]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - fs/namespace.c
vfs: all counters taken to struct mount
[mirror_ubuntu-zesty-kernel.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4
LT
11#include <linux/syscalls.h>
12#include <linux/slab.h>
13#include <linux/sched.h>
99b7db7b
NP
14#include <linux/spinlock.h>
15#include <linux/percpu.h>
1da177e4 16#include <linux/init.h>
15a67dd8 17#include <linux/kernel.h>
1da177e4 18#include <linux/acct.h>
16f7e0fe 19#include <linux/capability.h>
3d733633 20#include <linux/cpumask.h>
1da177e4 21#include <linux/module.h>
f20a9ead 22#include <linux/sysfs.h>
1da177e4 23#include <linux/seq_file.h>
6b3286ed 24#include <linux/mnt_namespace.h>
1da177e4 25#include <linux/namei.h>
b43f3cbd 26#include <linux/nsproxy.h>
1da177e4
LT
27#include <linux/security.h>
28#include <linux/mount.h>
07f3f05c 29#include <linux/ramfs.h>
13f14b4d 30#include <linux/log2.h>
73cd49ec 31#include <linux/idr.h>
5ad4e53b 32#include <linux/fs_struct.h>
2504c5d6 33#include <linux/fsnotify.h>
1da177e4
LT
34#include <asm/uaccess.h>
35#include <asm/unistd.h>
07b20889 36#include "pnode.h"
948730b0 37#include "internal.h"
1da177e4 38
13f14b4d
ED
39#define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
40#define HASH_SIZE (1UL << HASH_SHIFT)
41
5addc5dd 42static int event;
73cd49ec 43static DEFINE_IDA(mnt_id_ida);
719f5d7f 44static DEFINE_IDA(mnt_group_ida);
99b7db7b 45static DEFINE_SPINLOCK(mnt_id_lock);
f21f6220
AV
46static int mnt_id_start = 0;
47static int mnt_group_start = 1;
1da177e4 48
fa3536cc 49static struct list_head *mount_hashtable __read_mostly;
e18b890b 50static struct kmem_cache *mnt_cache __read_mostly;
390c6843 51static struct rw_semaphore namespace_sem;
1da177e4 52
f87fd4c2 53/* /sys/fs */
00d26666
GKH
54struct kobject *fs_kobj;
55EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 56
99b7db7b
NP
57/*
58 * vfsmount lock may be taken for read to prevent changes to the
59 * vfsmount hash, ie. during mountpoint lookups or walking back
60 * up the tree.
61 *
62 * It should be taken for write in all cases where the vfsmount
63 * tree or hash is modified or when a vfsmount structure is modified.
64 */
65DEFINE_BRLOCK(vfsmount_lock);
66
1da177e4
LT
67static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
68{
b58fed8b
RP
69 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
70 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
13f14b4d
ED
71 tmp = tmp + (tmp >> HASH_SHIFT);
72 return tmp & (HASH_SIZE - 1);
1da177e4
LT
73}
74
3d733633
DH
75#define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
76
99b7db7b
NP
77/*
78 * allocation is serialized by namespace_sem, but we need the spinlock to
79 * serialize with freeing.
80 */
b105e270 81static int mnt_alloc_id(struct mount *mnt)
73cd49ec
MS
82{
83 int res;
84
85retry:
86 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
99b7db7b 87 spin_lock(&mnt_id_lock);
b105e270 88 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt.mnt_id);
f21f6220 89 if (!res)
b105e270 90 mnt_id_start = mnt->mnt.mnt_id + 1;
99b7db7b 91 spin_unlock(&mnt_id_lock);
73cd49ec
MS
92 if (res == -EAGAIN)
93 goto retry;
94
95 return res;
96}
97
b105e270 98static void mnt_free_id(struct mount *mnt)
73cd49ec 99{
b105e270 100 int id = mnt->mnt.mnt_id;
99b7db7b 101 spin_lock(&mnt_id_lock);
f21f6220
AV
102 ida_remove(&mnt_id_ida, id);
103 if (mnt_id_start > id)
104 mnt_id_start = id;
99b7db7b 105 spin_unlock(&mnt_id_lock);
73cd49ec
MS
106}
107
719f5d7f
MS
108/*
109 * Allocate a new peer group ID
110 *
111 * mnt_group_ida is protected by namespace_sem
112 */
4b8b21f4 113static int mnt_alloc_group_id(struct mount *mnt)
719f5d7f 114{
f21f6220
AV
115 int res;
116
719f5d7f
MS
117 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
118 return -ENOMEM;
119
f21f6220
AV
120 res = ida_get_new_above(&mnt_group_ida,
121 mnt_group_start,
4b8b21f4 122 &mnt->mnt.mnt_group_id);
f21f6220 123 if (!res)
4b8b21f4 124 mnt_group_start = mnt->mnt.mnt_group_id + 1;
f21f6220
AV
125
126 return res;
719f5d7f
MS
127}
128
129/*
130 * Release a peer group ID
131 */
4b8b21f4 132void mnt_release_group_id(struct mount *mnt)
719f5d7f 133{
4b8b21f4 134 int id = mnt->mnt.mnt_group_id;
f21f6220
AV
135 ida_remove(&mnt_group_ida, id);
136 if (mnt_group_start > id)
137 mnt_group_start = id;
4b8b21f4 138 mnt->mnt.mnt_group_id = 0;
719f5d7f
MS
139}
140
b3e19d92
NP
141/*
142 * vfsmount lock must be held for read
143 */
83adc753 144static inline void mnt_add_count(struct mount *mnt, int n)
b3e19d92
NP
145{
146#ifdef CONFIG_SMP
68e8a9fe 147 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
b3e19d92
NP
148#else
149 preempt_disable();
68e8a9fe 150 mnt->mnt_count += n;
b3e19d92
NP
151 preempt_enable();
152#endif
153}
154
b3e19d92
NP
155/*
156 * vfsmount lock must be held for write
157 */
83adc753 158unsigned int mnt_get_count(struct mount *mnt)
b3e19d92
NP
159{
160#ifdef CONFIG_SMP
f03c6599 161 unsigned int count = 0;
b3e19d92
NP
162 int cpu;
163
164 for_each_possible_cpu(cpu) {
68e8a9fe 165 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
b3e19d92
NP
166 }
167
168 return count;
169#else
68e8a9fe 170 return mnt->mnt_count;
b3e19d92
NP
171#endif
172}
173
b105e270 174static struct mount *alloc_vfsmnt(const char *name)
1da177e4 175{
7d6fec45
AV
176 struct mount *p = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
177 if (p) {
178 struct vfsmount *mnt = &p->mnt;
73cd49ec
MS
179 int err;
180
b105e270 181 err = mnt_alloc_id(p);
88b38782
LZ
182 if (err)
183 goto out_free_cache;
184
185 if (name) {
186 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
187 if (!mnt->mnt_devname)
188 goto out_free_id;
73cd49ec
MS
189 }
190
b3e19d92 191#ifdef CONFIG_SMP
68e8a9fe
AV
192 p->mnt_pcp = alloc_percpu(struct mnt_pcp);
193 if (!p->mnt_pcp)
b3e19d92
NP
194 goto out_free_devname;
195
68e8a9fe 196 this_cpu_add(p->mnt_pcp->mnt_count, 1);
b3e19d92 197#else
68e8a9fe
AV
198 p->mnt_count = 1;
199 p->mnt_writers = 0;
b3e19d92
NP
200#endif
201
1b8e5564 202 INIT_LIST_HEAD(&p->mnt_hash);
1da177e4
LT
203 INIT_LIST_HEAD(&mnt->mnt_child);
204 INIT_LIST_HEAD(&mnt->mnt_mounts);
205 INIT_LIST_HEAD(&mnt->mnt_list);
55e700b9 206 INIT_LIST_HEAD(&mnt->mnt_expire);
03e06e68 207 INIT_LIST_HEAD(&mnt->mnt_share);
a58b0eb8
RP
208 INIT_LIST_HEAD(&mnt->mnt_slave_list);
209 INIT_LIST_HEAD(&mnt->mnt_slave);
2504c5d6
AG
210#ifdef CONFIG_FSNOTIFY
211 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
d3ef3d73 212#endif
1da177e4 213 }
b105e270 214 return p;
88b38782 215
d3ef3d73 216#ifdef CONFIG_SMP
217out_free_devname:
7d6fec45 218 kfree(p->mnt.mnt_devname);
d3ef3d73 219#endif
88b38782 220out_free_id:
b105e270 221 mnt_free_id(p);
88b38782 222out_free_cache:
7d6fec45 223 kmem_cache_free(mnt_cache, p);
88b38782 224 return NULL;
1da177e4
LT
225}
226
3d733633
DH
227/*
228 * Most r/o checks on a fs are for operations that take
229 * discrete amounts of time, like a write() or unlink().
230 * We must keep track of when those operations start
231 * (for permission checks) and when they end, so that
232 * we can determine when writes are able to occur to
233 * a filesystem.
234 */
235/*
236 * __mnt_is_readonly: check whether a mount is read-only
237 * @mnt: the mount to check for its write status
238 *
239 * This shouldn't be used directly ouside of the VFS.
240 * It does not guarantee that the filesystem will stay
241 * r/w, just that it is right *now*. This can not and
242 * should not be used in place of IS_RDONLY(inode).
243 * mnt_want/drop_write() will _keep_ the filesystem
244 * r/w.
245 */
246int __mnt_is_readonly(struct vfsmount *mnt)
247{
2e4b7fcd
DH
248 if (mnt->mnt_flags & MNT_READONLY)
249 return 1;
250 if (mnt->mnt_sb->s_flags & MS_RDONLY)
251 return 1;
252 return 0;
3d733633
DH
253}
254EXPORT_SYMBOL_GPL(__mnt_is_readonly);
255
83adc753 256static inline void mnt_inc_writers(struct mount *mnt)
d3ef3d73 257{
258#ifdef CONFIG_SMP
68e8a9fe 259 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
d3ef3d73 260#else
68e8a9fe 261 mnt->mnt_writers++;
d3ef3d73 262#endif
263}
3d733633 264
83adc753 265static inline void mnt_dec_writers(struct mount *mnt)
3d733633 266{
d3ef3d73 267#ifdef CONFIG_SMP
68e8a9fe 268 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
d3ef3d73 269#else
68e8a9fe 270 mnt->mnt_writers--;
d3ef3d73 271#endif
3d733633 272}
3d733633 273
83adc753 274static unsigned int mnt_get_writers(struct mount *mnt)
3d733633 275{
d3ef3d73 276#ifdef CONFIG_SMP
277 unsigned int count = 0;
3d733633 278 int cpu;
3d733633
DH
279
280 for_each_possible_cpu(cpu) {
68e8a9fe 281 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
3d733633 282 }
3d733633 283
d3ef3d73 284 return count;
285#else
286 return mnt->mnt_writers;
287#endif
3d733633
DH
288}
289
8366025e
DH
290/*
291 * Most r/o checks on a fs are for operations that take
292 * discrete amounts of time, like a write() or unlink().
293 * We must keep track of when those operations start
294 * (for permission checks) and when they end, so that
295 * we can determine when writes are able to occur to
296 * a filesystem.
297 */
298/**
299 * mnt_want_write - get write access to a mount
83adc753 300 * @m: the mount on which to take a write
8366025e
DH
301 *
302 * This tells the low-level filesystem that a write is
303 * about to be performed to it, and makes sure that
304 * writes are allowed before returning success. When
305 * the write operation is finished, mnt_drop_write()
306 * must be called. This is effectively a refcount.
307 */
83adc753 308int mnt_want_write(struct vfsmount *m)
8366025e 309{
83adc753 310 struct mount *mnt = real_mount(m);
3d733633 311 int ret = 0;
3d733633 312
d3ef3d73 313 preempt_disable();
c6653a83 314 mnt_inc_writers(mnt);
d3ef3d73 315 /*
c6653a83 316 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73 317 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
318 * incremented count after it has set MNT_WRITE_HOLD.
319 */
320 smp_mb();
83adc753 321 while (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
d3ef3d73 322 cpu_relax();
323 /*
324 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
325 * be set to match its requirements. So we must not load that until
326 * MNT_WRITE_HOLD is cleared.
327 */
328 smp_rmb();
83adc753 329 if (__mnt_is_readonly(m)) {
c6653a83 330 mnt_dec_writers(mnt);
3d733633
DH
331 ret = -EROFS;
332 goto out;
333 }
3d733633 334out:
d3ef3d73 335 preempt_enable();
3d733633 336 return ret;
8366025e
DH
337}
338EXPORT_SYMBOL_GPL(mnt_want_write);
339
96029c4e 340/**
341 * mnt_clone_write - get write access to a mount
342 * @mnt: the mount on which to take a write
343 *
344 * This is effectively like mnt_want_write, except
345 * it must only be used to take an extra write reference
346 * on a mountpoint that we already know has a write reference
347 * on it. This allows some optimisation.
348 *
349 * After finished, mnt_drop_write must be called as usual to
350 * drop the reference.
351 */
352int mnt_clone_write(struct vfsmount *mnt)
353{
354 /* superblock may be r/o */
355 if (__mnt_is_readonly(mnt))
356 return -EROFS;
357 preempt_disable();
83adc753 358 mnt_inc_writers(real_mount(mnt));
96029c4e 359 preempt_enable();
360 return 0;
361}
362EXPORT_SYMBOL_GPL(mnt_clone_write);
363
364/**
365 * mnt_want_write_file - get write access to a file's mount
366 * @file: the file who's mount on which to take a write
367 *
368 * This is like mnt_want_write, but it takes a file and can
369 * do some optimisations if the file is open for write already
370 */
371int mnt_want_write_file(struct file *file)
372{
2d8dd38a
OH
373 struct inode *inode = file->f_dentry->d_inode;
374 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
96029c4e 375 return mnt_want_write(file->f_path.mnt);
376 else
377 return mnt_clone_write(file->f_path.mnt);
378}
379EXPORT_SYMBOL_GPL(mnt_want_write_file);
380
8366025e
DH
381/**
382 * mnt_drop_write - give up write access to a mount
383 * @mnt: the mount on which to give up write access
384 *
385 * Tells the low-level filesystem that we are done
386 * performing writes to it. Must be matched with
387 * mnt_want_write() call above.
388 */
389void mnt_drop_write(struct vfsmount *mnt)
390{
d3ef3d73 391 preempt_disable();
83adc753 392 mnt_dec_writers(real_mount(mnt));
d3ef3d73 393 preempt_enable();
8366025e
DH
394}
395EXPORT_SYMBOL_GPL(mnt_drop_write);
396
2a79f17e
AV
397void mnt_drop_write_file(struct file *file)
398{
399 mnt_drop_write(file->f_path.mnt);
400}
401EXPORT_SYMBOL(mnt_drop_write_file);
402
83adc753 403static int mnt_make_readonly(struct mount *mnt)
8366025e 404{
3d733633
DH
405 int ret = 0;
406
99b7db7b 407 br_write_lock(vfsmount_lock);
83adc753 408 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
3d733633 409 /*
d3ef3d73 410 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
411 * should be visible before we do.
3d733633 412 */
d3ef3d73 413 smp_mb();
414
3d733633 415 /*
d3ef3d73 416 * With writers on hold, if this value is zero, then there are
417 * definitely no active writers (although held writers may subsequently
418 * increment the count, they'll have to wait, and decrement it after
419 * seeing MNT_READONLY).
420 *
421 * It is OK to have counter incremented on one CPU and decremented on
422 * another: the sum will add up correctly. The danger would be when we
423 * sum up each counter, if we read a counter before it is incremented,
424 * but then read another CPU's count which it has been subsequently
425 * decremented from -- we would see more decrements than we should.
426 * MNT_WRITE_HOLD protects against this scenario, because
427 * mnt_want_write first increments count, then smp_mb, then spins on
428 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
429 * we're counting up here.
3d733633 430 */
c6653a83 431 if (mnt_get_writers(mnt) > 0)
d3ef3d73 432 ret = -EBUSY;
433 else
83adc753 434 mnt->mnt.mnt_flags |= MNT_READONLY;
d3ef3d73 435 /*
436 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
437 * that become unheld will see MNT_READONLY.
438 */
439 smp_wmb();
83adc753 440 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
99b7db7b 441 br_write_unlock(vfsmount_lock);
3d733633 442 return ret;
8366025e 443}
8366025e 444
83adc753 445static void __mnt_unmake_readonly(struct mount *mnt)
2e4b7fcd 446{
99b7db7b 447 br_write_lock(vfsmount_lock);
83adc753 448 mnt->mnt.mnt_flags &= ~MNT_READONLY;
99b7db7b 449 br_write_unlock(vfsmount_lock);
2e4b7fcd
DH
450}
451
b105e270 452static void free_vfsmnt(struct mount *mnt)
1da177e4 453{
b105e270 454 kfree(mnt->mnt.mnt_devname);
73cd49ec 455 mnt_free_id(mnt);
d3ef3d73 456#ifdef CONFIG_SMP
68e8a9fe 457 free_percpu(mnt->mnt_pcp);
d3ef3d73 458#endif
b105e270 459 kmem_cache_free(mnt_cache, mnt);
1da177e4
LT
460}
461
462/*
a05964f3
RP
463 * find the first or last mount at @dentry on vfsmount @mnt depending on
464 * @dir. If @dir is set return the first mount else return the last mount.
99b7db7b 465 * vfsmount_lock must be held for read or write.
1da177e4 466 */
c7105365 467struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
a05964f3 468 int dir)
1da177e4 469{
b58fed8b
RP
470 struct list_head *head = mount_hashtable + hash(mnt, dentry);
471 struct list_head *tmp = head;
c7105365 472 struct mount *p, *found = NULL;
1da177e4 473
1da177e4 474 for (;;) {
a05964f3 475 tmp = dir ? tmp->next : tmp->prev;
1da177e4
LT
476 p = NULL;
477 if (tmp == head)
478 break;
1b8e5564 479 p = list_entry(tmp, struct mount, mnt_hash);
a73324da 480 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) {
a05964f3 481 found = p;
1da177e4
LT
482 break;
483 }
484 }
1da177e4
LT
485 return found;
486}
487
a05964f3
RP
488/*
489 * lookup_mnt increments the ref count before returning
490 * the vfsmount struct.
491 */
1c755af4 492struct vfsmount *lookup_mnt(struct path *path)
a05964f3 493{
c7105365 494 struct mount *child_mnt;
99b7db7b
NP
495
496 br_read_lock(vfsmount_lock);
c7105365
AV
497 child_mnt = __lookup_mnt(path->mnt, path->dentry, 1);
498 if (child_mnt) {
499 mnt_add_count(child_mnt, 1);
500 br_read_unlock(vfsmount_lock);
501 return &child_mnt->mnt;
502 } else {
503 br_read_unlock(vfsmount_lock);
504 return NULL;
505 }
a05964f3
RP
506}
507
1da177e4
LT
508static inline int check_mnt(struct vfsmount *mnt)
509{
6b3286ed 510 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
511}
512
99b7db7b
NP
513/*
514 * vfsmount lock must be held for write
515 */
6b3286ed 516static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
517{
518 if (ns) {
519 ns->event = ++event;
520 wake_up_interruptible(&ns->poll);
521 }
522}
523
99b7db7b
NP
524/*
525 * vfsmount lock must be held for write
526 */
6b3286ed 527static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
528{
529 if (ns && ns->event != event) {
530 ns->event = event;
531 wake_up_interruptible(&ns->poll);
532 }
533}
534
5f57cbcc
NP
535/*
536 * Clear dentry's mounted state if it has no remaining mounts.
537 * vfsmount_lock must be held for write.
538 */
aa0a4cf0 539static void dentry_reset_mounted(struct dentry *dentry)
5f57cbcc
NP
540{
541 unsigned u;
542
543 for (u = 0; u < HASH_SIZE; u++) {
d5e50f74 544 struct mount *p;
5f57cbcc 545
1b8e5564 546 list_for_each_entry(p, &mount_hashtable[u], mnt_hash) {
a73324da 547 if (p->mnt_mountpoint == dentry)
5f57cbcc
NP
548 return;
549 }
550 }
551 spin_lock(&dentry->d_lock);
552 dentry->d_flags &= ~DCACHE_MOUNTED;
553 spin_unlock(&dentry->d_lock);
554}
555
99b7db7b
NP
556/*
557 * vfsmount lock must be held for write
558 */
419148da
AV
559static void detach_mnt(struct mount *mnt, struct path *old_path)
560{
a73324da 561 old_path->dentry = mnt->mnt_mountpoint;
0714a533
AV
562 old_path->mnt = &mnt->mnt_parent->mnt;
563 mnt->mnt_parent = mnt;
a73324da 564 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
419148da 565 list_del_init(&mnt->mnt.mnt_child);
1b8e5564 566 list_del_init(&mnt->mnt_hash);
aa0a4cf0 567 dentry_reset_mounted(old_path->dentry);
1da177e4
LT
568}
569
99b7db7b
NP
570/*
571 * vfsmount lock must be held for write
572 */
b90fa9ae 573void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
44d964d6 574 struct mount *child_mnt)
b90fa9ae 575{
0714a533 576 child_mnt->mnt_parent = real_mount(mntget(mnt));
a73324da 577 child_mnt->mnt_mountpoint = dget(dentry);
5f57cbcc
NP
578 spin_lock(&dentry->d_lock);
579 dentry->d_flags |= DCACHE_MOUNTED;
580 spin_unlock(&dentry->d_lock);
b90fa9ae
RP
581}
582
99b7db7b
NP
583/*
584 * vfsmount lock must be held for write
585 */
419148da 586static void attach_mnt(struct mount *mnt, struct path *path)
1da177e4 587{
44d964d6 588 mnt_set_mountpoint(path->mnt, path->dentry, mnt);
1b8e5564 589 list_add_tail(&mnt->mnt_hash, mount_hashtable +
1a390689 590 hash(path->mnt, path->dentry));
419148da 591 list_add_tail(&mnt->mnt.mnt_child, &path->mnt->mnt_mounts);
b90fa9ae
RP
592}
593
83adc753 594static inline void __mnt_make_longterm(struct mount *mnt)
7e3d0eb0
AV
595{
596#ifdef CONFIG_SMP
68e8a9fe 597 atomic_inc(&mnt->mnt_longterm);
7e3d0eb0
AV
598#endif
599}
600
601/* needs vfsmount lock for write */
83adc753 602static inline void __mnt_make_shortterm(struct mount *mnt)
7e3d0eb0
AV
603{
604#ifdef CONFIG_SMP
68e8a9fe 605 atomic_dec(&mnt->mnt_longterm);
7e3d0eb0
AV
606#endif
607}
608
b90fa9ae 609/*
99b7db7b 610 * vfsmount lock must be held for write
b90fa9ae 611 */
4b2619a5 612static void commit_tree(struct mount *mnt)
b90fa9ae 613{
0714a533 614 struct mount *parent = mnt->mnt_parent;
83adc753 615 struct mount *m;
b90fa9ae 616 LIST_HEAD(head);
0714a533 617 struct mnt_namespace *n = parent->mnt.mnt_ns;
b90fa9ae 618
0714a533 619 BUG_ON(parent == mnt);
b90fa9ae 620
4b2619a5 621 list_add_tail(&head, &mnt->mnt.mnt_list);
83adc753
AV
622 list_for_each_entry(m, &head, mnt.mnt_list) {
623 m->mnt.mnt_ns = n;
7e3d0eb0 624 __mnt_make_longterm(m);
f03c6599
AV
625 }
626
b90fa9ae
RP
627 list_splice(&head, n->list.prev);
628
1b8e5564 629 list_add_tail(&mnt->mnt_hash, mount_hashtable +
a73324da 630 hash(&parent->mnt, mnt->mnt_mountpoint));
0714a533 631 list_add_tail(&mnt->mnt.mnt_child, &parent->mnt.mnt_mounts);
6b3286ed 632 touch_mnt_namespace(n);
1da177e4
LT
633}
634
315fc83e 635static struct mount *next_mnt(struct mount *p, struct vfsmount *root)
1da177e4 636{
315fc83e
AV
637 struct list_head *next = p->mnt.mnt_mounts.next;
638 if (next == &p->mnt.mnt_mounts) {
1da177e4 639 while (1) {
315fc83e 640 if (&p->mnt == root)
1da177e4 641 return NULL;
315fc83e 642 next = p->mnt.mnt_child.next;
0714a533 643 if (next != &p->mnt_parent->mnt.mnt_mounts)
1da177e4 644 break;
0714a533 645 p = p->mnt_parent;
1da177e4
LT
646 }
647 }
315fc83e 648 return list_entry(next, struct mount, mnt.mnt_child);
1da177e4
LT
649}
650
315fc83e 651static struct mount *skip_mnt_tree(struct mount *p)
9676f0c6 652{
315fc83e
AV
653 struct list_head *prev = p->mnt.mnt_mounts.prev;
654 while (prev != &p->mnt.mnt_mounts) {
655 p = list_entry(prev, struct mount, mnt.mnt_child);
656 prev = p->mnt.mnt_mounts.prev;
9676f0c6
RP
657 }
658 return p;
659}
660
9d412a43
AV
661struct vfsmount *
662vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
663{
b105e270 664 struct mount *mnt;
9d412a43
AV
665 struct dentry *root;
666
667 if (!type)
668 return ERR_PTR(-ENODEV);
669
670 mnt = alloc_vfsmnt(name);
671 if (!mnt)
672 return ERR_PTR(-ENOMEM);
673
674 if (flags & MS_KERNMOUNT)
b105e270 675 mnt->mnt.mnt_flags = MNT_INTERNAL;
9d412a43
AV
676
677 root = mount_fs(type, flags, name, data);
678 if (IS_ERR(root)) {
679 free_vfsmnt(mnt);
680 return ERR_CAST(root);
681 }
682
b105e270
AV
683 mnt->mnt.mnt_root = root;
684 mnt->mnt.mnt_sb = root->d_sb;
a73324da 685 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 686 mnt->mnt_parent = mnt;
b105e270 687 return &mnt->mnt;
9d412a43
AV
688}
689EXPORT_SYMBOL_GPL(vfs_kern_mount);
690
87129cc0 691static struct mount *clone_mnt(struct mount *old, struct dentry *root,
36341f64 692 int flag)
1da177e4 693{
87129cc0
AV
694 struct super_block *sb = old->mnt.mnt_sb;
695 struct mount *mnt = alloc_vfsmnt(old->mnt.mnt_devname);
1da177e4
LT
696
697 if (mnt) {
719f5d7f 698 if (flag & (CL_SLAVE | CL_PRIVATE))
b105e270 699 mnt->mnt.mnt_group_id = 0; /* not a peer of original */
719f5d7f 700 else
87129cc0 701 mnt->mnt.mnt_group_id = old->mnt.mnt_group_id;
719f5d7f 702
b105e270
AV
703 if ((flag & CL_MAKE_SHARED) && !mnt->mnt.mnt_group_id) {
704 int err = mnt_alloc_group_id(mnt);
719f5d7f
MS
705 if (err)
706 goto out_free;
707 }
708
87129cc0 709 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD;
1da177e4 710 atomic_inc(&sb->s_active);
b105e270
AV
711 mnt->mnt.mnt_sb = sb;
712 mnt->mnt.mnt_root = dget(root);
a73324da 713 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 714 mnt->mnt_parent = mnt;
b90fa9ae 715
5afe0022 716 if (flag & CL_SLAVE) {
87129cc0
AV
717 list_add(&mnt->mnt.mnt_slave, &old->mnt.mnt_slave_list);
718 mnt->mnt.mnt_master = &old->mnt;
b105e270 719 CLEAR_MNT_SHARED(&mnt->mnt);
8aec0809 720 } else if (!(flag & CL_PRIVATE)) {
87129cc0
AV
721 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(&old->mnt))
722 list_add(&mnt->mnt.mnt_share, &old->mnt.mnt_share);
723 if (IS_MNT_SLAVE(&old->mnt))
724 list_add(&mnt->mnt.mnt_slave, &old->mnt.mnt_slave);
725 mnt->mnt.mnt_master = old->mnt.mnt_master;
5afe0022 726 }
b90fa9ae 727 if (flag & CL_MAKE_SHARED)
0f0afb1d 728 set_mnt_shared(mnt);
1da177e4
LT
729
730 /* stick the duplicate mount on the same expiry list
731 * as the original if that was on one */
36341f64 732 if (flag & CL_EXPIRE) {
87129cc0
AV
733 if (!list_empty(&old->mnt.mnt_expire))
734 list_add(&mnt->mnt.mnt_expire, &old->mnt.mnt_expire);
36341f64 735 }
1da177e4 736 }
cb338d06 737 return mnt;
719f5d7f
MS
738
739 out_free:
740 free_vfsmnt(mnt);
741 return NULL;
1da177e4
LT
742}
743
83adc753 744static inline void mntfree(struct mount *mnt)
1da177e4 745{
83adc753
AV
746 struct vfsmount *m = &mnt->mnt;
747 struct super_block *sb = m->mnt_sb;
b3e19d92 748
3d733633
DH
749 /*
750 * This probably indicates that somebody messed
751 * up a mnt_want/drop_write() pair. If this
752 * happens, the filesystem was probably unable
753 * to make r/w->r/o transitions.
754 */
d3ef3d73 755 /*
b3e19d92
NP
756 * The locking used to deal with mnt_count decrement provides barriers,
757 * so mnt_get_writers() below is safe.
d3ef3d73 758 */
c6653a83 759 WARN_ON(mnt_get_writers(mnt));
83adc753
AV
760 fsnotify_vfsmount_delete(m);
761 dput(m->mnt_root);
762 free_vfsmnt(mnt);
1da177e4
LT
763 deactivate_super(sb);
764}
765
83adc753 766static void mntput_no_expire(struct vfsmount *m)
b3e19d92 767{
83adc753 768 struct mount *mnt = real_mount(m);
b3e19d92 769put_again:
f03c6599
AV
770#ifdef CONFIG_SMP
771 br_read_lock(vfsmount_lock);
68e8a9fe 772 if (likely(atomic_read(&mnt->mnt_longterm))) {
aa9c0e07 773 mnt_add_count(mnt, -1);
b3e19d92 774 br_read_unlock(vfsmount_lock);
f03c6599 775 return;
b3e19d92 776 }
f03c6599 777 br_read_unlock(vfsmount_lock);
b3e19d92 778
99b7db7b 779 br_write_lock(vfsmount_lock);
aa9c0e07 780 mnt_add_count(mnt, -1);
b3e19d92 781 if (mnt_get_count(mnt)) {
99b7db7b
NP
782 br_write_unlock(vfsmount_lock);
783 return;
784 }
b3e19d92 785#else
aa9c0e07 786 mnt_add_count(mnt, -1);
b3e19d92 787 if (likely(mnt_get_count(mnt)))
99b7db7b 788 return;
b3e19d92 789 br_write_lock(vfsmount_lock);
f03c6599 790#endif
83adc753
AV
791 if (unlikely(mnt->mnt.mnt_pinned)) {
792 mnt_add_count(mnt, mnt->mnt.mnt_pinned + 1);
793 mnt->mnt.mnt_pinned = 0;
b3e19d92 794 br_write_unlock(vfsmount_lock);
83adc753 795 acct_auto_close_mnt(m);
b3e19d92 796 goto put_again;
7b7b1ace 797 }
99b7db7b 798 br_write_unlock(vfsmount_lock);
b3e19d92
NP
799 mntfree(mnt);
800}
b3e19d92
NP
801
802void mntput(struct vfsmount *mnt)
803{
804 if (mnt) {
805 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
806 if (unlikely(mnt->mnt_expiry_mark))
807 mnt->mnt_expiry_mark = 0;
f03c6599 808 mntput_no_expire(mnt);
b3e19d92
NP
809 }
810}
811EXPORT_SYMBOL(mntput);
812
813struct vfsmount *mntget(struct vfsmount *mnt)
814{
815 if (mnt)
83adc753 816 mnt_add_count(real_mount(mnt), 1);
b3e19d92
NP
817 return mnt;
818}
819EXPORT_SYMBOL(mntget);
820
7b7b1ace
AV
821void mnt_pin(struct vfsmount *mnt)
822{
99b7db7b 823 br_write_lock(vfsmount_lock);
7b7b1ace 824 mnt->mnt_pinned++;
99b7db7b 825 br_write_unlock(vfsmount_lock);
7b7b1ace 826}
7b7b1ace
AV
827EXPORT_SYMBOL(mnt_pin);
828
829void mnt_unpin(struct vfsmount *mnt)
830{
99b7db7b 831 br_write_lock(vfsmount_lock);
7b7b1ace 832 if (mnt->mnt_pinned) {
83adc753 833 mnt_add_count(real_mount(mnt), 1);
7b7b1ace
AV
834 mnt->mnt_pinned--;
835 }
99b7db7b 836 br_write_unlock(vfsmount_lock);
7b7b1ace 837}
7b7b1ace 838EXPORT_SYMBOL(mnt_unpin);
1da177e4 839
b3b304a2
MS
840static inline void mangle(struct seq_file *m, const char *s)
841{
842 seq_escape(m, s, " \t\n\\");
843}
844
845/*
846 * Simple .show_options callback for filesystems which don't want to
847 * implement more complex mount option showing.
848 *
849 * See also save_mount_options().
850 */
851int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
852{
2a32cebd
AV
853 const char *options;
854
855 rcu_read_lock();
856 options = rcu_dereference(mnt->mnt_sb->s_options);
b3b304a2
MS
857
858 if (options != NULL && options[0]) {
859 seq_putc(m, ',');
860 mangle(m, options);
861 }
2a32cebd 862 rcu_read_unlock();
b3b304a2
MS
863
864 return 0;
865}
866EXPORT_SYMBOL(generic_show_options);
867
868/*
869 * If filesystem uses generic_show_options(), this function should be
870 * called from the fill_super() callback.
871 *
872 * The .remount_fs callback usually needs to be handled in a special
873 * way, to make sure, that previous options are not overwritten if the
874 * remount fails.
875 *
876 * Also note, that if the filesystem's .remount_fs function doesn't
877 * reset all options to their default value, but changes only newly
878 * given options, then the displayed options will not reflect reality
879 * any more.
880 */
881void save_mount_options(struct super_block *sb, char *options)
882{
2a32cebd
AV
883 BUG_ON(sb->s_options);
884 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
b3b304a2
MS
885}
886EXPORT_SYMBOL(save_mount_options);
887
2a32cebd
AV
888void replace_mount_options(struct super_block *sb, char *options)
889{
890 char *old = sb->s_options;
891 rcu_assign_pointer(sb->s_options, options);
892 if (old) {
893 synchronize_rcu();
894 kfree(old);
895 }
896}
897EXPORT_SYMBOL(replace_mount_options);
898
a1a2c409 899#ifdef CONFIG_PROC_FS
1da177e4
LT
900/* iterator */
901static void *m_start(struct seq_file *m, loff_t *pos)
902{
a1a2c409 903 struct proc_mounts *p = m->private;
1da177e4 904
390c6843 905 down_read(&namespace_sem);
a1a2c409 906 return seq_list_start(&p->ns->list, *pos);
1da177e4
LT
907}
908
909static void *m_next(struct seq_file *m, void *v, loff_t *pos)
910{
a1a2c409 911 struct proc_mounts *p = m->private;
b0765fb8 912
a1a2c409 913 return seq_list_next(v, &p->ns->list, pos);
1da177e4
LT
914}
915
916static void m_stop(struct seq_file *m, void *v)
917{
390c6843 918 up_read(&namespace_sem);
1da177e4
LT
919}
920
9f5596af
AV
921int mnt_had_events(struct proc_mounts *p)
922{
923 struct mnt_namespace *ns = p->ns;
924 int res = 0;
925
99b7db7b 926 br_read_lock(vfsmount_lock);
f1514638
KS
927 if (p->m.poll_event != ns->event) {
928 p->m.poll_event = ns->event;
9f5596af
AV
929 res = 1;
930 }
99b7db7b 931 br_read_unlock(vfsmount_lock);
9f5596af
AV
932
933 return res;
934}
935
2d4d4864
RP
936struct proc_fs_info {
937 int flag;
938 const char *str;
939};
940
2069f457 941static int show_sb_opts(struct seq_file *m, struct super_block *sb)
1da177e4 942{
2d4d4864 943 static const struct proc_fs_info fs_info[] = {
1da177e4
LT
944 { MS_SYNCHRONOUS, ",sync" },
945 { MS_DIRSYNC, ",dirsync" },
946 { MS_MANDLOCK, ",mand" },
1da177e4
LT
947 { 0, NULL }
948 };
2d4d4864
RP
949 const struct proc_fs_info *fs_infop;
950
951 for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
952 if (sb->s_flags & fs_infop->flag)
953 seq_puts(m, fs_infop->str);
954 }
2069f457
EP
955
956 return security_sb_show_options(m, sb);
2d4d4864
RP
957}
958
959static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt)
960{
961 static const struct proc_fs_info mnt_info[] = {
1da177e4
LT
962 { MNT_NOSUID, ",nosuid" },
963 { MNT_NODEV, ",nodev" },
964 { MNT_NOEXEC, ",noexec" },
fc33a7bb
CH
965 { MNT_NOATIME, ",noatime" },
966 { MNT_NODIRATIME, ",nodiratime" },
47ae32d6 967 { MNT_RELATIME, ",relatime" },
1da177e4
LT
968 { 0, NULL }
969 };
2d4d4864
RP
970 const struct proc_fs_info *fs_infop;
971
972 for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
973 if (mnt->mnt_flags & fs_infop->flag)
974 seq_puts(m, fs_infop->str);
975 }
976}
977
978static void show_type(struct seq_file *m, struct super_block *sb)
979{
980 mangle(m, sb->s_type->name);
981 if (sb->s_subtype && sb->s_subtype[0]) {
982 seq_putc(m, '.');
983 mangle(m, sb->s_subtype);
984 }
985}
986
987static int show_vfsmnt(struct seq_file *m, void *v)
988{
989 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
990 int err = 0;
c32c2f63 991 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
1da177e4 992
c7f404b4
AV
993 if (mnt->mnt_sb->s_op->show_devname) {
994 err = mnt->mnt_sb->s_op->show_devname(m, mnt);
995 if (err)
996 goto out;
997 } else {
998 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
999 }
1da177e4 1000 seq_putc(m, ' ');
c32c2f63 1001 seq_path(m, &mnt_path, " \t\n\\");
1da177e4 1002 seq_putc(m, ' ');
2d4d4864 1003 show_type(m, mnt->mnt_sb);
2e4b7fcd 1004 seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw");
2069f457
EP
1005 err = show_sb_opts(m, mnt->mnt_sb);
1006 if (err)
1007 goto out;
2d4d4864 1008 show_mnt_opts(m, mnt);
1da177e4
LT
1009 if (mnt->mnt_sb->s_op->show_options)
1010 err = mnt->mnt_sb->s_op->show_options(m, mnt);
1011 seq_puts(m, " 0 0\n");
2069f457 1012out:
1da177e4
LT
1013 return err;
1014}
1015
a1a2c409 1016const struct seq_operations mounts_op = {
1da177e4
LT
1017 .start = m_start,
1018 .next = m_next,
1019 .stop = m_stop,
1020 .show = show_vfsmnt
1021};
1022
2d4d4864
RP
1023static int show_mountinfo(struct seq_file *m, void *v)
1024{
1025 struct proc_mounts *p = m->private;
1026 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
3376f34f 1027 struct mount *r = real_mount(mnt);
2d4d4864
RP
1028 struct super_block *sb = mnt->mnt_sb;
1029 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
1030 struct path root = p->root;
1031 int err = 0;
1032
0714a533 1033 seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, r->mnt_parent->mnt.mnt_id,
2d4d4864 1034 MAJOR(sb->s_dev), MINOR(sb->s_dev));
c7f404b4
AV
1035 if (sb->s_op->show_path)
1036 err = sb->s_op->show_path(m, mnt);
1037 else
1038 seq_dentry(m, mnt->mnt_root, " \t\n\\");
1039 if (err)
1040 goto out;
2d4d4864 1041 seq_putc(m, ' ');
02125a82
AV
1042
1043 /* mountpoints outside of chroot jail will give SEQ_SKIP on this */
1044 err = seq_path_root(m, &mnt_path, &root, " \t\n\\");
1045 if (err)
1046 goto out;
1047
2d4d4864
RP
1048 seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw");
1049 show_mnt_opts(m, mnt);
1050
1051 /* Tagged fields ("foo:X" or "bar") */
1052 if (IS_MNT_SHARED(mnt))
1053 seq_printf(m, " shared:%i", mnt->mnt_group_id);
97e7e0f7
MS
1054 if (IS_MNT_SLAVE(mnt)) {
1055 int master = mnt->mnt_master->mnt_group_id;
1056 int dom = get_dominating_id(mnt, &p->root);
1057 seq_printf(m, " master:%i", master);
1058 if (dom && dom != master)
1059 seq_printf(m, " propagate_from:%i", dom);
1060 }
2d4d4864
RP
1061 if (IS_MNT_UNBINDABLE(mnt))
1062 seq_puts(m, " unbindable");
1063
1064 /* Filesystem specific data */
1065 seq_puts(m, " - ");
1066 show_type(m, sb);
1067 seq_putc(m, ' ');
c7f404b4
AV
1068 if (sb->s_op->show_devname)
1069 err = sb->s_op->show_devname(m, mnt);
1070 else
1071 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
1072 if (err)
1073 goto out;
2d4d4864 1074 seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw");
2069f457
EP
1075 err = show_sb_opts(m, sb);
1076 if (err)
1077 goto out;
2d4d4864
RP
1078 if (sb->s_op->show_options)
1079 err = sb->s_op->show_options(m, mnt);
1080 seq_putc(m, '\n');
2069f457 1081out:
2d4d4864
RP
1082 return err;
1083}
1084
1085const struct seq_operations mountinfo_op = {
1086 .start = m_start,
1087 .next = m_next,
1088 .stop = m_stop,
1089 .show = show_mountinfo,
1090};
1091
b4629fe2
CL
1092static int show_vfsstat(struct seq_file *m, void *v)
1093{
b0765fb8 1094 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
c32c2f63 1095 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
b4629fe2
CL
1096 int err = 0;
1097
1098 /* device */
c7f404b4 1099 if (mnt->mnt_sb->s_op->show_devname) {
a877ee03 1100 seq_puts(m, "device ");
c7f404b4
AV
1101 err = mnt->mnt_sb->s_op->show_devname(m, mnt);
1102 } else {
1103 if (mnt->mnt_devname) {
1104 seq_puts(m, "device ");
1105 mangle(m, mnt->mnt_devname);
1106 } else
1107 seq_puts(m, "no device");
1108 }
b4629fe2
CL
1109
1110 /* mount point */
1111 seq_puts(m, " mounted on ");
c32c2f63 1112 seq_path(m, &mnt_path, " \t\n\\");
b4629fe2
CL
1113 seq_putc(m, ' ');
1114
1115 /* file system type */
1116 seq_puts(m, "with fstype ");
2d4d4864 1117 show_type(m, mnt->mnt_sb);
b4629fe2
CL
1118
1119 /* optional statistics */
1120 if (mnt->mnt_sb->s_op->show_stats) {
1121 seq_putc(m, ' ');
c7f404b4
AV
1122 if (!err)
1123 err = mnt->mnt_sb->s_op->show_stats(m, mnt);
b4629fe2
CL
1124 }
1125
1126 seq_putc(m, '\n');
1127 return err;
1128}
1129
a1a2c409 1130const struct seq_operations mountstats_op = {
b4629fe2
CL
1131 .start = m_start,
1132 .next = m_next,
1133 .stop = m_stop,
1134 .show = show_vfsstat,
1135};
a1a2c409 1136#endif /* CONFIG_PROC_FS */
b4629fe2 1137
1da177e4
LT
1138/**
1139 * may_umount_tree - check if a mount tree is busy
1140 * @mnt: root of mount tree
1141 *
1142 * This is called to check if a tree of mounts has any
1143 * open files, pwds, chroots or sub mounts that are
1144 * busy.
1145 */
1146int may_umount_tree(struct vfsmount *mnt)
1147{
36341f64
RP
1148 int actual_refs = 0;
1149 int minimum_refs = 0;
315fc83e
AV
1150 struct mount *p;
1151 BUG_ON(!mnt);
1da177e4 1152
b3e19d92
NP
1153 /* write lock needed for mnt_get_count */
1154 br_write_lock(vfsmount_lock);
315fc83e 1155 for (p = real_mount(mnt); p; p = next_mnt(p, mnt)) {
83adc753 1156 actual_refs += mnt_get_count(p);
1da177e4 1157 minimum_refs += 2;
1da177e4 1158 }
b3e19d92 1159 br_write_unlock(vfsmount_lock);
1da177e4
LT
1160
1161 if (actual_refs > minimum_refs)
e3474a8e 1162 return 0;
1da177e4 1163
e3474a8e 1164 return 1;
1da177e4
LT
1165}
1166
1167EXPORT_SYMBOL(may_umount_tree);
1168
1169/**
1170 * may_umount - check if a mount point is busy
1171 * @mnt: root of mount
1172 *
1173 * This is called to check if a mount point has any
1174 * open files, pwds, chroots or sub mounts. If the
1175 * mount has sub mounts this will return busy
1176 * regardless of whether the sub mounts are busy.
1177 *
1178 * Doesn't take quota and stuff into account. IOW, in some cases it will
1179 * give false negatives. The main reason why it's here is that we need
1180 * a non-destructive way to look for easily umountable filesystems.
1181 */
1182int may_umount(struct vfsmount *mnt)
1183{
e3474a8e 1184 int ret = 1;
8ad08d8a 1185 down_read(&namespace_sem);
b3e19d92 1186 br_write_lock(vfsmount_lock);
1ab59738 1187 if (propagate_mount_busy(real_mount(mnt), 2))
e3474a8e 1188 ret = 0;
b3e19d92 1189 br_write_unlock(vfsmount_lock);
8ad08d8a 1190 up_read(&namespace_sem);
a05964f3 1191 return ret;
1da177e4
LT
1192}
1193
1194EXPORT_SYMBOL(may_umount);
1195
b90fa9ae 1196void release_mounts(struct list_head *head)
70fbcdf4 1197{
d5e50f74 1198 struct mount *mnt;
bf066c7d 1199 while (!list_empty(head)) {
1b8e5564
AV
1200 mnt = list_first_entry(head, struct mount, mnt_hash);
1201 list_del_init(&mnt->mnt_hash);
676da58d 1202 if (mnt_has_parent(mnt)) {
70fbcdf4
RP
1203 struct dentry *dentry;
1204 struct vfsmount *m;
99b7db7b
NP
1205
1206 br_write_lock(vfsmount_lock);
a73324da 1207 dentry = mnt->mnt_mountpoint;
0714a533 1208 m = &mnt->mnt_parent->mnt;
a73324da 1209 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 1210 mnt->mnt_parent = mnt;
7c4b93d8 1211 m->mnt_ghosts--;
99b7db7b 1212 br_write_unlock(vfsmount_lock);
70fbcdf4
RP
1213 dput(dentry);
1214 mntput(m);
1215 }
d5e50f74 1216 mntput(&mnt->mnt);
70fbcdf4
RP
1217 }
1218}
1219
99b7db7b
NP
1220/*
1221 * vfsmount lock must be held for write
1222 * namespace_sem must be held for write
1223 */
761d5c38 1224void umount_tree(struct mount *mnt, int propagate, struct list_head *kill)
1da177e4 1225{
7b8a53fd 1226 LIST_HEAD(tmp_list);
315fc83e 1227 struct mount *p;
1da177e4 1228
761d5c38 1229 for (p = mnt; p; p = next_mnt(p, &mnt->mnt))
1b8e5564 1230 list_move(&p->mnt_hash, &tmp_list);
1da177e4 1231
a05964f3 1232 if (propagate)
7b8a53fd 1233 propagate_umount(&tmp_list);
a05964f3 1234
1b8e5564 1235 list_for_each_entry(p, &tmp_list, mnt_hash) {
315fc83e
AV
1236 list_del_init(&p->mnt.mnt_expire);
1237 list_del_init(&p->mnt.mnt_list);
1238 __touch_mnt_namespace(p->mnt.mnt_ns);
1239 p->mnt.mnt_ns = NULL;
83adc753 1240 __mnt_make_shortterm(p);
315fc83e 1241 list_del_init(&p->mnt.mnt_child);
676da58d 1242 if (mnt_has_parent(p)) {
0714a533 1243 p->mnt_parent->mnt.mnt_ghosts++;
a73324da 1244 dentry_reset_mounted(p->mnt_mountpoint);
7c4b93d8 1245 }
0f0afb1d 1246 change_mnt_propagation(p, MS_PRIVATE);
1da177e4 1247 }
7b8a53fd 1248 list_splice(&tmp_list, kill);
1da177e4
LT
1249}
1250
692afc31 1251static void shrink_submounts(struct mount *mnt, struct list_head *umounts);
c35038be 1252
1ab59738 1253static int do_umount(struct mount *mnt, int flags)
1da177e4 1254{
1ab59738 1255 struct super_block *sb = mnt->mnt.mnt_sb;
1da177e4 1256 int retval;
70fbcdf4 1257 LIST_HEAD(umount_list);
1da177e4 1258
1ab59738 1259 retval = security_sb_umount(&mnt->mnt, flags);
1da177e4
LT
1260 if (retval)
1261 return retval;
1262
1263 /*
1264 * Allow userspace to request a mountpoint be expired rather than
1265 * unmounting unconditionally. Unmount only happens if:
1266 * (1) the mark is already set (the mark is cleared by mntput())
1267 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1268 */
1269 if (flags & MNT_EXPIRE) {
1ab59738 1270 if (&mnt->mnt == current->fs->root.mnt ||
1da177e4
LT
1271 flags & (MNT_FORCE | MNT_DETACH))
1272 return -EINVAL;
1273
b3e19d92
NP
1274 /*
1275 * probably don't strictly need the lock here if we examined
1276 * all race cases, but it's a slowpath.
1277 */
1278 br_write_lock(vfsmount_lock);
83adc753 1279 if (mnt_get_count(mnt) != 2) {
bf9faa2a 1280 br_write_unlock(vfsmount_lock);
1da177e4 1281 return -EBUSY;
b3e19d92
NP
1282 }
1283 br_write_unlock(vfsmount_lock);
1da177e4 1284
1ab59738 1285 if (!xchg(&mnt->mnt.mnt_expiry_mark, 1))
1da177e4
LT
1286 return -EAGAIN;
1287 }
1288
1289 /*
1290 * If we may have to abort operations to get out of this
1291 * mount, and they will themselves hold resources we must
1292 * allow the fs to do things. In the Unix tradition of
1293 * 'Gee thats tricky lets do it in userspace' the umount_begin
1294 * might fail to complete on the first run through as other tasks
1295 * must return, and the like. Thats for the mount program to worry
1296 * about for the moment.
1297 */
1298
42faad99 1299 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1300 sb->s_op->umount_begin(sb);
42faad99 1301 }
1da177e4
LT
1302
1303 /*
1304 * No sense to grab the lock for this test, but test itself looks
1305 * somewhat bogus. Suggestions for better replacement?
1306 * Ho-hum... In principle, we might treat that as umount + switch
1307 * to rootfs. GC would eventually take care of the old vfsmount.
1308 * Actually it makes sense, especially if rootfs would contain a
1309 * /reboot - static binary that would close all descriptors and
1310 * call reboot(9). Then init(8) could umount root and exec /reboot.
1311 */
1ab59738 1312 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1313 /*
1314 * Special case for "unmounting" root ...
1315 * we just try to remount it readonly.
1316 */
1317 down_write(&sb->s_umount);
4aa98cf7 1318 if (!(sb->s_flags & MS_RDONLY))
1da177e4 1319 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1da177e4
LT
1320 up_write(&sb->s_umount);
1321 return retval;
1322 }
1323
390c6843 1324 down_write(&namespace_sem);
99b7db7b 1325 br_write_lock(vfsmount_lock);
5addc5dd 1326 event++;
1da177e4 1327
c35038be 1328 if (!(flags & MNT_DETACH))
1ab59738 1329 shrink_submounts(mnt, &umount_list);
c35038be 1330
1da177e4 1331 retval = -EBUSY;
a05964f3 1332 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1ab59738
AV
1333 if (!list_empty(&mnt->mnt.mnt_list))
1334 umount_tree(mnt, 1, &umount_list);
1da177e4
LT
1335 retval = 0;
1336 }
99b7db7b 1337 br_write_unlock(vfsmount_lock);
390c6843 1338 up_write(&namespace_sem);
70fbcdf4 1339 release_mounts(&umount_list);
1da177e4
LT
1340 return retval;
1341}
1342
1343/*
1344 * Now umount can handle mount points as well as block devices.
1345 * This is important for filesystems which use unnamed block devices.
1346 *
1347 * We now support a flag for forced unmount like the other 'big iron'
1348 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1349 */
1350
bdc480e3 1351SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1da177e4 1352{
2d8f3038 1353 struct path path;
1da177e4 1354 int retval;
db1f05bb 1355 int lookup_flags = 0;
1da177e4 1356
db1f05bb
MS
1357 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1358 return -EINVAL;
1359
1360 if (!(flags & UMOUNT_NOFOLLOW))
1361 lookup_flags |= LOOKUP_FOLLOW;
1362
1363 retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1da177e4
LT
1364 if (retval)
1365 goto out;
1366 retval = -EINVAL;
2d8f3038 1367 if (path.dentry != path.mnt->mnt_root)
1da177e4 1368 goto dput_and_out;
2d8f3038 1369 if (!check_mnt(path.mnt))
1da177e4
LT
1370 goto dput_and_out;
1371
1372 retval = -EPERM;
1373 if (!capable(CAP_SYS_ADMIN))
1374 goto dput_and_out;
1375
1ab59738 1376 retval = do_umount(real_mount(path.mnt), flags);
1da177e4 1377dput_and_out:
429731b1 1378 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038
AV
1379 dput(path.dentry);
1380 mntput_no_expire(path.mnt);
1da177e4
LT
1381out:
1382 return retval;
1383}
1384
1385#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1386
1387/*
b58fed8b 1388 * The 2.0 compatible umount. No flags.
1da177e4 1389 */
bdc480e3 1390SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1391{
b58fed8b 1392 return sys_umount(name, 0);
1da177e4
LT
1393}
1394
1395#endif
1396
2d92ab3c 1397static int mount_is_safe(struct path *path)
1da177e4
LT
1398{
1399 if (capable(CAP_SYS_ADMIN))
1400 return 0;
1401 return -EPERM;
1402#ifdef notyet
2d92ab3c 1403 if (S_ISLNK(path->dentry->d_inode->i_mode))
1da177e4 1404 return -EPERM;
2d92ab3c 1405 if (path->dentry->d_inode->i_mode & S_ISVTX) {
da9592ed 1406 if (current_uid() != path->dentry->d_inode->i_uid)
1da177e4
LT
1407 return -EPERM;
1408 }
2d92ab3c 1409 if (inode_permission(path->dentry->d_inode, MAY_WRITE))
1da177e4
LT
1410 return -EPERM;
1411 return 0;
1412#endif
1413}
1414
87129cc0 1415struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
36341f64 1416 int flag)
1da177e4 1417{
a73324da 1418 struct mount *res, *p, *q, *r;
1a390689 1419 struct path path;
1da177e4 1420
87129cc0 1421 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(&mnt->mnt))
9676f0c6
RP
1422 return NULL;
1423
36341f64 1424 res = q = clone_mnt(mnt, dentry, flag);
1da177e4
LT
1425 if (!q)
1426 goto Enomem;
a73324da 1427 q->mnt_mountpoint = mnt->mnt_mountpoint;
1da177e4
LT
1428
1429 p = mnt;
a73324da 1430 list_for_each_entry(r, &mnt->mnt.mnt_mounts, mnt.mnt_child) {
315fc83e 1431 struct mount *s;
7ec02ef1 1432 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1433 continue;
1434
a73324da 1435 for (s = r; s; s = next_mnt(s, &r->mnt)) {
315fc83e 1436 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(&s->mnt)) {
9676f0c6
RP
1437 s = skip_mnt_tree(s);
1438 continue;
1439 }
0714a533
AV
1440 while (p != s->mnt_parent) {
1441 p = p->mnt_parent;
1442 q = q->mnt_parent;
1da177e4 1443 }
87129cc0 1444 p = s;
cb338d06 1445 path.mnt = &q->mnt;
a73324da 1446 path.dentry = p->mnt_mountpoint;
87129cc0 1447 q = clone_mnt(p, p->mnt.mnt_root, flag);
1da177e4
LT
1448 if (!q)
1449 goto Enomem;
99b7db7b 1450 br_write_lock(vfsmount_lock);
cb338d06
AV
1451 list_add_tail(&q->mnt.mnt_list, &res->mnt.mnt_list);
1452 attach_mnt(q, &path);
99b7db7b 1453 br_write_unlock(vfsmount_lock);
1da177e4
LT
1454 }
1455 }
1456 return res;
b58fed8b 1457Enomem:
1da177e4 1458 if (res) {
70fbcdf4 1459 LIST_HEAD(umount_list);
99b7db7b 1460 br_write_lock(vfsmount_lock);
761d5c38 1461 umount_tree(res, 0, &umount_list);
99b7db7b 1462 br_write_unlock(vfsmount_lock);
70fbcdf4 1463 release_mounts(&umount_list);
1da177e4
LT
1464 }
1465 return NULL;
1466}
1467
589ff870 1468struct vfsmount *collect_mounts(struct path *path)
8aec0809 1469{
cb338d06 1470 struct mount *tree;
1a60a280 1471 down_write(&namespace_sem);
87129cc0
AV
1472 tree = copy_tree(real_mount(path->mnt), path->dentry,
1473 CL_COPY_ALL | CL_PRIVATE);
1a60a280 1474 up_write(&namespace_sem);
cb338d06 1475 return tree ? &tree->mnt : NULL;
8aec0809
AV
1476}
1477
1478void drop_collected_mounts(struct vfsmount *mnt)
1479{
1480 LIST_HEAD(umount_list);
1a60a280 1481 down_write(&namespace_sem);
99b7db7b 1482 br_write_lock(vfsmount_lock);
761d5c38 1483 umount_tree(real_mount(mnt), 0, &umount_list);
99b7db7b 1484 br_write_unlock(vfsmount_lock);
1a60a280 1485 up_write(&namespace_sem);
8aec0809
AV
1486 release_mounts(&umount_list);
1487}
1488
1f707137
AV
1489int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1490 struct vfsmount *root)
1491{
1492 struct vfsmount *mnt;
1493 int res = f(root, arg);
1494 if (res)
1495 return res;
1496 list_for_each_entry(mnt, &root->mnt_list, mnt_list) {
1497 res = f(mnt, arg);
1498 if (res)
1499 return res;
1500 }
1501 return 0;
1502}
1503
4b8b21f4 1504static void cleanup_group_ids(struct mount *mnt, struct mount *end)
719f5d7f 1505{
315fc83e 1506 struct mount *p;
719f5d7f 1507
4b8b21f4 1508 for (p = mnt; p != end; p = next_mnt(p, &mnt->mnt)) {
315fc83e 1509 if (p->mnt.mnt_group_id && !IS_MNT_SHARED(&p->mnt))
4b8b21f4 1510 mnt_release_group_id(p);
719f5d7f
MS
1511 }
1512}
1513
4b8b21f4 1514static int invent_group_ids(struct mount *mnt, bool recurse)
719f5d7f 1515{
315fc83e 1516 struct mount *p;
719f5d7f 1517
4b8b21f4 1518 for (p = mnt; p; p = recurse ? next_mnt(p, &mnt->mnt) : NULL) {
315fc83e 1519 if (!p->mnt.mnt_group_id && !IS_MNT_SHARED(&p->mnt)) {
4b8b21f4 1520 int err = mnt_alloc_group_id(p);
719f5d7f 1521 if (err) {
4b8b21f4 1522 cleanup_group_ids(mnt, p);
719f5d7f
MS
1523 return err;
1524 }
1525 }
1526 }
1527
1528 return 0;
1529}
1530
b90fa9ae
RP
1531/*
1532 * @source_mnt : mount tree to be attached
21444403
RP
1533 * @nd : place the mount tree @source_mnt is attached
1534 * @parent_nd : if non-null, detach the source_mnt from its parent and
1535 * store the parent mount and mountpoint dentry.
1536 * (done when source_mnt is moved)
b90fa9ae
RP
1537 *
1538 * NOTE: in the table below explains the semantics when a source mount
1539 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1540 * ---------------------------------------------------------------------------
1541 * | BIND MOUNT OPERATION |
1542 * |**************************************************************************
1543 * | source-->| shared | private | slave | unbindable |
1544 * | dest | | | | |
1545 * | | | | | | |
1546 * | v | | | | |
1547 * |**************************************************************************
1548 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1549 * | | | | | |
1550 * |non-shared| shared (+) | private | slave (*) | invalid |
1551 * ***************************************************************************
b90fa9ae
RP
1552 * A bind operation clones the source mount and mounts the clone on the
1553 * destination mount.
1554 *
1555 * (++) the cloned mount is propagated to all the mounts in the propagation
1556 * tree of the destination mount and the cloned mount is added to
1557 * the peer group of the source mount.
1558 * (+) the cloned mount is created under the destination mount and is marked
1559 * as shared. The cloned mount is added to the peer group of the source
1560 * mount.
5afe0022
RP
1561 * (+++) the mount is propagated to all the mounts in the propagation tree
1562 * of the destination mount and the cloned mount is made slave
1563 * of the same master as that of the source mount. The cloned mount
1564 * is marked as 'shared and slave'.
1565 * (*) the cloned mount is made a slave of the same master as that of the
1566 * source mount.
1567 *
9676f0c6
RP
1568 * ---------------------------------------------------------------------------
1569 * | MOVE MOUNT OPERATION |
1570 * |**************************************************************************
1571 * | source-->| shared | private | slave | unbindable |
1572 * | dest | | | | |
1573 * | | | | | | |
1574 * | v | | | | |
1575 * |**************************************************************************
1576 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1577 * | | | | | |
1578 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1579 * ***************************************************************************
5afe0022
RP
1580 *
1581 * (+) the mount is moved to the destination. And is then propagated to
1582 * all the mounts in the propagation tree of the destination mount.
21444403 1583 * (+*) the mount is moved to the destination.
5afe0022
RP
1584 * (+++) the mount is moved to the destination and is then propagated to
1585 * all the mounts belonging to the destination mount's propagation tree.
1586 * the mount is marked as 'shared and slave'.
1587 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
1588 *
1589 * if the source mount is a tree, the operations explained above is
1590 * applied to each mount in the tree.
1591 * Must be called without spinlocks held, since this function can sleep
1592 * in allocations.
1593 */
0fb54e50 1594static int attach_recursive_mnt(struct mount *source_mnt,
1a390689 1595 struct path *path, struct path *parent_path)
b90fa9ae
RP
1596{
1597 LIST_HEAD(tree_list);
1a390689
AV
1598 struct vfsmount *dest_mnt = path->mnt;
1599 struct dentry *dest_dentry = path->dentry;
315fc83e 1600 struct mount *child, *p;
719f5d7f 1601 int err;
b90fa9ae 1602
719f5d7f 1603 if (IS_MNT_SHARED(dest_mnt)) {
0fb54e50 1604 err = invent_group_ids(source_mnt, true);
719f5d7f
MS
1605 if (err)
1606 goto out;
1607 }
0fb54e50 1608 err = propagate_mnt(dest_mnt, dest_dentry, &source_mnt->mnt, &tree_list);
719f5d7f
MS
1609 if (err)
1610 goto out_cleanup_ids;
b90fa9ae 1611
99b7db7b 1612 br_write_lock(vfsmount_lock);
df1a1ad2 1613
b90fa9ae 1614 if (IS_MNT_SHARED(dest_mnt)) {
0fb54e50 1615 for (p = source_mnt; p; p = next_mnt(p, &source_mnt->mnt))
0f0afb1d 1616 set_mnt_shared(p);
b90fa9ae 1617 }
1a390689 1618 if (parent_path) {
0fb54e50
AV
1619 detach_mnt(source_mnt, parent_path);
1620 attach_mnt(source_mnt, path);
e5d67f07 1621 touch_mnt_namespace(parent_path->mnt->mnt_ns);
21444403 1622 } else {
44d964d6 1623 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
0fb54e50 1624 commit_tree(source_mnt);
21444403 1625 }
b90fa9ae 1626
1b8e5564
AV
1627 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1628 list_del_init(&child->mnt_hash);
4b2619a5 1629 commit_tree(child);
b90fa9ae 1630 }
99b7db7b
NP
1631 br_write_unlock(vfsmount_lock);
1632
b90fa9ae 1633 return 0;
719f5d7f
MS
1634
1635 out_cleanup_ids:
1636 if (IS_MNT_SHARED(dest_mnt))
0fb54e50 1637 cleanup_group_ids(source_mnt, NULL);
719f5d7f
MS
1638 out:
1639 return err;
b90fa9ae
RP
1640}
1641
b12cea91
AV
1642static int lock_mount(struct path *path)
1643{
1644 struct vfsmount *mnt;
1645retry:
1646 mutex_lock(&path->dentry->d_inode->i_mutex);
1647 if (unlikely(cant_mount(path->dentry))) {
1648 mutex_unlock(&path->dentry->d_inode->i_mutex);
1649 return -ENOENT;
1650 }
1651 down_write(&namespace_sem);
1652 mnt = lookup_mnt(path);
1653 if (likely(!mnt))
1654 return 0;
1655 up_write(&namespace_sem);
1656 mutex_unlock(&path->dentry->d_inode->i_mutex);
1657 path_put(path);
1658 path->mnt = mnt;
1659 path->dentry = dget(mnt->mnt_root);
1660 goto retry;
1661}
1662
1663static void unlock_mount(struct path *path)
1664{
1665 up_write(&namespace_sem);
1666 mutex_unlock(&path->dentry->d_inode->i_mutex);
1667}
1668
8c3ee42e 1669static int graft_tree(struct vfsmount *mnt, struct path *path)
1da177e4 1670{
1da177e4
LT
1671 if (mnt->mnt_sb->s_flags & MS_NOUSER)
1672 return -EINVAL;
1673
8c3ee42e 1674 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1da177e4
LT
1675 S_ISDIR(mnt->mnt_root->d_inode->i_mode))
1676 return -ENOTDIR;
1677
b12cea91
AV
1678 if (d_unlinked(path->dentry))
1679 return -ENOENT;
1da177e4 1680
0fb54e50 1681 return attach_recursive_mnt(real_mount(mnt), path, NULL);
1da177e4
LT
1682}
1683
7a2e8a8f
VA
1684/*
1685 * Sanity check the flags to change_mnt_propagation.
1686 */
1687
1688static int flags_to_propagation_type(int flags)
1689{
7c6e984d 1690 int type = flags & ~(MS_REC | MS_SILENT);
7a2e8a8f
VA
1691
1692 /* Fail if any non-propagation flags are set */
1693 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1694 return 0;
1695 /* Only one propagation flag should be set */
1696 if (!is_power_of_2(type))
1697 return 0;
1698 return type;
1699}
1700
07b20889
RP
1701/*
1702 * recursively change the type of the mountpoint.
1703 */
0a0d8a46 1704static int do_change_type(struct path *path, int flag)
07b20889 1705{
315fc83e 1706 struct mount *m;
4b8b21f4 1707 struct mount *mnt = real_mount(path->mnt);
07b20889 1708 int recurse = flag & MS_REC;
7a2e8a8f 1709 int type;
719f5d7f 1710 int err = 0;
07b20889 1711
ee6f9582
MS
1712 if (!capable(CAP_SYS_ADMIN))
1713 return -EPERM;
1714
2d92ab3c 1715 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
1716 return -EINVAL;
1717
7a2e8a8f
VA
1718 type = flags_to_propagation_type(flag);
1719 if (!type)
1720 return -EINVAL;
1721
07b20889 1722 down_write(&namespace_sem);
719f5d7f
MS
1723 if (type == MS_SHARED) {
1724 err = invent_group_ids(mnt, recurse);
1725 if (err)
1726 goto out_unlock;
1727 }
1728
99b7db7b 1729 br_write_lock(vfsmount_lock);
4b8b21f4 1730 for (m = mnt; m; m = (recurse ? next_mnt(m, &mnt->mnt) : NULL))
0f0afb1d 1731 change_mnt_propagation(m, type);
99b7db7b 1732 br_write_unlock(vfsmount_lock);
719f5d7f
MS
1733
1734 out_unlock:
07b20889 1735 up_write(&namespace_sem);
719f5d7f 1736 return err;
07b20889
RP
1737}
1738
1da177e4
LT
1739/*
1740 * do loopback mount.
1741 */
0a0d8a46 1742static int do_loopback(struct path *path, char *old_name,
2dafe1c4 1743 int recurse)
1da177e4 1744{
b12cea91 1745 LIST_HEAD(umount_list);
2d92ab3c 1746 struct path old_path;
87129cc0 1747 struct mount *mnt = NULL, *old;
2d92ab3c 1748 int err = mount_is_safe(path);
1da177e4
LT
1749 if (err)
1750 return err;
1751 if (!old_name || !*old_name)
1752 return -EINVAL;
815d405c 1753 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1da177e4
LT
1754 if (err)
1755 return err;
1756
b12cea91
AV
1757 err = lock_mount(path);
1758 if (err)
1759 goto out;
1760
87129cc0
AV
1761 old = real_mount(old_path.mnt);
1762
1da177e4 1763 err = -EINVAL;
2d92ab3c 1764 if (IS_MNT_UNBINDABLE(old_path.mnt))
b12cea91 1765 goto out2;
9676f0c6 1766
2d92ab3c 1767 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
b12cea91 1768 goto out2;
1da177e4 1769
ccd48bc7
AV
1770 err = -ENOMEM;
1771 if (recurse)
87129cc0 1772 mnt = copy_tree(old, old_path.dentry, 0);
ccd48bc7 1773 else
87129cc0 1774 mnt = clone_mnt(old, old_path.dentry, 0);
ccd48bc7
AV
1775
1776 if (!mnt)
b12cea91 1777 goto out2;
ccd48bc7 1778
cb338d06 1779 err = graft_tree(&mnt->mnt, path);
ccd48bc7 1780 if (err) {
99b7db7b 1781 br_write_lock(vfsmount_lock);
761d5c38 1782 umount_tree(mnt, 0, &umount_list);
99b7db7b 1783 br_write_unlock(vfsmount_lock);
5b83d2c5 1784 }
b12cea91
AV
1785out2:
1786 unlock_mount(path);
1787 release_mounts(&umount_list);
ccd48bc7 1788out:
2d92ab3c 1789 path_put(&old_path);
1da177e4
LT
1790 return err;
1791}
1792
2e4b7fcd
DH
1793static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1794{
1795 int error = 0;
1796 int readonly_request = 0;
1797
1798 if (ms_flags & MS_RDONLY)
1799 readonly_request = 1;
1800 if (readonly_request == __mnt_is_readonly(mnt))
1801 return 0;
1802
1803 if (readonly_request)
83adc753 1804 error = mnt_make_readonly(real_mount(mnt));
2e4b7fcd 1805 else
83adc753 1806 __mnt_unmake_readonly(real_mount(mnt));
2e4b7fcd
DH
1807 return error;
1808}
1809
1da177e4
LT
1810/*
1811 * change filesystem flags. dir should be a physical root of filesystem.
1812 * If you've mounted a non-root directory somewhere and want to do remount
1813 * on it - tough luck.
1814 */
0a0d8a46 1815static int do_remount(struct path *path, int flags, int mnt_flags,
1da177e4
LT
1816 void *data)
1817{
1818 int err;
2d92ab3c 1819 struct super_block *sb = path->mnt->mnt_sb;
1da177e4
LT
1820
1821 if (!capable(CAP_SYS_ADMIN))
1822 return -EPERM;
1823
2d92ab3c 1824 if (!check_mnt(path->mnt))
1da177e4
LT
1825 return -EINVAL;
1826
2d92ab3c 1827 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
1828 return -EINVAL;
1829
ff36fe2c
EP
1830 err = security_sb_remount(sb, data);
1831 if (err)
1832 return err;
1833
1da177e4 1834 down_write(&sb->s_umount);
2e4b7fcd 1835 if (flags & MS_BIND)
2d92ab3c 1836 err = change_mount_flags(path->mnt, flags);
4aa98cf7 1837 else
2e4b7fcd 1838 err = do_remount_sb(sb, flags, data, 0);
7b43a79f 1839 if (!err) {
99b7db7b 1840 br_write_lock(vfsmount_lock);
495d6c9c 1841 mnt_flags |= path->mnt->mnt_flags & MNT_PROPAGATION_MASK;
2d92ab3c 1842 path->mnt->mnt_flags = mnt_flags;
99b7db7b 1843 br_write_unlock(vfsmount_lock);
7b43a79f 1844 }
1da177e4 1845 up_write(&sb->s_umount);
0e55a7cc 1846 if (!err) {
99b7db7b 1847 br_write_lock(vfsmount_lock);
0e55a7cc 1848 touch_mnt_namespace(path->mnt->mnt_ns);
99b7db7b 1849 br_write_unlock(vfsmount_lock);
0e55a7cc 1850 }
1da177e4
LT
1851 return err;
1852}
1853
cbbe362c 1854static inline int tree_contains_unbindable(struct mount *mnt)
9676f0c6 1855{
315fc83e 1856 struct mount *p;
cbbe362c 1857 for (p = mnt; p; p = next_mnt(p, &mnt->mnt)) {
315fc83e 1858 if (IS_MNT_UNBINDABLE(&p->mnt))
9676f0c6
RP
1859 return 1;
1860 }
1861 return 0;
1862}
1863
0a0d8a46 1864static int do_move_mount(struct path *path, char *old_name)
1da177e4 1865{
2d92ab3c 1866 struct path old_path, parent_path;
676da58d 1867 struct mount *p;
0fb54e50 1868 struct mount *old;
1da177e4
LT
1869 int err = 0;
1870 if (!capable(CAP_SYS_ADMIN))
1871 return -EPERM;
1872 if (!old_name || !*old_name)
1873 return -EINVAL;
2d92ab3c 1874 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
1875 if (err)
1876 return err;
1877
b12cea91 1878 err = lock_mount(path);
cc53ce53
DH
1879 if (err < 0)
1880 goto out;
1881
1da177e4 1882 err = -EINVAL;
2d92ab3c 1883 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1da177e4
LT
1884 goto out1;
1885
f3da392e 1886 if (d_unlinked(path->dentry))
21444403 1887 goto out1;
1da177e4
LT
1888
1889 err = -EINVAL;
2d92ab3c 1890 if (old_path.dentry != old_path.mnt->mnt_root)
21444403 1891 goto out1;
1da177e4 1892
0fb54e50
AV
1893 old = real_mount(old_path.mnt);
1894
676da58d 1895 if (!mnt_has_parent(old))
21444403 1896 goto out1;
1da177e4 1897
2d92ab3c
AV
1898 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1899 S_ISDIR(old_path.dentry->d_inode->i_mode))
21444403
RP
1900 goto out1;
1901 /*
1902 * Don't move a mount residing in a shared parent.
1903 */
0714a533 1904 if (IS_MNT_SHARED(&old->mnt_parent->mnt))
21444403 1905 goto out1;
9676f0c6
RP
1906 /*
1907 * Don't move a mount tree containing unbindable mounts to a destination
1908 * mount which is shared.
1909 */
2d92ab3c 1910 if (IS_MNT_SHARED(path->mnt) &&
cbbe362c 1911 tree_contains_unbindable(old))
9676f0c6 1912 goto out1;
1da177e4 1913 err = -ELOOP;
0714a533 1914 for (p = real_mount(path->mnt); mnt_has_parent(p); p = p->mnt_parent)
676da58d 1915 if (p == old)
21444403 1916 goto out1;
1da177e4 1917
0fb54e50 1918 err = attach_recursive_mnt(old, path, &parent_path);
4ac91378 1919 if (err)
21444403 1920 goto out1;
1da177e4
LT
1921
1922 /* if the mount is moved, it should no longer be expire
1923 * automatically */
2d92ab3c 1924 list_del_init(&old_path.mnt->mnt_expire);
1da177e4 1925out1:
b12cea91 1926 unlock_mount(path);
1da177e4 1927out:
1da177e4 1928 if (!err)
1a390689 1929 path_put(&parent_path);
2d92ab3c 1930 path_put(&old_path);
1da177e4
LT
1931 return err;
1932}
1933
9d412a43
AV
1934static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1935{
1936 int err;
1937 const char *subtype = strchr(fstype, '.');
1938 if (subtype) {
1939 subtype++;
1940 err = -EINVAL;
1941 if (!subtype[0])
1942 goto err;
1943 } else
1944 subtype = "";
1945
1946 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1947 err = -ENOMEM;
1948 if (!mnt->mnt_sb->s_subtype)
1949 goto err;
1950 return mnt;
1951
1952 err:
1953 mntput(mnt);
1954 return ERR_PTR(err);
1955}
1956
79e801a9 1957static struct vfsmount *
9d412a43
AV
1958do_kern_mount(const char *fstype, int flags, const char *name, void *data)
1959{
1960 struct file_system_type *type = get_fs_type(fstype);
1961 struct vfsmount *mnt;
1962 if (!type)
1963 return ERR_PTR(-ENODEV);
1964 mnt = vfs_kern_mount(type, flags, name, data);
1965 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
1966 !mnt->mnt_sb->s_subtype)
1967 mnt = fs_set_subtype(mnt, fstype);
1968 put_filesystem(type);
1969 return mnt;
1970}
9d412a43
AV
1971
1972/*
1973 * add a mount into a namespace's mount tree
1974 */
1975static int do_add_mount(struct vfsmount *newmnt, struct path *path, int mnt_flags)
1976{
1977 int err;
1978
1979 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
1980
b12cea91
AV
1981 err = lock_mount(path);
1982 if (err)
1983 return err;
9d412a43
AV
1984
1985 err = -EINVAL;
1986 if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(path->mnt))
1987 goto unlock;
1988
1989 /* Refuse the same filesystem on the same mount point */
1990 err = -EBUSY;
1991 if (path->mnt->mnt_sb == newmnt->mnt_sb &&
1992 path->mnt->mnt_root == path->dentry)
1993 goto unlock;
1994
1995 err = -EINVAL;
1996 if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
1997 goto unlock;
1998
1999 newmnt->mnt_flags = mnt_flags;
2000 err = graft_tree(newmnt, path);
2001
2002unlock:
b12cea91 2003 unlock_mount(path);
9d412a43
AV
2004 return err;
2005}
b1e75df4 2006
1da177e4
LT
2007/*
2008 * create a new mount for userspace and request it to be added into the
2009 * namespace's tree
2010 */
0a0d8a46 2011static int do_new_mount(struct path *path, char *type, int flags,
1da177e4
LT
2012 int mnt_flags, char *name, void *data)
2013{
2014 struct vfsmount *mnt;
15f9a3f3 2015 int err;
1da177e4 2016
eca6f534 2017 if (!type)
1da177e4
LT
2018 return -EINVAL;
2019
2020 /* we need capabilities... */
2021 if (!capable(CAP_SYS_ADMIN))
2022 return -EPERM;
2023
2024 mnt = do_kern_mount(type, flags, name, data);
2025 if (IS_ERR(mnt))
2026 return PTR_ERR(mnt);
2027
15f9a3f3
AV
2028 err = do_add_mount(mnt, path, mnt_flags);
2029 if (err)
2030 mntput(mnt);
2031 return err;
1da177e4
LT
2032}
2033
19a167af
AV
2034int finish_automount(struct vfsmount *m, struct path *path)
2035{
2036 int err;
2037 /* The new mount record should have at least 2 refs to prevent it being
2038 * expired before we get a chance to add it
2039 */
83adc753 2040 BUG_ON(mnt_get_count(real_mount(m)) < 2);
19a167af
AV
2041
2042 if (m->mnt_sb == path->mnt->mnt_sb &&
2043 m->mnt_root == path->dentry) {
b1e75df4
AV
2044 err = -ELOOP;
2045 goto fail;
19a167af
AV
2046 }
2047
19a167af 2048 err = do_add_mount(m, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
b1e75df4
AV
2049 if (!err)
2050 return 0;
2051fail:
2052 /* remove m from any expiration list it may be on */
2053 if (!list_empty(&m->mnt_expire)) {
2054 down_write(&namespace_sem);
2055 br_write_lock(vfsmount_lock);
2056 list_del_init(&m->mnt_expire);
2057 br_write_unlock(vfsmount_lock);
2058 up_write(&namespace_sem);
19a167af 2059 }
b1e75df4
AV
2060 mntput(m);
2061 mntput(m);
19a167af
AV
2062 return err;
2063}
2064
ea5b778a
DH
2065/**
2066 * mnt_set_expiry - Put a mount on an expiration list
2067 * @mnt: The mount to list.
2068 * @expiry_list: The list to add the mount to.
2069 */
2070void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2071{
2072 down_write(&namespace_sem);
2073 br_write_lock(vfsmount_lock);
2074
2075 list_add_tail(&mnt->mnt_expire, expiry_list);
2076
2077 br_write_unlock(vfsmount_lock);
2078 up_write(&namespace_sem);
2079}
2080EXPORT_SYMBOL(mnt_set_expiry);
2081
1da177e4
LT
2082/*
2083 * process a list of expirable mountpoints with the intent of discarding any
2084 * mountpoints that aren't in use and haven't been touched since last we came
2085 * here
2086 */
2087void mark_mounts_for_expiry(struct list_head *mounts)
2088{
761d5c38 2089 struct mount *mnt, *next;
1da177e4 2090 LIST_HEAD(graveyard);
bcc5c7d2 2091 LIST_HEAD(umounts);
1da177e4
LT
2092
2093 if (list_empty(mounts))
2094 return;
2095
bcc5c7d2 2096 down_write(&namespace_sem);
99b7db7b 2097 br_write_lock(vfsmount_lock);
1da177e4
LT
2098
2099 /* extract from the expiration list every vfsmount that matches the
2100 * following criteria:
2101 * - only referenced by its parent vfsmount
2102 * - still marked for expiry (marked on the last call here; marks are
2103 * cleared by mntput())
2104 */
761d5c38
AV
2105 list_for_each_entry_safe(mnt, next, mounts, mnt.mnt_expire) {
2106 if (!xchg(&mnt->mnt.mnt_expiry_mark, 1) ||
1ab59738 2107 propagate_mount_busy(mnt, 1))
1da177e4 2108 continue;
761d5c38 2109 list_move(&mnt->mnt.mnt_expire, &graveyard);
1da177e4 2110 }
bcc5c7d2 2111 while (!list_empty(&graveyard)) {
761d5c38
AV
2112 mnt = list_first_entry(&graveyard, struct mount, mnt.mnt_expire);
2113 touch_mnt_namespace(mnt->mnt.mnt_ns);
bcc5c7d2
AV
2114 umount_tree(mnt, 1, &umounts);
2115 }
99b7db7b 2116 br_write_unlock(vfsmount_lock);
bcc5c7d2
AV
2117 up_write(&namespace_sem);
2118
2119 release_mounts(&umounts);
5528f911
TM
2120}
2121
2122EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2123
2124/*
2125 * Ripoff of 'select_parent()'
2126 *
2127 * search the list of submounts for a given mountpoint, and move any
2128 * shrinkable submounts to the 'graveyard' list.
2129 */
692afc31 2130static int select_submounts(struct mount *parent, struct list_head *graveyard)
5528f911 2131{
692afc31 2132 struct mount *this_parent = parent;
5528f911
TM
2133 struct list_head *next;
2134 int found = 0;
2135
2136repeat:
692afc31 2137 next = this_parent->mnt.mnt_mounts.next;
5528f911 2138resume:
692afc31 2139 while (next != &this_parent->mnt.mnt_mounts) {
5528f911 2140 struct list_head *tmp = next;
692afc31 2141 struct mount *mnt = list_entry(tmp, struct mount, mnt.mnt_child);
5528f911
TM
2142
2143 next = tmp->next;
692afc31 2144 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1da177e4 2145 continue;
5528f911
TM
2146 /*
2147 * Descend a level if the d_mounts list is non-empty.
2148 */
692afc31 2149 if (!list_empty(&mnt->mnt.mnt_mounts)) {
5528f911
TM
2150 this_parent = mnt;
2151 goto repeat;
2152 }
1da177e4 2153
1ab59738 2154 if (!propagate_mount_busy(mnt, 1)) {
692afc31 2155 list_move_tail(&mnt->mnt.mnt_expire, graveyard);
5528f911
TM
2156 found++;
2157 }
1da177e4 2158 }
5528f911
TM
2159 /*
2160 * All done at this level ... ascend and resume the search
2161 */
2162 if (this_parent != parent) {
692afc31 2163 next = this_parent->mnt.mnt_child.next;
0714a533 2164 this_parent = this_parent->mnt_parent;
5528f911
TM
2165 goto resume;
2166 }
2167 return found;
2168}
2169
2170/*
2171 * process a list of expirable mountpoints with the intent of discarding any
2172 * submounts of a specific parent mountpoint
99b7db7b
NP
2173 *
2174 * vfsmount_lock must be held for write
5528f911 2175 */
692afc31 2176static void shrink_submounts(struct mount *mnt, struct list_head *umounts)
5528f911
TM
2177{
2178 LIST_HEAD(graveyard);
761d5c38 2179 struct mount *m;
5528f911 2180
5528f911 2181 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 2182 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 2183 while (!list_empty(&graveyard)) {
761d5c38
AV
2184 m = list_first_entry(&graveyard, struct mount,
2185 mnt.mnt_expire);
2186 touch_mnt_namespace(m->mnt.mnt_ns);
afef80b3 2187 umount_tree(m, 1, umounts);
bcc5c7d2
AV
2188 }
2189 }
1da177e4
LT
2190}
2191
1da177e4
LT
2192/*
2193 * Some copy_from_user() implementations do not return the exact number of
2194 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2195 * Note that this function differs from copy_from_user() in that it will oops
2196 * on bad values of `to', rather than returning a short copy.
2197 */
b58fed8b
RP
2198static long exact_copy_from_user(void *to, const void __user * from,
2199 unsigned long n)
1da177e4
LT
2200{
2201 char *t = to;
2202 const char __user *f = from;
2203 char c;
2204
2205 if (!access_ok(VERIFY_READ, from, n))
2206 return n;
2207
2208 while (n) {
2209 if (__get_user(c, f)) {
2210 memset(t, 0, n);
2211 break;
2212 }
2213 *t++ = c;
2214 f++;
2215 n--;
2216 }
2217 return n;
2218}
2219
b58fed8b 2220int copy_mount_options(const void __user * data, unsigned long *where)
1da177e4
LT
2221{
2222 int i;
2223 unsigned long page;
2224 unsigned long size;
b58fed8b 2225
1da177e4
LT
2226 *where = 0;
2227 if (!data)
2228 return 0;
2229
2230 if (!(page = __get_free_page(GFP_KERNEL)))
2231 return -ENOMEM;
2232
2233 /* We only care that *some* data at the address the user
2234 * gave us is valid. Just in case, we'll zero
2235 * the remainder of the page.
2236 */
2237 /* copy_from_user cannot cross TASK_SIZE ! */
2238 size = TASK_SIZE - (unsigned long)data;
2239 if (size > PAGE_SIZE)
2240 size = PAGE_SIZE;
2241
2242 i = size - exact_copy_from_user((void *)page, data, size);
2243 if (!i) {
b58fed8b 2244 free_page(page);
1da177e4
LT
2245 return -EFAULT;
2246 }
2247 if (i != PAGE_SIZE)
2248 memset((char *)page + i, 0, PAGE_SIZE - i);
2249 *where = page;
2250 return 0;
2251}
2252
eca6f534
VN
2253int copy_mount_string(const void __user *data, char **where)
2254{
2255 char *tmp;
2256
2257 if (!data) {
2258 *where = NULL;
2259 return 0;
2260 }
2261
2262 tmp = strndup_user(data, PAGE_SIZE);
2263 if (IS_ERR(tmp))
2264 return PTR_ERR(tmp);
2265
2266 *where = tmp;
2267 return 0;
2268}
2269
1da177e4
LT
2270/*
2271 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2272 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2273 *
2274 * data is a (void *) that can point to any structure up to
2275 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2276 * information (or be NULL).
2277 *
2278 * Pre-0.97 versions of mount() didn't have a flags word.
2279 * When the flags word was introduced its top half was required
2280 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2281 * Therefore, if this magic number is present, it carries no information
2282 * and must be discarded.
2283 */
b58fed8b 2284long do_mount(char *dev_name, char *dir_name, char *type_page,
1da177e4
LT
2285 unsigned long flags, void *data_page)
2286{
2d92ab3c 2287 struct path path;
1da177e4
LT
2288 int retval = 0;
2289 int mnt_flags = 0;
2290
2291 /* Discard magic */
2292 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2293 flags &= ~MS_MGC_MSK;
2294
2295 /* Basic sanity checks */
2296
2297 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2298 return -EINVAL;
1da177e4
LT
2299
2300 if (data_page)
2301 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2302
a27ab9f2
TH
2303 /* ... and get the mountpoint */
2304 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2305 if (retval)
2306 return retval;
2307
2308 retval = security_sb_mount(dev_name, &path,
2309 type_page, flags, data_page);
2310 if (retval)
2311 goto dput_out;
2312
613cbe3d
AK
2313 /* Default to relatime unless overriden */
2314 if (!(flags & MS_NOATIME))
2315 mnt_flags |= MNT_RELATIME;
0a1c01c9 2316
1da177e4
LT
2317 /* Separate the per-mountpoint flags */
2318 if (flags & MS_NOSUID)
2319 mnt_flags |= MNT_NOSUID;
2320 if (flags & MS_NODEV)
2321 mnt_flags |= MNT_NODEV;
2322 if (flags & MS_NOEXEC)
2323 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
2324 if (flags & MS_NOATIME)
2325 mnt_flags |= MNT_NOATIME;
2326 if (flags & MS_NODIRATIME)
2327 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
2328 if (flags & MS_STRICTATIME)
2329 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2e4b7fcd
DH
2330 if (flags & MS_RDONLY)
2331 mnt_flags |= MNT_READONLY;
fc33a7bb 2332
7a4dec53 2333 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
d0adde57
MG
2334 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2335 MS_STRICTATIME);
1da177e4 2336
1da177e4 2337 if (flags & MS_REMOUNT)
2d92ab3c 2338 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
1da177e4
LT
2339 data_page);
2340 else if (flags & MS_BIND)
2d92ab3c 2341 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 2342 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 2343 retval = do_change_type(&path, flags);
1da177e4 2344 else if (flags & MS_MOVE)
2d92ab3c 2345 retval = do_move_mount(&path, dev_name);
1da177e4 2346 else
2d92ab3c 2347 retval = do_new_mount(&path, type_page, flags, mnt_flags,
1da177e4
LT
2348 dev_name, data_page);
2349dput_out:
2d92ab3c 2350 path_put(&path);
1da177e4
LT
2351 return retval;
2352}
2353
cf8d2c11
TM
2354static struct mnt_namespace *alloc_mnt_ns(void)
2355{
2356 struct mnt_namespace *new_ns;
2357
2358 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2359 if (!new_ns)
2360 return ERR_PTR(-ENOMEM);
2361 atomic_set(&new_ns->count, 1);
2362 new_ns->root = NULL;
2363 INIT_LIST_HEAD(&new_ns->list);
2364 init_waitqueue_head(&new_ns->poll);
2365 new_ns->event = 0;
2366 return new_ns;
2367}
2368
f03c6599
AV
2369void mnt_make_longterm(struct vfsmount *mnt)
2370{
83adc753 2371 __mnt_make_longterm(real_mount(mnt));
f03c6599
AV
2372}
2373
83adc753 2374void mnt_make_shortterm(struct vfsmount *m)
f03c6599 2375{
7e3d0eb0 2376#ifdef CONFIG_SMP
83adc753 2377 struct mount *mnt = real_mount(m);
68e8a9fe 2378 if (atomic_add_unless(&mnt->mnt_longterm, -1, 1))
f03c6599
AV
2379 return;
2380 br_write_lock(vfsmount_lock);
68e8a9fe 2381 atomic_dec(&mnt->mnt_longterm);
f03c6599 2382 br_write_unlock(vfsmount_lock);
7e3d0eb0 2383#endif
f03c6599
AV
2384}
2385
741a2951
JD
2386/*
2387 * Allocate a new namespace structure and populate it with contents
2388 * copied from the namespace of the passed in task structure.
2389 */
e3222c4e 2390static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
6b3286ed 2391 struct fs_struct *fs)
1da177e4 2392{
6b3286ed 2393 struct mnt_namespace *new_ns;
7f2da1e7 2394 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
315fc83e 2395 struct mount *p, *q;
cb338d06 2396 struct mount *new;
1da177e4 2397
cf8d2c11
TM
2398 new_ns = alloc_mnt_ns();
2399 if (IS_ERR(new_ns))
2400 return new_ns;
1da177e4 2401
390c6843 2402 down_write(&namespace_sem);
1da177e4 2403 /* First pass: copy the tree topology */
87129cc0 2404 new = copy_tree(real_mount(mnt_ns->root), mnt_ns->root->mnt_root,
9676f0c6 2405 CL_COPY_ALL | CL_EXPIRE);
cb338d06 2406 if (!new) {
390c6843 2407 up_write(&namespace_sem);
1da177e4 2408 kfree(new_ns);
5cc4a034 2409 return ERR_PTR(-ENOMEM);
1da177e4 2410 }
cb338d06 2411 new_ns->root = &new->mnt;
99b7db7b 2412 br_write_lock(vfsmount_lock);
1da177e4 2413 list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
99b7db7b 2414 br_write_unlock(vfsmount_lock);
1da177e4
LT
2415
2416 /*
2417 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2418 * as belonging to new namespace. We have already acquired a private
2419 * fs_struct, so tsk->fs->lock is not needed.
2420 */
315fc83e 2421 p = real_mount(mnt_ns->root);
cb338d06 2422 q = new;
1da177e4 2423 while (p) {
315fc83e 2424 q->mnt.mnt_ns = new_ns;
83adc753 2425 __mnt_make_longterm(q);
1da177e4 2426 if (fs) {
315fc83e
AV
2427 if (&p->mnt == fs->root.mnt) {
2428 fs->root.mnt = mntget(&q->mnt);
83adc753 2429 __mnt_make_longterm(q);
315fc83e
AV
2430 mnt_make_shortterm(&p->mnt);
2431 rootmnt = &p->mnt;
1da177e4 2432 }
315fc83e
AV
2433 if (&p->mnt == fs->pwd.mnt) {
2434 fs->pwd.mnt = mntget(&q->mnt);
83adc753 2435 __mnt_make_longterm(q);
315fc83e
AV
2436 mnt_make_shortterm(&p->mnt);
2437 pwdmnt = &p->mnt;
1da177e4 2438 }
1da177e4 2439 }
6b3286ed 2440 p = next_mnt(p, mnt_ns->root);
1da177e4
LT
2441 q = next_mnt(q, new_ns->root);
2442 }
390c6843 2443 up_write(&namespace_sem);
1da177e4 2444
1da177e4 2445 if (rootmnt)
f03c6599 2446 mntput(rootmnt);
1da177e4 2447 if (pwdmnt)
f03c6599 2448 mntput(pwdmnt);
1da177e4 2449
741a2951
JD
2450 return new_ns;
2451}
2452
213dd266 2453struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
e3222c4e 2454 struct fs_struct *new_fs)
741a2951 2455{
6b3286ed 2456 struct mnt_namespace *new_ns;
741a2951 2457
e3222c4e 2458 BUG_ON(!ns);
6b3286ed 2459 get_mnt_ns(ns);
741a2951
JD
2460
2461 if (!(flags & CLONE_NEWNS))
e3222c4e 2462 return ns;
741a2951 2463
e3222c4e 2464 new_ns = dup_mnt_ns(ns, new_fs);
741a2951 2465
6b3286ed 2466 put_mnt_ns(ns);
e3222c4e 2467 return new_ns;
1da177e4
LT
2468}
2469
cf8d2c11
TM
2470/**
2471 * create_mnt_ns - creates a private namespace and adds a root filesystem
2472 * @mnt: pointer to the new root filesystem mountpoint
2473 */
6c449c8d 2474static struct mnt_namespace *create_mnt_ns(struct vfsmount *mnt)
cf8d2c11
TM
2475{
2476 struct mnt_namespace *new_ns;
2477
2478 new_ns = alloc_mnt_ns();
2479 if (!IS_ERR(new_ns)) {
2480 mnt->mnt_ns = new_ns;
83adc753 2481 __mnt_make_longterm(real_mount(mnt));
cf8d2c11
TM
2482 new_ns->root = mnt;
2483 list_add(&new_ns->list, &new_ns->root->mnt_list);
c1334495
AV
2484 } else {
2485 mntput(mnt);
cf8d2c11
TM
2486 }
2487 return new_ns;
2488}
cf8d2c11 2489
ea441d11
AV
2490struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2491{
2492 struct mnt_namespace *ns;
d31da0f0 2493 struct super_block *s;
ea441d11
AV
2494 struct path path;
2495 int err;
2496
2497 ns = create_mnt_ns(mnt);
2498 if (IS_ERR(ns))
2499 return ERR_CAST(ns);
2500
2501 err = vfs_path_lookup(mnt->mnt_root, mnt,
2502 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2503
2504 put_mnt_ns(ns);
2505
2506 if (err)
2507 return ERR_PTR(err);
2508
2509 /* trade a vfsmount reference for active sb one */
d31da0f0
AV
2510 s = path.mnt->mnt_sb;
2511 atomic_inc(&s->s_active);
ea441d11
AV
2512 mntput(path.mnt);
2513 /* lock the sucker */
d31da0f0 2514 down_write(&s->s_umount);
ea441d11
AV
2515 /* ... and return the root of (sub)tree on it */
2516 return path.dentry;
2517}
2518EXPORT_SYMBOL(mount_subtree);
2519
bdc480e3
HC
2520SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2521 char __user *, type, unsigned long, flags, void __user *, data)
1da177e4 2522{
eca6f534
VN
2523 int ret;
2524 char *kernel_type;
2525 char *kernel_dir;
2526 char *kernel_dev;
1da177e4 2527 unsigned long data_page;
1da177e4 2528
eca6f534
VN
2529 ret = copy_mount_string(type, &kernel_type);
2530 if (ret < 0)
2531 goto out_type;
1da177e4 2532
eca6f534
VN
2533 kernel_dir = getname(dir_name);
2534 if (IS_ERR(kernel_dir)) {
2535 ret = PTR_ERR(kernel_dir);
2536 goto out_dir;
2537 }
1da177e4 2538
eca6f534
VN
2539 ret = copy_mount_string(dev_name, &kernel_dev);
2540 if (ret < 0)
2541 goto out_dev;
1da177e4 2542
eca6f534
VN
2543 ret = copy_mount_options(data, &data_page);
2544 if (ret < 0)
2545 goto out_data;
1da177e4 2546
eca6f534
VN
2547 ret = do_mount(kernel_dev, kernel_dir, kernel_type, flags,
2548 (void *) data_page);
1da177e4 2549
eca6f534
VN
2550 free_page(data_page);
2551out_data:
2552 kfree(kernel_dev);
2553out_dev:
2554 putname(kernel_dir);
2555out_dir:
2556 kfree(kernel_type);
2557out_type:
2558 return ret;
1da177e4
LT
2559}
2560
afac7cba
AV
2561/*
2562 * Return true if path is reachable from root
2563 *
2564 * namespace_sem or vfsmount_lock is held
2565 */
643822b4 2566bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
afac7cba
AV
2567 const struct path *root)
2568{
643822b4 2569 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
a73324da 2570 dentry = mnt->mnt_mountpoint;
0714a533 2571 mnt = mnt->mnt_parent;
afac7cba 2572 }
643822b4 2573 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
afac7cba
AV
2574}
2575
2576int path_is_under(struct path *path1, struct path *path2)
2577{
2578 int res;
2579 br_read_lock(vfsmount_lock);
643822b4 2580 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
afac7cba
AV
2581 br_read_unlock(vfsmount_lock);
2582 return res;
2583}
2584EXPORT_SYMBOL(path_is_under);
2585
1da177e4
LT
2586/*
2587 * pivot_root Semantics:
2588 * Moves the root file system of the current process to the directory put_old,
2589 * makes new_root as the new root file system of the current process, and sets
2590 * root/cwd of all processes which had them on the current root to new_root.
2591 *
2592 * Restrictions:
2593 * The new_root and put_old must be directories, and must not be on the
2594 * same file system as the current process root. The put_old must be
2595 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2596 * pointed to by put_old must yield the same directory as new_root. No other
2597 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2598 *
4a0d11fa
NB
2599 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2600 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2601 * in this situation.
2602 *
1da177e4
LT
2603 * Notes:
2604 * - we don't move root/cwd if they are not at the root (reason: if something
2605 * cared enough to change them, it's probably wrong to force them elsewhere)
2606 * - it's okay to pick a root that isn't the root of a file system, e.g.
2607 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2608 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2609 * first.
2610 */
3480b257
HC
2611SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2612 const char __user *, put_old)
1da177e4 2613{
2d8f3038 2614 struct path new, old, parent_path, root_parent, root;
419148da 2615 struct mount *new_mnt, *root_mnt;
1da177e4
LT
2616 int error;
2617
2618 if (!capable(CAP_SYS_ADMIN))
2619 return -EPERM;
2620
2d8f3038 2621 error = user_path_dir(new_root, &new);
1da177e4
LT
2622 if (error)
2623 goto out0;
1da177e4 2624
2d8f3038 2625 error = user_path_dir(put_old, &old);
1da177e4
LT
2626 if (error)
2627 goto out1;
2628
2d8f3038 2629 error = security_sb_pivotroot(&old, &new);
b12cea91
AV
2630 if (error)
2631 goto out2;
1da177e4 2632
f7ad3c6b 2633 get_fs_root(current->fs, &root);
b12cea91
AV
2634 error = lock_mount(&old);
2635 if (error)
2636 goto out3;
2637
1da177e4 2638 error = -EINVAL;
419148da
AV
2639 new_mnt = real_mount(new.mnt);
2640 root_mnt = real_mount(root.mnt);
2d8f3038 2641 if (IS_MNT_SHARED(old.mnt) ||
0714a533
AV
2642 IS_MNT_SHARED(&new_mnt->mnt_parent->mnt) ||
2643 IS_MNT_SHARED(&root_mnt->mnt_parent->mnt))
b12cea91 2644 goto out4;
27cb1572 2645 if (!check_mnt(root.mnt) || !check_mnt(new.mnt))
b12cea91 2646 goto out4;
1da177e4 2647 error = -ENOENT;
f3da392e 2648 if (d_unlinked(new.dentry))
b12cea91 2649 goto out4;
f3da392e 2650 if (d_unlinked(old.dentry))
b12cea91 2651 goto out4;
1da177e4 2652 error = -EBUSY;
2d8f3038
AV
2653 if (new.mnt == root.mnt ||
2654 old.mnt == root.mnt)
b12cea91 2655 goto out4; /* loop, on the same file system */
1da177e4 2656 error = -EINVAL;
8c3ee42e 2657 if (root.mnt->mnt_root != root.dentry)
b12cea91 2658 goto out4; /* not a mountpoint */
676da58d 2659 if (!mnt_has_parent(root_mnt))
b12cea91 2660 goto out4; /* not attached */
2d8f3038 2661 if (new.mnt->mnt_root != new.dentry)
b12cea91 2662 goto out4; /* not a mountpoint */
676da58d 2663 if (!mnt_has_parent(new_mnt))
b12cea91 2664 goto out4; /* not attached */
4ac91378 2665 /* make sure we can reach put_old from new_root */
643822b4 2666 if (!is_path_reachable(real_mount(old.mnt), old.dentry, &new))
b12cea91 2667 goto out4;
27cb1572 2668 br_write_lock(vfsmount_lock);
419148da
AV
2669 detach_mnt(new_mnt, &parent_path);
2670 detach_mnt(root_mnt, &root_parent);
4ac91378 2671 /* mount old root on put_old */
419148da 2672 attach_mnt(root_mnt, &old);
4ac91378 2673 /* mount new_root on / */
419148da 2674 attach_mnt(new_mnt, &root_parent);
6b3286ed 2675 touch_mnt_namespace(current->nsproxy->mnt_ns);
99b7db7b 2676 br_write_unlock(vfsmount_lock);
2d8f3038 2677 chroot_fs_refs(&root, &new);
1da177e4 2678 error = 0;
b12cea91
AV
2679out4:
2680 unlock_mount(&old);
2681 if (!error) {
2682 path_put(&root_parent);
2683 path_put(&parent_path);
2684 }
2685out3:
8c3ee42e 2686 path_put(&root);
b12cea91 2687out2:
2d8f3038 2688 path_put(&old);
1da177e4 2689out1:
2d8f3038 2690 path_put(&new);
1da177e4 2691out0:
1da177e4 2692 return error;
1da177e4
LT
2693}
2694
2695static void __init init_mount_tree(void)
2696{
2697 struct vfsmount *mnt;
6b3286ed 2698 struct mnt_namespace *ns;
ac748a09 2699 struct path root;
1da177e4
LT
2700
2701 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2702 if (IS_ERR(mnt))
2703 panic("Can't create rootfs");
b3e19d92 2704
3b22edc5
TM
2705 ns = create_mnt_ns(mnt);
2706 if (IS_ERR(ns))
1da177e4 2707 panic("Can't allocate initial namespace");
6b3286ed
KK
2708
2709 init_task.nsproxy->mnt_ns = ns;
2710 get_mnt_ns(ns);
2711
ac748a09
JB
2712 root.mnt = ns->root;
2713 root.dentry = ns->root->mnt_root;
2714
2715 set_fs_pwd(current->fs, &root);
2716 set_fs_root(current->fs, &root);
1da177e4
LT
2717}
2718
74bf17cf 2719void __init mnt_init(void)
1da177e4 2720{
13f14b4d 2721 unsigned u;
15a67dd8 2722 int err;
1da177e4 2723
390c6843
RP
2724 init_rwsem(&namespace_sem);
2725
7d6fec45 2726 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
20c2df83 2727 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 2728
b58fed8b 2729 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
1da177e4
LT
2730
2731 if (!mount_hashtable)
2732 panic("Failed to allocate mount hash table\n");
2733
80cdc6da 2734 printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
13f14b4d
ED
2735
2736 for (u = 0; u < HASH_SIZE; u++)
2737 INIT_LIST_HEAD(&mount_hashtable[u]);
1da177e4 2738
99b7db7b
NP
2739 br_lock_init(vfsmount_lock);
2740
15a67dd8
RD
2741 err = sysfs_init();
2742 if (err)
2743 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 2744 __func__, err);
00d26666
GKH
2745 fs_kobj = kobject_create_and_add("fs", NULL);
2746 if (!fs_kobj)
8e24eea7 2747 printk(KERN_WARNING "%s: kobj create error\n", __func__);
1da177e4
LT
2748 init_rootfs();
2749 init_mount_tree();
2750}
2751
616511d0 2752void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 2753{
70fbcdf4 2754 LIST_HEAD(umount_list);
616511d0 2755
d498b25a 2756 if (!atomic_dec_and_test(&ns->count))
616511d0 2757 return;
390c6843 2758 down_write(&namespace_sem);
99b7db7b 2759 br_write_lock(vfsmount_lock);
761d5c38 2760 umount_tree(real_mount(ns->root), 0, &umount_list);
99b7db7b 2761 br_write_unlock(vfsmount_lock);
390c6843 2762 up_write(&namespace_sem);
70fbcdf4 2763 release_mounts(&umount_list);
6b3286ed 2764 kfree(ns);
1da177e4 2765}
9d412a43
AV
2766
2767struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2768{
423e0ab0
TC
2769 struct vfsmount *mnt;
2770 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2771 if (!IS_ERR(mnt)) {
2772 /*
2773 * it is a longterm mount, don't release mnt until
2774 * we unmount before file sys is unregistered
2775 */
2776 mnt_make_longterm(mnt);
2777 }
2778 return mnt;
9d412a43
AV
2779}
2780EXPORT_SYMBOL_GPL(kern_mount_data);
423e0ab0
TC
2781
2782void kern_unmount(struct vfsmount *mnt)
2783{
2784 /* release long term mount so mount point can be released */
2785 if (!IS_ERR_OR_NULL(mnt)) {
2786 mnt_make_shortterm(mnt);
2787 mntput(mnt);
2788 }
2789}
2790EXPORT_SYMBOL(kern_unmount);
02125a82
AV
2791
2792bool our_mnt(struct vfsmount *mnt)
2793{
2794 return check_mnt(mnt);
2795}