]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/namespace.c
fold __get_file_write_access() into its only caller
[mirror_ubuntu-artful-kernel.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4 11#include <linux/syscalls.h>
d10577a8 12#include <linux/export.h>
16f7e0fe 13#include <linux/capability.h>
6b3286ed 14#include <linux/mnt_namespace.h>
771b1371 15#include <linux/user_namespace.h>
1da177e4
LT
16#include <linux/namei.h>
17#include <linux/security.h>
73cd49ec 18#include <linux/idr.h>
d10577a8 19#include <linux/acct.h> /* acct_auto_close_mnt */
57f150a5 20#include <linux/init.h> /* init_rootfs */
d10577a8
AV
21#include <linux/fs_struct.h> /* get_fs_root et.al. */
22#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23#include <linux/uaccess.h>
0bb80f24 24#include <linux/proc_ns.h>
20b4fb48 25#include <linux/magic.h>
0818bf27 26#include <linux/bootmem.h>
07b20889 27#include "pnode.h"
948730b0 28#include "internal.h"
1da177e4 29
0818bf27
AV
30static unsigned int m_hash_mask __read_mostly;
31static unsigned int m_hash_shift __read_mostly;
32static unsigned int mp_hash_mask __read_mostly;
33static unsigned int mp_hash_shift __read_mostly;
34
35static __initdata unsigned long mhash_entries;
36static int __init set_mhash_entries(char *str)
37{
38 if (!str)
39 return 0;
40 mhash_entries = simple_strtoul(str, &str, 0);
41 return 1;
42}
43__setup("mhash_entries=", set_mhash_entries);
44
45static __initdata unsigned long mphash_entries;
46static int __init set_mphash_entries(char *str)
47{
48 if (!str)
49 return 0;
50 mphash_entries = simple_strtoul(str, &str, 0);
51 return 1;
52}
53__setup("mphash_entries=", set_mphash_entries);
13f14b4d 54
c7999c36 55static u64 event;
73cd49ec 56static DEFINE_IDA(mnt_id_ida);
719f5d7f 57static DEFINE_IDA(mnt_group_ida);
99b7db7b 58static DEFINE_SPINLOCK(mnt_id_lock);
f21f6220
AV
59static int mnt_id_start = 0;
60static int mnt_group_start = 1;
1da177e4 61
38129a13 62static struct hlist_head *mount_hashtable __read_mostly;
0818bf27 63static struct hlist_head *mountpoint_hashtable __read_mostly;
e18b890b 64static struct kmem_cache *mnt_cache __read_mostly;
59aa0da8 65static DECLARE_RWSEM(namespace_sem);
1da177e4 66
f87fd4c2 67/* /sys/fs */
00d26666
GKH
68struct kobject *fs_kobj;
69EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 70
99b7db7b
NP
71/*
72 * vfsmount lock may be taken for read to prevent changes to the
73 * vfsmount hash, ie. during mountpoint lookups or walking back
74 * up the tree.
75 *
76 * It should be taken for write in all cases where the vfsmount
77 * tree or hash is modified or when a vfsmount structure is modified.
78 */
48a066e7 79__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
99b7db7b 80
38129a13 81static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 82{
b58fed8b
RP
83 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
84 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
0818bf27
AV
85 tmp = tmp + (tmp >> m_hash_shift);
86 return &mount_hashtable[tmp & m_hash_mask];
87}
88
89static inline struct hlist_head *mp_hash(struct dentry *dentry)
90{
91 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
92 tmp = tmp + (tmp >> mp_hash_shift);
93 return &mountpoint_hashtable[tmp & mp_hash_mask];
1da177e4
LT
94}
95
99b7db7b
NP
96/*
97 * allocation is serialized by namespace_sem, but we need the spinlock to
98 * serialize with freeing.
99 */
b105e270 100static int mnt_alloc_id(struct mount *mnt)
73cd49ec
MS
101{
102 int res;
103
104retry:
105 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
99b7db7b 106 spin_lock(&mnt_id_lock);
15169fe7 107 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
f21f6220 108 if (!res)
15169fe7 109 mnt_id_start = mnt->mnt_id + 1;
99b7db7b 110 spin_unlock(&mnt_id_lock);
73cd49ec
MS
111 if (res == -EAGAIN)
112 goto retry;
113
114 return res;
115}
116
b105e270 117static void mnt_free_id(struct mount *mnt)
73cd49ec 118{
15169fe7 119 int id = mnt->mnt_id;
99b7db7b 120 spin_lock(&mnt_id_lock);
f21f6220
AV
121 ida_remove(&mnt_id_ida, id);
122 if (mnt_id_start > id)
123 mnt_id_start = id;
99b7db7b 124 spin_unlock(&mnt_id_lock);
73cd49ec
MS
125}
126
719f5d7f
MS
127/*
128 * Allocate a new peer group ID
129 *
130 * mnt_group_ida is protected by namespace_sem
131 */
4b8b21f4 132static int mnt_alloc_group_id(struct mount *mnt)
719f5d7f 133{
f21f6220
AV
134 int res;
135
719f5d7f
MS
136 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
137 return -ENOMEM;
138
f21f6220
AV
139 res = ida_get_new_above(&mnt_group_ida,
140 mnt_group_start,
15169fe7 141 &mnt->mnt_group_id);
f21f6220 142 if (!res)
15169fe7 143 mnt_group_start = mnt->mnt_group_id + 1;
f21f6220
AV
144
145 return res;
719f5d7f
MS
146}
147
148/*
149 * Release a peer group ID
150 */
4b8b21f4 151void mnt_release_group_id(struct mount *mnt)
719f5d7f 152{
15169fe7 153 int id = mnt->mnt_group_id;
f21f6220
AV
154 ida_remove(&mnt_group_ida, id);
155 if (mnt_group_start > id)
156 mnt_group_start = id;
15169fe7 157 mnt->mnt_group_id = 0;
719f5d7f
MS
158}
159
b3e19d92
NP
160/*
161 * vfsmount lock must be held for read
162 */
83adc753 163static inline void mnt_add_count(struct mount *mnt, int n)
b3e19d92
NP
164{
165#ifdef CONFIG_SMP
68e8a9fe 166 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
b3e19d92
NP
167#else
168 preempt_disable();
68e8a9fe 169 mnt->mnt_count += n;
b3e19d92
NP
170 preempt_enable();
171#endif
172}
173
b3e19d92
NP
174/*
175 * vfsmount lock must be held for write
176 */
83adc753 177unsigned int mnt_get_count(struct mount *mnt)
b3e19d92
NP
178{
179#ifdef CONFIG_SMP
f03c6599 180 unsigned int count = 0;
b3e19d92
NP
181 int cpu;
182
183 for_each_possible_cpu(cpu) {
68e8a9fe 184 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
b3e19d92
NP
185 }
186
187 return count;
188#else
68e8a9fe 189 return mnt->mnt_count;
b3e19d92
NP
190#endif
191}
192
b105e270 193static struct mount *alloc_vfsmnt(const char *name)
1da177e4 194{
c63181e6
AV
195 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
196 if (mnt) {
73cd49ec
MS
197 int err;
198
c63181e6 199 err = mnt_alloc_id(mnt);
88b38782
LZ
200 if (err)
201 goto out_free_cache;
202
203 if (name) {
c63181e6
AV
204 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
205 if (!mnt->mnt_devname)
88b38782 206 goto out_free_id;
73cd49ec
MS
207 }
208
b3e19d92 209#ifdef CONFIG_SMP
c63181e6
AV
210 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
211 if (!mnt->mnt_pcp)
b3e19d92
NP
212 goto out_free_devname;
213
c63181e6 214 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
b3e19d92 215#else
c63181e6
AV
216 mnt->mnt_count = 1;
217 mnt->mnt_writers = 0;
b3e19d92
NP
218#endif
219
38129a13 220 INIT_HLIST_NODE(&mnt->mnt_hash);
c63181e6
AV
221 INIT_LIST_HEAD(&mnt->mnt_child);
222 INIT_LIST_HEAD(&mnt->mnt_mounts);
223 INIT_LIST_HEAD(&mnt->mnt_list);
224 INIT_LIST_HEAD(&mnt->mnt_expire);
225 INIT_LIST_HEAD(&mnt->mnt_share);
226 INIT_LIST_HEAD(&mnt->mnt_slave_list);
227 INIT_LIST_HEAD(&mnt->mnt_slave);
2504c5d6
AG
228#ifdef CONFIG_FSNOTIFY
229 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
d3ef3d73 230#endif
1da177e4 231 }
c63181e6 232 return mnt;
88b38782 233
d3ef3d73 234#ifdef CONFIG_SMP
235out_free_devname:
c63181e6 236 kfree(mnt->mnt_devname);
d3ef3d73 237#endif
88b38782 238out_free_id:
c63181e6 239 mnt_free_id(mnt);
88b38782 240out_free_cache:
c63181e6 241 kmem_cache_free(mnt_cache, mnt);
88b38782 242 return NULL;
1da177e4
LT
243}
244
3d733633
DH
245/*
246 * Most r/o checks on a fs are for operations that take
247 * discrete amounts of time, like a write() or unlink().
248 * We must keep track of when those operations start
249 * (for permission checks) and when they end, so that
250 * we can determine when writes are able to occur to
251 * a filesystem.
252 */
253/*
254 * __mnt_is_readonly: check whether a mount is read-only
255 * @mnt: the mount to check for its write status
256 *
257 * This shouldn't be used directly ouside of the VFS.
258 * It does not guarantee that the filesystem will stay
259 * r/w, just that it is right *now*. This can not and
260 * should not be used in place of IS_RDONLY(inode).
261 * mnt_want/drop_write() will _keep_ the filesystem
262 * r/w.
263 */
264int __mnt_is_readonly(struct vfsmount *mnt)
265{
2e4b7fcd
DH
266 if (mnt->mnt_flags & MNT_READONLY)
267 return 1;
268 if (mnt->mnt_sb->s_flags & MS_RDONLY)
269 return 1;
270 return 0;
3d733633
DH
271}
272EXPORT_SYMBOL_GPL(__mnt_is_readonly);
273
83adc753 274static inline void mnt_inc_writers(struct mount *mnt)
d3ef3d73 275{
276#ifdef CONFIG_SMP
68e8a9fe 277 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
d3ef3d73 278#else
68e8a9fe 279 mnt->mnt_writers++;
d3ef3d73 280#endif
281}
3d733633 282
83adc753 283static inline void mnt_dec_writers(struct mount *mnt)
3d733633 284{
d3ef3d73 285#ifdef CONFIG_SMP
68e8a9fe 286 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
d3ef3d73 287#else
68e8a9fe 288 mnt->mnt_writers--;
d3ef3d73 289#endif
3d733633 290}
3d733633 291
83adc753 292static unsigned int mnt_get_writers(struct mount *mnt)
3d733633 293{
d3ef3d73 294#ifdef CONFIG_SMP
295 unsigned int count = 0;
3d733633 296 int cpu;
3d733633
DH
297
298 for_each_possible_cpu(cpu) {
68e8a9fe 299 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
3d733633 300 }
3d733633 301
d3ef3d73 302 return count;
303#else
304 return mnt->mnt_writers;
305#endif
3d733633
DH
306}
307
4ed5e82f
MS
308static int mnt_is_readonly(struct vfsmount *mnt)
309{
310 if (mnt->mnt_sb->s_readonly_remount)
311 return 1;
312 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
313 smp_rmb();
314 return __mnt_is_readonly(mnt);
315}
316
8366025e 317/*
eb04c282
JK
318 * Most r/o & frozen checks on a fs are for operations that take discrete
319 * amounts of time, like a write() or unlink(). We must keep track of when
320 * those operations start (for permission checks) and when they end, so that we
321 * can determine when writes are able to occur to a filesystem.
8366025e
DH
322 */
323/**
eb04c282 324 * __mnt_want_write - get write access to a mount without freeze protection
83adc753 325 * @m: the mount on which to take a write
8366025e 326 *
eb04c282
JK
327 * This tells the low-level filesystem that a write is about to be performed to
328 * it, and makes sure that writes are allowed (mnt it read-write) before
329 * returning success. This operation does not protect against filesystem being
330 * frozen. When the write operation is finished, __mnt_drop_write() must be
331 * called. This is effectively a refcount.
8366025e 332 */
eb04c282 333int __mnt_want_write(struct vfsmount *m)
8366025e 334{
83adc753 335 struct mount *mnt = real_mount(m);
3d733633 336 int ret = 0;
3d733633 337
d3ef3d73 338 preempt_disable();
c6653a83 339 mnt_inc_writers(mnt);
d3ef3d73 340 /*
c6653a83 341 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73 342 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
343 * incremented count after it has set MNT_WRITE_HOLD.
344 */
345 smp_mb();
1e75529e 346 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
d3ef3d73 347 cpu_relax();
348 /*
349 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
350 * be set to match its requirements. So we must not load that until
351 * MNT_WRITE_HOLD is cleared.
352 */
353 smp_rmb();
4ed5e82f 354 if (mnt_is_readonly(m)) {
c6653a83 355 mnt_dec_writers(mnt);
3d733633 356 ret = -EROFS;
3d733633 357 }
d3ef3d73 358 preempt_enable();
eb04c282
JK
359
360 return ret;
361}
362
363/**
364 * mnt_want_write - get write access to a mount
365 * @m: the mount on which to take a write
366 *
367 * This tells the low-level filesystem that a write is about to be performed to
368 * it, and makes sure that writes are allowed (mount is read-write, filesystem
369 * is not frozen) before returning success. When the write operation is
370 * finished, mnt_drop_write() must be called. This is effectively a refcount.
371 */
372int mnt_want_write(struct vfsmount *m)
373{
374 int ret;
375
376 sb_start_write(m->mnt_sb);
377 ret = __mnt_want_write(m);
378 if (ret)
379 sb_end_write(m->mnt_sb);
3d733633 380 return ret;
8366025e
DH
381}
382EXPORT_SYMBOL_GPL(mnt_want_write);
383
96029c4e 384/**
385 * mnt_clone_write - get write access to a mount
386 * @mnt: the mount on which to take a write
387 *
388 * This is effectively like mnt_want_write, except
389 * it must only be used to take an extra write reference
390 * on a mountpoint that we already know has a write reference
391 * on it. This allows some optimisation.
392 *
393 * After finished, mnt_drop_write must be called as usual to
394 * drop the reference.
395 */
396int mnt_clone_write(struct vfsmount *mnt)
397{
398 /* superblock may be r/o */
399 if (__mnt_is_readonly(mnt))
400 return -EROFS;
401 preempt_disable();
83adc753 402 mnt_inc_writers(real_mount(mnt));
96029c4e 403 preempt_enable();
404 return 0;
405}
406EXPORT_SYMBOL_GPL(mnt_clone_write);
407
408/**
eb04c282 409 * __mnt_want_write_file - get write access to a file's mount
96029c4e 410 * @file: the file who's mount on which to take a write
411 *
eb04c282 412 * This is like __mnt_want_write, but it takes a file and can
96029c4e 413 * do some optimisations if the file is open for write already
414 */
eb04c282 415int __mnt_want_write_file(struct file *file)
96029c4e 416{
496ad9aa 417 struct inode *inode = file_inode(file);
eb04c282 418
2d8dd38a 419 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
eb04c282 420 return __mnt_want_write(file->f_path.mnt);
96029c4e 421 else
422 return mnt_clone_write(file->f_path.mnt);
423}
eb04c282
JK
424
425/**
426 * mnt_want_write_file - get write access to a file's mount
427 * @file: the file who's mount on which to take a write
428 *
429 * This is like mnt_want_write, but it takes a file and can
430 * do some optimisations if the file is open for write already
431 */
432int mnt_want_write_file(struct file *file)
433{
434 int ret;
435
436 sb_start_write(file->f_path.mnt->mnt_sb);
437 ret = __mnt_want_write_file(file);
438 if (ret)
439 sb_end_write(file->f_path.mnt->mnt_sb);
440 return ret;
441}
96029c4e 442EXPORT_SYMBOL_GPL(mnt_want_write_file);
443
8366025e 444/**
eb04c282 445 * __mnt_drop_write - give up write access to a mount
8366025e
DH
446 * @mnt: the mount on which to give up write access
447 *
448 * Tells the low-level filesystem that we are done
449 * performing writes to it. Must be matched with
eb04c282 450 * __mnt_want_write() call above.
8366025e 451 */
eb04c282 452void __mnt_drop_write(struct vfsmount *mnt)
8366025e 453{
d3ef3d73 454 preempt_disable();
83adc753 455 mnt_dec_writers(real_mount(mnt));
d3ef3d73 456 preempt_enable();
8366025e 457}
eb04c282
JK
458
459/**
460 * mnt_drop_write - give up write access to a mount
461 * @mnt: the mount on which to give up write access
462 *
463 * Tells the low-level filesystem that we are done performing writes to it and
464 * also allows filesystem to be frozen again. Must be matched with
465 * mnt_want_write() call above.
466 */
467void mnt_drop_write(struct vfsmount *mnt)
468{
469 __mnt_drop_write(mnt);
470 sb_end_write(mnt->mnt_sb);
471}
8366025e
DH
472EXPORT_SYMBOL_GPL(mnt_drop_write);
473
eb04c282
JK
474void __mnt_drop_write_file(struct file *file)
475{
476 __mnt_drop_write(file->f_path.mnt);
477}
478
2a79f17e
AV
479void mnt_drop_write_file(struct file *file)
480{
481 mnt_drop_write(file->f_path.mnt);
482}
483EXPORT_SYMBOL(mnt_drop_write_file);
484
83adc753 485static int mnt_make_readonly(struct mount *mnt)
8366025e 486{
3d733633
DH
487 int ret = 0;
488
719ea2fb 489 lock_mount_hash();
83adc753 490 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
3d733633 491 /*
d3ef3d73 492 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
493 * should be visible before we do.
3d733633 494 */
d3ef3d73 495 smp_mb();
496
3d733633 497 /*
d3ef3d73 498 * With writers on hold, if this value is zero, then there are
499 * definitely no active writers (although held writers may subsequently
500 * increment the count, they'll have to wait, and decrement it after
501 * seeing MNT_READONLY).
502 *
503 * It is OK to have counter incremented on one CPU and decremented on
504 * another: the sum will add up correctly. The danger would be when we
505 * sum up each counter, if we read a counter before it is incremented,
506 * but then read another CPU's count which it has been subsequently
507 * decremented from -- we would see more decrements than we should.
508 * MNT_WRITE_HOLD protects against this scenario, because
509 * mnt_want_write first increments count, then smp_mb, then spins on
510 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
511 * we're counting up here.
3d733633 512 */
c6653a83 513 if (mnt_get_writers(mnt) > 0)
d3ef3d73 514 ret = -EBUSY;
515 else
83adc753 516 mnt->mnt.mnt_flags |= MNT_READONLY;
d3ef3d73 517 /*
518 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
519 * that become unheld will see MNT_READONLY.
520 */
521 smp_wmb();
83adc753 522 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
719ea2fb 523 unlock_mount_hash();
3d733633 524 return ret;
8366025e 525}
8366025e 526
83adc753 527static void __mnt_unmake_readonly(struct mount *mnt)
2e4b7fcd 528{
719ea2fb 529 lock_mount_hash();
83adc753 530 mnt->mnt.mnt_flags &= ~MNT_READONLY;
719ea2fb 531 unlock_mount_hash();
2e4b7fcd
DH
532}
533
4ed5e82f
MS
534int sb_prepare_remount_readonly(struct super_block *sb)
535{
536 struct mount *mnt;
537 int err = 0;
538
8e8b8796
MS
539 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
540 if (atomic_long_read(&sb->s_remove_count))
541 return -EBUSY;
542
719ea2fb 543 lock_mount_hash();
4ed5e82f
MS
544 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
545 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
546 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
547 smp_mb();
548 if (mnt_get_writers(mnt) > 0) {
549 err = -EBUSY;
550 break;
551 }
552 }
553 }
8e8b8796
MS
554 if (!err && atomic_long_read(&sb->s_remove_count))
555 err = -EBUSY;
556
4ed5e82f
MS
557 if (!err) {
558 sb->s_readonly_remount = 1;
559 smp_wmb();
560 }
561 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
562 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
563 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
564 }
719ea2fb 565 unlock_mount_hash();
4ed5e82f
MS
566
567 return err;
568}
569
b105e270 570static void free_vfsmnt(struct mount *mnt)
1da177e4 571{
52ba1621 572 kfree(mnt->mnt_devname);
73cd49ec 573 mnt_free_id(mnt);
d3ef3d73 574#ifdef CONFIG_SMP
68e8a9fe 575 free_percpu(mnt->mnt_pcp);
d3ef3d73 576#endif
b105e270 577 kmem_cache_free(mnt_cache, mnt);
1da177e4
LT
578}
579
48a066e7
AV
580/* call under rcu_read_lock */
581bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
582{
583 struct mount *mnt;
584 if (read_seqretry(&mount_lock, seq))
585 return false;
586 if (bastard == NULL)
587 return true;
588 mnt = real_mount(bastard);
589 mnt_add_count(mnt, 1);
590 if (likely(!read_seqretry(&mount_lock, seq)))
591 return true;
592 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
593 mnt_add_count(mnt, -1);
594 return false;
595 }
596 rcu_read_unlock();
597 mntput(bastard);
598 rcu_read_lock();
599 return false;
600}
601
1da177e4 602/*
474279dc 603 * find the first mount at @dentry on vfsmount @mnt.
48a066e7 604 * call under rcu_read_lock()
1da177e4 605 */
474279dc 606struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 607{
38129a13 608 struct hlist_head *head = m_hash(mnt, dentry);
474279dc
AV
609 struct mount *p;
610
38129a13 611 hlist_for_each_entry_rcu(p, head, mnt_hash)
474279dc
AV
612 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
613 return p;
614 return NULL;
615}
616
617/*
618 * find the last mount at @dentry on vfsmount @mnt.
48a066e7 619 * mount_lock must be held.
474279dc
AV
620 */
621struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
622{
38129a13
AV
623 struct mount *p, *res;
624 res = p = __lookup_mnt(mnt, dentry);
625 if (!p)
626 goto out;
627 hlist_for_each_entry_continue(p, mnt_hash) {
1d6a32ac
AV
628 if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry)
629 break;
630 res = p;
631 }
38129a13 632out:
1d6a32ac 633 return res;
1da177e4
LT
634}
635
a05964f3 636/*
f015f126
DH
637 * lookup_mnt - Return the first child mount mounted at path
638 *
639 * "First" means first mounted chronologically. If you create the
640 * following mounts:
641 *
642 * mount /dev/sda1 /mnt
643 * mount /dev/sda2 /mnt
644 * mount /dev/sda3 /mnt
645 *
646 * Then lookup_mnt() on the base /mnt dentry in the root mount will
647 * return successively the root dentry and vfsmount of /dev/sda1, then
648 * /dev/sda2, then /dev/sda3, then NULL.
649 *
650 * lookup_mnt takes a reference to the found vfsmount.
a05964f3 651 */
1c755af4 652struct vfsmount *lookup_mnt(struct path *path)
a05964f3 653{
c7105365 654 struct mount *child_mnt;
48a066e7
AV
655 struct vfsmount *m;
656 unsigned seq;
99b7db7b 657
48a066e7
AV
658 rcu_read_lock();
659 do {
660 seq = read_seqbegin(&mount_lock);
661 child_mnt = __lookup_mnt(path->mnt, path->dentry);
662 m = child_mnt ? &child_mnt->mnt : NULL;
663 } while (!legitimize_mnt(m, seq));
664 rcu_read_unlock();
665 return m;
a05964f3
RP
666}
667
84d17192
AV
668static struct mountpoint *new_mountpoint(struct dentry *dentry)
669{
0818bf27 670 struct hlist_head *chain = mp_hash(dentry);
84d17192 671 struct mountpoint *mp;
eed81007 672 int ret;
84d17192 673
0818bf27 674 hlist_for_each_entry(mp, chain, m_hash) {
84d17192
AV
675 if (mp->m_dentry == dentry) {
676 /* might be worth a WARN_ON() */
677 if (d_unlinked(dentry))
678 return ERR_PTR(-ENOENT);
679 mp->m_count++;
680 return mp;
681 }
682 }
683
684 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
685 if (!mp)
686 return ERR_PTR(-ENOMEM);
687
eed81007
MS
688 ret = d_set_mounted(dentry);
689 if (ret) {
84d17192 690 kfree(mp);
eed81007 691 return ERR_PTR(ret);
84d17192 692 }
eed81007 693
84d17192
AV
694 mp->m_dentry = dentry;
695 mp->m_count = 1;
0818bf27 696 hlist_add_head(&mp->m_hash, chain);
84d17192
AV
697 return mp;
698}
699
700static void put_mountpoint(struct mountpoint *mp)
701{
702 if (!--mp->m_count) {
703 struct dentry *dentry = mp->m_dentry;
704 spin_lock(&dentry->d_lock);
705 dentry->d_flags &= ~DCACHE_MOUNTED;
706 spin_unlock(&dentry->d_lock);
0818bf27 707 hlist_del(&mp->m_hash);
84d17192
AV
708 kfree(mp);
709 }
710}
711
143c8c91 712static inline int check_mnt(struct mount *mnt)
1da177e4 713{
6b3286ed 714 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
715}
716
99b7db7b
NP
717/*
718 * vfsmount lock must be held for write
719 */
6b3286ed 720static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
721{
722 if (ns) {
723 ns->event = ++event;
724 wake_up_interruptible(&ns->poll);
725 }
726}
727
99b7db7b
NP
728/*
729 * vfsmount lock must be held for write
730 */
6b3286ed 731static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
732{
733 if (ns && ns->event != event) {
734 ns->event = event;
735 wake_up_interruptible(&ns->poll);
736 }
737}
738
99b7db7b
NP
739/*
740 * vfsmount lock must be held for write
741 */
419148da
AV
742static void detach_mnt(struct mount *mnt, struct path *old_path)
743{
a73324da 744 old_path->dentry = mnt->mnt_mountpoint;
0714a533
AV
745 old_path->mnt = &mnt->mnt_parent->mnt;
746 mnt->mnt_parent = mnt;
a73324da 747 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
6b41d536 748 list_del_init(&mnt->mnt_child);
38129a13 749 hlist_del_init_rcu(&mnt->mnt_hash);
84d17192
AV
750 put_mountpoint(mnt->mnt_mp);
751 mnt->mnt_mp = NULL;
1da177e4
LT
752}
753
99b7db7b
NP
754/*
755 * vfsmount lock must be held for write
756 */
84d17192
AV
757void mnt_set_mountpoint(struct mount *mnt,
758 struct mountpoint *mp,
44d964d6 759 struct mount *child_mnt)
b90fa9ae 760{
84d17192 761 mp->m_count++;
3a2393d7 762 mnt_add_count(mnt, 1); /* essentially, that's mntget */
84d17192 763 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
3a2393d7 764 child_mnt->mnt_parent = mnt;
84d17192 765 child_mnt->mnt_mp = mp;
b90fa9ae
RP
766}
767
99b7db7b
NP
768/*
769 * vfsmount lock must be held for write
770 */
84d17192
AV
771static void attach_mnt(struct mount *mnt,
772 struct mount *parent,
773 struct mountpoint *mp)
1da177e4 774{
84d17192 775 mnt_set_mountpoint(parent, mp, mnt);
38129a13 776 hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
84d17192 777 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
b90fa9ae
RP
778}
779
780/*
99b7db7b 781 * vfsmount lock must be held for write
b90fa9ae 782 */
1d6a32ac 783static void commit_tree(struct mount *mnt, struct mount *shadows)
b90fa9ae 784{
0714a533 785 struct mount *parent = mnt->mnt_parent;
83adc753 786 struct mount *m;
b90fa9ae 787 LIST_HEAD(head);
143c8c91 788 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae 789
0714a533 790 BUG_ON(parent == mnt);
b90fa9ae 791
1a4eeaf2 792 list_add_tail(&head, &mnt->mnt_list);
f7a99c5b 793 list_for_each_entry(m, &head, mnt_list)
143c8c91 794 m->mnt_ns = n;
f03c6599 795
b90fa9ae
RP
796 list_splice(&head, n->list.prev);
797
1d6a32ac 798 if (shadows)
38129a13 799 hlist_add_after_rcu(&shadows->mnt_hash, &mnt->mnt_hash);
1d6a32ac 800 else
38129a13 801 hlist_add_head_rcu(&mnt->mnt_hash,
0818bf27 802 m_hash(&parent->mnt, mnt->mnt_mountpoint));
6b41d536 803 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
6b3286ed 804 touch_mnt_namespace(n);
1da177e4
LT
805}
806
909b0a88 807static struct mount *next_mnt(struct mount *p, struct mount *root)
1da177e4 808{
6b41d536
AV
809 struct list_head *next = p->mnt_mounts.next;
810 if (next == &p->mnt_mounts) {
1da177e4 811 while (1) {
909b0a88 812 if (p == root)
1da177e4 813 return NULL;
6b41d536
AV
814 next = p->mnt_child.next;
815 if (next != &p->mnt_parent->mnt_mounts)
1da177e4 816 break;
0714a533 817 p = p->mnt_parent;
1da177e4
LT
818 }
819 }
6b41d536 820 return list_entry(next, struct mount, mnt_child);
1da177e4
LT
821}
822
315fc83e 823static struct mount *skip_mnt_tree(struct mount *p)
9676f0c6 824{
6b41d536
AV
825 struct list_head *prev = p->mnt_mounts.prev;
826 while (prev != &p->mnt_mounts) {
827 p = list_entry(prev, struct mount, mnt_child);
828 prev = p->mnt_mounts.prev;
9676f0c6
RP
829 }
830 return p;
831}
832
9d412a43
AV
833struct vfsmount *
834vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
835{
b105e270 836 struct mount *mnt;
9d412a43
AV
837 struct dentry *root;
838
839 if (!type)
840 return ERR_PTR(-ENODEV);
841
842 mnt = alloc_vfsmnt(name);
843 if (!mnt)
844 return ERR_PTR(-ENOMEM);
845
846 if (flags & MS_KERNMOUNT)
b105e270 847 mnt->mnt.mnt_flags = MNT_INTERNAL;
9d412a43
AV
848
849 root = mount_fs(type, flags, name, data);
850 if (IS_ERR(root)) {
851 free_vfsmnt(mnt);
852 return ERR_CAST(root);
853 }
854
b105e270
AV
855 mnt->mnt.mnt_root = root;
856 mnt->mnt.mnt_sb = root->d_sb;
a73324da 857 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 858 mnt->mnt_parent = mnt;
719ea2fb 859 lock_mount_hash();
39f7c4db 860 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
719ea2fb 861 unlock_mount_hash();
b105e270 862 return &mnt->mnt;
9d412a43
AV
863}
864EXPORT_SYMBOL_GPL(vfs_kern_mount);
865
87129cc0 866static struct mount *clone_mnt(struct mount *old, struct dentry *root,
36341f64 867 int flag)
1da177e4 868{
87129cc0 869 struct super_block *sb = old->mnt.mnt_sb;
be34d1a3
DH
870 struct mount *mnt;
871 int err;
1da177e4 872
be34d1a3
DH
873 mnt = alloc_vfsmnt(old->mnt_devname);
874 if (!mnt)
875 return ERR_PTR(-ENOMEM);
719f5d7f 876
7a472ef4 877 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
be34d1a3
DH
878 mnt->mnt_group_id = 0; /* not a peer of original */
879 else
880 mnt->mnt_group_id = old->mnt_group_id;
b90fa9ae 881
be34d1a3
DH
882 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
883 err = mnt_alloc_group_id(mnt);
884 if (err)
885 goto out_free;
1da177e4 886 }
be34d1a3 887
f2ebb3a9 888 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
132c94e3
EB
889 /* Don't allow unprivileged users to change mount flags */
890 if ((flag & CL_UNPRIVILEGED) && (mnt->mnt.mnt_flags & MNT_READONLY))
891 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
892
5ff9d8a6
EB
893 /* Don't allow unprivileged users to reveal what is under a mount */
894 if ((flag & CL_UNPRIVILEGED) && list_empty(&old->mnt_expire))
895 mnt->mnt.mnt_flags |= MNT_LOCKED;
896
be34d1a3
DH
897 atomic_inc(&sb->s_active);
898 mnt->mnt.mnt_sb = sb;
899 mnt->mnt.mnt_root = dget(root);
900 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
901 mnt->mnt_parent = mnt;
719ea2fb 902 lock_mount_hash();
be34d1a3 903 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
719ea2fb 904 unlock_mount_hash();
be34d1a3 905
7a472ef4
EB
906 if ((flag & CL_SLAVE) ||
907 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
be34d1a3
DH
908 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
909 mnt->mnt_master = old;
910 CLEAR_MNT_SHARED(mnt);
911 } else if (!(flag & CL_PRIVATE)) {
912 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
913 list_add(&mnt->mnt_share, &old->mnt_share);
914 if (IS_MNT_SLAVE(old))
915 list_add(&mnt->mnt_slave, &old->mnt_slave);
916 mnt->mnt_master = old->mnt_master;
917 }
918 if (flag & CL_MAKE_SHARED)
919 set_mnt_shared(mnt);
920
921 /* stick the duplicate mount on the same expiry list
922 * as the original if that was on one */
923 if (flag & CL_EXPIRE) {
924 if (!list_empty(&old->mnt_expire))
925 list_add(&mnt->mnt_expire, &old->mnt_expire);
926 }
927
cb338d06 928 return mnt;
719f5d7f
MS
929
930 out_free:
931 free_vfsmnt(mnt);
be34d1a3 932 return ERR_PTR(err);
1da177e4
LT
933}
934
48a066e7
AV
935static void delayed_free(struct rcu_head *head)
936{
937 struct mount *mnt = container_of(head, struct mount, mnt_rcu);
938 kfree(mnt->mnt_devname);
939#ifdef CONFIG_SMP
940 free_percpu(mnt->mnt_pcp);
941#endif
942 kmem_cache_free(mnt_cache, mnt);
943}
944
900148dc 945static void mntput_no_expire(struct mount *mnt)
b3e19d92 946{
b3e19d92 947put_again:
48a066e7
AV
948 rcu_read_lock();
949 mnt_add_count(mnt, -1);
950 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
951 rcu_read_unlock();
f03c6599 952 return;
b3e19d92 953 }
719ea2fb 954 lock_mount_hash();
b3e19d92 955 if (mnt_get_count(mnt)) {
48a066e7 956 rcu_read_unlock();
719ea2fb 957 unlock_mount_hash();
99b7db7b
NP
958 return;
959 }
863d684f
AV
960 if (unlikely(mnt->mnt_pinned)) {
961 mnt_add_count(mnt, mnt->mnt_pinned + 1);
962 mnt->mnt_pinned = 0;
48a066e7 963 rcu_read_unlock();
719ea2fb 964 unlock_mount_hash();
900148dc 965 acct_auto_close_mnt(&mnt->mnt);
b3e19d92 966 goto put_again;
7b7b1ace 967 }
48a066e7
AV
968 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
969 rcu_read_unlock();
970 unlock_mount_hash();
971 return;
972 }
973 mnt->mnt.mnt_flags |= MNT_DOOMED;
974 rcu_read_unlock();
962830df 975
39f7c4db 976 list_del(&mnt->mnt_instance);
719ea2fb 977 unlock_mount_hash();
649a795a
AV
978
979 /*
980 * This probably indicates that somebody messed
981 * up a mnt_want/drop_write() pair. If this
982 * happens, the filesystem was probably unable
983 * to make r/w->r/o transitions.
984 */
985 /*
986 * The locking used to deal with mnt_count decrement provides barriers,
987 * so mnt_get_writers() below is safe.
988 */
989 WARN_ON(mnt_get_writers(mnt));
990 fsnotify_vfsmount_delete(&mnt->mnt);
991 dput(mnt->mnt.mnt_root);
992 deactivate_super(mnt->mnt.mnt_sb);
48a066e7
AV
993 mnt_free_id(mnt);
994 call_rcu(&mnt->mnt_rcu, delayed_free);
b3e19d92 995}
b3e19d92
NP
996
997void mntput(struct vfsmount *mnt)
998{
999 if (mnt) {
863d684f 1000 struct mount *m = real_mount(mnt);
b3e19d92 1001 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
863d684f
AV
1002 if (unlikely(m->mnt_expiry_mark))
1003 m->mnt_expiry_mark = 0;
1004 mntput_no_expire(m);
b3e19d92
NP
1005 }
1006}
1007EXPORT_SYMBOL(mntput);
1008
1009struct vfsmount *mntget(struct vfsmount *mnt)
1010{
1011 if (mnt)
83adc753 1012 mnt_add_count(real_mount(mnt), 1);
b3e19d92
NP
1013 return mnt;
1014}
1015EXPORT_SYMBOL(mntget);
1016
7b7b1ace
AV
1017void mnt_pin(struct vfsmount *mnt)
1018{
719ea2fb 1019 lock_mount_hash();
863d684f 1020 real_mount(mnt)->mnt_pinned++;
719ea2fb 1021 unlock_mount_hash();
7b7b1ace 1022}
7b7b1ace
AV
1023EXPORT_SYMBOL(mnt_pin);
1024
863d684f 1025void mnt_unpin(struct vfsmount *m)
7b7b1ace 1026{
863d684f 1027 struct mount *mnt = real_mount(m);
719ea2fb 1028 lock_mount_hash();
7b7b1ace 1029 if (mnt->mnt_pinned) {
863d684f 1030 mnt_add_count(mnt, 1);
7b7b1ace
AV
1031 mnt->mnt_pinned--;
1032 }
719ea2fb 1033 unlock_mount_hash();
7b7b1ace 1034}
7b7b1ace 1035EXPORT_SYMBOL(mnt_unpin);
1da177e4 1036
b3b304a2
MS
1037static inline void mangle(struct seq_file *m, const char *s)
1038{
1039 seq_escape(m, s, " \t\n\\");
1040}
1041
1042/*
1043 * Simple .show_options callback for filesystems which don't want to
1044 * implement more complex mount option showing.
1045 *
1046 * See also save_mount_options().
1047 */
34c80b1d 1048int generic_show_options(struct seq_file *m, struct dentry *root)
b3b304a2 1049{
2a32cebd
AV
1050 const char *options;
1051
1052 rcu_read_lock();
34c80b1d 1053 options = rcu_dereference(root->d_sb->s_options);
b3b304a2
MS
1054
1055 if (options != NULL && options[0]) {
1056 seq_putc(m, ',');
1057 mangle(m, options);
1058 }
2a32cebd 1059 rcu_read_unlock();
b3b304a2
MS
1060
1061 return 0;
1062}
1063EXPORT_SYMBOL(generic_show_options);
1064
1065/*
1066 * If filesystem uses generic_show_options(), this function should be
1067 * called from the fill_super() callback.
1068 *
1069 * The .remount_fs callback usually needs to be handled in a special
1070 * way, to make sure, that previous options are not overwritten if the
1071 * remount fails.
1072 *
1073 * Also note, that if the filesystem's .remount_fs function doesn't
1074 * reset all options to their default value, but changes only newly
1075 * given options, then the displayed options will not reflect reality
1076 * any more.
1077 */
1078void save_mount_options(struct super_block *sb, char *options)
1079{
2a32cebd
AV
1080 BUG_ON(sb->s_options);
1081 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
b3b304a2
MS
1082}
1083EXPORT_SYMBOL(save_mount_options);
1084
2a32cebd
AV
1085void replace_mount_options(struct super_block *sb, char *options)
1086{
1087 char *old = sb->s_options;
1088 rcu_assign_pointer(sb->s_options, options);
1089 if (old) {
1090 synchronize_rcu();
1091 kfree(old);
1092 }
1093}
1094EXPORT_SYMBOL(replace_mount_options);
1095
a1a2c409 1096#ifdef CONFIG_PROC_FS
0226f492 1097/* iterator; we want it to have access to namespace_sem, thus here... */
1da177e4
LT
1098static void *m_start(struct seq_file *m, loff_t *pos)
1099{
6ce6e24e 1100 struct proc_mounts *p = proc_mounts(m);
1da177e4 1101
390c6843 1102 down_read(&namespace_sem);
c7999c36
AV
1103 if (p->cached_event == p->ns->event) {
1104 void *v = p->cached_mount;
1105 if (*pos == p->cached_index)
1106 return v;
1107 if (*pos == p->cached_index + 1) {
1108 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1109 return p->cached_mount = v;
1110 }
1111 }
1112
1113 p->cached_event = p->ns->event;
1114 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1115 p->cached_index = *pos;
1116 return p->cached_mount;
1da177e4
LT
1117}
1118
1119static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1120{
6ce6e24e 1121 struct proc_mounts *p = proc_mounts(m);
b0765fb8 1122
c7999c36
AV
1123 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1124 p->cached_index = *pos;
1125 return p->cached_mount;
1da177e4
LT
1126}
1127
1128static void m_stop(struct seq_file *m, void *v)
1129{
390c6843 1130 up_read(&namespace_sem);
1da177e4
LT
1131}
1132
0226f492 1133static int m_show(struct seq_file *m, void *v)
2d4d4864 1134{
6ce6e24e 1135 struct proc_mounts *p = proc_mounts(m);
1a4eeaf2 1136 struct mount *r = list_entry(v, struct mount, mnt_list);
0226f492 1137 return p->show(m, &r->mnt);
1da177e4
LT
1138}
1139
a1a2c409 1140const struct seq_operations mounts_op = {
1da177e4
LT
1141 .start = m_start,
1142 .next = m_next,
1143 .stop = m_stop,
0226f492 1144 .show = m_show,
b4629fe2 1145};
a1a2c409 1146#endif /* CONFIG_PROC_FS */
b4629fe2 1147
1da177e4
LT
1148/**
1149 * may_umount_tree - check if a mount tree is busy
1150 * @mnt: root of mount tree
1151 *
1152 * This is called to check if a tree of mounts has any
1153 * open files, pwds, chroots or sub mounts that are
1154 * busy.
1155 */
909b0a88 1156int may_umount_tree(struct vfsmount *m)
1da177e4 1157{
909b0a88 1158 struct mount *mnt = real_mount(m);
36341f64
RP
1159 int actual_refs = 0;
1160 int minimum_refs = 0;
315fc83e 1161 struct mount *p;
909b0a88 1162 BUG_ON(!m);
1da177e4 1163
b3e19d92 1164 /* write lock needed for mnt_get_count */
719ea2fb 1165 lock_mount_hash();
909b0a88 1166 for (p = mnt; p; p = next_mnt(p, mnt)) {
83adc753 1167 actual_refs += mnt_get_count(p);
1da177e4 1168 minimum_refs += 2;
1da177e4 1169 }
719ea2fb 1170 unlock_mount_hash();
1da177e4
LT
1171
1172 if (actual_refs > minimum_refs)
e3474a8e 1173 return 0;
1da177e4 1174
e3474a8e 1175 return 1;
1da177e4
LT
1176}
1177
1178EXPORT_SYMBOL(may_umount_tree);
1179
1180/**
1181 * may_umount - check if a mount point is busy
1182 * @mnt: root of mount
1183 *
1184 * This is called to check if a mount point has any
1185 * open files, pwds, chroots or sub mounts. If the
1186 * mount has sub mounts this will return busy
1187 * regardless of whether the sub mounts are busy.
1188 *
1189 * Doesn't take quota and stuff into account. IOW, in some cases it will
1190 * give false negatives. The main reason why it's here is that we need
1191 * a non-destructive way to look for easily umountable filesystems.
1192 */
1193int may_umount(struct vfsmount *mnt)
1194{
e3474a8e 1195 int ret = 1;
8ad08d8a 1196 down_read(&namespace_sem);
719ea2fb 1197 lock_mount_hash();
1ab59738 1198 if (propagate_mount_busy(real_mount(mnt), 2))
e3474a8e 1199 ret = 0;
719ea2fb 1200 unlock_mount_hash();
8ad08d8a 1201 up_read(&namespace_sem);
a05964f3 1202 return ret;
1da177e4
LT
1203}
1204
1205EXPORT_SYMBOL(may_umount);
1206
38129a13 1207static HLIST_HEAD(unmounted); /* protected by namespace_sem */
e3197d83 1208
97216be0 1209static void namespace_unlock(void)
70fbcdf4 1210{
d5e50f74 1211 struct mount *mnt;
38129a13 1212 struct hlist_head head = unmounted;
97216be0 1213
38129a13 1214 if (likely(hlist_empty(&head))) {
97216be0
AV
1215 up_write(&namespace_sem);
1216 return;
1217 }
1218
38129a13
AV
1219 head.first->pprev = &head.first;
1220 INIT_HLIST_HEAD(&unmounted);
1221
97216be0
AV
1222 up_write(&namespace_sem);
1223
48a066e7
AV
1224 synchronize_rcu();
1225
38129a13
AV
1226 while (!hlist_empty(&head)) {
1227 mnt = hlist_entry(head.first, struct mount, mnt_hash);
1228 hlist_del_init(&mnt->mnt_hash);
aba809cf
AV
1229 if (mnt->mnt_ex_mountpoint.mnt)
1230 path_put(&mnt->mnt_ex_mountpoint);
d5e50f74 1231 mntput(&mnt->mnt);
70fbcdf4
RP
1232 }
1233}
1234
97216be0 1235static inline void namespace_lock(void)
e3197d83 1236{
97216be0 1237 down_write(&namespace_sem);
e3197d83
AV
1238}
1239
99b7db7b 1240/*
48a066e7 1241 * mount_lock must be held
99b7db7b 1242 * namespace_sem must be held for write
48a066e7
AV
1243 * how = 0 => just this tree, don't propagate
1244 * how = 1 => propagate; we know that nobody else has reference to any victims
1245 * how = 2 => lazy umount
99b7db7b 1246 */
48a066e7 1247void umount_tree(struct mount *mnt, int how)
1da177e4 1248{
38129a13 1249 HLIST_HEAD(tmp_list);
315fc83e 1250 struct mount *p;
38129a13 1251 struct mount *last = NULL;
1da177e4 1252
38129a13
AV
1253 for (p = mnt; p; p = next_mnt(p, mnt)) {
1254 hlist_del_init_rcu(&p->mnt_hash);
1255 hlist_add_head(&p->mnt_hash, &tmp_list);
1256 }
1da177e4 1257
48a066e7 1258 if (how)
7b8a53fd 1259 propagate_umount(&tmp_list);
a05964f3 1260
38129a13 1261 hlist_for_each_entry(p, &tmp_list, mnt_hash) {
6776db3d 1262 list_del_init(&p->mnt_expire);
1a4eeaf2 1263 list_del_init(&p->mnt_list);
143c8c91
AV
1264 __touch_mnt_namespace(p->mnt_ns);
1265 p->mnt_ns = NULL;
48a066e7
AV
1266 if (how < 2)
1267 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
6b41d536 1268 list_del_init(&p->mnt_child);
676da58d 1269 if (mnt_has_parent(p)) {
84d17192 1270 put_mountpoint(p->mnt_mp);
aba809cf
AV
1271 /* move the reference to mountpoint into ->mnt_ex_mountpoint */
1272 p->mnt_ex_mountpoint.dentry = p->mnt_mountpoint;
1273 p->mnt_ex_mountpoint.mnt = &p->mnt_parent->mnt;
1274 p->mnt_mountpoint = p->mnt.mnt_root;
1275 p->mnt_parent = p;
84d17192 1276 p->mnt_mp = NULL;
7c4b93d8 1277 }
0f0afb1d 1278 change_mnt_propagation(p, MS_PRIVATE);
38129a13
AV
1279 last = p;
1280 }
1281 if (last) {
1282 last->mnt_hash.next = unmounted.first;
1283 unmounted.first = tmp_list.first;
1284 unmounted.first->pprev = &unmounted.first;
1da177e4
LT
1285 }
1286}
1287
b54b9be7 1288static void shrink_submounts(struct mount *mnt);
c35038be 1289
1ab59738 1290static int do_umount(struct mount *mnt, int flags)
1da177e4 1291{
1ab59738 1292 struct super_block *sb = mnt->mnt.mnt_sb;
1da177e4
LT
1293 int retval;
1294
1ab59738 1295 retval = security_sb_umount(&mnt->mnt, flags);
1da177e4
LT
1296 if (retval)
1297 return retval;
1298
1299 /*
1300 * Allow userspace to request a mountpoint be expired rather than
1301 * unmounting unconditionally. Unmount only happens if:
1302 * (1) the mark is already set (the mark is cleared by mntput())
1303 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1304 */
1305 if (flags & MNT_EXPIRE) {
1ab59738 1306 if (&mnt->mnt == current->fs->root.mnt ||
1da177e4
LT
1307 flags & (MNT_FORCE | MNT_DETACH))
1308 return -EINVAL;
1309
b3e19d92
NP
1310 /*
1311 * probably don't strictly need the lock here if we examined
1312 * all race cases, but it's a slowpath.
1313 */
719ea2fb 1314 lock_mount_hash();
83adc753 1315 if (mnt_get_count(mnt) != 2) {
719ea2fb 1316 unlock_mount_hash();
1da177e4 1317 return -EBUSY;
b3e19d92 1318 }
719ea2fb 1319 unlock_mount_hash();
1da177e4 1320
863d684f 1321 if (!xchg(&mnt->mnt_expiry_mark, 1))
1da177e4
LT
1322 return -EAGAIN;
1323 }
1324
1325 /*
1326 * If we may have to abort operations to get out of this
1327 * mount, and they will themselves hold resources we must
1328 * allow the fs to do things. In the Unix tradition of
1329 * 'Gee thats tricky lets do it in userspace' the umount_begin
1330 * might fail to complete on the first run through as other tasks
1331 * must return, and the like. Thats for the mount program to worry
1332 * about for the moment.
1333 */
1334
42faad99 1335 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1336 sb->s_op->umount_begin(sb);
42faad99 1337 }
1da177e4
LT
1338
1339 /*
1340 * No sense to grab the lock for this test, but test itself looks
1341 * somewhat bogus. Suggestions for better replacement?
1342 * Ho-hum... In principle, we might treat that as umount + switch
1343 * to rootfs. GC would eventually take care of the old vfsmount.
1344 * Actually it makes sense, especially if rootfs would contain a
1345 * /reboot - static binary that would close all descriptors and
1346 * call reboot(9). Then init(8) could umount root and exec /reboot.
1347 */
1ab59738 1348 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1349 /*
1350 * Special case for "unmounting" root ...
1351 * we just try to remount it readonly.
1352 */
1353 down_write(&sb->s_umount);
4aa98cf7 1354 if (!(sb->s_flags & MS_RDONLY))
1da177e4 1355 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1da177e4
LT
1356 up_write(&sb->s_umount);
1357 return retval;
1358 }
1359
97216be0 1360 namespace_lock();
719ea2fb 1361 lock_mount_hash();
5addc5dd 1362 event++;
1da177e4 1363
48a066e7 1364 if (flags & MNT_DETACH) {
1a4eeaf2 1365 if (!list_empty(&mnt->mnt_list))
48a066e7 1366 umount_tree(mnt, 2);
1da177e4 1367 retval = 0;
48a066e7
AV
1368 } else {
1369 shrink_submounts(mnt);
1370 retval = -EBUSY;
1371 if (!propagate_mount_busy(mnt, 2)) {
1372 if (!list_empty(&mnt->mnt_list))
1373 umount_tree(mnt, 1);
1374 retval = 0;
1375 }
1da177e4 1376 }
719ea2fb 1377 unlock_mount_hash();
e3197d83 1378 namespace_unlock();
1da177e4
LT
1379 return retval;
1380}
1381
9b40bc90
AV
1382/*
1383 * Is the caller allowed to modify his namespace?
1384 */
1385static inline bool may_mount(void)
1386{
1387 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1388}
1389
1da177e4
LT
1390/*
1391 * Now umount can handle mount points as well as block devices.
1392 * This is important for filesystems which use unnamed block devices.
1393 *
1394 * We now support a flag for forced unmount like the other 'big iron'
1395 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1396 */
1397
bdc480e3 1398SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1da177e4 1399{
2d8f3038 1400 struct path path;
900148dc 1401 struct mount *mnt;
1da177e4 1402 int retval;
db1f05bb 1403 int lookup_flags = 0;
1da177e4 1404
db1f05bb
MS
1405 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1406 return -EINVAL;
1407
9b40bc90
AV
1408 if (!may_mount())
1409 return -EPERM;
1410
db1f05bb
MS
1411 if (!(flags & UMOUNT_NOFOLLOW))
1412 lookup_flags |= LOOKUP_FOLLOW;
1413
197df04c 1414 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1da177e4
LT
1415 if (retval)
1416 goto out;
900148dc 1417 mnt = real_mount(path.mnt);
1da177e4 1418 retval = -EINVAL;
2d8f3038 1419 if (path.dentry != path.mnt->mnt_root)
1da177e4 1420 goto dput_and_out;
143c8c91 1421 if (!check_mnt(mnt))
1da177e4 1422 goto dput_and_out;
5ff9d8a6
EB
1423 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1424 goto dput_and_out;
1da177e4 1425
900148dc 1426 retval = do_umount(mnt, flags);
1da177e4 1427dput_and_out:
429731b1 1428 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038 1429 dput(path.dentry);
900148dc 1430 mntput_no_expire(mnt);
1da177e4
LT
1431out:
1432 return retval;
1433}
1434
1435#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1436
1437/*
b58fed8b 1438 * The 2.0 compatible umount. No flags.
1da177e4 1439 */
bdc480e3 1440SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1441{
b58fed8b 1442 return sys_umount(name, 0);
1da177e4
LT
1443}
1444
1445#endif
1446
4ce5d2b1 1447static bool is_mnt_ns_file(struct dentry *dentry)
8823c079 1448{
4ce5d2b1
EB
1449 /* Is this a proxy for a mount namespace? */
1450 struct inode *inode = dentry->d_inode;
0bb80f24 1451 struct proc_ns *ei;
8823c079
EB
1452
1453 if (!proc_ns_inode(inode))
1454 return false;
1455
0bb80f24 1456 ei = get_proc_ns(inode);
8823c079
EB
1457 if (ei->ns_ops != &mntns_operations)
1458 return false;
1459
4ce5d2b1
EB
1460 return true;
1461}
1462
1463static bool mnt_ns_loop(struct dentry *dentry)
1464{
1465 /* Could bind mounting the mount namespace inode cause a
1466 * mount namespace loop?
1467 */
1468 struct mnt_namespace *mnt_ns;
1469 if (!is_mnt_ns_file(dentry))
1470 return false;
1471
1472 mnt_ns = get_proc_ns(dentry->d_inode)->ns;
8823c079
EB
1473 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1474}
1475
87129cc0 1476struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
36341f64 1477 int flag)
1da177e4 1478{
84d17192 1479 struct mount *res, *p, *q, *r, *parent;
1da177e4 1480
4ce5d2b1
EB
1481 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1482 return ERR_PTR(-EINVAL);
1483
1484 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
be34d1a3 1485 return ERR_PTR(-EINVAL);
9676f0c6 1486
36341f64 1487 res = q = clone_mnt(mnt, dentry, flag);
be34d1a3
DH
1488 if (IS_ERR(q))
1489 return q;
1490
5ff9d8a6 1491 q->mnt.mnt_flags &= ~MNT_LOCKED;
a73324da 1492 q->mnt_mountpoint = mnt->mnt_mountpoint;
1da177e4
LT
1493
1494 p = mnt;
6b41d536 1495 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
315fc83e 1496 struct mount *s;
7ec02ef1 1497 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1498 continue;
1499
909b0a88 1500 for (s = r; s; s = next_mnt(s, r)) {
4ce5d2b1
EB
1501 if (!(flag & CL_COPY_UNBINDABLE) &&
1502 IS_MNT_UNBINDABLE(s)) {
1503 s = skip_mnt_tree(s);
1504 continue;
1505 }
1506 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1507 is_mnt_ns_file(s->mnt.mnt_root)) {
9676f0c6
RP
1508 s = skip_mnt_tree(s);
1509 continue;
1510 }
0714a533
AV
1511 while (p != s->mnt_parent) {
1512 p = p->mnt_parent;
1513 q = q->mnt_parent;
1da177e4 1514 }
87129cc0 1515 p = s;
84d17192 1516 parent = q;
87129cc0 1517 q = clone_mnt(p, p->mnt.mnt_root, flag);
be34d1a3
DH
1518 if (IS_ERR(q))
1519 goto out;
719ea2fb 1520 lock_mount_hash();
1a4eeaf2 1521 list_add_tail(&q->mnt_list, &res->mnt_list);
84d17192 1522 attach_mnt(q, parent, p->mnt_mp);
719ea2fb 1523 unlock_mount_hash();
1da177e4
LT
1524 }
1525 }
1526 return res;
be34d1a3 1527out:
1da177e4 1528 if (res) {
719ea2fb 1529 lock_mount_hash();
328e6d90 1530 umount_tree(res, 0);
719ea2fb 1531 unlock_mount_hash();
1da177e4 1532 }
be34d1a3 1533 return q;
1da177e4
LT
1534}
1535
be34d1a3
DH
1536/* Caller should check returned pointer for errors */
1537
589ff870 1538struct vfsmount *collect_mounts(struct path *path)
8aec0809 1539{
cb338d06 1540 struct mount *tree;
97216be0 1541 namespace_lock();
87129cc0
AV
1542 tree = copy_tree(real_mount(path->mnt), path->dentry,
1543 CL_COPY_ALL | CL_PRIVATE);
328e6d90 1544 namespace_unlock();
be34d1a3 1545 if (IS_ERR(tree))
52e220d3 1546 return ERR_CAST(tree);
be34d1a3 1547 return &tree->mnt;
8aec0809
AV
1548}
1549
1550void drop_collected_mounts(struct vfsmount *mnt)
1551{
97216be0 1552 namespace_lock();
719ea2fb 1553 lock_mount_hash();
328e6d90 1554 umount_tree(real_mount(mnt), 0);
719ea2fb 1555 unlock_mount_hash();
3ab6abee 1556 namespace_unlock();
8aec0809
AV
1557}
1558
1f707137
AV
1559int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1560 struct vfsmount *root)
1561{
1a4eeaf2 1562 struct mount *mnt;
1f707137
AV
1563 int res = f(root, arg);
1564 if (res)
1565 return res;
1a4eeaf2
AV
1566 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1567 res = f(&mnt->mnt, arg);
1f707137
AV
1568 if (res)
1569 return res;
1570 }
1571 return 0;
1572}
1573
4b8b21f4 1574static void cleanup_group_ids(struct mount *mnt, struct mount *end)
719f5d7f 1575{
315fc83e 1576 struct mount *p;
719f5d7f 1577
909b0a88 1578 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
fc7be130 1579 if (p->mnt_group_id && !IS_MNT_SHARED(p))
4b8b21f4 1580 mnt_release_group_id(p);
719f5d7f
MS
1581 }
1582}
1583
4b8b21f4 1584static int invent_group_ids(struct mount *mnt, bool recurse)
719f5d7f 1585{
315fc83e 1586 struct mount *p;
719f5d7f 1587
909b0a88 1588 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
fc7be130 1589 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
4b8b21f4 1590 int err = mnt_alloc_group_id(p);
719f5d7f 1591 if (err) {
4b8b21f4 1592 cleanup_group_ids(mnt, p);
719f5d7f
MS
1593 return err;
1594 }
1595 }
1596 }
1597
1598 return 0;
1599}
1600
b90fa9ae
RP
1601/*
1602 * @source_mnt : mount tree to be attached
21444403
RP
1603 * @nd : place the mount tree @source_mnt is attached
1604 * @parent_nd : if non-null, detach the source_mnt from its parent and
1605 * store the parent mount and mountpoint dentry.
1606 * (done when source_mnt is moved)
b90fa9ae
RP
1607 *
1608 * NOTE: in the table below explains the semantics when a source mount
1609 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1610 * ---------------------------------------------------------------------------
1611 * | BIND MOUNT OPERATION |
1612 * |**************************************************************************
1613 * | source-->| shared | private | slave | unbindable |
1614 * | dest | | | | |
1615 * | | | | | | |
1616 * | v | | | | |
1617 * |**************************************************************************
1618 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1619 * | | | | | |
1620 * |non-shared| shared (+) | private | slave (*) | invalid |
1621 * ***************************************************************************
b90fa9ae
RP
1622 * A bind operation clones the source mount and mounts the clone on the
1623 * destination mount.
1624 *
1625 * (++) the cloned mount is propagated to all the mounts in the propagation
1626 * tree of the destination mount and the cloned mount is added to
1627 * the peer group of the source mount.
1628 * (+) the cloned mount is created under the destination mount and is marked
1629 * as shared. The cloned mount is added to the peer group of the source
1630 * mount.
5afe0022
RP
1631 * (+++) the mount is propagated to all the mounts in the propagation tree
1632 * of the destination mount and the cloned mount is made slave
1633 * of the same master as that of the source mount. The cloned mount
1634 * is marked as 'shared and slave'.
1635 * (*) the cloned mount is made a slave of the same master as that of the
1636 * source mount.
1637 *
9676f0c6
RP
1638 * ---------------------------------------------------------------------------
1639 * | MOVE MOUNT OPERATION |
1640 * |**************************************************************************
1641 * | source-->| shared | private | slave | unbindable |
1642 * | dest | | | | |
1643 * | | | | | | |
1644 * | v | | | | |
1645 * |**************************************************************************
1646 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1647 * | | | | | |
1648 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1649 * ***************************************************************************
5afe0022
RP
1650 *
1651 * (+) the mount is moved to the destination. And is then propagated to
1652 * all the mounts in the propagation tree of the destination mount.
21444403 1653 * (+*) the mount is moved to the destination.
5afe0022
RP
1654 * (+++) the mount is moved to the destination and is then propagated to
1655 * all the mounts belonging to the destination mount's propagation tree.
1656 * the mount is marked as 'shared and slave'.
1657 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
1658 *
1659 * if the source mount is a tree, the operations explained above is
1660 * applied to each mount in the tree.
1661 * Must be called without spinlocks held, since this function can sleep
1662 * in allocations.
1663 */
0fb54e50 1664static int attach_recursive_mnt(struct mount *source_mnt,
84d17192
AV
1665 struct mount *dest_mnt,
1666 struct mountpoint *dest_mp,
1667 struct path *parent_path)
b90fa9ae 1668{
38129a13 1669 HLIST_HEAD(tree_list);
315fc83e 1670 struct mount *child, *p;
38129a13 1671 struct hlist_node *n;
719f5d7f 1672 int err;
b90fa9ae 1673
fc7be130 1674 if (IS_MNT_SHARED(dest_mnt)) {
0fb54e50 1675 err = invent_group_ids(source_mnt, true);
719f5d7f
MS
1676 if (err)
1677 goto out;
0b1b901b 1678 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
f2ebb3a9 1679 lock_mount_hash();
0b1b901b
AV
1680 if (err)
1681 goto out_cleanup_ids;
909b0a88 1682 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
0f0afb1d 1683 set_mnt_shared(p);
0b1b901b
AV
1684 } else {
1685 lock_mount_hash();
b90fa9ae 1686 }
1a390689 1687 if (parent_path) {
0fb54e50 1688 detach_mnt(source_mnt, parent_path);
84d17192 1689 attach_mnt(source_mnt, dest_mnt, dest_mp);
143c8c91 1690 touch_mnt_namespace(source_mnt->mnt_ns);
21444403 1691 } else {
84d17192 1692 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1d6a32ac 1693 commit_tree(source_mnt, NULL);
21444403 1694 }
b90fa9ae 1695
38129a13 1696 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1d6a32ac 1697 struct mount *q;
38129a13 1698 hlist_del_init(&child->mnt_hash);
1d6a32ac
AV
1699 q = __lookup_mnt_last(&child->mnt_parent->mnt,
1700 child->mnt_mountpoint);
1701 commit_tree(child, q);
b90fa9ae 1702 }
719ea2fb 1703 unlock_mount_hash();
99b7db7b 1704
b90fa9ae 1705 return 0;
719f5d7f
MS
1706
1707 out_cleanup_ids:
f2ebb3a9
AV
1708 while (!hlist_empty(&tree_list)) {
1709 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
1710 umount_tree(child, 0);
1711 }
1712 unlock_mount_hash();
0b1b901b 1713 cleanup_group_ids(source_mnt, NULL);
719f5d7f
MS
1714 out:
1715 return err;
b90fa9ae
RP
1716}
1717
84d17192 1718static struct mountpoint *lock_mount(struct path *path)
b12cea91
AV
1719{
1720 struct vfsmount *mnt;
84d17192 1721 struct dentry *dentry = path->dentry;
b12cea91 1722retry:
84d17192
AV
1723 mutex_lock(&dentry->d_inode->i_mutex);
1724 if (unlikely(cant_mount(dentry))) {
1725 mutex_unlock(&dentry->d_inode->i_mutex);
1726 return ERR_PTR(-ENOENT);
b12cea91 1727 }
97216be0 1728 namespace_lock();
b12cea91 1729 mnt = lookup_mnt(path);
84d17192
AV
1730 if (likely(!mnt)) {
1731 struct mountpoint *mp = new_mountpoint(dentry);
1732 if (IS_ERR(mp)) {
97216be0 1733 namespace_unlock();
84d17192
AV
1734 mutex_unlock(&dentry->d_inode->i_mutex);
1735 return mp;
1736 }
1737 return mp;
1738 }
97216be0 1739 namespace_unlock();
b12cea91
AV
1740 mutex_unlock(&path->dentry->d_inode->i_mutex);
1741 path_put(path);
1742 path->mnt = mnt;
84d17192 1743 dentry = path->dentry = dget(mnt->mnt_root);
b12cea91
AV
1744 goto retry;
1745}
1746
84d17192 1747static void unlock_mount(struct mountpoint *where)
b12cea91 1748{
84d17192
AV
1749 struct dentry *dentry = where->m_dentry;
1750 put_mountpoint(where);
328e6d90 1751 namespace_unlock();
84d17192 1752 mutex_unlock(&dentry->d_inode->i_mutex);
b12cea91
AV
1753}
1754
84d17192 1755static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1da177e4 1756{
95bc5f25 1757 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1da177e4
LT
1758 return -EINVAL;
1759
84d17192 1760 if (S_ISDIR(mp->m_dentry->d_inode->i_mode) !=
95bc5f25 1761 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1da177e4
LT
1762 return -ENOTDIR;
1763
84d17192 1764 return attach_recursive_mnt(mnt, p, mp, NULL);
1da177e4
LT
1765}
1766
7a2e8a8f
VA
1767/*
1768 * Sanity check the flags to change_mnt_propagation.
1769 */
1770
1771static int flags_to_propagation_type(int flags)
1772{
7c6e984d 1773 int type = flags & ~(MS_REC | MS_SILENT);
7a2e8a8f
VA
1774
1775 /* Fail if any non-propagation flags are set */
1776 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1777 return 0;
1778 /* Only one propagation flag should be set */
1779 if (!is_power_of_2(type))
1780 return 0;
1781 return type;
1782}
1783
07b20889
RP
1784/*
1785 * recursively change the type of the mountpoint.
1786 */
0a0d8a46 1787static int do_change_type(struct path *path, int flag)
07b20889 1788{
315fc83e 1789 struct mount *m;
4b8b21f4 1790 struct mount *mnt = real_mount(path->mnt);
07b20889 1791 int recurse = flag & MS_REC;
7a2e8a8f 1792 int type;
719f5d7f 1793 int err = 0;
07b20889 1794
2d92ab3c 1795 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
1796 return -EINVAL;
1797
7a2e8a8f
VA
1798 type = flags_to_propagation_type(flag);
1799 if (!type)
1800 return -EINVAL;
1801
97216be0 1802 namespace_lock();
719f5d7f
MS
1803 if (type == MS_SHARED) {
1804 err = invent_group_ids(mnt, recurse);
1805 if (err)
1806 goto out_unlock;
1807 }
1808
719ea2fb 1809 lock_mount_hash();
909b0a88 1810 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
0f0afb1d 1811 change_mnt_propagation(m, type);
719ea2fb 1812 unlock_mount_hash();
719f5d7f
MS
1813
1814 out_unlock:
97216be0 1815 namespace_unlock();
719f5d7f 1816 return err;
07b20889
RP
1817}
1818
5ff9d8a6
EB
1819static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
1820{
1821 struct mount *child;
1822 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
1823 if (!is_subdir(child->mnt_mountpoint, dentry))
1824 continue;
1825
1826 if (child->mnt.mnt_flags & MNT_LOCKED)
1827 return true;
1828 }
1829 return false;
1830}
1831
1da177e4
LT
1832/*
1833 * do loopback mount.
1834 */
808d4e3c 1835static int do_loopback(struct path *path, const char *old_name,
2dafe1c4 1836 int recurse)
1da177e4 1837{
2d92ab3c 1838 struct path old_path;
84d17192
AV
1839 struct mount *mnt = NULL, *old, *parent;
1840 struct mountpoint *mp;
57eccb83 1841 int err;
1da177e4
LT
1842 if (!old_name || !*old_name)
1843 return -EINVAL;
815d405c 1844 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1da177e4
LT
1845 if (err)
1846 return err;
1847
8823c079 1848 err = -EINVAL;
4ce5d2b1 1849 if (mnt_ns_loop(old_path.dentry))
8823c079
EB
1850 goto out;
1851
84d17192
AV
1852 mp = lock_mount(path);
1853 err = PTR_ERR(mp);
1854 if (IS_ERR(mp))
b12cea91
AV
1855 goto out;
1856
87129cc0 1857 old = real_mount(old_path.mnt);
84d17192 1858 parent = real_mount(path->mnt);
87129cc0 1859
1da177e4 1860 err = -EINVAL;
fc7be130 1861 if (IS_MNT_UNBINDABLE(old))
b12cea91 1862 goto out2;
9676f0c6 1863
84d17192 1864 if (!check_mnt(parent) || !check_mnt(old))
b12cea91 1865 goto out2;
1da177e4 1866
5ff9d8a6
EB
1867 if (!recurse && has_locked_children(old, old_path.dentry))
1868 goto out2;
1869
ccd48bc7 1870 if (recurse)
4ce5d2b1 1871 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
ccd48bc7 1872 else
87129cc0 1873 mnt = clone_mnt(old, old_path.dentry, 0);
ccd48bc7 1874
be34d1a3
DH
1875 if (IS_ERR(mnt)) {
1876 err = PTR_ERR(mnt);
e9c5d8a5 1877 goto out2;
be34d1a3 1878 }
ccd48bc7 1879
5ff9d8a6
EB
1880 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
1881
84d17192 1882 err = graft_tree(mnt, parent, mp);
ccd48bc7 1883 if (err) {
719ea2fb 1884 lock_mount_hash();
328e6d90 1885 umount_tree(mnt, 0);
719ea2fb 1886 unlock_mount_hash();
5b83d2c5 1887 }
b12cea91 1888out2:
84d17192 1889 unlock_mount(mp);
ccd48bc7 1890out:
2d92ab3c 1891 path_put(&old_path);
1da177e4
LT
1892 return err;
1893}
1894
2e4b7fcd
DH
1895static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1896{
1897 int error = 0;
1898 int readonly_request = 0;
1899
1900 if (ms_flags & MS_RDONLY)
1901 readonly_request = 1;
1902 if (readonly_request == __mnt_is_readonly(mnt))
1903 return 0;
1904
90563b19
EB
1905 if (mnt->mnt_flags & MNT_LOCK_READONLY)
1906 return -EPERM;
1907
2e4b7fcd 1908 if (readonly_request)
83adc753 1909 error = mnt_make_readonly(real_mount(mnt));
2e4b7fcd 1910 else
83adc753 1911 __mnt_unmake_readonly(real_mount(mnt));
2e4b7fcd
DH
1912 return error;
1913}
1914
1da177e4
LT
1915/*
1916 * change filesystem flags. dir should be a physical root of filesystem.
1917 * If you've mounted a non-root directory somewhere and want to do remount
1918 * on it - tough luck.
1919 */
0a0d8a46 1920static int do_remount(struct path *path, int flags, int mnt_flags,
1da177e4
LT
1921 void *data)
1922{
1923 int err;
2d92ab3c 1924 struct super_block *sb = path->mnt->mnt_sb;
143c8c91 1925 struct mount *mnt = real_mount(path->mnt);
1da177e4 1926
143c8c91 1927 if (!check_mnt(mnt))
1da177e4
LT
1928 return -EINVAL;
1929
2d92ab3c 1930 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
1931 return -EINVAL;
1932
ff36fe2c
EP
1933 err = security_sb_remount(sb, data);
1934 if (err)
1935 return err;
1936
1da177e4 1937 down_write(&sb->s_umount);
2e4b7fcd 1938 if (flags & MS_BIND)
2d92ab3c 1939 err = change_mount_flags(path->mnt, flags);
57eccb83
AV
1940 else if (!capable(CAP_SYS_ADMIN))
1941 err = -EPERM;
4aa98cf7 1942 else
2e4b7fcd 1943 err = do_remount_sb(sb, flags, data, 0);
7b43a79f 1944 if (!err) {
719ea2fb 1945 lock_mount_hash();
143c8c91
AV
1946 mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK;
1947 mnt->mnt.mnt_flags = mnt_flags;
143c8c91 1948 touch_mnt_namespace(mnt->mnt_ns);
719ea2fb 1949 unlock_mount_hash();
0e55a7cc 1950 }
6339dab8 1951 up_write(&sb->s_umount);
1da177e4
LT
1952 return err;
1953}
1954
cbbe362c 1955static inline int tree_contains_unbindable(struct mount *mnt)
9676f0c6 1956{
315fc83e 1957 struct mount *p;
909b0a88 1958 for (p = mnt; p; p = next_mnt(p, mnt)) {
fc7be130 1959 if (IS_MNT_UNBINDABLE(p))
9676f0c6
RP
1960 return 1;
1961 }
1962 return 0;
1963}
1964
808d4e3c 1965static int do_move_mount(struct path *path, const char *old_name)
1da177e4 1966{
2d92ab3c 1967 struct path old_path, parent_path;
676da58d 1968 struct mount *p;
0fb54e50 1969 struct mount *old;
84d17192 1970 struct mountpoint *mp;
57eccb83 1971 int err;
1da177e4
LT
1972 if (!old_name || !*old_name)
1973 return -EINVAL;
2d92ab3c 1974 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
1975 if (err)
1976 return err;
1977
84d17192
AV
1978 mp = lock_mount(path);
1979 err = PTR_ERR(mp);
1980 if (IS_ERR(mp))
cc53ce53
DH
1981 goto out;
1982
143c8c91 1983 old = real_mount(old_path.mnt);
fc7be130 1984 p = real_mount(path->mnt);
143c8c91 1985
1da177e4 1986 err = -EINVAL;
fc7be130 1987 if (!check_mnt(p) || !check_mnt(old))
1da177e4
LT
1988 goto out1;
1989
5ff9d8a6
EB
1990 if (old->mnt.mnt_flags & MNT_LOCKED)
1991 goto out1;
1992
1da177e4 1993 err = -EINVAL;
2d92ab3c 1994 if (old_path.dentry != old_path.mnt->mnt_root)
21444403 1995 goto out1;
1da177e4 1996
676da58d 1997 if (!mnt_has_parent(old))
21444403 1998 goto out1;
1da177e4 1999
2d92ab3c
AV
2000 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
2001 S_ISDIR(old_path.dentry->d_inode->i_mode))
21444403
RP
2002 goto out1;
2003 /*
2004 * Don't move a mount residing in a shared parent.
2005 */
fc7be130 2006 if (IS_MNT_SHARED(old->mnt_parent))
21444403 2007 goto out1;
9676f0c6
RP
2008 /*
2009 * Don't move a mount tree containing unbindable mounts to a destination
2010 * mount which is shared.
2011 */
fc7be130 2012 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
9676f0c6 2013 goto out1;
1da177e4 2014 err = -ELOOP;
fc7be130 2015 for (; mnt_has_parent(p); p = p->mnt_parent)
676da58d 2016 if (p == old)
21444403 2017 goto out1;
1da177e4 2018
84d17192 2019 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
4ac91378 2020 if (err)
21444403 2021 goto out1;
1da177e4
LT
2022
2023 /* if the mount is moved, it should no longer be expire
2024 * automatically */
6776db3d 2025 list_del_init(&old->mnt_expire);
1da177e4 2026out1:
84d17192 2027 unlock_mount(mp);
1da177e4 2028out:
1da177e4 2029 if (!err)
1a390689 2030 path_put(&parent_path);
2d92ab3c 2031 path_put(&old_path);
1da177e4
LT
2032 return err;
2033}
2034
9d412a43
AV
2035static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2036{
2037 int err;
2038 const char *subtype = strchr(fstype, '.');
2039 if (subtype) {
2040 subtype++;
2041 err = -EINVAL;
2042 if (!subtype[0])
2043 goto err;
2044 } else
2045 subtype = "";
2046
2047 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2048 err = -ENOMEM;
2049 if (!mnt->mnt_sb->s_subtype)
2050 goto err;
2051 return mnt;
2052
2053 err:
2054 mntput(mnt);
2055 return ERR_PTR(err);
2056}
2057
9d412a43
AV
2058/*
2059 * add a mount into a namespace's mount tree
2060 */
95bc5f25 2061static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
9d412a43 2062{
84d17192
AV
2063 struct mountpoint *mp;
2064 struct mount *parent;
9d412a43
AV
2065 int err;
2066
f2ebb3a9 2067 mnt_flags &= ~MNT_INTERNAL_FLAGS;
9d412a43 2068
84d17192
AV
2069 mp = lock_mount(path);
2070 if (IS_ERR(mp))
2071 return PTR_ERR(mp);
9d412a43 2072
84d17192 2073 parent = real_mount(path->mnt);
9d412a43 2074 err = -EINVAL;
84d17192 2075 if (unlikely(!check_mnt(parent))) {
156cacb1
AV
2076 /* that's acceptable only for automounts done in private ns */
2077 if (!(mnt_flags & MNT_SHRINKABLE))
2078 goto unlock;
2079 /* ... and for those we'd better have mountpoint still alive */
84d17192 2080 if (!parent->mnt_ns)
156cacb1
AV
2081 goto unlock;
2082 }
9d412a43
AV
2083
2084 /* Refuse the same filesystem on the same mount point */
2085 err = -EBUSY;
95bc5f25 2086 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
9d412a43
AV
2087 path->mnt->mnt_root == path->dentry)
2088 goto unlock;
2089
2090 err = -EINVAL;
95bc5f25 2091 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
9d412a43
AV
2092 goto unlock;
2093
95bc5f25 2094 newmnt->mnt.mnt_flags = mnt_flags;
84d17192 2095 err = graft_tree(newmnt, parent, mp);
9d412a43
AV
2096
2097unlock:
84d17192 2098 unlock_mount(mp);
9d412a43
AV
2099 return err;
2100}
b1e75df4 2101
1da177e4
LT
2102/*
2103 * create a new mount for userspace and request it to be added into the
2104 * namespace's tree
2105 */
0c55cfc4 2106static int do_new_mount(struct path *path, const char *fstype, int flags,
808d4e3c 2107 int mnt_flags, const char *name, void *data)
1da177e4 2108{
0c55cfc4 2109 struct file_system_type *type;
9b40bc90 2110 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
1da177e4 2111 struct vfsmount *mnt;
15f9a3f3 2112 int err;
1da177e4 2113
0c55cfc4 2114 if (!fstype)
1da177e4
LT
2115 return -EINVAL;
2116
0c55cfc4
EB
2117 type = get_fs_type(fstype);
2118 if (!type)
2119 return -ENODEV;
2120
2121 if (user_ns != &init_user_ns) {
2122 if (!(type->fs_flags & FS_USERNS_MOUNT)) {
2123 put_filesystem(type);
2124 return -EPERM;
2125 }
2126 /* Only in special cases allow devices from mounts
2127 * created outside the initial user namespace.
2128 */
2129 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2130 flags |= MS_NODEV;
2131 mnt_flags |= MNT_NODEV;
2132 }
2133 }
2134
2135 mnt = vfs_kern_mount(type, flags, name, data);
2136 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2137 !mnt->mnt_sb->s_subtype)
2138 mnt = fs_set_subtype(mnt, fstype);
2139
2140 put_filesystem(type);
1da177e4
LT
2141 if (IS_ERR(mnt))
2142 return PTR_ERR(mnt);
2143
95bc5f25 2144 err = do_add_mount(real_mount(mnt), path, mnt_flags);
15f9a3f3
AV
2145 if (err)
2146 mntput(mnt);
2147 return err;
1da177e4
LT
2148}
2149
19a167af
AV
2150int finish_automount(struct vfsmount *m, struct path *path)
2151{
6776db3d 2152 struct mount *mnt = real_mount(m);
19a167af
AV
2153 int err;
2154 /* The new mount record should have at least 2 refs to prevent it being
2155 * expired before we get a chance to add it
2156 */
6776db3d 2157 BUG_ON(mnt_get_count(mnt) < 2);
19a167af
AV
2158
2159 if (m->mnt_sb == path->mnt->mnt_sb &&
2160 m->mnt_root == path->dentry) {
b1e75df4
AV
2161 err = -ELOOP;
2162 goto fail;
19a167af
AV
2163 }
2164
95bc5f25 2165 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
b1e75df4
AV
2166 if (!err)
2167 return 0;
2168fail:
2169 /* remove m from any expiration list it may be on */
6776db3d 2170 if (!list_empty(&mnt->mnt_expire)) {
97216be0 2171 namespace_lock();
6776db3d 2172 list_del_init(&mnt->mnt_expire);
97216be0 2173 namespace_unlock();
19a167af 2174 }
b1e75df4
AV
2175 mntput(m);
2176 mntput(m);
19a167af
AV
2177 return err;
2178}
2179
ea5b778a
DH
2180/**
2181 * mnt_set_expiry - Put a mount on an expiration list
2182 * @mnt: The mount to list.
2183 * @expiry_list: The list to add the mount to.
2184 */
2185void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2186{
97216be0 2187 namespace_lock();
ea5b778a 2188
6776db3d 2189 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
ea5b778a 2190
97216be0 2191 namespace_unlock();
ea5b778a
DH
2192}
2193EXPORT_SYMBOL(mnt_set_expiry);
2194
1da177e4
LT
2195/*
2196 * process a list of expirable mountpoints with the intent of discarding any
2197 * mountpoints that aren't in use and haven't been touched since last we came
2198 * here
2199 */
2200void mark_mounts_for_expiry(struct list_head *mounts)
2201{
761d5c38 2202 struct mount *mnt, *next;
1da177e4
LT
2203 LIST_HEAD(graveyard);
2204
2205 if (list_empty(mounts))
2206 return;
2207
97216be0 2208 namespace_lock();
719ea2fb 2209 lock_mount_hash();
1da177e4
LT
2210
2211 /* extract from the expiration list every vfsmount that matches the
2212 * following criteria:
2213 * - only referenced by its parent vfsmount
2214 * - still marked for expiry (marked on the last call here; marks are
2215 * cleared by mntput())
2216 */
6776db3d 2217 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
863d684f 2218 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1ab59738 2219 propagate_mount_busy(mnt, 1))
1da177e4 2220 continue;
6776db3d 2221 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 2222 }
bcc5c7d2 2223 while (!list_empty(&graveyard)) {
6776db3d 2224 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
143c8c91 2225 touch_mnt_namespace(mnt->mnt_ns);
328e6d90 2226 umount_tree(mnt, 1);
bcc5c7d2 2227 }
719ea2fb 2228 unlock_mount_hash();
3ab6abee 2229 namespace_unlock();
5528f911
TM
2230}
2231
2232EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2233
2234/*
2235 * Ripoff of 'select_parent()'
2236 *
2237 * search the list of submounts for a given mountpoint, and move any
2238 * shrinkable submounts to the 'graveyard' list.
2239 */
692afc31 2240static int select_submounts(struct mount *parent, struct list_head *graveyard)
5528f911 2241{
692afc31 2242 struct mount *this_parent = parent;
5528f911
TM
2243 struct list_head *next;
2244 int found = 0;
2245
2246repeat:
6b41d536 2247 next = this_parent->mnt_mounts.next;
5528f911 2248resume:
6b41d536 2249 while (next != &this_parent->mnt_mounts) {
5528f911 2250 struct list_head *tmp = next;
6b41d536 2251 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
5528f911
TM
2252
2253 next = tmp->next;
692afc31 2254 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1da177e4 2255 continue;
5528f911
TM
2256 /*
2257 * Descend a level if the d_mounts list is non-empty.
2258 */
6b41d536 2259 if (!list_empty(&mnt->mnt_mounts)) {
5528f911
TM
2260 this_parent = mnt;
2261 goto repeat;
2262 }
1da177e4 2263
1ab59738 2264 if (!propagate_mount_busy(mnt, 1)) {
6776db3d 2265 list_move_tail(&mnt->mnt_expire, graveyard);
5528f911
TM
2266 found++;
2267 }
1da177e4 2268 }
5528f911
TM
2269 /*
2270 * All done at this level ... ascend and resume the search
2271 */
2272 if (this_parent != parent) {
6b41d536 2273 next = this_parent->mnt_child.next;
0714a533 2274 this_parent = this_parent->mnt_parent;
5528f911
TM
2275 goto resume;
2276 }
2277 return found;
2278}
2279
2280/*
2281 * process a list of expirable mountpoints with the intent of discarding any
2282 * submounts of a specific parent mountpoint
99b7db7b 2283 *
48a066e7 2284 * mount_lock must be held for write
5528f911 2285 */
b54b9be7 2286static void shrink_submounts(struct mount *mnt)
5528f911
TM
2287{
2288 LIST_HEAD(graveyard);
761d5c38 2289 struct mount *m;
5528f911 2290
5528f911 2291 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 2292 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 2293 while (!list_empty(&graveyard)) {
761d5c38 2294 m = list_first_entry(&graveyard, struct mount,
6776db3d 2295 mnt_expire);
143c8c91 2296 touch_mnt_namespace(m->mnt_ns);
328e6d90 2297 umount_tree(m, 1);
bcc5c7d2
AV
2298 }
2299 }
1da177e4
LT
2300}
2301
1da177e4
LT
2302/*
2303 * Some copy_from_user() implementations do not return the exact number of
2304 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2305 * Note that this function differs from copy_from_user() in that it will oops
2306 * on bad values of `to', rather than returning a short copy.
2307 */
b58fed8b
RP
2308static long exact_copy_from_user(void *to, const void __user * from,
2309 unsigned long n)
1da177e4
LT
2310{
2311 char *t = to;
2312 const char __user *f = from;
2313 char c;
2314
2315 if (!access_ok(VERIFY_READ, from, n))
2316 return n;
2317
2318 while (n) {
2319 if (__get_user(c, f)) {
2320 memset(t, 0, n);
2321 break;
2322 }
2323 *t++ = c;
2324 f++;
2325 n--;
2326 }
2327 return n;
2328}
2329
b58fed8b 2330int copy_mount_options(const void __user * data, unsigned long *where)
1da177e4
LT
2331{
2332 int i;
2333 unsigned long page;
2334 unsigned long size;
b58fed8b 2335
1da177e4
LT
2336 *where = 0;
2337 if (!data)
2338 return 0;
2339
2340 if (!(page = __get_free_page(GFP_KERNEL)))
2341 return -ENOMEM;
2342
2343 /* We only care that *some* data at the address the user
2344 * gave us is valid. Just in case, we'll zero
2345 * the remainder of the page.
2346 */
2347 /* copy_from_user cannot cross TASK_SIZE ! */
2348 size = TASK_SIZE - (unsigned long)data;
2349 if (size > PAGE_SIZE)
2350 size = PAGE_SIZE;
2351
2352 i = size - exact_copy_from_user((void *)page, data, size);
2353 if (!i) {
b58fed8b 2354 free_page(page);
1da177e4
LT
2355 return -EFAULT;
2356 }
2357 if (i != PAGE_SIZE)
2358 memset((char *)page + i, 0, PAGE_SIZE - i);
2359 *where = page;
2360 return 0;
2361}
2362
eca6f534
VN
2363int copy_mount_string(const void __user *data, char **where)
2364{
2365 char *tmp;
2366
2367 if (!data) {
2368 *where = NULL;
2369 return 0;
2370 }
2371
2372 tmp = strndup_user(data, PAGE_SIZE);
2373 if (IS_ERR(tmp))
2374 return PTR_ERR(tmp);
2375
2376 *where = tmp;
2377 return 0;
2378}
2379
1da177e4
LT
2380/*
2381 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2382 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2383 *
2384 * data is a (void *) that can point to any structure up to
2385 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2386 * information (or be NULL).
2387 *
2388 * Pre-0.97 versions of mount() didn't have a flags word.
2389 * When the flags word was introduced its top half was required
2390 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2391 * Therefore, if this magic number is present, it carries no information
2392 * and must be discarded.
2393 */
808d4e3c
AV
2394long do_mount(const char *dev_name, const char *dir_name,
2395 const char *type_page, unsigned long flags, void *data_page)
1da177e4 2396{
2d92ab3c 2397 struct path path;
1da177e4
LT
2398 int retval = 0;
2399 int mnt_flags = 0;
2400
2401 /* Discard magic */
2402 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2403 flags &= ~MS_MGC_MSK;
2404
2405 /* Basic sanity checks */
2406
2407 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2408 return -EINVAL;
1da177e4
LT
2409
2410 if (data_page)
2411 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2412
a27ab9f2
TH
2413 /* ... and get the mountpoint */
2414 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2415 if (retval)
2416 return retval;
2417
2418 retval = security_sb_mount(dev_name, &path,
2419 type_page, flags, data_page);
0d5cadb8
AV
2420 if (!retval && !may_mount())
2421 retval = -EPERM;
a27ab9f2
TH
2422 if (retval)
2423 goto dput_out;
2424
613cbe3d
AK
2425 /* Default to relatime unless overriden */
2426 if (!(flags & MS_NOATIME))
2427 mnt_flags |= MNT_RELATIME;
0a1c01c9 2428
1da177e4
LT
2429 /* Separate the per-mountpoint flags */
2430 if (flags & MS_NOSUID)
2431 mnt_flags |= MNT_NOSUID;
2432 if (flags & MS_NODEV)
2433 mnt_flags |= MNT_NODEV;
2434 if (flags & MS_NOEXEC)
2435 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
2436 if (flags & MS_NOATIME)
2437 mnt_flags |= MNT_NOATIME;
2438 if (flags & MS_NODIRATIME)
2439 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
2440 if (flags & MS_STRICTATIME)
2441 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2e4b7fcd
DH
2442 if (flags & MS_RDONLY)
2443 mnt_flags |= MNT_READONLY;
fc33a7bb 2444
7a4dec53 2445 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
d0adde57
MG
2446 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2447 MS_STRICTATIME);
1da177e4 2448
1da177e4 2449 if (flags & MS_REMOUNT)
2d92ab3c 2450 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
1da177e4
LT
2451 data_page);
2452 else if (flags & MS_BIND)
2d92ab3c 2453 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 2454 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 2455 retval = do_change_type(&path, flags);
1da177e4 2456 else if (flags & MS_MOVE)
2d92ab3c 2457 retval = do_move_mount(&path, dev_name);
1da177e4 2458 else
2d92ab3c 2459 retval = do_new_mount(&path, type_page, flags, mnt_flags,
1da177e4
LT
2460 dev_name, data_page);
2461dput_out:
2d92ab3c 2462 path_put(&path);
1da177e4
LT
2463 return retval;
2464}
2465
771b1371
EB
2466static void free_mnt_ns(struct mnt_namespace *ns)
2467{
98f842e6 2468 proc_free_inum(ns->proc_inum);
771b1371
EB
2469 put_user_ns(ns->user_ns);
2470 kfree(ns);
2471}
2472
8823c079
EB
2473/*
2474 * Assign a sequence number so we can detect when we attempt to bind
2475 * mount a reference to an older mount namespace into the current
2476 * mount namespace, preventing reference counting loops. A 64bit
2477 * number incrementing at 10Ghz will take 12,427 years to wrap which
2478 * is effectively never, so we can ignore the possibility.
2479 */
2480static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2481
771b1371 2482static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
cf8d2c11
TM
2483{
2484 struct mnt_namespace *new_ns;
98f842e6 2485 int ret;
cf8d2c11
TM
2486
2487 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2488 if (!new_ns)
2489 return ERR_PTR(-ENOMEM);
98f842e6
EB
2490 ret = proc_alloc_inum(&new_ns->proc_inum);
2491 if (ret) {
2492 kfree(new_ns);
2493 return ERR_PTR(ret);
2494 }
8823c079 2495 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
cf8d2c11
TM
2496 atomic_set(&new_ns->count, 1);
2497 new_ns->root = NULL;
2498 INIT_LIST_HEAD(&new_ns->list);
2499 init_waitqueue_head(&new_ns->poll);
2500 new_ns->event = 0;
771b1371 2501 new_ns->user_ns = get_user_ns(user_ns);
cf8d2c11
TM
2502 return new_ns;
2503}
2504
9559f689
AV
2505struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2506 struct user_namespace *user_ns, struct fs_struct *new_fs)
1da177e4 2507{
6b3286ed 2508 struct mnt_namespace *new_ns;
7f2da1e7 2509 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
315fc83e 2510 struct mount *p, *q;
9559f689 2511 struct mount *old;
cb338d06 2512 struct mount *new;
7a472ef4 2513 int copy_flags;
1da177e4 2514
9559f689
AV
2515 BUG_ON(!ns);
2516
2517 if (likely(!(flags & CLONE_NEWNS))) {
2518 get_mnt_ns(ns);
2519 return ns;
2520 }
2521
2522 old = ns->root;
2523
771b1371 2524 new_ns = alloc_mnt_ns(user_ns);
cf8d2c11
TM
2525 if (IS_ERR(new_ns))
2526 return new_ns;
1da177e4 2527
97216be0 2528 namespace_lock();
1da177e4 2529 /* First pass: copy the tree topology */
4ce5d2b1 2530 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
9559f689 2531 if (user_ns != ns->user_ns)
132c94e3 2532 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
7a472ef4 2533 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
be34d1a3 2534 if (IS_ERR(new)) {
328e6d90 2535 namespace_unlock();
771b1371 2536 free_mnt_ns(new_ns);
be34d1a3 2537 return ERR_CAST(new);
1da177e4 2538 }
be08d6d2 2539 new_ns->root = new;
1a4eeaf2 2540 list_add_tail(&new_ns->list, &new->mnt_list);
1da177e4
LT
2541
2542 /*
2543 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2544 * as belonging to new namespace. We have already acquired a private
2545 * fs_struct, so tsk->fs->lock is not needed.
2546 */
909b0a88 2547 p = old;
cb338d06 2548 q = new;
1da177e4 2549 while (p) {
143c8c91 2550 q->mnt_ns = new_ns;
9559f689
AV
2551 if (new_fs) {
2552 if (&p->mnt == new_fs->root.mnt) {
2553 new_fs->root.mnt = mntget(&q->mnt);
315fc83e 2554 rootmnt = &p->mnt;
1da177e4 2555 }
9559f689
AV
2556 if (&p->mnt == new_fs->pwd.mnt) {
2557 new_fs->pwd.mnt = mntget(&q->mnt);
315fc83e 2558 pwdmnt = &p->mnt;
1da177e4 2559 }
1da177e4 2560 }
909b0a88
AV
2561 p = next_mnt(p, old);
2562 q = next_mnt(q, new);
4ce5d2b1
EB
2563 if (!q)
2564 break;
2565 while (p->mnt.mnt_root != q->mnt.mnt_root)
2566 p = next_mnt(p, old);
1da177e4 2567 }
328e6d90 2568 namespace_unlock();
1da177e4 2569
1da177e4 2570 if (rootmnt)
f03c6599 2571 mntput(rootmnt);
1da177e4 2572 if (pwdmnt)
f03c6599 2573 mntput(pwdmnt);
1da177e4 2574
741a2951 2575 return new_ns;
1da177e4
LT
2576}
2577
cf8d2c11
TM
2578/**
2579 * create_mnt_ns - creates a private namespace and adds a root filesystem
2580 * @mnt: pointer to the new root filesystem mountpoint
2581 */
1a4eeaf2 2582static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
cf8d2c11 2583{
771b1371 2584 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
cf8d2c11 2585 if (!IS_ERR(new_ns)) {
1a4eeaf2
AV
2586 struct mount *mnt = real_mount(m);
2587 mnt->mnt_ns = new_ns;
be08d6d2 2588 new_ns->root = mnt;
b1983cd8 2589 list_add(&mnt->mnt_list, &new_ns->list);
c1334495 2590 } else {
1a4eeaf2 2591 mntput(m);
cf8d2c11
TM
2592 }
2593 return new_ns;
2594}
cf8d2c11 2595
ea441d11
AV
2596struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2597{
2598 struct mnt_namespace *ns;
d31da0f0 2599 struct super_block *s;
ea441d11
AV
2600 struct path path;
2601 int err;
2602
2603 ns = create_mnt_ns(mnt);
2604 if (IS_ERR(ns))
2605 return ERR_CAST(ns);
2606
2607 err = vfs_path_lookup(mnt->mnt_root, mnt,
2608 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2609
2610 put_mnt_ns(ns);
2611
2612 if (err)
2613 return ERR_PTR(err);
2614
2615 /* trade a vfsmount reference for active sb one */
d31da0f0
AV
2616 s = path.mnt->mnt_sb;
2617 atomic_inc(&s->s_active);
ea441d11
AV
2618 mntput(path.mnt);
2619 /* lock the sucker */
d31da0f0 2620 down_write(&s->s_umount);
ea441d11
AV
2621 /* ... and return the root of (sub)tree on it */
2622 return path.dentry;
2623}
2624EXPORT_SYMBOL(mount_subtree);
2625
bdc480e3
HC
2626SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2627 char __user *, type, unsigned long, flags, void __user *, data)
1da177e4 2628{
eca6f534
VN
2629 int ret;
2630 char *kernel_type;
91a27b2a 2631 struct filename *kernel_dir;
eca6f534 2632 char *kernel_dev;
1da177e4 2633 unsigned long data_page;
1da177e4 2634
eca6f534
VN
2635 ret = copy_mount_string(type, &kernel_type);
2636 if (ret < 0)
2637 goto out_type;
1da177e4 2638
eca6f534
VN
2639 kernel_dir = getname(dir_name);
2640 if (IS_ERR(kernel_dir)) {
2641 ret = PTR_ERR(kernel_dir);
2642 goto out_dir;
2643 }
1da177e4 2644
eca6f534
VN
2645 ret = copy_mount_string(dev_name, &kernel_dev);
2646 if (ret < 0)
2647 goto out_dev;
1da177e4 2648
eca6f534
VN
2649 ret = copy_mount_options(data, &data_page);
2650 if (ret < 0)
2651 goto out_data;
1da177e4 2652
91a27b2a 2653 ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags,
eca6f534 2654 (void *) data_page);
1da177e4 2655
eca6f534
VN
2656 free_page(data_page);
2657out_data:
2658 kfree(kernel_dev);
2659out_dev:
2660 putname(kernel_dir);
2661out_dir:
2662 kfree(kernel_type);
2663out_type:
2664 return ret;
1da177e4
LT
2665}
2666
afac7cba
AV
2667/*
2668 * Return true if path is reachable from root
2669 *
48a066e7 2670 * namespace_sem or mount_lock is held
afac7cba 2671 */
643822b4 2672bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
afac7cba
AV
2673 const struct path *root)
2674{
643822b4 2675 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
a73324da 2676 dentry = mnt->mnt_mountpoint;
0714a533 2677 mnt = mnt->mnt_parent;
afac7cba 2678 }
643822b4 2679 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
afac7cba
AV
2680}
2681
2682int path_is_under(struct path *path1, struct path *path2)
2683{
2684 int res;
48a066e7 2685 read_seqlock_excl(&mount_lock);
643822b4 2686 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
48a066e7 2687 read_sequnlock_excl(&mount_lock);
afac7cba
AV
2688 return res;
2689}
2690EXPORT_SYMBOL(path_is_under);
2691
1da177e4
LT
2692/*
2693 * pivot_root Semantics:
2694 * Moves the root file system of the current process to the directory put_old,
2695 * makes new_root as the new root file system of the current process, and sets
2696 * root/cwd of all processes which had them on the current root to new_root.
2697 *
2698 * Restrictions:
2699 * The new_root and put_old must be directories, and must not be on the
2700 * same file system as the current process root. The put_old must be
2701 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2702 * pointed to by put_old must yield the same directory as new_root. No other
2703 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2704 *
4a0d11fa
NB
2705 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2706 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2707 * in this situation.
2708 *
1da177e4
LT
2709 * Notes:
2710 * - we don't move root/cwd if they are not at the root (reason: if something
2711 * cared enough to change them, it's probably wrong to force them elsewhere)
2712 * - it's okay to pick a root that isn't the root of a file system, e.g.
2713 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2714 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2715 * first.
2716 */
3480b257
HC
2717SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2718 const char __user *, put_old)
1da177e4 2719{
2d8f3038 2720 struct path new, old, parent_path, root_parent, root;
84d17192
AV
2721 struct mount *new_mnt, *root_mnt, *old_mnt;
2722 struct mountpoint *old_mp, *root_mp;
1da177e4
LT
2723 int error;
2724
9b40bc90 2725 if (!may_mount())
1da177e4
LT
2726 return -EPERM;
2727
2d8f3038 2728 error = user_path_dir(new_root, &new);
1da177e4
LT
2729 if (error)
2730 goto out0;
1da177e4 2731
2d8f3038 2732 error = user_path_dir(put_old, &old);
1da177e4
LT
2733 if (error)
2734 goto out1;
2735
2d8f3038 2736 error = security_sb_pivotroot(&old, &new);
b12cea91
AV
2737 if (error)
2738 goto out2;
1da177e4 2739
f7ad3c6b 2740 get_fs_root(current->fs, &root);
84d17192
AV
2741 old_mp = lock_mount(&old);
2742 error = PTR_ERR(old_mp);
2743 if (IS_ERR(old_mp))
b12cea91
AV
2744 goto out3;
2745
1da177e4 2746 error = -EINVAL;
419148da
AV
2747 new_mnt = real_mount(new.mnt);
2748 root_mnt = real_mount(root.mnt);
84d17192
AV
2749 old_mnt = real_mount(old.mnt);
2750 if (IS_MNT_SHARED(old_mnt) ||
fc7be130
AV
2751 IS_MNT_SHARED(new_mnt->mnt_parent) ||
2752 IS_MNT_SHARED(root_mnt->mnt_parent))
b12cea91 2753 goto out4;
143c8c91 2754 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
b12cea91 2755 goto out4;
5ff9d8a6
EB
2756 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
2757 goto out4;
1da177e4 2758 error = -ENOENT;
f3da392e 2759 if (d_unlinked(new.dentry))
b12cea91 2760 goto out4;
1da177e4 2761 error = -EBUSY;
84d17192 2762 if (new_mnt == root_mnt || old_mnt == root_mnt)
b12cea91 2763 goto out4; /* loop, on the same file system */
1da177e4 2764 error = -EINVAL;
8c3ee42e 2765 if (root.mnt->mnt_root != root.dentry)
b12cea91 2766 goto out4; /* not a mountpoint */
676da58d 2767 if (!mnt_has_parent(root_mnt))
b12cea91 2768 goto out4; /* not attached */
84d17192 2769 root_mp = root_mnt->mnt_mp;
2d8f3038 2770 if (new.mnt->mnt_root != new.dentry)
b12cea91 2771 goto out4; /* not a mountpoint */
676da58d 2772 if (!mnt_has_parent(new_mnt))
b12cea91 2773 goto out4; /* not attached */
4ac91378 2774 /* make sure we can reach put_old from new_root */
84d17192 2775 if (!is_path_reachable(old_mnt, old.dentry, &new))
b12cea91 2776 goto out4;
84d17192 2777 root_mp->m_count++; /* pin it so it won't go away */
719ea2fb 2778 lock_mount_hash();
419148da
AV
2779 detach_mnt(new_mnt, &parent_path);
2780 detach_mnt(root_mnt, &root_parent);
5ff9d8a6
EB
2781 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
2782 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
2783 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2784 }
4ac91378 2785 /* mount old root on put_old */
84d17192 2786 attach_mnt(root_mnt, old_mnt, old_mp);
4ac91378 2787 /* mount new_root on / */
84d17192 2788 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
6b3286ed 2789 touch_mnt_namespace(current->nsproxy->mnt_ns);
719ea2fb 2790 unlock_mount_hash();
2d8f3038 2791 chroot_fs_refs(&root, &new);
84d17192 2792 put_mountpoint(root_mp);
1da177e4 2793 error = 0;
b12cea91 2794out4:
84d17192 2795 unlock_mount(old_mp);
b12cea91
AV
2796 if (!error) {
2797 path_put(&root_parent);
2798 path_put(&parent_path);
2799 }
2800out3:
8c3ee42e 2801 path_put(&root);
b12cea91 2802out2:
2d8f3038 2803 path_put(&old);
1da177e4 2804out1:
2d8f3038 2805 path_put(&new);
1da177e4 2806out0:
1da177e4 2807 return error;
1da177e4
LT
2808}
2809
2810static void __init init_mount_tree(void)
2811{
2812 struct vfsmount *mnt;
6b3286ed 2813 struct mnt_namespace *ns;
ac748a09 2814 struct path root;
0c55cfc4 2815 struct file_system_type *type;
1da177e4 2816
0c55cfc4
EB
2817 type = get_fs_type("rootfs");
2818 if (!type)
2819 panic("Can't find rootfs type");
2820 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
2821 put_filesystem(type);
1da177e4
LT
2822 if (IS_ERR(mnt))
2823 panic("Can't create rootfs");
b3e19d92 2824
3b22edc5
TM
2825 ns = create_mnt_ns(mnt);
2826 if (IS_ERR(ns))
1da177e4 2827 panic("Can't allocate initial namespace");
6b3286ed
KK
2828
2829 init_task.nsproxy->mnt_ns = ns;
2830 get_mnt_ns(ns);
2831
be08d6d2
AV
2832 root.mnt = mnt;
2833 root.dentry = mnt->mnt_root;
ac748a09
JB
2834
2835 set_fs_pwd(current->fs, &root);
2836 set_fs_root(current->fs, &root);
1da177e4
LT
2837}
2838
74bf17cf 2839void __init mnt_init(void)
1da177e4 2840{
13f14b4d 2841 unsigned u;
15a67dd8 2842 int err;
1da177e4 2843
7d6fec45 2844 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
20c2df83 2845 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 2846
0818bf27 2847 mount_hashtable = alloc_large_system_hash("Mount-cache",
38129a13 2848 sizeof(struct hlist_head),
0818bf27
AV
2849 mhash_entries, 19,
2850 0,
2851 &m_hash_shift, &m_hash_mask, 0, 0);
2852 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
2853 sizeof(struct hlist_head),
2854 mphash_entries, 19,
2855 0,
2856 &mp_hash_shift, &mp_hash_mask, 0, 0);
1da177e4 2857
84d17192 2858 if (!mount_hashtable || !mountpoint_hashtable)
1da177e4
LT
2859 panic("Failed to allocate mount hash table\n");
2860
0818bf27 2861 for (u = 0; u <= m_hash_mask; u++)
38129a13 2862 INIT_HLIST_HEAD(&mount_hashtable[u]);
0818bf27
AV
2863 for (u = 0; u <= mp_hash_mask; u++)
2864 INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
1da177e4 2865
4b93dc9b
TH
2866 kernfs_init();
2867
15a67dd8
RD
2868 err = sysfs_init();
2869 if (err)
2870 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 2871 __func__, err);
00d26666
GKH
2872 fs_kobj = kobject_create_and_add("fs", NULL);
2873 if (!fs_kobj)
8e24eea7 2874 printk(KERN_WARNING "%s: kobj create error\n", __func__);
1da177e4
LT
2875 init_rootfs();
2876 init_mount_tree();
2877}
2878
616511d0 2879void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 2880{
d498b25a 2881 if (!atomic_dec_and_test(&ns->count))
616511d0 2882 return;
7b00ed6f 2883 drop_collected_mounts(&ns->root->mnt);
771b1371 2884 free_mnt_ns(ns);
1da177e4 2885}
9d412a43
AV
2886
2887struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2888{
423e0ab0
TC
2889 struct vfsmount *mnt;
2890 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2891 if (!IS_ERR(mnt)) {
2892 /*
2893 * it is a longterm mount, don't release mnt until
2894 * we unmount before file sys is unregistered
2895 */
f7a99c5b 2896 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
423e0ab0
TC
2897 }
2898 return mnt;
9d412a43
AV
2899}
2900EXPORT_SYMBOL_GPL(kern_mount_data);
423e0ab0
TC
2901
2902void kern_unmount(struct vfsmount *mnt)
2903{
2904 /* release long term mount so mount point can be released */
2905 if (!IS_ERR_OR_NULL(mnt)) {
f7a99c5b 2906 real_mount(mnt)->mnt_ns = NULL;
48a066e7 2907 synchronize_rcu(); /* yecchhh... */
423e0ab0
TC
2908 mntput(mnt);
2909 }
2910}
2911EXPORT_SYMBOL(kern_unmount);
02125a82
AV
2912
2913bool our_mnt(struct vfsmount *mnt)
2914{
143c8c91 2915 return check_mnt(real_mount(mnt));
02125a82 2916}
8823c079 2917
3151527e
EB
2918bool current_chrooted(void)
2919{
2920 /* Does the current process have a non-standard root */
2921 struct path ns_root;
2922 struct path fs_root;
2923 bool chrooted;
2924
2925 /* Find the namespace root */
2926 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
2927 ns_root.dentry = ns_root.mnt->mnt_root;
2928 path_get(&ns_root);
2929 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
2930 ;
2931
2932 get_fs_root(current->fs, &fs_root);
2933
2934 chrooted = !path_equal(&fs_root, &ns_root);
2935
2936 path_put(&fs_root);
2937 path_put(&ns_root);
2938
2939 return chrooted;
2940}
2941
e51db735 2942bool fs_fully_visible(struct file_system_type *type)
87a8ebd6
EB
2943{
2944 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
2945 struct mount *mnt;
e51db735 2946 bool visible = false;
87a8ebd6 2947
e51db735
EB
2948 if (unlikely(!ns))
2949 return false;
2950
44bb4385 2951 down_read(&namespace_sem);
87a8ebd6 2952 list_for_each_entry(mnt, &ns->list, mnt_list) {
e51db735
EB
2953 struct mount *child;
2954 if (mnt->mnt.mnt_sb->s_type != type)
2955 continue;
2956
2957 /* This mount is not fully visible if there are any child mounts
2958 * that cover anything except for empty directories.
2959 */
2960 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2961 struct inode *inode = child->mnt_mountpoint->d_inode;
2962 if (!S_ISDIR(inode->i_mode))
2963 goto next;
41301ae7 2964 if (inode->i_nlink > 2)
e51db735 2965 goto next;
87a8ebd6 2966 }
e51db735
EB
2967 visible = true;
2968 goto found;
2969 next: ;
87a8ebd6 2970 }
e51db735 2971found:
44bb4385 2972 up_read(&namespace_sem);
e51db735 2973 return visible;
87a8ebd6
EB
2974}
2975
8823c079
EB
2976static void *mntns_get(struct task_struct *task)
2977{
2978 struct mnt_namespace *ns = NULL;
2979 struct nsproxy *nsproxy;
2980
2981 rcu_read_lock();
2982 nsproxy = task_nsproxy(task);
2983 if (nsproxy) {
2984 ns = nsproxy->mnt_ns;
2985 get_mnt_ns(ns);
2986 }
2987 rcu_read_unlock();
2988
2989 return ns;
2990}
2991
2992static void mntns_put(void *ns)
2993{
2994 put_mnt_ns(ns);
2995}
2996
2997static int mntns_install(struct nsproxy *nsproxy, void *ns)
2998{
2999 struct fs_struct *fs = current->fs;
3000 struct mnt_namespace *mnt_ns = ns;
3001 struct path root;
3002
0c55cfc4 3003 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
c7b96acf
EB
3004 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3005 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
ae11e0f1 3006 return -EPERM;
8823c079
EB
3007
3008 if (fs->users != 1)
3009 return -EINVAL;
3010
3011 get_mnt_ns(mnt_ns);
3012 put_mnt_ns(nsproxy->mnt_ns);
3013 nsproxy->mnt_ns = mnt_ns;
3014
3015 /* Find the root */
3016 root.mnt = &mnt_ns->root->mnt;
3017 root.dentry = mnt_ns->root->mnt.mnt_root;
3018 path_get(&root);
3019 while(d_mountpoint(root.dentry) && follow_down_one(&root))
3020 ;
3021
3022 /* Update the pwd and root */
3023 set_fs_pwd(fs, &root);
3024 set_fs_root(fs, &root);
3025
3026 path_put(&root);
3027 return 0;
3028}
3029
98f842e6
EB
3030static unsigned int mntns_inum(void *ns)
3031{
3032 struct mnt_namespace *mnt_ns = ns;
3033 return mnt_ns->proc_inum;
3034}
3035
8823c079
EB
3036const struct proc_ns_operations mntns_operations = {
3037 .name = "mnt",
3038 .type = CLONE_NEWNS,
3039 .get = mntns_get,
3040 .put = mntns_put,
3041 .install = mntns_install,
98f842e6 3042 .inum = mntns_inum,
8823c079 3043};