AV
2667struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2668 struct user_namespace *user_ns, struct fs_struct *new_fs)
1da177e4 2669{
6b3286ed 2670 struct mnt_namespace *new_ns;
7f2da1e7 2671 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
315fc83e 2672 struct mount *p, *q;
9559f689 2673 struct mount *old;
cb338d06 2674 struct mount *new;
7a472ef4 2675 int copy_flags;
1da177e4 2676
9559f689
AV
2677 BUG_ON(!ns);
2678
2679 if (likely(!(flags & CLONE_NEWNS))) {
2680 get_mnt_ns(ns);
2681 return ns;
2682 }
2683
2684 old = ns->root;
2685
771b1371 2686 new_ns = alloc_mnt_ns(user_ns);
cf8d2c11
TM
2687 if (IS_ERR(new_ns))
2688 return new_ns;
1da177e4 2689
97216be0 2690 namespace_lock();
1da177e4 2691 /* First pass: copy the tree topology */
4ce5d2b1 2692 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
9559f689 2693 if (user_ns != ns->user_ns)
132c94e3 2694 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
7a472ef4 2695 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
be34d1a3 2696 if (IS_ERR(new)) {
328e6d90 2697 namespace_unlock();
771b1371 2698 free_mnt_ns(new_ns);
be34d1a3 2699 return ERR_CAST(new);
1da177e4 2700 }
be08d6d2 2701 new_ns->root = new;
1a4eeaf2 2702 list_add_tail(&new_ns->list, &new->mnt_list);
1da177e4
LT
2703
2704 /*
2705 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2706 * as belonging to new namespace. We have already acquired a private
2707 * fs_struct, so tsk->fs->lock is not needed.
2708 */
909b0a88 2709 p = old;
cb338d06 2710 q = new;
1da177e4 2711 while (p) {
143c8c91 2712 q->mnt_ns = new_ns;
9559f689
AV
2713 if (new_fs) {
2714 if (&p->mnt == new_fs->root.mnt) {
2715 new_fs->root.mnt = mntget(&q->mnt);
315fc83e 2716 rootmnt = &p->mnt;
1da177e4 2717 }
9559f689
AV
2718 if (&p->mnt == new_fs->pwd.mnt) {
2719 new_fs->pwd.mnt = mntget(&q->mnt);
315fc83e 2720 pwdmnt = &p->mnt;
1da177e4 2721 }
1da177e4 2722 }
909b0a88
AV
2723 p = next_mnt(p, old);
2724 q = next_mnt(q, new);
4ce5d2b1
EB
2725 if (!q)
2726 break;
2727 while (p->mnt.mnt_root != q->mnt.mnt_root)
2728 p = next_mnt(p, old);
1da177e4 2729 }
328e6d90 2730 namespace_unlock();
1da177e4 2731
1da177e4 2732 if (rootmnt)
f03c6599 2733 mntput(rootmnt);
1da177e4 2734 if (pwdmnt)
f03c6599 2735 mntput(pwdmnt);
1da177e4 2736
741a2951 2737 return new_ns;
1da177e4
LT
2738}
2739
cf8d2c11
TM
2740/**
2741 * create_mnt_ns - creates a private namespace and adds a root filesystem
2742 * @mnt: pointer to the new root filesystem mountpoint
2743 */
1a4eeaf2 2744static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
cf8d2c11 2745{
771b1371 2746 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
cf8d2c11 2747 if (!IS_ERR(new_ns)) {
1a4eeaf2
AV
2748 struct mount *mnt = real_mount(m);
2749 mnt->mnt_ns = new_ns;
be08d6d2 2750 new_ns->root = mnt;
b1983cd8 2751 list_add(&mnt->mnt_list, &new_ns->list);
c1334495 2752 } else {
1a4eeaf2 2753 mntput(m);
cf8d2c11
TM
2754 }
2755 return new_ns;
2756}
cf8d2c11 2757
ea441d11
AV
2758struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2759{
2760 struct mnt_namespace *ns;
d31da0f0 2761 struct super_block *s;
ea441d11
AV
2762 struct path path;
2763 int err;
2764
2765 ns = create_mnt_ns(mnt);
2766 if (IS_ERR(ns))
2767 return ERR_CAST(ns);
2768
2769 err = vfs_path_lookup(mnt->mnt_root, mnt,
2770 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2771
2772 put_mnt_ns(ns);
2773
2774 if (err)
2775 return ERR_PTR(err);
2776
2777 /* trade a vfsmount reference for active sb one */
d31da0f0
AV
2778 s = path.mnt->mnt_sb;
2779 atomic_inc(&s->s_active);
ea441d11
AV
2780 mntput(path.mnt);
2781 /* lock the sucker */
d31da0f0 2782 down_write(&s->s_umount);
ea441d11
AV
2783 /* ... and return the root of (sub)tree on it */
2784 return path.dentry;
2785}
2786EXPORT_SYMBOL(mount_subtree);
2787
bdc480e3
HC
2788SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2789 char __user *, type, unsigned long, flags, void __user *, data)
1da177e4 2790{
eca6f534
VN
2791 int ret;
2792 char *kernel_type;
91a27b2a 2793 struct filename *kernel_dir;
eca6f534 2794 char *kernel_dev;
1da177e4 2795 unsigned long data_page;
1da177e4 2796
eca6f534
VN
2797 ret = copy_mount_string(type, &kernel_type);
2798 if (ret < 0)
2799 goto out_type;
1da177e4 2800
eca6f534
VN
2801 kernel_dir = getname(dir_name);
2802 if (IS_ERR(kernel_dir)) {
2803 ret = PTR_ERR(kernel_dir);
2804 goto out_dir;
2805 }
1da177e4 2806
eca6f534
VN
2807 ret = copy_mount_string(dev_name, &kernel_dev);
2808 if (ret < 0)
2809 goto out_dev;
1da177e4 2810
eca6f534
VN
2811 ret = copy_mount_options(data, &data_page);
2812 if (ret < 0)
2813 goto out_data;
1da177e4 2814
91a27b2a 2815 ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags,
eca6f534 2816 (void *) data_page);
1da177e4 2817
eca6f534
VN
2818 free_page(data_page);
2819out_data:
2820 kfree(kernel_dev);
2821out_dev:
2822 putname(kernel_dir);
2823out_dir:
2824 kfree(kernel_type);
2825out_type:
2826 return ret;
1da177e4
LT
2827}
2828
afac7cba
AV
2829/*
2830 * Return true if path is reachable from root
2831 *
48a066e7 2832 * namespace_sem or mount_lock is held
afac7cba 2833 */
643822b4 2834bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
afac7cba
AV
2835 const struct path *root)
2836{
643822b4 2837 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
a73324da 2838 dentry = mnt->mnt_mountpoint;
0714a533 2839 mnt = mnt->mnt_parent;
afac7cba 2840 }
643822b4 2841 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
afac7cba
AV
2842}
2843
2844int path_is_under(struct path *path1, struct path *path2)
2845{
2846 int res;
48a066e7 2847 read_seqlock_excl(&mount_lock);
643822b4 2848 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
48a066e7 2849 read_sequnlock_excl(&mount_lock);
afac7cba
AV
2850 return res;
2851}
2852EXPORT_SYMBOL(path_is_under);
2853
1da177e4
LT
2854/*
2855 * pivot_root Semantics:
2856 * Moves the root file system of the current process to the directory put_old,
2857 * makes new_root as the new root file system of the current process, and sets
2858 * root/cwd of all processes which had them on the current root to new_root.
2859 *
2860 * Restrictions:
2861 * The new_root and put_old must be directories, and must not be on the
2862 * same file system as the current process root. The put_old must be
2863 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2864 * pointed to by put_old must yield the same directory as new_root. No other
2865 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2866 *
4a0d11fa
NB
2867 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2868 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2869 * in this situation.
2870 *
1da177e4
LT
2871 * Notes:
2872 * - we don't move root/cwd if they are not at the root (reason: if something
2873 * cared enough to change them, it's probably wrong to force them elsewhere)
2874 * - it's okay to pick a root that isn't the root of a file system, e.g.
2875 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2876 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2877 * first.
2878 */
3480b257
HC
2879SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2880 const char __user *, put_old)
1da177e4 2881{
2d8f3038 2882 struct path new, old, parent_path, root_parent, root;
84d17192
AV
2883 struct mount *new_mnt, *root_mnt, *old_mnt;
2884 struct mountpoint *old_mp, *root_mp;
1da177e4
LT
2885 int error;
2886
9b40bc90 2887 if (!may_mount())
1da177e4
LT
2888 return -EPERM;
2889
2d8f3038 2890 error = user_path_dir(new_root, &new);
1da177e4
LT
2891 if (error)
2892 goto out0;
1da177e4 2893
2d8f3038 2894 error = user_path_dir(put_old, &old);
1da177e4
LT
2895 if (error)
2896 goto out1;
2897
2d8f3038 2898 error = security_sb_pivotroot(&old, &new);
b12cea91
AV
2899 if (error)
2900 goto out2;
1da177e4 2901
f7ad3c6b 2902 get_fs_root(current->fs, &root);
84d17192
AV
2903 old_mp = lock_mount(&old);
2904 error = PTR_ERR(old_mp);
2905 if (IS_ERR(old_mp))
b12cea91
AV
2906 goto out3;
2907
1da177e4 2908 error = -EINVAL;
419148da
AV
2909 new_mnt = real_mount(new.mnt);
2910 root_mnt = real_mount(root.mnt);
84d17192
AV
2911 old_mnt = real_mount(old.mnt);
2912 if (IS_MNT_SHARED(old_mnt) ||
fc7be130
AV
2913 IS_MNT_SHARED(new_mnt->mnt_parent) ||
2914 IS_MNT_SHARED(root_mnt->mnt_parent))
b12cea91 2915 goto out4;
143c8c91 2916 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
b12cea91 2917 goto out4;
5ff9d8a6
EB
2918 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
2919 goto out4;
1da177e4 2920 error = -ENOENT;
f3da392e 2921 if (d_unlinked(new.dentry))
b12cea91 2922 goto out4;
1da177e4 2923 error = -EBUSY;
84d17192 2924 if (new_mnt == root_mnt || old_mnt == root_mnt)
b12cea91 2925 goto out4; /* loop, on the same file system */
1da177e4 2926 error = -EINVAL;
8c3ee42e 2927 if (root.mnt->mnt_root != root.dentry)
b12cea91 2928 goto out4; /* not a mountpoint */
676da58d 2929 if (!mnt_has_parent(root_mnt))
b12cea91 2930 goto out4; /* not attached */
84d17192 2931 root_mp = root_mnt->mnt_mp;
2d8f3038 2932 if (new.mnt->mnt_root != new.dentry)
b12cea91 2933 goto out4; /* not a mountpoint */
676da58d 2934 if (!mnt_has_parent(new_mnt))
b12cea91 2935 goto out4; /* not attached */
4ac91378 2936 /* make sure we can reach put_old from new_root */
84d17192 2937 if (!is_path_reachable(old_mnt, old.dentry, &new))
b12cea91 2938 goto out4;
84d17192 2939 root_mp->m_count++; /* pin it so it won't go away */
719ea2fb 2940 lock_mount_hash();
419148da
AV
2941 detach_mnt(new_mnt, &parent_path);
2942 detach_mnt(root_mnt, &root_parent);
5ff9d8a6
EB
2943 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
2944 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
2945 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2946 }
4ac91378 2947 /* mount old root on put_old */
84d17192 2948 attach_mnt(root_mnt, old_mnt, old_mp);
4ac91378 2949 /* mount new_root on / */
84d17192 2950 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
6b3286ed 2951 touch_mnt_namespace(current->nsproxy->mnt_ns);
719ea2fb 2952 unlock_mount_hash();
2d8f3038 2953 chroot_fs_refs(&root, &new);
84d17192 2954 put_mountpoint(root_mp);
1da177e4 2955 error = 0;
b12cea91 2956out4:
84d17192 2957 unlock_mount(old_mp);
b12cea91
AV
2958 if (!error) {
2959 path_put(&root_parent);
2960 path_put(&parent_path);
2961 }
2962out3:
8c3ee42e 2963 path_put(&root);
b12cea91 2964out2:
2d8f3038 2965 path_put(&old);
1da177e4 2966out1:
2d8f3038 2967 path_put(&new);
1da177e4 2968out0:
1da177e4 2969 return error;
1da177e4
LT
2970}
2971
2972static void __init init_mount_tree(void)
2973{
2974 struct vfsmount *mnt;
6b3286ed 2975 struct mnt_namespace *ns;
ac748a09 2976 struct path root;
0c55cfc4 2977 struct file_system_type *type;
1da177e4 2978
0c55cfc4
EB
2979 type = get_fs_type("rootfs");
2980 if (!type)
2981 panic("Can't find rootfs type");
2982 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
2983 put_filesystem(type);
1da177e4
LT
2984 if (IS_ERR(mnt))
2985 panic("Can't create rootfs");
b3e19d92 2986
3b22edc5
TM
2987 ns = create_mnt_ns(mnt);
2988 if (IS_ERR(ns))
1da177e4 2989 panic("Can't allocate initial namespace");
6b3286ed
KK
2990
2991 init_task.nsproxy->mnt_ns = ns;
2992 get_mnt_ns(ns);
2993
be08d6d2
AV
2994 root.mnt = mnt;
2995 root.dentry = mnt->mnt_root;
ac748a09
JB
2996
2997 set_fs_pwd(current->fs, &root);
2998 set_fs_root(current->fs, &root);
1da177e4
LT
2999}
3000
74bf17cf 3001void __init mnt_init(void)
1da177e4 3002{
13f14b4d 3003 unsigned u;
15a67dd8 3004 int err;
1da177e4 3005
7d6fec45 3006 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
20c2df83 3007 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 3008
0818bf27 3009 mount_hashtable = alloc_large_system_hash("Mount-cache",
38129a13 3010 sizeof(struct hlist_head),
0818bf27
AV
3011 mhash_entries, 19,
3012 0,
3013 &m_hash_shift, &m_hash_mask, 0, 0);
3014 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3015 sizeof(struct hlist_head),
3016 mphash_entries, 19,
3017 0,
3018 &mp_hash_shift, &mp_hash_mask, 0, 0);
1da177e4 3019
84d17192 3020 if (!mount_hashtable || !mountpoint_hashtable)
1da177e4
LT
3021 panic("Failed to allocate mount hash table\n");
3022
0818bf27 3023 for (u = 0; u <= m_hash_mask; u++)
38129a13 3024 INIT_HLIST_HEAD(&mount_hashtable[u]);
0818bf27
AV
3025 for (u = 0; u <= mp_hash_mask; u++)
3026 INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
1da177e4 3027
4b93dc9b
TH
3028 kernfs_init();
3029
15a67dd8
RD
3030 err = sysfs_init();
3031 if (err)
3032 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 3033 __func__, err);
00d26666
GKH
3034 fs_kobj = kobject_create_and_add("fs", NULL);
3035 if (!fs_kobj)
8e24eea7 3036 printk(KERN_WARNING "%s: kobj create error\n", __func__);
1da177e4
LT
3037 init_rootfs();
3038 init_mount_tree();
3039}
3040
616511d0 3041void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 3042{
d498b25a 3043 if (!atomic_dec_and_test(&ns->count))
616511d0 3044 return;
7b00ed6f 3045 drop_collected_mounts(&ns->root->mnt);
771b1371 3046 free_mnt_ns(ns);
1da177e4 3047}
9d412a43
AV
3048
3049struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3050{
423e0ab0
TC
3051 struct vfsmount *mnt;
3052 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
3053 if (!IS_ERR(mnt)) {
3054 /*
3055 * it is a longterm mount, don't release mnt until
3056 * we unmount before file sys is unregistered
3057 */
f7a99c5b 3058 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
423e0ab0
TC
3059 }
3060 return mnt;
9d412a43
AV
3061}
3062EXPORT_SYMBOL_GPL(kern_mount_data);
423e0ab0
TC
3063
3064void kern_unmount(struct vfsmount *mnt)
3065{
3066 /* release long term mount so mount point can be released */
3067 if (!IS_ERR_OR_NULL(mnt)) {
f7a99c5b 3068 real_mount(mnt)->mnt_ns = NULL;
48a066e7 3069 synchronize_rcu(); /* yecchhh... */
423e0ab0
TC
3070 mntput(mnt);
3071 }
3072}
3073EXPORT_SYMBOL(kern_unmount);
02125a82
AV
3074
3075bool our_mnt(struct vfsmount *mnt)
3076{
143c8c91 3077 return check_mnt(real_mount(mnt));
02125a82 3078}
8823c079 3079
3151527e
EB
3080bool current_chrooted(void)
3081{
3082 /* Does the current process have a non-standard root */
3083 struct path ns_root;
3084 struct path fs_root;
3085 bool chrooted;
3086
3087 /* Find the namespace root */
3088 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3089 ns_root.dentry = ns_root.mnt->mnt_root;
3090 path_get(&ns_root);
3091 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3092 ;
3093
3094 get_fs_root(current->fs, &fs_root);
3095
3096 chrooted = !path_equal(&fs_root, &ns_root);
3097
3098 path_put(&fs_root);
3099 path_put(&ns_root);
3100
3101 return chrooted;
3102}
3103
e51db735 3104bool fs_fully_visible(struct file_system_type *type)
87a8ebd6
EB
3105{
3106 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3107 struct mount *mnt;
e51db735 3108 bool visible = false;
87a8ebd6 3109
e51db735
EB
3110 if (unlikely(!ns))
3111 return false;
3112
44bb4385 3113 down_read(&namespace_sem);
87a8ebd6 3114 list_for_each_entry(mnt, &ns->list, mnt_list) {
e51db735
EB
3115 struct mount *child;
3116 if (mnt->mnt.mnt_sb->s_type != type)
3117 continue;
3118
3119 /* This mount is not fully visible if there are any child mounts
3120 * that cover anything except for empty directories.
3121 */
3122 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3123 struct inode *inode = child->mnt_mountpoint->d_inode;
3124 if (!S_ISDIR(inode->i_mode))
3125 goto next;
41301ae7 3126 if (inode->i_nlink > 2)
e51db735 3127 goto next;
87a8ebd6 3128 }
e51db735
EB
3129 visible = true;
3130 goto found;
3131 next: ;
87a8ebd6 3132 }
e51db735 3133found:
44bb4385 3134 up_read(&namespace_sem);
e51db735 3135 return visible;
87a8ebd6
EB
3136}
3137
8823c079
EB
3138static void *mntns_get(struct task_struct *task)
3139{
3140 struct mnt_namespace *ns = NULL;
3141 struct nsproxy *nsproxy;
3142
728dba3a
EB
3143 task_lock(task);
3144 nsproxy = task->nsproxy;
8823c079
EB
3145 if (nsproxy) {
3146 ns = nsproxy->mnt_ns;
3147 get_mnt_ns(ns);
3148 }
728dba3a 3149 task_unlock(task);
8823c079
EB
3150
3151 return ns;
3152}
3153
3154static void mntns_put(void *ns)
3155{
3156 put_mnt_ns(ns);
3157}
3158
3159static int mntns_install(struct nsproxy *nsproxy, void *ns)
3160{
3161 struct fs_struct *fs = current->fs;
3162 struct mnt_namespace *mnt_ns = ns;
3163 struct path root;
3164
0c55cfc4 3165 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
c7b96acf
EB
3166 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3167 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
ae11e0f1 3168 return -EPERM;
8823c079
EB
3169
3170 if (fs->users != 1)
3171 return -EINVAL;
3172
3173 get_mnt_ns(mnt_ns);
3174 put_mnt_ns(nsproxy->mnt_ns);
3175 nsproxy->mnt_ns = mnt_ns;
3176
3177 /* Find the root */
3178 root.mnt = &mnt_ns->root->mnt;
3179 root.dentry = mnt_ns->root->mnt.mnt_root;
3180 path_get(&root);
3181 while(d_mountpoint(root.dentry) && follow_down_one(&root))
3182 ;
3183
3184 /* Update the pwd and root */
3185 set_fs_pwd(fs, &root);
3186 set_fs_root(fs, &root);
3187
3188 path_put(&root);
3189 return 0;
3190}
3191
98f842e6
EB
3192static unsigned int mntns_inum(void *ns)
3193{
3194 struct mnt_namespace *mnt_ns = ns;
3195 return mnt_ns->proc_inum;
3196}
3197
8823c079
EB
3198const struct proc_ns_operations mntns_operations = {
3199 .name = "mnt",
3200 .type = CLONE_NEWNS,
3201 .get = mntns_get,
3202 .put = mntns_put,
3203 .install = mntns_install,
98f842e6 3204 .inum = mntns_inum,
8823c079 3205};