]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/namespace.c
initialize namespace_sem statically
[mirror_ubuntu-artful-kernel.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4 11#include <linux/syscalls.h>
d10577a8 12#include <linux/export.h>
16f7e0fe 13#include <linux/capability.h>
6b3286ed 14#include <linux/mnt_namespace.h>
771b1371 15#include <linux/user_namespace.h>
1da177e4
LT
16#include <linux/namei.h>
17#include <linux/security.h>
73cd49ec 18#include <linux/idr.h>
d10577a8 19#include <linux/acct.h> /* acct_auto_close_mnt */
57f150a5 20#include <linux/init.h> /* init_rootfs */
d10577a8
AV
21#include <linux/fs_struct.h> /* get_fs_root et.al. */
22#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23#include <linux/uaccess.h>
0bb80f24 24#include <linux/proc_ns.h>
20b4fb48 25#include <linux/magic.h>
07b20889 26#include "pnode.h"
948730b0 27#include "internal.h"
1da177e4 28
13f14b4d
ED
29#define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
30#define HASH_SIZE (1UL << HASH_SHIFT)
31
5addc5dd 32static int event;
73cd49ec 33static DEFINE_IDA(mnt_id_ida);
719f5d7f 34static DEFINE_IDA(mnt_group_ida);
99b7db7b 35static DEFINE_SPINLOCK(mnt_id_lock);
f21f6220
AV
36static int mnt_id_start = 0;
37static int mnt_group_start = 1;
1da177e4 38
fa3536cc 39static struct list_head *mount_hashtable __read_mostly;
84d17192 40static struct list_head *mountpoint_hashtable __read_mostly;
e18b890b 41static struct kmem_cache *mnt_cache __read_mostly;
59aa0da8 42static DECLARE_RWSEM(namespace_sem);
1da177e4 43
f87fd4c2 44/* /sys/fs */
00d26666
GKH
45struct kobject *fs_kobj;
46EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 47
99b7db7b
NP
48/*
49 * vfsmount lock may be taken for read to prevent changes to the
50 * vfsmount hash, ie. during mountpoint lookups or walking back
51 * up the tree.
52 *
53 * It should be taken for write in all cases where the vfsmount
54 * tree or hash is modified or when a vfsmount structure is modified.
55 */
56DEFINE_BRLOCK(vfsmount_lock);
57
1da177e4
LT
58static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
59{
b58fed8b
RP
60 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
61 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
13f14b4d
ED
62 tmp = tmp + (tmp >> HASH_SHIFT);
63 return tmp & (HASH_SIZE - 1);
1da177e4
LT
64}
65
3d733633
DH
66#define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
67
99b7db7b
NP
68/*
69 * allocation is serialized by namespace_sem, but we need the spinlock to
70 * serialize with freeing.
71 */
b105e270 72static int mnt_alloc_id(struct mount *mnt)
73cd49ec
MS
73{
74 int res;
75
76retry:
77 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
99b7db7b 78 spin_lock(&mnt_id_lock);
15169fe7 79 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
f21f6220 80 if (!res)
15169fe7 81 mnt_id_start = mnt->mnt_id + 1;
99b7db7b 82 spin_unlock(&mnt_id_lock);
73cd49ec
MS
83 if (res == -EAGAIN)
84 goto retry;
85
86 return res;
87}
88
b105e270 89static void mnt_free_id(struct mount *mnt)
73cd49ec 90{
15169fe7 91 int id = mnt->mnt_id;
99b7db7b 92 spin_lock(&mnt_id_lock);
f21f6220
AV
93 ida_remove(&mnt_id_ida, id);
94 if (mnt_id_start > id)
95 mnt_id_start = id;
99b7db7b 96 spin_unlock(&mnt_id_lock);
73cd49ec
MS
97}
98
719f5d7f
MS
99/*
100 * Allocate a new peer group ID
101 *
102 * mnt_group_ida is protected by namespace_sem
103 */
4b8b21f4 104static int mnt_alloc_group_id(struct mount *mnt)
719f5d7f 105{
f21f6220
AV
106 int res;
107
719f5d7f
MS
108 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
109 return -ENOMEM;
110
f21f6220
AV
111 res = ida_get_new_above(&mnt_group_ida,
112 mnt_group_start,
15169fe7 113 &mnt->mnt_group_id);
f21f6220 114 if (!res)
15169fe7 115 mnt_group_start = mnt->mnt_group_id + 1;
f21f6220
AV
116
117 return res;
719f5d7f
MS
118}
119
120/*
121 * Release a peer group ID
122 */
4b8b21f4 123void mnt_release_group_id(struct mount *mnt)
719f5d7f 124{
15169fe7 125 int id = mnt->mnt_group_id;
f21f6220
AV
126 ida_remove(&mnt_group_ida, id);
127 if (mnt_group_start > id)
128 mnt_group_start = id;
15169fe7 129 mnt->mnt_group_id = 0;
719f5d7f
MS
130}
131
b3e19d92
NP
132/*
133 * vfsmount lock must be held for read
134 */
83adc753 135static inline void mnt_add_count(struct mount *mnt, int n)
b3e19d92
NP
136{
137#ifdef CONFIG_SMP
68e8a9fe 138 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
b3e19d92
NP
139#else
140 preempt_disable();
68e8a9fe 141 mnt->mnt_count += n;
b3e19d92
NP
142 preempt_enable();
143#endif
144}
145
b3e19d92
NP
146/*
147 * vfsmount lock must be held for write
148 */
83adc753 149unsigned int mnt_get_count(struct mount *mnt)
b3e19d92
NP
150{
151#ifdef CONFIG_SMP
f03c6599 152 unsigned int count = 0;
b3e19d92
NP
153 int cpu;
154
155 for_each_possible_cpu(cpu) {
68e8a9fe 156 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
b3e19d92
NP
157 }
158
159 return count;
160#else
68e8a9fe 161 return mnt->mnt_count;
b3e19d92
NP
162#endif
163}
164
b105e270 165static struct mount *alloc_vfsmnt(const char *name)
1da177e4 166{
c63181e6
AV
167 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
168 if (mnt) {
73cd49ec
MS
169 int err;
170
c63181e6 171 err = mnt_alloc_id(mnt);
88b38782
LZ
172 if (err)
173 goto out_free_cache;
174
175 if (name) {
c63181e6
AV
176 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
177 if (!mnt->mnt_devname)
88b38782 178 goto out_free_id;
73cd49ec
MS
179 }
180
b3e19d92 181#ifdef CONFIG_SMP
c63181e6
AV
182 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
183 if (!mnt->mnt_pcp)
b3e19d92
NP
184 goto out_free_devname;
185
c63181e6 186 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
b3e19d92 187#else
c63181e6
AV
188 mnt->mnt_count = 1;
189 mnt->mnt_writers = 0;
b3e19d92
NP
190#endif
191
c63181e6
AV
192 INIT_LIST_HEAD(&mnt->mnt_hash);
193 INIT_LIST_HEAD(&mnt->mnt_child);
194 INIT_LIST_HEAD(&mnt->mnt_mounts);
195 INIT_LIST_HEAD(&mnt->mnt_list);
196 INIT_LIST_HEAD(&mnt->mnt_expire);
197 INIT_LIST_HEAD(&mnt->mnt_share);
198 INIT_LIST_HEAD(&mnt->mnt_slave_list);
199 INIT_LIST_HEAD(&mnt->mnt_slave);
2504c5d6
AG
200#ifdef CONFIG_FSNOTIFY
201 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
d3ef3d73 202#endif
1da177e4 203 }
c63181e6 204 return mnt;
88b38782 205
d3ef3d73 206#ifdef CONFIG_SMP
207out_free_devname:
c63181e6 208 kfree(mnt->mnt_devname);
d3ef3d73 209#endif
88b38782 210out_free_id:
c63181e6 211 mnt_free_id(mnt);
88b38782 212out_free_cache:
c63181e6 213 kmem_cache_free(mnt_cache, mnt);
88b38782 214 return NULL;
1da177e4
LT
215}
216
3d733633
DH
217/*
218 * Most r/o checks on a fs are for operations that take
219 * discrete amounts of time, like a write() or unlink().
220 * We must keep track of when those operations start
221 * (for permission checks) and when they end, so that
222 * we can determine when writes are able to occur to
223 * a filesystem.
224 */
225/*
226 * __mnt_is_readonly: check whether a mount is read-only
227 * @mnt: the mount to check for its write status
228 *
229 * This shouldn't be used directly ouside of the VFS.
230 * It does not guarantee that the filesystem will stay
231 * r/w, just that it is right *now*. This can not and
232 * should not be used in place of IS_RDONLY(inode).
233 * mnt_want/drop_write() will _keep_ the filesystem
234 * r/w.
235 */
236int __mnt_is_readonly(struct vfsmount *mnt)
237{
2e4b7fcd
DH
238 if (mnt->mnt_flags & MNT_READONLY)
239 return 1;
240 if (mnt->mnt_sb->s_flags & MS_RDONLY)
241 return 1;
242 return 0;
3d733633
DH
243}
244EXPORT_SYMBOL_GPL(__mnt_is_readonly);
245
83adc753 246static inline void mnt_inc_writers(struct mount *mnt)
d3ef3d73 247{
248#ifdef CONFIG_SMP
68e8a9fe 249 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
d3ef3d73 250#else
68e8a9fe 251 mnt->mnt_writers++;
d3ef3d73 252#endif
253}
3d733633 254
83adc753 255static inline void mnt_dec_writers(struct mount *mnt)
3d733633 256{
d3ef3d73 257#ifdef CONFIG_SMP
68e8a9fe 258 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
d3ef3d73 259#else
68e8a9fe 260 mnt->mnt_writers--;
d3ef3d73 261#endif
3d733633 262}
3d733633 263
83adc753 264static unsigned int mnt_get_writers(struct mount *mnt)
3d733633 265{
d3ef3d73 266#ifdef CONFIG_SMP
267 unsigned int count = 0;
3d733633 268 int cpu;
3d733633
DH
269
270 for_each_possible_cpu(cpu) {
68e8a9fe 271 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
3d733633 272 }
3d733633 273
d3ef3d73 274 return count;
275#else
276 return mnt->mnt_writers;
277#endif
3d733633
DH
278}
279
4ed5e82f
MS
280static int mnt_is_readonly(struct vfsmount *mnt)
281{
282 if (mnt->mnt_sb->s_readonly_remount)
283 return 1;
284 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
285 smp_rmb();
286 return __mnt_is_readonly(mnt);
287}
288
8366025e 289/*
eb04c282
JK
290 * Most r/o & frozen checks on a fs are for operations that take discrete
291 * amounts of time, like a write() or unlink(). We must keep track of when
292 * those operations start (for permission checks) and when they end, so that we
293 * can determine when writes are able to occur to a filesystem.
8366025e
DH
294 */
295/**
eb04c282 296 * __mnt_want_write - get write access to a mount without freeze protection
83adc753 297 * @m: the mount on which to take a write
8366025e 298 *
eb04c282
JK
299 * This tells the low-level filesystem that a write is about to be performed to
300 * it, and makes sure that writes are allowed (mnt it read-write) before
301 * returning success. This operation does not protect against filesystem being
302 * frozen. When the write operation is finished, __mnt_drop_write() must be
303 * called. This is effectively a refcount.
8366025e 304 */
eb04c282 305int __mnt_want_write(struct vfsmount *m)
8366025e 306{
83adc753 307 struct mount *mnt = real_mount(m);
3d733633 308 int ret = 0;
3d733633 309
d3ef3d73 310 preempt_disable();
c6653a83 311 mnt_inc_writers(mnt);
d3ef3d73 312 /*
c6653a83 313 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73 314 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
315 * incremented count after it has set MNT_WRITE_HOLD.
316 */
317 smp_mb();
1e75529e 318 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
d3ef3d73 319 cpu_relax();
320 /*
321 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
322 * be set to match its requirements. So we must not load that until
323 * MNT_WRITE_HOLD is cleared.
324 */
325 smp_rmb();
4ed5e82f 326 if (mnt_is_readonly(m)) {
c6653a83 327 mnt_dec_writers(mnt);
3d733633 328 ret = -EROFS;
3d733633 329 }
d3ef3d73 330 preempt_enable();
eb04c282
JK
331
332 return ret;
333}
334
335/**
336 * mnt_want_write - get write access to a mount
337 * @m: the mount on which to take a write
338 *
339 * This tells the low-level filesystem that a write is about to be performed to
340 * it, and makes sure that writes are allowed (mount is read-write, filesystem
341 * is not frozen) before returning success. When the write operation is
342 * finished, mnt_drop_write() must be called. This is effectively a refcount.
343 */
344int mnt_want_write(struct vfsmount *m)
345{
346 int ret;
347
348 sb_start_write(m->mnt_sb);
349 ret = __mnt_want_write(m);
350 if (ret)
351 sb_end_write(m->mnt_sb);
3d733633 352 return ret;
8366025e
DH
353}
354EXPORT_SYMBOL_GPL(mnt_want_write);
355
96029c4e 356/**
357 * mnt_clone_write - get write access to a mount
358 * @mnt: the mount on which to take a write
359 *
360 * This is effectively like mnt_want_write, except
361 * it must only be used to take an extra write reference
362 * on a mountpoint that we already know has a write reference
363 * on it. This allows some optimisation.
364 *
365 * After finished, mnt_drop_write must be called as usual to
366 * drop the reference.
367 */
368int mnt_clone_write(struct vfsmount *mnt)
369{
370 /* superblock may be r/o */
371 if (__mnt_is_readonly(mnt))
372 return -EROFS;
373 preempt_disable();
83adc753 374 mnt_inc_writers(real_mount(mnt));
96029c4e 375 preempt_enable();
376 return 0;
377}
378EXPORT_SYMBOL_GPL(mnt_clone_write);
379
380/**
eb04c282 381 * __mnt_want_write_file - get write access to a file's mount
96029c4e 382 * @file: the file who's mount on which to take a write
383 *
eb04c282 384 * This is like __mnt_want_write, but it takes a file and can
96029c4e 385 * do some optimisations if the file is open for write already
386 */
eb04c282 387int __mnt_want_write_file(struct file *file)
96029c4e 388{
496ad9aa 389 struct inode *inode = file_inode(file);
eb04c282 390
2d8dd38a 391 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
eb04c282 392 return __mnt_want_write(file->f_path.mnt);
96029c4e 393 else
394 return mnt_clone_write(file->f_path.mnt);
395}
eb04c282
JK
396
397/**
398 * mnt_want_write_file - get write access to a file's mount
399 * @file: the file who's mount on which to take a write
400 *
401 * This is like mnt_want_write, but it takes a file and can
402 * do some optimisations if the file is open for write already
403 */
404int mnt_want_write_file(struct file *file)
405{
406 int ret;
407
408 sb_start_write(file->f_path.mnt->mnt_sb);
409 ret = __mnt_want_write_file(file);
410 if (ret)
411 sb_end_write(file->f_path.mnt->mnt_sb);
412 return ret;
413}
96029c4e 414EXPORT_SYMBOL_GPL(mnt_want_write_file);
415
8366025e 416/**
eb04c282 417 * __mnt_drop_write - give up write access to a mount
8366025e
DH
418 * @mnt: the mount on which to give up write access
419 *
420 * Tells the low-level filesystem that we are done
421 * performing writes to it. Must be matched with
eb04c282 422 * __mnt_want_write() call above.
8366025e 423 */
eb04c282 424void __mnt_drop_write(struct vfsmount *mnt)
8366025e 425{
d3ef3d73 426 preempt_disable();
83adc753 427 mnt_dec_writers(real_mount(mnt));
d3ef3d73 428 preempt_enable();
8366025e 429}
eb04c282
JK
430
431/**
432 * mnt_drop_write - give up write access to a mount
433 * @mnt: the mount on which to give up write access
434 *
435 * Tells the low-level filesystem that we are done performing writes to it and
436 * also allows filesystem to be frozen again. Must be matched with
437 * mnt_want_write() call above.
438 */
439void mnt_drop_write(struct vfsmount *mnt)
440{
441 __mnt_drop_write(mnt);
442 sb_end_write(mnt->mnt_sb);
443}
8366025e
DH
444EXPORT_SYMBOL_GPL(mnt_drop_write);
445
eb04c282
JK
446void __mnt_drop_write_file(struct file *file)
447{
448 __mnt_drop_write(file->f_path.mnt);
449}
450
2a79f17e
AV
451void mnt_drop_write_file(struct file *file)
452{
453 mnt_drop_write(file->f_path.mnt);
454}
455EXPORT_SYMBOL(mnt_drop_write_file);
456
83adc753 457static int mnt_make_readonly(struct mount *mnt)
8366025e 458{
3d733633
DH
459 int ret = 0;
460
962830df 461 br_write_lock(&vfsmount_lock);
83adc753 462 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
3d733633 463 /*
d3ef3d73 464 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
465 * should be visible before we do.
3d733633 466 */
d3ef3d73 467 smp_mb();
468
3d733633 469 /*
d3ef3d73 470 * With writers on hold, if this value is zero, then there are
471 * definitely no active writers (although held writers may subsequently
472 * increment the count, they'll have to wait, and decrement it after
473 * seeing MNT_READONLY).
474 *
475 * It is OK to have counter incremented on one CPU and decremented on
476 * another: the sum will add up correctly. The danger would be when we
477 * sum up each counter, if we read a counter before it is incremented,
478 * but then read another CPU's count which it has been subsequently
479 * decremented from -- we would see more decrements than we should.
480 * MNT_WRITE_HOLD protects against this scenario, because
481 * mnt_want_write first increments count, then smp_mb, then spins on
482 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
483 * we're counting up here.
3d733633 484 */
c6653a83 485 if (mnt_get_writers(mnt) > 0)
d3ef3d73 486 ret = -EBUSY;
487 else
83adc753 488 mnt->mnt.mnt_flags |= MNT_READONLY;
d3ef3d73 489 /*
490 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
491 * that become unheld will see MNT_READONLY.
492 */
493 smp_wmb();
83adc753 494 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
962830df 495 br_write_unlock(&vfsmount_lock);
3d733633 496 return ret;
8366025e 497}
8366025e 498
83adc753 499static void __mnt_unmake_readonly(struct mount *mnt)
2e4b7fcd 500{
962830df 501 br_write_lock(&vfsmount_lock);
83adc753 502 mnt->mnt.mnt_flags &= ~MNT_READONLY;
962830df 503 br_write_unlock(&vfsmount_lock);
2e4b7fcd
DH
504}
505
4ed5e82f
MS
506int sb_prepare_remount_readonly(struct super_block *sb)
507{
508 struct mount *mnt;
509 int err = 0;
510
8e8b8796
MS
511 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
512 if (atomic_long_read(&sb->s_remove_count))
513 return -EBUSY;
514
962830df 515 br_write_lock(&vfsmount_lock);
4ed5e82f
MS
516 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
517 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
518 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
519 smp_mb();
520 if (mnt_get_writers(mnt) > 0) {
521 err = -EBUSY;
522 break;
523 }
524 }
525 }
8e8b8796
MS
526 if (!err && atomic_long_read(&sb->s_remove_count))
527 err = -EBUSY;
528
4ed5e82f
MS
529 if (!err) {
530 sb->s_readonly_remount = 1;
531 smp_wmb();
532 }
533 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
534 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
535 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
536 }
962830df 537 br_write_unlock(&vfsmount_lock);
4ed5e82f
MS
538
539 return err;
540}
541
b105e270 542static void free_vfsmnt(struct mount *mnt)
1da177e4 543{
52ba1621 544 kfree(mnt->mnt_devname);
73cd49ec 545 mnt_free_id(mnt);
d3ef3d73 546#ifdef CONFIG_SMP
68e8a9fe 547 free_percpu(mnt->mnt_pcp);
d3ef3d73 548#endif
b105e270 549 kmem_cache_free(mnt_cache, mnt);
1da177e4
LT
550}
551
552/*
a05964f3
RP
553 * find the first or last mount at @dentry on vfsmount @mnt depending on
554 * @dir. If @dir is set return the first mount else return the last mount.
99b7db7b 555 * vfsmount_lock must be held for read or write.
1da177e4 556 */
c7105365 557struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
a05964f3 558 int dir)
1da177e4 559{
b58fed8b
RP
560 struct list_head *head = mount_hashtable + hash(mnt, dentry);
561 struct list_head *tmp = head;
c7105365 562 struct mount *p, *found = NULL;
1da177e4 563
1da177e4 564 for (;;) {
a05964f3 565 tmp = dir ? tmp->next : tmp->prev;
1da177e4
LT
566 p = NULL;
567 if (tmp == head)
568 break;
1b8e5564 569 p = list_entry(tmp, struct mount, mnt_hash);
a73324da 570 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) {
a05964f3 571 found = p;
1da177e4
LT
572 break;
573 }
574 }
1da177e4
LT
575 return found;
576}
577
a05964f3 578/*
f015f126
DH
579 * lookup_mnt - Return the first child mount mounted at path
580 *
581 * "First" means first mounted chronologically. If you create the
582 * following mounts:
583 *
584 * mount /dev/sda1 /mnt
585 * mount /dev/sda2 /mnt
586 * mount /dev/sda3 /mnt
587 *
588 * Then lookup_mnt() on the base /mnt dentry in the root mount will
589 * return successively the root dentry and vfsmount of /dev/sda1, then
590 * /dev/sda2, then /dev/sda3, then NULL.
591 *
592 * lookup_mnt takes a reference to the found vfsmount.
a05964f3 593 */
1c755af4 594struct vfsmount *lookup_mnt(struct path *path)
a05964f3 595{
c7105365 596 struct mount *child_mnt;
99b7db7b 597
962830df 598 br_read_lock(&vfsmount_lock);
c7105365
AV
599 child_mnt = __lookup_mnt(path->mnt, path->dentry, 1);
600 if (child_mnt) {
601 mnt_add_count(child_mnt, 1);
962830df 602 br_read_unlock(&vfsmount_lock);
c7105365
AV
603 return &child_mnt->mnt;
604 } else {
962830df 605 br_read_unlock(&vfsmount_lock);
c7105365
AV
606 return NULL;
607 }
a05964f3
RP
608}
609
84d17192
AV
610static struct mountpoint *new_mountpoint(struct dentry *dentry)
611{
612 struct list_head *chain = mountpoint_hashtable + hash(NULL, dentry);
613 struct mountpoint *mp;
eed81007 614 int ret;
84d17192
AV
615
616 list_for_each_entry(mp, chain, m_hash) {
617 if (mp->m_dentry == dentry) {
618 /* might be worth a WARN_ON() */
619 if (d_unlinked(dentry))
620 return ERR_PTR(-ENOENT);
621 mp->m_count++;
622 return mp;
623 }
624 }
625
626 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
627 if (!mp)
628 return ERR_PTR(-ENOMEM);
629
eed81007
MS
630 ret = d_set_mounted(dentry);
631 if (ret) {
84d17192 632 kfree(mp);
eed81007 633 return ERR_PTR(ret);
84d17192 634 }
eed81007 635
84d17192
AV
636 mp->m_dentry = dentry;
637 mp->m_count = 1;
638 list_add(&mp->m_hash, chain);
639 return mp;
640}
641
642static void put_mountpoint(struct mountpoint *mp)
643{
644 if (!--mp->m_count) {
645 struct dentry *dentry = mp->m_dentry;
646 spin_lock(&dentry->d_lock);
647 dentry->d_flags &= ~DCACHE_MOUNTED;
648 spin_unlock(&dentry->d_lock);
649 list_del(&mp->m_hash);
650 kfree(mp);
651 }
652}
653
143c8c91 654static inline int check_mnt(struct mount *mnt)
1da177e4 655{
6b3286ed 656 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
657}
658
99b7db7b
NP
659/*
660 * vfsmount lock must be held for write
661 */
6b3286ed 662static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
663{
664 if (ns) {
665 ns->event = ++event;
666 wake_up_interruptible(&ns->poll);
667 }
668}
669
99b7db7b
NP
670/*
671 * vfsmount lock must be held for write
672 */
6b3286ed 673static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
674{
675 if (ns && ns->event != event) {
676 ns->event = event;
677 wake_up_interruptible(&ns->poll);
678 }
679}
680
99b7db7b
NP
681/*
682 * vfsmount lock must be held for write
683 */
419148da
AV
684static void detach_mnt(struct mount *mnt, struct path *old_path)
685{
a73324da 686 old_path->dentry = mnt->mnt_mountpoint;
0714a533
AV
687 old_path->mnt = &mnt->mnt_parent->mnt;
688 mnt->mnt_parent = mnt;
a73324da 689 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
6b41d536 690 list_del_init(&mnt->mnt_child);
1b8e5564 691 list_del_init(&mnt->mnt_hash);
84d17192
AV
692 put_mountpoint(mnt->mnt_mp);
693 mnt->mnt_mp = NULL;
1da177e4
LT
694}
695
99b7db7b
NP
696/*
697 * vfsmount lock must be held for write
698 */
84d17192
AV
699void mnt_set_mountpoint(struct mount *mnt,
700 struct mountpoint *mp,
44d964d6 701 struct mount *child_mnt)
b90fa9ae 702{
84d17192 703 mp->m_count++;
3a2393d7 704 mnt_add_count(mnt, 1); /* essentially, that's mntget */
84d17192 705 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
3a2393d7 706 child_mnt->mnt_parent = mnt;
84d17192 707 child_mnt->mnt_mp = mp;
b90fa9ae
RP
708}
709
99b7db7b
NP
710/*
711 * vfsmount lock must be held for write
712 */
84d17192
AV
713static void attach_mnt(struct mount *mnt,
714 struct mount *parent,
715 struct mountpoint *mp)
1da177e4 716{
84d17192 717 mnt_set_mountpoint(parent, mp, mnt);
1b8e5564 718 list_add_tail(&mnt->mnt_hash, mount_hashtable +
84d17192
AV
719 hash(&parent->mnt, mp->m_dentry));
720 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
b90fa9ae
RP
721}
722
723/*
99b7db7b 724 * vfsmount lock must be held for write
b90fa9ae 725 */
4b2619a5 726static void commit_tree(struct mount *mnt)
b90fa9ae 727{
0714a533 728 struct mount *parent = mnt->mnt_parent;
83adc753 729 struct mount *m;
b90fa9ae 730 LIST_HEAD(head);
143c8c91 731 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae 732
0714a533 733 BUG_ON(parent == mnt);
b90fa9ae 734
1a4eeaf2 735 list_add_tail(&head, &mnt->mnt_list);
f7a99c5b 736 list_for_each_entry(m, &head, mnt_list)
143c8c91 737 m->mnt_ns = n;
f03c6599 738
b90fa9ae
RP
739 list_splice(&head, n->list.prev);
740
1b8e5564 741 list_add_tail(&mnt->mnt_hash, mount_hashtable +
a73324da 742 hash(&parent->mnt, mnt->mnt_mountpoint));
6b41d536 743 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
6b3286ed 744 touch_mnt_namespace(n);
1da177e4
LT
745}
746
909b0a88 747static struct mount *next_mnt(struct mount *p, struct mount *root)
1da177e4 748{
6b41d536
AV
749 struct list_head *next = p->mnt_mounts.next;
750 if (next == &p->mnt_mounts) {
1da177e4 751 while (1) {
909b0a88 752 if (p == root)
1da177e4 753 return NULL;
6b41d536
AV
754 next = p->mnt_child.next;
755 if (next != &p->mnt_parent->mnt_mounts)
1da177e4 756 break;
0714a533 757 p = p->mnt_parent;
1da177e4
LT
758 }
759 }
6b41d536 760 return list_entry(next, struct mount, mnt_child);
1da177e4
LT
761}
762
315fc83e 763static struct mount *skip_mnt_tree(struct mount *p)
9676f0c6 764{
6b41d536
AV
765 struct list_head *prev = p->mnt_mounts.prev;
766 while (prev != &p->mnt_mounts) {
767 p = list_entry(prev, struct mount, mnt_child);
768 prev = p->mnt_mounts.prev;
9676f0c6
RP
769 }
770 return p;
771}
772
9d412a43
AV
773struct vfsmount *
774vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
775{
b105e270 776 struct mount *mnt;
9d412a43
AV
777 struct dentry *root;
778
779 if (!type)
780 return ERR_PTR(-ENODEV);
781
782 mnt = alloc_vfsmnt(name);
783 if (!mnt)
784 return ERR_PTR(-ENOMEM);
785
786 if (flags & MS_KERNMOUNT)
b105e270 787 mnt->mnt.mnt_flags = MNT_INTERNAL;
9d412a43
AV
788
789 root = mount_fs(type, flags, name, data);
790 if (IS_ERR(root)) {
791 free_vfsmnt(mnt);
792 return ERR_CAST(root);
793 }
794
b105e270
AV
795 mnt->mnt.mnt_root = root;
796 mnt->mnt.mnt_sb = root->d_sb;
a73324da 797 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 798 mnt->mnt_parent = mnt;
962830df 799 br_write_lock(&vfsmount_lock);
39f7c4db 800 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
962830df 801 br_write_unlock(&vfsmount_lock);
b105e270 802 return &mnt->mnt;
9d412a43
AV
803}
804EXPORT_SYMBOL_GPL(vfs_kern_mount);
805
87129cc0 806static struct mount *clone_mnt(struct mount *old, struct dentry *root,
36341f64 807 int flag)
1da177e4 808{
87129cc0 809 struct super_block *sb = old->mnt.mnt_sb;
be34d1a3
DH
810 struct mount *mnt;
811 int err;
1da177e4 812
be34d1a3
DH
813 mnt = alloc_vfsmnt(old->mnt_devname);
814 if (!mnt)
815 return ERR_PTR(-ENOMEM);
719f5d7f 816
7a472ef4 817 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
be34d1a3
DH
818 mnt->mnt_group_id = 0; /* not a peer of original */
819 else
820 mnt->mnt_group_id = old->mnt_group_id;
b90fa9ae 821
be34d1a3
DH
822 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
823 err = mnt_alloc_group_id(mnt);
824 if (err)
825 goto out_free;
1da177e4 826 }
be34d1a3
DH
827
828 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD;
132c94e3
EB
829 /* Don't allow unprivileged users to change mount flags */
830 if ((flag & CL_UNPRIVILEGED) && (mnt->mnt.mnt_flags & MNT_READONLY))
831 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
832
5ff9d8a6
EB
833 /* Don't allow unprivileged users to reveal what is under a mount */
834 if ((flag & CL_UNPRIVILEGED) && list_empty(&old->mnt_expire))
835 mnt->mnt.mnt_flags |= MNT_LOCKED;
836
be34d1a3
DH
837 atomic_inc(&sb->s_active);
838 mnt->mnt.mnt_sb = sb;
839 mnt->mnt.mnt_root = dget(root);
840 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
841 mnt->mnt_parent = mnt;
842 br_write_lock(&vfsmount_lock);
843 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
844 br_write_unlock(&vfsmount_lock);
845
7a472ef4
EB
846 if ((flag & CL_SLAVE) ||
847 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
be34d1a3
DH
848 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
849 mnt->mnt_master = old;
850 CLEAR_MNT_SHARED(mnt);
851 } else if (!(flag & CL_PRIVATE)) {
852 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
853 list_add(&mnt->mnt_share, &old->mnt_share);
854 if (IS_MNT_SLAVE(old))
855 list_add(&mnt->mnt_slave, &old->mnt_slave);
856 mnt->mnt_master = old->mnt_master;
857 }
858 if (flag & CL_MAKE_SHARED)
859 set_mnt_shared(mnt);
860
861 /* stick the duplicate mount on the same expiry list
862 * as the original if that was on one */
863 if (flag & CL_EXPIRE) {
864 if (!list_empty(&old->mnt_expire))
865 list_add(&mnt->mnt_expire, &old->mnt_expire);
866 }
867
cb338d06 868 return mnt;
719f5d7f
MS
869
870 out_free:
871 free_vfsmnt(mnt);
be34d1a3 872 return ERR_PTR(err);
1da177e4
LT
873}
874
83adc753 875static inline void mntfree(struct mount *mnt)
1da177e4 876{
83adc753
AV
877 struct vfsmount *m = &mnt->mnt;
878 struct super_block *sb = m->mnt_sb;
b3e19d92 879
3d733633
DH
880 /*
881 * This probably indicates that somebody messed
882 * up a mnt_want/drop_write() pair. If this
883 * happens, the filesystem was probably unable
884 * to make r/w->r/o transitions.
885 */
d3ef3d73 886 /*
b3e19d92
NP
887 * The locking used to deal with mnt_count decrement provides barriers,
888 * so mnt_get_writers() below is safe.
d3ef3d73 889 */
c6653a83 890 WARN_ON(mnt_get_writers(mnt));
83adc753
AV
891 fsnotify_vfsmount_delete(m);
892 dput(m->mnt_root);
893 free_vfsmnt(mnt);
1da177e4
LT
894 deactivate_super(sb);
895}
896
900148dc 897static void mntput_no_expire(struct mount *mnt)
b3e19d92 898{
b3e19d92 899put_again:
f03c6599 900#ifdef CONFIG_SMP
962830df 901 br_read_lock(&vfsmount_lock);
f7a99c5b
AV
902 if (likely(mnt->mnt_ns)) {
903 /* shouldn't be the last one */
aa9c0e07 904 mnt_add_count(mnt, -1);
962830df 905 br_read_unlock(&vfsmount_lock);
f03c6599 906 return;
b3e19d92 907 }
962830df 908 br_read_unlock(&vfsmount_lock);
b3e19d92 909
962830df 910 br_write_lock(&vfsmount_lock);
aa9c0e07 911 mnt_add_count(mnt, -1);
b3e19d92 912 if (mnt_get_count(mnt)) {
962830df 913 br_write_unlock(&vfsmount_lock);
99b7db7b
NP
914 return;
915 }
b3e19d92 916#else
aa9c0e07 917 mnt_add_count(mnt, -1);
b3e19d92 918 if (likely(mnt_get_count(mnt)))
99b7db7b 919 return;
962830df 920 br_write_lock(&vfsmount_lock);
f03c6599 921#endif
863d684f
AV
922 if (unlikely(mnt->mnt_pinned)) {
923 mnt_add_count(mnt, mnt->mnt_pinned + 1);
924 mnt->mnt_pinned = 0;
962830df 925 br_write_unlock(&vfsmount_lock);
900148dc 926 acct_auto_close_mnt(&mnt->mnt);
b3e19d92 927 goto put_again;
7b7b1ace 928 }
962830df 929
39f7c4db 930 list_del(&mnt->mnt_instance);
962830df 931 br_write_unlock(&vfsmount_lock);
b3e19d92
NP
932 mntfree(mnt);
933}
b3e19d92
NP
934
935void mntput(struct vfsmount *mnt)
936{
937 if (mnt) {
863d684f 938 struct mount *m = real_mount(mnt);
b3e19d92 939 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
863d684f
AV
940 if (unlikely(m->mnt_expiry_mark))
941 m->mnt_expiry_mark = 0;
942 mntput_no_expire(m);
b3e19d92
NP
943 }
944}
945EXPORT_SYMBOL(mntput);
946
947struct vfsmount *mntget(struct vfsmount *mnt)
948{
949 if (mnt)
83adc753 950 mnt_add_count(real_mount(mnt), 1);
b3e19d92
NP
951 return mnt;
952}
953EXPORT_SYMBOL(mntget);
954
7b7b1ace
AV
955void mnt_pin(struct vfsmount *mnt)
956{
962830df 957 br_write_lock(&vfsmount_lock);
863d684f 958 real_mount(mnt)->mnt_pinned++;
962830df 959 br_write_unlock(&vfsmount_lock);
7b7b1ace 960}
7b7b1ace
AV
961EXPORT_SYMBOL(mnt_pin);
962
863d684f 963void mnt_unpin(struct vfsmount *m)
7b7b1ace 964{
863d684f 965 struct mount *mnt = real_mount(m);
962830df 966 br_write_lock(&vfsmount_lock);
7b7b1ace 967 if (mnt->mnt_pinned) {
863d684f 968 mnt_add_count(mnt, 1);
7b7b1ace
AV
969 mnt->mnt_pinned--;
970 }
962830df 971 br_write_unlock(&vfsmount_lock);
7b7b1ace 972}
7b7b1ace 973EXPORT_SYMBOL(mnt_unpin);
1da177e4 974
b3b304a2
MS
975static inline void mangle(struct seq_file *m, const char *s)
976{
977 seq_escape(m, s, " \t\n\\");
978}
979
980/*
981 * Simple .show_options callback for filesystems which don't want to
982 * implement more complex mount option showing.
983 *
984 * See also save_mount_options().
985 */
34c80b1d 986int generic_show_options(struct seq_file *m, struct dentry *root)
b3b304a2 987{
2a32cebd
AV
988 const char *options;
989
990 rcu_read_lock();
34c80b1d 991 options = rcu_dereference(root->d_sb->s_options);
b3b304a2
MS
992
993 if (options != NULL && options[0]) {
994 seq_putc(m, ',');
995 mangle(m, options);
996 }
2a32cebd 997 rcu_read_unlock();
b3b304a2
MS
998
999 return 0;
1000}
1001EXPORT_SYMBOL(generic_show_options);
1002
1003/*
1004 * If filesystem uses generic_show_options(), this function should be
1005 * called from the fill_super() callback.
1006 *
1007 * The .remount_fs callback usually needs to be handled in a special
1008 * way, to make sure, that previous options are not overwritten if the
1009 * remount fails.
1010 *
1011 * Also note, that if the filesystem's .remount_fs function doesn't
1012 * reset all options to their default value, but changes only newly
1013 * given options, then the displayed options will not reflect reality
1014 * any more.
1015 */
1016void save_mount_options(struct super_block *sb, char *options)
1017{
2a32cebd
AV
1018 BUG_ON(sb->s_options);
1019 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
b3b304a2
MS
1020}
1021EXPORT_SYMBOL(save_mount_options);
1022
2a32cebd
AV
1023void replace_mount_options(struct super_block *sb, char *options)
1024{
1025 char *old = sb->s_options;
1026 rcu_assign_pointer(sb->s_options, options);
1027 if (old) {
1028 synchronize_rcu();
1029 kfree(old);
1030 }
1031}
1032EXPORT_SYMBOL(replace_mount_options);
1033
a1a2c409 1034#ifdef CONFIG_PROC_FS
0226f492 1035/* iterator; we want it to have access to namespace_sem, thus here... */
1da177e4
LT
1036static void *m_start(struct seq_file *m, loff_t *pos)
1037{
6ce6e24e 1038 struct proc_mounts *p = proc_mounts(m);
1da177e4 1039
390c6843 1040 down_read(&namespace_sem);
a1a2c409 1041 return seq_list_start(&p->ns->list, *pos);
1da177e4
LT
1042}
1043
1044static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1045{
6ce6e24e 1046 struct proc_mounts *p = proc_mounts(m);
b0765fb8 1047
a1a2c409 1048 return seq_list_next(v, &p->ns->list, pos);
1da177e4
LT
1049}
1050
1051static void m_stop(struct seq_file *m, void *v)
1052{
390c6843 1053 up_read(&namespace_sem);
1da177e4
LT
1054}
1055
0226f492 1056static int m_show(struct seq_file *m, void *v)
2d4d4864 1057{
6ce6e24e 1058 struct proc_mounts *p = proc_mounts(m);
1a4eeaf2 1059 struct mount *r = list_entry(v, struct mount, mnt_list);
0226f492 1060 return p->show(m, &r->mnt);
1da177e4
LT
1061}
1062
a1a2c409 1063const struct seq_operations mounts_op = {
1da177e4
LT
1064 .start = m_start,
1065 .next = m_next,
1066 .stop = m_stop,
0226f492 1067 .show = m_show,
b4629fe2 1068};
a1a2c409 1069#endif /* CONFIG_PROC_FS */
b4629fe2 1070
1da177e4
LT
1071/**
1072 * may_umount_tree - check if a mount tree is busy
1073 * @mnt: root of mount tree
1074 *
1075 * This is called to check if a tree of mounts has any
1076 * open files, pwds, chroots or sub mounts that are
1077 * busy.
1078 */
909b0a88 1079int may_umount_tree(struct vfsmount *m)
1da177e4 1080{
909b0a88 1081 struct mount *mnt = real_mount(m);
36341f64
RP
1082 int actual_refs = 0;
1083 int minimum_refs = 0;
315fc83e 1084 struct mount *p;
909b0a88 1085 BUG_ON(!m);
1da177e4 1086
b3e19d92 1087 /* write lock needed for mnt_get_count */
962830df 1088 br_write_lock(&vfsmount_lock);
909b0a88 1089 for (p = mnt; p; p = next_mnt(p, mnt)) {
83adc753 1090 actual_refs += mnt_get_count(p);
1da177e4 1091 minimum_refs += 2;
1da177e4 1092 }
962830df 1093 br_write_unlock(&vfsmount_lock);
1da177e4
LT
1094
1095 if (actual_refs > minimum_refs)
e3474a8e 1096 return 0;
1da177e4 1097
e3474a8e 1098 return 1;
1da177e4
LT
1099}
1100
1101EXPORT_SYMBOL(may_umount_tree);
1102
1103/**
1104 * may_umount - check if a mount point is busy
1105 * @mnt: root of mount
1106 *
1107 * This is called to check if a mount point has any
1108 * open files, pwds, chroots or sub mounts. If the
1109 * mount has sub mounts this will return busy
1110 * regardless of whether the sub mounts are busy.
1111 *
1112 * Doesn't take quota and stuff into account. IOW, in some cases it will
1113 * give false negatives. The main reason why it's here is that we need
1114 * a non-destructive way to look for easily umountable filesystems.
1115 */
1116int may_umount(struct vfsmount *mnt)
1117{
e3474a8e 1118 int ret = 1;
8ad08d8a 1119 down_read(&namespace_sem);
962830df 1120 br_write_lock(&vfsmount_lock);
1ab59738 1121 if (propagate_mount_busy(real_mount(mnt), 2))
e3474a8e 1122 ret = 0;
962830df 1123 br_write_unlock(&vfsmount_lock);
8ad08d8a 1124 up_read(&namespace_sem);
a05964f3 1125 return ret;
1da177e4
LT
1126}
1127
1128EXPORT_SYMBOL(may_umount);
1129
e3197d83
AV
1130static LIST_HEAD(unmounted); /* protected by namespace_sem */
1131
97216be0 1132static void namespace_unlock(void)
70fbcdf4 1133{
d5e50f74 1134 struct mount *mnt;
97216be0
AV
1135 LIST_HEAD(head);
1136
1137 if (likely(list_empty(&unmounted))) {
1138 up_write(&namespace_sem);
1139 return;
1140 }
1141
1142 list_splice_init(&unmounted, &head);
1143 up_write(&namespace_sem);
1144
1145 while (!list_empty(&head)) {
1146 mnt = list_first_entry(&head, struct mount, mnt_hash);
1b8e5564 1147 list_del_init(&mnt->mnt_hash);
676da58d 1148 if (mnt_has_parent(mnt)) {
70fbcdf4 1149 struct dentry *dentry;
863d684f 1150 struct mount *m;
99b7db7b 1151
962830df 1152 br_write_lock(&vfsmount_lock);
a73324da 1153 dentry = mnt->mnt_mountpoint;
863d684f 1154 m = mnt->mnt_parent;
a73324da 1155 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 1156 mnt->mnt_parent = mnt;
7c4b93d8 1157 m->mnt_ghosts--;
962830df 1158 br_write_unlock(&vfsmount_lock);
70fbcdf4 1159 dput(dentry);
863d684f 1160 mntput(&m->mnt);
70fbcdf4 1161 }
d5e50f74 1162 mntput(&mnt->mnt);
70fbcdf4
RP
1163 }
1164}
1165
97216be0 1166static inline void namespace_lock(void)
e3197d83 1167{
97216be0 1168 down_write(&namespace_sem);
e3197d83
AV
1169}
1170
99b7db7b
NP
1171/*
1172 * vfsmount lock must be held for write
1173 * namespace_sem must be held for write
1174 */
328e6d90 1175void umount_tree(struct mount *mnt, int propagate)
1da177e4 1176{
7b8a53fd 1177 LIST_HEAD(tmp_list);
315fc83e 1178 struct mount *p;
1da177e4 1179
909b0a88 1180 for (p = mnt; p; p = next_mnt(p, mnt))
1b8e5564 1181 list_move(&p->mnt_hash, &tmp_list);
1da177e4 1182
a05964f3 1183 if (propagate)
7b8a53fd 1184 propagate_umount(&tmp_list);
a05964f3 1185
1b8e5564 1186 list_for_each_entry(p, &tmp_list, mnt_hash) {
6776db3d 1187 list_del_init(&p->mnt_expire);
1a4eeaf2 1188 list_del_init(&p->mnt_list);
143c8c91
AV
1189 __touch_mnt_namespace(p->mnt_ns);
1190 p->mnt_ns = NULL;
6b41d536 1191 list_del_init(&p->mnt_child);
676da58d 1192 if (mnt_has_parent(p)) {
863d684f 1193 p->mnt_parent->mnt_ghosts++;
84d17192
AV
1194 put_mountpoint(p->mnt_mp);
1195 p->mnt_mp = NULL;
7c4b93d8 1196 }
0f0afb1d 1197 change_mnt_propagation(p, MS_PRIVATE);
1da177e4 1198 }
328e6d90 1199 list_splice(&tmp_list, &unmounted);
1da177e4
LT
1200}
1201
b54b9be7 1202static void shrink_submounts(struct mount *mnt);
c35038be 1203
1ab59738 1204static int do_umount(struct mount *mnt, int flags)
1da177e4 1205{
1ab59738 1206 struct super_block *sb = mnt->mnt.mnt_sb;
1da177e4
LT
1207 int retval;
1208
1ab59738 1209 retval = security_sb_umount(&mnt->mnt, flags);
1da177e4
LT
1210 if (retval)
1211 return retval;
1212
1213 /*
1214 * Allow userspace to request a mountpoint be expired rather than
1215 * unmounting unconditionally. Unmount only happens if:
1216 * (1) the mark is already set (the mark is cleared by mntput())
1217 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1218 */
1219 if (flags & MNT_EXPIRE) {
1ab59738 1220 if (&mnt->mnt == current->fs->root.mnt ||
1da177e4
LT
1221 flags & (MNT_FORCE | MNT_DETACH))
1222 return -EINVAL;
1223
b3e19d92
NP
1224 /*
1225 * probably don't strictly need the lock here if we examined
1226 * all race cases, but it's a slowpath.
1227 */
962830df 1228 br_write_lock(&vfsmount_lock);
83adc753 1229 if (mnt_get_count(mnt) != 2) {
962830df 1230 br_write_unlock(&vfsmount_lock);
1da177e4 1231 return -EBUSY;
b3e19d92 1232 }
962830df 1233 br_write_unlock(&vfsmount_lock);
1da177e4 1234
863d684f 1235 if (!xchg(&mnt->mnt_expiry_mark, 1))
1da177e4
LT
1236 return -EAGAIN;
1237 }
1238
1239 /*
1240 * If we may have to abort operations to get out of this
1241 * mount, and they will themselves hold resources we must
1242 * allow the fs to do things. In the Unix tradition of
1243 * 'Gee thats tricky lets do it in userspace' the umount_begin
1244 * might fail to complete on the first run through as other tasks
1245 * must return, and the like. Thats for the mount program to worry
1246 * about for the moment.
1247 */
1248
42faad99 1249 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1250 sb->s_op->umount_begin(sb);
42faad99 1251 }
1da177e4
LT
1252
1253 /*
1254 * No sense to grab the lock for this test, but test itself looks
1255 * somewhat bogus. Suggestions for better replacement?
1256 * Ho-hum... In principle, we might treat that as umount + switch
1257 * to rootfs. GC would eventually take care of the old vfsmount.
1258 * Actually it makes sense, especially if rootfs would contain a
1259 * /reboot - static binary that would close all descriptors and
1260 * call reboot(9). Then init(8) could umount root and exec /reboot.
1261 */
1ab59738 1262 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1263 /*
1264 * Special case for "unmounting" root ...
1265 * we just try to remount it readonly.
1266 */
1267 down_write(&sb->s_umount);
4aa98cf7 1268 if (!(sb->s_flags & MS_RDONLY))
1da177e4 1269 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1da177e4
LT
1270 up_write(&sb->s_umount);
1271 return retval;
1272 }
1273
97216be0 1274 namespace_lock();
962830df 1275 br_write_lock(&vfsmount_lock);
5addc5dd 1276 event++;
1da177e4 1277
c35038be 1278 if (!(flags & MNT_DETACH))
b54b9be7 1279 shrink_submounts(mnt);
c35038be 1280
1da177e4 1281 retval = -EBUSY;
a05964f3 1282 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1a4eeaf2 1283 if (!list_empty(&mnt->mnt_list))
328e6d90 1284 umount_tree(mnt, 1);
1da177e4
LT
1285 retval = 0;
1286 }
962830df 1287 br_write_unlock(&vfsmount_lock);
e3197d83 1288 namespace_unlock();
1da177e4
LT
1289 return retval;
1290}
1291
9b40bc90
AV
1292/*
1293 * Is the caller allowed to modify his namespace?
1294 */
1295static inline bool may_mount(void)
1296{
1297 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1298}
1299
1da177e4
LT
1300/*
1301 * Now umount can handle mount points as well as block devices.
1302 * This is important for filesystems which use unnamed block devices.
1303 *
1304 * We now support a flag for forced unmount like the other 'big iron'
1305 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1306 */
1307
bdc480e3 1308SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1da177e4 1309{
2d8f3038 1310 struct path path;
900148dc 1311 struct mount *mnt;
1da177e4 1312 int retval;
db1f05bb 1313 int lookup_flags = 0;
1da177e4 1314
db1f05bb
MS
1315 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1316 return -EINVAL;
1317
9b40bc90
AV
1318 if (!may_mount())
1319 return -EPERM;
1320
db1f05bb
MS
1321 if (!(flags & UMOUNT_NOFOLLOW))
1322 lookup_flags |= LOOKUP_FOLLOW;
1323
197df04c 1324 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1da177e4
LT
1325 if (retval)
1326 goto out;
900148dc 1327 mnt = real_mount(path.mnt);
1da177e4 1328 retval = -EINVAL;
2d8f3038 1329 if (path.dentry != path.mnt->mnt_root)
1da177e4 1330 goto dput_and_out;
143c8c91 1331 if (!check_mnt(mnt))
1da177e4 1332 goto dput_and_out;
5ff9d8a6
EB
1333 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1334 goto dput_and_out;
1da177e4 1335
900148dc 1336 retval = do_umount(mnt, flags);
1da177e4 1337dput_and_out:
429731b1 1338 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038 1339 dput(path.dentry);
900148dc 1340 mntput_no_expire(mnt);
1da177e4
LT
1341out:
1342 return retval;
1343}
1344
1345#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1346
1347/*
b58fed8b 1348 * The 2.0 compatible umount. No flags.
1da177e4 1349 */
bdc480e3 1350SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1351{
b58fed8b 1352 return sys_umount(name, 0);
1da177e4
LT
1353}
1354
1355#endif
1356
4ce5d2b1 1357static bool is_mnt_ns_file(struct dentry *dentry)
8823c079 1358{
4ce5d2b1
EB
1359 /* Is this a proxy for a mount namespace? */
1360 struct inode *inode = dentry->d_inode;
0bb80f24 1361 struct proc_ns *ei;
8823c079
EB
1362
1363 if (!proc_ns_inode(inode))
1364 return false;
1365
0bb80f24 1366 ei = get_proc_ns(inode);
8823c079
EB
1367 if (ei->ns_ops != &mntns_operations)
1368 return false;
1369
4ce5d2b1
EB
1370 return true;
1371}
1372
1373static bool mnt_ns_loop(struct dentry *dentry)
1374{
1375 /* Could bind mounting the mount namespace inode cause a
1376 * mount namespace loop?
1377 */
1378 struct mnt_namespace *mnt_ns;
1379 if (!is_mnt_ns_file(dentry))
1380 return false;
1381
1382 mnt_ns = get_proc_ns(dentry->d_inode)->ns;
8823c079
EB
1383 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1384}
1385
87129cc0 1386struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
36341f64 1387 int flag)
1da177e4 1388{
84d17192 1389 struct mount *res, *p, *q, *r, *parent;
1da177e4 1390
4ce5d2b1
EB
1391 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1392 return ERR_PTR(-EINVAL);
1393
1394 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
be34d1a3 1395 return ERR_PTR(-EINVAL);
9676f0c6 1396
36341f64 1397 res = q = clone_mnt(mnt, dentry, flag);
be34d1a3
DH
1398 if (IS_ERR(q))
1399 return q;
1400
5ff9d8a6 1401 q->mnt.mnt_flags &= ~MNT_LOCKED;
a73324da 1402 q->mnt_mountpoint = mnt->mnt_mountpoint;
1da177e4
LT
1403
1404 p = mnt;
6b41d536 1405 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
315fc83e 1406 struct mount *s;
7ec02ef1 1407 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1408 continue;
1409
909b0a88 1410 for (s = r; s; s = next_mnt(s, r)) {
4ce5d2b1
EB
1411 if (!(flag & CL_COPY_UNBINDABLE) &&
1412 IS_MNT_UNBINDABLE(s)) {
1413 s = skip_mnt_tree(s);
1414 continue;
1415 }
1416 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1417 is_mnt_ns_file(s->mnt.mnt_root)) {
9676f0c6
RP
1418 s = skip_mnt_tree(s);
1419 continue;
1420 }
0714a533
AV
1421 while (p != s->mnt_parent) {
1422 p = p->mnt_parent;
1423 q = q->mnt_parent;
1da177e4 1424 }
87129cc0 1425 p = s;
84d17192 1426 parent = q;
87129cc0 1427 q = clone_mnt(p, p->mnt.mnt_root, flag);
be34d1a3
DH
1428 if (IS_ERR(q))
1429 goto out;
962830df 1430 br_write_lock(&vfsmount_lock);
1a4eeaf2 1431 list_add_tail(&q->mnt_list, &res->mnt_list);
84d17192 1432 attach_mnt(q, parent, p->mnt_mp);
962830df 1433 br_write_unlock(&vfsmount_lock);
1da177e4
LT
1434 }
1435 }
1436 return res;
be34d1a3 1437out:
1da177e4 1438 if (res) {
962830df 1439 br_write_lock(&vfsmount_lock);
328e6d90 1440 umount_tree(res, 0);
962830df 1441 br_write_unlock(&vfsmount_lock);
1da177e4 1442 }
be34d1a3 1443 return q;
1da177e4
LT
1444}
1445
be34d1a3
DH
1446/* Caller should check returned pointer for errors */
1447
589ff870 1448struct vfsmount *collect_mounts(struct path *path)
8aec0809 1449{
cb338d06 1450 struct mount *tree;
97216be0 1451 namespace_lock();
87129cc0
AV
1452 tree = copy_tree(real_mount(path->mnt), path->dentry,
1453 CL_COPY_ALL | CL_PRIVATE);
328e6d90 1454 namespace_unlock();
be34d1a3 1455 if (IS_ERR(tree))
52e220d3 1456 return ERR_CAST(tree);
be34d1a3 1457 return &tree->mnt;
8aec0809
AV
1458}
1459
1460void drop_collected_mounts(struct vfsmount *mnt)
1461{
97216be0 1462 namespace_lock();
962830df 1463 br_write_lock(&vfsmount_lock);
328e6d90 1464 umount_tree(real_mount(mnt), 0);
962830df 1465 br_write_unlock(&vfsmount_lock);
3ab6abee 1466 namespace_unlock();
8aec0809
AV
1467}
1468
1f707137
AV
1469int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1470 struct vfsmount *root)
1471{
1a4eeaf2 1472 struct mount *mnt;
1f707137
AV
1473 int res = f(root, arg);
1474 if (res)
1475 return res;
1a4eeaf2
AV
1476 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1477 res = f(&mnt->mnt, arg);
1f707137
AV
1478 if (res)
1479 return res;
1480 }
1481 return 0;
1482}
1483
4b8b21f4 1484static void cleanup_group_ids(struct mount *mnt, struct mount *end)
719f5d7f 1485{
315fc83e 1486 struct mount *p;
719f5d7f 1487
909b0a88 1488 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
fc7be130 1489 if (p->mnt_group_id && !IS_MNT_SHARED(p))
4b8b21f4 1490 mnt_release_group_id(p);
719f5d7f
MS
1491 }
1492}
1493
4b8b21f4 1494static int invent_group_ids(struct mount *mnt, bool recurse)
719f5d7f 1495{
315fc83e 1496 struct mount *p;
719f5d7f 1497
909b0a88 1498 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
fc7be130 1499 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
4b8b21f4 1500 int err = mnt_alloc_group_id(p);
719f5d7f 1501 if (err) {
4b8b21f4 1502 cleanup_group_ids(mnt, p);
719f5d7f
MS
1503 return err;
1504 }
1505 }
1506 }
1507
1508 return 0;
1509}
1510
b90fa9ae
RP
1511/*
1512 * @source_mnt : mount tree to be attached
21444403
RP
1513 * @nd : place the mount tree @source_mnt is attached
1514 * @parent_nd : if non-null, detach the source_mnt from its parent and
1515 * store the parent mount and mountpoint dentry.
1516 * (done when source_mnt is moved)
b90fa9ae
RP
1517 *
1518 * NOTE: in the table below explains the semantics when a source mount
1519 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1520 * ---------------------------------------------------------------------------
1521 * | BIND MOUNT OPERATION |
1522 * |**************************************************************************
1523 * | source-->| shared | private | slave | unbindable |
1524 * | dest | | | | |
1525 * | | | | | | |
1526 * | v | | | | |
1527 * |**************************************************************************
1528 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1529 * | | | | | |
1530 * |non-shared| shared (+) | private | slave (*) | invalid |
1531 * ***************************************************************************
b90fa9ae
RP
1532 * A bind operation clones the source mount and mounts the clone on the
1533 * destination mount.
1534 *
1535 * (++) the cloned mount is propagated to all the mounts in the propagation
1536 * tree of the destination mount and the cloned mount is added to
1537 * the peer group of the source mount.
1538 * (+) the cloned mount is created under the destination mount and is marked
1539 * as shared. The cloned mount is added to the peer group of the source
1540 * mount.
5afe0022
RP
1541 * (+++) the mount is propagated to all the mounts in the propagation tree
1542 * of the destination mount and the cloned mount is made slave
1543 * of the same master as that of the source mount. The cloned mount
1544 * is marked as 'shared and slave'.
1545 * (*) the cloned mount is made a slave of the same master as that of the
1546 * source mount.
1547 *
9676f0c6
RP
1548 * ---------------------------------------------------------------------------
1549 * | MOVE MOUNT OPERATION |
1550 * |**************************************************************************
1551 * | source-->| shared | private | slave | unbindable |
1552 * | dest | | | | |
1553 * | | | | | | |
1554 * | v | | | | |
1555 * |**************************************************************************
1556 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1557 * | | | | | |
1558 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1559 * ***************************************************************************
5afe0022
RP
1560 *
1561 * (+) the mount is moved to the destination. And is then propagated to
1562 * all the mounts in the propagation tree of the destination mount.
21444403 1563 * (+*) the mount is moved to the destination.
5afe0022
RP
1564 * (+++) the mount is moved to the destination and is then propagated to
1565 * all the mounts belonging to the destination mount's propagation tree.
1566 * the mount is marked as 'shared and slave'.
1567 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
1568 *
1569 * if the source mount is a tree, the operations explained above is
1570 * applied to each mount in the tree.
1571 * Must be called without spinlocks held, since this function can sleep
1572 * in allocations.
1573 */
0fb54e50 1574static int attach_recursive_mnt(struct mount *source_mnt,
84d17192
AV
1575 struct mount *dest_mnt,
1576 struct mountpoint *dest_mp,
1577 struct path *parent_path)
b90fa9ae
RP
1578{
1579 LIST_HEAD(tree_list);
315fc83e 1580 struct mount *child, *p;
719f5d7f 1581 int err;
b90fa9ae 1582
fc7be130 1583 if (IS_MNT_SHARED(dest_mnt)) {
0fb54e50 1584 err = invent_group_ids(source_mnt, true);
719f5d7f
MS
1585 if (err)
1586 goto out;
1587 }
84d17192 1588 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
719f5d7f
MS
1589 if (err)
1590 goto out_cleanup_ids;
b90fa9ae 1591
962830df 1592 br_write_lock(&vfsmount_lock);
df1a1ad2 1593
fc7be130 1594 if (IS_MNT_SHARED(dest_mnt)) {
909b0a88 1595 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
0f0afb1d 1596 set_mnt_shared(p);
b90fa9ae 1597 }
1a390689 1598 if (parent_path) {
0fb54e50 1599 detach_mnt(source_mnt, parent_path);
84d17192 1600 attach_mnt(source_mnt, dest_mnt, dest_mp);
143c8c91 1601 touch_mnt_namespace(source_mnt->mnt_ns);
21444403 1602 } else {
84d17192 1603 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
0fb54e50 1604 commit_tree(source_mnt);
21444403 1605 }
b90fa9ae 1606
1b8e5564
AV
1607 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1608 list_del_init(&child->mnt_hash);
4b2619a5 1609 commit_tree(child);
b90fa9ae 1610 }
962830df 1611 br_write_unlock(&vfsmount_lock);
99b7db7b 1612
b90fa9ae 1613 return 0;
719f5d7f
MS
1614
1615 out_cleanup_ids:
fc7be130 1616 if (IS_MNT_SHARED(dest_mnt))
0fb54e50 1617 cleanup_group_ids(source_mnt, NULL);
719f5d7f
MS
1618 out:
1619 return err;
b90fa9ae
RP
1620}
1621
84d17192 1622static struct mountpoint *lock_mount(struct path *path)
b12cea91
AV
1623{
1624 struct vfsmount *mnt;
84d17192 1625 struct dentry *dentry = path->dentry;
b12cea91 1626retry:
84d17192
AV
1627 mutex_lock(&dentry->d_inode->i_mutex);
1628 if (unlikely(cant_mount(dentry))) {
1629 mutex_unlock(&dentry->d_inode->i_mutex);
1630 return ERR_PTR(-ENOENT);
b12cea91 1631 }
97216be0 1632 namespace_lock();
b12cea91 1633 mnt = lookup_mnt(path);
84d17192
AV
1634 if (likely(!mnt)) {
1635 struct mountpoint *mp = new_mountpoint(dentry);
1636 if (IS_ERR(mp)) {
97216be0 1637 namespace_unlock();
84d17192
AV
1638 mutex_unlock(&dentry->d_inode->i_mutex);
1639 return mp;
1640 }
1641 return mp;
1642 }
97216be0 1643 namespace_unlock();
b12cea91
AV
1644 mutex_unlock(&path->dentry->d_inode->i_mutex);
1645 path_put(path);
1646 path->mnt = mnt;
84d17192 1647 dentry = path->dentry = dget(mnt->mnt_root);
b12cea91
AV
1648 goto retry;
1649}
1650
84d17192 1651static void unlock_mount(struct mountpoint *where)
b12cea91 1652{
84d17192
AV
1653 struct dentry *dentry = where->m_dentry;
1654 put_mountpoint(where);
328e6d90 1655 namespace_unlock();
84d17192 1656 mutex_unlock(&dentry->d_inode->i_mutex);
b12cea91
AV
1657}
1658
84d17192 1659static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1da177e4 1660{
95bc5f25 1661 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1da177e4
LT
1662 return -EINVAL;
1663
84d17192 1664 if (S_ISDIR(mp->m_dentry->d_inode->i_mode) !=
95bc5f25 1665 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1da177e4
LT
1666 return -ENOTDIR;
1667
84d17192 1668 return attach_recursive_mnt(mnt, p, mp, NULL);
1da177e4
LT
1669}
1670
7a2e8a8f
VA
1671/*
1672 * Sanity check the flags to change_mnt_propagation.
1673 */
1674
1675static int flags_to_propagation_type(int flags)
1676{
7c6e984d 1677 int type = flags & ~(MS_REC | MS_SILENT);
7a2e8a8f
VA
1678
1679 /* Fail if any non-propagation flags are set */
1680 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1681 return 0;
1682 /* Only one propagation flag should be set */
1683 if (!is_power_of_2(type))
1684 return 0;
1685 return type;
1686}
1687
07b20889
RP
1688/*
1689 * recursively change the type of the mountpoint.
1690 */
0a0d8a46 1691static int do_change_type(struct path *path, int flag)
07b20889 1692{
315fc83e 1693 struct mount *m;
4b8b21f4 1694 struct mount *mnt = real_mount(path->mnt);
07b20889 1695 int recurse = flag & MS_REC;
7a2e8a8f 1696 int type;
719f5d7f 1697 int err = 0;
07b20889 1698
2d92ab3c 1699 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
1700 return -EINVAL;
1701
7a2e8a8f
VA
1702 type = flags_to_propagation_type(flag);
1703 if (!type)
1704 return -EINVAL;
1705
97216be0 1706 namespace_lock();
719f5d7f
MS
1707 if (type == MS_SHARED) {
1708 err = invent_group_ids(mnt, recurse);
1709 if (err)
1710 goto out_unlock;
1711 }
1712
962830df 1713 br_write_lock(&vfsmount_lock);
909b0a88 1714 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
0f0afb1d 1715 change_mnt_propagation(m, type);
962830df 1716 br_write_unlock(&vfsmount_lock);
719f5d7f
MS
1717
1718 out_unlock:
97216be0 1719 namespace_unlock();
719f5d7f 1720 return err;
07b20889
RP
1721}
1722
5ff9d8a6
EB
1723static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
1724{
1725 struct mount *child;
1726 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
1727 if (!is_subdir(child->mnt_mountpoint, dentry))
1728 continue;
1729
1730 if (child->mnt.mnt_flags & MNT_LOCKED)
1731 return true;
1732 }
1733 return false;
1734}
1735
1da177e4
LT
1736/*
1737 * do loopback mount.
1738 */
808d4e3c 1739static int do_loopback(struct path *path, const char *old_name,
2dafe1c4 1740 int recurse)
1da177e4 1741{
2d92ab3c 1742 struct path old_path;
84d17192
AV
1743 struct mount *mnt = NULL, *old, *parent;
1744 struct mountpoint *mp;
57eccb83 1745 int err;
1da177e4
LT
1746 if (!old_name || !*old_name)
1747 return -EINVAL;
815d405c 1748 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1da177e4
LT
1749 if (err)
1750 return err;
1751
8823c079 1752 err = -EINVAL;
4ce5d2b1 1753 if (mnt_ns_loop(old_path.dentry))
8823c079
EB
1754 goto out;
1755
84d17192
AV
1756 mp = lock_mount(path);
1757 err = PTR_ERR(mp);
1758 if (IS_ERR(mp))
b12cea91
AV
1759 goto out;
1760
87129cc0 1761 old = real_mount(old_path.mnt);
84d17192 1762 parent = real_mount(path->mnt);
87129cc0 1763
1da177e4 1764 err = -EINVAL;
fc7be130 1765 if (IS_MNT_UNBINDABLE(old))
b12cea91 1766 goto out2;
9676f0c6 1767
84d17192 1768 if (!check_mnt(parent) || !check_mnt(old))
b12cea91 1769 goto out2;
1da177e4 1770
5ff9d8a6
EB
1771 if (!recurse && has_locked_children(old, old_path.dentry))
1772 goto out2;
1773
ccd48bc7 1774 if (recurse)
4ce5d2b1 1775 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
ccd48bc7 1776 else
87129cc0 1777 mnt = clone_mnt(old, old_path.dentry, 0);
ccd48bc7 1778
be34d1a3
DH
1779 if (IS_ERR(mnt)) {
1780 err = PTR_ERR(mnt);
e9c5d8a5 1781 goto out2;
be34d1a3 1782 }
ccd48bc7 1783
5ff9d8a6
EB
1784 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
1785
84d17192 1786 err = graft_tree(mnt, parent, mp);
ccd48bc7 1787 if (err) {
962830df 1788 br_write_lock(&vfsmount_lock);
328e6d90 1789 umount_tree(mnt, 0);
962830df 1790 br_write_unlock(&vfsmount_lock);
5b83d2c5 1791 }
b12cea91 1792out2:
84d17192 1793 unlock_mount(mp);
ccd48bc7 1794out:
2d92ab3c 1795 path_put(&old_path);
1da177e4
LT
1796 return err;
1797}
1798
2e4b7fcd
DH
1799static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1800{
1801 int error = 0;
1802 int readonly_request = 0;
1803
1804 if (ms_flags & MS_RDONLY)
1805 readonly_request = 1;
1806 if (readonly_request == __mnt_is_readonly(mnt))
1807 return 0;
1808
90563b19
EB
1809 if (mnt->mnt_flags & MNT_LOCK_READONLY)
1810 return -EPERM;
1811
2e4b7fcd 1812 if (readonly_request)
83adc753 1813 error = mnt_make_readonly(real_mount(mnt));
2e4b7fcd 1814 else
83adc753 1815 __mnt_unmake_readonly(real_mount(mnt));
2e4b7fcd
DH
1816 return error;
1817}
1818
1da177e4
LT
1819/*
1820 * change filesystem flags. dir should be a physical root of filesystem.
1821 * If you've mounted a non-root directory somewhere and want to do remount
1822 * on it - tough luck.
1823 */
0a0d8a46 1824static int do_remount(struct path *path, int flags, int mnt_flags,
1da177e4
LT
1825 void *data)
1826{
1827 int err;
2d92ab3c 1828 struct super_block *sb = path->mnt->mnt_sb;
143c8c91 1829 struct mount *mnt = real_mount(path->mnt);
1da177e4 1830
143c8c91 1831 if (!check_mnt(mnt))
1da177e4
LT
1832 return -EINVAL;
1833
2d92ab3c 1834 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
1835 return -EINVAL;
1836
ff36fe2c
EP
1837 err = security_sb_remount(sb, data);
1838 if (err)
1839 return err;
1840
1da177e4 1841 down_write(&sb->s_umount);
2e4b7fcd 1842 if (flags & MS_BIND)
2d92ab3c 1843 err = change_mount_flags(path->mnt, flags);
57eccb83
AV
1844 else if (!capable(CAP_SYS_ADMIN))
1845 err = -EPERM;
4aa98cf7 1846 else
2e4b7fcd 1847 err = do_remount_sb(sb, flags, data, 0);
7b43a79f 1848 if (!err) {
962830df 1849 br_write_lock(&vfsmount_lock);
143c8c91
AV
1850 mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK;
1851 mnt->mnt.mnt_flags = mnt_flags;
962830df 1852 br_write_unlock(&vfsmount_lock);
7b43a79f 1853 }
1da177e4 1854 up_write(&sb->s_umount);
0e55a7cc 1855 if (!err) {
962830df 1856 br_write_lock(&vfsmount_lock);
143c8c91 1857 touch_mnt_namespace(mnt->mnt_ns);
962830df 1858 br_write_unlock(&vfsmount_lock);
0e55a7cc 1859 }
1da177e4
LT
1860 return err;
1861}
1862
cbbe362c 1863static inline int tree_contains_unbindable(struct mount *mnt)
9676f0c6 1864{
315fc83e 1865 struct mount *p;
909b0a88 1866 for (p = mnt; p; p = next_mnt(p, mnt)) {
fc7be130 1867 if (IS_MNT_UNBINDABLE(p))
9676f0c6
RP
1868 return 1;
1869 }
1870 return 0;
1871}
1872
808d4e3c 1873static int do_move_mount(struct path *path, const char *old_name)
1da177e4 1874{
2d92ab3c 1875 struct path old_path, parent_path;
676da58d 1876 struct mount *p;
0fb54e50 1877 struct mount *old;
84d17192 1878 struct mountpoint *mp;
57eccb83 1879 int err;
1da177e4
LT
1880 if (!old_name || !*old_name)
1881 return -EINVAL;
2d92ab3c 1882 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
1883 if (err)
1884 return err;
1885
84d17192
AV
1886 mp = lock_mount(path);
1887 err = PTR_ERR(mp);
1888 if (IS_ERR(mp))
cc53ce53
DH
1889 goto out;
1890
143c8c91 1891 old = real_mount(old_path.mnt);
fc7be130 1892 p = real_mount(path->mnt);
143c8c91 1893
1da177e4 1894 err = -EINVAL;
fc7be130 1895 if (!check_mnt(p) || !check_mnt(old))
1da177e4
LT
1896 goto out1;
1897
5ff9d8a6
EB
1898 if (old->mnt.mnt_flags & MNT_LOCKED)
1899 goto out1;
1900
1da177e4 1901 err = -EINVAL;
2d92ab3c 1902 if (old_path.dentry != old_path.mnt->mnt_root)
21444403 1903 goto out1;
1da177e4 1904
676da58d 1905 if (!mnt_has_parent(old))
21444403 1906 goto out1;
1da177e4 1907
2d92ab3c
AV
1908 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1909 S_ISDIR(old_path.dentry->d_inode->i_mode))
21444403
RP
1910 goto out1;
1911 /*
1912 * Don't move a mount residing in a shared parent.
1913 */
fc7be130 1914 if (IS_MNT_SHARED(old->mnt_parent))
21444403 1915 goto out1;
9676f0c6
RP
1916 /*
1917 * Don't move a mount tree containing unbindable mounts to a destination
1918 * mount which is shared.
1919 */
fc7be130 1920 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
9676f0c6 1921 goto out1;
1da177e4 1922 err = -ELOOP;
fc7be130 1923 for (; mnt_has_parent(p); p = p->mnt_parent)
676da58d 1924 if (p == old)
21444403 1925 goto out1;
1da177e4 1926
84d17192 1927 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
4ac91378 1928 if (err)
21444403 1929 goto out1;
1da177e4
LT
1930
1931 /* if the mount is moved, it should no longer be expire
1932 * automatically */
6776db3d 1933 list_del_init(&old->mnt_expire);
1da177e4 1934out1:
84d17192 1935 unlock_mount(mp);
1da177e4 1936out:
1da177e4 1937 if (!err)
1a390689 1938 path_put(&parent_path);
2d92ab3c 1939 path_put(&old_path);
1da177e4
LT
1940 return err;
1941}
1942
9d412a43
AV
1943static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1944{
1945 int err;
1946 const char *subtype = strchr(fstype, '.');
1947 if (subtype) {
1948 subtype++;
1949 err = -EINVAL;
1950 if (!subtype[0])
1951 goto err;
1952 } else
1953 subtype = "";
1954
1955 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1956 err = -ENOMEM;
1957 if (!mnt->mnt_sb->s_subtype)
1958 goto err;
1959 return mnt;
1960
1961 err:
1962 mntput(mnt);
1963 return ERR_PTR(err);
1964}
1965
9d412a43
AV
1966/*
1967 * add a mount into a namespace's mount tree
1968 */
95bc5f25 1969static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
9d412a43 1970{
84d17192
AV
1971 struct mountpoint *mp;
1972 struct mount *parent;
9d412a43
AV
1973 int err;
1974
1975 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
1976
84d17192
AV
1977 mp = lock_mount(path);
1978 if (IS_ERR(mp))
1979 return PTR_ERR(mp);
9d412a43 1980
84d17192 1981 parent = real_mount(path->mnt);
9d412a43 1982 err = -EINVAL;
84d17192 1983 if (unlikely(!check_mnt(parent))) {
156cacb1
AV
1984 /* that's acceptable only for automounts done in private ns */
1985 if (!(mnt_flags & MNT_SHRINKABLE))
1986 goto unlock;
1987 /* ... and for those we'd better have mountpoint still alive */
84d17192 1988 if (!parent->mnt_ns)
156cacb1
AV
1989 goto unlock;
1990 }
9d412a43
AV
1991
1992 /* Refuse the same filesystem on the same mount point */
1993 err = -EBUSY;
95bc5f25 1994 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
9d412a43
AV
1995 path->mnt->mnt_root == path->dentry)
1996 goto unlock;
1997
1998 err = -EINVAL;
95bc5f25 1999 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
9d412a43
AV
2000 goto unlock;
2001
95bc5f25 2002 newmnt->mnt.mnt_flags = mnt_flags;
84d17192 2003 err = graft_tree(newmnt, parent, mp);
9d412a43
AV
2004
2005unlock:
84d17192 2006 unlock_mount(mp);
9d412a43
AV
2007 return err;
2008}
b1e75df4 2009
1da177e4
LT
2010/*
2011 * create a new mount for userspace and request it to be added into the
2012 * namespace's tree
2013 */
0c55cfc4 2014static int do_new_mount(struct path *path, const char *fstype, int flags,
808d4e3c 2015 int mnt_flags, const char *name, void *data)
1da177e4 2016{
0c55cfc4 2017 struct file_system_type *type;
9b40bc90 2018 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
1da177e4 2019 struct vfsmount *mnt;
15f9a3f3 2020 int err;
1da177e4 2021
0c55cfc4 2022 if (!fstype)
1da177e4
LT
2023 return -EINVAL;
2024
0c55cfc4
EB
2025 type = get_fs_type(fstype);
2026 if (!type)
2027 return -ENODEV;
2028
2029 if (user_ns != &init_user_ns) {
2030 if (!(type->fs_flags & FS_USERNS_MOUNT)) {
2031 put_filesystem(type);
2032 return -EPERM;
2033 }
2034 /* Only in special cases allow devices from mounts
2035 * created outside the initial user namespace.
2036 */
2037 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2038 flags |= MS_NODEV;
2039 mnt_flags |= MNT_NODEV;
2040 }
2041 }
2042
2043 mnt = vfs_kern_mount(type, flags, name, data);
2044 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2045 !mnt->mnt_sb->s_subtype)
2046 mnt = fs_set_subtype(mnt, fstype);
2047
2048 put_filesystem(type);
1da177e4
LT
2049 if (IS_ERR(mnt))
2050 return PTR_ERR(mnt);
2051
95bc5f25 2052 err = do_add_mount(real_mount(mnt), path, mnt_flags);
15f9a3f3
AV
2053 if (err)
2054 mntput(mnt);
2055 return err;
1da177e4
LT
2056}
2057
19a167af
AV
2058int finish_automount(struct vfsmount *m, struct path *path)
2059{
6776db3d 2060 struct mount *mnt = real_mount(m);
19a167af
AV
2061 int err;
2062 /* The new mount record should have at least 2 refs to prevent it being
2063 * expired before we get a chance to add it
2064 */
6776db3d 2065 BUG_ON(mnt_get_count(mnt) < 2);
19a167af
AV
2066
2067 if (m->mnt_sb == path->mnt->mnt_sb &&
2068 m->mnt_root == path->dentry) {
b1e75df4
AV
2069 err = -ELOOP;
2070 goto fail;
19a167af
AV
2071 }
2072
95bc5f25 2073 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
b1e75df4
AV
2074 if (!err)
2075 return 0;
2076fail:
2077 /* remove m from any expiration list it may be on */
6776db3d 2078 if (!list_empty(&mnt->mnt_expire)) {
97216be0 2079 namespace_lock();
962830df 2080 br_write_lock(&vfsmount_lock);
6776db3d 2081 list_del_init(&mnt->mnt_expire);
962830df 2082 br_write_unlock(&vfsmount_lock);
97216be0 2083 namespace_unlock();
19a167af 2084 }
b1e75df4
AV
2085 mntput(m);
2086 mntput(m);
19a167af
AV
2087 return err;
2088}
2089
ea5b778a
DH
2090/**
2091 * mnt_set_expiry - Put a mount on an expiration list
2092 * @mnt: The mount to list.
2093 * @expiry_list: The list to add the mount to.
2094 */
2095void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2096{
97216be0 2097 namespace_lock();
962830df 2098 br_write_lock(&vfsmount_lock);
ea5b778a 2099
6776db3d 2100 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
ea5b778a 2101
962830df 2102 br_write_unlock(&vfsmount_lock);
97216be0 2103 namespace_unlock();
ea5b778a
DH
2104}
2105EXPORT_SYMBOL(mnt_set_expiry);
2106
1da177e4
LT
2107/*
2108 * process a list of expirable mountpoints with the intent of discarding any
2109 * mountpoints that aren't in use and haven't been touched since last we came
2110 * here
2111 */
2112void mark_mounts_for_expiry(struct list_head *mounts)
2113{
761d5c38 2114 struct mount *mnt, *next;
1da177e4
LT
2115 LIST_HEAD(graveyard);
2116
2117 if (list_empty(mounts))
2118 return;
2119
97216be0 2120 namespace_lock();
962830df 2121 br_write_lock(&vfsmount_lock);
1da177e4
LT
2122
2123 /* extract from the expiration list every vfsmount that matches the
2124 * following criteria:
2125 * - only referenced by its parent vfsmount
2126 * - still marked for expiry (marked on the last call here; marks are
2127 * cleared by mntput())
2128 */
6776db3d 2129 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
863d684f 2130 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1ab59738 2131 propagate_mount_busy(mnt, 1))
1da177e4 2132 continue;
6776db3d 2133 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 2134 }
bcc5c7d2 2135 while (!list_empty(&graveyard)) {
6776db3d 2136 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
143c8c91 2137 touch_mnt_namespace(mnt->mnt_ns);
328e6d90 2138 umount_tree(mnt, 1);
bcc5c7d2 2139 }
962830df 2140 br_write_unlock(&vfsmount_lock);
3ab6abee 2141 namespace_unlock();
5528f911
TM
2142}
2143
2144EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2145
2146/*
2147 * Ripoff of 'select_parent()'
2148 *
2149 * search the list of submounts for a given mountpoint, and move any
2150 * shrinkable submounts to the 'graveyard' list.
2151 */
692afc31 2152static int select_submounts(struct mount *parent, struct list_head *graveyard)
5528f911 2153{
692afc31 2154 struct mount *this_parent = parent;
5528f911
TM
2155 struct list_head *next;
2156 int found = 0;
2157
2158repeat:
6b41d536 2159 next = this_parent->mnt_mounts.next;
5528f911 2160resume:
6b41d536 2161 while (next != &this_parent->mnt_mounts) {
5528f911 2162 struct list_head *tmp = next;
6b41d536 2163 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
5528f911
TM
2164
2165 next = tmp->next;
692afc31 2166 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1da177e4 2167 continue;
5528f911
TM
2168 /*
2169 * Descend a level if the d_mounts list is non-empty.
2170 */
6b41d536 2171 if (!list_empty(&mnt->mnt_mounts)) {
5528f911
TM
2172 this_parent = mnt;
2173 goto repeat;
2174 }
1da177e4 2175
1ab59738 2176 if (!propagate_mount_busy(mnt, 1)) {
6776db3d 2177 list_move_tail(&mnt->mnt_expire, graveyard);
5528f911
TM
2178 found++;
2179 }
1da177e4 2180 }
5528f911
TM
2181 /*
2182 * All done at this level ... ascend and resume the search
2183 */
2184 if (this_parent != parent) {
6b41d536 2185 next = this_parent->mnt_child.next;
0714a533 2186 this_parent = this_parent->mnt_parent;
5528f911
TM
2187 goto resume;
2188 }
2189 return found;
2190}
2191
2192/*
2193 * process a list of expirable mountpoints with the intent of discarding any
2194 * submounts of a specific parent mountpoint
99b7db7b
NP
2195 *
2196 * vfsmount_lock must be held for write
5528f911 2197 */
b54b9be7 2198static void shrink_submounts(struct mount *mnt)
5528f911
TM
2199{
2200 LIST_HEAD(graveyard);
761d5c38 2201 struct mount *m;
5528f911 2202
5528f911 2203 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 2204 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 2205 while (!list_empty(&graveyard)) {
761d5c38 2206 m = list_first_entry(&graveyard, struct mount,
6776db3d 2207 mnt_expire);
143c8c91 2208 touch_mnt_namespace(m->mnt_ns);
328e6d90 2209 umount_tree(m, 1);
bcc5c7d2
AV
2210 }
2211 }
1da177e4
LT
2212}
2213
1da177e4
LT
2214/*
2215 * Some copy_from_user() implementations do not return the exact number of
2216 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2217 * Note that this function differs from copy_from_user() in that it will oops
2218 * on bad values of `to', rather than returning a short copy.
2219 */
b58fed8b
RP
2220static long exact_copy_from_user(void *to, const void __user * from,
2221 unsigned long n)
1da177e4
LT
2222{
2223 char *t = to;
2224 const char __user *f = from;
2225 char c;
2226
2227 if (!access_ok(VERIFY_READ, from, n))
2228 return n;
2229
2230 while (n) {
2231 if (__get_user(c, f)) {
2232 memset(t, 0, n);
2233 break;
2234 }
2235 *t++ = c;
2236 f++;
2237 n--;
2238 }
2239 return n;
2240}
2241
b58fed8b 2242int copy_mount_options(const void __user * data, unsigned long *where)
1da177e4
LT
2243{
2244 int i;
2245 unsigned long page;
2246 unsigned long size;
b58fed8b 2247
1da177e4
LT
2248 *where = 0;
2249 if (!data)
2250 return 0;
2251
2252 if (!(page = __get_free_page(GFP_KERNEL)))
2253 return -ENOMEM;
2254
2255 /* We only care that *some* data at the address the user
2256 * gave us is valid. Just in case, we'll zero
2257 * the remainder of the page.
2258 */
2259 /* copy_from_user cannot cross TASK_SIZE ! */
2260 size = TASK_SIZE - (unsigned long)data;
2261 if (size > PAGE_SIZE)
2262 size = PAGE_SIZE;
2263
2264 i = size - exact_copy_from_user((void *)page, data, size);
2265 if (!i) {
b58fed8b 2266 free_page(page);
1da177e4
LT
2267 return -EFAULT;
2268 }
2269 if (i != PAGE_SIZE)
2270 memset((char *)page + i, 0, PAGE_SIZE - i);
2271 *where = page;
2272 return 0;
2273}
2274
eca6f534
VN
2275int copy_mount_string(const void __user *data, char **where)
2276{
2277 char *tmp;
2278
2279 if (!data) {
2280 *where = NULL;
2281 return 0;
2282 }
2283
2284 tmp = strndup_user(data, PAGE_SIZE);
2285 if (IS_ERR(tmp))
2286 return PTR_ERR(tmp);
2287
2288 *where = tmp;
2289 return 0;
2290}
2291
1da177e4
LT
2292/*
2293 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2294 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2295 *
2296 * data is a (void *) that can point to any structure up to
2297 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2298 * information (or be NULL).
2299 *
2300 * Pre-0.97 versions of mount() didn't have a flags word.
2301 * When the flags word was introduced its top half was required
2302 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2303 * Therefore, if this magic number is present, it carries no information
2304 * and must be discarded.
2305 */
808d4e3c
AV
2306long do_mount(const char *dev_name, const char *dir_name,
2307 const char *type_page, unsigned long flags, void *data_page)
1da177e4 2308{
2d92ab3c 2309 struct path path;
1da177e4
LT
2310 int retval = 0;
2311 int mnt_flags = 0;
2312
2313 /* Discard magic */
2314 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2315 flags &= ~MS_MGC_MSK;
2316
2317 /* Basic sanity checks */
2318
2319 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2320 return -EINVAL;
1da177e4
LT
2321
2322 if (data_page)
2323 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2324
a27ab9f2
TH
2325 /* ... and get the mountpoint */
2326 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2327 if (retval)
2328 return retval;
2329
2330 retval = security_sb_mount(dev_name, &path,
2331 type_page, flags, data_page);
0d5cadb8
AV
2332 if (!retval && !may_mount())
2333 retval = -EPERM;
a27ab9f2
TH
2334 if (retval)
2335 goto dput_out;
2336
613cbe3d
AK
2337 /* Default to relatime unless overriden */
2338 if (!(flags & MS_NOATIME))
2339 mnt_flags |= MNT_RELATIME;
0a1c01c9 2340
1da177e4
LT
2341 /* Separate the per-mountpoint flags */
2342 if (flags & MS_NOSUID)
2343 mnt_flags |= MNT_NOSUID;
2344 if (flags & MS_NODEV)
2345 mnt_flags |= MNT_NODEV;
2346 if (flags & MS_NOEXEC)
2347 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
2348 if (flags & MS_NOATIME)
2349 mnt_flags |= MNT_NOATIME;
2350 if (flags & MS_NODIRATIME)
2351 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
2352 if (flags & MS_STRICTATIME)
2353 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2e4b7fcd
DH
2354 if (flags & MS_RDONLY)
2355 mnt_flags |= MNT_READONLY;
fc33a7bb 2356
7a4dec53 2357 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
d0adde57
MG
2358 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2359 MS_STRICTATIME);
1da177e4 2360
1da177e4 2361 if (flags & MS_REMOUNT)
2d92ab3c 2362 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
1da177e4
LT
2363 data_page);
2364 else if (flags & MS_BIND)
2d92ab3c 2365 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 2366 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 2367 retval = do_change_type(&path, flags);
1da177e4 2368 else if (flags & MS_MOVE)
2d92ab3c 2369 retval = do_move_mount(&path, dev_name);
1da177e4 2370 else
2d92ab3c 2371 retval = do_new_mount(&path, type_page, flags, mnt_flags,
1da177e4
LT
2372 dev_name, data_page);
2373dput_out:
2d92ab3c 2374 path_put(&path);
1da177e4
LT
2375 return retval;
2376}
2377
771b1371
EB
2378static void free_mnt_ns(struct mnt_namespace *ns)
2379{
98f842e6 2380 proc_free_inum(ns->proc_inum);
771b1371
EB
2381 put_user_ns(ns->user_ns);
2382 kfree(ns);
2383}
2384
8823c079
EB
2385/*
2386 * Assign a sequence number so we can detect when we attempt to bind
2387 * mount a reference to an older mount namespace into the current
2388 * mount namespace, preventing reference counting loops. A 64bit
2389 * number incrementing at 10Ghz will take 12,427 years to wrap which
2390 * is effectively never, so we can ignore the possibility.
2391 */
2392static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2393
771b1371 2394static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
cf8d2c11
TM
2395{
2396 struct mnt_namespace *new_ns;
98f842e6 2397 int ret;
cf8d2c11
TM
2398
2399 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2400 if (!new_ns)
2401 return ERR_PTR(-ENOMEM);
98f842e6
EB
2402 ret = proc_alloc_inum(&new_ns->proc_inum);
2403 if (ret) {
2404 kfree(new_ns);
2405 return ERR_PTR(ret);
2406 }
8823c079 2407 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
cf8d2c11
TM
2408 atomic_set(&new_ns->count, 1);
2409 new_ns->root = NULL;
2410 INIT_LIST_HEAD(&new_ns->list);
2411 init_waitqueue_head(&new_ns->poll);
2412 new_ns->event = 0;
771b1371 2413 new_ns->user_ns = get_user_ns(user_ns);
cf8d2c11
TM
2414 return new_ns;
2415}
2416
741a2951
JD
2417/*
2418 * Allocate a new namespace structure and populate it with contents
2419 * copied from the namespace of the passed in task structure.
2420 */
e3222c4e 2421static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
771b1371 2422 struct user_namespace *user_ns, struct fs_struct *fs)
1da177e4 2423{
6b3286ed 2424 struct mnt_namespace *new_ns;
7f2da1e7 2425 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
315fc83e 2426 struct mount *p, *q;
be08d6d2 2427 struct mount *old = mnt_ns->root;
cb338d06 2428 struct mount *new;
7a472ef4 2429 int copy_flags;
1da177e4 2430
771b1371 2431 new_ns = alloc_mnt_ns(user_ns);
cf8d2c11
TM
2432 if (IS_ERR(new_ns))
2433 return new_ns;
1da177e4 2434
97216be0 2435 namespace_lock();
1da177e4 2436 /* First pass: copy the tree topology */
4ce5d2b1 2437 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
7a472ef4 2438 if (user_ns != mnt_ns->user_ns)
132c94e3 2439 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
7a472ef4 2440 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
be34d1a3 2441 if (IS_ERR(new)) {
328e6d90 2442 namespace_unlock();
771b1371 2443 free_mnt_ns(new_ns);
be34d1a3 2444 return ERR_CAST(new);
1da177e4 2445 }
be08d6d2 2446 new_ns->root = new;
962830df 2447 br_write_lock(&vfsmount_lock);
1a4eeaf2 2448 list_add_tail(&new_ns->list, &new->mnt_list);
962830df 2449 br_write_unlock(&vfsmount_lock);
1da177e4
LT
2450
2451 /*
2452 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2453 * as belonging to new namespace. We have already acquired a private
2454 * fs_struct, so tsk->fs->lock is not needed.
2455 */
909b0a88 2456 p = old;
cb338d06 2457 q = new;
1da177e4 2458 while (p) {
143c8c91 2459 q->mnt_ns = new_ns;
1da177e4 2460 if (fs) {
315fc83e
AV
2461 if (&p->mnt == fs->root.mnt) {
2462 fs->root.mnt = mntget(&q->mnt);
315fc83e 2463 rootmnt = &p->mnt;
1da177e4 2464 }
315fc83e
AV
2465 if (&p->mnt == fs->pwd.mnt) {
2466 fs->pwd.mnt = mntget(&q->mnt);
315fc83e 2467 pwdmnt = &p->mnt;
1da177e4 2468 }
1da177e4 2469 }
909b0a88
AV
2470 p = next_mnt(p, old);
2471 q = next_mnt(q, new);
4ce5d2b1
EB
2472 if (!q)
2473 break;
2474 while (p->mnt.mnt_root != q->mnt.mnt_root)
2475 p = next_mnt(p, old);
1da177e4 2476 }
328e6d90 2477 namespace_unlock();
1da177e4 2478
1da177e4 2479 if (rootmnt)
f03c6599 2480 mntput(rootmnt);
1da177e4 2481 if (pwdmnt)
f03c6599 2482 mntput(pwdmnt);
1da177e4 2483
741a2951
JD
2484 return new_ns;
2485}
2486
213dd266 2487struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
771b1371 2488 struct user_namespace *user_ns, struct fs_struct *new_fs)
741a2951 2489{
6b3286ed 2490 struct mnt_namespace *new_ns;
741a2951 2491
e3222c4e 2492 BUG_ON(!ns);
6b3286ed 2493 get_mnt_ns(ns);
741a2951
JD
2494
2495 if (!(flags & CLONE_NEWNS))
e3222c4e 2496 return ns;
741a2951 2497
771b1371 2498 new_ns = dup_mnt_ns(ns, user_ns, new_fs);
741a2951 2499
6b3286ed 2500 put_mnt_ns(ns);
e3222c4e 2501 return new_ns;
1da177e4
LT
2502}
2503
cf8d2c11
TM
2504/**
2505 * create_mnt_ns - creates a private namespace and adds a root filesystem
2506 * @mnt: pointer to the new root filesystem mountpoint
2507 */
1a4eeaf2 2508static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
cf8d2c11 2509{
771b1371 2510 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
cf8d2c11 2511 if (!IS_ERR(new_ns)) {
1a4eeaf2
AV
2512 struct mount *mnt = real_mount(m);
2513 mnt->mnt_ns = new_ns;
be08d6d2 2514 new_ns->root = mnt;
b1983cd8 2515 list_add(&mnt->mnt_list, &new_ns->list);
c1334495 2516 } else {
1a4eeaf2 2517 mntput(m);
cf8d2c11
TM
2518 }
2519 return new_ns;
2520}
cf8d2c11 2521
ea441d11
AV
2522struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2523{
2524 struct mnt_namespace *ns;
d31da0f0 2525 struct super_block *s;
ea441d11
AV
2526 struct path path;
2527 int err;
2528
2529 ns = create_mnt_ns(mnt);
2530 if (IS_ERR(ns))
2531 return ERR_CAST(ns);
2532
2533 err = vfs_path_lookup(mnt->mnt_root, mnt,
2534 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2535
2536 put_mnt_ns(ns);
2537
2538 if (err)
2539 return ERR_PTR(err);
2540
2541 /* trade a vfsmount reference for active sb one */
d31da0f0
AV
2542 s = path.mnt->mnt_sb;
2543 atomic_inc(&s->s_active);
ea441d11
AV
2544 mntput(path.mnt);
2545 /* lock the sucker */
d31da0f0 2546 down_write(&s->s_umount);
ea441d11
AV
2547 /* ... and return the root of (sub)tree on it */
2548 return path.dentry;
2549}
2550EXPORT_SYMBOL(mount_subtree);
2551
bdc480e3
HC
2552SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2553 char __user *, type, unsigned long, flags, void __user *, data)
1da177e4 2554{
eca6f534
VN
2555 int ret;
2556 char *kernel_type;
91a27b2a 2557 struct filename *kernel_dir;
eca6f534 2558 char *kernel_dev;
1da177e4 2559 unsigned long data_page;
1da177e4 2560
eca6f534
VN
2561 ret = copy_mount_string(type, &kernel_type);
2562 if (ret < 0)
2563 goto out_type;
1da177e4 2564
eca6f534
VN
2565 kernel_dir = getname(dir_name);
2566 if (IS_ERR(kernel_dir)) {
2567 ret = PTR_ERR(kernel_dir);
2568 goto out_dir;
2569 }
1da177e4 2570
eca6f534
VN
2571 ret = copy_mount_string(dev_name, &kernel_dev);
2572 if (ret < 0)
2573 goto out_dev;
1da177e4 2574
eca6f534
VN
2575 ret = copy_mount_options(data, &data_page);
2576 if (ret < 0)
2577 goto out_data;
1da177e4 2578
91a27b2a 2579 ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags,
eca6f534 2580 (void *) data_page);
1da177e4 2581
eca6f534
VN
2582 free_page(data_page);
2583out_data:
2584 kfree(kernel_dev);
2585out_dev:
2586 putname(kernel_dir);
2587out_dir:
2588 kfree(kernel_type);
2589out_type:
2590 return ret;
1da177e4
LT
2591}
2592
afac7cba
AV
2593/*
2594 * Return true if path is reachable from root
2595 *
2596 * namespace_sem or vfsmount_lock is held
2597 */
643822b4 2598bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
afac7cba
AV
2599 const struct path *root)
2600{
643822b4 2601 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
a73324da 2602 dentry = mnt->mnt_mountpoint;
0714a533 2603 mnt = mnt->mnt_parent;
afac7cba 2604 }
643822b4 2605 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
afac7cba
AV
2606}
2607
2608int path_is_under(struct path *path1, struct path *path2)
2609{
2610 int res;
962830df 2611 br_read_lock(&vfsmount_lock);
643822b4 2612 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
962830df 2613 br_read_unlock(&vfsmount_lock);
afac7cba
AV
2614 return res;
2615}
2616EXPORT_SYMBOL(path_is_under);
2617
1da177e4
LT
2618/*
2619 * pivot_root Semantics:
2620 * Moves the root file system of the current process to the directory put_old,
2621 * makes new_root as the new root file system of the current process, and sets
2622 * root/cwd of all processes which had them on the current root to new_root.
2623 *
2624 * Restrictions:
2625 * The new_root and put_old must be directories, and must not be on the
2626 * same file system as the current process root. The put_old must be
2627 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2628 * pointed to by put_old must yield the same directory as new_root. No other
2629 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2630 *
4a0d11fa
NB
2631 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2632 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2633 * in this situation.
2634 *
1da177e4
LT
2635 * Notes:
2636 * - we don't move root/cwd if they are not at the root (reason: if something
2637 * cared enough to change them, it's probably wrong to force them elsewhere)
2638 * - it's okay to pick a root that isn't the root of a file system, e.g.
2639 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2640 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2641 * first.
2642 */
3480b257
HC
2643SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2644 const char __user *, put_old)
1da177e4 2645{
2d8f3038 2646 struct path new, old, parent_path, root_parent, root;
84d17192
AV
2647 struct mount *new_mnt, *root_mnt, *old_mnt;
2648 struct mountpoint *old_mp, *root_mp;
1da177e4
LT
2649 int error;
2650
9b40bc90 2651 if (!may_mount())
1da177e4
LT
2652 return -EPERM;
2653
2d8f3038 2654 error = user_path_dir(new_root, &new);
1da177e4
LT
2655 if (error)
2656 goto out0;
1da177e4 2657
2d8f3038 2658 error = user_path_dir(put_old, &old);
1da177e4
LT
2659 if (error)
2660 goto out1;
2661
2d8f3038 2662 error = security_sb_pivotroot(&old, &new);
b12cea91
AV
2663 if (error)
2664 goto out2;
1da177e4 2665
f7ad3c6b 2666 get_fs_root(current->fs, &root);
84d17192
AV
2667 old_mp = lock_mount(&old);
2668 error = PTR_ERR(old_mp);
2669 if (IS_ERR(old_mp))
b12cea91
AV
2670 goto out3;
2671
1da177e4 2672 error = -EINVAL;
419148da
AV
2673 new_mnt = real_mount(new.mnt);
2674 root_mnt = real_mount(root.mnt);
84d17192
AV
2675 old_mnt = real_mount(old.mnt);
2676 if (IS_MNT_SHARED(old_mnt) ||
fc7be130
AV
2677 IS_MNT_SHARED(new_mnt->mnt_parent) ||
2678 IS_MNT_SHARED(root_mnt->mnt_parent))
b12cea91 2679 goto out4;
143c8c91 2680 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
b12cea91 2681 goto out4;
5ff9d8a6
EB
2682 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
2683 goto out4;
1da177e4 2684 error = -ENOENT;
f3da392e 2685 if (d_unlinked(new.dentry))
b12cea91 2686 goto out4;
1da177e4 2687 error = -EBUSY;
84d17192 2688 if (new_mnt == root_mnt || old_mnt == root_mnt)
b12cea91 2689 goto out4; /* loop, on the same file system */
1da177e4 2690 error = -EINVAL;
8c3ee42e 2691 if (root.mnt->mnt_root != root.dentry)
b12cea91 2692 goto out4; /* not a mountpoint */
676da58d 2693 if (!mnt_has_parent(root_mnt))
b12cea91 2694 goto out4; /* not attached */
84d17192 2695 root_mp = root_mnt->mnt_mp;
2d8f3038 2696 if (new.mnt->mnt_root != new.dentry)
b12cea91 2697 goto out4; /* not a mountpoint */
676da58d 2698 if (!mnt_has_parent(new_mnt))
b12cea91 2699 goto out4; /* not attached */
4ac91378 2700 /* make sure we can reach put_old from new_root */
84d17192 2701 if (!is_path_reachable(old_mnt, old.dentry, &new))
b12cea91 2702 goto out4;
84d17192 2703 root_mp->m_count++; /* pin it so it won't go away */
962830df 2704 br_write_lock(&vfsmount_lock);
419148da
AV
2705 detach_mnt(new_mnt, &parent_path);
2706 detach_mnt(root_mnt, &root_parent);
5ff9d8a6
EB
2707 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
2708 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
2709 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2710 }
4ac91378 2711 /* mount old root on put_old */
84d17192 2712 attach_mnt(root_mnt, old_mnt, old_mp);
4ac91378 2713 /* mount new_root on / */
84d17192 2714 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
6b3286ed 2715 touch_mnt_namespace(current->nsproxy->mnt_ns);
962830df 2716 br_write_unlock(&vfsmount_lock);
2d8f3038 2717 chroot_fs_refs(&root, &new);
84d17192 2718 put_mountpoint(root_mp);
1da177e4 2719 error = 0;
b12cea91 2720out4:
84d17192 2721 unlock_mount(old_mp);
b12cea91
AV
2722 if (!error) {
2723 path_put(&root_parent);
2724 path_put(&parent_path);
2725 }
2726out3:
8c3ee42e 2727 path_put(&root);
b12cea91 2728out2:
2d8f3038 2729 path_put(&old);
1da177e4 2730out1:
2d8f3038 2731 path_put(&new);
1da177e4 2732out0:
1da177e4 2733 return error;
1da177e4
LT
2734}
2735
2736static void __init init_mount_tree(void)
2737{
2738 struct vfsmount *mnt;
6b3286ed 2739 struct mnt_namespace *ns;
ac748a09 2740 struct path root;
0c55cfc4 2741 struct file_system_type *type;
1da177e4 2742
0c55cfc4
EB
2743 type = get_fs_type("rootfs");
2744 if (!type)
2745 panic("Can't find rootfs type");
2746 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
2747 put_filesystem(type);
1da177e4
LT
2748 if (IS_ERR(mnt))
2749 panic("Can't create rootfs");
b3e19d92 2750
3b22edc5
TM
2751 ns = create_mnt_ns(mnt);
2752 if (IS_ERR(ns))
1da177e4 2753 panic("Can't allocate initial namespace");
6b3286ed
KK
2754
2755 init_task.nsproxy->mnt_ns = ns;
2756 get_mnt_ns(ns);
2757
be08d6d2
AV
2758 root.mnt = mnt;
2759 root.dentry = mnt->mnt_root;
ac748a09
JB
2760
2761 set_fs_pwd(current->fs, &root);
2762 set_fs_root(current->fs, &root);
1da177e4
LT
2763}
2764
74bf17cf 2765void __init mnt_init(void)
1da177e4 2766{
13f14b4d 2767 unsigned u;
15a67dd8 2768 int err;
1da177e4 2769
7d6fec45 2770 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
20c2df83 2771 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 2772
b58fed8b 2773 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
84d17192 2774 mountpoint_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
1da177e4 2775
84d17192 2776 if (!mount_hashtable || !mountpoint_hashtable)
1da177e4
LT
2777 panic("Failed to allocate mount hash table\n");
2778
80cdc6da 2779 printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
13f14b4d
ED
2780
2781 for (u = 0; u < HASH_SIZE; u++)
2782 INIT_LIST_HEAD(&mount_hashtable[u]);
84d17192
AV
2783 for (u = 0; u < HASH_SIZE; u++)
2784 INIT_LIST_HEAD(&mountpoint_hashtable[u]);
1da177e4 2785
962830df 2786 br_lock_init(&vfsmount_lock);
99b7db7b 2787
15a67dd8
RD
2788 err = sysfs_init();
2789 if (err)
2790 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 2791 __func__, err);
00d26666
GKH
2792 fs_kobj = kobject_create_and_add("fs", NULL);
2793 if (!fs_kobj)
8e24eea7 2794 printk(KERN_WARNING "%s: kobj create error\n", __func__);
1da177e4
LT
2795 init_rootfs();
2796 init_mount_tree();
2797}
2798
616511d0 2799void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 2800{
d498b25a 2801 if (!atomic_dec_and_test(&ns->count))
616511d0 2802 return;
7b00ed6f 2803 drop_collected_mounts(&ns->root->mnt);
771b1371 2804 free_mnt_ns(ns);
1da177e4 2805}
9d412a43
AV
2806
2807struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2808{
423e0ab0
TC
2809 struct vfsmount *mnt;
2810 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2811 if (!IS_ERR(mnt)) {
2812 /*
2813 * it is a longterm mount, don't release mnt until
2814 * we unmount before file sys is unregistered
2815 */
f7a99c5b 2816 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
423e0ab0
TC
2817 }
2818 return mnt;
9d412a43
AV
2819}
2820EXPORT_SYMBOL_GPL(kern_mount_data);
423e0ab0
TC
2821
2822void kern_unmount(struct vfsmount *mnt)
2823{
2824 /* release long term mount so mount point can be released */
2825 if (!IS_ERR_OR_NULL(mnt)) {
f7a99c5b
AV
2826 br_write_lock(&vfsmount_lock);
2827 real_mount(mnt)->mnt_ns = NULL;
2828 br_write_unlock(&vfsmount_lock);
423e0ab0
TC
2829 mntput(mnt);
2830 }
2831}
2832EXPORT_SYMBOL(kern_unmount);
02125a82
AV
2833
2834bool our_mnt(struct vfsmount *mnt)
2835{
143c8c91 2836 return check_mnt(real_mount(mnt));
02125a82 2837}
8823c079 2838
3151527e
EB
2839bool current_chrooted(void)
2840{
2841 /* Does the current process have a non-standard root */
2842 struct path ns_root;
2843 struct path fs_root;
2844 bool chrooted;
2845
2846 /* Find the namespace root */
2847 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
2848 ns_root.dentry = ns_root.mnt->mnt_root;
2849 path_get(&ns_root);
2850 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
2851 ;
2852
2853 get_fs_root(current->fs, &fs_root);
2854
2855 chrooted = !path_equal(&fs_root, &ns_root);
2856
2857 path_put(&fs_root);
2858 path_put(&ns_root);
2859
2860 return chrooted;
2861}
2862
e51db735 2863bool fs_fully_visible(struct file_system_type *type)
87a8ebd6
EB
2864{
2865 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
2866 struct mount *mnt;
e51db735 2867 bool visible = false;
87a8ebd6 2868
e51db735
EB
2869 if (unlikely(!ns))
2870 return false;
2871
2872 namespace_lock();
87a8ebd6 2873 list_for_each_entry(mnt, &ns->list, mnt_list) {
e51db735
EB
2874 struct mount *child;
2875 if (mnt->mnt.mnt_sb->s_type != type)
2876 continue;
2877
2878 /* This mount is not fully visible if there are any child mounts
2879 * that cover anything except for empty directories.
2880 */
2881 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2882 struct inode *inode = child->mnt_mountpoint->d_inode;
2883 if (!S_ISDIR(inode->i_mode))
2884 goto next;
2885 if (inode->i_nlink != 2)
2886 goto next;
87a8ebd6 2887 }
e51db735
EB
2888 visible = true;
2889 goto found;
2890 next: ;
87a8ebd6 2891 }
e51db735
EB
2892found:
2893 namespace_unlock();
2894 return visible;
87a8ebd6
EB
2895}
2896
8823c079
EB
2897static void *mntns_get(struct task_struct *task)
2898{
2899 struct mnt_namespace *ns = NULL;
2900 struct nsproxy *nsproxy;
2901
2902 rcu_read_lock();
2903 nsproxy = task_nsproxy(task);
2904 if (nsproxy) {
2905 ns = nsproxy->mnt_ns;
2906 get_mnt_ns(ns);
2907 }
2908 rcu_read_unlock();
2909
2910 return ns;
2911}
2912
2913static void mntns_put(void *ns)
2914{
2915 put_mnt_ns(ns);
2916}
2917
2918static int mntns_install(struct nsproxy *nsproxy, void *ns)
2919{
2920 struct fs_struct *fs = current->fs;
2921 struct mnt_namespace *mnt_ns = ns;
2922 struct path root;
2923
0c55cfc4 2924 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
c7b96acf
EB
2925 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
2926 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
ae11e0f1 2927 return -EPERM;
8823c079
EB
2928
2929 if (fs->users != 1)
2930 return -EINVAL;
2931
2932 get_mnt_ns(mnt_ns);
2933 put_mnt_ns(nsproxy->mnt_ns);
2934 nsproxy->mnt_ns = mnt_ns;
2935
2936 /* Find the root */
2937 root.mnt = &mnt_ns->root->mnt;
2938 root.dentry = mnt_ns->root->mnt.mnt_root;
2939 path_get(&root);
2940 while(d_mountpoint(root.dentry) && follow_down_one(&root))
2941 ;
2942
2943 /* Update the pwd and root */
2944 set_fs_pwd(fs, &root);
2945 set_fs_root(fs, &root);
2946
2947 path_put(&root);
2948 return 0;
2949}
2950
98f842e6
EB
2951static unsigned int mntns_inum(void *ns)
2952{
2953 struct mnt_namespace *mnt_ns = ns;
2954 return mnt_ns->proc_inum;
2955}
2956
8823c079
EB
2957const struct proc_ns_operations mntns_operations = {
2958 .name = "mnt",
2959 .type = CLONE_NEWNS,
2960 .get = mntns_get,
2961 .put = mntns_put,
2962 .install = mntns_install,
98f842e6 2963 .inum = mntns_inum,
8823c079 2964};