]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/namespace.c
fold __get_file_write_access() into its only caller
[mirror_ubuntu-artful-kernel.git] / fs / namespace.c
1 /*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/idr.h>
19 #include <linux/acct.h> /* acct_auto_close_mnt */
20 #include <linux/init.h> /* init_rootfs */
21 #include <linux/fs_struct.h> /* get_fs_root et.al. */
22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23 #include <linux/uaccess.h>
24 #include <linux/proc_ns.h>
25 #include <linux/magic.h>
26 #include <linux/bootmem.h>
27 #include "pnode.h"
28 #include "internal.h"
29
30 static unsigned int m_hash_mask __read_mostly;
31 static unsigned int m_hash_shift __read_mostly;
32 static unsigned int mp_hash_mask __read_mostly;
33 static unsigned int mp_hash_shift __read_mostly;
34
35 static __initdata unsigned long mhash_entries;
36 static int __init set_mhash_entries(char *str)
37 {
38 if (!str)
39 return 0;
40 mhash_entries = simple_strtoul(str, &str, 0);
41 return 1;
42 }
43 __setup("mhash_entries=", set_mhash_entries);
44
45 static __initdata unsigned long mphash_entries;
46 static int __init set_mphash_entries(char *str)
47 {
48 if (!str)
49 return 0;
50 mphash_entries = simple_strtoul(str, &str, 0);
51 return 1;
52 }
53 __setup("mphash_entries=", set_mphash_entries);
54
55 static u64 event;
56 static DEFINE_IDA(mnt_id_ida);
57 static DEFINE_IDA(mnt_group_ida);
58 static DEFINE_SPINLOCK(mnt_id_lock);
59 static int mnt_id_start = 0;
60 static int mnt_group_start = 1;
61
62 static struct hlist_head *mount_hashtable __read_mostly;
63 static struct hlist_head *mountpoint_hashtable __read_mostly;
64 static struct kmem_cache *mnt_cache __read_mostly;
65 static DECLARE_RWSEM(namespace_sem);
66
67 /* /sys/fs */
68 struct kobject *fs_kobj;
69 EXPORT_SYMBOL_GPL(fs_kobj);
70
71 /*
72 * vfsmount lock may be taken for read to prevent changes to the
73 * vfsmount hash, ie. during mountpoint lookups or walking back
74 * up the tree.
75 *
76 * It should be taken for write in all cases where the vfsmount
77 * tree or hash is modified or when a vfsmount structure is modified.
78 */
79 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
80
81 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
82 {
83 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
84 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
85 tmp = tmp + (tmp >> m_hash_shift);
86 return &mount_hashtable[tmp & m_hash_mask];
87 }
88
89 static inline struct hlist_head *mp_hash(struct dentry *dentry)
90 {
91 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
92 tmp = tmp + (tmp >> mp_hash_shift);
93 return &mountpoint_hashtable[tmp & mp_hash_mask];
94 }
95
96 /*
97 * allocation is serialized by namespace_sem, but we need the spinlock to
98 * serialize with freeing.
99 */
100 static int mnt_alloc_id(struct mount *mnt)
101 {
102 int res;
103
104 retry:
105 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
106 spin_lock(&mnt_id_lock);
107 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
108 if (!res)
109 mnt_id_start = mnt->mnt_id + 1;
110 spin_unlock(&mnt_id_lock);
111 if (res == -EAGAIN)
112 goto retry;
113
114 return res;
115 }
116
117 static void mnt_free_id(struct mount *mnt)
118 {
119 int id = mnt->mnt_id;
120 spin_lock(&mnt_id_lock);
121 ida_remove(&mnt_id_ida, id);
122 if (mnt_id_start > id)
123 mnt_id_start = id;
124 spin_unlock(&mnt_id_lock);
125 }
126
127 /*
128 * Allocate a new peer group ID
129 *
130 * mnt_group_ida is protected by namespace_sem
131 */
132 static int mnt_alloc_group_id(struct mount *mnt)
133 {
134 int res;
135
136 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
137 return -ENOMEM;
138
139 res = ida_get_new_above(&mnt_group_ida,
140 mnt_group_start,
141 &mnt->mnt_group_id);
142 if (!res)
143 mnt_group_start = mnt->mnt_group_id + 1;
144
145 return res;
146 }
147
148 /*
149 * Release a peer group ID
150 */
151 void mnt_release_group_id(struct mount *mnt)
152 {
153 int id = mnt->mnt_group_id;
154 ida_remove(&mnt_group_ida, id);
155 if (mnt_group_start > id)
156 mnt_group_start = id;
157 mnt->mnt_group_id = 0;
158 }
159
160 /*
161 * vfsmount lock must be held for read
162 */
163 static inline void mnt_add_count(struct mount *mnt, int n)
164 {
165 #ifdef CONFIG_SMP
166 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
167 #else
168 preempt_disable();
169 mnt->mnt_count += n;
170 preempt_enable();
171 #endif
172 }
173
174 /*
175 * vfsmount lock must be held for write
176 */
177 unsigned int mnt_get_count(struct mount *mnt)
178 {
179 #ifdef CONFIG_SMP
180 unsigned int count = 0;
181 int cpu;
182
183 for_each_possible_cpu(cpu) {
184 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
185 }
186
187 return count;
188 #else
189 return mnt->mnt_count;
190 #endif
191 }
192
193 static struct mount *alloc_vfsmnt(const char *name)
194 {
195 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
196 if (mnt) {
197 int err;
198
199 err = mnt_alloc_id(mnt);
200 if (err)
201 goto out_free_cache;
202
203 if (name) {
204 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
205 if (!mnt->mnt_devname)
206 goto out_free_id;
207 }
208
209 #ifdef CONFIG_SMP
210 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
211 if (!mnt->mnt_pcp)
212 goto out_free_devname;
213
214 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
215 #else
216 mnt->mnt_count = 1;
217 mnt->mnt_writers = 0;
218 #endif
219
220 INIT_HLIST_NODE(&mnt->mnt_hash);
221 INIT_LIST_HEAD(&mnt->mnt_child);
222 INIT_LIST_HEAD(&mnt->mnt_mounts);
223 INIT_LIST_HEAD(&mnt->mnt_list);
224 INIT_LIST_HEAD(&mnt->mnt_expire);
225 INIT_LIST_HEAD(&mnt->mnt_share);
226 INIT_LIST_HEAD(&mnt->mnt_slave_list);
227 INIT_LIST_HEAD(&mnt->mnt_slave);
228 #ifdef CONFIG_FSNOTIFY
229 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
230 #endif
231 }
232 return mnt;
233
234 #ifdef CONFIG_SMP
235 out_free_devname:
236 kfree(mnt->mnt_devname);
237 #endif
238 out_free_id:
239 mnt_free_id(mnt);
240 out_free_cache:
241 kmem_cache_free(mnt_cache, mnt);
242 return NULL;
243 }
244
245 /*
246 * Most r/o checks on a fs are for operations that take
247 * discrete amounts of time, like a write() or unlink().
248 * We must keep track of when those operations start
249 * (for permission checks) and when they end, so that
250 * we can determine when writes are able to occur to
251 * a filesystem.
252 */
253 /*
254 * __mnt_is_readonly: check whether a mount is read-only
255 * @mnt: the mount to check for its write status
256 *
257 * This shouldn't be used directly ouside of the VFS.
258 * It does not guarantee that the filesystem will stay
259 * r/w, just that it is right *now*. This can not and
260 * should not be used in place of IS_RDONLY(inode).
261 * mnt_want/drop_write() will _keep_ the filesystem
262 * r/w.
263 */
264 int __mnt_is_readonly(struct vfsmount *mnt)
265 {
266 if (mnt->mnt_flags & MNT_READONLY)
267 return 1;
268 if (mnt->mnt_sb->s_flags & MS_RDONLY)
269 return 1;
270 return 0;
271 }
272 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
273
274 static inline void mnt_inc_writers(struct mount *mnt)
275 {
276 #ifdef CONFIG_SMP
277 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
278 #else
279 mnt->mnt_writers++;
280 #endif
281 }
282
283 static inline void mnt_dec_writers(struct mount *mnt)
284 {
285 #ifdef CONFIG_SMP
286 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
287 #else
288 mnt->mnt_writers--;
289 #endif
290 }
291
292 static unsigned int mnt_get_writers(struct mount *mnt)
293 {
294 #ifdef CONFIG_SMP
295 unsigned int count = 0;
296 int cpu;
297
298 for_each_possible_cpu(cpu) {
299 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
300 }
301
302 return count;
303 #else
304 return mnt->mnt_writers;
305 #endif
306 }
307
308 static int mnt_is_readonly(struct vfsmount *mnt)
309 {
310 if (mnt->mnt_sb->s_readonly_remount)
311 return 1;
312 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
313 smp_rmb();
314 return __mnt_is_readonly(mnt);
315 }
316
317 /*
318 * Most r/o & frozen checks on a fs are for operations that take discrete
319 * amounts of time, like a write() or unlink(). We must keep track of when
320 * those operations start (for permission checks) and when they end, so that we
321 * can determine when writes are able to occur to a filesystem.
322 */
323 /**
324 * __mnt_want_write - get write access to a mount without freeze protection
325 * @m: the mount on which to take a write
326 *
327 * This tells the low-level filesystem that a write is about to be performed to
328 * it, and makes sure that writes are allowed (mnt it read-write) before
329 * returning success. This operation does not protect against filesystem being
330 * frozen. When the write operation is finished, __mnt_drop_write() must be
331 * called. This is effectively a refcount.
332 */
333 int __mnt_want_write(struct vfsmount *m)
334 {
335 struct mount *mnt = real_mount(m);
336 int ret = 0;
337
338 preempt_disable();
339 mnt_inc_writers(mnt);
340 /*
341 * The store to mnt_inc_writers must be visible before we pass
342 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
343 * incremented count after it has set MNT_WRITE_HOLD.
344 */
345 smp_mb();
346 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
347 cpu_relax();
348 /*
349 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
350 * be set to match its requirements. So we must not load that until
351 * MNT_WRITE_HOLD is cleared.
352 */
353 smp_rmb();
354 if (mnt_is_readonly(m)) {
355 mnt_dec_writers(mnt);
356 ret = -EROFS;
357 }
358 preempt_enable();
359
360 return ret;
361 }
362
363 /**
364 * mnt_want_write - get write access to a mount
365 * @m: the mount on which to take a write
366 *
367 * This tells the low-level filesystem that a write is about to be performed to
368 * it, and makes sure that writes are allowed (mount is read-write, filesystem
369 * is not frozen) before returning success. When the write operation is
370 * finished, mnt_drop_write() must be called. This is effectively a refcount.
371 */
372 int mnt_want_write(struct vfsmount *m)
373 {
374 int ret;
375
376 sb_start_write(m->mnt_sb);
377 ret = __mnt_want_write(m);
378 if (ret)
379 sb_end_write(m->mnt_sb);
380 return ret;
381 }
382 EXPORT_SYMBOL_GPL(mnt_want_write);
383
384 /**
385 * mnt_clone_write - get write access to a mount
386 * @mnt: the mount on which to take a write
387 *
388 * This is effectively like mnt_want_write, except
389 * it must only be used to take an extra write reference
390 * on a mountpoint that we already know has a write reference
391 * on it. This allows some optimisation.
392 *
393 * After finished, mnt_drop_write must be called as usual to
394 * drop the reference.
395 */
396 int mnt_clone_write(struct vfsmount *mnt)
397 {
398 /* superblock may be r/o */
399 if (__mnt_is_readonly(mnt))
400 return -EROFS;
401 preempt_disable();
402 mnt_inc_writers(real_mount(mnt));
403 preempt_enable();
404 return 0;
405 }
406 EXPORT_SYMBOL_GPL(mnt_clone_write);
407
408 /**
409 * __mnt_want_write_file - get write access to a file's mount
410 * @file: the file who's mount on which to take a write
411 *
412 * This is like __mnt_want_write, but it takes a file and can
413 * do some optimisations if the file is open for write already
414 */
415 int __mnt_want_write_file(struct file *file)
416 {
417 struct inode *inode = file_inode(file);
418
419 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
420 return __mnt_want_write(file->f_path.mnt);
421 else
422 return mnt_clone_write(file->f_path.mnt);
423 }
424
425 /**
426 * mnt_want_write_file - get write access to a file's mount
427 * @file: the file who's mount on which to take a write
428 *
429 * This is like mnt_want_write, but it takes a file and can
430 * do some optimisations if the file is open for write already
431 */
432 int mnt_want_write_file(struct file *file)
433 {
434 int ret;
435
436 sb_start_write(file->f_path.mnt->mnt_sb);
437 ret = __mnt_want_write_file(file);
438 if (ret)
439 sb_end_write(file->f_path.mnt->mnt_sb);
440 return ret;
441 }
442 EXPORT_SYMBOL_GPL(mnt_want_write_file);
443
444 /**
445 * __mnt_drop_write - give up write access to a mount
446 * @mnt: the mount on which to give up write access
447 *
448 * Tells the low-level filesystem that we are done
449 * performing writes to it. Must be matched with
450 * __mnt_want_write() call above.
451 */
452 void __mnt_drop_write(struct vfsmount *mnt)
453 {
454 preempt_disable();
455 mnt_dec_writers(real_mount(mnt));
456 preempt_enable();
457 }
458
459 /**
460 * mnt_drop_write - give up write access to a mount
461 * @mnt: the mount on which to give up write access
462 *
463 * Tells the low-level filesystem that we are done performing writes to it and
464 * also allows filesystem to be frozen again. Must be matched with
465 * mnt_want_write() call above.
466 */
467 void mnt_drop_write(struct vfsmount *mnt)
468 {
469 __mnt_drop_write(mnt);
470 sb_end_write(mnt->mnt_sb);
471 }
472 EXPORT_SYMBOL_GPL(mnt_drop_write);
473
474 void __mnt_drop_write_file(struct file *file)
475 {
476 __mnt_drop_write(file->f_path.mnt);
477 }
478
479 void mnt_drop_write_file(struct file *file)
480 {
481 mnt_drop_write(file->f_path.mnt);
482 }
483 EXPORT_SYMBOL(mnt_drop_write_file);
484
485 static int mnt_make_readonly(struct mount *mnt)
486 {
487 int ret = 0;
488
489 lock_mount_hash();
490 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
491 /*
492 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
493 * should be visible before we do.
494 */
495 smp_mb();
496
497 /*
498 * With writers on hold, if this value is zero, then there are
499 * definitely no active writers (although held writers may subsequently
500 * increment the count, they'll have to wait, and decrement it after
501 * seeing MNT_READONLY).
502 *
503 * It is OK to have counter incremented on one CPU and decremented on
504 * another: the sum will add up correctly. The danger would be when we
505 * sum up each counter, if we read a counter before it is incremented,
506 * but then read another CPU's count which it has been subsequently
507 * decremented from -- we would see more decrements than we should.
508 * MNT_WRITE_HOLD protects against this scenario, because
509 * mnt_want_write first increments count, then smp_mb, then spins on
510 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
511 * we're counting up here.
512 */
513 if (mnt_get_writers(mnt) > 0)
514 ret = -EBUSY;
515 else
516 mnt->mnt.mnt_flags |= MNT_READONLY;
517 /*
518 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
519 * that become unheld will see MNT_READONLY.
520 */
521 smp_wmb();
522 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
523 unlock_mount_hash();
524 return ret;
525 }
526
527 static void __mnt_unmake_readonly(struct mount *mnt)
528 {
529 lock_mount_hash();
530 mnt->mnt.mnt_flags &= ~MNT_READONLY;
531 unlock_mount_hash();
532 }
533
534 int sb_prepare_remount_readonly(struct super_block *sb)
535 {
536 struct mount *mnt;
537 int err = 0;
538
539 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
540 if (atomic_long_read(&sb->s_remove_count))
541 return -EBUSY;
542
543 lock_mount_hash();
544 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
545 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
546 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
547 smp_mb();
548 if (mnt_get_writers(mnt) > 0) {
549 err = -EBUSY;
550 break;
551 }
552 }
553 }
554 if (!err && atomic_long_read(&sb->s_remove_count))
555 err = -EBUSY;
556
557 if (!err) {
558 sb->s_readonly_remount = 1;
559 smp_wmb();
560 }
561 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
562 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
563 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
564 }
565 unlock_mount_hash();
566
567 return err;
568 }
569
570 static void free_vfsmnt(struct mount *mnt)
571 {
572 kfree(mnt->mnt_devname);
573 mnt_free_id(mnt);
574 #ifdef CONFIG_SMP
575 free_percpu(mnt->mnt_pcp);
576 #endif
577 kmem_cache_free(mnt_cache, mnt);
578 }
579
580 /* call under rcu_read_lock */
581 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
582 {
583 struct mount *mnt;
584 if (read_seqretry(&mount_lock, seq))
585 return false;
586 if (bastard == NULL)
587 return true;
588 mnt = real_mount(bastard);
589 mnt_add_count(mnt, 1);
590 if (likely(!read_seqretry(&mount_lock, seq)))
591 return true;
592 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
593 mnt_add_count(mnt, -1);
594 return false;
595 }
596 rcu_read_unlock();
597 mntput(bastard);
598 rcu_read_lock();
599 return false;
600 }
601
602 /*
603 * find the first mount at @dentry on vfsmount @mnt.
604 * call under rcu_read_lock()
605 */
606 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
607 {
608 struct hlist_head *head = m_hash(mnt, dentry);
609 struct mount *p;
610
611 hlist_for_each_entry_rcu(p, head, mnt_hash)
612 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
613 return p;
614 return NULL;
615 }
616
617 /*
618 * find the last mount at @dentry on vfsmount @mnt.
619 * mount_lock must be held.
620 */
621 struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
622 {
623 struct mount *p, *res;
624 res = p = __lookup_mnt(mnt, dentry);
625 if (!p)
626 goto out;
627 hlist_for_each_entry_continue(p, mnt_hash) {
628 if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry)
629 break;
630 res = p;
631 }
632 out:
633 return res;
634 }
635
636 /*
637 * lookup_mnt - Return the first child mount mounted at path
638 *
639 * "First" means first mounted chronologically. If you create the
640 * following mounts:
641 *
642 * mount /dev/sda1 /mnt
643 * mount /dev/sda2 /mnt
644 * mount /dev/sda3 /mnt
645 *
646 * Then lookup_mnt() on the base /mnt dentry in the root mount will
647 * return successively the root dentry and vfsmount of /dev/sda1, then
648 * /dev/sda2, then /dev/sda3, then NULL.
649 *
650 * lookup_mnt takes a reference to the found vfsmount.
651 */
652 struct vfsmount *lookup_mnt(struct path *path)
653 {
654 struct mount *child_mnt;
655 struct vfsmount *m;
656 unsigned seq;
657
658 rcu_read_lock();
659 do {
660 seq = read_seqbegin(&mount_lock);
661 child_mnt = __lookup_mnt(path->mnt, path->dentry);
662 m = child_mnt ? &child_mnt->mnt : NULL;
663 } while (!legitimize_mnt(m, seq));
664 rcu_read_unlock();
665 return m;
666 }
667
668 static struct mountpoint *new_mountpoint(struct dentry *dentry)
669 {
670 struct hlist_head *chain = mp_hash(dentry);
671 struct mountpoint *mp;
672 int ret;
673
674 hlist_for_each_entry(mp, chain, m_hash) {
675 if (mp->m_dentry == dentry) {
676 /* might be worth a WARN_ON() */
677 if (d_unlinked(dentry))
678 return ERR_PTR(-ENOENT);
679 mp->m_count++;
680 return mp;
681 }
682 }
683
684 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
685 if (!mp)
686 return ERR_PTR(-ENOMEM);
687
688 ret = d_set_mounted(dentry);
689 if (ret) {
690 kfree(mp);
691 return ERR_PTR(ret);
692 }
693
694 mp->m_dentry = dentry;
695 mp->m_count = 1;
696 hlist_add_head(&mp->m_hash, chain);
697 return mp;
698 }
699
700 static void put_mountpoint(struct mountpoint *mp)
701 {
702 if (!--mp->m_count) {
703 struct dentry *dentry = mp->m_dentry;
704 spin_lock(&dentry->d_lock);
705 dentry->d_flags &= ~DCACHE_MOUNTED;
706 spin_unlock(&dentry->d_lock);
707 hlist_del(&mp->m_hash);
708 kfree(mp);
709 }
710 }
711
712 static inline int check_mnt(struct mount *mnt)
713 {
714 return mnt->mnt_ns == current->nsproxy->mnt_ns;
715 }
716
717 /*
718 * vfsmount lock must be held for write
719 */
720 static void touch_mnt_namespace(struct mnt_namespace *ns)
721 {
722 if (ns) {
723 ns->event = ++event;
724 wake_up_interruptible(&ns->poll);
725 }
726 }
727
728 /*
729 * vfsmount lock must be held for write
730 */
731 static void __touch_mnt_namespace(struct mnt_namespace *ns)
732 {
733 if (ns && ns->event != event) {
734 ns->event = event;
735 wake_up_interruptible(&ns->poll);
736 }
737 }
738
739 /*
740 * vfsmount lock must be held for write
741 */
742 static void detach_mnt(struct mount *mnt, struct path *old_path)
743 {
744 old_path->dentry = mnt->mnt_mountpoint;
745 old_path->mnt = &mnt->mnt_parent->mnt;
746 mnt->mnt_parent = mnt;
747 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
748 list_del_init(&mnt->mnt_child);
749 hlist_del_init_rcu(&mnt->mnt_hash);
750 put_mountpoint(mnt->mnt_mp);
751 mnt->mnt_mp = NULL;
752 }
753
754 /*
755 * vfsmount lock must be held for write
756 */
757 void mnt_set_mountpoint(struct mount *mnt,
758 struct mountpoint *mp,
759 struct mount *child_mnt)
760 {
761 mp->m_count++;
762 mnt_add_count(mnt, 1); /* essentially, that's mntget */
763 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
764 child_mnt->mnt_parent = mnt;
765 child_mnt->mnt_mp = mp;
766 }
767
768 /*
769 * vfsmount lock must be held for write
770 */
771 static void attach_mnt(struct mount *mnt,
772 struct mount *parent,
773 struct mountpoint *mp)
774 {
775 mnt_set_mountpoint(parent, mp, mnt);
776 hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
777 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
778 }
779
780 /*
781 * vfsmount lock must be held for write
782 */
783 static void commit_tree(struct mount *mnt, struct mount *shadows)
784 {
785 struct mount *parent = mnt->mnt_parent;
786 struct mount *m;
787 LIST_HEAD(head);
788 struct mnt_namespace *n = parent->mnt_ns;
789
790 BUG_ON(parent == mnt);
791
792 list_add_tail(&head, &mnt->mnt_list);
793 list_for_each_entry(m, &head, mnt_list)
794 m->mnt_ns = n;
795
796 list_splice(&head, n->list.prev);
797
798 if (shadows)
799 hlist_add_after_rcu(&shadows->mnt_hash, &mnt->mnt_hash);
800 else
801 hlist_add_head_rcu(&mnt->mnt_hash,
802 m_hash(&parent->mnt, mnt->mnt_mountpoint));
803 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
804 touch_mnt_namespace(n);
805 }
806
807 static struct mount *next_mnt(struct mount *p, struct mount *root)
808 {
809 struct list_head *next = p->mnt_mounts.next;
810 if (next == &p->mnt_mounts) {
811 while (1) {
812 if (p == root)
813 return NULL;
814 next = p->mnt_child.next;
815 if (next != &p->mnt_parent->mnt_mounts)
816 break;
817 p = p->mnt_parent;
818 }
819 }
820 return list_entry(next, struct mount, mnt_child);
821 }
822
823 static struct mount *skip_mnt_tree(struct mount *p)
824 {
825 struct list_head *prev = p->mnt_mounts.prev;
826 while (prev != &p->mnt_mounts) {
827 p = list_entry(prev, struct mount, mnt_child);
828 prev = p->mnt_mounts.prev;
829 }
830 return p;
831 }
832
833 struct vfsmount *
834 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
835 {
836 struct mount *mnt;
837 struct dentry *root;
838
839 if (!type)
840 return ERR_PTR(-ENODEV);
841
842 mnt = alloc_vfsmnt(name);
843 if (!mnt)
844 return ERR_PTR(-ENOMEM);
845
846 if (flags & MS_KERNMOUNT)
847 mnt->mnt.mnt_flags = MNT_INTERNAL;
848
849 root = mount_fs(type, flags, name, data);
850 if (IS_ERR(root)) {
851 free_vfsmnt(mnt);
852 return ERR_CAST(root);
853 }
854
855 mnt->mnt.mnt_root = root;
856 mnt->mnt.mnt_sb = root->d_sb;
857 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
858 mnt->mnt_parent = mnt;
859 lock_mount_hash();
860 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
861 unlock_mount_hash();
862 return &mnt->mnt;
863 }
864 EXPORT_SYMBOL_GPL(vfs_kern_mount);
865
866 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
867 int flag)
868 {
869 struct super_block *sb = old->mnt.mnt_sb;
870 struct mount *mnt;
871 int err;
872
873 mnt = alloc_vfsmnt(old->mnt_devname);
874 if (!mnt)
875 return ERR_PTR(-ENOMEM);
876
877 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
878 mnt->mnt_group_id = 0; /* not a peer of original */
879 else
880 mnt->mnt_group_id = old->mnt_group_id;
881
882 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
883 err = mnt_alloc_group_id(mnt);
884 if (err)
885 goto out_free;
886 }
887
888 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
889 /* Don't allow unprivileged users to change mount flags */
890 if ((flag & CL_UNPRIVILEGED) && (mnt->mnt.mnt_flags & MNT_READONLY))
891 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
892
893 /* Don't allow unprivileged users to reveal what is under a mount */
894 if ((flag & CL_UNPRIVILEGED) && list_empty(&old->mnt_expire))
895 mnt->mnt.mnt_flags |= MNT_LOCKED;
896
897 atomic_inc(&sb->s_active);
898 mnt->mnt.mnt_sb = sb;
899 mnt->mnt.mnt_root = dget(root);
900 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
901 mnt->mnt_parent = mnt;
902 lock_mount_hash();
903 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
904 unlock_mount_hash();
905
906 if ((flag & CL_SLAVE) ||
907 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
908 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
909 mnt->mnt_master = old;
910 CLEAR_MNT_SHARED(mnt);
911 } else if (!(flag & CL_PRIVATE)) {
912 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
913 list_add(&mnt->mnt_share, &old->mnt_share);
914 if (IS_MNT_SLAVE(old))
915 list_add(&mnt->mnt_slave, &old->mnt_slave);
916 mnt->mnt_master = old->mnt_master;
917 }
918 if (flag & CL_MAKE_SHARED)
919 set_mnt_shared(mnt);
920
921 /* stick the duplicate mount on the same expiry list
922 * as the original if that was on one */
923 if (flag & CL_EXPIRE) {
924 if (!list_empty(&old->mnt_expire))
925 list_add(&mnt->mnt_expire, &old->mnt_expire);
926 }
927
928 return mnt;
929
930 out_free:
931 free_vfsmnt(mnt);
932 return ERR_PTR(err);
933 }
934
935 static void delayed_free(struct rcu_head *head)
936 {
937 struct mount *mnt = container_of(head, struct mount, mnt_rcu);
938 kfree(mnt->mnt_devname);
939 #ifdef CONFIG_SMP
940 free_percpu(mnt->mnt_pcp);
941 #endif
942 kmem_cache_free(mnt_cache, mnt);
943 }
944
945 static void mntput_no_expire(struct mount *mnt)
946 {
947 put_again:
948 rcu_read_lock();
949 mnt_add_count(mnt, -1);
950 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
951 rcu_read_unlock();
952 return;
953 }
954 lock_mount_hash();
955 if (mnt_get_count(mnt)) {
956 rcu_read_unlock();
957 unlock_mount_hash();
958 return;
959 }
960 if (unlikely(mnt->mnt_pinned)) {
961 mnt_add_count(mnt, mnt->mnt_pinned + 1);
962 mnt->mnt_pinned = 0;
963 rcu_read_unlock();
964 unlock_mount_hash();
965 acct_auto_close_mnt(&mnt->mnt);
966 goto put_again;
967 }
968 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
969 rcu_read_unlock();
970 unlock_mount_hash();
971 return;
972 }
973 mnt->mnt.mnt_flags |= MNT_DOOMED;
974 rcu_read_unlock();
975
976 list_del(&mnt->mnt_instance);
977 unlock_mount_hash();
978
979 /*
980 * This probably indicates that somebody messed
981 * up a mnt_want/drop_write() pair. If this
982 * happens, the filesystem was probably unable
983 * to make r/w->r/o transitions.
984 */
985 /*
986 * The locking used to deal with mnt_count decrement provides barriers,
987 * so mnt_get_writers() below is safe.
988 */
989 WARN_ON(mnt_get_writers(mnt));
990 fsnotify_vfsmount_delete(&mnt->mnt);
991 dput(mnt->mnt.mnt_root);
992 deactivate_super(mnt->mnt.mnt_sb);
993 mnt_free_id(mnt);
994 call_rcu(&mnt->mnt_rcu, delayed_free);
995 }
996
997 void mntput(struct vfsmount *mnt)
998 {
999 if (mnt) {
1000 struct mount *m = real_mount(mnt);
1001 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1002 if (unlikely(m->mnt_expiry_mark))
1003 m->mnt_expiry_mark = 0;
1004 mntput_no_expire(m);
1005 }
1006 }
1007 EXPORT_SYMBOL(mntput);
1008
1009 struct vfsmount *mntget(struct vfsmount *mnt)
1010 {
1011 if (mnt)
1012 mnt_add_count(real_mount(mnt), 1);
1013 return mnt;
1014 }
1015 EXPORT_SYMBOL(mntget);
1016
1017 void mnt_pin(struct vfsmount *mnt)
1018 {
1019 lock_mount_hash();
1020 real_mount(mnt)->mnt_pinned++;
1021 unlock_mount_hash();
1022 }
1023 EXPORT_SYMBOL(mnt_pin);
1024
1025 void mnt_unpin(struct vfsmount *m)
1026 {
1027 struct mount *mnt = real_mount(m);
1028 lock_mount_hash();
1029 if (mnt->mnt_pinned) {
1030 mnt_add_count(mnt, 1);
1031 mnt->mnt_pinned--;
1032 }
1033 unlock_mount_hash();
1034 }
1035 EXPORT_SYMBOL(mnt_unpin);
1036
1037 static inline void mangle(struct seq_file *m, const char *s)
1038 {
1039 seq_escape(m, s, " \t\n\\");
1040 }
1041
1042 /*
1043 * Simple .show_options callback for filesystems which don't want to
1044 * implement more complex mount option showing.
1045 *
1046 * See also save_mount_options().
1047 */
1048 int generic_show_options(struct seq_file *m, struct dentry *root)
1049 {
1050 const char *options;
1051
1052 rcu_read_lock();
1053 options = rcu_dereference(root->d_sb->s_options);
1054
1055 if (options != NULL && options[0]) {
1056 seq_putc(m, ',');
1057 mangle(m, options);
1058 }
1059 rcu_read_unlock();
1060
1061 return 0;
1062 }
1063 EXPORT_SYMBOL(generic_show_options);
1064
1065 /*
1066 * If filesystem uses generic_show_options(), this function should be
1067 * called from the fill_super() callback.
1068 *
1069 * The .remount_fs callback usually needs to be handled in a special
1070 * way, to make sure, that previous options are not overwritten if the
1071 * remount fails.
1072 *
1073 * Also note, that if the filesystem's .remount_fs function doesn't
1074 * reset all options to their default value, but changes only newly
1075 * given options, then the displayed options will not reflect reality
1076 * any more.
1077 */
1078 void save_mount_options(struct super_block *sb, char *options)
1079 {
1080 BUG_ON(sb->s_options);
1081 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
1082 }
1083 EXPORT_SYMBOL(save_mount_options);
1084
1085 void replace_mount_options(struct super_block *sb, char *options)
1086 {
1087 char *old = sb->s_options;
1088 rcu_assign_pointer(sb->s_options, options);
1089 if (old) {
1090 synchronize_rcu();
1091 kfree(old);
1092 }
1093 }
1094 EXPORT_SYMBOL(replace_mount_options);
1095
1096 #ifdef CONFIG_PROC_FS
1097 /* iterator; we want it to have access to namespace_sem, thus here... */
1098 static void *m_start(struct seq_file *m, loff_t *pos)
1099 {
1100 struct proc_mounts *p = proc_mounts(m);
1101
1102 down_read(&namespace_sem);
1103 if (p->cached_event == p->ns->event) {
1104 void *v = p->cached_mount;
1105 if (*pos == p->cached_index)
1106 return v;
1107 if (*pos == p->cached_index + 1) {
1108 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1109 return p->cached_mount = v;
1110 }
1111 }
1112
1113 p->cached_event = p->ns->event;
1114 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1115 p->cached_index = *pos;
1116 return p->cached_mount;
1117 }
1118
1119 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1120 {
1121 struct proc_mounts *p = proc_mounts(m);
1122
1123 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1124 p->cached_index = *pos;
1125 return p->cached_mount;
1126 }
1127
1128 static void m_stop(struct seq_file *m, void *v)
1129 {
1130 up_read(&namespace_sem);
1131 }
1132
1133 static int m_show(struct seq_file *m, void *v)
1134 {
1135 struct proc_mounts *p = proc_mounts(m);
1136 struct mount *r = list_entry(v, struct mount, mnt_list);
1137 return p->show(m, &r->mnt);
1138 }
1139
1140 const struct seq_operations mounts_op = {
1141 .start = m_start,
1142 .next = m_next,
1143 .stop = m_stop,
1144 .show = m_show,
1145 };
1146 #endif /* CONFIG_PROC_FS */
1147
1148 /**
1149 * may_umount_tree - check if a mount tree is busy
1150 * @mnt: root of mount tree
1151 *
1152 * This is called to check if a tree of mounts has any
1153 * open files, pwds, chroots or sub mounts that are
1154 * busy.
1155 */
1156 int may_umount_tree(struct vfsmount *m)
1157 {
1158 struct mount *mnt = real_mount(m);
1159 int actual_refs = 0;
1160 int minimum_refs = 0;
1161 struct mount *p;
1162 BUG_ON(!m);
1163
1164 /* write lock needed for mnt_get_count */
1165 lock_mount_hash();
1166 for (p = mnt; p; p = next_mnt(p, mnt)) {
1167 actual_refs += mnt_get_count(p);
1168 minimum_refs += 2;
1169 }
1170 unlock_mount_hash();
1171
1172 if (actual_refs > minimum_refs)
1173 return 0;
1174
1175 return 1;
1176 }
1177
1178 EXPORT_SYMBOL(may_umount_tree);
1179
1180 /**
1181 * may_umount - check if a mount point is busy
1182 * @mnt: root of mount
1183 *
1184 * This is called to check if a mount point has any
1185 * open files, pwds, chroots or sub mounts. If the
1186 * mount has sub mounts this will return busy
1187 * regardless of whether the sub mounts are busy.
1188 *
1189 * Doesn't take quota and stuff into account. IOW, in some cases it will
1190 * give false negatives. The main reason why it's here is that we need
1191 * a non-destructive way to look for easily umountable filesystems.
1192 */
1193 int may_umount(struct vfsmount *mnt)
1194 {
1195 int ret = 1;
1196 down_read(&namespace_sem);
1197 lock_mount_hash();
1198 if (propagate_mount_busy(real_mount(mnt), 2))
1199 ret = 0;
1200 unlock_mount_hash();
1201 up_read(&namespace_sem);
1202 return ret;
1203 }
1204
1205 EXPORT_SYMBOL(may_umount);
1206
1207 static HLIST_HEAD(unmounted); /* protected by namespace_sem */
1208
1209 static void namespace_unlock(void)
1210 {
1211 struct mount *mnt;
1212 struct hlist_head head = unmounted;
1213
1214 if (likely(hlist_empty(&head))) {
1215 up_write(&namespace_sem);
1216 return;
1217 }
1218
1219 head.first->pprev = &head.first;
1220 INIT_HLIST_HEAD(&unmounted);
1221
1222 up_write(&namespace_sem);
1223
1224 synchronize_rcu();
1225
1226 while (!hlist_empty(&head)) {
1227 mnt = hlist_entry(head.first, struct mount, mnt_hash);
1228 hlist_del_init(&mnt->mnt_hash);
1229 if (mnt->mnt_ex_mountpoint.mnt)
1230 path_put(&mnt->mnt_ex_mountpoint);
1231 mntput(&mnt->mnt);
1232 }
1233 }
1234
1235 static inline void namespace_lock(void)
1236 {
1237 down_write(&namespace_sem);
1238 }
1239
1240 /*
1241 * mount_lock must be held
1242 * namespace_sem must be held for write
1243 * how = 0 => just this tree, don't propagate
1244 * how = 1 => propagate; we know that nobody else has reference to any victims
1245 * how = 2 => lazy umount
1246 */
1247 void umount_tree(struct mount *mnt, int how)
1248 {
1249 HLIST_HEAD(tmp_list);
1250 struct mount *p;
1251 struct mount *last = NULL;
1252
1253 for (p = mnt; p; p = next_mnt(p, mnt)) {
1254 hlist_del_init_rcu(&p->mnt_hash);
1255 hlist_add_head(&p->mnt_hash, &tmp_list);
1256 }
1257
1258 if (how)
1259 propagate_umount(&tmp_list);
1260
1261 hlist_for_each_entry(p, &tmp_list, mnt_hash) {
1262 list_del_init(&p->mnt_expire);
1263 list_del_init(&p->mnt_list);
1264 __touch_mnt_namespace(p->mnt_ns);
1265 p->mnt_ns = NULL;
1266 if (how < 2)
1267 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1268 list_del_init(&p->mnt_child);
1269 if (mnt_has_parent(p)) {
1270 put_mountpoint(p->mnt_mp);
1271 /* move the reference to mountpoint into ->mnt_ex_mountpoint */
1272 p->mnt_ex_mountpoint.dentry = p->mnt_mountpoint;
1273 p->mnt_ex_mountpoint.mnt = &p->mnt_parent->mnt;
1274 p->mnt_mountpoint = p->mnt.mnt_root;
1275 p->mnt_parent = p;
1276 p->mnt_mp = NULL;
1277 }
1278 change_mnt_propagation(p, MS_PRIVATE);
1279 last = p;
1280 }
1281 if (last) {
1282 last->mnt_hash.next = unmounted.first;
1283 unmounted.first = tmp_list.first;
1284 unmounted.first->pprev = &unmounted.first;
1285 }
1286 }
1287
1288 static void shrink_submounts(struct mount *mnt);
1289
1290 static int do_umount(struct mount *mnt, int flags)
1291 {
1292 struct super_block *sb = mnt->mnt.mnt_sb;
1293 int retval;
1294
1295 retval = security_sb_umount(&mnt->mnt, flags);
1296 if (retval)
1297 return retval;
1298
1299 /*
1300 * Allow userspace to request a mountpoint be expired rather than
1301 * unmounting unconditionally. Unmount only happens if:
1302 * (1) the mark is already set (the mark is cleared by mntput())
1303 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1304 */
1305 if (flags & MNT_EXPIRE) {
1306 if (&mnt->mnt == current->fs->root.mnt ||
1307 flags & (MNT_FORCE | MNT_DETACH))
1308 return -EINVAL;
1309
1310 /*
1311 * probably don't strictly need the lock here if we examined
1312 * all race cases, but it's a slowpath.
1313 */
1314 lock_mount_hash();
1315 if (mnt_get_count(mnt) != 2) {
1316 unlock_mount_hash();
1317 return -EBUSY;
1318 }
1319 unlock_mount_hash();
1320
1321 if (!xchg(&mnt->mnt_expiry_mark, 1))
1322 return -EAGAIN;
1323 }
1324
1325 /*
1326 * If we may have to abort operations to get out of this
1327 * mount, and they will themselves hold resources we must
1328 * allow the fs to do things. In the Unix tradition of
1329 * 'Gee thats tricky lets do it in userspace' the umount_begin
1330 * might fail to complete on the first run through as other tasks
1331 * must return, and the like. Thats for the mount program to worry
1332 * about for the moment.
1333 */
1334
1335 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1336 sb->s_op->umount_begin(sb);
1337 }
1338
1339 /*
1340 * No sense to grab the lock for this test, but test itself looks
1341 * somewhat bogus. Suggestions for better replacement?
1342 * Ho-hum... In principle, we might treat that as umount + switch
1343 * to rootfs. GC would eventually take care of the old vfsmount.
1344 * Actually it makes sense, especially if rootfs would contain a
1345 * /reboot - static binary that would close all descriptors and
1346 * call reboot(9). Then init(8) could umount root and exec /reboot.
1347 */
1348 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1349 /*
1350 * Special case for "unmounting" root ...
1351 * we just try to remount it readonly.
1352 */
1353 down_write(&sb->s_umount);
1354 if (!(sb->s_flags & MS_RDONLY))
1355 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1356 up_write(&sb->s_umount);
1357 return retval;
1358 }
1359
1360 namespace_lock();
1361 lock_mount_hash();
1362 event++;
1363
1364 if (flags & MNT_DETACH) {
1365 if (!list_empty(&mnt->mnt_list))
1366 umount_tree(mnt, 2);
1367 retval = 0;
1368 } else {
1369 shrink_submounts(mnt);
1370 retval = -EBUSY;
1371 if (!propagate_mount_busy(mnt, 2)) {
1372 if (!list_empty(&mnt->mnt_list))
1373 umount_tree(mnt, 1);
1374 retval = 0;
1375 }
1376 }
1377 unlock_mount_hash();
1378 namespace_unlock();
1379 return retval;
1380 }
1381
1382 /*
1383 * Is the caller allowed to modify his namespace?
1384 */
1385 static inline bool may_mount(void)
1386 {
1387 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1388 }
1389
1390 /*
1391 * Now umount can handle mount points as well as block devices.
1392 * This is important for filesystems which use unnamed block devices.
1393 *
1394 * We now support a flag for forced unmount like the other 'big iron'
1395 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1396 */
1397
1398 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1399 {
1400 struct path path;
1401 struct mount *mnt;
1402 int retval;
1403 int lookup_flags = 0;
1404
1405 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1406 return -EINVAL;
1407
1408 if (!may_mount())
1409 return -EPERM;
1410
1411 if (!(flags & UMOUNT_NOFOLLOW))
1412 lookup_flags |= LOOKUP_FOLLOW;
1413
1414 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1415 if (retval)
1416 goto out;
1417 mnt = real_mount(path.mnt);
1418 retval = -EINVAL;
1419 if (path.dentry != path.mnt->mnt_root)
1420 goto dput_and_out;
1421 if (!check_mnt(mnt))
1422 goto dput_and_out;
1423 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1424 goto dput_and_out;
1425
1426 retval = do_umount(mnt, flags);
1427 dput_and_out:
1428 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1429 dput(path.dentry);
1430 mntput_no_expire(mnt);
1431 out:
1432 return retval;
1433 }
1434
1435 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1436
1437 /*
1438 * The 2.0 compatible umount. No flags.
1439 */
1440 SYSCALL_DEFINE1(oldumount, char __user *, name)
1441 {
1442 return sys_umount(name, 0);
1443 }
1444
1445 #endif
1446
1447 static bool is_mnt_ns_file(struct dentry *dentry)
1448 {
1449 /* Is this a proxy for a mount namespace? */
1450 struct inode *inode = dentry->d_inode;
1451 struct proc_ns *ei;
1452
1453 if (!proc_ns_inode(inode))
1454 return false;
1455
1456 ei = get_proc_ns(inode);
1457 if (ei->ns_ops != &mntns_operations)
1458 return false;
1459
1460 return true;
1461 }
1462
1463 static bool mnt_ns_loop(struct dentry *dentry)
1464 {
1465 /* Could bind mounting the mount namespace inode cause a
1466 * mount namespace loop?
1467 */
1468 struct mnt_namespace *mnt_ns;
1469 if (!is_mnt_ns_file(dentry))
1470 return false;
1471
1472 mnt_ns = get_proc_ns(dentry->d_inode)->ns;
1473 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1474 }
1475
1476 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1477 int flag)
1478 {
1479 struct mount *res, *p, *q, *r, *parent;
1480
1481 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1482 return ERR_PTR(-EINVAL);
1483
1484 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1485 return ERR_PTR(-EINVAL);
1486
1487 res = q = clone_mnt(mnt, dentry, flag);
1488 if (IS_ERR(q))
1489 return q;
1490
1491 q->mnt.mnt_flags &= ~MNT_LOCKED;
1492 q->mnt_mountpoint = mnt->mnt_mountpoint;
1493
1494 p = mnt;
1495 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1496 struct mount *s;
1497 if (!is_subdir(r->mnt_mountpoint, dentry))
1498 continue;
1499
1500 for (s = r; s; s = next_mnt(s, r)) {
1501 if (!(flag & CL_COPY_UNBINDABLE) &&
1502 IS_MNT_UNBINDABLE(s)) {
1503 s = skip_mnt_tree(s);
1504 continue;
1505 }
1506 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1507 is_mnt_ns_file(s->mnt.mnt_root)) {
1508 s = skip_mnt_tree(s);
1509 continue;
1510 }
1511 while (p != s->mnt_parent) {
1512 p = p->mnt_parent;
1513 q = q->mnt_parent;
1514 }
1515 p = s;
1516 parent = q;
1517 q = clone_mnt(p, p->mnt.mnt_root, flag);
1518 if (IS_ERR(q))
1519 goto out;
1520 lock_mount_hash();
1521 list_add_tail(&q->mnt_list, &res->mnt_list);
1522 attach_mnt(q, parent, p->mnt_mp);
1523 unlock_mount_hash();
1524 }
1525 }
1526 return res;
1527 out:
1528 if (res) {
1529 lock_mount_hash();
1530 umount_tree(res, 0);
1531 unlock_mount_hash();
1532 }
1533 return q;
1534 }
1535
1536 /* Caller should check returned pointer for errors */
1537
1538 struct vfsmount *collect_mounts(struct path *path)
1539 {
1540 struct mount *tree;
1541 namespace_lock();
1542 tree = copy_tree(real_mount(path->mnt), path->dentry,
1543 CL_COPY_ALL | CL_PRIVATE);
1544 namespace_unlock();
1545 if (IS_ERR(tree))
1546 return ERR_CAST(tree);
1547 return &tree->mnt;
1548 }
1549
1550 void drop_collected_mounts(struct vfsmount *mnt)
1551 {
1552 namespace_lock();
1553 lock_mount_hash();
1554 umount_tree(real_mount(mnt), 0);
1555 unlock_mount_hash();
1556 namespace_unlock();
1557 }
1558
1559 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1560 struct vfsmount *root)
1561 {
1562 struct mount *mnt;
1563 int res = f(root, arg);
1564 if (res)
1565 return res;
1566 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1567 res = f(&mnt->mnt, arg);
1568 if (res)
1569 return res;
1570 }
1571 return 0;
1572 }
1573
1574 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1575 {
1576 struct mount *p;
1577
1578 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1579 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1580 mnt_release_group_id(p);
1581 }
1582 }
1583
1584 static int invent_group_ids(struct mount *mnt, bool recurse)
1585 {
1586 struct mount *p;
1587
1588 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1589 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1590 int err = mnt_alloc_group_id(p);
1591 if (err) {
1592 cleanup_group_ids(mnt, p);
1593 return err;
1594 }
1595 }
1596 }
1597
1598 return 0;
1599 }
1600
1601 /*
1602 * @source_mnt : mount tree to be attached
1603 * @nd : place the mount tree @source_mnt is attached
1604 * @parent_nd : if non-null, detach the source_mnt from its parent and
1605 * store the parent mount and mountpoint dentry.
1606 * (done when source_mnt is moved)
1607 *
1608 * NOTE: in the table below explains the semantics when a source mount
1609 * of a given type is attached to a destination mount of a given type.
1610 * ---------------------------------------------------------------------------
1611 * | BIND MOUNT OPERATION |
1612 * |**************************************************************************
1613 * | source-->| shared | private | slave | unbindable |
1614 * | dest | | | | |
1615 * | | | | | | |
1616 * | v | | | | |
1617 * |**************************************************************************
1618 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1619 * | | | | | |
1620 * |non-shared| shared (+) | private | slave (*) | invalid |
1621 * ***************************************************************************
1622 * A bind operation clones the source mount and mounts the clone on the
1623 * destination mount.
1624 *
1625 * (++) the cloned mount is propagated to all the mounts in the propagation
1626 * tree of the destination mount and the cloned mount is added to
1627 * the peer group of the source mount.
1628 * (+) the cloned mount is created under the destination mount and is marked
1629 * as shared. The cloned mount is added to the peer group of the source
1630 * mount.
1631 * (+++) the mount is propagated to all the mounts in the propagation tree
1632 * of the destination mount and the cloned mount is made slave
1633 * of the same master as that of the source mount. The cloned mount
1634 * is marked as 'shared and slave'.
1635 * (*) the cloned mount is made a slave of the same master as that of the
1636 * source mount.
1637 *
1638 * ---------------------------------------------------------------------------
1639 * | MOVE MOUNT OPERATION |
1640 * |**************************************************************************
1641 * | source-->| shared | private | slave | unbindable |
1642 * | dest | | | | |
1643 * | | | | | | |
1644 * | v | | | | |
1645 * |**************************************************************************
1646 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1647 * | | | | | |
1648 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1649 * ***************************************************************************
1650 *
1651 * (+) the mount is moved to the destination. And is then propagated to
1652 * all the mounts in the propagation tree of the destination mount.
1653 * (+*) the mount is moved to the destination.
1654 * (+++) the mount is moved to the destination and is then propagated to
1655 * all the mounts belonging to the destination mount's propagation tree.
1656 * the mount is marked as 'shared and slave'.
1657 * (*) the mount continues to be a slave at the new location.
1658 *
1659 * if the source mount is a tree, the operations explained above is
1660 * applied to each mount in the tree.
1661 * Must be called without spinlocks held, since this function can sleep
1662 * in allocations.
1663 */
1664 static int attach_recursive_mnt(struct mount *source_mnt,
1665 struct mount *dest_mnt,
1666 struct mountpoint *dest_mp,
1667 struct path *parent_path)
1668 {
1669 HLIST_HEAD(tree_list);
1670 struct mount *child, *p;
1671 struct hlist_node *n;
1672 int err;
1673
1674 if (IS_MNT_SHARED(dest_mnt)) {
1675 err = invent_group_ids(source_mnt, true);
1676 if (err)
1677 goto out;
1678 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
1679 lock_mount_hash();
1680 if (err)
1681 goto out_cleanup_ids;
1682 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1683 set_mnt_shared(p);
1684 } else {
1685 lock_mount_hash();
1686 }
1687 if (parent_path) {
1688 detach_mnt(source_mnt, parent_path);
1689 attach_mnt(source_mnt, dest_mnt, dest_mp);
1690 touch_mnt_namespace(source_mnt->mnt_ns);
1691 } else {
1692 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1693 commit_tree(source_mnt, NULL);
1694 }
1695
1696 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1697 struct mount *q;
1698 hlist_del_init(&child->mnt_hash);
1699 q = __lookup_mnt_last(&child->mnt_parent->mnt,
1700 child->mnt_mountpoint);
1701 commit_tree(child, q);
1702 }
1703 unlock_mount_hash();
1704
1705 return 0;
1706
1707 out_cleanup_ids:
1708 while (!hlist_empty(&tree_list)) {
1709 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
1710 umount_tree(child, 0);
1711 }
1712 unlock_mount_hash();
1713 cleanup_group_ids(source_mnt, NULL);
1714 out:
1715 return err;
1716 }
1717
1718 static struct mountpoint *lock_mount(struct path *path)
1719 {
1720 struct vfsmount *mnt;
1721 struct dentry *dentry = path->dentry;
1722 retry:
1723 mutex_lock(&dentry->d_inode->i_mutex);
1724 if (unlikely(cant_mount(dentry))) {
1725 mutex_unlock(&dentry->d_inode->i_mutex);
1726 return ERR_PTR(-ENOENT);
1727 }
1728 namespace_lock();
1729 mnt = lookup_mnt(path);
1730 if (likely(!mnt)) {
1731 struct mountpoint *mp = new_mountpoint(dentry);
1732 if (IS_ERR(mp)) {
1733 namespace_unlock();
1734 mutex_unlock(&dentry->d_inode->i_mutex);
1735 return mp;
1736 }
1737 return mp;
1738 }
1739 namespace_unlock();
1740 mutex_unlock(&path->dentry->d_inode->i_mutex);
1741 path_put(path);
1742 path->mnt = mnt;
1743 dentry = path->dentry = dget(mnt->mnt_root);
1744 goto retry;
1745 }
1746
1747 static void unlock_mount(struct mountpoint *where)
1748 {
1749 struct dentry *dentry = where->m_dentry;
1750 put_mountpoint(where);
1751 namespace_unlock();
1752 mutex_unlock(&dentry->d_inode->i_mutex);
1753 }
1754
1755 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1756 {
1757 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1758 return -EINVAL;
1759
1760 if (S_ISDIR(mp->m_dentry->d_inode->i_mode) !=
1761 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1762 return -ENOTDIR;
1763
1764 return attach_recursive_mnt(mnt, p, mp, NULL);
1765 }
1766
1767 /*
1768 * Sanity check the flags to change_mnt_propagation.
1769 */
1770
1771 static int flags_to_propagation_type(int flags)
1772 {
1773 int type = flags & ~(MS_REC | MS_SILENT);
1774
1775 /* Fail if any non-propagation flags are set */
1776 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1777 return 0;
1778 /* Only one propagation flag should be set */
1779 if (!is_power_of_2(type))
1780 return 0;
1781 return type;
1782 }
1783
1784 /*
1785 * recursively change the type of the mountpoint.
1786 */
1787 static int do_change_type(struct path *path, int flag)
1788 {
1789 struct mount *m;
1790 struct mount *mnt = real_mount(path->mnt);
1791 int recurse = flag & MS_REC;
1792 int type;
1793 int err = 0;
1794
1795 if (path->dentry != path->mnt->mnt_root)
1796 return -EINVAL;
1797
1798 type = flags_to_propagation_type(flag);
1799 if (!type)
1800 return -EINVAL;
1801
1802 namespace_lock();
1803 if (type == MS_SHARED) {
1804 err = invent_group_ids(mnt, recurse);
1805 if (err)
1806 goto out_unlock;
1807 }
1808
1809 lock_mount_hash();
1810 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1811 change_mnt_propagation(m, type);
1812 unlock_mount_hash();
1813
1814 out_unlock:
1815 namespace_unlock();
1816 return err;
1817 }
1818
1819 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
1820 {
1821 struct mount *child;
1822 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
1823 if (!is_subdir(child->mnt_mountpoint, dentry))
1824 continue;
1825
1826 if (child->mnt.mnt_flags & MNT_LOCKED)
1827 return true;
1828 }
1829 return false;
1830 }
1831
1832 /*
1833 * do loopback mount.
1834 */
1835 static int do_loopback(struct path *path, const char *old_name,
1836 int recurse)
1837 {
1838 struct path old_path;
1839 struct mount *mnt = NULL, *old, *parent;
1840 struct mountpoint *mp;
1841 int err;
1842 if (!old_name || !*old_name)
1843 return -EINVAL;
1844 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1845 if (err)
1846 return err;
1847
1848 err = -EINVAL;
1849 if (mnt_ns_loop(old_path.dentry))
1850 goto out;
1851
1852 mp = lock_mount(path);
1853 err = PTR_ERR(mp);
1854 if (IS_ERR(mp))
1855 goto out;
1856
1857 old = real_mount(old_path.mnt);
1858 parent = real_mount(path->mnt);
1859
1860 err = -EINVAL;
1861 if (IS_MNT_UNBINDABLE(old))
1862 goto out2;
1863
1864 if (!check_mnt(parent) || !check_mnt(old))
1865 goto out2;
1866
1867 if (!recurse && has_locked_children(old, old_path.dentry))
1868 goto out2;
1869
1870 if (recurse)
1871 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
1872 else
1873 mnt = clone_mnt(old, old_path.dentry, 0);
1874
1875 if (IS_ERR(mnt)) {
1876 err = PTR_ERR(mnt);
1877 goto out2;
1878 }
1879
1880 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
1881
1882 err = graft_tree(mnt, parent, mp);
1883 if (err) {
1884 lock_mount_hash();
1885 umount_tree(mnt, 0);
1886 unlock_mount_hash();
1887 }
1888 out2:
1889 unlock_mount(mp);
1890 out:
1891 path_put(&old_path);
1892 return err;
1893 }
1894
1895 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1896 {
1897 int error = 0;
1898 int readonly_request = 0;
1899
1900 if (ms_flags & MS_RDONLY)
1901 readonly_request = 1;
1902 if (readonly_request == __mnt_is_readonly(mnt))
1903 return 0;
1904
1905 if (mnt->mnt_flags & MNT_LOCK_READONLY)
1906 return -EPERM;
1907
1908 if (readonly_request)
1909 error = mnt_make_readonly(real_mount(mnt));
1910 else
1911 __mnt_unmake_readonly(real_mount(mnt));
1912 return error;
1913 }
1914
1915 /*
1916 * change filesystem flags. dir should be a physical root of filesystem.
1917 * If you've mounted a non-root directory somewhere and want to do remount
1918 * on it - tough luck.
1919 */
1920 static int do_remount(struct path *path, int flags, int mnt_flags,
1921 void *data)
1922 {
1923 int err;
1924 struct super_block *sb = path->mnt->mnt_sb;
1925 struct mount *mnt = real_mount(path->mnt);
1926
1927 if (!check_mnt(mnt))
1928 return -EINVAL;
1929
1930 if (path->dentry != path->mnt->mnt_root)
1931 return -EINVAL;
1932
1933 err = security_sb_remount(sb, data);
1934 if (err)
1935 return err;
1936
1937 down_write(&sb->s_umount);
1938 if (flags & MS_BIND)
1939 err = change_mount_flags(path->mnt, flags);
1940 else if (!capable(CAP_SYS_ADMIN))
1941 err = -EPERM;
1942 else
1943 err = do_remount_sb(sb, flags, data, 0);
1944 if (!err) {
1945 lock_mount_hash();
1946 mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK;
1947 mnt->mnt.mnt_flags = mnt_flags;
1948 touch_mnt_namespace(mnt->mnt_ns);
1949 unlock_mount_hash();
1950 }
1951 up_write(&sb->s_umount);
1952 return err;
1953 }
1954
1955 static inline int tree_contains_unbindable(struct mount *mnt)
1956 {
1957 struct mount *p;
1958 for (p = mnt; p; p = next_mnt(p, mnt)) {
1959 if (IS_MNT_UNBINDABLE(p))
1960 return 1;
1961 }
1962 return 0;
1963 }
1964
1965 static int do_move_mount(struct path *path, const char *old_name)
1966 {
1967 struct path old_path, parent_path;
1968 struct mount *p;
1969 struct mount *old;
1970 struct mountpoint *mp;
1971 int err;
1972 if (!old_name || !*old_name)
1973 return -EINVAL;
1974 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1975 if (err)
1976 return err;
1977
1978 mp = lock_mount(path);
1979 err = PTR_ERR(mp);
1980 if (IS_ERR(mp))
1981 goto out;
1982
1983 old = real_mount(old_path.mnt);
1984 p = real_mount(path->mnt);
1985
1986 err = -EINVAL;
1987 if (!check_mnt(p) || !check_mnt(old))
1988 goto out1;
1989
1990 if (old->mnt.mnt_flags & MNT_LOCKED)
1991 goto out1;
1992
1993 err = -EINVAL;
1994 if (old_path.dentry != old_path.mnt->mnt_root)
1995 goto out1;
1996
1997 if (!mnt_has_parent(old))
1998 goto out1;
1999
2000 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
2001 S_ISDIR(old_path.dentry->d_inode->i_mode))
2002 goto out1;
2003 /*
2004 * Don't move a mount residing in a shared parent.
2005 */
2006 if (IS_MNT_SHARED(old->mnt_parent))
2007 goto out1;
2008 /*
2009 * Don't move a mount tree containing unbindable mounts to a destination
2010 * mount which is shared.
2011 */
2012 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2013 goto out1;
2014 err = -ELOOP;
2015 for (; mnt_has_parent(p); p = p->mnt_parent)
2016 if (p == old)
2017 goto out1;
2018
2019 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2020 if (err)
2021 goto out1;
2022
2023 /* if the mount is moved, it should no longer be expire
2024 * automatically */
2025 list_del_init(&old->mnt_expire);
2026 out1:
2027 unlock_mount(mp);
2028 out:
2029 if (!err)
2030 path_put(&parent_path);
2031 path_put(&old_path);
2032 return err;
2033 }
2034
2035 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2036 {
2037 int err;
2038 const char *subtype = strchr(fstype, '.');
2039 if (subtype) {
2040 subtype++;
2041 err = -EINVAL;
2042 if (!subtype[0])
2043 goto err;
2044 } else
2045 subtype = "";
2046
2047 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2048 err = -ENOMEM;
2049 if (!mnt->mnt_sb->s_subtype)
2050 goto err;
2051 return mnt;
2052
2053 err:
2054 mntput(mnt);
2055 return ERR_PTR(err);
2056 }
2057
2058 /*
2059 * add a mount into a namespace's mount tree
2060 */
2061 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2062 {
2063 struct mountpoint *mp;
2064 struct mount *parent;
2065 int err;
2066
2067 mnt_flags &= ~MNT_INTERNAL_FLAGS;
2068
2069 mp = lock_mount(path);
2070 if (IS_ERR(mp))
2071 return PTR_ERR(mp);
2072
2073 parent = real_mount(path->mnt);
2074 err = -EINVAL;
2075 if (unlikely(!check_mnt(parent))) {
2076 /* that's acceptable only for automounts done in private ns */
2077 if (!(mnt_flags & MNT_SHRINKABLE))
2078 goto unlock;
2079 /* ... and for those we'd better have mountpoint still alive */
2080 if (!parent->mnt_ns)
2081 goto unlock;
2082 }
2083
2084 /* Refuse the same filesystem on the same mount point */
2085 err = -EBUSY;
2086 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2087 path->mnt->mnt_root == path->dentry)
2088 goto unlock;
2089
2090 err = -EINVAL;
2091 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
2092 goto unlock;
2093
2094 newmnt->mnt.mnt_flags = mnt_flags;
2095 err = graft_tree(newmnt, parent, mp);
2096
2097 unlock:
2098 unlock_mount(mp);
2099 return err;
2100 }
2101
2102 /*
2103 * create a new mount for userspace and request it to be added into the
2104 * namespace's tree
2105 */
2106 static int do_new_mount(struct path *path, const char *fstype, int flags,
2107 int mnt_flags, const char *name, void *data)
2108 {
2109 struct file_system_type *type;
2110 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2111 struct vfsmount *mnt;
2112 int err;
2113
2114 if (!fstype)
2115 return -EINVAL;
2116
2117 type = get_fs_type(fstype);
2118 if (!type)
2119 return -ENODEV;
2120
2121 if (user_ns != &init_user_ns) {
2122 if (!(type->fs_flags & FS_USERNS_MOUNT)) {
2123 put_filesystem(type);
2124 return -EPERM;
2125 }
2126 /* Only in special cases allow devices from mounts
2127 * created outside the initial user namespace.
2128 */
2129 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2130 flags |= MS_NODEV;
2131 mnt_flags |= MNT_NODEV;
2132 }
2133 }
2134
2135 mnt = vfs_kern_mount(type, flags, name, data);
2136 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2137 !mnt->mnt_sb->s_subtype)
2138 mnt = fs_set_subtype(mnt, fstype);
2139
2140 put_filesystem(type);
2141 if (IS_ERR(mnt))
2142 return PTR_ERR(mnt);
2143
2144 err = do_add_mount(real_mount(mnt), path, mnt_flags);
2145 if (err)
2146 mntput(mnt);
2147 return err;
2148 }
2149
2150 int finish_automount(struct vfsmount *m, struct path *path)
2151 {
2152 struct mount *mnt = real_mount(m);
2153 int err;
2154 /* The new mount record should have at least 2 refs to prevent it being
2155 * expired before we get a chance to add it
2156 */
2157 BUG_ON(mnt_get_count(mnt) < 2);
2158
2159 if (m->mnt_sb == path->mnt->mnt_sb &&
2160 m->mnt_root == path->dentry) {
2161 err = -ELOOP;
2162 goto fail;
2163 }
2164
2165 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2166 if (!err)
2167 return 0;
2168 fail:
2169 /* remove m from any expiration list it may be on */
2170 if (!list_empty(&mnt->mnt_expire)) {
2171 namespace_lock();
2172 list_del_init(&mnt->mnt_expire);
2173 namespace_unlock();
2174 }
2175 mntput(m);
2176 mntput(m);
2177 return err;
2178 }
2179
2180 /**
2181 * mnt_set_expiry - Put a mount on an expiration list
2182 * @mnt: The mount to list.
2183 * @expiry_list: The list to add the mount to.
2184 */
2185 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2186 {
2187 namespace_lock();
2188
2189 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2190
2191 namespace_unlock();
2192 }
2193 EXPORT_SYMBOL(mnt_set_expiry);
2194
2195 /*
2196 * process a list of expirable mountpoints with the intent of discarding any
2197 * mountpoints that aren't in use and haven't been touched since last we came
2198 * here
2199 */
2200 void mark_mounts_for_expiry(struct list_head *mounts)
2201 {
2202 struct mount *mnt, *next;
2203 LIST_HEAD(graveyard);
2204
2205 if (list_empty(mounts))
2206 return;
2207
2208 namespace_lock();
2209 lock_mount_hash();
2210
2211 /* extract from the expiration list every vfsmount that matches the
2212 * following criteria:
2213 * - only referenced by its parent vfsmount
2214 * - still marked for expiry (marked on the last call here; marks are
2215 * cleared by mntput())
2216 */
2217 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2218 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2219 propagate_mount_busy(mnt, 1))
2220 continue;
2221 list_move(&mnt->mnt_expire, &graveyard);
2222 }
2223 while (!list_empty(&graveyard)) {
2224 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2225 touch_mnt_namespace(mnt->mnt_ns);
2226 umount_tree(mnt, 1);
2227 }
2228 unlock_mount_hash();
2229 namespace_unlock();
2230 }
2231
2232 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2233
2234 /*
2235 * Ripoff of 'select_parent()'
2236 *
2237 * search the list of submounts for a given mountpoint, and move any
2238 * shrinkable submounts to the 'graveyard' list.
2239 */
2240 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2241 {
2242 struct mount *this_parent = parent;
2243 struct list_head *next;
2244 int found = 0;
2245
2246 repeat:
2247 next = this_parent->mnt_mounts.next;
2248 resume:
2249 while (next != &this_parent->mnt_mounts) {
2250 struct list_head *tmp = next;
2251 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2252
2253 next = tmp->next;
2254 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2255 continue;
2256 /*
2257 * Descend a level if the d_mounts list is non-empty.
2258 */
2259 if (!list_empty(&mnt->mnt_mounts)) {
2260 this_parent = mnt;
2261 goto repeat;
2262 }
2263
2264 if (!propagate_mount_busy(mnt, 1)) {
2265 list_move_tail(&mnt->mnt_expire, graveyard);
2266 found++;
2267 }
2268 }
2269 /*
2270 * All done at this level ... ascend and resume the search
2271 */
2272 if (this_parent != parent) {
2273 next = this_parent->mnt_child.next;
2274 this_parent = this_parent->mnt_parent;
2275 goto resume;
2276 }
2277 return found;
2278 }
2279
2280 /*
2281 * process a list of expirable mountpoints with the intent of discarding any
2282 * submounts of a specific parent mountpoint
2283 *
2284 * mount_lock must be held for write
2285 */
2286 static void shrink_submounts(struct mount *mnt)
2287 {
2288 LIST_HEAD(graveyard);
2289 struct mount *m;
2290
2291 /* extract submounts of 'mountpoint' from the expiration list */
2292 while (select_submounts(mnt, &graveyard)) {
2293 while (!list_empty(&graveyard)) {
2294 m = list_first_entry(&graveyard, struct mount,
2295 mnt_expire);
2296 touch_mnt_namespace(m->mnt_ns);
2297 umount_tree(m, 1);
2298 }
2299 }
2300 }
2301
2302 /*
2303 * Some copy_from_user() implementations do not return the exact number of
2304 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2305 * Note that this function differs from copy_from_user() in that it will oops
2306 * on bad values of `to', rather than returning a short copy.
2307 */
2308 static long exact_copy_from_user(void *to, const void __user * from,
2309 unsigned long n)
2310 {
2311 char *t = to;
2312 const char __user *f = from;
2313 char c;
2314
2315 if (!access_ok(VERIFY_READ, from, n))
2316 return n;
2317
2318 while (n) {
2319 if (__get_user(c, f)) {
2320 memset(t, 0, n);
2321 break;
2322 }
2323 *t++ = c;
2324 f++;
2325 n--;
2326 }
2327 return n;
2328 }
2329
2330 int copy_mount_options(const void __user * data, unsigned long *where)
2331 {
2332 int i;
2333 unsigned long page;
2334 unsigned long size;
2335
2336 *where = 0;
2337 if (!data)
2338 return 0;
2339
2340 if (!(page = __get_free_page(GFP_KERNEL)))
2341 return -ENOMEM;
2342
2343 /* We only care that *some* data at the address the user
2344 * gave us is valid. Just in case, we'll zero
2345 * the remainder of the page.
2346 */
2347 /* copy_from_user cannot cross TASK_SIZE ! */
2348 size = TASK_SIZE - (unsigned long)data;
2349 if (size > PAGE_SIZE)
2350 size = PAGE_SIZE;
2351
2352 i = size - exact_copy_from_user((void *)page, data, size);
2353 if (!i) {
2354 free_page(page);
2355 return -EFAULT;
2356 }
2357 if (i != PAGE_SIZE)
2358 memset((char *)page + i, 0, PAGE_SIZE - i);
2359 *where = page;
2360 return 0;
2361 }
2362
2363 int copy_mount_string(const void __user *data, char **where)
2364 {
2365 char *tmp;
2366
2367 if (!data) {
2368 *where = NULL;
2369 return 0;
2370 }
2371
2372 tmp = strndup_user(data, PAGE_SIZE);
2373 if (IS_ERR(tmp))
2374 return PTR_ERR(tmp);
2375
2376 *where = tmp;
2377 return 0;
2378 }
2379
2380 /*
2381 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2382 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2383 *
2384 * data is a (void *) that can point to any structure up to
2385 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2386 * information (or be NULL).
2387 *
2388 * Pre-0.97 versions of mount() didn't have a flags word.
2389 * When the flags word was introduced its top half was required
2390 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2391 * Therefore, if this magic number is present, it carries no information
2392 * and must be discarded.
2393 */
2394 long do_mount(const char *dev_name, const char *dir_name,
2395 const char *type_page, unsigned long flags, void *data_page)
2396 {
2397 struct path path;
2398 int retval = 0;
2399 int mnt_flags = 0;
2400
2401 /* Discard magic */
2402 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2403 flags &= ~MS_MGC_MSK;
2404
2405 /* Basic sanity checks */
2406
2407 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2408 return -EINVAL;
2409
2410 if (data_page)
2411 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2412
2413 /* ... and get the mountpoint */
2414 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2415 if (retval)
2416 return retval;
2417
2418 retval = security_sb_mount(dev_name, &path,
2419 type_page, flags, data_page);
2420 if (!retval && !may_mount())
2421 retval = -EPERM;
2422 if (retval)
2423 goto dput_out;
2424
2425 /* Default to relatime unless overriden */
2426 if (!(flags & MS_NOATIME))
2427 mnt_flags |= MNT_RELATIME;
2428
2429 /* Separate the per-mountpoint flags */
2430 if (flags & MS_NOSUID)
2431 mnt_flags |= MNT_NOSUID;
2432 if (flags & MS_NODEV)
2433 mnt_flags |= MNT_NODEV;
2434 if (flags & MS_NOEXEC)
2435 mnt_flags |= MNT_NOEXEC;
2436 if (flags & MS_NOATIME)
2437 mnt_flags |= MNT_NOATIME;
2438 if (flags & MS_NODIRATIME)
2439 mnt_flags |= MNT_NODIRATIME;
2440 if (flags & MS_STRICTATIME)
2441 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2442 if (flags & MS_RDONLY)
2443 mnt_flags |= MNT_READONLY;
2444
2445 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2446 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2447 MS_STRICTATIME);
2448
2449 if (flags & MS_REMOUNT)
2450 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2451 data_page);
2452 else if (flags & MS_BIND)
2453 retval = do_loopback(&path, dev_name, flags & MS_REC);
2454 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2455 retval = do_change_type(&path, flags);
2456 else if (flags & MS_MOVE)
2457 retval = do_move_mount(&path, dev_name);
2458 else
2459 retval = do_new_mount(&path, type_page, flags, mnt_flags,
2460 dev_name, data_page);
2461 dput_out:
2462 path_put(&path);
2463 return retval;
2464 }
2465
2466 static void free_mnt_ns(struct mnt_namespace *ns)
2467 {
2468 proc_free_inum(ns->proc_inum);
2469 put_user_ns(ns->user_ns);
2470 kfree(ns);
2471 }
2472
2473 /*
2474 * Assign a sequence number so we can detect when we attempt to bind
2475 * mount a reference to an older mount namespace into the current
2476 * mount namespace, preventing reference counting loops. A 64bit
2477 * number incrementing at 10Ghz will take 12,427 years to wrap which
2478 * is effectively never, so we can ignore the possibility.
2479 */
2480 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2481
2482 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2483 {
2484 struct mnt_namespace *new_ns;
2485 int ret;
2486
2487 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2488 if (!new_ns)
2489 return ERR_PTR(-ENOMEM);
2490 ret = proc_alloc_inum(&new_ns->proc_inum);
2491 if (ret) {
2492 kfree(new_ns);
2493 return ERR_PTR(ret);
2494 }
2495 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2496 atomic_set(&new_ns->count, 1);
2497 new_ns->root = NULL;
2498 INIT_LIST_HEAD(&new_ns->list);
2499 init_waitqueue_head(&new_ns->poll);
2500 new_ns->event = 0;
2501 new_ns->user_ns = get_user_ns(user_ns);
2502 return new_ns;
2503 }
2504
2505 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2506 struct user_namespace *user_ns, struct fs_struct *new_fs)
2507 {
2508 struct mnt_namespace *new_ns;
2509 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2510 struct mount *p, *q;
2511 struct mount *old;
2512 struct mount *new;
2513 int copy_flags;
2514
2515 BUG_ON(!ns);
2516
2517 if (likely(!(flags & CLONE_NEWNS))) {
2518 get_mnt_ns(ns);
2519 return ns;
2520 }
2521
2522 old = ns->root;
2523
2524 new_ns = alloc_mnt_ns(user_ns);
2525 if (IS_ERR(new_ns))
2526 return new_ns;
2527
2528 namespace_lock();
2529 /* First pass: copy the tree topology */
2530 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2531 if (user_ns != ns->user_ns)
2532 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2533 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2534 if (IS_ERR(new)) {
2535 namespace_unlock();
2536 free_mnt_ns(new_ns);
2537 return ERR_CAST(new);
2538 }
2539 new_ns->root = new;
2540 list_add_tail(&new_ns->list, &new->mnt_list);
2541
2542 /*
2543 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2544 * as belonging to new namespace. We have already acquired a private
2545 * fs_struct, so tsk->fs->lock is not needed.
2546 */
2547 p = old;
2548 q = new;
2549 while (p) {
2550 q->mnt_ns = new_ns;
2551 if (new_fs) {
2552 if (&p->mnt == new_fs->root.mnt) {
2553 new_fs->root.mnt = mntget(&q->mnt);
2554 rootmnt = &p->mnt;
2555 }
2556 if (&p->mnt == new_fs->pwd.mnt) {
2557 new_fs->pwd.mnt = mntget(&q->mnt);
2558 pwdmnt = &p->mnt;
2559 }
2560 }
2561 p = next_mnt(p, old);
2562 q = next_mnt(q, new);
2563 if (!q)
2564 break;
2565 while (p->mnt.mnt_root != q->mnt.mnt_root)
2566 p = next_mnt(p, old);
2567 }
2568 namespace_unlock();
2569
2570 if (rootmnt)
2571 mntput(rootmnt);
2572 if (pwdmnt)
2573 mntput(pwdmnt);
2574
2575 return new_ns;
2576 }
2577
2578 /**
2579 * create_mnt_ns - creates a private namespace and adds a root filesystem
2580 * @mnt: pointer to the new root filesystem mountpoint
2581 */
2582 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2583 {
2584 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2585 if (!IS_ERR(new_ns)) {
2586 struct mount *mnt = real_mount(m);
2587 mnt->mnt_ns = new_ns;
2588 new_ns->root = mnt;
2589 list_add(&mnt->mnt_list, &new_ns->list);
2590 } else {
2591 mntput(m);
2592 }
2593 return new_ns;
2594 }
2595
2596 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2597 {
2598 struct mnt_namespace *ns;
2599 struct super_block *s;
2600 struct path path;
2601 int err;
2602
2603 ns = create_mnt_ns(mnt);
2604 if (IS_ERR(ns))
2605 return ERR_CAST(ns);
2606
2607 err = vfs_path_lookup(mnt->mnt_root, mnt,
2608 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2609
2610 put_mnt_ns(ns);
2611
2612 if (err)
2613 return ERR_PTR(err);
2614
2615 /* trade a vfsmount reference for active sb one */
2616 s = path.mnt->mnt_sb;
2617 atomic_inc(&s->s_active);
2618 mntput(path.mnt);
2619 /* lock the sucker */
2620 down_write(&s->s_umount);
2621 /* ... and return the root of (sub)tree on it */
2622 return path.dentry;
2623 }
2624 EXPORT_SYMBOL(mount_subtree);
2625
2626 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2627 char __user *, type, unsigned long, flags, void __user *, data)
2628 {
2629 int ret;
2630 char *kernel_type;
2631 struct filename *kernel_dir;
2632 char *kernel_dev;
2633 unsigned long data_page;
2634
2635 ret = copy_mount_string(type, &kernel_type);
2636 if (ret < 0)
2637 goto out_type;
2638
2639 kernel_dir = getname(dir_name);
2640 if (IS_ERR(kernel_dir)) {
2641 ret = PTR_ERR(kernel_dir);
2642 goto out_dir;
2643 }
2644
2645 ret = copy_mount_string(dev_name, &kernel_dev);
2646 if (ret < 0)
2647 goto out_dev;
2648
2649 ret = copy_mount_options(data, &data_page);
2650 if (ret < 0)
2651 goto out_data;
2652
2653 ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags,
2654 (void *) data_page);
2655
2656 free_page(data_page);
2657 out_data:
2658 kfree(kernel_dev);
2659 out_dev:
2660 putname(kernel_dir);
2661 out_dir:
2662 kfree(kernel_type);
2663 out_type:
2664 return ret;
2665 }
2666
2667 /*
2668 * Return true if path is reachable from root
2669 *
2670 * namespace_sem or mount_lock is held
2671 */
2672 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
2673 const struct path *root)
2674 {
2675 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
2676 dentry = mnt->mnt_mountpoint;
2677 mnt = mnt->mnt_parent;
2678 }
2679 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
2680 }
2681
2682 int path_is_under(struct path *path1, struct path *path2)
2683 {
2684 int res;
2685 read_seqlock_excl(&mount_lock);
2686 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
2687 read_sequnlock_excl(&mount_lock);
2688 return res;
2689 }
2690 EXPORT_SYMBOL(path_is_under);
2691
2692 /*
2693 * pivot_root Semantics:
2694 * Moves the root file system of the current process to the directory put_old,
2695 * makes new_root as the new root file system of the current process, and sets
2696 * root/cwd of all processes which had them on the current root to new_root.
2697 *
2698 * Restrictions:
2699 * The new_root and put_old must be directories, and must not be on the
2700 * same file system as the current process root. The put_old must be
2701 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2702 * pointed to by put_old must yield the same directory as new_root. No other
2703 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2704 *
2705 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2706 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2707 * in this situation.
2708 *
2709 * Notes:
2710 * - we don't move root/cwd if they are not at the root (reason: if something
2711 * cared enough to change them, it's probably wrong to force them elsewhere)
2712 * - it's okay to pick a root that isn't the root of a file system, e.g.
2713 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2714 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2715 * first.
2716 */
2717 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2718 const char __user *, put_old)
2719 {
2720 struct path new, old, parent_path, root_parent, root;
2721 struct mount *new_mnt, *root_mnt, *old_mnt;
2722 struct mountpoint *old_mp, *root_mp;
2723 int error;
2724
2725 if (!may_mount())
2726 return -EPERM;
2727
2728 error = user_path_dir(new_root, &new);
2729 if (error)
2730 goto out0;
2731
2732 error = user_path_dir(put_old, &old);
2733 if (error)
2734 goto out1;
2735
2736 error = security_sb_pivotroot(&old, &new);
2737 if (error)
2738 goto out2;
2739
2740 get_fs_root(current->fs, &root);
2741 old_mp = lock_mount(&old);
2742 error = PTR_ERR(old_mp);
2743 if (IS_ERR(old_mp))
2744 goto out3;
2745
2746 error = -EINVAL;
2747 new_mnt = real_mount(new.mnt);
2748 root_mnt = real_mount(root.mnt);
2749 old_mnt = real_mount(old.mnt);
2750 if (IS_MNT_SHARED(old_mnt) ||
2751 IS_MNT_SHARED(new_mnt->mnt_parent) ||
2752 IS_MNT_SHARED(root_mnt->mnt_parent))
2753 goto out4;
2754 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
2755 goto out4;
2756 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
2757 goto out4;
2758 error = -ENOENT;
2759 if (d_unlinked(new.dentry))
2760 goto out4;
2761 error = -EBUSY;
2762 if (new_mnt == root_mnt || old_mnt == root_mnt)
2763 goto out4; /* loop, on the same file system */
2764 error = -EINVAL;
2765 if (root.mnt->mnt_root != root.dentry)
2766 goto out4; /* not a mountpoint */
2767 if (!mnt_has_parent(root_mnt))
2768 goto out4; /* not attached */
2769 root_mp = root_mnt->mnt_mp;
2770 if (new.mnt->mnt_root != new.dentry)
2771 goto out4; /* not a mountpoint */
2772 if (!mnt_has_parent(new_mnt))
2773 goto out4; /* not attached */
2774 /* make sure we can reach put_old from new_root */
2775 if (!is_path_reachable(old_mnt, old.dentry, &new))
2776 goto out4;
2777 root_mp->m_count++; /* pin it so it won't go away */
2778 lock_mount_hash();
2779 detach_mnt(new_mnt, &parent_path);
2780 detach_mnt(root_mnt, &root_parent);
2781 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
2782 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
2783 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2784 }
2785 /* mount old root on put_old */
2786 attach_mnt(root_mnt, old_mnt, old_mp);
2787 /* mount new_root on / */
2788 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
2789 touch_mnt_namespace(current->nsproxy->mnt_ns);
2790 unlock_mount_hash();
2791 chroot_fs_refs(&root, &new);
2792 put_mountpoint(root_mp);
2793 error = 0;
2794 out4:
2795 unlock_mount(old_mp);
2796 if (!error) {
2797 path_put(&root_parent);
2798 path_put(&parent_path);
2799 }
2800 out3:
2801 path_put(&root);
2802 out2:
2803 path_put(&old);
2804 out1:
2805 path_put(&new);
2806 out0:
2807 return error;
2808 }
2809
2810 static void __init init_mount_tree(void)
2811 {
2812 struct vfsmount *mnt;
2813 struct mnt_namespace *ns;
2814 struct path root;
2815 struct file_system_type *type;
2816
2817 type = get_fs_type("rootfs");
2818 if (!type)
2819 panic("Can't find rootfs type");
2820 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
2821 put_filesystem(type);
2822 if (IS_ERR(mnt))
2823 panic("Can't create rootfs");
2824
2825 ns = create_mnt_ns(mnt);
2826 if (IS_ERR(ns))
2827 panic("Can't allocate initial namespace");
2828
2829 init_task.nsproxy->mnt_ns = ns;
2830 get_mnt_ns(ns);
2831
2832 root.mnt = mnt;
2833 root.dentry = mnt->mnt_root;
2834
2835 set_fs_pwd(current->fs, &root);
2836 set_fs_root(current->fs, &root);
2837 }
2838
2839 void __init mnt_init(void)
2840 {
2841 unsigned u;
2842 int err;
2843
2844 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
2845 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2846
2847 mount_hashtable = alloc_large_system_hash("Mount-cache",
2848 sizeof(struct hlist_head),
2849 mhash_entries, 19,
2850 0,
2851 &m_hash_shift, &m_hash_mask, 0, 0);
2852 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
2853 sizeof(struct hlist_head),
2854 mphash_entries, 19,
2855 0,
2856 &mp_hash_shift, &mp_hash_mask, 0, 0);
2857
2858 if (!mount_hashtable || !mountpoint_hashtable)
2859 panic("Failed to allocate mount hash table\n");
2860
2861 for (u = 0; u <= m_hash_mask; u++)
2862 INIT_HLIST_HEAD(&mount_hashtable[u]);
2863 for (u = 0; u <= mp_hash_mask; u++)
2864 INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
2865
2866 kernfs_init();
2867
2868 err = sysfs_init();
2869 if (err)
2870 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2871 __func__, err);
2872 fs_kobj = kobject_create_and_add("fs", NULL);
2873 if (!fs_kobj)
2874 printk(KERN_WARNING "%s: kobj create error\n", __func__);
2875 init_rootfs();
2876 init_mount_tree();
2877 }
2878
2879 void put_mnt_ns(struct mnt_namespace *ns)
2880 {
2881 if (!atomic_dec_and_test(&ns->count))
2882 return;
2883 drop_collected_mounts(&ns->root->mnt);
2884 free_mnt_ns(ns);
2885 }
2886
2887 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2888 {
2889 struct vfsmount *mnt;
2890 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2891 if (!IS_ERR(mnt)) {
2892 /*
2893 * it is a longterm mount, don't release mnt until
2894 * we unmount before file sys is unregistered
2895 */
2896 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
2897 }
2898 return mnt;
2899 }
2900 EXPORT_SYMBOL_GPL(kern_mount_data);
2901
2902 void kern_unmount(struct vfsmount *mnt)
2903 {
2904 /* release long term mount so mount point can be released */
2905 if (!IS_ERR_OR_NULL(mnt)) {
2906 real_mount(mnt)->mnt_ns = NULL;
2907 synchronize_rcu(); /* yecchhh... */
2908 mntput(mnt);
2909 }
2910 }
2911 EXPORT_SYMBOL(kern_unmount);
2912
2913 bool our_mnt(struct vfsmount *mnt)
2914 {
2915 return check_mnt(real_mount(mnt));
2916 }
2917
2918 bool current_chrooted(void)
2919 {
2920 /* Does the current process have a non-standard root */
2921 struct path ns_root;
2922 struct path fs_root;
2923 bool chrooted;
2924
2925 /* Find the namespace root */
2926 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
2927 ns_root.dentry = ns_root.mnt->mnt_root;
2928 path_get(&ns_root);
2929 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
2930 ;
2931
2932 get_fs_root(current->fs, &fs_root);
2933
2934 chrooted = !path_equal(&fs_root, &ns_root);
2935
2936 path_put(&fs_root);
2937 path_put(&ns_root);
2938
2939 return chrooted;
2940 }
2941
2942 bool fs_fully_visible(struct file_system_type *type)
2943 {
2944 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
2945 struct mount *mnt;
2946 bool visible = false;
2947
2948 if (unlikely(!ns))
2949 return false;
2950
2951 down_read(&namespace_sem);
2952 list_for_each_entry(mnt, &ns->list, mnt_list) {
2953 struct mount *child;
2954 if (mnt->mnt.mnt_sb->s_type != type)
2955 continue;
2956
2957 /* This mount is not fully visible if there are any child mounts
2958 * that cover anything except for empty directories.
2959 */
2960 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2961 struct inode *inode = child->mnt_mountpoint->d_inode;
2962 if (!S_ISDIR(inode->i_mode))
2963 goto next;
2964 if (inode->i_nlink > 2)
2965 goto next;
2966 }
2967 visible = true;
2968 goto found;
2969 next: ;
2970 }
2971 found:
2972 up_read(&namespace_sem);
2973 return visible;
2974 }
2975
2976 static void *mntns_get(struct task_struct *task)
2977 {
2978 struct mnt_namespace *ns = NULL;
2979 struct nsproxy *nsproxy;
2980
2981 rcu_read_lock();
2982 nsproxy = task_nsproxy(task);
2983 if (nsproxy) {
2984 ns = nsproxy->mnt_ns;
2985 get_mnt_ns(ns);
2986 }
2987 rcu_read_unlock();
2988
2989 return ns;
2990 }
2991
2992 static void mntns_put(void *ns)
2993 {
2994 put_mnt_ns(ns);
2995 }
2996
2997 static int mntns_install(struct nsproxy *nsproxy, void *ns)
2998 {
2999 struct fs_struct *fs = current->fs;
3000 struct mnt_namespace *mnt_ns = ns;
3001 struct path root;
3002
3003 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3004 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3005 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3006 return -EPERM;
3007
3008 if (fs->users != 1)
3009 return -EINVAL;
3010
3011 get_mnt_ns(mnt_ns);
3012 put_mnt_ns(nsproxy->mnt_ns);
3013 nsproxy->mnt_ns = mnt_ns;
3014
3015 /* Find the root */
3016 root.mnt = &mnt_ns->root->mnt;
3017 root.dentry = mnt_ns->root->mnt.mnt_root;
3018 path_get(&root);
3019 while(d_mountpoint(root.dentry) && follow_down_one(&root))
3020 ;
3021
3022 /* Update the pwd and root */
3023 set_fs_pwd(fs, &root);
3024 set_fs_root(fs, &root);
3025
3026 path_put(&root);
3027 return 0;
3028 }
3029
3030 static unsigned int mntns_inum(void *ns)
3031 {
3032 struct mnt_namespace *mnt_ns = ns;
3033 return mnt_ns->proc_inum;
3034 }
3035
3036 const struct proc_ns_operations mntns_operations = {
3037 .name = "mnt",
3038 .type = CLONE_NEWNS,
3039 .get = mntns_get,
3040 .put = mntns_put,
3041 .install = mntns_install,
3042 .inum = mntns_inum,
3043 };