]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/namespace.c
vfs: take /proc/*/mounts and friends to fs/proc_namespace.c
[mirror_ubuntu-artful-kernel.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4
LT
11#include <linux/syscalls.h>
12#include <linux/slab.h>
13#include <linux/sched.h>
99b7db7b
NP
14#include <linux/spinlock.h>
15#include <linux/percpu.h>
1da177e4 16#include <linux/init.h>
15a67dd8 17#include <linux/kernel.h>
1da177e4 18#include <linux/acct.h>
16f7e0fe 19#include <linux/capability.h>
3d733633 20#include <linux/cpumask.h>
1da177e4 21#include <linux/module.h>
f20a9ead 22#include <linux/sysfs.h>
1da177e4 23#include <linux/seq_file.h>
6b3286ed 24#include <linux/mnt_namespace.h>
1da177e4 25#include <linux/namei.h>
b43f3cbd 26#include <linux/nsproxy.h>
1da177e4
LT
27#include <linux/security.h>
28#include <linux/mount.h>
07f3f05c 29#include <linux/ramfs.h>
13f14b4d 30#include <linux/log2.h>
73cd49ec 31#include <linux/idr.h>
5ad4e53b 32#include <linux/fs_struct.h>
2504c5d6 33#include <linux/fsnotify.h>
1da177e4
LT
34#include <asm/uaccess.h>
35#include <asm/unistd.h>
07b20889 36#include "pnode.h"
948730b0 37#include "internal.h"
1da177e4 38
13f14b4d
ED
39#define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
40#define HASH_SIZE (1UL << HASH_SHIFT)
41
5addc5dd 42static int event;
73cd49ec 43static DEFINE_IDA(mnt_id_ida);
719f5d7f 44static DEFINE_IDA(mnt_group_ida);
99b7db7b 45static DEFINE_SPINLOCK(mnt_id_lock);
f21f6220
AV
46static int mnt_id_start = 0;
47static int mnt_group_start = 1;
1da177e4 48
fa3536cc 49static struct list_head *mount_hashtable __read_mostly;
e18b890b 50static struct kmem_cache *mnt_cache __read_mostly;
390c6843 51static struct rw_semaphore namespace_sem;
1da177e4 52
f87fd4c2 53/* /sys/fs */
00d26666
GKH
54struct kobject *fs_kobj;
55EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 56
99b7db7b
NP
57/*
58 * vfsmount lock may be taken for read to prevent changes to the
59 * vfsmount hash, ie. during mountpoint lookups or walking back
60 * up the tree.
61 *
62 * It should be taken for write in all cases where the vfsmount
63 * tree or hash is modified or when a vfsmount structure is modified.
64 */
65DEFINE_BRLOCK(vfsmount_lock);
66
1da177e4
LT
67static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
68{
b58fed8b
RP
69 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
70 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
13f14b4d
ED
71 tmp = tmp + (tmp >> HASH_SHIFT);
72 return tmp & (HASH_SIZE - 1);
1da177e4
LT
73}
74
3d733633
DH
75#define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
76
99b7db7b
NP
77/*
78 * allocation is serialized by namespace_sem, but we need the spinlock to
79 * serialize with freeing.
80 */
b105e270 81static int mnt_alloc_id(struct mount *mnt)
73cd49ec
MS
82{
83 int res;
84
85retry:
86 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
99b7db7b 87 spin_lock(&mnt_id_lock);
15169fe7 88 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
f21f6220 89 if (!res)
15169fe7 90 mnt_id_start = mnt->mnt_id + 1;
99b7db7b 91 spin_unlock(&mnt_id_lock);
73cd49ec
MS
92 if (res == -EAGAIN)
93 goto retry;
94
95 return res;
96}
97
b105e270 98static void mnt_free_id(struct mount *mnt)
73cd49ec 99{
15169fe7 100 int id = mnt->mnt_id;
99b7db7b 101 spin_lock(&mnt_id_lock);
f21f6220
AV
102 ida_remove(&mnt_id_ida, id);
103 if (mnt_id_start > id)
104 mnt_id_start = id;
99b7db7b 105 spin_unlock(&mnt_id_lock);
73cd49ec
MS
106}
107
719f5d7f
MS
108/*
109 * Allocate a new peer group ID
110 *
111 * mnt_group_ida is protected by namespace_sem
112 */
4b8b21f4 113static int mnt_alloc_group_id(struct mount *mnt)
719f5d7f 114{
f21f6220
AV
115 int res;
116
719f5d7f
MS
117 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
118 return -ENOMEM;
119
f21f6220
AV
120 res = ida_get_new_above(&mnt_group_ida,
121 mnt_group_start,
15169fe7 122 &mnt->mnt_group_id);
f21f6220 123 if (!res)
15169fe7 124 mnt_group_start = mnt->mnt_group_id + 1;
f21f6220
AV
125
126 return res;
719f5d7f
MS
127}
128
129/*
130 * Release a peer group ID
131 */
4b8b21f4 132void mnt_release_group_id(struct mount *mnt)
719f5d7f 133{
15169fe7 134 int id = mnt->mnt_group_id;
f21f6220
AV
135 ida_remove(&mnt_group_ida, id);
136 if (mnt_group_start > id)
137 mnt_group_start = id;
15169fe7 138 mnt->mnt_group_id = 0;
719f5d7f
MS
139}
140
b3e19d92
NP
141/*
142 * vfsmount lock must be held for read
143 */
83adc753 144static inline void mnt_add_count(struct mount *mnt, int n)
b3e19d92
NP
145{
146#ifdef CONFIG_SMP
68e8a9fe 147 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
b3e19d92
NP
148#else
149 preempt_disable();
68e8a9fe 150 mnt->mnt_count += n;
b3e19d92
NP
151 preempt_enable();
152#endif
153}
154
b3e19d92
NP
155/*
156 * vfsmount lock must be held for write
157 */
83adc753 158unsigned int mnt_get_count(struct mount *mnt)
b3e19d92
NP
159{
160#ifdef CONFIG_SMP
f03c6599 161 unsigned int count = 0;
b3e19d92
NP
162 int cpu;
163
164 for_each_possible_cpu(cpu) {
68e8a9fe 165 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
b3e19d92
NP
166 }
167
168 return count;
169#else
68e8a9fe 170 return mnt->mnt_count;
b3e19d92
NP
171#endif
172}
173
b105e270 174static struct mount *alloc_vfsmnt(const char *name)
1da177e4 175{
c63181e6
AV
176 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
177 if (mnt) {
73cd49ec
MS
178 int err;
179
c63181e6 180 err = mnt_alloc_id(mnt);
88b38782
LZ
181 if (err)
182 goto out_free_cache;
183
184 if (name) {
c63181e6
AV
185 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
186 if (!mnt->mnt_devname)
88b38782 187 goto out_free_id;
73cd49ec
MS
188 }
189
b3e19d92 190#ifdef CONFIG_SMP
c63181e6
AV
191 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
192 if (!mnt->mnt_pcp)
b3e19d92
NP
193 goto out_free_devname;
194
c63181e6 195 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
b3e19d92 196#else
c63181e6
AV
197 mnt->mnt_count = 1;
198 mnt->mnt_writers = 0;
b3e19d92
NP
199#endif
200
c63181e6
AV
201 INIT_LIST_HEAD(&mnt->mnt_hash);
202 INIT_LIST_HEAD(&mnt->mnt_child);
203 INIT_LIST_HEAD(&mnt->mnt_mounts);
204 INIT_LIST_HEAD(&mnt->mnt_list);
205 INIT_LIST_HEAD(&mnt->mnt_expire);
206 INIT_LIST_HEAD(&mnt->mnt_share);
207 INIT_LIST_HEAD(&mnt->mnt_slave_list);
208 INIT_LIST_HEAD(&mnt->mnt_slave);
2504c5d6
AG
209#ifdef CONFIG_FSNOTIFY
210 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
d3ef3d73 211#endif
1da177e4 212 }
c63181e6 213 return mnt;
88b38782 214
d3ef3d73 215#ifdef CONFIG_SMP
216out_free_devname:
c63181e6 217 kfree(mnt->mnt_devname);
d3ef3d73 218#endif
88b38782 219out_free_id:
c63181e6 220 mnt_free_id(mnt);
88b38782 221out_free_cache:
c63181e6 222 kmem_cache_free(mnt_cache, mnt);
88b38782 223 return NULL;
1da177e4
LT
224}
225
3d733633
DH
226/*
227 * Most r/o checks on a fs are for operations that take
228 * discrete amounts of time, like a write() or unlink().
229 * We must keep track of when those operations start
230 * (for permission checks) and when they end, so that
231 * we can determine when writes are able to occur to
232 * a filesystem.
233 */
234/*
235 * __mnt_is_readonly: check whether a mount is read-only
236 * @mnt: the mount to check for its write status
237 *
238 * This shouldn't be used directly ouside of the VFS.
239 * It does not guarantee that the filesystem will stay
240 * r/w, just that it is right *now*. This can not and
241 * should not be used in place of IS_RDONLY(inode).
242 * mnt_want/drop_write() will _keep_ the filesystem
243 * r/w.
244 */
245int __mnt_is_readonly(struct vfsmount *mnt)
246{
2e4b7fcd
DH
247 if (mnt->mnt_flags & MNT_READONLY)
248 return 1;
249 if (mnt->mnt_sb->s_flags & MS_RDONLY)
250 return 1;
251 return 0;
3d733633
DH
252}
253EXPORT_SYMBOL_GPL(__mnt_is_readonly);
254
83adc753 255static inline void mnt_inc_writers(struct mount *mnt)
d3ef3d73 256{
257#ifdef CONFIG_SMP
68e8a9fe 258 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
d3ef3d73 259#else
68e8a9fe 260 mnt->mnt_writers++;
d3ef3d73 261#endif
262}
3d733633 263
83adc753 264static inline void mnt_dec_writers(struct mount *mnt)
3d733633 265{
d3ef3d73 266#ifdef CONFIG_SMP
68e8a9fe 267 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
d3ef3d73 268#else
68e8a9fe 269 mnt->mnt_writers--;
d3ef3d73 270#endif
3d733633 271}
3d733633 272
83adc753 273static unsigned int mnt_get_writers(struct mount *mnt)
3d733633 274{
d3ef3d73 275#ifdef CONFIG_SMP
276 unsigned int count = 0;
3d733633 277 int cpu;
3d733633
DH
278
279 for_each_possible_cpu(cpu) {
68e8a9fe 280 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
3d733633 281 }
3d733633 282
d3ef3d73 283 return count;
284#else
285 return mnt->mnt_writers;
286#endif
3d733633
DH
287}
288
8366025e
DH
289/*
290 * Most r/o checks on a fs are for operations that take
291 * discrete amounts of time, like a write() or unlink().
292 * We must keep track of when those operations start
293 * (for permission checks) and when they end, so that
294 * we can determine when writes are able to occur to
295 * a filesystem.
296 */
297/**
298 * mnt_want_write - get write access to a mount
83adc753 299 * @m: the mount on which to take a write
8366025e
DH
300 *
301 * This tells the low-level filesystem that a write is
302 * about to be performed to it, and makes sure that
303 * writes are allowed before returning success. When
304 * the write operation is finished, mnt_drop_write()
305 * must be called. This is effectively a refcount.
306 */
83adc753 307int mnt_want_write(struct vfsmount *m)
8366025e 308{
83adc753 309 struct mount *mnt = real_mount(m);
3d733633 310 int ret = 0;
3d733633 311
d3ef3d73 312 preempt_disable();
c6653a83 313 mnt_inc_writers(mnt);
d3ef3d73 314 /*
c6653a83 315 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73 316 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
317 * incremented count after it has set MNT_WRITE_HOLD.
318 */
319 smp_mb();
83adc753 320 while (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
d3ef3d73 321 cpu_relax();
322 /*
323 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
324 * be set to match its requirements. So we must not load that until
325 * MNT_WRITE_HOLD is cleared.
326 */
327 smp_rmb();
83adc753 328 if (__mnt_is_readonly(m)) {
c6653a83 329 mnt_dec_writers(mnt);
3d733633
DH
330 ret = -EROFS;
331 goto out;
332 }
3d733633 333out:
d3ef3d73 334 preempt_enable();
3d733633 335 return ret;
8366025e
DH
336}
337EXPORT_SYMBOL_GPL(mnt_want_write);
338
96029c4e 339/**
340 * mnt_clone_write - get write access to a mount
341 * @mnt: the mount on which to take a write
342 *
343 * This is effectively like mnt_want_write, except
344 * it must only be used to take an extra write reference
345 * on a mountpoint that we already know has a write reference
346 * on it. This allows some optimisation.
347 *
348 * After finished, mnt_drop_write must be called as usual to
349 * drop the reference.
350 */
351int mnt_clone_write(struct vfsmount *mnt)
352{
353 /* superblock may be r/o */
354 if (__mnt_is_readonly(mnt))
355 return -EROFS;
356 preempt_disable();
83adc753 357 mnt_inc_writers(real_mount(mnt));
96029c4e 358 preempt_enable();
359 return 0;
360}
361EXPORT_SYMBOL_GPL(mnt_clone_write);
362
363/**
364 * mnt_want_write_file - get write access to a file's mount
365 * @file: the file who's mount on which to take a write
366 *
367 * This is like mnt_want_write, but it takes a file and can
368 * do some optimisations if the file is open for write already
369 */
370int mnt_want_write_file(struct file *file)
371{
2d8dd38a
OH
372 struct inode *inode = file->f_dentry->d_inode;
373 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
96029c4e 374 return mnt_want_write(file->f_path.mnt);
375 else
376 return mnt_clone_write(file->f_path.mnt);
377}
378EXPORT_SYMBOL_GPL(mnt_want_write_file);
379
8366025e
DH
380/**
381 * mnt_drop_write - give up write access to a mount
382 * @mnt: the mount on which to give up write access
383 *
384 * Tells the low-level filesystem that we are done
385 * performing writes to it. Must be matched with
386 * mnt_want_write() call above.
387 */
388void mnt_drop_write(struct vfsmount *mnt)
389{
d3ef3d73 390 preempt_disable();
83adc753 391 mnt_dec_writers(real_mount(mnt));
d3ef3d73 392 preempt_enable();
8366025e
DH
393}
394EXPORT_SYMBOL_GPL(mnt_drop_write);
395
2a79f17e
AV
396void mnt_drop_write_file(struct file *file)
397{
398 mnt_drop_write(file->f_path.mnt);
399}
400EXPORT_SYMBOL(mnt_drop_write_file);
401
83adc753 402static int mnt_make_readonly(struct mount *mnt)
8366025e 403{
3d733633
DH
404 int ret = 0;
405
99b7db7b 406 br_write_lock(vfsmount_lock);
83adc753 407 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
3d733633 408 /*
d3ef3d73 409 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
410 * should be visible before we do.
3d733633 411 */
d3ef3d73 412 smp_mb();
413
3d733633 414 /*
d3ef3d73 415 * With writers on hold, if this value is zero, then there are
416 * definitely no active writers (although held writers may subsequently
417 * increment the count, they'll have to wait, and decrement it after
418 * seeing MNT_READONLY).
419 *
420 * It is OK to have counter incremented on one CPU and decremented on
421 * another: the sum will add up correctly. The danger would be when we
422 * sum up each counter, if we read a counter before it is incremented,
423 * but then read another CPU's count which it has been subsequently
424 * decremented from -- we would see more decrements than we should.
425 * MNT_WRITE_HOLD protects against this scenario, because
426 * mnt_want_write first increments count, then smp_mb, then spins on
427 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
428 * we're counting up here.
3d733633 429 */
c6653a83 430 if (mnt_get_writers(mnt) > 0)
d3ef3d73 431 ret = -EBUSY;
432 else
83adc753 433 mnt->mnt.mnt_flags |= MNT_READONLY;
d3ef3d73 434 /*
435 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
436 * that become unheld will see MNT_READONLY.
437 */
438 smp_wmb();
83adc753 439 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
99b7db7b 440 br_write_unlock(vfsmount_lock);
3d733633 441 return ret;
8366025e 442}
8366025e 443
83adc753 444static void __mnt_unmake_readonly(struct mount *mnt)
2e4b7fcd 445{
99b7db7b 446 br_write_lock(vfsmount_lock);
83adc753 447 mnt->mnt.mnt_flags &= ~MNT_READONLY;
99b7db7b 448 br_write_unlock(vfsmount_lock);
2e4b7fcd
DH
449}
450
b105e270 451static void free_vfsmnt(struct mount *mnt)
1da177e4 452{
52ba1621 453 kfree(mnt->mnt_devname);
73cd49ec 454 mnt_free_id(mnt);
d3ef3d73 455#ifdef CONFIG_SMP
68e8a9fe 456 free_percpu(mnt->mnt_pcp);
d3ef3d73 457#endif
b105e270 458 kmem_cache_free(mnt_cache, mnt);
1da177e4
LT
459}
460
461/*
a05964f3
RP
462 * find the first or last mount at @dentry on vfsmount @mnt depending on
463 * @dir. If @dir is set return the first mount else return the last mount.
99b7db7b 464 * vfsmount_lock must be held for read or write.
1da177e4 465 */
c7105365 466struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
a05964f3 467 int dir)
1da177e4 468{
b58fed8b
RP
469 struct list_head *head = mount_hashtable + hash(mnt, dentry);
470 struct list_head *tmp = head;
c7105365 471 struct mount *p, *found = NULL;
1da177e4 472
1da177e4 473 for (;;) {
a05964f3 474 tmp = dir ? tmp->next : tmp->prev;
1da177e4
LT
475 p = NULL;
476 if (tmp == head)
477 break;
1b8e5564 478 p = list_entry(tmp, struct mount, mnt_hash);
a73324da 479 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) {
a05964f3 480 found = p;
1da177e4
LT
481 break;
482 }
483 }
1da177e4
LT
484 return found;
485}
486
a05964f3
RP
487/*
488 * lookup_mnt increments the ref count before returning
489 * the vfsmount struct.
490 */
1c755af4 491struct vfsmount *lookup_mnt(struct path *path)
a05964f3 492{
c7105365 493 struct mount *child_mnt;
99b7db7b
NP
494
495 br_read_lock(vfsmount_lock);
c7105365
AV
496 child_mnt = __lookup_mnt(path->mnt, path->dentry, 1);
497 if (child_mnt) {
498 mnt_add_count(child_mnt, 1);
499 br_read_unlock(vfsmount_lock);
500 return &child_mnt->mnt;
501 } else {
502 br_read_unlock(vfsmount_lock);
503 return NULL;
504 }
a05964f3
RP
505}
506
143c8c91 507static inline int check_mnt(struct mount *mnt)
1da177e4 508{
6b3286ed 509 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
510}
511
99b7db7b
NP
512/*
513 * vfsmount lock must be held for write
514 */
6b3286ed 515static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
516{
517 if (ns) {
518 ns->event = ++event;
519 wake_up_interruptible(&ns->poll);
520 }
521}
522
99b7db7b
NP
523/*
524 * vfsmount lock must be held for write
525 */
6b3286ed 526static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
527{
528 if (ns && ns->event != event) {
529 ns->event = event;
530 wake_up_interruptible(&ns->poll);
531 }
532}
533
5f57cbcc
NP
534/*
535 * Clear dentry's mounted state if it has no remaining mounts.
536 * vfsmount_lock must be held for write.
537 */
aa0a4cf0 538static void dentry_reset_mounted(struct dentry *dentry)
5f57cbcc
NP
539{
540 unsigned u;
541
542 for (u = 0; u < HASH_SIZE; u++) {
d5e50f74 543 struct mount *p;
5f57cbcc 544
1b8e5564 545 list_for_each_entry(p, &mount_hashtable[u], mnt_hash) {
a73324da 546 if (p->mnt_mountpoint == dentry)
5f57cbcc
NP
547 return;
548 }
549 }
550 spin_lock(&dentry->d_lock);
551 dentry->d_flags &= ~DCACHE_MOUNTED;
552 spin_unlock(&dentry->d_lock);
553}
554
99b7db7b
NP
555/*
556 * vfsmount lock must be held for write
557 */
419148da
AV
558static void detach_mnt(struct mount *mnt, struct path *old_path)
559{
a73324da 560 old_path->dentry = mnt->mnt_mountpoint;
0714a533
AV
561 old_path->mnt = &mnt->mnt_parent->mnt;
562 mnt->mnt_parent = mnt;
a73324da 563 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
6b41d536 564 list_del_init(&mnt->mnt_child);
1b8e5564 565 list_del_init(&mnt->mnt_hash);
aa0a4cf0 566 dentry_reset_mounted(old_path->dentry);
1da177e4
LT
567}
568
99b7db7b
NP
569/*
570 * vfsmount lock must be held for write
571 */
14cf1fa8 572void mnt_set_mountpoint(struct mount *mnt, struct dentry *dentry,
44d964d6 573 struct mount *child_mnt)
b90fa9ae 574{
3a2393d7 575 mnt_add_count(mnt, 1); /* essentially, that's mntget */
a73324da 576 child_mnt->mnt_mountpoint = dget(dentry);
3a2393d7 577 child_mnt->mnt_parent = mnt;
5f57cbcc
NP
578 spin_lock(&dentry->d_lock);
579 dentry->d_flags |= DCACHE_MOUNTED;
580 spin_unlock(&dentry->d_lock);
b90fa9ae
RP
581}
582
99b7db7b
NP
583/*
584 * vfsmount lock must be held for write
585 */
419148da 586static void attach_mnt(struct mount *mnt, struct path *path)
1da177e4 587{
14cf1fa8 588 mnt_set_mountpoint(real_mount(path->mnt), path->dentry, mnt);
1b8e5564 589 list_add_tail(&mnt->mnt_hash, mount_hashtable +
1a390689 590 hash(path->mnt, path->dentry));
6b41d536 591 list_add_tail(&mnt->mnt_child, &real_mount(path->mnt)->mnt_mounts);
b90fa9ae
RP
592}
593
83adc753 594static inline void __mnt_make_longterm(struct mount *mnt)
7e3d0eb0
AV
595{
596#ifdef CONFIG_SMP
68e8a9fe 597 atomic_inc(&mnt->mnt_longterm);
7e3d0eb0
AV
598#endif
599}
600
601/* needs vfsmount lock for write */
83adc753 602static inline void __mnt_make_shortterm(struct mount *mnt)
7e3d0eb0
AV
603{
604#ifdef CONFIG_SMP
68e8a9fe 605 atomic_dec(&mnt->mnt_longterm);
7e3d0eb0
AV
606#endif
607}
608
b90fa9ae 609/*
99b7db7b 610 * vfsmount lock must be held for write
b90fa9ae 611 */
4b2619a5 612static void commit_tree(struct mount *mnt)
b90fa9ae 613{
0714a533 614 struct mount *parent = mnt->mnt_parent;
83adc753 615 struct mount *m;
b90fa9ae 616 LIST_HEAD(head);
143c8c91 617 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae 618
0714a533 619 BUG_ON(parent == mnt);
b90fa9ae 620
1a4eeaf2
AV
621 list_add_tail(&head, &mnt->mnt_list);
622 list_for_each_entry(m, &head, mnt_list) {
143c8c91 623 m->mnt_ns = n;
7e3d0eb0 624 __mnt_make_longterm(m);
f03c6599
AV
625 }
626
b90fa9ae
RP
627 list_splice(&head, n->list.prev);
628
1b8e5564 629 list_add_tail(&mnt->mnt_hash, mount_hashtable +
a73324da 630 hash(&parent->mnt, mnt->mnt_mountpoint));
6b41d536 631 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
6b3286ed 632 touch_mnt_namespace(n);
1da177e4
LT
633}
634
909b0a88 635static struct mount *next_mnt(struct mount *p, struct mount *root)
1da177e4 636{
6b41d536
AV
637 struct list_head *next = p->mnt_mounts.next;
638 if (next == &p->mnt_mounts) {
1da177e4 639 while (1) {
909b0a88 640 if (p == root)
1da177e4 641 return NULL;
6b41d536
AV
642 next = p->mnt_child.next;
643 if (next != &p->mnt_parent->mnt_mounts)
1da177e4 644 break;
0714a533 645 p = p->mnt_parent;
1da177e4
LT
646 }
647 }
6b41d536 648 return list_entry(next, struct mount, mnt_child);
1da177e4
LT
649}
650
315fc83e 651static struct mount *skip_mnt_tree(struct mount *p)
9676f0c6 652{
6b41d536
AV
653 struct list_head *prev = p->mnt_mounts.prev;
654 while (prev != &p->mnt_mounts) {
655 p = list_entry(prev, struct mount, mnt_child);
656 prev = p->mnt_mounts.prev;
9676f0c6
RP
657 }
658 return p;
659}
660
9d412a43
AV
661struct vfsmount *
662vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
663{
b105e270 664 struct mount *mnt;
9d412a43
AV
665 struct dentry *root;
666
667 if (!type)
668 return ERR_PTR(-ENODEV);
669
670 mnt = alloc_vfsmnt(name);
671 if (!mnt)
672 return ERR_PTR(-ENOMEM);
673
674 if (flags & MS_KERNMOUNT)
b105e270 675 mnt->mnt.mnt_flags = MNT_INTERNAL;
9d412a43
AV
676
677 root = mount_fs(type, flags, name, data);
678 if (IS_ERR(root)) {
679 free_vfsmnt(mnt);
680 return ERR_CAST(root);
681 }
682
b105e270
AV
683 mnt->mnt.mnt_root = root;
684 mnt->mnt.mnt_sb = root->d_sb;
a73324da 685 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 686 mnt->mnt_parent = mnt;
b105e270 687 return &mnt->mnt;
9d412a43
AV
688}
689EXPORT_SYMBOL_GPL(vfs_kern_mount);
690
87129cc0 691static struct mount *clone_mnt(struct mount *old, struct dentry *root,
36341f64 692 int flag)
1da177e4 693{
87129cc0 694 struct super_block *sb = old->mnt.mnt_sb;
52ba1621 695 struct mount *mnt = alloc_vfsmnt(old->mnt_devname);
1da177e4
LT
696
697 if (mnt) {
719f5d7f 698 if (flag & (CL_SLAVE | CL_PRIVATE))
15169fe7 699 mnt->mnt_group_id = 0; /* not a peer of original */
719f5d7f 700 else
15169fe7 701 mnt->mnt_group_id = old->mnt_group_id;
719f5d7f 702
15169fe7 703 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
b105e270 704 int err = mnt_alloc_group_id(mnt);
719f5d7f
MS
705 if (err)
706 goto out_free;
707 }
708
87129cc0 709 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD;
1da177e4 710 atomic_inc(&sb->s_active);
b105e270
AV
711 mnt->mnt.mnt_sb = sb;
712 mnt->mnt.mnt_root = dget(root);
a73324da 713 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 714 mnt->mnt_parent = mnt;
b90fa9ae 715
5afe0022 716 if (flag & CL_SLAVE) {
6776db3d 717 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
32301920 718 mnt->mnt_master = old;
fc7be130 719 CLEAR_MNT_SHARED(mnt);
8aec0809 720 } else if (!(flag & CL_PRIVATE)) {
fc7be130 721 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
6776db3d 722 list_add(&mnt->mnt_share, &old->mnt_share);
d10e8def 723 if (IS_MNT_SLAVE(old))
6776db3d 724 list_add(&mnt->mnt_slave, &old->mnt_slave);
d10e8def 725 mnt->mnt_master = old->mnt_master;
5afe0022 726 }
b90fa9ae 727 if (flag & CL_MAKE_SHARED)
0f0afb1d 728 set_mnt_shared(mnt);
1da177e4
LT
729
730 /* stick the duplicate mount on the same expiry list
731 * as the original if that was on one */
36341f64 732 if (flag & CL_EXPIRE) {
6776db3d
AV
733 if (!list_empty(&old->mnt_expire))
734 list_add(&mnt->mnt_expire, &old->mnt_expire);
36341f64 735 }
1da177e4 736 }
cb338d06 737 return mnt;
719f5d7f
MS
738
739 out_free:
740 free_vfsmnt(mnt);
741 return NULL;
1da177e4
LT
742}
743
83adc753 744static inline void mntfree(struct mount *mnt)
1da177e4 745{
83adc753
AV
746 struct vfsmount *m = &mnt->mnt;
747 struct super_block *sb = m->mnt_sb;
b3e19d92 748
3d733633
DH
749 /*
750 * This probably indicates that somebody messed
751 * up a mnt_want/drop_write() pair. If this
752 * happens, the filesystem was probably unable
753 * to make r/w->r/o transitions.
754 */
d3ef3d73 755 /*
b3e19d92
NP
756 * The locking used to deal with mnt_count decrement provides barriers,
757 * so mnt_get_writers() below is safe.
d3ef3d73 758 */
c6653a83 759 WARN_ON(mnt_get_writers(mnt));
83adc753
AV
760 fsnotify_vfsmount_delete(m);
761 dput(m->mnt_root);
762 free_vfsmnt(mnt);
1da177e4
LT
763 deactivate_super(sb);
764}
765
900148dc 766static void mntput_no_expire(struct mount *mnt)
b3e19d92 767{
b3e19d92 768put_again:
f03c6599
AV
769#ifdef CONFIG_SMP
770 br_read_lock(vfsmount_lock);
68e8a9fe 771 if (likely(atomic_read(&mnt->mnt_longterm))) {
aa9c0e07 772 mnt_add_count(mnt, -1);
b3e19d92 773 br_read_unlock(vfsmount_lock);
f03c6599 774 return;
b3e19d92 775 }
f03c6599 776 br_read_unlock(vfsmount_lock);
b3e19d92 777
99b7db7b 778 br_write_lock(vfsmount_lock);
aa9c0e07 779 mnt_add_count(mnt, -1);
b3e19d92 780 if (mnt_get_count(mnt)) {
99b7db7b
NP
781 br_write_unlock(vfsmount_lock);
782 return;
783 }
b3e19d92 784#else
aa9c0e07 785 mnt_add_count(mnt, -1);
b3e19d92 786 if (likely(mnt_get_count(mnt)))
99b7db7b 787 return;
b3e19d92 788 br_write_lock(vfsmount_lock);
f03c6599 789#endif
863d684f
AV
790 if (unlikely(mnt->mnt_pinned)) {
791 mnt_add_count(mnt, mnt->mnt_pinned + 1);
792 mnt->mnt_pinned = 0;
b3e19d92 793 br_write_unlock(vfsmount_lock);
900148dc 794 acct_auto_close_mnt(&mnt->mnt);
b3e19d92 795 goto put_again;
7b7b1ace 796 }
99b7db7b 797 br_write_unlock(vfsmount_lock);
b3e19d92
NP
798 mntfree(mnt);
799}
b3e19d92
NP
800
801void mntput(struct vfsmount *mnt)
802{
803 if (mnt) {
863d684f 804 struct mount *m = real_mount(mnt);
b3e19d92 805 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
863d684f
AV
806 if (unlikely(m->mnt_expiry_mark))
807 m->mnt_expiry_mark = 0;
808 mntput_no_expire(m);
b3e19d92
NP
809 }
810}
811EXPORT_SYMBOL(mntput);
812
813struct vfsmount *mntget(struct vfsmount *mnt)
814{
815 if (mnt)
83adc753 816 mnt_add_count(real_mount(mnt), 1);
b3e19d92
NP
817 return mnt;
818}
819EXPORT_SYMBOL(mntget);
820
7b7b1ace
AV
821void mnt_pin(struct vfsmount *mnt)
822{
99b7db7b 823 br_write_lock(vfsmount_lock);
863d684f 824 real_mount(mnt)->mnt_pinned++;
99b7db7b 825 br_write_unlock(vfsmount_lock);
7b7b1ace 826}
7b7b1ace
AV
827EXPORT_SYMBOL(mnt_pin);
828
863d684f 829void mnt_unpin(struct vfsmount *m)
7b7b1ace 830{
863d684f 831 struct mount *mnt = real_mount(m);
99b7db7b 832 br_write_lock(vfsmount_lock);
7b7b1ace 833 if (mnt->mnt_pinned) {
863d684f 834 mnt_add_count(mnt, 1);
7b7b1ace
AV
835 mnt->mnt_pinned--;
836 }
99b7db7b 837 br_write_unlock(vfsmount_lock);
7b7b1ace 838}
7b7b1ace 839EXPORT_SYMBOL(mnt_unpin);
1da177e4 840
b3b304a2
MS
841static inline void mangle(struct seq_file *m, const char *s)
842{
843 seq_escape(m, s, " \t\n\\");
844}
845
846/*
847 * Simple .show_options callback for filesystems which don't want to
848 * implement more complex mount option showing.
849 *
850 * See also save_mount_options().
851 */
852int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
853{
2a32cebd
AV
854 const char *options;
855
856 rcu_read_lock();
857 options = rcu_dereference(mnt->mnt_sb->s_options);
b3b304a2
MS
858
859 if (options != NULL && options[0]) {
860 seq_putc(m, ',');
861 mangle(m, options);
862 }
2a32cebd 863 rcu_read_unlock();
b3b304a2
MS
864
865 return 0;
866}
867EXPORT_SYMBOL(generic_show_options);
868
869/*
870 * If filesystem uses generic_show_options(), this function should be
871 * called from the fill_super() callback.
872 *
873 * The .remount_fs callback usually needs to be handled in a special
874 * way, to make sure, that previous options are not overwritten if the
875 * remount fails.
876 *
877 * Also note, that if the filesystem's .remount_fs function doesn't
878 * reset all options to their default value, but changes only newly
879 * given options, then the displayed options will not reflect reality
880 * any more.
881 */
882void save_mount_options(struct super_block *sb, char *options)
883{
2a32cebd
AV
884 BUG_ON(sb->s_options);
885 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
b3b304a2
MS
886}
887EXPORT_SYMBOL(save_mount_options);
888
2a32cebd
AV
889void replace_mount_options(struct super_block *sb, char *options)
890{
891 char *old = sb->s_options;
892 rcu_assign_pointer(sb->s_options, options);
893 if (old) {
894 synchronize_rcu();
895 kfree(old);
896 }
897}
898EXPORT_SYMBOL(replace_mount_options);
899
a1a2c409 900#ifdef CONFIG_PROC_FS
0226f492 901/* iterator; we want it to have access to namespace_sem, thus here... */
1da177e4
LT
902static void *m_start(struct seq_file *m, loff_t *pos)
903{
0226f492 904 struct proc_mounts *p = container_of(m, struct proc_mounts, m);
1da177e4 905
390c6843 906 down_read(&namespace_sem);
a1a2c409 907 return seq_list_start(&p->ns->list, *pos);
1da177e4
LT
908}
909
910static void *m_next(struct seq_file *m, void *v, loff_t *pos)
911{
0226f492 912 struct proc_mounts *p = container_of(m, struct proc_mounts, m);
b0765fb8 913
a1a2c409 914 return seq_list_next(v, &p->ns->list, pos);
1da177e4
LT
915}
916
917static void m_stop(struct seq_file *m, void *v)
918{
390c6843 919 up_read(&namespace_sem);
1da177e4
LT
920}
921
0226f492 922static int m_show(struct seq_file *m, void *v)
2d4d4864 923{
0226f492 924 struct proc_mounts *p = container_of(m, struct proc_mounts, m);
1a4eeaf2 925 struct mount *r = list_entry(v, struct mount, mnt_list);
0226f492 926 return p->show(m, &r->mnt);
1da177e4
LT
927}
928
a1a2c409 929const struct seq_operations mounts_op = {
1da177e4
LT
930 .start = m_start,
931 .next = m_next,
932 .stop = m_stop,
0226f492 933 .show = m_show,
b4629fe2 934};
a1a2c409 935#endif /* CONFIG_PROC_FS */
b4629fe2 936
1da177e4
LT
937/**
938 * may_umount_tree - check if a mount tree is busy
939 * @mnt: root of mount tree
940 *
941 * This is called to check if a tree of mounts has any
942 * open files, pwds, chroots or sub mounts that are
943 * busy.
944 */
909b0a88 945int may_umount_tree(struct vfsmount *m)
1da177e4 946{
909b0a88 947 struct mount *mnt = real_mount(m);
36341f64
RP
948 int actual_refs = 0;
949 int minimum_refs = 0;
315fc83e 950 struct mount *p;
909b0a88 951 BUG_ON(!m);
1da177e4 952
b3e19d92
NP
953 /* write lock needed for mnt_get_count */
954 br_write_lock(vfsmount_lock);
909b0a88 955 for (p = mnt; p; p = next_mnt(p, mnt)) {
83adc753 956 actual_refs += mnt_get_count(p);
1da177e4 957 minimum_refs += 2;
1da177e4 958 }
b3e19d92 959 br_write_unlock(vfsmount_lock);
1da177e4
LT
960
961 if (actual_refs > minimum_refs)
e3474a8e 962 return 0;
1da177e4 963
e3474a8e 964 return 1;
1da177e4
LT
965}
966
967EXPORT_SYMBOL(may_umount_tree);
968
969/**
970 * may_umount - check if a mount point is busy
971 * @mnt: root of mount
972 *
973 * This is called to check if a mount point has any
974 * open files, pwds, chroots or sub mounts. If the
975 * mount has sub mounts this will return busy
976 * regardless of whether the sub mounts are busy.
977 *
978 * Doesn't take quota and stuff into account. IOW, in some cases it will
979 * give false negatives. The main reason why it's here is that we need
980 * a non-destructive way to look for easily umountable filesystems.
981 */
982int may_umount(struct vfsmount *mnt)
983{
e3474a8e 984 int ret = 1;
8ad08d8a 985 down_read(&namespace_sem);
b3e19d92 986 br_write_lock(vfsmount_lock);
1ab59738 987 if (propagate_mount_busy(real_mount(mnt), 2))
e3474a8e 988 ret = 0;
b3e19d92 989 br_write_unlock(vfsmount_lock);
8ad08d8a 990 up_read(&namespace_sem);
a05964f3 991 return ret;
1da177e4
LT
992}
993
994EXPORT_SYMBOL(may_umount);
995
b90fa9ae 996void release_mounts(struct list_head *head)
70fbcdf4 997{
d5e50f74 998 struct mount *mnt;
bf066c7d 999 while (!list_empty(head)) {
1b8e5564
AV
1000 mnt = list_first_entry(head, struct mount, mnt_hash);
1001 list_del_init(&mnt->mnt_hash);
676da58d 1002 if (mnt_has_parent(mnt)) {
70fbcdf4 1003 struct dentry *dentry;
863d684f 1004 struct mount *m;
99b7db7b
NP
1005
1006 br_write_lock(vfsmount_lock);
a73324da 1007 dentry = mnt->mnt_mountpoint;
863d684f 1008 m = mnt->mnt_parent;
a73324da 1009 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 1010 mnt->mnt_parent = mnt;
7c4b93d8 1011 m->mnt_ghosts--;
99b7db7b 1012 br_write_unlock(vfsmount_lock);
70fbcdf4 1013 dput(dentry);
863d684f 1014 mntput(&m->mnt);
70fbcdf4 1015 }
d5e50f74 1016 mntput(&mnt->mnt);
70fbcdf4
RP
1017 }
1018}
1019
99b7db7b
NP
1020/*
1021 * vfsmount lock must be held for write
1022 * namespace_sem must be held for write
1023 */
761d5c38 1024void umount_tree(struct mount *mnt, int propagate, struct list_head *kill)
1da177e4 1025{
7b8a53fd 1026 LIST_HEAD(tmp_list);
315fc83e 1027 struct mount *p;
1da177e4 1028
909b0a88 1029 for (p = mnt; p; p = next_mnt(p, mnt))
1b8e5564 1030 list_move(&p->mnt_hash, &tmp_list);
1da177e4 1031
a05964f3 1032 if (propagate)
7b8a53fd 1033 propagate_umount(&tmp_list);
a05964f3 1034
1b8e5564 1035 list_for_each_entry(p, &tmp_list, mnt_hash) {
6776db3d 1036 list_del_init(&p->mnt_expire);
1a4eeaf2 1037 list_del_init(&p->mnt_list);
143c8c91
AV
1038 __touch_mnt_namespace(p->mnt_ns);
1039 p->mnt_ns = NULL;
83adc753 1040 __mnt_make_shortterm(p);
6b41d536 1041 list_del_init(&p->mnt_child);
676da58d 1042 if (mnt_has_parent(p)) {
863d684f 1043 p->mnt_parent->mnt_ghosts++;
a73324da 1044 dentry_reset_mounted(p->mnt_mountpoint);
7c4b93d8 1045 }
0f0afb1d 1046 change_mnt_propagation(p, MS_PRIVATE);
1da177e4 1047 }
7b8a53fd 1048 list_splice(&tmp_list, kill);
1da177e4
LT
1049}
1050
692afc31 1051static void shrink_submounts(struct mount *mnt, struct list_head *umounts);
c35038be 1052
1ab59738 1053static int do_umount(struct mount *mnt, int flags)
1da177e4 1054{
1ab59738 1055 struct super_block *sb = mnt->mnt.mnt_sb;
1da177e4 1056 int retval;
70fbcdf4 1057 LIST_HEAD(umount_list);
1da177e4 1058
1ab59738 1059 retval = security_sb_umount(&mnt->mnt, flags);
1da177e4
LT
1060 if (retval)
1061 return retval;
1062
1063 /*
1064 * Allow userspace to request a mountpoint be expired rather than
1065 * unmounting unconditionally. Unmount only happens if:
1066 * (1) the mark is already set (the mark is cleared by mntput())
1067 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1068 */
1069 if (flags & MNT_EXPIRE) {
1ab59738 1070 if (&mnt->mnt == current->fs->root.mnt ||
1da177e4
LT
1071 flags & (MNT_FORCE | MNT_DETACH))
1072 return -EINVAL;
1073
b3e19d92
NP
1074 /*
1075 * probably don't strictly need the lock here if we examined
1076 * all race cases, but it's a slowpath.
1077 */
1078 br_write_lock(vfsmount_lock);
83adc753 1079 if (mnt_get_count(mnt) != 2) {
bf9faa2a 1080 br_write_unlock(vfsmount_lock);
1da177e4 1081 return -EBUSY;
b3e19d92
NP
1082 }
1083 br_write_unlock(vfsmount_lock);
1da177e4 1084
863d684f 1085 if (!xchg(&mnt->mnt_expiry_mark, 1))
1da177e4
LT
1086 return -EAGAIN;
1087 }
1088
1089 /*
1090 * If we may have to abort operations to get out of this
1091 * mount, and they will themselves hold resources we must
1092 * allow the fs to do things. In the Unix tradition of
1093 * 'Gee thats tricky lets do it in userspace' the umount_begin
1094 * might fail to complete on the first run through as other tasks
1095 * must return, and the like. Thats for the mount program to worry
1096 * about for the moment.
1097 */
1098
42faad99 1099 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1100 sb->s_op->umount_begin(sb);
42faad99 1101 }
1da177e4
LT
1102
1103 /*
1104 * No sense to grab the lock for this test, but test itself looks
1105 * somewhat bogus. Suggestions for better replacement?
1106 * Ho-hum... In principle, we might treat that as umount + switch
1107 * to rootfs. GC would eventually take care of the old vfsmount.
1108 * Actually it makes sense, especially if rootfs would contain a
1109 * /reboot - static binary that would close all descriptors and
1110 * call reboot(9). Then init(8) could umount root and exec /reboot.
1111 */
1ab59738 1112 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1113 /*
1114 * Special case for "unmounting" root ...
1115 * we just try to remount it readonly.
1116 */
1117 down_write(&sb->s_umount);
4aa98cf7 1118 if (!(sb->s_flags & MS_RDONLY))
1da177e4 1119 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1da177e4
LT
1120 up_write(&sb->s_umount);
1121 return retval;
1122 }
1123
390c6843 1124 down_write(&namespace_sem);
99b7db7b 1125 br_write_lock(vfsmount_lock);
5addc5dd 1126 event++;
1da177e4 1127
c35038be 1128 if (!(flags & MNT_DETACH))
1ab59738 1129 shrink_submounts(mnt, &umount_list);
c35038be 1130
1da177e4 1131 retval = -EBUSY;
a05964f3 1132 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1a4eeaf2 1133 if (!list_empty(&mnt->mnt_list))
1ab59738 1134 umount_tree(mnt, 1, &umount_list);
1da177e4
LT
1135 retval = 0;
1136 }
99b7db7b 1137 br_write_unlock(vfsmount_lock);
390c6843 1138 up_write(&namespace_sem);
70fbcdf4 1139 release_mounts(&umount_list);
1da177e4
LT
1140 return retval;
1141}
1142
1143/*
1144 * Now umount can handle mount points as well as block devices.
1145 * This is important for filesystems which use unnamed block devices.
1146 *
1147 * We now support a flag for forced unmount like the other 'big iron'
1148 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1149 */
1150
bdc480e3 1151SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1da177e4 1152{
2d8f3038 1153 struct path path;
900148dc 1154 struct mount *mnt;
1da177e4 1155 int retval;
db1f05bb 1156 int lookup_flags = 0;
1da177e4 1157
db1f05bb
MS
1158 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1159 return -EINVAL;
1160
1161 if (!(flags & UMOUNT_NOFOLLOW))
1162 lookup_flags |= LOOKUP_FOLLOW;
1163
1164 retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1da177e4
LT
1165 if (retval)
1166 goto out;
900148dc 1167 mnt = real_mount(path.mnt);
1da177e4 1168 retval = -EINVAL;
2d8f3038 1169 if (path.dentry != path.mnt->mnt_root)
1da177e4 1170 goto dput_and_out;
143c8c91 1171 if (!check_mnt(mnt))
1da177e4
LT
1172 goto dput_and_out;
1173
1174 retval = -EPERM;
1175 if (!capable(CAP_SYS_ADMIN))
1176 goto dput_and_out;
1177
900148dc 1178 retval = do_umount(mnt, flags);
1da177e4 1179dput_and_out:
429731b1 1180 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038 1181 dput(path.dentry);
900148dc 1182 mntput_no_expire(mnt);
1da177e4
LT
1183out:
1184 return retval;
1185}
1186
1187#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1188
1189/*
b58fed8b 1190 * The 2.0 compatible umount. No flags.
1da177e4 1191 */
bdc480e3 1192SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1193{
b58fed8b 1194 return sys_umount(name, 0);
1da177e4
LT
1195}
1196
1197#endif
1198
2d92ab3c 1199static int mount_is_safe(struct path *path)
1da177e4
LT
1200{
1201 if (capable(CAP_SYS_ADMIN))
1202 return 0;
1203 return -EPERM;
1204#ifdef notyet
2d92ab3c 1205 if (S_ISLNK(path->dentry->d_inode->i_mode))
1da177e4 1206 return -EPERM;
2d92ab3c 1207 if (path->dentry->d_inode->i_mode & S_ISVTX) {
da9592ed 1208 if (current_uid() != path->dentry->d_inode->i_uid)
1da177e4
LT
1209 return -EPERM;
1210 }
2d92ab3c 1211 if (inode_permission(path->dentry->d_inode, MAY_WRITE))
1da177e4
LT
1212 return -EPERM;
1213 return 0;
1214#endif
1215}
1216
87129cc0 1217struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
36341f64 1218 int flag)
1da177e4 1219{
a73324da 1220 struct mount *res, *p, *q, *r;
1a390689 1221 struct path path;
1da177e4 1222
fc7be130 1223 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
9676f0c6
RP
1224 return NULL;
1225
36341f64 1226 res = q = clone_mnt(mnt, dentry, flag);
1da177e4
LT
1227 if (!q)
1228 goto Enomem;
a73324da 1229 q->mnt_mountpoint = mnt->mnt_mountpoint;
1da177e4
LT
1230
1231 p = mnt;
6b41d536 1232 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
315fc83e 1233 struct mount *s;
7ec02ef1 1234 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1235 continue;
1236
909b0a88 1237 for (s = r; s; s = next_mnt(s, r)) {
fc7be130 1238 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
9676f0c6
RP
1239 s = skip_mnt_tree(s);
1240 continue;
1241 }
0714a533
AV
1242 while (p != s->mnt_parent) {
1243 p = p->mnt_parent;
1244 q = q->mnt_parent;
1da177e4 1245 }
87129cc0 1246 p = s;
cb338d06 1247 path.mnt = &q->mnt;
a73324da 1248 path.dentry = p->mnt_mountpoint;
87129cc0 1249 q = clone_mnt(p, p->mnt.mnt_root, flag);
1da177e4
LT
1250 if (!q)
1251 goto Enomem;
99b7db7b 1252 br_write_lock(vfsmount_lock);
1a4eeaf2 1253 list_add_tail(&q->mnt_list, &res->mnt_list);
cb338d06 1254 attach_mnt(q, &path);
99b7db7b 1255 br_write_unlock(vfsmount_lock);
1da177e4
LT
1256 }
1257 }
1258 return res;
b58fed8b 1259Enomem:
1da177e4 1260 if (res) {
70fbcdf4 1261 LIST_HEAD(umount_list);
99b7db7b 1262 br_write_lock(vfsmount_lock);
761d5c38 1263 umount_tree(res, 0, &umount_list);
99b7db7b 1264 br_write_unlock(vfsmount_lock);
70fbcdf4 1265 release_mounts(&umount_list);
1da177e4
LT
1266 }
1267 return NULL;
1268}
1269
589ff870 1270struct vfsmount *collect_mounts(struct path *path)
8aec0809 1271{
cb338d06 1272 struct mount *tree;
1a60a280 1273 down_write(&namespace_sem);
87129cc0
AV
1274 tree = copy_tree(real_mount(path->mnt), path->dentry,
1275 CL_COPY_ALL | CL_PRIVATE);
1a60a280 1276 up_write(&namespace_sem);
cb338d06 1277 return tree ? &tree->mnt : NULL;
8aec0809
AV
1278}
1279
1280void drop_collected_mounts(struct vfsmount *mnt)
1281{
1282 LIST_HEAD(umount_list);
1a60a280 1283 down_write(&namespace_sem);
99b7db7b 1284 br_write_lock(vfsmount_lock);
761d5c38 1285 umount_tree(real_mount(mnt), 0, &umount_list);
99b7db7b 1286 br_write_unlock(vfsmount_lock);
1a60a280 1287 up_write(&namespace_sem);
8aec0809
AV
1288 release_mounts(&umount_list);
1289}
1290
1f707137
AV
1291int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1292 struct vfsmount *root)
1293{
1a4eeaf2 1294 struct mount *mnt;
1f707137
AV
1295 int res = f(root, arg);
1296 if (res)
1297 return res;
1a4eeaf2
AV
1298 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1299 res = f(&mnt->mnt, arg);
1f707137
AV
1300 if (res)
1301 return res;
1302 }
1303 return 0;
1304}
1305
4b8b21f4 1306static void cleanup_group_ids(struct mount *mnt, struct mount *end)
719f5d7f 1307{
315fc83e 1308 struct mount *p;
719f5d7f 1309
909b0a88 1310 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
fc7be130 1311 if (p->mnt_group_id && !IS_MNT_SHARED(p))
4b8b21f4 1312 mnt_release_group_id(p);
719f5d7f
MS
1313 }
1314}
1315
4b8b21f4 1316static int invent_group_ids(struct mount *mnt, bool recurse)
719f5d7f 1317{
315fc83e 1318 struct mount *p;
719f5d7f 1319
909b0a88 1320 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
fc7be130 1321 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
4b8b21f4 1322 int err = mnt_alloc_group_id(p);
719f5d7f 1323 if (err) {
4b8b21f4 1324 cleanup_group_ids(mnt, p);
719f5d7f
MS
1325 return err;
1326 }
1327 }
1328 }
1329
1330 return 0;
1331}
1332
b90fa9ae
RP
1333/*
1334 * @source_mnt : mount tree to be attached
21444403
RP
1335 * @nd : place the mount tree @source_mnt is attached
1336 * @parent_nd : if non-null, detach the source_mnt from its parent and
1337 * store the parent mount and mountpoint dentry.
1338 * (done when source_mnt is moved)
b90fa9ae
RP
1339 *
1340 * NOTE: in the table below explains the semantics when a source mount
1341 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1342 * ---------------------------------------------------------------------------
1343 * | BIND MOUNT OPERATION |
1344 * |**************************************************************************
1345 * | source-->| shared | private | slave | unbindable |
1346 * | dest | | | | |
1347 * | | | | | | |
1348 * | v | | | | |
1349 * |**************************************************************************
1350 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1351 * | | | | | |
1352 * |non-shared| shared (+) | private | slave (*) | invalid |
1353 * ***************************************************************************
b90fa9ae
RP
1354 * A bind operation clones the source mount and mounts the clone on the
1355 * destination mount.
1356 *
1357 * (++) the cloned mount is propagated to all the mounts in the propagation
1358 * tree of the destination mount and the cloned mount is added to
1359 * the peer group of the source mount.
1360 * (+) the cloned mount is created under the destination mount and is marked
1361 * as shared. The cloned mount is added to the peer group of the source
1362 * mount.
5afe0022
RP
1363 * (+++) the mount is propagated to all the mounts in the propagation tree
1364 * of the destination mount and the cloned mount is made slave
1365 * of the same master as that of the source mount. The cloned mount
1366 * is marked as 'shared and slave'.
1367 * (*) the cloned mount is made a slave of the same master as that of the
1368 * source mount.
1369 *
9676f0c6
RP
1370 * ---------------------------------------------------------------------------
1371 * | MOVE MOUNT OPERATION |
1372 * |**************************************************************************
1373 * | source-->| shared | private | slave | unbindable |
1374 * | dest | | | | |
1375 * | | | | | | |
1376 * | v | | | | |
1377 * |**************************************************************************
1378 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1379 * | | | | | |
1380 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1381 * ***************************************************************************
5afe0022
RP
1382 *
1383 * (+) the mount is moved to the destination. And is then propagated to
1384 * all the mounts in the propagation tree of the destination mount.
21444403 1385 * (+*) the mount is moved to the destination.
5afe0022
RP
1386 * (+++) the mount is moved to the destination and is then propagated to
1387 * all the mounts belonging to the destination mount's propagation tree.
1388 * the mount is marked as 'shared and slave'.
1389 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
1390 *
1391 * if the source mount is a tree, the operations explained above is
1392 * applied to each mount in the tree.
1393 * Must be called without spinlocks held, since this function can sleep
1394 * in allocations.
1395 */
0fb54e50 1396static int attach_recursive_mnt(struct mount *source_mnt,
1a390689 1397 struct path *path, struct path *parent_path)
b90fa9ae
RP
1398{
1399 LIST_HEAD(tree_list);
a8d56d8e 1400 struct mount *dest_mnt = real_mount(path->mnt);
1a390689 1401 struct dentry *dest_dentry = path->dentry;
315fc83e 1402 struct mount *child, *p;
719f5d7f 1403 int err;
b90fa9ae 1404
fc7be130 1405 if (IS_MNT_SHARED(dest_mnt)) {
0fb54e50 1406 err = invent_group_ids(source_mnt, true);
719f5d7f
MS
1407 if (err)
1408 goto out;
1409 }
a8d56d8e 1410 err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
719f5d7f
MS
1411 if (err)
1412 goto out_cleanup_ids;
b90fa9ae 1413
99b7db7b 1414 br_write_lock(vfsmount_lock);
df1a1ad2 1415
fc7be130 1416 if (IS_MNT_SHARED(dest_mnt)) {
909b0a88 1417 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
0f0afb1d 1418 set_mnt_shared(p);
b90fa9ae 1419 }
1a390689 1420 if (parent_path) {
0fb54e50
AV
1421 detach_mnt(source_mnt, parent_path);
1422 attach_mnt(source_mnt, path);
143c8c91 1423 touch_mnt_namespace(source_mnt->mnt_ns);
21444403 1424 } else {
14cf1fa8 1425 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
0fb54e50 1426 commit_tree(source_mnt);
21444403 1427 }
b90fa9ae 1428
1b8e5564
AV
1429 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1430 list_del_init(&child->mnt_hash);
4b2619a5 1431 commit_tree(child);
b90fa9ae 1432 }
99b7db7b
NP
1433 br_write_unlock(vfsmount_lock);
1434
b90fa9ae 1435 return 0;
719f5d7f
MS
1436
1437 out_cleanup_ids:
fc7be130 1438 if (IS_MNT_SHARED(dest_mnt))
0fb54e50 1439 cleanup_group_ids(source_mnt, NULL);
719f5d7f
MS
1440 out:
1441 return err;
b90fa9ae
RP
1442}
1443
b12cea91
AV
1444static int lock_mount(struct path *path)
1445{
1446 struct vfsmount *mnt;
1447retry:
1448 mutex_lock(&path->dentry->d_inode->i_mutex);
1449 if (unlikely(cant_mount(path->dentry))) {
1450 mutex_unlock(&path->dentry->d_inode->i_mutex);
1451 return -ENOENT;
1452 }
1453 down_write(&namespace_sem);
1454 mnt = lookup_mnt(path);
1455 if (likely(!mnt))
1456 return 0;
1457 up_write(&namespace_sem);
1458 mutex_unlock(&path->dentry->d_inode->i_mutex);
1459 path_put(path);
1460 path->mnt = mnt;
1461 path->dentry = dget(mnt->mnt_root);
1462 goto retry;
1463}
1464
1465static void unlock_mount(struct path *path)
1466{
1467 up_write(&namespace_sem);
1468 mutex_unlock(&path->dentry->d_inode->i_mutex);
1469}
1470
95bc5f25 1471static int graft_tree(struct mount *mnt, struct path *path)
1da177e4 1472{
95bc5f25 1473 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1da177e4
LT
1474 return -EINVAL;
1475
8c3ee42e 1476 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
95bc5f25 1477 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1da177e4
LT
1478 return -ENOTDIR;
1479
b12cea91
AV
1480 if (d_unlinked(path->dentry))
1481 return -ENOENT;
1da177e4 1482
95bc5f25 1483 return attach_recursive_mnt(mnt, path, NULL);
1da177e4
LT
1484}
1485
7a2e8a8f
VA
1486/*
1487 * Sanity check the flags to change_mnt_propagation.
1488 */
1489
1490static int flags_to_propagation_type(int flags)
1491{
7c6e984d 1492 int type = flags & ~(MS_REC | MS_SILENT);
7a2e8a8f
VA
1493
1494 /* Fail if any non-propagation flags are set */
1495 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1496 return 0;
1497 /* Only one propagation flag should be set */
1498 if (!is_power_of_2(type))
1499 return 0;
1500 return type;
1501}
1502
07b20889
RP
1503/*
1504 * recursively change the type of the mountpoint.
1505 */
0a0d8a46 1506static int do_change_type(struct path *path, int flag)
07b20889 1507{
315fc83e 1508 struct mount *m;
4b8b21f4 1509 struct mount *mnt = real_mount(path->mnt);
07b20889 1510 int recurse = flag & MS_REC;
7a2e8a8f 1511 int type;
719f5d7f 1512 int err = 0;
07b20889 1513
ee6f9582
MS
1514 if (!capable(CAP_SYS_ADMIN))
1515 return -EPERM;
1516
2d92ab3c 1517 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
1518 return -EINVAL;
1519
7a2e8a8f
VA
1520 type = flags_to_propagation_type(flag);
1521 if (!type)
1522 return -EINVAL;
1523
07b20889 1524 down_write(&namespace_sem);
719f5d7f
MS
1525 if (type == MS_SHARED) {
1526 err = invent_group_ids(mnt, recurse);
1527 if (err)
1528 goto out_unlock;
1529 }
1530
99b7db7b 1531 br_write_lock(vfsmount_lock);
909b0a88 1532 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
0f0afb1d 1533 change_mnt_propagation(m, type);
99b7db7b 1534 br_write_unlock(vfsmount_lock);
719f5d7f
MS
1535
1536 out_unlock:
07b20889 1537 up_write(&namespace_sem);
719f5d7f 1538 return err;
07b20889
RP
1539}
1540
1da177e4
LT
1541/*
1542 * do loopback mount.
1543 */
0a0d8a46 1544static int do_loopback(struct path *path, char *old_name,
2dafe1c4 1545 int recurse)
1da177e4 1546{
b12cea91 1547 LIST_HEAD(umount_list);
2d92ab3c 1548 struct path old_path;
87129cc0 1549 struct mount *mnt = NULL, *old;
2d92ab3c 1550 int err = mount_is_safe(path);
1da177e4
LT
1551 if (err)
1552 return err;
1553 if (!old_name || !*old_name)
1554 return -EINVAL;
815d405c 1555 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1da177e4
LT
1556 if (err)
1557 return err;
1558
b12cea91
AV
1559 err = lock_mount(path);
1560 if (err)
1561 goto out;
1562
87129cc0
AV
1563 old = real_mount(old_path.mnt);
1564
1da177e4 1565 err = -EINVAL;
fc7be130 1566 if (IS_MNT_UNBINDABLE(old))
b12cea91 1567 goto out2;
9676f0c6 1568
143c8c91 1569 if (!check_mnt(real_mount(path->mnt)) || !check_mnt(old))
b12cea91 1570 goto out2;
1da177e4 1571
ccd48bc7
AV
1572 err = -ENOMEM;
1573 if (recurse)
87129cc0 1574 mnt = copy_tree(old, old_path.dentry, 0);
ccd48bc7 1575 else
87129cc0 1576 mnt = clone_mnt(old, old_path.dentry, 0);
ccd48bc7
AV
1577
1578 if (!mnt)
b12cea91 1579 goto out2;
ccd48bc7 1580
95bc5f25 1581 err = graft_tree(mnt, path);
ccd48bc7 1582 if (err) {
99b7db7b 1583 br_write_lock(vfsmount_lock);
761d5c38 1584 umount_tree(mnt, 0, &umount_list);
99b7db7b 1585 br_write_unlock(vfsmount_lock);
5b83d2c5 1586 }
b12cea91
AV
1587out2:
1588 unlock_mount(path);
1589 release_mounts(&umount_list);
ccd48bc7 1590out:
2d92ab3c 1591 path_put(&old_path);
1da177e4
LT
1592 return err;
1593}
1594
2e4b7fcd
DH
1595static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1596{
1597 int error = 0;
1598 int readonly_request = 0;
1599
1600 if (ms_flags & MS_RDONLY)
1601 readonly_request = 1;
1602 if (readonly_request == __mnt_is_readonly(mnt))
1603 return 0;
1604
1605 if (readonly_request)
83adc753 1606 error = mnt_make_readonly(real_mount(mnt));
2e4b7fcd 1607 else
83adc753 1608 __mnt_unmake_readonly(real_mount(mnt));
2e4b7fcd
DH
1609 return error;
1610}
1611
1da177e4
LT
1612/*
1613 * change filesystem flags. dir should be a physical root of filesystem.
1614 * If you've mounted a non-root directory somewhere and want to do remount
1615 * on it - tough luck.
1616 */
0a0d8a46 1617static int do_remount(struct path *path, int flags, int mnt_flags,
1da177e4
LT
1618 void *data)
1619{
1620 int err;
2d92ab3c 1621 struct super_block *sb = path->mnt->mnt_sb;
143c8c91 1622 struct mount *mnt = real_mount(path->mnt);
1da177e4
LT
1623
1624 if (!capable(CAP_SYS_ADMIN))
1625 return -EPERM;
1626
143c8c91 1627 if (!check_mnt(mnt))
1da177e4
LT
1628 return -EINVAL;
1629
2d92ab3c 1630 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
1631 return -EINVAL;
1632
ff36fe2c
EP
1633 err = security_sb_remount(sb, data);
1634 if (err)
1635 return err;
1636
1da177e4 1637 down_write(&sb->s_umount);
2e4b7fcd 1638 if (flags & MS_BIND)
2d92ab3c 1639 err = change_mount_flags(path->mnt, flags);
4aa98cf7 1640 else
2e4b7fcd 1641 err = do_remount_sb(sb, flags, data, 0);
7b43a79f 1642 if (!err) {
99b7db7b 1643 br_write_lock(vfsmount_lock);
143c8c91
AV
1644 mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK;
1645 mnt->mnt.mnt_flags = mnt_flags;
99b7db7b 1646 br_write_unlock(vfsmount_lock);
7b43a79f 1647 }
1da177e4 1648 up_write(&sb->s_umount);
0e55a7cc 1649 if (!err) {
99b7db7b 1650 br_write_lock(vfsmount_lock);
143c8c91 1651 touch_mnt_namespace(mnt->mnt_ns);
99b7db7b 1652 br_write_unlock(vfsmount_lock);
0e55a7cc 1653 }
1da177e4
LT
1654 return err;
1655}
1656
cbbe362c 1657static inline int tree_contains_unbindable(struct mount *mnt)
9676f0c6 1658{
315fc83e 1659 struct mount *p;
909b0a88 1660 for (p = mnt; p; p = next_mnt(p, mnt)) {
fc7be130 1661 if (IS_MNT_UNBINDABLE(p))
9676f0c6
RP
1662 return 1;
1663 }
1664 return 0;
1665}
1666
0a0d8a46 1667static int do_move_mount(struct path *path, char *old_name)
1da177e4 1668{
2d92ab3c 1669 struct path old_path, parent_path;
676da58d 1670 struct mount *p;
0fb54e50 1671 struct mount *old;
1da177e4
LT
1672 int err = 0;
1673 if (!capable(CAP_SYS_ADMIN))
1674 return -EPERM;
1675 if (!old_name || !*old_name)
1676 return -EINVAL;
2d92ab3c 1677 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
1678 if (err)
1679 return err;
1680
b12cea91 1681 err = lock_mount(path);
cc53ce53
DH
1682 if (err < 0)
1683 goto out;
1684
143c8c91 1685 old = real_mount(old_path.mnt);
fc7be130 1686 p = real_mount(path->mnt);
143c8c91 1687
1da177e4 1688 err = -EINVAL;
fc7be130 1689 if (!check_mnt(p) || !check_mnt(old))
1da177e4
LT
1690 goto out1;
1691
f3da392e 1692 if (d_unlinked(path->dentry))
21444403 1693 goto out1;
1da177e4
LT
1694
1695 err = -EINVAL;
2d92ab3c 1696 if (old_path.dentry != old_path.mnt->mnt_root)
21444403 1697 goto out1;
1da177e4 1698
676da58d 1699 if (!mnt_has_parent(old))
21444403 1700 goto out1;
1da177e4 1701
2d92ab3c
AV
1702 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1703 S_ISDIR(old_path.dentry->d_inode->i_mode))
21444403
RP
1704 goto out1;
1705 /*
1706 * Don't move a mount residing in a shared parent.
1707 */
fc7be130 1708 if (IS_MNT_SHARED(old->mnt_parent))
21444403 1709 goto out1;
9676f0c6
RP
1710 /*
1711 * Don't move a mount tree containing unbindable mounts to a destination
1712 * mount which is shared.
1713 */
fc7be130 1714 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
9676f0c6 1715 goto out1;
1da177e4 1716 err = -ELOOP;
fc7be130 1717 for (; mnt_has_parent(p); p = p->mnt_parent)
676da58d 1718 if (p == old)
21444403 1719 goto out1;
1da177e4 1720
0fb54e50 1721 err = attach_recursive_mnt(old, path, &parent_path);
4ac91378 1722 if (err)
21444403 1723 goto out1;
1da177e4
LT
1724
1725 /* if the mount is moved, it should no longer be expire
1726 * automatically */
6776db3d 1727 list_del_init(&old->mnt_expire);
1da177e4 1728out1:
b12cea91 1729 unlock_mount(path);
1da177e4 1730out:
1da177e4 1731 if (!err)
1a390689 1732 path_put(&parent_path);
2d92ab3c 1733 path_put(&old_path);
1da177e4
LT
1734 return err;
1735}
1736
9d412a43
AV
1737static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1738{
1739 int err;
1740 const char *subtype = strchr(fstype, '.');
1741 if (subtype) {
1742 subtype++;
1743 err = -EINVAL;
1744 if (!subtype[0])
1745 goto err;
1746 } else
1747 subtype = "";
1748
1749 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1750 err = -ENOMEM;
1751 if (!mnt->mnt_sb->s_subtype)
1752 goto err;
1753 return mnt;
1754
1755 err:
1756 mntput(mnt);
1757 return ERR_PTR(err);
1758}
1759
79e801a9 1760static struct vfsmount *
9d412a43
AV
1761do_kern_mount(const char *fstype, int flags, const char *name, void *data)
1762{
1763 struct file_system_type *type = get_fs_type(fstype);
1764 struct vfsmount *mnt;
1765 if (!type)
1766 return ERR_PTR(-ENODEV);
1767 mnt = vfs_kern_mount(type, flags, name, data);
1768 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
1769 !mnt->mnt_sb->s_subtype)
1770 mnt = fs_set_subtype(mnt, fstype);
1771 put_filesystem(type);
1772 return mnt;
1773}
9d412a43
AV
1774
1775/*
1776 * add a mount into a namespace's mount tree
1777 */
95bc5f25 1778static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
9d412a43
AV
1779{
1780 int err;
1781
1782 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
1783
b12cea91
AV
1784 err = lock_mount(path);
1785 if (err)
1786 return err;
9d412a43
AV
1787
1788 err = -EINVAL;
143c8c91 1789 if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(real_mount(path->mnt)))
9d412a43
AV
1790 goto unlock;
1791
1792 /* Refuse the same filesystem on the same mount point */
1793 err = -EBUSY;
95bc5f25 1794 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
9d412a43
AV
1795 path->mnt->mnt_root == path->dentry)
1796 goto unlock;
1797
1798 err = -EINVAL;
95bc5f25 1799 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
9d412a43
AV
1800 goto unlock;
1801
95bc5f25 1802 newmnt->mnt.mnt_flags = mnt_flags;
9d412a43
AV
1803 err = graft_tree(newmnt, path);
1804
1805unlock:
b12cea91 1806 unlock_mount(path);
9d412a43
AV
1807 return err;
1808}
b1e75df4 1809
1da177e4
LT
1810/*
1811 * create a new mount for userspace and request it to be added into the
1812 * namespace's tree
1813 */
0a0d8a46 1814static int do_new_mount(struct path *path, char *type, int flags,
1da177e4
LT
1815 int mnt_flags, char *name, void *data)
1816{
1817 struct vfsmount *mnt;
15f9a3f3 1818 int err;
1da177e4 1819
eca6f534 1820 if (!type)
1da177e4
LT
1821 return -EINVAL;
1822
1823 /* we need capabilities... */
1824 if (!capable(CAP_SYS_ADMIN))
1825 return -EPERM;
1826
1827 mnt = do_kern_mount(type, flags, name, data);
1828 if (IS_ERR(mnt))
1829 return PTR_ERR(mnt);
1830
95bc5f25 1831 err = do_add_mount(real_mount(mnt), path, mnt_flags);
15f9a3f3
AV
1832 if (err)
1833 mntput(mnt);
1834 return err;
1da177e4
LT
1835}
1836
19a167af
AV
1837int finish_automount(struct vfsmount *m, struct path *path)
1838{
6776db3d 1839 struct mount *mnt = real_mount(m);
19a167af
AV
1840 int err;
1841 /* The new mount record should have at least 2 refs to prevent it being
1842 * expired before we get a chance to add it
1843 */
6776db3d 1844 BUG_ON(mnt_get_count(mnt) < 2);
19a167af
AV
1845
1846 if (m->mnt_sb == path->mnt->mnt_sb &&
1847 m->mnt_root == path->dentry) {
b1e75df4
AV
1848 err = -ELOOP;
1849 goto fail;
19a167af
AV
1850 }
1851
95bc5f25 1852 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
b1e75df4
AV
1853 if (!err)
1854 return 0;
1855fail:
1856 /* remove m from any expiration list it may be on */
6776db3d 1857 if (!list_empty(&mnt->mnt_expire)) {
b1e75df4
AV
1858 down_write(&namespace_sem);
1859 br_write_lock(vfsmount_lock);
6776db3d 1860 list_del_init(&mnt->mnt_expire);
b1e75df4
AV
1861 br_write_unlock(vfsmount_lock);
1862 up_write(&namespace_sem);
19a167af 1863 }
b1e75df4
AV
1864 mntput(m);
1865 mntput(m);
19a167af
AV
1866 return err;
1867}
1868
ea5b778a
DH
1869/**
1870 * mnt_set_expiry - Put a mount on an expiration list
1871 * @mnt: The mount to list.
1872 * @expiry_list: The list to add the mount to.
1873 */
1874void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
1875{
1876 down_write(&namespace_sem);
1877 br_write_lock(vfsmount_lock);
1878
6776db3d 1879 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
ea5b778a
DH
1880
1881 br_write_unlock(vfsmount_lock);
1882 up_write(&namespace_sem);
1883}
1884EXPORT_SYMBOL(mnt_set_expiry);
1885
1da177e4
LT
1886/*
1887 * process a list of expirable mountpoints with the intent of discarding any
1888 * mountpoints that aren't in use and haven't been touched since last we came
1889 * here
1890 */
1891void mark_mounts_for_expiry(struct list_head *mounts)
1892{
761d5c38 1893 struct mount *mnt, *next;
1da177e4 1894 LIST_HEAD(graveyard);
bcc5c7d2 1895 LIST_HEAD(umounts);
1da177e4
LT
1896
1897 if (list_empty(mounts))
1898 return;
1899
bcc5c7d2 1900 down_write(&namespace_sem);
99b7db7b 1901 br_write_lock(vfsmount_lock);
1da177e4
LT
1902
1903 /* extract from the expiration list every vfsmount that matches the
1904 * following criteria:
1905 * - only referenced by its parent vfsmount
1906 * - still marked for expiry (marked on the last call here; marks are
1907 * cleared by mntput())
1908 */
6776db3d 1909 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
863d684f 1910 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1ab59738 1911 propagate_mount_busy(mnt, 1))
1da177e4 1912 continue;
6776db3d 1913 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 1914 }
bcc5c7d2 1915 while (!list_empty(&graveyard)) {
6776db3d 1916 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
143c8c91 1917 touch_mnt_namespace(mnt->mnt_ns);
bcc5c7d2
AV
1918 umount_tree(mnt, 1, &umounts);
1919 }
99b7db7b 1920 br_write_unlock(vfsmount_lock);
bcc5c7d2
AV
1921 up_write(&namespace_sem);
1922
1923 release_mounts(&umounts);
5528f911
TM
1924}
1925
1926EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
1927
1928/*
1929 * Ripoff of 'select_parent()'
1930 *
1931 * search the list of submounts for a given mountpoint, and move any
1932 * shrinkable submounts to the 'graveyard' list.
1933 */
692afc31 1934static int select_submounts(struct mount *parent, struct list_head *graveyard)
5528f911 1935{
692afc31 1936 struct mount *this_parent = parent;
5528f911
TM
1937 struct list_head *next;
1938 int found = 0;
1939
1940repeat:
6b41d536 1941 next = this_parent->mnt_mounts.next;
5528f911 1942resume:
6b41d536 1943 while (next != &this_parent->mnt_mounts) {
5528f911 1944 struct list_head *tmp = next;
6b41d536 1945 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
5528f911
TM
1946
1947 next = tmp->next;
692afc31 1948 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1da177e4 1949 continue;
5528f911
TM
1950 /*
1951 * Descend a level if the d_mounts list is non-empty.
1952 */
6b41d536 1953 if (!list_empty(&mnt->mnt_mounts)) {
5528f911
TM
1954 this_parent = mnt;
1955 goto repeat;
1956 }
1da177e4 1957
1ab59738 1958 if (!propagate_mount_busy(mnt, 1)) {
6776db3d 1959 list_move_tail(&mnt->mnt_expire, graveyard);
5528f911
TM
1960 found++;
1961 }
1da177e4 1962 }
5528f911
TM
1963 /*
1964 * All done at this level ... ascend and resume the search
1965 */
1966 if (this_parent != parent) {
6b41d536 1967 next = this_parent->mnt_child.next;
0714a533 1968 this_parent = this_parent->mnt_parent;
5528f911
TM
1969 goto resume;
1970 }
1971 return found;
1972}
1973
1974/*
1975 * process a list of expirable mountpoints with the intent of discarding any
1976 * submounts of a specific parent mountpoint
99b7db7b
NP
1977 *
1978 * vfsmount_lock must be held for write
5528f911 1979 */
692afc31 1980static void shrink_submounts(struct mount *mnt, struct list_head *umounts)
5528f911
TM
1981{
1982 LIST_HEAD(graveyard);
761d5c38 1983 struct mount *m;
5528f911 1984
5528f911 1985 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 1986 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 1987 while (!list_empty(&graveyard)) {
761d5c38 1988 m = list_first_entry(&graveyard, struct mount,
6776db3d 1989 mnt_expire);
143c8c91 1990 touch_mnt_namespace(m->mnt_ns);
afef80b3 1991 umount_tree(m, 1, umounts);
bcc5c7d2
AV
1992 }
1993 }
1da177e4
LT
1994}
1995
1da177e4
LT
1996/*
1997 * Some copy_from_user() implementations do not return the exact number of
1998 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
1999 * Note that this function differs from copy_from_user() in that it will oops
2000 * on bad values of `to', rather than returning a short copy.
2001 */
b58fed8b
RP
2002static long exact_copy_from_user(void *to, const void __user * from,
2003 unsigned long n)
1da177e4
LT
2004{
2005 char *t = to;
2006 const char __user *f = from;
2007 char c;
2008
2009 if (!access_ok(VERIFY_READ, from, n))
2010 return n;
2011
2012 while (n) {
2013 if (__get_user(c, f)) {
2014 memset(t, 0, n);
2015 break;
2016 }
2017 *t++ = c;
2018 f++;
2019 n--;
2020 }
2021 return n;
2022}
2023
b58fed8b 2024int copy_mount_options(const void __user * data, unsigned long *where)
1da177e4
LT
2025{
2026 int i;
2027 unsigned long page;
2028 unsigned long size;
b58fed8b 2029
1da177e4
LT
2030 *where = 0;
2031 if (!data)
2032 return 0;
2033
2034 if (!(page = __get_free_page(GFP_KERNEL)))
2035 return -ENOMEM;
2036
2037 /* We only care that *some* data at the address the user
2038 * gave us is valid. Just in case, we'll zero
2039 * the remainder of the page.
2040 */
2041 /* copy_from_user cannot cross TASK_SIZE ! */
2042 size = TASK_SIZE - (unsigned long)data;
2043 if (size > PAGE_SIZE)
2044 size = PAGE_SIZE;
2045
2046 i = size - exact_copy_from_user((void *)page, data, size);
2047 if (!i) {
b58fed8b 2048 free_page(page);
1da177e4
LT
2049 return -EFAULT;
2050 }
2051 if (i != PAGE_SIZE)
2052 memset((char *)page + i, 0, PAGE_SIZE - i);
2053 *where = page;
2054 return 0;
2055}
2056
eca6f534
VN
2057int copy_mount_string(const void __user *data, char **where)
2058{
2059 char *tmp;
2060
2061 if (!data) {
2062 *where = NULL;
2063 return 0;
2064 }
2065
2066 tmp = strndup_user(data, PAGE_SIZE);
2067 if (IS_ERR(tmp))
2068 return PTR_ERR(tmp);
2069
2070 *where = tmp;
2071 return 0;
2072}
2073
1da177e4
LT
2074/*
2075 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2076 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2077 *
2078 * data is a (void *) that can point to any structure up to
2079 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2080 * information (or be NULL).
2081 *
2082 * Pre-0.97 versions of mount() didn't have a flags word.
2083 * When the flags word was introduced its top half was required
2084 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2085 * Therefore, if this magic number is present, it carries no information
2086 * and must be discarded.
2087 */
b58fed8b 2088long do_mount(char *dev_name, char *dir_name, char *type_page,
1da177e4
LT
2089 unsigned long flags, void *data_page)
2090{
2d92ab3c 2091 struct path path;
1da177e4
LT
2092 int retval = 0;
2093 int mnt_flags = 0;
2094
2095 /* Discard magic */
2096 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2097 flags &= ~MS_MGC_MSK;
2098
2099 /* Basic sanity checks */
2100
2101 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2102 return -EINVAL;
1da177e4
LT
2103
2104 if (data_page)
2105 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2106
a27ab9f2
TH
2107 /* ... and get the mountpoint */
2108 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2109 if (retval)
2110 return retval;
2111
2112 retval = security_sb_mount(dev_name, &path,
2113 type_page, flags, data_page);
2114 if (retval)
2115 goto dput_out;
2116
613cbe3d
AK
2117 /* Default to relatime unless overriden */
2118 if (!(flags & MS_NOATIME))
2119 mnt_flags |= MNT_RELATIME;
0a1c01c9 2120
1da177e4
LT
2121 /* Separate the per-mountpoint flags */
2122 if (flags & MS_NOSUID)
2123 mnt_flags |= MNT_NOSUID;
2124 if (flags & MS_NODEV)
2125 mnt_flags |= MNT_NODEV;
2126 if (flags & MS_NOEXEC)
2127 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
2128 if (flags & MS_NOATIME)
2129 mnt_flags |= MNT_NOATIME;
2130 if (flags & MS_NODIRATIME)
2131 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
2132 if (flags & MS_STRICTATIME)
2133 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2e4b7fcd
DH
2134 if (flags & MS_RDONLY)
2135 mnt_flags |= MNT_READONLY;
fc33a7bb 2136
7a4dec53 2137 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
d0adde57
MG
2138 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2139 MS_STRICTATIME);
1da177e4 2140
1da177e4 2141 if (flags & MS_REMOUNT)
2d92ab3c 2142 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
1da177e4
LT
2143 data_page);
2144 else if (flags & MS_BIND)
2d92ab3c 2145 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 2146 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 2147 retval = do_change_type(&path, flags);
1da177e4 2148 else if (flags & MS_MOVE)
2d92ab3c 2149 retval = do_move_mount(&path, dev_name);
1da177e4 2150 else
2d92ab3c 2151 retval = do_new_mount(&path, type_page, flags, mnt_flags,
1da177e4
LT
2152 dev_name, data_page);
2153dput_out:
2d92ab3c 2154 path_put(&path);
1da177e4
LT
2155 return retval;
2156}
2157
cf8d2c11
TM
2158static struct mnt_namespace *alloc_mnt_ns(void)
2159{
2160 struct mnt_namespace *new_ns;
2161
2162 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2163 if (!new_ns)
2164 return ERR_PTR(-ENOMEM);
2165 atomic_set(&new_ns->count, 1);
2166 new_ns->root = NULL;
2167 INIT_LIST_HEAD(&new_ns->list);
2168 init_waitqueue_head(&new_ns->poll);
2169 new_ns->event = 0;
2170 return new_ns;
2171}
2172
f03c6599
AV
2173void mnt_make_longterm(struct vfsmount *mnt)
2174{
83adc753 2175 __mnt_make_longterm(real_mount(mnt));
f03c6599
AV
2176}
2177
83adc753 2178void mnt_make_shortterm(struct vfsmount *m)
f03c6599 2179{
7e3d0eb0 2180#ifdef CONFIG_SMP
83adc753 2181 struct mount *mnt = real_mount(m);
68e8a9fe 2182 if (atomic_add_unless(&mnt->mnt_longterm, -1, 1))
f03c6599
AV
2183 return;
2184 br_write_lock(vfsmount_lock);
68e8a9fe 2185 atomic_dec(&mnt->mnt_longterm);
f03c6599 2186 br_write_unlock(vfsmount_lock);
7e3d0eb0 2187#endif
f03c6599
AV
2188}
2189
741a2951
JD
2190/*
2191 * Allocate a new namespace structure and populate it with contents
2192 * copied from the namespace of the passed in task structure.
2193 */
e3222c4e 2194static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
6b3286ed 2195 struct fs_struct *fs)
1da177e4 2196{
6b3286ed 2197 struct mnt_namespace *new_ns;
7f2da1e7 2198 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
315fc83e 2199 struct mount *p, *q;
909b0a88 2200 struct mount *old = real_mount(mnt_ns->root);
cb338d06 2201 struct mount *new;
1da177e4 2202
cf8d2c11
TM
2203 new_ns = alloc_mnt_ns();
2204 if (IS_ERR(new_ns))
2205 return new_ns;
1da177e4 2206
390c6843 2207 down_write(&namespace_sem);
1da177e4 2208 /* First pass: copy the tree topology */
909b0a88 2209 new = copy_tree(old, old->mnt.mnt_root, CL_COPY_ALL | CL_EXPIRE);
cb338d06 2210 if (!new) {
390c6843 2211 up_write(&namespace_sem);
1da177e4 2212 kfree(new_ns);
5cc4a034 2213 return ERR_PTR(-ENOMEM);
1da177e4 2214 }
cb338d06 2215 new_ns->root = &new->mnt;
99b7db7b 2216 br_write_lock(vfsmount_lock);
1a4eeaf2 2217 list_add_tail(&new_ns->list, &new->mnt_list);
99b7db7b 2218 br_write_unlock(vfsmount_lock);
1da177e4
LT
2219
2220 /*
2221 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2222 * as belonging to new namespace. We have already acquired a private
2223 * fs_struct, so tsk->fs->lock is not needed.
2224 */
909b0a88 2225 p = old;
cb338d06 2226 q = new;
1da177e4 2227 while (p) {
143c8c91 2228 q->mnt_ns = new_ns;
83adc753 2229 __mnt_make_longterm(q);
1da177e4 2230 if (fs) {
315fc83e
AV
2231 if (&p->mnt == fs->root.mnt) {
2232 fs->root.mnt = mntget(&q->mnt);
83adc753 2233 __mnt_make_longterm(q);
315fc83e
AV
2234 mnt_make_shortterm(&p->mnt);
2235 rootmnt = &p->mnt;
1da177e4 2236 }
315fc83e
AV
2237 if (&p->mnt == fs->pwd.mnt) {
2238 fs->pwd.mnt = mntget(&q->mnt);
83adc753 2239 __mnt_make_longterm(q);
315fc83e
AV
2240 mnt_make_shortterm(&p->mnt);
2241 pwdmnt = &p->mnt;
1da177e4 2242 }
1da177e4 2243 }
909b0a88
AV
2244 p = next_mnt(p, old);
2245 q = next_mnt(q, new);
1da177e4 2246 }
390c6843 2247 up_write(&namespace_sem);
1da177e4 2248
1da177e4 2249 if (rootmnt)
f03c6599 2250 mntput(rootmnt);
1da177e4 2251 if (pwdmnt)
f03c6599 2252 mntput(pwdmnt);
1da177e4 2253
741a2951
JD
2254 return new_ns;
2255}
2256
213dd266 2257struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
e3222c4e 2258 struct fs_struct *new_fs)
741a2951 2259{
6b3286ed 2260 struct mnt_namespace *new_ns;
741a2951 2261
e3222c4e 2262 BUG_ON(!ns);
6b3286ed 2263 get_mnt_ns(ns);
741a2951
JD
2264
2265 if (!(flags & CLONE_NEWNS))
e3222c4e 2266 return ns;
741a2951 2267
e3222c4e 2268 new_ns = dup_mnt_ns(ns, new_fs);
741a2951 2269
6b3286ed 2270 put_mnt_ns(ns);
e3222c4e 2271 return new_ns;
1da177e4
LT
2272}
2273
cf8d2c11
TM
2274/**
2275 * create_mnt_ns - creates a private namespace and adds a root filesystem
2276 * @mnt: pointer to the new root filesystem mountpoint
2277 */
1a4eeaf2 2278static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
cf8d2c11 2279{
1a4eeaf2 2280 struct mnt_namespace *new_ns = alloc_mnt_ns();
cf8d2c11 2281 if (!IS_ERR(new_ns)) {
1a4eeaf2
AV
2282 struct mount *mnt = real_mount(m);
2283 mnt->mnt_ns = new_ns;
2284 __mnt_make_longterm(mnt);
2285 new_ns->root = m;
2286 list_add(&new_ns->list, &mnt->mnt_list);
c1334495 2287 } else {
1a4eeaf2 2288 mntput(m);
cf8d2c11
TM
2289 }
2290 return new_ns;
2291}
cf8d2c11 2292
ea441d11
AV
2293struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2294{
2295 struct mnt_namespace *ns;
d31da0f0 2296 struct super_block *s;
ea441d11
AV
2297 struct path path;
2298 int err;
2299
2300 ns = create_mnt_ns(mnt);
2301 if (IS_ERR(ns))
2302 return ERR_CAST(ns);
2303
2304 err = vfs_path_lookup(mnt->mnt_root, mnt,
2305 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2306
2307 put_mnt_ns(ns);
2308
2309 if (err)
2310 return ERR_PTR(err);
2311
2312 /* trade a vfsmount reference for active sb one */
d31da0f0
AV
2313 s = path.mnt->mnt_sb;
2314 atomic_inc(&s->s_active);
ea441d11
AV
2315 mntput(path.mnt);
2316 /* lock the sucker */
d31da0f0 2317 down_write(&s->s_umount);
ea441d11
AV
2318 /* ... and return the root of (sub)tree on it */
2319 return path.dentry;
2320}
2321EXPORT_SYMBOL(mount_subtree);
2322
bdc480e3
HC
2323SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2324 char __user *, type, unsigned long, flags, void __user *, data)
1da177e4 2325{
eca6f534
VN
2326 int ret;
2327 char *kernel_type;
2328 char *kernel_dir;
2329 char *kernel_dev;
1da177e4 2330 unsigned long data_page;
1da177e4 2331
eca6f534
VN
2332 ret = copy_mount_string(type, &kernel_type);
2333 if (ret < 0)
2334 goto out_type;
1da177e4 2335
eca6f534
VN
2336 kernel_dir = getname(dir_name);
2337 if (IS_ERR(kernel_dir)) {
2338 ret = PTR_ERR(kernel_dir);
2339 goto out_dir;
2340 }
1da177e4 2341
eca6f534
VN
2342 ret = copy_mount_string(dev_name, &kernel_dev);
2343 if (ret < 0)
2344 goto out_dev;
1da177e4 2345
eca6f534
VN
2346 ret = copy_mount_options(data, &data_page);
2347 if (ret < 0)
2348 goto out_data;
1da177e4 2349
eca6f534
VN
2350 ret = do_mount(kernel_dev, kernel_dir, kernel_type, flags,
2351 (void *) data_page);
1da177e4 2352
eca6f534
VN
2353 free_page(data_page);
2354out_data:
2355 kfree(kernel_dev);
2356out_dev:
2357 putname(kernel_dir);
2358out_dir:
2359 kfree(kernel_type);
2360out_type:
2361 return ret;
1da177e4
LT
2362}
2363
afac7cba
AV
2364/*
2365 * Return true if path is reachable from root
2366 *
2367 * namespace_sem or vfsmount_lock is held
2368 */
643822b4 2369bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
afac7cba
AV
2370 const struct path *root)
2371{
643822b4 2372 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
a73324da 2373 dentry = mnt->mnt_mountpoint;
0714a533 2374 mnt = mnt->mnt_parent;
afac7cba 2375 }
643822b4 2376 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
afac7cba
AV
2377}
2378
2379int path_is_under(struct path *path1, struct path *path2)
2380{
2381 int res;
2382 br_read_lock(vfsmount_lock);
643822b4 2383 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
afac7cba
AV
2384 br_read_unlock(vfsmount_lock);
2385 return res;
2386}
2387EXPORT_SYMBOL(path_is_under);
2388
1da177e4
LT
2389/*
2390 * pivot_root Semantics:
2391 * Moves the root file system of the current process to the directory put_old,
2392 * makes new_root as the new root file system of the current process, and sets
2393 * root/cwd of all processes which had them on the current root to new_root.
2394 *
2395 * Restrictions:
2396 * The new_root and put_old must be directories, and must not be on the
2397 * same file system as the current process root. The put_old must be
2398 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2399 * pointed to by put_old must yield the same directory as new_root. No other
2400 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2401 *
4a0d11fa
NB
2402 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2403 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2404 * in this situation.
2405 *
1da177e4
LT
2406 * Notes:
2407 * - we don't move root/cwd if they are not at the root (reason: if something
2408 * cared enough to change them, it's probably wrong to force them elsewhere)
2409 * - it's okay to pick a root that isn't the root of a file system, e.g.
2410 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2411 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2412 * first.
2413 */
3480b257
HC
2414SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2415 const char __user *, put_old)
1da177e4 2416{
2d8f3038 2417 struct path new, old, parent_path, root_parent, root;
419148da 2418 struct mount *new_mnt, *root_mnt;
1da177e4
LT
2419 int error;
2420
2421 if (!capable(CAP_SYS_ADMIN))
2422 return -EPERM;
2423
2d8f3038 2424 error = user_path_dir(new_root, &new);
1da177e4
LT
2425 if (error)
2426 goto out0;
1da177e4 2427
2d8f3038 2428 error = user_path_dir(put_old, &old);
1da177e4
LT
2429 if (error)
2430 goto out1;
2431
2d8f3038 2432 error = security_sb_pivotroot(&old, &new);
b12cea91
AV
2433 if (error)
2434 goto out2;
1da177e4 2435
f7ad3c6b 2436 get_fs_root(current->fs, &root);
b12cea91
AV
2437 error = lock_mount(&old);
2438 if (error)
2439 goto out3;
2440
1da177e4 2441 error = -EINVAL;
419148da
AV
2442 new_mnt = real_mount(new.mnt);
2443 root_mnt = real_mount(root.mnt);
fc7be130
AV
2444 if (IS_MNT_SHARED(real_mount(old.mnt)) ||
2445 IS_MNT_SHARED(new_mnt->mnt_parent) ||
2446 IS_MNT_SHARED(root_mnt->mnt_parent))
b12cea91 2447 goto out4;
143c8c91 2448 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
b12cea91 2449 goto out4;
1da177e4 2450 error = -ENOENT;
f3da392e 2451 if (d_unlinked(new.dentry))
b12cea91 2452 goto out4;
f3da392e 2453 if (d_unlinked(old.dentry))
b12cea91 2454 goto out4;
1da177e4 2455 error = -EBUSY;
2d8f3038
AV
2456 if (new.mnt == root.mnt ||
2457 old.mnt == root.mnt)
b12cea91 2458 goto out4; /* loop, on the same file system */
1da177e4 2459 error = -EINVAL;
8c3ee42e 2460 if (root.mnt->mnt_root != root.dentry)
b12cea91 2461 goto out4; /* not a mountpoint */
676da58d 2462 if (!mnt_has_parent(root_mnt))
b12cea91 2463 goto out4; /* not attached */
2d8f3038 2464 if (new.mnt->mnt_root != new.dentry)
b12cea91 2465 goto out4; /* not a mountpoint */
676da58d 2466 if (!mnt_has_parent(new_mnt))
b12cea91 2467 goto out4; /* not attached */
4ac91378 2468 /* make sure we can reach put_old from new_root */
643822b4 2469 if (!is_path_reachable(real_mount(old.mnt), old.dentry, &new))
b12cea91 2470 goto out4;
27cb1572 2471 br_write_lock(vfsmount_lock);
419148da
AV
2472 detach_mnt(new_mnt, &parent_path);
2473 detach_mnt(root_mnt, &root_parent);
4ac91378 2474 /* mount old root on put_old */
419148da 2475 attach_mnt(root_mnt, &old);
4ac91378 2476 /* mount new_root on / */
419148da 2477 attach_mnt(new_mnt, &root_parent);
6b3286ed 2478 touch_mnt_namespace(current->nsproxy->mnt_ns);
99b7db7b 2479 br_write_unlock(vfsmount_lock);
2d8f3038 2480 chroot_fs_refs(&root, &new);
1da177e4 2481 error = 0;
b12cea91
AV
2482out4:
2483 unlock_mount(&old);
2484 if (!error) {
2485 path_put(&root_parent);
2486 path_put(&parent_path);
2487 }
2488out3:
8c3ee42e 2489 path_put(&root);
b12cea91 2490out2:
2d8f3038 2491 path_put(&old);
1da177e4 2492out1:
2d8f3038 2493 path_put(&new);
1da177e4 2494out0:
1da177e4 2495 return error;
1da177e4
LT
2496}
2497
2498static void __init init_mount_tree(void)
2499{
2500 struct vfsmount *mnt;
6b3286ed 2501 struct mnt_namespace *ns;
ac748a09 2502 struct path root;
1da177e4
LT
2503
2504 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2505 if (IS_ERR(mnt))
2506 panic("Can't create rootfs");
b3e19d92 2507
3b22edc5
TM
2508 ns = create_mnt_ns(mnt);
2509 if (IS_ERR(ns))
1da177e4 2510 panic("Can't allocate initial namespace");
6b3286ed
KK
2511
2512 init_task.nsproxy->mnt_ns = ns;
2513 get_mnt_ns(ns);
2514
ac748a09
JB
2515 root.mnt = ns->root;
2516 root.dentry = ns->root->mnt_root;
2517
2518 set_fs_pwd(current->fs, &root);
2519 set_fs_root(current->fs, &root);
1da177e4
LT
2520}
2521
74bf17cf 2522void __init mnt_init(void)
1da177e4 2523{
13f14b4d 2524 unsigned u;
15a67dd8 2525 int err;
1da177e4 2526
390c6843
RP
2527 init_rwsem(&namespace_sem);
2528
7d6fec45 2529 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
20c2df83 2530 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 2531
b58fed8b 2532 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
1da177e4
LT
2533
2534 if (!mount_hashtable)
2535 panic("Failed to allocate mount hash table\n");
2536
80cdc6da 2537 printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
13f14b4d
ED
2538
2539 for (u = 0; u < HASH_SIZE; u++)
2540 INIT_LIST_HEAD(&mount_hashtable[u]);
1da177e4 2541
99b7db7b
NP
2542 br_lock_init(vfsmount_lock);
2543
15a67dd8
RD
2544 err = sysfs_init();
2545 if (err)
2546 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 2547 __func__, err);
00d26666
GKH
2548 fs_kobj = kobject_create_and_add("fs", NULL);
2549 if (!fs_kobj)
8e24eea7 2550 printk(KERN_WARNING "%s: kobj create error\n", __func__);
1da177e4
LT
2551 init_rootfs();
2552 init_mount_tree();
2553}
2554
616511d0 2555void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 2556{
70fbcdf4 2557 LIST_HEAD(umount_list);
616511d0 2558
d498b25a 2559 if (!atomic_dec_and_test(&ns->count))
616511d0 2560 return;
390c6843 2561 down_write(&namespace_sem);
99b7db7b 2562 br_write_lock(vfsmount_lock);
761d5c38 2563 umount_tree(real_mount(ns->root), 0, &umount_list);
99b7db7b 2564 br_write_unlock(vfsmount_lock);
390c6843 2565 up_write(&namespace_sem);
70fbcdf4 2566 release_mounts(&umount_list);
6b3286ed 2567 kfree(ns);
1da177e4 2568}
9d412a43
AV
2569
2570struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2571{
423e0ab0
TC
2572 struct vfsmount *mnt;
2573 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2574 if (!IS_ERR(mnt)) {
2575 /*
2576 * it is a longterm mount, don't release mnt until
2577 * we unmount before file sys is unregistered
2578 */
2579 mnt_make_longterm(mnt);
2580 }
2581 return mnt;
9d412a43
AV
2582}
2583EXPORT_SYMBOL_GPL(kern_mount_data);
423e0ab0
TC
2584
2585void kern_unmount(struct vfsmount *mnt)
2586{
2587 /* release long term mount so mount point can be released */
2588 if (!IS_ERR_OR_NULL(mnt)) {
2589 mnt_make_shortterm(mnt);
2590 mntput(mnt);
2591 }
2592}
2593EXPORT_SYMBOL(kern_unmount);
02125a82
AV
2594
2595bool our_mnt(struct vfsmount *mnt)
2596{
143c8c91 2597 return check_mnt(real_mount(mnt));
02125a82 2598}