]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/namespace.c
capabilities: allow nice if we are privileged
[mirror_ubuntu-artful-kernel.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4 11#include <linux/syscalls.h>
d10577a8 12#include <linux/export.h>
16f7e0fe 13#include <linux/capability.h>
6b3286ed 14#include <linux/mnt_namespace.h>
771b1371 15#include <linux/user_namespace.h>
1da177e4
LT
16#include <linux/namei.h>
17#include <linux/security.h>
73cd49ec 18#include <linux/idr.h>
d10577a8
AV
19#include <linux/acct.h> /* acct_auto_close_mnt */
20#include <linux/ramfs.h> /* init_rootfs */
21#include <linux/fs_struct.h> /* get_fs_root et.al. */
22#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23#include <linux/uaccess.h>
0bb80f24 24#include <linux/proc_ns.h>
20b4fb48 25#include <linux/magic.h>
07b20889 26#include "pnode.h"
948730b0 27#include "internal.h"
1da177e4 28
13f14b4d
ED
29#define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
30#define HASH_SIZE (1UL << HASH_SHIFT)
31
5addc5dd 32static int event;
73cd49ec 33static DEFINE_IDA(mnt_id_ida);
719f5d7f 34static DEFINE_IDA(mnt_group_ida);
99b7db7b 35static DEFINE_SPINLOCK(mnt_id_lock);
f21f6220
AV
36static int mnt_id_start = 0;
37static int mnt_group_start = 1;
1da177e4 38
fa3536cc 39static struct list_head *mount_hashtable __read_mostly;
84d17192 40static struct list_head *mountpoint_hashtable __read_mostly;
e18b890b 41static struct kmem_cache *mnt_cache __read_mostly;
390c6843 42static struct rw_semaphore namespace_sem;
1da177e4 43
f87fd4c2 44/* /sys/fs */
00d26666
GKH
45struct kobject *fs_kobj;
46EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 47
99b7db7b
NP
48/*
49 * vfsmount lock may be taken for read to prevent changes to the
50 * vfsmount hash, ie. during mountpoint lookups or walking back
51 * up the tree.
52 *
53 * It should be taken for write in all cases where the vfsmount
54 * tree or hash is modified or when a vfsmount structure is modified.
55 */
56DEFINE_BRLOCK(vfsmount_lock);
57
1da177e4
LT
58static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
59{
b58fed8b
RP
60 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
61 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
13f14b4d
ED
62 tmp = tmp + (tmp >> HASH_SHIFT);
63 return tmp & (HASH_SIZE - 1);
1da177e4
LT
64}
65
3d733633
DH
66#define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
67
99b7db7b
NP
68/*
69 * allocation is serialized by namespace_sem, but we need the spinlock to
70 * serialize with freeing.
71 */
b105e270 72static int mnt_alloc_id(struct mount *mnt)
73cd49ec
MS
73{
74 int res;
75
76retry:
77 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
99b7db7b 78 spin_lock(&mnt_id_lock);
15169fe7 79 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
f21f6220 80 if (!res)
15169fe7 81 mnt_id_start = mnt->mnt_id + 1;
99b7db7b 82 spin_unlock(&mnt_id_lock);
73cd49ec
MS
83 if (res == -EAGAIN)
84 goto retry;
85
86 return res;
87}
88
b105e270 89static void mnt_free_id(struct mount *mnt)
73cd49ec 90{
15169fe7 91 int id = mnt->mnt_id;
99b7db7b 92 spin_lock(&mnt_id_lock);
f21f6220
AV
93 ida_remove(&mnt_id_ida, id);
94 if (mnt_id_start > id)
95 mnt_id_start = id;
99b7db7b 96 spin_unlock(&mnt_id_lock);
73cd49ec
MS
97}
98
719f5d7f
MS
99/*
100 * Allocate a new peer group ID
101 *
102 * mnt_group_ida is protected by namespace_sem
103 */
4b8b21f4 104static int mnt_alloc_group_id(struct mount *mnt)
719f5d7f 105{
f21f6220
AV
106 int res;
107
719f5d7f
MS
108 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
109 return -ENOMEM;
110
f21f6220
AV
111 res = ida_get_new_above(&mnt_group_ida,
112 mnt_group_start,
15169fe7 113 &mnt->mnt_group_id);
f21f6220 114 if (!res)
15169fe7 115 mnt_group_start = mnt->mnt_group_id + 1;
f21f6220
AV
116
117 return res;
719f5d7f
MS
118}
119
120/*
121 * Release a peer group ID
122 */
4b8b21f4 123void mnt_release_group_id(struct mount *mnt)
719f5d7f 124{
15169fe7 125 int id = mnt->mnt_group_id;
f21f6220
AV
126 ida_remove(&mnt_group_ida, id);
127 if (mnt_group_start > id)
128 mnt_group_start = id;
15169fe7 129 mnt->mnt_group_id = 0;
719f5d7f
MS
130}
131
b3e19d92
NP
132/*
133 * vfsmount lock must be held for read
134 */
83adc753 135static inline void mnt_add_count(struct mount *mnt, int n)
b3e19d92
NP
136{
137#ifdef CONFIG_SMP
68e8a9fe 138 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
b3e19d92
NP
139#else
140 preempt_disable();
68e8a9fe 141 mnt->mnt_count += n;
b3e19d92
NP
142 preempt_enable();
143#endif
144}
145
b3e19d92
NP
146/*
147 * vfsmount lock must be held for write
148 */
83adc753 149unsigned int mnt_get_count(struct mount *mnt)
b3e19d92
NP
150{
151#ifdef CONFIG_SMP
f03c6599 152 unsigned int count = 0;
b3e19d92
NP
153 int cpu;
154
155 for_each_possible_cpu(cpu) {
68e8a9fe 156 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
b3e19d92
NP
157 }
158
159 return count;
160#else
68e8a9fe 161 return mnt->mnt_count;
b3e19d92
NP
162#endif
163}
164
b105e270 165static struct mount *alloc_vfsmnt(const char *name)
1da177e4 166{
c63181e6
AV
167 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
168 if (mnt) {
73cd49ec
MS
169 int err;
170
c63181e6 171 err = mnt_alloc_id(mnt);
88b38782
LZ
172 if (err)
173 goto out_free_cache;
174
175 if (name) {
c63181e6
AV
176 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
177 if (!mnt->mnt_devname)
88b38782 178 goto out_free_id;
73cd49ec
MS
179 }
180
b3e19d92 181#ifdef CONFIG_SMP
c63181e6
AV
182 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
183 if (!mnt->mnt_pcp)
b3e19d92
NP
184 goto out_free_devname;
185
c63181e6 186 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
b3e19d92 187#else
c63181e6
AV
188 mnt->mnt_count = 1;
189 mnt->mnt_writers = 0;
b3e19d92
NP
190#endif
191
c63181e6
AV
192 INIT_LIST_HEAD(&mnt->mnt_hash);
193 INIT_LIST_HEAD(&mnt->mnt_child);
194 INIT_LIST_HEAD(&mnt->mnt_mounts);
195 INIT_LIST_HEAD(&mnt->mnt_list);
196 INIT_LIST_HEAD(&mnt->mnt_expire);
197 INIT_LIST_HEAD(&mnt->mnt_share);
198 INIT_LIST_HEAD(&mnt->mnt_slave_list);
199 INIT_LIST_HEAD(&mnt->mnt_slave);
2504c5d6
AG
200#ifdef CONFIG_FSNOTIFY
201 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
d3ef3d73 202#endif
1da177e4 203 }
c63181e6 204 return mnt;
88b38782 205
d3ef3d73 206#ifdef CONFIG_SMP
207out_free_devname:
c63181e6 208 kfree(mnt->mnt_devname);
d3ef3d73 209#endif
88b38782 210out_free_id:
c63181e6 211 mnt_free_id(mnt);
88b38782 212out_free_cache:
c63181e6 213 kmem_cache_free(mnt_cache, mnt);
88b38782 214 return NULL;
1da177e4
LT
215}
216
3d733633
DH
217/*
218 * Most r/o checks on a fs are for operations that take
219 * discrete amounts of time, like a write() or unlink().
220 * We must keep track of when those operations start
221 * (for permission checks) and when they end, so that
222 * we can determine when writes are able to occur to
223 * a filesystem.
224 */
225/*
226 * __mnt_is_readonly: check whether a mount is read-only
227 * @mnt: the mount to check for its write status
228 *
229 * This shouldn't be used directly ouside of the VFS.
230 * It does not guarantee that the filesystem will stay
231 * r/w, just that it is right *now*. This can not and
232 * should not be used in place of IS_RDONLY(inode).
233 * mnt_want/drop_write() will _keep_ the filesystem
234 * r/w.
235 */
236int __mnt_is_readonly(struct vfsmount *mnt)
237{
2e4b7fcd
DH
238 if (mnt->mnt_flags & MNT_READONLY)
239 return 1;
240 if (mnt->mnt_sb->s_flags & MS_RDONLY)
241 return 1;
242 return 0;
3d733633
DH
243}
244EXPORT_SYMBOL_GPL(__mnt_is_readonly);
245
83adc753 246static inline void mnt_inc_writers(struct mount *mnt)
d3ef3d73 247{
248#ifdef CONFIG_SMP
68e8a9fe 249 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
d3ef3d73 250#else
68e8a9fe 251 mnt->mnt_writers++;
d3ef3d73 252#endif
253}
3d733633 254
83adc753 255static inline void mnt_dec_writers(struct mount *mnt)
3d733633 256{
d3ef3d73 257#ifdef CONFIG_SMP
68e8a9fe 258 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
d3ef3d73 259#else
68e8a9fe 260 mnt->mnt_writers--;
d3ef3d73 261#endif
3d733633 262}
3d733633 263
83adc753 264static unsigned int mnt_get_writers(struct mount *mnt)
3d733633 265{
d3ef3d73 266#ifdef CONFIG_SMP
267 unsigned int count = 0;
3d733633 268 int cpu;
3d733633
DH
269
270 for_each_possible_cpu(cpu) {
68e8a9fe 271 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
3d733633 272 }
3d733633 273
d3ef3d73 274 return count;
275#else
276 return mnt->mnt_writers;
277#endif
3d733633
DH
278}
279
4ed5e82f
MS
280static int mnt_is_readonly(struct vfsmount *mnt)
281{
282 if (mnt->mnt_sb->s_readonly_remount)
283 return 1;
284 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
285 smp_rmb();
286 return __mnt_is_readonly(mnt);
287}
288
8366025e 289/*
eb04c282
JK
290 * Most r/o & frozen checks on a fs are for operations that take discrete
291 * amounts of time, like a write() or unlink(). We must keep track of when
292 * those operations start (for permission checks) and when they end, so that we
293 * can determine when writes are able to occur to a filesystem.
8366025e
DH
294 */
295/**
eb04c282 296 * __mnt_want_write - get write access to a mount without freeze protection
83adc753 297 * @m: the mount on which to take a write
8366025e 298 *
eb04c282
JK
299 * This tells the low-level filesystem that a write is about to be performed to
300 * it, and makes sure that writes are allowed (mnt it read-write) before
301 * returning success. This operation does not protect against filesystem being
302 * frozen. When the write operation is finished, __mnt_drop_write() must be
303 * called. This is effectively a refcount.
8366025e 304 */
eb04c282 305int __mnt_want_write(struct vfsmount *m)
8366025e 306{
83adc753 307 struct mount *mnt = real_mount(m);
3d733633 308 int ret = 0;
3d733633 309
d3ef3d73 310 preempt_disable();
c6653a83 311 mnt_inc_writers(mnt);
d3ef3d73 312 /*
c6653a83 313 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73 314 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
315 * incremented count after it has set MNT_WRITE_HOLD.
316 */
317 smp_mb();
1e75529e 318 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
d3ef3d73 319 cpu_relax();
320 /*
321 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
322 * be set to match its requirements. So we must not load that until
323 * MNT_WRITE_HOLD is cleared.
324 */
325 smp_rmb();
4ed5e82f 326 if (mnt_is_readonly(m)) {
c6653a83 327 mnt_dec_writers(mnt);
3d733633 328 ret = -EROFS;
3d733633 329 }
d3ef3d73 330 preempt_enable();
eb04c282
JK
331
332 return ret;
333}
334
335/**
336 * mnt_want_write - get write access to a mount
337 * @m: the mount on which to take a write
338 *
339 * This tells the low-level filesystem that a write is about to be performed to
340 * it, and makes sure that writes are allowed (mount is read-write, filesystem
341 * is not frozen) before returning success. When the write operation is
342 * finished, mnt_drop_write() must be called. This is effectively a refcount.
343 */
344int mnt_want_write(struct vfsmount *m)
345{
346 int ret;
347
348 sb_start_write(m->mnt_sb);
349 ret = __mnt_want_write(m);
350 if (ret)
351 sb_end_write(m->mnt_sb);
3d733633 352 return ret;
8366025e
DH
353}
354EXPORT_SYMBOL_GPL(mnt_want_write);
355
96029c4e 356/**
357 * mnt_clone_write - get write access to a mount
358 * @mnt: the mount on which to take a write
359 *
360 * This is effectively like mnt_want_write, except
361 * it must only be used to take an extra write reference
362 * on a mountpoint that we already know has a write reference
363 * on it. This allows some optimisation.
364 *
365 * After finished, mnt_drop_write must be called as usual to
366 * drop the reference.
367 */
368int mnt_clone_write(struct vfsmount *mnt)
369{
370 /* superblock may be r/o */
371 if (__mnt_is_readonly(mnt))
372 return -EROFS;
373 preempt_disable();
83adc753 374 mnt_inc_writers(real_mount(mnt));
96029c4e 375 preempt_enable();
376 return 0;
377}
378EXPORT_SYMBOL_GPL(mnt_clone_write);
379
380/**
eb04c282 381 * __mnt_want_write_file - get write access to a file's mount
96029c4e 382 * @file: the file who's mount on which to take a write
383 *
eb04c282 384 * This is like __mnt_want_write, but it takes a file and can
96029c4e 385 * do some optimisations if the file is open for write already
386 */
eb04c282 387int __mnt_want_write_file(struct file *file)
96029c4e 388{
496ad9aa 389 struct inode *inode = file_inode(file);
eb04c282 390
2d8dd38a 391 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
eb04c282 392 return __mnt_want_write(file->f_path.mnt);
96029c4e 393 else
394 return mnt_clone_write(file->f_path.mnt);
395}
eb04c282
JK
396
397/**
398 * mnt_want_write_file - get write access to a file's mount
399 * @file: the file who's mount on which to take a write
400 *
401 * This is like mnt_want_write, but it takes a file and can
402 * do some optimisations if the file is open for write already
403 */
404int mnt_want_write_file(struct file *file)
405{
406 int ret;
407
408 sb_start_write(file->f_path.mnt->mnt_sb);
409 ret = __mnt_want_write_file(file);
410 if (ret)
411 sb_end_write(file->f_path.mnt->mnt_sb);
412 return ret;
413}
96029c4e 414EXPORT_SYMBOL_GPL(mnt_want_write_file);
415
8366025e 416/**
eb04c282 417 * __mnt_drop_write - give up write access to a mount
8366025e
DH
418 * @mnt: the mount on which to give up write access
419 *
420 * Tells the low-level filesystem that we are done
421 * performing writes to it. Must be matched with
eb04c282 422 * __mnt_want_write() call above.
8366025e 423 */
eb04c282 424void __mnt_drop_write(struct vfsmount *mnt)
8366025e 425{
d3ef3d73 426 preempt_disable();
83adc753 427 mnt_dec_writers(real_mount(mnt));
d3ef3d73 428 preempt_enable();
8366025e 429}
eb04c282
JK
430
431/**
432 * mnt_drop_write - give up write access to a mount
433 * @mnt: the mount on which to give up write access
434 *
435 * Tells the low-level filesystem that we are done performing writes to it and
436 * also allows filesystem to be frozen again. Must be matched with
437 * mnt_want_write() call above.
438 */
439void mnt_drop_write(struct vfsmount *mnt)
440{
441 __mnt_drop_write(mnt);
442 sb_end_write(mnt->mnt_sb);
443}
8366025e
DH
444EXPORT_SYMBOL_GPL(mnt_drop_write);
445
eb04c282
JK
446void __mnt_drop_write_file(struct file *file)
447{
448 __mnt_drop_write(file->f_path.mnt);
449}
450
2a79f17e
AV
451void mnt_drop_write_file(struct file *file)
452{
453 mnt_drop_write(file->f_path.mnt);
454}
455EXPORT_SYMBOL(mnt_drop_write_file);
456
83adc753 457static int mnt_make_readonly(struct mount *mnt)
8366025e 458{
3d733633
DH
459 int ret = 0;
460
962830df 461 br_write_lock(&vfsmount_lock);
83adc753 462 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
3d733633 463 /*
d3ef3d73 464 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
465 * should be visible before we do.
3d733633 466 */
d3ef3d73 467 smp_mb();
468
3d733633 469 /*
d3ef3d73 470 * With writers on hold, if this value is zero, then there are
471 * definitely no active writers (although held writers may subsequently
472 * increment the count, they'll have to wait, and decrement it after
473 * seeing MNT_READONLY).
474 *
475 * It is OK to have counter incremented on one CPU and decremented on
476 * another: the sum will add up correctly. The danger would be when we
477 * sum up each counter, if we read a counter before it is incremented,
478 * but then read another CPU's count which it has been subsequently
479 * decremented from -- we would see more decrements than we should.
480 * MNT_WRITE_HOLD protects against this scenario, because
481 * mnt_want_write first increments count, then smp_mb, then spins on
482 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
483 * we're counting up here.
3d733633 484 */
c6653a83 485 if (mnt_get_writers(mnt) > 0)
d3ef3d73 486 ret = -EBUSY;
487 else
83adc753 488 mnt->mnt.mnt_flags |= MNT_READONLY;
d3ef3d73 489 /*
490 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
491 * that become unheld will see MNT_READONLY.
492 */
493 smp_wmb();
83adc753 494 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
962830df 495 br_write_unlock(&vfsmount_lock);
3d733633 496 return ret;
8366025e 497}
8366025e 498
83adc753 499static void __mnt_unmake_readonly(struct mount *mnt)
2e4b7fcd 500{
962830df 501 br_write_lock(&vfsmount_lock);
83adc753 502 mnt->mnt.mnt_flags &= ~MNT_READONLY;
962830df 503 br_write_unlock(&vfsmount_lock);
2e4b7fcd
DH
504}
505
4ed5e82f
MS
506int sb_prepare_remount_readonly(struct super_block *sb)
507{
508 struct mount *mnt;
509 int err = 0;
510
8e8b8796
MS
511 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
512 if (atomic_long_read(&sb->s_remove_count))
513 return -EBUSY;
514
962830df 515 br_write_lock(&vfsmount_lock);
4ed5e82f
MS
516 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
517 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
518 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
519 smp_mb();
520 if (mnt_get_writers(mnt) > 0) {
521 err = -EBUSY;
522 break;
523 }
524 }
525 }
8e8b8796
MS
526 if (!err && atomic_long_read(&sb->s_remove_count))
527 err = -EBUSY;
528
4ed5e82f
MS
529 if (!err) {
530 sb->s_readonly_remount = 1;
531 smp_wmb();
532 }
533 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
534 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
535 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
536 }
962830df 537 br_write_unlock(&vfsmount_lock);
4ed5e82f
MS
538
539 return err;
540}
541
b105e270 542static void free_vfsmnt(struct mount *mnt)
1da177e4 543{
52ba1621 544 kfree(mnt->mnt_devname);
73cd49ec 545 mnt_free_id(mnt);
d3ef3d73 546#ifdef CONFIG_SMP
68e8a9fe 547 free_percpu(mnt->mnt_pcp);
d3ef3d73 548#endif
b105e270 549 kmem_cache_free(mnt_cache, mnt);
1da177e4
LT
550}
551
552/*
a05964f3
RP
553 * find the first or last mount at @dentry on vfsmount @mnt depending on
554 * @dir. If @dir is set return the first mount else return the last mount.
99b7db7b 555 * vfsmount_lock must be held for read or write.
1da177e4 556 */
c7105365 557struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
a05964f3 558 int dir)
1da177e4 559{
b58fed8b
RP
560 struct list_head *head = mount_hashtable + hash(mnt, dentry);
561 struct list_head *tmp = head;
c7105365 562 struct mount *p, *found = NULL;
1da177e4 563
1da177e4 564 for (;;) {
a05964f3 565 tmp = dir ? tmp->next : tmp->prev;
1da177e4
LT
566 p = NULL;
567 if (tmp == head)
568 break;
1b8e5564 569 p = list_entry(tmp, struct mount, mnt_hash);
a73324da 570 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) {
a05964f3 571 found = p;
1da177e4
LT
572 break;
573 }
574 }
1da177e4
LT
575 return found;
576}
577
a05964f3 578/*
f015f126
DH
579 * lookup_mnt - Return the first child mount mounted at path
580 *
581 * "First" means first mounted chronologically. If you create the
582 * following mounts:
583 *
584 * mount /dev/sda1 /mnt
585 * mount /dev/sda2 /mnt
586 * mount /dev/sda3 /mnt
587 *
588 * Then lookup_mnt() on the base /mnt dentry in the root mount will
589 * return successively the root dentry and vfsmount of /dev/sda1, then
590 * /dev/sda2, then /dev/sda3, then NULL.
591 *
592 * lookup_mnt takes a reference to the found vfsmount.
a05964f3 593 */
1c755af4 594struct vfsmount *lookup_mnt(struct path *path)
a05964f3 595{
c7105365 596 struct mount *child_mnt;
99b7db7b 597
962830df 598 br_read_lock(&vfsmount_lock);
c7105365
AV
599 child_mnt = __lookup_mnt(path->mnt, path->dentry, 1);
600 if (child_mnt) {
601 mnt_add_count(child_mnt, 1);
962830df 602 br_read_unlock(&vfsmount_lock);
c7105365
AV
603 return &child_mnt->mnt;
604 } else {
962830df 605 br_read_unlock(&vfsmount_lock);
c7105365
AV
606 return NULL;
607 }
a05964f3
RP
608}
609
84d17192
AV
610static struct mountpoint *new_mountpoint(struct dentry *dentry)
611{
612 struct list_head *chain = mountpoint_hashtable + hash(NULL, dentry);
613 struct mountpoint *mp;
614
615 list_for_each_entry(mp, chain, m_hash) {
616 if (mp->m_dentry == dentry) {
617 /* might be worth a WARN_ON() */
618 if (d_unlinked(dentry))
619 return ERR_PTR(-ENOENT);
620 mp->m_count++;
621 return mp;
622 }
623 }
624
625 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
626 if (!mp)
627 return ERR_PTR(-ENOMEM);
628
629 spin_lock(&dentry->d_lock);
630 if (d_unlinked(dentry)) {
631 spin_unlock(&dentry->d_lock);
632 kfree(mp);
633 return ERR_PTR(-ENOENT);
634 }
635 dentry->d_flags |= DCACHE_MOUNTED;
636 spin_unlock(&dentry->d_lock);
637 mp->m_dentry = dentry;
638 mp->m_count = 1;
639 list_add(&mp->m_hash, chain);
640 return mp;
641}
642
643static void put_mountpoint(struct mountpoint *mp)
644{
645 if (!--mp->m_count) {
646 struct dentry *dentry = mp->m_dentry;
647 spin_lock(&dentry->d_lock);
648 dentry->d_flags &= ~DCACHE_MOUNTED;
649 spin_unlock(&dentry->d_lock);
650 list_del(&mp->m_hash);
651 kfree(mp);
652 }
653}
654
143c8c91 655static inline int check_mnt(struct mount *mnt)
1da177e4 656{
6b3286ed 657 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
658}
659
99b7db7b
NP
660/*
661 * vfsmount lock must be held for write
662 */
6b3286ed 663static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
664{
665 if (ns) {
666 ns->event = ++event;
667 wake_up_interruptible(&ns->poll);
668 }
669}
670
99b7db7b
NP
671/*
672 * vfsmount lock must be held for write
673 */
6b3286ed 674static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
675{
676 if (ns && ns->event != event) {
677 ns->event = event;
678 wake_up_interruptible(&ns->poll);
679 }
680}
681
99b7db7b
NP
682/*
683 * vfsmount lock must be held for write
684 */
419148da
AV
685static void detach_mnt(struct mount *mnt, struct path *old_path)
686{
a73324da 687 old_path->dentry = mnt->mnt_mountpoint;
0714a533
AV
688 old_path->mnt = &mnt->mnt_parent->mnt;
689 mnt->mnt_parent = mnt;
a73324da 690 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
6b41d536 691 list_del_init(&mnt->mnt_child);
1b8e5564 692 list_del_init(&mnt->mnt_hash);
84d17192
AV
693 put_mountpoint(mnt->mnt_mp);
694 mnt->mnt_mp = NULL;
1da177e4
LT
695}
696
99b7db7b
NP
697/*
698 * vfsmount lock must be held for write
699 */
84d17192
AV
700void mnt_set_mountpoint(struct mount *mnt,
701 struct mountpoint *mp,
44d964d6 702 struct mount *child_mnt)
b90fa9ae 703{
84d17192 704 mp->m_count++;
3a2393d7 705 mnt_add_count(mnt, 1); /* essentially, that's mntget */
84d17192 706 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
3a2393d7 707 child_mnt->mnt_parent = mnt;
84d17192 708 child_mnt->mnt_mp = mp;
b90fa9ae
RP
709}
710
99b7db7b
NP
711/*
712 * vfsmount lock must be held for write
713 */
84d17192
AV
714static void attach_mnt(struct mount *mnt,
715 struct mount *parent,
716 struct mountpoint *mp)
1da177e4 717{
84d17192 718 mnt_set_mountpoint(parent, mp, mnt);
1b8e5564 719 list_add_tail(&mnt->mnt_hash, mount_hashtable +
84d17192
AV
720 hash(&parent->mnt, mp->m_dentry));
721 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
b90fa9ae
RP
722}
723
724/*
99b7db7b 725 * vfsmount lock must be held for write
b90fa9ae 726 */
4b2619a5 727static void commit_tree(struct mount *mnt)
b90fa9ae 728{
0714a533 729 struct mount *parent = mnt->mnt_parent;
83adc753 730 struct mount *m;
b90fa9ae 731 LIST_HEAD(head);
143c8c91 732 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae 733
0714a533 734 BUG_ON(parent == mnt);
b90fa9ae 735
1a4eeaf2 736 list_add_tail(&head, &mnt->mnt_list);
f7a99c5b 737 list_for_each_entry(m, &head, mnt_list)
143c8c91 738 m->mnt_ns = n;
f03c6599 739
b90fa9ae
RP
740 list_splice(&head, n->list.prev);
741
1b8e5564 742 list_add_tail(&mnt->mnt_hash, mount_hashtable +
a73324da 743 hash(&parent->mnt, mnt->mnt_mountpoint));
6b41d536 744 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
6b3286ed 745 touch_mnt_namespace(n);
1da177e4
LT
746}
747
909b0a88 748static struct mount *next_mnt(struct mount *p, struct mount *root)
1da177e4 749{
6b41d536
AV
750 struct list_head *next = p->mnt_mounts.next;
751 if (next == &p->mnt_mounts) {
1da177e4 752 while (1) {
909b0a88 753 if (p == root)
1da177e4 754 return NULL;
6b41d536
AV
755 next = p->mnt_child.next;
756 if (next != &p->mnt_parent->mnt_mounts)
1da177e4 757 break;
0714a533 758 p = p->mnt_parent;
1da177e4
LT
759 }
760 }
6b41d536 761 return list_entry(next, struct mount, mnt_child);
1da177e4
LT
762}
763
315fc83e 764static struct mount *skip_mnt_tree(struct mount *p)
9676f0c6 765{
6b41d536
AV
766 struct list_head *prev = p->mnt_mounts.prev;
767 while (prev != &p->mnt_mounts) {
768 p = list_entry(prev, struct mount, mnt_child);
769 prev = p->mnt_mounts.prev;
9676f0c6
RP
770 }
771 return p;
772}
773
9d412a43
AV
774struct vfsmount *
775vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
776{
b105e270 777 struct mount *mnt;
9d412a43
AV
778 struct dentry *root;
779
780 if (!type)
781 return ERR_PTR(-ENODEV);
782
783 mnt = alloc_vfsmnt(name);
784 if (!mnt)
785 return ERR_PTR(-ENOMEM);
786
787 if (flags & MS_KERNMOUNT)
b105e270 788 mnt->mnt.mnt_flags = MNT_INTERNAL;
9d412a43
AV
789
790 root = mount_fs(type, flags, name, data);
791 if (IS_ERR(root)) {
792 free_vfsmnt(mnt);
793 return ERR_CAST(root);
794 }
795
b105e270
AV
796 mnt->mnt.mnt_root = root;
797 mnt->mnt.mnt_sb = root->d_sb;
a73324da 798 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 799 mnt->mnt_parent = mnt;
962830df 800 br_write_lock(&vfsmount_lock);
39f7c4db 801 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
962830df 802 br_write_unlock(&vfsmount_lock);
b105e270 803 return &mnt->mnt;
9d412a43
AV
804}
805EXPORT_SYMBOL_GPL(vfs_kern_mount);
806
87129cc0 807static struct mount *clone_mnt(struct mount *old, struct dentry *root,
36341f64 808 int flag)
1da177e4 809{
87129cc0 810 struct super_block *sb = old->mnt.mnt_sb;
be34d1a3
DH
811 struct mount *mnt;
812 int err;
1da177e4 813
be34d1a3
DH
814 mnt = alloc_vfsmnt(old->mnt_devname);
815 if (!mnt)
816 return ERR_PTR(-ENOMEM);
719f5d7f 817
7a472ef4 818 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
be34d1a3
DH
819 mnt->mnt_group_id = 0; /* not a peer of original */
820 else
821 mnt->mnt_group_id = old->mnt_group_id;
b90fa9ae 822
be34d1a3
DH
823 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
824 err = mnt_alloc_group_id(mnt);
825 if (err)
826 goto out_free;
1da177e4 827 }
be34d1a3
DH
828
829 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD;
132c94e3
EB
830 /* Don't allow unprivileged users to change mount flags */
831 if ((flag & CL_UNPRIVILEGED) && (mnt->mnt.mnt_flags & MNT_READONLY))
832 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
833
5ff9d8a6
EB
834 /* Don't allow unprivileged users to reveal what is under a mount */
835 if ((flag & CL_UNPRIVILEGED) && list_empty(&old->mnt_expire))
836 mnt->mnt.mnt_flags |= MNT_LOCKED;
837
be34d1a3
DH
838 atomic_inc(&sb->s_active);
839 mnt->mnt.mnt_sb = sb;
840 mnt->mnt.mnt_root = dget(root);
841 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
842 mnt->mnt_parent = mnt;
843 br_write_lock(&vfsmount_lock);
844 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
845 br_write_unlock(&vfsmount_lock);
846
7a472ef4
EB
847 if ((flag & CL_SLAVE) ||
848 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
be34d1a3
DH
849 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
850 mnt->mnt_master = old;
851 CLEAR_MNT_SHARED(mnt);
852 } else if (!(flag & CL_PRIVATE)) {
853 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
854 list_add(&mnt->mnt_share, &old->mnt_share);
855 if (IS_MNT_SLAVE(old))
856 list_add(&mnt->mnt_slave, &old->mnt_slave);
857 mnt->mnt_master = old->mnt_master;
858 }
859 if (flag & CL_MAKE_SHARED)
860 set_mnt_shared(mnt);
861
862 /* stick the duplicate mount on the same expiry list
863 * as the original if that was on one */
864 if (flag & CL_EXPIRE) {
865 if (!list_empty(&old->mnt_expire))
866 list_add(&mnt->mnt_expire, &old->mnt_expire);
867 }
868
cb338d06 869 return mnt;
719f5d7f
MS
870
871 out_free:
872 free_vfsmnt(mnt);
be34d1a3 873 return ERR_PTR(err);
1da177e4
LT
874}
875
83adc753 876static inline void mntfree(struct mount *mnt)
1da177e4 877{
83adc753
AV
878 struct vfsmount *m = &mnt->mnt;
879 struct super_block *sb = m->mnt_sb;
b3e19d92 880
3d733633
DH
881 /*
882 * This probably indicates that somebody messed
883 * up a mnt_want/drop_write() pair. If this
884 * happens, the filesystem was probably unable
885 * to make r/w->r/o transitions.
886 */
d3ef3d73 887 /*
b3e19d92
NP
888 * The locking used to deal with mnt_count decrement provides barriers,
889 * so mnt_get_writers() below is safe.
d3ef3d73 890 */
c6653a83 891 WARN_ON(mnt_get_writers(mnt));
83adc753
AV
892 fsnotify_vfsmount_delete(m);
893 dput(m->mnt_root);
894 free_vfsmnt(mnt);
1da177e4
LT
895 deactivate_super(sb);
896}
897
900148dc 898static void mntput_no_expire(struct mount *mnt)
b3e19d92 899{
b3e19d92 900put_again:
f03c6599 901#ifdef CONFIG_SMP
962830df 902 br_read_lock(&vfsmount_lock);
f7a99c5b
AV
903 if (likely(mnt->mnt_ns)) {
904 /* shouldn't be the last one */
aa9c0e07 905 mnt_add_count(mnt, -1);
962830df 906 br_read_unlock(&vfsmount_lock);
f03c6599 907 return;
b3e19d92 908 }
962830df 909 br_read_unlock(&vfsmount_lock);
b3e19d92 910
962830df 911 br_write_lock(&vfsmount_lock);
aa9c0e07 912 mnt_add_count(mnt, -1);
b3e19d92 913 if (mnt_get_count(mnt)) {
962830df 914 br_write_unlock(&vfsmount_lock);
99b7db7b
NP
915 return;
916 }
b3e19d92 917#else
aa9c0e07 918 mnt_add_count(mnt, -1);
b3e19d92 919 if (likely(mnt_get_count(mnt)))
99b7db7b 920 return;
962830df 921 br_write_lock(&vfsmount_lock);
f03c6599 922#endif
863d684f
AV
923 if (unlikely(mnt->mnt_pinned)) {
924 mnt_add_count(mnt, mnt->mnt_pinned + 1);
925 mnt->mnt_pinned = 0;
962830df 926 br_write_unlock(&vfsmount_lock);
900148dc 927 acct_auto_close_mnt(&mnt->mnt);
b3e19d92 928 goto put_again;
7b7b1ace 929 }
962830df 930
39f7c4db 931 list_del(&mnt->mnt_instance);
962830df 932 br_write_unlock(&vfsmount_lock);
b3e19d92
NP
933 mntfree(mnt);
934}
b3e19d92
NP
935
936void mntput(struct vfsmount *mnt)
937{
938 if (mnt) {
863d684f 939 struct mount *m = real_mount(mnt);
b3e19d92 940 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
863d684f
AV
941 if (unlikely(m->mnt_expiry_mark))
942 m->mnt_expiry_mark = 0;
943 mntput_no_expire(m);
b3e19d92
NP
944 }
945}
946EXPORT_SYMBOL(mntput);
947
948struct vfsmount *mntget(struct vfsmount *mnt)
949{
950 if (mnt)
83adc753 951 mnt_add_count(real_mount(mnt), 1);
b3e19d92
NP
952 return mnt;
953}
954EXPORT_SYMBOL(mntget);
955
7b7b1ace
AV
956void mnt_pin(struct vfsmount *mnt)
957{
962830df 958 br_write_lock(&vfsmount_lock);
863d684f 959 real_mount(mnt)->mnt_pinned++;
962830df 960 br_write_unlock(&vfsmount_lock);
7b7b1ace 961}
7b7b1ace
AV
962EXPORT_SYMBOL(mnt_pin);
963
863d684f 964void mnt_unpin(struct vfsmount *m)
7b7b1ace 965{
863d684f 966 struct mount *mnt = real_mount(m);
962830df 967 br_write_lock(&vfsmount_lock);
7b7b1ace 968 if (mnt->mnt_pinned) {
863d684f 969 mnt_add_count(mnt, 1);
7b7b1ace
AV
970 mnt->mnt_pinned--;
971 }
962830df 972 br_write_unlock(&vfsmount_lock);
7b7b1ace 973}
7b7b1ace 974EXPORT_SYMBOL(mnt_unpin);
1da177e4 975
b3b304a2
MS
976static inline void mangle(struct seq_file *m, const char *s)
977{
978 seq_escape(m, s, " \t\n\\");
979}
980
981/*
982 * Simple .show_options callback for filesystems which don't want to
983 * implement more complex mount option showing.
984 *
985 * See also save_mount_options().
986 */
34c80b1d 987int generic_show_options(struct seq_file *m, struct dentry *root)
b3b304a2 988{
2a32cebd
AV
989 const char *options;
990
991 rcu_read_lock();
34c80b1d 992 options = rcu_dereference(root->d_sb->s_options);
b3b304a2
MS
993
994 if (options != NULL && options[0]) {
995 seq_putc(m, ',');
996 mangle(m, options);
997 }
2a32cebd 998 rcu_read_unlock();
b3b304a2
MS
999
1000 return 0;
1001}
1002EXPORT_SYMBOL(generic_show_options);
1003
1004/*
1005 * If filesystem uses generic_show_options(), this function should be
1006 * called from the fill_super() callback.
1007 *
1008 * The .remount_fs callback usually needs to be handled in a special
1009 * way, to make sure, that previous options are not overwritten if the
1010 * remount fails.
1011 *
1012 * Also note, that if the filesystem's .remount_fs function doesn't
1013 * reset all options to their default value, but changes only newly
1014 * given options, then the displayed options will not reflect reality
1015 * any more.
1016 */
1017void save_mount_options(struct super_block *sb, char *options)
1018{
2a32cebd
AV
1019 BUG_ON(sb->s_options);
1020 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
b3b304a2
MS
1021}
1022EXPORT_SYMBOL(save_mount_options);
1023
2a32cebd
AV
1024void replace_mount_options(struct super_block *sb, char *options)
1025{
1026 char *old = sb->s_options;
1027 rcu_assign_pointer(sb->s_options, options);
1028 if (old) {
1029 synchronize_rcu();
1030 kfree(old);
1031 }
1032}
1033EXPORT_SYMBOL(replace_mount_options);
1034
a1a2c409 1035#ifdef CONFIG_PROC_FS
0226f492 1036/* iterator; we want it to have access to namespace_sem, thus here... */
1da177e4
LT
1037static void *m_start(struct seq_file *m, loff_t *pos)
1038{
6ce6e24e 1039 struct proc_mounts *p = proc_mounts(m);
1da177e4 1040
390c6843 1041 down_read(&namespace_sem);
a1a2c409 1042 return seq_list_start(&p->ns->list, *pos);
1da177e4
LT
1043}
1044
1045static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1046{
6ce6e24e 1047 struct proc_mounts *p = proc_mounts(m);
b0765fb8 1048
a1a2c409 1049 return seq_list_next(v, &p->ns->list, pos);
1da177e4
LT
1050}
1051
1052static void m_stop(struct seq_file *m, void *v)
1053{
390c6843 1054 up_read(&namespace_sem);
1da177e4
LT
1055}
1056
0226f492 1057static int m_show(struct seq_file *m, void *v)
2d4d4864 1058{
6ce6e24e 1059 struct proc_mounts *p = proc_mounts(m);
1a4eeaf2 1060 struct mount *r = list_entry(v, struct mount, mnt_list);
0226f492 1061 return p->show(m, &r->mnt);
1da177e4
LT
1062}
1063
a1a2c409 1064const struct seq_operations mounts_op = {
1da177e4
LT
1065 .start = m_start,
1066 .next = m_next,
1067 .stop = m_stop,
0226f492 1068 .show = m_show,
b4629fe2 1069};
a1a2c409 1070#endif /* CONFIG_PROC_FS */
b4629fe2 1071
1da177e4
LT
1072/**
1073 * may_umount_tree - check if a mount tree is busy
1074 * @mnt: root of mount tree
1075 *
1076 * This is called to check if a tree of mounts has any
1077 * open files, pwds, chroots or sub mounts that are
1078 * busy.
1079 */
909b0a88 1080int may_umount_tree(struct vfsmount *m)
1da177e4 1081{
909b0a88 1082 struct mount *mnt = real_mount(m);
36341f64
RP
1083 int actual_refs = 0;
1084 int minimum_refs = 0;
315fc83e 1085 struct mount *p;
909b0a88 1086 BUG_ON(!m);
1da177e4 1087
b3e19d92 1088 /* write lock needed for mnt_get_count */
962830df 1089 br_write_lock(&vfsmount_lock);
909b0a88 1090 for (p = mnt; p; p = next_mnt(p, mnt)) {
83adc753 1091 actual_refs += mnt_get_count(p);
1da177e4 1092 minimum_refs += 2;
1da177e4 1093 }
962830df 1094 br_write_unlock(&vfsmount_lock);
1da177e4
LT
1095
1096 if (actual_refs > minimum_refs)
e3474a8e 1097 return 0;
1da177e4 1098
e3474a8e 1099 return 1;
1da177e4
LT
1100}
1101
1102EXPORT_SYMBOL(may_umount_tree);
1103
1104/**
1105 * may_umount - check if a mount point is busy
1106 * @mnt: root of mount
1107 *
1108 * This is called to check if a mount point has any
1109 * open files, pwds, chroots or sub mounts. If the
1110 * mount has sub mounts this will return busy
1111 * regardless of whether the sub mounts are busy.
1112 *
1113 * Doesn't take quota and stuff into account. IOW, in some cases it will
1114 * give false negatives. The main reason why it's here is that we need
1115 * a non-destructive way to look for easily umountable filesystems.
1116 */
1117int may_umount(struct vfsmount *mnt)
1118{
e3474a8e 1119 int ret = 1;
8ad08d8a 1120 down_read(&namespace_sem);
962830df 1121 br_write_lock(&vfsmount_lock);
1ab59738 1122 if (propagate_mount_busy(real_mount(mnt), 2))
e3474a8e 1123 ret = 0;
962830df 1124 br_write_unlock(&vfsmount_lock);
8ad08d8a 1125 up_read(&namespace_sem);
a05964f3 1126 return ret;
1da177e4
LT
1127}
1128
1129EXPORT_SYMBOL(may_umount);
1130
e3197d83
AV
1131static LIST_HEAD(unmounted); /* protected by namespace_sem */
1132
97216be0 1133static void namespace_unlock(void)
70fbcdf4 1134{
d5e50f74 1135 struct mount *mnt;
97216be0
AV
1136 LIST_HEAD(head);
1137
1138 if (likely(list_empty(&unmounted))) {
1139 up_write(&namespace_sem);
1140 return;
1141 }
1142
1143 list_splice_init(&unmounted, &head);
1144 up_write(&namespace_sem);
1145
1146 while (!list_empty(&head)) {
1147 mnt = list_first_entry(&head, struct mount, mnt_hash);
1b8e5564 1148 list_del_init(&mnt->mnt_hash);
676da58d 1149 if (mnt_has_parent(mnt)) {
70fbcdf4 1150 struct dentry *dentry;
863d684f 1151 struct mount *m;
99b7db7b 1152
962830df 1153 br_write_lock(&vfsmount_lock);
a73324da 1154 dentry = mnt->mnt_mountpoint;
863d684f 1155 m = mnt->mnt_parent;
a73324da 1156 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 1157 mnt->mnt_parent = mnt;
7c4b93d8 1158 m->mnt_ghosts--;
962830df 1159 br_write_unlock(&vfsmount_lock);
70fbcdf4 1160 dput(dentry);
863d684f 1161 mntput(&m->mnt);
70fbcdf4 1162 }
d5e50f74 1163 mntput(&mnt->mnt);
70fbcdf4
RP
1164 }
1165}
1166
97216be0 1167static inline void namespace_lock(void)
e3197d83 1168{
97216be0 1169 down_write(&namespace_sem);
e3197d83
AV
1170}
1171
99b7db7b
NP
1172/*
1173 * vfsmount lock must be held for write
1174 * namespace_sem must be held for write
1175 */
328e6d90 1176void umount_tree(struct mount *mnt, int propagate)
1da177e4 1177{
7b8a53fd 1178 LIST_HEAD(tmp_list);
315fc83e 1179 struct mount *p;
1da177e4 1180
909b0a88 1181 for (p = mnt; p; p = next_mnt(p, mnt))
1b8e5564 1182 list_move(&p->mnt_hash, &tmp_list);
1da177e4 1183
a05964f3 1184 if (propagate)
7b8a53fd 1185 propagate_umount(&tmp_list);
a05964f3 1186
1b8e5564 1187 list_for_each_entry(p, &tmp_list, mnt_hash) {
6776db3d 1188 list_del_init(&p->mnt_expire);
1a4eeaf2 1189 list_del_init(&p->mnt_list);
143c8c91
AV
1190 __touch_mnt_namespace(p->mnt_ns);
1191 p->mnt_ns = NULL;
6b41d536 1192 list_del_init(&p->mnt_child);
676da58d 1193 if (mnt_has_parent(p)) {
863d684f 1194 p->mnt_parent->mnt_ghosts++;
84d17192
AV
1195 put_mountpoint(p->mnt_mp);
1196 p->mnt_mp = NULL;
7c4b93d8 1197 }
0f0afb1d 1198 change_mnt_propagation(p, MS_PRIVATE);
1da177e4 1199 }
328e6d90 1200 list_splice(&tmp_list, &unmounted);
1da177e4
LT
1201}
1202
b54b9be7 1203static void shrink_submounts(struct mount *mnt);
c35038be 1204
1ab59738 1205static int do_umount(struct mount *mnt, int flags)
1da177e4 1206{
1ab59738 1207 struct super_block *sb = mnt->mnt.mnt_sb;
1da177e4
LT
1208 int retval;
1209
1ab59738 1210 retval = security_sb_umount(&mnt->mnt, flags);
1da177e4
LT
1211 if (retval)
1212 return retval;
1213
1214 /*
1215 * Allow userspace to request a mountpoint be expired rather than
1216 * unmounting unconditionally. Unmount only happens if:
1217 * (1) the mark is already set (the mark is cleared by mntput())
1218 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1219 */
1220 if (flags & MNT_EXPIRE) {
1ab59738 1221 if (&mnt->mnt == current->fs->root.mnt ||
1da177e4
LT
1222 flags & (MNT_FORCE | MNT_DETACH))
1223 return -EINVAL;
1224
b3e19d92
NP
1225 /*
1226 * probably don't strictly need the lock here if we examined
1227 * all race cases, but it's a slowpath.
1228 */
962830df 1229 br_write_lock(&vfsmount_lock);
83adc753 1230 if (mnt_get_count(mnt) != 2) {
962830df 1231 br_write_unlock(&vfsmount_lock);
1da177e4 1232 return -EBUSY;
b3e19d92 1233 }
962830df 1234 br_write_unlock(&vfsmount_lock);
1da177e4 1235
863d684f 1236 if (!xchg(&mnt->mnt_expiry_mark, 1))
1da177e4
LT
1237 return -EAGAIN;
1238 }
1239
1240 /*
1241 * If we may have to abort operations to get out of this
1242 * mount, and they will themselves hold resources we must
1243 * allow the fs to do things. In the Unix tradition of
1244 * 'Gee thats tricky lets do it in userspace' the umount_begin
1245 * might fail to complete on the first run through as other tasks
1246 * must return, and the like. Thats for the mount program to worry
1247 * about for the moment.
1248 */
1249
42faad99 1250 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1251 sb->s_op->umount_begin(sb);
42faad99 1252 }
1da177e4
LT
1253
1254 /*
1255 * No sense to grab the lock for this test, but test itself looks
1256 * somewhat bogus. Suggestions for better replacement?
1257 * Ho-hum... In principle, we might treat that as umount + switch
1258 * to rootfs. GC would eventually take care of the old vfsmount.
1259 * Actually it makes sense, especially if rootfs would contain a
1260 * /reboot - static binary that would close all descriptors and
1261 * call reboot(9). Then init(8) could umount root and exec /reboot.
1262 */
1ab59738 1263 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1264 /*
1265 * Special case for "unmounting" root ...
1266 * we just try to remount it readonly.
1267 */
1268 down_write(&sb->s_umount);
4aa98cf7 1269 if (!(sb->s_flags & MS_RDONLY))
1da177e4 1270 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1da177e4
LT
1271 up_write(&sb->s_umount);
1272 return retval;
1273 }
1274
97216be0 1275 namespace_lock();
962830df 1276 br_write_lock(&vfsmount_lock);
5addc5dd 1277 event++;
1da177e4 1278
c35038be 1279 if (!(flags & MNT_DETACH))
b54b9be7 1280 shrink_submounts(mnt);
c35038be 1281
1da177e4 1282 retval = -EBUSY;
a05964f3 1283 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1a4eeaf2 1284 if (!list_empty(&mnt->mnt_list))
328e6d90 1285 umount_tree(mnt, 1);
1da177e4
LT
1286 retval = 0;
1287 }
962830df 1288 br_write_unlock(&vfsmount_lock);
e3197d83 1289 namespace_unlock();
1da177e4
LT
1290 return retval;
1291}
1292
9b40bc90
AV
1293/*
1294 * Is the caller allowed to modify his namespace?
1295 */
1296static inline bool may_mount(void)
1297{
1298 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1299}
1300
1da177e4
LT
1301/*
1302 * Now umount can handle mount points as well as block devices.
1303 * This is important for filesystems which use unnamed block devices.
1304 *
1305 * We now support a flag for forced unmount like the other 'big iron'
1306 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1307 */
1308
bdc480e3 1309SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1da177e4 1310{
2d8f3038 1311 struct path path;
900148dc 1312 struct mount *mnt;
1da177e4 1313 int retval;
db1f05bb 1314 int lookup_flags = 0;
1da177e4 1315
db1f05bb
MS
1316 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1317 return -EINVAL;
1318
9b40bc90
AV
1319 if (!may_mount())
1320 return -EPERM;
1321
db1f05bb
MS
1322 if (!(flags & UMOUNT_NOFOLLOW))
1323 lookup_flags |= LOOKUP_FOLLOW;
1324
1325 retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1da177e4
LT
1326 if (retval)
1327 goto out;
900148dc 1328 mnt = real_mount(path.mnt);
1da177e4 1329 retval = -EINVAL;
2d8f3038 1330 if (path.dentry != path.mnt->mnt_root)
1da177e4 1331 goto dput_and_out;
143c8c91 1332 if (!check_mnt(mnt))
1da177e4 1333 goto dput_and_out;
5ff9d8a6
EB
1334 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1335 goto dput_and_out;
1da177e4 1336
900148dc 1337 retval = do_umount(mnt, flags);
1da177e4 1338dput_and_out:
429731b1 1339 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038 1340 dput(path.dentry);
900148dc 1341 mntput_no_expire(mnt);
1da177e4
LT
1342out:
1343 return retval;
1344}
1345
1346#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1347
1348/*
b58fed8b 1349 * The 2.0 compatible umount. No flags.
1da177e4 1350 */
bdc480e3 1351SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1352{
b58fed8b 1353 return sys_umount(name, 0);
1da177e4
LT
1354}
1355
1356#endif
1357
4ce5d2b1 1358static bool is_mnt_ns_file(struct dentry *dentry)
8823c079 1359{
4ce5d2b1
EB
1360 /* Is this a proxy for a mount namespace? */
1361 struct inode *inode = dentry->d_inode;
0bb80f24 1362 struct proc_ns *ei;
8823c079
EB
1363
1364 if (!proc_ns_inode(inode))
1365 return false;
1366
0bb80f24 1367 ei = get_proc_ns(inode);
8823c079
EB
1368 if (ei->ns_ops != &mntns_operations)
1369 return false;
1370
4ce5d2b1
EB
1371 return true;
1372}
1373
1374static bool mnt_ns_loop(struct dentry *dentry)
1375{
1376 /* Could bind mounting the mount namespace inode cause a
1377 * mount namespace loop?
1378 */
1379 struct mnt_namespace *mnt_ns;
1380 if (!is_mnt_ns_file(dentry))
1381 return false;
1382
1383 mnt_ns = get_proc_ns(dentry->d_inode)->ns;
8823c079
EB
1384 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1385}
1386
87129cc0 1387struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
36341f64 1388 int flag)
1da177e4 1389{
84d17192 1390 struct mount *res, *p, *q, *r, *parent;
1da177e4 1391
4ce5d2b1
EB
1392 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1393 return ERR_PTR(-EINVAL);
1394
1395 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
be34d1a3 1396 return ERR_PTR(-EINVAL);
9676f0c6 1397
36341f64 1398 res = q = clone_mnt(mnt, dentry, flag);
be34d1a3
DH
1399 if (IS_ERR(q))
1400 return q;
1401
5ff9d8a6 1402 q->mnt.mnt_flags &= ~MNT_LOCKED;
a73324da 1403 q->mnt_mountpoint = mnt->mnt_mountpoint;
1da177e4
LT
1404
1405 p = mnt;
6b41d536 1406 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
315fc83e 1407 struct mount *s;
7ec02ef1 1408 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1409 continue;
1410
909b0a88 1411 for (s = r; s; s = next_mnt(s, r)) {
4ce5d2b1
EB
1412 if (!(flag & CL_COPY_UNBINDABLE) &&
1413 IS_MNT_UNBINDABLE(s)) {
1414 s = skip_mnt_tree(s);
1415 continue;
1416 }
1417 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1418 is_mnt_ns_file(s->mnt.mnt_root)) {
9676f0c6
RP
1419 s = skip_mnt_tree(s);
1420 continue;
1421 }
0714a533
AV
1422 while (p != s->mnt_parent) {
1423 p = p->mnt_parent;
1424 q = q->mnt_parent;
1da177e4 1425 }
87129cc0 1426 p = s;
84d17192 1427 parent = q;
87129cc0 1428 q = clone_mnt(p, p->mnt.mnt_root, flag);
be34d1a3
DH
1429 if (IS_ERR(q))
1430 goto out;
962830df 1431 br_write_lock(&vfsmount_lock);
1a4eeaf2 1432 list_add_tail(&q->mnt_list, &res->mnt_list);
84d17192 1433 attach_mnt(q, parent, p->mnt_mp);
962830df 1434 br_write_unlock(&vfsmount_lock);
1da177e4
LT
1435 }
1436 }
1437 return res;
be34d1a3 1438out:
1da177e4 1439 if (res) {
962830df 1440 br_write_lock(&vfsmount_lock);
328e6d90 1441 umount_tree(res, 0);
962830df 1442 br_write_unlock(&vfsmount_lock);
1da177e4 1443 }
be34d1a3 1444 return q;
1da177e4
LT
1445}
1446
be34d1a3
DH
1447/* Caller should check returned pointer for errors */
1448
589ff870 1449struct vfsmount *collect_mounts(struct path *path)
8aec0809 1450{
cb338d06 1451 struct mount *tree;
97216be0 1452 namespace_lock();
87129cc0
AV
1453 tree = copy_tree(real_mount(path->mnt), path->dentry,
1454 CL_COPY_ALL | CL_PRIVATE);
328e6d90 1455 namespace_unlock();
be34d1a3
DH
1456 if (IS_ERR(tree))
1457 return NULL;
1458 return &tree->mnt;
8aec0809
AV
1459}
1460
1461void drop_collected_mounts(struct vfsmount *mnt)
1462{
97216be0 1463 namespace_lock();
962830df 1464 br_write_lock(&vfsmount_lock);
328e6d90 1465 umount_tree(real_mount(mnt), 0);
962830df 1466 br_write_unlock(&vfsmount_lock);
3ab6abee 1467 namespace_unlock();
8aec0809
AV
1468}
1469
1f707137
AV
1470int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1471 struct vfsmount *root)
1472{
1a4eeaf2 1473 struct mount *mnt;
1f707137
AV
1474 int res = f(root, arg);
1475 if (res)
1476 return res;
1a4eeaf2
AV
1477 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1478 res = f(&mnt->mnt, arg);
1f707137
AV
1479 if (res)
1480 return res;
1481 }
1482 return 0;
1483}
1484
4b8b21f4 1485static void cleanup_group_ids(struct mount *mnt, struct mount *end)
719f5d7f 1486{
315fc83e 1487 struct mount *p;
719f5d7f 1488
909b0a88 1489 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
fc7be130 1490 if (p->mnt_group_id && !IS_MNT_SHARED(p))
4b8b21f4 1491 mnt_release_group_id(p);
719f5d7f
MS
1492 }
1493}
1494
4b8b21f4 1495static int invent_group_ids(struct mount *mnt, bool recurse)
719f5d7f 1496{
315fc83e 1497 struct mount *p;
719f5d7f 1498
909b0a88 1499 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
fc7be130 1500 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
4b8b21f4 1501 int err = mnt_alloc_group_id(p);
719f5d7f 1502 if (err) {
4b8b21f4 1503 cleanup_group_ids(mnt, p);
719f5d7f
MS
1504 return err;
1505 }
1506 }
1507 }
1508
1509 return 0;
1510}
1511
b90fa9ae
RP
1512/*
1513 * @source_mnt : mount tree to be attached
21444403
RP
1514 * @nd : place the mount tree @source_mnt is attached
1515 * @parent_nd : if non-null, detach the source_mnt from its parent and
1516 * store the parent mount and mountpoint dentry.
1517 * (done when source_mnt is moved)
b90fa9ae
RP
1518 *
1519 * NOTE: in the table below explains the semantics when a source mount
1520 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1521 * ---------------------------------------------------------------------------
1522 * | BIND MOUNT OPERATION |
1523 * |**************************************************************************
1524 * | source-->| shared | private | slave | unbindable |
1525 * | dest | | | | |
1526 * | | | | | | |
1527 * | v | | | | |
1528 * |**************************************************************************
1529 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1530 * | | | | | |
1531 * |non-shared| shared (+) | private | slave (*) | invalid |
1532 * ***************************************************************************
b90fa9ae
RP
1533 * A bind operation clones the source mount and mounts the clone on the
1534 * destination mount.
1535 *
1536 * (++) the cloned mount is propagated to all the mounts in the propagation
1537 * tree of the destination mount and the cloned mount is added to
1538 * the peer group of the source mount.
1539 * (+) the cloned mount is created under the destination mount and is marked
1540 * as shared. The cloned mount is added to the peer group of the source
1541 * mount.
5afe0022
RP
1542 * (+++) the mount is propagated to all the mounts in the propagation tree
1543 * of the destination mount and the cloned mount is made slave
1544 * of the same master as that of the source mount. The cloned mount
1545 * is marked as 'shared and slave'.
1546 * (*) the cloned mount is made a slave of the same master as that of the
1547 * source mount.
1548 *
9676f0c6
RP
1549 * ---------------------------------------------------------------------------
1550 * | MOVE MOUNT OPERATION |
1551 * |**************************************************************************
1552 * | source-->| shared | private | slave | unbindable |
1553 * | dest | | | | |
1554 * | | | | | | |
1555 * | v | | | | |
1556 * |**************************************************************************
1557 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1558 * | | | | | |
1559 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1560 * ***************************************************************************
5afe0022
RP
1561 *
1562 * (+) the mount is moved to the destination. And is then propagated to
1563 * all the mounts in the propagation tree of the destination mount.
21444403 1564 * (+*) the mount is moved to the destination.
5afe0022
RP
1565 * (+++) the mount is moved to the destination and is then propagated to
1566 * all the mounts belonging to the destination mount's propagation tree.
1567 * the mount is marked as 'shared and slave'.
1568 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
1569 *
1570 * if the source mount is a tree, the operations explained above is
1571 * applied to each mount in the tree.
1572 * Must be called without spinlocks held, since this function can sleep
1573 * in allocations.
1574 */
0fb54e50 1575static int attach_recursive_mnt(struct mount *source_mnt,
84d17192
AV
1576 struct mount *dest_mnt,
1577 struct mountpoint *dest_mp,
1578 struct path *parent_path)
b90fa9ae
RP
1579{
1580 LIST_HEAD(tree_list);
315fc83e 1581 struct mount *child, *p;
719f5d7f 1582 int err;
b90fa9ae 1583
fc7be130 1584 if (IS_MNT_SHARED(dest_mnt)) {
0fb54e50 1585 err = invent_group_ids(source_mnt, true);
719f5d7f
MS
1586 if (err)
1587 goto out;
1588 }
84d17192 1589 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
719f5d7f
MS
1590 if (err)
1591 goto out_cleanup_ids;
b90fa9ae 1592
962830df 1593 br_write_lock(&vfsmount_lock);
df1a1ad2 1594
fc7be130 1595 if (IS_MNT_SHARED(dest_mnt)) {
909b0a88 1596 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
0f0afb1d 1597 set_mnt_shared(p);
b90fa9ae 1598 }
1a390689 1599 if (parent_path) {
0fb54e50 1600 detach_mnt(source_mnt, parent_path);
84d17192 1601 attach_mnt(source_mnt, dest_mnt, dest_mp);
143c8c91 1602 touch_mnt_namespace(source_mnt->mnt_ns);
21444403 1603 } else {
84d17192 1604 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
0fb54e50 1605 commit_tree(source_mnt);
21444403 1606 }
b90fa9ae 1607
1b8e5564
AV
1608 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1609 list_del_init(&child->mnt_hash);
4b2619a5 1610 commit_tree(child);
b90fa9ae 1611 }
962830df 1612 br_write_unlock(&vfsmount_lock);
99b7db7b 1613
b90fa9ae 1614 return 0;
719f5d7f
MS
1615
1616 out_cleanup_ids:
fc7be130 1617 if (IS_MNT_SHARED(dest_mnt))
0fb54e50 1618 cleanup_group_ids(source_mnt, NULL);
719f5d7f
MS
1619 out:
1620 return err;
b90fa9ae
RP
1621}
1622
84d17192 1623static struct mountpoint *lock_mount(struct path *path)
b12cea91
AV
1624{
1625 struct vfsmount *mnt;
84d17192 1626 struct dentry *dentry = path->dentry;
b12cea91 1627retry:
84d17192
AV
1628 mutex_lock(&dentry->d_inode->i_mutex);
1629 if (unlikely(cant_mount(dentry))) {
1630 mutex_unlock(&dentry->d_inode->i_mutex);
1631 return ERR_PTR(-ENOENT);
b12cea91 1632 }
97216be0 1633 namespace_lock();
b12cea91 1634 mnt = lookup_mnt(path);
84d17192
AV
1635 if (likely(!mnt)) {
1636 struct mountpoint *mp = new_mountpoint(dentry);
1637 if (IS_ERR(mp)) {
97216be0 1638 namespace_unlock();
84d17192
AV
1639 mutex_unlock(&dentry->d_inode->i_mutex);
1640 return mp;
1641 }
1642 return mp;
1643 }
97216be0 1644 namespace_unlock();
b12cea91
AV
1645 mutex_unlock(&path->dentry->d_inode->i_mutex);
1646 path_put(path);
1647 path->mnt = mnt;
84d17192 1648 dentry = path->dentry = dget(mnt->mnt_root);
b12cea91
AV
1649 goto retry;
1650}
1651
84d17192 1652static void unlock_mount(struct mountpoint *where)
b12cea91 1653{
84d17192
AV
1654 struct dentry *dentry = where->m_dentry;
1655 put_mountpoint(where);
328e6d90 1656 namespace_unlock();
84d17192 1657 mutex_unlock(&dentry->d_inode->i_mutex);
b12cea91
AV
1658}
1659
84d17192 1660static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1da177e4 1661{
95bc5f25 1662 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1da177e4
LT
1663 return -EINVAL;
1664
84d17192 1665 if (S_ISDIR(mp->m_dentry->d_inode->i_mode) !=
95bc5f25 1666 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1da177e4
LT
1667 return -ENOTDIR;
1668
84d17192 1669 return attach_recursive_mnt(mnt, p, mp, NULL);
1da177e4
LT
1670}
1671
7a2e8a8f
VA
1672/*
1673 * Sanity check the flags to change_mnt_propagation.
1674 */
1675
1676static int flags_to_propagation_type(int flags)
1677{
7c6e984d 1678 int type = flags & ~(MS_REC | MS_SILENT);
7a2e8a8f
VA
1679
1680 /* Fail if any non-propagation flags are set */
1681 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1682 return 0;
1683 /* Only one propagation flag should be set */
1684 if (!is_power_of_2(type))
1685 return 0;
1686 return type;
1687}
1688
07b20889
RP
1689/*
1690 * recursively change the type of the mountpoint.
1691 */
0a0d8a46 1692static int do_change_type(struct path *path, int flag)
07b20889 1693{
315fc83e 1694 struct mount *m;
4b8b21f4 1695 struct mount *mnt = real_mount(path->mnt);
07b20889 1696 int recurse = flag & MS_REC;
7a2e8a8f 1697 int type;
719f5d7f 1698 int err = 0;
07b20889 1699
2d92ab3c 1700 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
1701 return -EINVAL;
1702
7a2e8a8f
VA
1703 type = flags_to_propagation_type(flag);
1704 if (!type)
1705 return -EINVAL;
1706
97216be0 1707 namespace_lock();
719f5d7f
MS
1708 if (type == MS_SHARED) {
1709 err = invent_group_ids(mnt, recurse);
1710 if (err)
1711 goto out_unlock;
1712 }
1713
962830df 1714 br_write_lock(&vfsmount_lock);
909b0a88 1715 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
0f0afb1d 1716 change_mnt_propagation(m, type);
962830df 1717 br_write_unlock(&vfsmount_lock);
719f5d7f
MS
1718
1719 out_unlock:
97216be0 1720 namespace_unlock();
719f5d7f 1721 return err;
07b20889
RP
1722}
1723
5ff9d8a6
EB
1724static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
1725{
1726 struct mount *child;
1727 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
1728 if (!is_subdir(child->mnt_mountpoint, dentry))
1729 continue;
1730
1731 if (child->mnt.mnt_flags & MNT_LOCKED)
1732 return true;
1733 }
1734 return false;
1735}
1736
1da177e4
LT
1737/*
1738 * do loopback mount.
1739 */
808d4e3c 1740static int do_loopback(struct path *path, const char *old_name,
2dafe1c4 1741 int recurse)
1da177e4 1742{
2d92ab3c 1743 struct path old_path;
84d17192
AV
1744 struct mount *mnt = NULL, *old, *parent;
1745 struct mountpoint *mp;
57eccb83 1746 int err;
1da177e4
LT
1747 if (!old_name || !*old_name)
1748 return -EINVAL;
815d405c 1749 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1da177e4
LT
1750 if (err)
1751 return err;
1752
8823c079 1753 err = -EINVAL;
4ce5d2b1 1754 if (mnt_ns_loop(old_path.dentry))
8823c079
EB
1755 goto out;
1756
84d17192
AV
1757 mp = lock_mount(path);
1758 err = PTR_ERR(mp);
1759 if (IS_ERR(mp))
b12cea91
AV
1760 goto out;
1761
87129cc0 1762 old = real_mount(old_path.mnt);
84d17192 1763 parent = real_mount(path->mnt);
87129cc0 1764
1da177e4 1765 err = -EINVAL;
fc7be130 1766 if (IS_MNT_UNBINDABLE(old))
b12cea91 1767 goto out2;
9676f0c6 1768
84d17192 1769 if (!check_mnt(parent) || !check_mnt(old))
b12cea91 1770 goto out2;
1da177e4 1771
5ff9d8a6
EB
1772 if (!recurse && has_locked_children(old, old_path.dentry))
1773 goto out2;
1774
ccd48bc7 1775 if (recurse)
4ce5d2b1 1776 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
ccd48bc7 1777 else
87129cc0 1778 mnt = clone_mnt(old, old_path.dentry, 0);
ccd48bc7 1779
be34d1a3
DH
1780 if (IS_ERR(mnt)) {
1781 err = PTR_ERR(mnt);
e9c5d8a5 1782 goto out2;
be34d1a3 1783 }
ccd48bc7 1784
5ff9d8a6
EB
1785 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
1786
84d17192 1787 err = graft_tree(mnt, parent, mp);
ccd48bc7 1788 if (err) {
962830df 1789 br_write_lock(&vfsmount_lock);
328e6d90 1790 umount_tree(mnt, 0);
962830df 1791 br_write_unlock(&vfsmount_lock);
5b83d2c5 1792 }
b12cea91 1793out2:
84d17192 1794 unlock_mount(mp);
ccd48bc7 1795out:
2d92ab3c 1796 path_put(&old_path);
1da177e4
LT
1797 return err;
1798}
1799
2e4b7fcd
DH
1800static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1801{
1802 int error = 0;
1803 int readonly_request = 0;
1804
1805 if (ms_flags & MS_RDONLY)
1806 readonly_request = 1;
1807 if (readonly_request == __mnt_is_readonly(mnt))
1808 return 0;
1809
90563b19
EB
1810 if (mnt->mnt_flags & MNT_LOCK_READONLY)
1811 return -EPERM;
1812
2e4b7fcd 1813 if (readonly_request)
83adc753 1814 error = mnt_make_readonly(real_mount(mnt));
2e4b7fcd 1815 else
83adc753 1816 __mnt_unmake_readonly(real_mount(mnt));
2e4b7fcd
DH
1817 return error;
1818}
1819
1da177e4
LT
1820/*
1821 * change filesystem flags. dir should be a physical root of filesystem.
1822 * If you've mounted a non-root directory somewhere and want to do remount
1823 * on it - tough luck.
1824 */
0a0d8a46 1825static int do_remount(struct path *path, int flags, int mnt_flags,
1da177e4
LT
1826 void *data)
1827{
1828 int err;
2d92ab3c 1829 struct super_block *sb = path->mnt->mnt_sb;
143c8c91 1830 struct mount *mnt = real_mount(path->mnt);
1da177e4 1831
143c8c91 1832 if (!check_mnt(mnt))
1da177e4
LT
1833 return -EINVAL;
1834
2d92ab3c 1835 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
1836 return -EINVAL;
1837
ff36fe2c
EP
1838 err = security_sb_remount(sb, data);
1839 if (err)
1840 return err;
1841
1da177e4 1842 down_write(&sb->s_umount);
2e4b7fcd 1843 if (flags & MS_BIND)
2d92ab3c 1844 err = change_mount_flags(path->mnt, flags);
57eccb83
AV
1845 else if (!capable(CAP_SYS_ADMIN))
1846 err = -EPERM;
4aa98cf7 1847 else
2e4b7fcd 1848 err = do_remount_sb(sb, flags, data, 0);
7b43a79f 1849 if (!err) {
962830df 1850 br_write_lock(&vfsmount_lock);
143c8c91
AV
1851 mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK;
1852 mnt->mnt.mnt_flags = mnt_flags;
962830df 1853 br_write_unlock(&vfsmount_lock);
7b43a79f 1854 }
1da177e4 1855 up_write(&sb->s_umount);
0e55a7cc 1856 if (!err) {
962830df 1857 br_write_lock(&vfsmount_lock);
143c8c91 1858 touch_mnt_namespace(mnt->mnt_ns);
962830df 1859 br_write_unlock(&vfsmount_lock);
0e55a7cc 1860 }
1da177e4
LT
1861 return err;
1862}
1863
cbbe362c 1864static inline int tree_contains_unbindable(struct mount *mnt)
9676f0c6 1865{
315fc83e 1866 struct mount *p;
909b0a88 1867 for (p = mnt; p; p = next_mnt(p, mnt)) {
fc7be130 1868 if (IS_MNT_UNBINDABLE(p))
9676f0c6
RP
1869 return 1;
1870 }
1871 return 0;
1872}
1873
808d4e3c 1874static int do_move_mount(struct path *path, const char *old_name)
1da177e4 1875{
2d92ab3c 1876 struct path old_path, parent_path;
676da58d 1877 struct mount *p;
0fb54e50 1878 struct mount *old;
84d17192 1879 struct mountpoint *mp;
57eccb83 1880 int err;
1da177e4
LT
1881 if (!old_name || !*old_name)
1882 return -EINVAL;
2d92ab3c 1883 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
1884 if (err)
1885 return err;
1886
84d17192
AV
1887 mp = lock_mount(path);
1888 err = PTR_ERR(mp);
1889 if (IS_ERR(mp))
cc53ce53
DH
1890 goto out;
1891
143c8c91 1892 old = real_mount(old_path.mnt);
fc7be130 1893 p = real_mount(path->mnt);
143c8c91 1894
1da177e4 1895 err = -EINVAL;
fc7be130 1896 if (!check_mnt(p) || !check_mnt(old))
1da177e4
LT
1897 goto out1;
1898
5ff9d8a6
EB
1899 if (old->mnt.mnt_flags & MNT_LOCKED)
1900 goto out1;
1901
1da177e4 1902 err = -EINVAL;
2d92ab3c 1903 if (old_path.dentry != old_path.mnt->mnt_root)
21444403 1904 goto out1;
1da177e4 1905
676da58d 1906 if (!mnt_has_parent(old))
21444403 1907 goto out1;
1da177e4 1908
2d92ab3c
AV
1909 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1910 S_ISDIR(old_path.dentry->d_inode->i_mode))
21444403
RP
1911 goto out1;
1912 /*
1913 * Don't move a mount residing in a shared parent.
1914 */
fc7be130 1915 if (IS_MNT_SHARED(old->mnt_parent))
21444403 1916 goto out1;
9676f0c6
RP
1917 /*
1918 * Don't move a mount tree containing unbindable mounts to a destination
1919 * mount which is shared.
1920 */
fc7be130 1921 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
9676f0c6 1922 goto out1;
1da177e4 1923 err = -ELOOP;
fc7be130 1924 for (; mnt_has_parent(p); p = p->mnt_parent)
676da58d 1925 if (p == old)
21444403 1926 goto out1;
1da177e4 1927
84d17192 1928 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
4ac91378 1929 if (err)
21444403 1930 goto out1;
1da177e4
LT
1931
1932 /* if the mount is moved, it should no longer be expire
1933 * automatically */
6776db3d 1934 list_del_init(&old->mnt_expire);
1da177e4 1935out1:
84d17192 1936 unlock_mount(mp);
1da177e4 1937out:
1da177e4 1938 if (!err)
1a390689 1939 path_put(&parent_path);
2d92ab3c 1940 path_put(&old_path);
1da177e4
LT
1941 return err;
1942}
1943
9d412a43
AV
1944static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1945{
1946 int err;
1947 const char *subtype = strchr(fstype, '.');
1948 if (subtype) {
1949 subtype++;
1950 err = -EINVAL;
1951 if (!subtype[0])
1952 goto err;
1953 } else
1954 subtype = "";
1955
1956 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1957 err = -ENOMEM;
1958 if (!mnt->mnt_sb->s_subtype)
1959 goto err;
1960 return mnt;
1961
1962 err:
1963 mntput(mnt);
1964 return ERR_PTR(err);
1965}
1966
9d412a43
AV
1967/*
1968 * add a mount into a namespace's mount tree
1969 */
95bc5f25 1970static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
9d412a43 1971{
84d17192
AV
1972 struct mountpoint *mp;
1973 struct mount *parent;
9d412a43
AV
1974 int err;
1975
1976 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
1977
84d17192
AV
1978 mp = lock_mount(path);
1979 if (IS_ERR(mp))
1980 return PTR_ERR(mp);
9d412a43 1981
84d17192 1982 parent = real_mount(path->mnt);
9d412a43 1983 err = -EINVAL;
84d17192 1984 if (unlikely(!check_mnt(parent))) {
156cacb1
AV
1985 /* that's acceptable only for automounts done in private ns */
1986 if (!(mnt_flags & MNT_SHRINKABLE))
1987 goto unlock;
1988 /* ... and for those we'd better have mountpoint still alive */
84d17192 1989 if (!parent->mnt_ns)
156cacb1
AV
1990 goto unlock;
1991 }
9d412a43
AV
1992
1993 /* Refuse the same filesystem on the same mount point */
1994 err = -EBUSY;
95bc5f25 1995 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
9d412a43
AV
1996 path->mnt->mnt_root == path->dentry)
1997 goto unlock;
1998
1999 err = -EINVAL;
95bc5f25 2000 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
9d412a43
AV
2001 goto unlock;
2002
95bc5f25 2003 newmnt->mnt.mnt_flags = mnt_flags;
84d17192 2004 err = graft_tree(newmnt, parent, mp);
9d412a43
AV
2005
2006unlock:
84d17192 2007 unlock_mount(mp);
9d412a43
AV
2008 return err;
2009}
b1e75df4 2010
1da177e4
LT
2011/*
2012 * create a new mount for userspace and request it to be added into the
2013 * namespace's tree
2014 */
0c55cfc4 2015static int do_new_mount(struct path *path, const char *fstype, int flags,
808d4e3c 2016 int mnt_flags, const char *name, void *data)
1da177e4 2017{
0c55cfc4 2018 struct file_system_type *type;
9b40bc90 2019 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
1da177e4 2020 struct vfsmount *mnt;
15f9a3f3 2021 int err;
1da177e4 2022
0c55cfc4 2023 if (!fstype)
1da177e4
LT
2024 return -EINVAL;
2025
0c55cfc4
EB
2026 type = get_fs_type(fstype);
2027 if (!type)
2028 return -ENODEV;
2029
2030 if (user_ns != &init_user_ns) {
2031 if (!(type->fs_flags & FS_USERNS_MOUNT)) {
2032 put_filesystem(type);
2033 return -EPERM;
2034 }
2035 /* Only in special cases allow devices from mounts
2036 * created outside the initial user namespace.
2037 */
2038 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2039 flags |= MS_NODEV;
2040 mnt_flags |= MNT_NODEV;
2041 }
2042 }
2043
2044 mnt = vfs_kern_mount(type, flags, name, data);
2045 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2046 !mnt->mnt_sb->s_subtype)
2047 mnt = fs_set_subtype(mnt, fstype);
2048
2049 put_filesystem(type);
1da177e4
LT
2050 if (IS_ERR(mnt))
2051 return PTR_ERR(mnt);
2052
95bc5f25 2053 err = do_add_mount(real_mount(mnt), path, mnt_flags);
15f9a3f3
AV
2054 if (err)
2055 mntput(mnt);
2056 return err;
1da177e4
LT
2057}
2058
19a167af
AV
2059int finish_automount(struct vfsmount *m, struct path *path)
2060{
6776db3d 2061 struct mount *mnt = real_mount(m);
19a167af
AV
2062 int err;
2063 /* The new mount record should have at least 2 refs to prevent it being
2064 * expired before we get a chance to add it
2065 */
6776db3d 2066 BUG_ON(mnt_get_count(mnt) < 2);
19a167af
AV
2067
2068 if (m->mnt_sb == path->mnt->mnt_sb &&
2069 m->mnt_root == path->dentry) {
b1e75df4
AV
2070 err = -ELOOP;
2071 goto fail;
19a167af
AV
2072 }
2073
95bc5f25 2074 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
b1e75df4
AV
2075 if (!err)
2076 return 0;
2077fail:
2078 /* remove m from any expiration list it may be on */
6776db3d 2079 if (!list_empty(&mnt->mnt_expire)) {
97216be0 2080 namespace_lock();
962830df 2081 br_write_lock(&vfsmount_lock);
6776db3d 2082 list_del_init(&mnt->mnt_expire);
962830df 2083 br_write_unlock(&vfsmount_lock);
97216be0 2084 namespace_unlock();
19a167af 2085 }
b1e75df4
AV
2086 mntput(m);
2087 mntput(m);
19a167af
AV
2088 return err;
2089}
2090
ea5b778a
DH
2091/**
2092 * mnt_set_expiry - Put a mount on an expiration list
2093 * @mnt: The mount to list.
2094 * @expiry_list: The list to add the mount to.
2095 */
2096void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2097{
97216be0 2098 namespace_lock();
962830df 2099 br_write_lock(&vfsmount_lock);
ea5b778a 2100
6776db3d 2101 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
ea5b778a 2102
962830df 2103 br_write_unlock(&vfsmount_lock);
97216be0 2104 namespace_unlock();
ea5b778a
DH
2105}
2106EXPORT_SYMBOL(mnt_set_expiry);
2107
1da177e4
LT
2108/*
2109 * process a list of expirable mountpoints with the intent of discarding any
2110 * mountpoints that aren't in use and haven't been touched since last we came
2111 * here
2112 */
2113void mark_mounts_for_expiry(struct list_head *mounts)
2114{
761d5c38 2115 struct mount *mnt, *next;
1da177e4
LT
2116 LIST_HEAD(graveyard);
2117
2118 if (list_empty(mounts))
2119 return;
2120
97216be0 2121 namespace_lock();
962830df 2122 br_write_lock(&vfsmount_lock);
1da177e4
LT
2123
2124 /* extract from the expiration list every vfsmount that matches the
2125 * following criteria:
2126 * - only referenced by its parent vfsmount
2127 * - still marked for expiry (marked on the last call here; marks are
2128 * cleared by mntput())
2129 */
6776db3d 2130 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
863d684f 2131 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1ab59738 2132 propagate_mount_busy(mnt, 1))
1da177e4 2133 continue;
6776db3d 2134 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 2135 }
bcc5c7d2 2136 while (!list_empty(&graveyard)) {
6776db3d 2137 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
143c8c91 2138 touch_mnt_namespace(mnt->mnt_ns);
328e6d90 2139 umount_tree(mnt, 1);
bcc5c7d2 2140 }
962830df 2141 br_write_unlock(&vfsmount_lock);
3ab6abee 2142 namespace_unlock();
5528f911
TM
2143}
2144
2145EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2146
2147/*
2148 * Ripoff of 'select_parent()'
2149 *
2150 * search the list of submounts for a given mountpoint, and move any
2151 * shrinkable submounts to the 'graveyard' list.
2152 */
692afc31 2153static int select_submounts(struct mount *parent, struct list_head *graveyard)
5528f911 2154{
692afc31 2155 struct mount *this_parent = parent;
5528f911
TM
2156 struct list_head *next;
2157 int found = 0;
2158
2159repeat:
6b41d536 2160 next = this_parent->mnt_mounts.next;
5528f911 2161resume:
6b41d536 2162 while (next != &this_parent->mnt_mounts) {
5528f911 2163 struct list_head *tmp = next;
6b41d536 2164 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
5528f911
TM
2165
2166 next = tmp->next;
692afc31 2167 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1da177e4 2168 continue;
5528f911
TM
2169 /*
2170 * Descend a level if the d_mounts list is non-empty.
2171 */
6b41d536 2172 if (!list_empty(&mnt->mnt_mounts)) {
5528f911
TM
2173 this_parent = mnt;
2174 goto repeat;
2175 }
1da177e4 2176
1ab59738 2177 if (!propagate_mount_busy(mnt, 1)) {
6776db3d 2178 list_move_tail(&mnt->mnt_expire, graveyard);
5528f911
TM
2179 found++;
2180 }
1da177e4 2181 }
5528f911
TM
2182 /*
2183 * All done at this level ... ascend and resume the search
2184 */
2185 if (this_parent != parent) {
6b41d536 2186 next = this_parent->mnt_child.next;
0714a533 2187 this_parent = this_parent->mnt_parent;
5528f911
TM
2188 goto resume;
2189 }
2190 return found;
2191}
2192
2193/*
2194 * process a list of expirable mountpoints with the intent of discarding any
2195 * submounts of a specific parent mountpoint
99b7db7b
NP
2196 *
2197 * vfsmount_lock must be held for write
5528f911 2198 */
b54b9be7 2199static void shrink_submounts(struct mount *mnt)
5528f911
TM
2200{
2201 LIST_HEAD(graveyard);
761d5c38 2202 struct mount *m;
5528f911 2203
5528f911 2204 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 2205 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 2206 while (!list_empty(&graveyard)) {
761d5c38 2207 m = list_first_entry(&graveyard, struct mount,
6776db3d 2208 mnt_expire);
143c8c91 2209 touch_mnt_namespace(m->mnt_ns);
328e6d90 2210 umount_tree(m, 1);
bcc5c7d2
AV
2211 }
2212 }
1da177e4
LT
2213}
2214
1da177e4
LT
2215/*
2216 * Some copy_from_user() implementations do not return the exact number of
2217 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2218 * Note that this function differs from copy_from_user() in that it will oops
2219 * on bad values of `to', rather than returning a short copy.
2220 */
b58fed8b
RP
2221static long exact_copy_from_user(void *to, const void __user * from,
2222 unsigned long n)
1da177e4
LT
2223{
2224 char *t = to;
2225 const char __user *f = from;
2226 char c;
2227
2228 if (!access_ok(VERIFY_READ, from, n))
2229 return n;
2230
2231 while (n) {
2232 if (__get_user(c, f)) {
2233 memset(t, 0, n);
2234 break;
2235 }
2236 *t++ = c;
2237 f++;
2238 n--;
2239 }
2240 return n;
2241}
2242
b58fed8b 2243int copy_mount_options(const void __user * data, unsigned long *where)
1da177e4
LT
2244{
2245 int i;
2246 unsigned long page;
2247 unsigned long size;
b58fed8b 2248
1da177e4
LT
2249 *where = 0;
2250 if (!data)
2251 return 0;
2252
2253 if (!(page = __get_free_page(GFP_KERNEL)))
2254 return -ENOMEM;
2255
2256 /* We only care that *some* data at the address the user
2257 * gave us is valid. Just in case, we'll zero
2258 * the remainder of the page.
2259 */
2260 /* copy_from_user cannot cross TASK_SIZE ! */
2261 size = TASK_SIZE - (unsigned long)data;
2262 if (size > PAGE_SIZE)
2263 size = PAGE_SIZE;
2264
2265 i = size - exact_copy_from_user((void *)page, data, size);
2266 if (!i) {
b58fed8b 2267 free_page(page);
1da177e4
LT
2268 return -EFAULT;
2269 }
2270 if (i != PAGE_SIZE)
2271 memset((char *)page + i, 0, PAGE_SIZE - i);
2272 *where = page;
2273 return 0;
2274}
2275
eca6f534
VN
2276int copy_mount_string(const void __user *data, char **where)
2277{
2278 char *tmp;
2279
2280 if (!data) {
2281 *where = NULL;
2282 return 0;
2283 }
2284
2285 tmp = strndup_user(data, PAGE_SIZE);
2286 if (IS_ERR(tmp))
2287 return PTR_ERR(tmp);
2288
2289 *where = tmp;
2290 return 0;
2291}
2292
1da177e4
LT
2293/*
2294 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2295 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2296 *
2297 * data is a (void *) that can point to any structure up to
2298 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2299 * information (or be NULL).
2300 *
2301 * Pre-0.97 versions of mount() didn't have a flags word.
2302 * When the flags word was introduced its top half was required
2303 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2304 * Therefore, if this magic number is present, it carries no information
2305 * and must be discarded.
2306 */
808d4e3c
AV
2307long do_mount(const char *dev_name, const char *dir_name,
2308 const char *type_page, unsigned long flags, void *data_page)
1da177e4 2309{
2d92ab3c 2310 struct path path;
1da177e4
LT
2311 int retval = 0;
2312 int mnt_flags = 0;
2313
2314 /* Discard magic */
2315 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2316 flags &= ~MS_MGC_MSK;
2317
2318 /* Basic sanity checks */
2319
2320 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2321 return -EINVAL;
1da177e4
LT
2322
2323 if (data_page)
2324 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2325
a27ab9f2
TH
2326 /* ... and get the mountpoint */
2327 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2328 if (retval)
2329 return retval;
2330
2331 retval = security_sb_mount(dev_name, &path,
2332 type_page, flags, data_page);
0d5cadb8
AV
2333 if (!retval && !may_mount())
2334 retval = -EPERM;
a27ab9f2
TH
2335 if (retval)
2336 goto dput_out;
2337
613cbe3d
AK
2338 /* Default to relatime unless overriden */
2339 if (!(flags & MS_NOATIME))
2340 mnt_flags |= MNT_RELATIME;
0a1c01c9 2341
1da177e4
LT
2342 /* Separate the per-mountpoint flags */
2343 if (flags & MS_NOSUID)
2344 mnt_flags |= MNT_NOSUID;
2345 if (flags & MS_NODEV)
2346 mnt_flags |= MNT_NODEV;
2347 if (flags & MS_NOEXEC)
2348 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
2349 if (flags & MS_NOATIME)
2350 mnt_flags |= MNT_NOATIME;
2351 if (flags & MS_NODIRATIME)
2352 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
2353 if (flags & MS_STRICTATIME)
2354 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2e4b7fcd
DH
2355 if (flags & MS_RDONLY)
2356 mnt_flags |= MNT_READONLY;
fc33a7bb 2357
7a4dec53 2358 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
d0adde57
MG
2359 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2360 MS_STRICTATIME);
1da177e4 2361
1da177e4 2362 if (flags & MS_REMOUNT)
2d92ab3c 2363 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
1da177e4
LT
2364 data_page);
2365 else if (flags & MS_BIND)
2d92ab3c 2366 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 2367 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 2368 retval = do_change_type(&path, flags);
1da177e4 2369 else if (flags & MS_MOVE)
2d92ab3c 2370 retval = do_move_mount(&path, dev_name);
1da177e4 2371 else
2d92ab3c 2372 retval = do_new_mount(&path, type_page, flags, mnt_flags,
1da177e4
LT
2373 dev_name, data_page);
2374dput_out:
2d92ab3c 2375 path_put(&path);
1da177e4
LT
2376 return retval;
2377}
2378
771b1371
EB
2379static void free_mnt_ns(struct mnt_namespace *ns)
2380{
98f842e6 2381 proc_free_inum(ns->proc_inum);
771b1371
EB
2382 put_user_ns(ns->user_ns);
2383 kfree(ns);
2384}
2385
8823c079
EB
2386/*
2387 * Assign a sequence number so we can detect when we attempt to bind
2388 * mount a reference to an older mount namespace into the current
2389 * mount namespace, preventing reference counting loops. A 64bit
2390 * number incrementing at 10Ghz will take 12,427 years to wrap which
2391 * is effectively never, so we can ignore the possibility.
2392 */
2393static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2394
771b1371 2395static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
cf8d2c11
TM
2396{
2397 struct mnt_namespace *new_ns;
98f842e6 2398 int ret;
cf8d2c11
TM
2399
2400 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2401 if (!new_ns)
2402 return ERR_PTR(-ENOMEM);
98f842e6
EB
2403 ret = proc_alloc_inum(&new_ns->proc_inum);
2404 if (ret) {
2405 kfree(new_ns);
2406 return ERR_PTR(ret);
2407 }
8823c079 2408 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
cf8d2c11
TM
2409 atomic_set(&new_ns->count, 1);
2410 new_ns->root = NULL;
2411 INIT_LIST_HEAD(&new_ns->list);
2412 init_waitqueue_head(&new_ns->poll);
2413 new_ns->event = 0;
771b1371 2414 new_ns->user_ns = get_user_ns(user_ns);
cf8d2c11
TM
2415 return new_ns;
2416}
2417
741a2951
JD
2418/*
2419 * Allocate a new namespace structure and populate it with contents
2420 * copied from the namespace of the passed in task structure.
2421 */
e3222c4e 2422static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
771b1371 2423 struct user_namespace *user_ns, struct fs_struct *fs)
1da177e4 2424{
6b3286ed 2425 struct mnt_namespace *new_ns;
7f2da1e7 2426 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
315fc83e 2427 struct mount *p, *q;
be08d6d2 2428 struct mount *old = mnt_ns->root;
cb338d06 2429 struct mount *new;
7a472ef4 2430 int copy_flags;
1da177e4 2431
771b1371 2432 new_ns = alloc_mnt_ns(user_ns);
cf8d2c11
TM
2433 if (IS_ERR(new_ns))
2434 return new_ns;
1da177e4 2435
97216be0 2436 namespace_lock();
1da177e4 2437 /* First pass: copy the tree topology */
4ce5d2b1 2438 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
7a472ef4 2439 if (user_ns != mnt_ns->user_ns)
132c94e3 2440 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
7a472ef4 2441 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
be34d1a3 2442 if (IS_ERR(new)) {
328e6d90 2443 namespace_unlock();
771b1371 2444 free_mnt_ns(new_ns);
be34d1a3 2445 return ERR_CAST(new);
1da177e4 2446 }
be08d6d2 2447 new_ns->root = new;
962830df 2448 br_write_lock(&vfsmount_lock);
1a4eeaf2 2449 list_add_tail(&new_ns->list, &new->mnt_list);
962830df 2450 br_write_unlock(&vfsmount_lock);
1da177e4
LT
2451
2452 /*
2453 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2454 * as belonging to new namespace. We have already acquired a private
2455 * fs_struct, so tsk->fs->lock is not needed.
2456 */
909b0a88 2457 p = old;
cb338d06 2458 q = new;
1da177e4 2459 while (p) {
143c8c91 2460 q->mnt_ns = new_ns;
1da177e4 2461 if (fs) {
315fc83e
AV
2462 if (&p->mnt == fs->root.mnt) {
2463 fs->root.mnt = mntget(&q->mnt);
315fc83e 2464 rootmnt = &p->mnt;
1da177e4 2465 }
315fc83e
AV
2466 if (&p->mnt == fs->pwd.mnt) {
2467 fs->pwd.mnt = mntget(&q->mnt);
315fc83e 2468 pwdmnt = &p->mnt;
1da177e4 2469 }
1da177e4 2470 }
909b0a88
AV
2471 p = next_mnt(p, old);
2472 q = next_mnt(q, new);
4ce5d2b1
EB
2473 if (!q)
2474 break;
2475 while (p->mnt.mnt_root != q->mnt.mnt_root)
2476 p = next_mnt(p, old);
1da177e4 2477 }
328e6d90 2478 namespace_unlock();
1da177e4 2479
1da177e4 2480 if (rootmnt)
f03c6599 2481 mntput(rootmnt);
1da177e4 2482 if (pwdmnt)
f03c6599 2483 mntput(pwdmnt);
1da177e4 2484
741a2951
JD
2485 return new_ns;
2486}
2487
213dd266 2488struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
771b1371 2489 struct user_namespace *user_ns, struct fs_struct *new_fs)
741a2951 2490{
6b3286ed 2491 struct mnt_namespace *new_ns;
741a2951 2492
e3222c4e 2493 BUG_ON(!ns);
6b3286ed 2494 get_mnt_ns(ns);
741a2951
JD
2495
2496 if (!(flags & CLONE_NEWNS))
e3222c4e 2497 return ns;
741a2951 2498
771b1371 2499 new_ns = dup_mnt_ns(ns, user_ns, new_fs);
741a2951 2500
6b3286ed 2501 put_mnt_ns(ns);
e3222c4e 2502 return new_ns;
1da177e4
LT
2503}
2504
cf8d2c11
TM
2505/**
2506 * create_mnt_ns - creates a private namespace and adds a root filesystem
2507 * @mnt: pointer to the new root filesystem mountpoint
2508 */
1a4eeaf2 2509static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
cf8d2c11 2510{
771b1371 2511 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
cf8d2c11 2512 if (!IS_ERR(new_ns)) {
1a4eeaf2
AV
2513 struct mount *mnt = real_mount(m);
2514 mnt->mnt_ns = new_ns;
be08d6d2 2515 new_ns->root = mnt;
b1983cd8 2516 list_add(&mnt->mnt_list, &new_ns->list);
c1334495 2517 } else {
1a4eeaf2 2518 mntput(m);
cf8d2c11
TM
2519 }
2520 return new_ns;
2521}
cf8d2c11 2522
ea441d11
AV
2523struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2524{
2525 struct mnt_namespace *ns;
d31da0f0 2526 struct super_block *s;
ea441d11
AV
2527 struct path path;
2528 int err;
2529
2530 ns = create_mnt_ns(mnt);
2531 if (IS_ERR(ns))
2532 return ERR_CAST(ns);
2533
2534 err = vfs_path_lookup(mnt->mnt_root, mnt,
2535 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2536
2537 put_mnt_ns(ns);
2538
2539 if (err)
2540 return ERR_PTR(err);
2541
2542 /* trade a vfsmount reference for active sb one */
d31da0f0
AV
2543 s = path.mnt->mnt_sb;
2544 atomic_inc(&s->s_active);
ea441d11
AV
2545 mntput(path.mnt);
2546 /* lock the sucker */
d31da0f0 2547 down_write(&s->s_umount);
ea441d11
AV
2548 /* ... and return the root of (sub)tree on it */
2549 return path.dentry;
2550}
2551EXPORT_SYMBOL(mount_subtree);
2552
bdc480e3
HC
2553SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2554 char __user *, type, unsigned long, flags, void __user *, data)
1da177e4 2555{
eca6f534
VN
2556 int ret;
2557 char *kernel_type;
91a27b2a 2558 struct filename *kernel_dir;
eca6f534 2559 char *kernel_dev;
1da177e4 2560 unsigned long data_page;
1da177e4 2561
eca6f534
VN
2562 ret = copy_mount_string(type, &kernel_type);
2563 if (ret < 0)
2564 goto out_type;
1da177e4 2565
eca6f534
VN
2566 kernel_dir = getname(dir_name);
2567 if (IS_ERR(kernel_dir)) {
2568 ret = PTR_ERR(kernel_dir);
2569 goto out_dir;
2570 }
1da177e4 2571
eca6f534
VN
2572 ret = copy_mount_string(dev_name, &kernel_dev);
2573 if (ret < 0)
2574 goto out_dev;
1da177e4 2575
eca6f534
VN
2576 ret = copy_mount_options(data, &data_page);
2577 if (ret < 0)
2578 goto out_data;
1da177e4 2579
91a27b2a 2580 ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags,
eca6f534 2581 (void *) data_page);
1da177e4 2582
eca6f534
VN
2583 free_page(data_page);
2584out_data:
2585 kfree(kernel_dev);
2586out_dev:
2587 putname(kernel_dir);
2588out_dir:
2589 kfree(kernel_type);
2590out_type:
2591 return ret;
1da177e4
LT
2592}
2593
afac7cba
AV
2594/*
2595 * Return true if path is reachable from root
2596 *
2597 * namespace_sem or vfsmount_lock is held
2598 */
643822b4 2599bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
afac7cba
AV
2600 const struct path *root)
2601{
643822b4 2602 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
a73324da 2603 dentry = mnt->mnt_mountpoint;
0714a533 2604 mnt = mnt->mnt_parent;
afac7cba 2605 }
643822b4 2606 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
afac7cba
AV
2607}
2608
2609int path_is_under(struct path *path1, struct path *path2)
2610{
2611 int res;
962830df 2612 br_read_lock(&vfsmount_lock);
643822b4 2613 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
962830df 2614 br_read_unlock(&vfsmount_lock);
afac7cba
AV
2615 return res;
2616}
2617EXPORT_SYMBOL(path_is_under);
2618
1da177e4
LT
2619/*
2620 * pivot_root Semantics:
2621 * Moves the root file system of the current process to the directory put_old,
2622 * makes new_root as the new root file system of the current process, and sets
2623 * root/cwd of all processes which had them on the current root to new_root.
2624 *
2625 * Restrictions:
2626 * The new_root and put_old must be directories, and must not be on the
2627 * same file system as the current process root. The put_old must be
2628 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2629 * pointed to by put_old must yield the same directory as new_root. No other
2630 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2631 *
4a0d11fa
NB
2632 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2633 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2634 * in this situation.
2635 *
1da177e4
LT
2636 * Notes:
2637 * - we don't move root/cwd if they are not at the root (reason: if something
2638 * cared enough to change them, it's probably wrong to force them elsewhere)
2639 * - it's okay to pick a root that isn't the root of a file system, e.g.
2640 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2641 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2642 * first.
2643 */
3480b257
HC
2644SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2645 const char __user *, put_old)
1da177e4 2646{
2d8f3038 2647 struct path new, old, parent_path, root_parent, root;
84d17192
AV
2648 struct mount *new_mnt, *root_mnt, *old_mnt;
2649 struct mountpoint *old_mp, *root_mp;
1da177e4
LT
2650 int error;
2651
9b40bc90 2652 if (!may_mount())
1da177e4
LT
2653 return -EPERM;
2654
2d8f3038 2655 error = user_path_dir(new_root, &new);
1da177e4
LT
2656 if (error)
2657 goto out0;
1da177e4 2658
2d8f3038 2659 error = user_path_dir(put_old, &old);
1da177e4
LT
2660 if (error)
2661 goto out1;
2662
2d8f3038 2663 error = security_sb_pivotroot(&old, &new);
b12cea91
AV
2664 if (error)
2665 goto out2;
1da177e4 2666
f7ad3c6b 2667 get_fs_root(current->fs, &root);
84d17192
AV
2668 old_mp = lock_mount(&old);
2669 error = PTR_ERR(old_mp);
2670 if (IS_ERR(old_mp))
b12cea91
AV
2671 goto out3;
2672
1da177e4 2673 error = -EINVAL;
419148da
AV
2674 new_mnt = real_mount(new.mnt);
2675 root_mnt = real_mount(root.mnt);
84d17192
AV
2676 old_mnt = real_mount(old.mnt);
2677 if (IS_MNT_SHARED(old_mnt) ||
fc7be130
AV
2678 IS_MNT_SHARED(new_mnt->mnt_parent) ||
2679 IS_MNT_SHARED(root_mnt->mnt_parent))
b12cea91 2680 goto out4;
143c8c91 2681 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
b12cea91 2682 goto out4;
5ff9d8a6
EB
2683 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
2684 goto out4;
1da177e4 2685 error = -ENOENT;
f3da392e 2686 if (d_unlinked(new.dentry))
b12cea91 2687 goto out4;
1da177e4 2688 error = -EBUSY;
84d17192 2689 if (new_mnt == root_mnt || old_mnt == root_mnt)
b12cea91 2690 goto out4; /* loop, on the same file system */
1da177e4 2691 error = -EINVAL;
8c3ee42e 2692 if (root.mnt->mnt_root != root.dentry)
b12cea91 2693 goto out4; /* not a mountpoint */
676da58d 2694 if (!mnt_has_parent(root_mnt))
b12cea91 2695 goto out4; /* not attached */
84d17192 2696 root_mp = root_mnt->mnt_mp;
2d8f3038 2697 if (new.mnt->mnt_root != new.dentry)
b12cea91 2698 goto out4; /* not a mountpoint */
676da58d 2699 if (!mnt_has_parent(new_mnt))
b12cea91 2700 goto out4; /* not attached */
4ac91378 2701 /* make sure we can reach put_old from new_root */
84d17192 2702 if (!is_path_reachable(old_mnt, old.dentry, &new))
b12cea91 2703 goto out4;
84d17192 2704 root_mp->m_count++; /* pin it so it won't go away */
962830df 2705 br_write_lock(&vfsmount_lock);
419148da
AV
2706 detach_mnt(new_mnt, &parent_path);
2707 detach_mnt(root_mnt, &root_parent);
5ff9d8a6
EB
2708 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
2709 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
2710 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2711 }
4ac91378 2712 /* mount old root on put_old */
84d17192 2713 attach_mnt(root_mnt, old_mnt, old_mp);
4ac91378 2714 /* mount new_root on / */
84d17192 2715 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
6b3286ed 2716 touch_mnt_namespace(current->nsproxy->mnt_ns);
962830df 2717 br_write_unlock(&vfsmount_lock);
2d8f3038 2718 chroot_fs_refs(&root, &new);
84d17192 2719 put_mountpoint(root_mp);
1da177e4 2720 error = 0;
b12cea91 2721out4:
84d17192 2722 unlock_mount(old_mp);
b12cea91
AV
2723 if (!error) {
2724 path_put(&root_parent);
2725 path_put(&parent_path);
2726 }
2727out3:
8c3ee42e 2728 path_put(&root);
b12cea91 2729out2:
2d8f3038 2730 path_put(&old);
1da177e4 2731out1:
2d8f3038 2732 path_put(&new);
1da177e4 2733out0:
1da177e4 2734 return error;
1da177e4
LT
2735}
2736
2737static void __init init_mount_tree(void)
2738{
2739 struct vfsmount *mnt;
6b3286ed 2740 struct mnt_namespace *ns;
ac748a09 2741 struct path root;
0c55cfc4 2742 struct file_system_type *type;
1da177e4 2743
0c55cfc4
EB
2744 type = get_fs_type("rootfs");
2745 if (!type)
2746 panic("Can't find rootfs type");
2747 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
2748 put_filesystem(type);
1da177e4
LT
2749 if (IS_ERR(mnt))
2750 panic("Can't create rootfs");
b3e19d92 2751
3b22edc5
TM
2752 ns = create_mnt_ns(mnt);
2753 if (IS_ERR(ns))
1da177e4 2754 panic("Can't allocate initial namespace");
6b3286ed
KK
2755
2756 init_task.nsproxy->mnt_ns = ns;
2757 get_mnt_ns(ns);
2758
be08d6d2
AV
2759 root.mnt = mnt;
2760 root.dentry = mnt->mnt_root;
ac748a09
JB
2761
2762 set_fs_pwd(current->fs, &root);
2763 set_fs_root(current->fs, &root);
1da177e4
LT
2764}
2765
74bf17cf 2766void __init mnt_init(void)
1da177e4 2767{
13f14b4d 2768 unsigned u;
15a67dd8 2769 int err;
1da177e4 2770
390c6843
RP
2771 init_rwsem(&namespace_sem);
2772
7d6fec45 2773 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
20c2df83 2774 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 2775
b58fed8b 2776 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
84d17192 2777 mountpoint_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
1da177e4 2778
84d17192 2779 if (!mount_hashtable || !mountpoint_hashtable)
1da177e4
LT
2780 panic("Failed to allocate mount hash table\n");
2781
80cdc6da 2782 printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
13f14b4d
ED
2783
2784 for (u = 0; u < HASH_SIZE; u++)
2785 INIT_LIST_HEAD(&mount_hashtable[u]);
84d17192
AV
2786 for (u = 0; u < HASH_SIZE; u++)
2787 INIT_LIST_HEAD(&mountpoint_hashtable[u]);
1da177e4 2788
962830df 2789 br_lock_init(&vfsmount_lock);
99b7db7b 2790
15a67dd8
RD
2791 err = sysfs_init();
2792 if (err)
2793 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 2794 __func__, err);
00d26666
GKH
2795 fs_kobj = kobject_create_and_add("fs", NULL);
2796 if (!fs_kobj)
8e24eea7 2797 printk(KERN_WARNING "%s: kobj create error\n", __func__);
1da177e4
LT
2798 init_rootfs();
2799 init_mount_tree();
2800}
2801
616511d0 2802void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 2803{
d498b25a 2804 if (!atomic_dec_and_test(&ns->count))
616511d0 2805 return;
97216be0 2806 namespace_lock();
962830df 2807 br_write_lock(&vfsmount_lock);
328e6d90 2808 umount_tree(ns->root, 0);
962830df 2809 br_write_unlock(&vfsmount_lock);
3ab6abee 2810 namespace_unlock();
771b1371 2811 free_mnt_ns(ns);
1da177e4 2812}
9d412a43
AV
2813
2814struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2815{
423e0ab0
TC
2816 struct vfsmount *mnt;
2817 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2818 if (!IS_ERR(mnt)) {
2819 /*
2820 * it is a longterm mount, don't release mnt until
2821 * we unmount before file sys is unregistered
2822 */
f7a99c5b 2823 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
423e0ab0
TC
2824 }
2825 return mnt;
9d412a43
AV
2826}
2827EXPORT_SYMBOL_GPL(kern_mount_data);
423e0ab0
TC
2828
2829void kern_unmount(struct vfsmount *mnt)
2830{
2831 /* release long term mount so mount point can be released */
2832 if (!IS_ERR_OR_NULL(mnt)) {
f7a99c5b
AV
2833 br_write_lock(&vfsmount_lock);
2834 real_mount(mnt)->mnt_ns = NULL;
2835 br_write_unlock(&vfsmount_lock);
423e0ab0
TC
2836 mntput(mnt);
2837 }
2838}
2839EXPORT_SYMBOL(kern_unmount);
02125a82
AV
2840
2841bool our_mnt(struct vfsmount *mnt)
2842{
143c8c91 2843 return check_mnt(real_mount(mnt));
02125a82 2844}
8823c079 2845
3151527e
EB
2846bool current_chrooted(void)
2847{
2848 /* Does the current process have a non-standard root */
2849 struct path ns_root;
2850 struct path fs_root;
2851 bool chrooted;
2852
2853 /* Find the namespace root */
2854 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
2855 ns_root.dentry = ns_root.mnt->mnt_root;
2856 path_get(&ns_root);
2857 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
2858 ;
2859
2860 get_fs_root(current->fs, &fs_root);
2861
2862 chrooted = !path_equal(&fs_root, &ns_root);
2863
2864 path_put(&fs_root);
2865 path_put(&ns_root);
2866
2867 return chrooted;
2868}
2869
e51db735 2870bool fs_fully_visible(struct file_system_type *type)
87a8ebd6
EB
2871{
2872 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
2873 struct mount *mnt;
e51db735 2874 bool visible = false;
87a8ebd6 2875
e51db735
EB
2876 if (unlikely(!ns))
2877 return false;
2878
2879 namespace_lock();
87a8ebd6 2880 list_for_each_entry(mnt, &ns->list, mnt_list) {
e51db735
EB
2881 struct mount *child;
2882 if (mnt->mnt.mnt_sb->s_type != type)
2883 continue;
2884
2885 /* This mount is not fully visible if there are any child mounts
2886 * that cover anything except for empty directories.
2887 */
2888 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2889 struct inode *inode = child->mnt_mountpoint->d_inode;
2890 if (!S_ISDIR(inode->i_mode))
2891 goto next;
2892 if (inode->i_nlink != 2)
2893 goto next;
87a8ebd6 2894 }
e51db735
EB
2895 visible = true;
2896 goto found;
2897 next: ;
87a8ebd6 2898 }
e51db735
EB
2899found:
2900 namespace_unlock();
2901 return visible;
87a8ebd6
EB
2902}
2903
8823c079
EB
2904static void *mntns_get(struct task_struct *task)
2905{
2906 struct mnt_namespace *ns = NULL;
2907 struct nsproxy *nsproxy;
2908
2909 rcu_read_lock();
2910 nsproxy = task_nsproxy(task);
2911 if (nsproxy) {
2912 ns = nsproxy->mnt_ns;
2913 get_mnt_ns(ns);
2914 }
2915 rcu_read_unlock();
2916
2917 return ns;
2918}
2919
2920static void mntns_put(void *ns)
2921{
2922 put_mnt_ns(ns);
2923}
2924
2925static int mntns_install(struct nsproxy *nsproxy, void *ns)
2926{
2927 struct fs_struct *fs = current->fs;
2928 struct mnt_namespace *mnt_ns = ns;
2929 struct path root;
2930
0c55cfc4 2931 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
5e4a0847
EB
2932 !nsown_capable(CAP_SYS_CHROOT) ||
2933 !nsown_capable(CAP_SYS_ADMIN))
ae11e0f1 2934 return -EPERM;
8823c079
EB
2935
2936 if (fs->users != 1)
2937 return -EINVAL;
2938
2939 get_mnt_ns(mnt_ns);
2940 put_mnt_ns(nsproxy->mnt_ns);
2941 nsproxy->mnt_ns = mnt_ns;
2942
2943 /* Find the root */
2944 root.mnt = &mnt_ns->root->mnt;
2945 root.dentry = mnt_ns->root->mnt.mnt_root;
2946 path_get(&root);
2947 while(d_mountpoint(root.dentry) && follow_down_one(&root))
2948 ;
2949
2950 /* Update the pwd and root */
2951 set_fs_pwd(fs, &root);
2952 set_fs_root(fs, &root);
2953
2954 path_put(&root);
2955 return 0;
2956}
2957
98f842e6
EB
2958static unsigned int mntns_inum(void *ns)
2959{
2960 struct mnt_namespace *mnt_ns = ns;
2961 return mnt_ns->proc_inum;
2962}
2963
8823c079
EB
2964const struct proc_ns_operations mntns_operations = {
2965 .name = "mnt",
2966 .type = CLONE_NEWNS,
2967 .get = mntns_get,
2968 .put = mntns_put,
2969 .install = mntns_install,
98f842e6 2970 .inum = mntns_inum,
8823c079 2971};