]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/namespace.c
don't bother with propagate_mnt() unless the target is shared
[mirror_ubuntu-artful-kernel.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4 11#include <linux/syscalls.h>
d10577a8 12#include <linux/export.h>
16f7e0fe 13#include <linux/capability.h>
6b3286ed 14#include <linux/mnt_namespace.h>
771b1371 15#include <linux/user_namespace.h>
1da177e4
LT
16#include <linux/namei.h>
17#include <linux/security.h>
73cd49ec 18#include <linux/idr.h>
d10577a8 19#include <linux/acct.h> /* acct_auto_close_mnt */
57f150a5 20#include <linux/init.h> /* init_rootfs */
d10577a8
AV
21#include <linux/fs_struct.h> /* get_fs_root et.al. */
22#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23#include <linux/uaccess.h>
0bb80f24 24#include <linux/proc_ns.h>
20b4fb48 25#include <linux/magic.h>
0818bf27 26#include <linux/bootmem.h>
07b20889 27#include "pnode.h"
948730b0 28#include "internal.h"
1da177e4 29
0818bf27
AV
30static unsigned int m_hash_mask __read_mostly;
31static unsigned int m_hash_shift __read_mostly;
32static unsigned int mp_hash_mask __read_mostly;
33static unsigned int mp_hash_shift __read_mostly;
34
35static __initdata unsigned long mhash_entries;
36static int __init set_mhash_entries(char *str)
37{
38 if (!str)
39 return 0;
40 mhash_entries = simple_strtoul(str, &str, 0);
41 return 1;
42}
43__setup("mhash_entries=", set_mhash_entries);
44
45static __initdata unsigned long mphash_entries;
46static int __init set_mphash_entries(char *str)
47{
48 if (!str)
49 return 0;
50 mphash_entries = simple_strtoul(str, &str, 0);
51 return 1;
52}
53__setup("mphash_entries=", set_mphash_entries);
13f14b4d 54
5addc5dd 55static int event;
73cd49ec 56static DEFINE_IDA(mnt_id_ida);
719f5d7f 57static DEFINE_IDA(mnt_group_ida);
99b7db7b 58static DEFINE_SPINLOCK(mnt_id_lock);
f21f6220
AV
59static int mnt_id_start = 0;
60static int mnt_group_start = 1;
1da177e4 61
fa3536cc 62static struct list_head *mount_hashtable __read_mostly;
0818bf27 63static struct hlist_head *mountpoint_hashtable __read_mostly;
e18b890b 64static struct kmem_cache *mnt_cache __read_mostly;
59aa0da8 65static DECLARE_RWSEM(namespace_sem);
1da177e4 66
f87fd4c2 67/* /sys/fs */
00d26666
GKH
68struct kobject *fs_kobj;
69EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 70
99b7db7b
NP
71/*
72 * vfsmount lock may be taken for read to prevent changes to the
73 * vfsmount hash, ie. during mountpoint lookups or walking back
74 * up the tree.
75 *
76 * It should be taken for write in all cases where the vfsmount
77 * tree or hash is modified or when a vfsmount structure is modified.
78 */
48a066e7 79__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
99b7db7b 80
0818bf27 81static inline struct list_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 82{
b58fed8b
RP
83 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
84 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
0818bf27
AV
85 tmp = tmp + (tmp >> m_hash_shift);
86 return &mount_hashtable[tmp & m_hash_mask];
87}
88
89static inline struct hlist_head *mp_hash(struct dentry *dentry)
90{
91 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
92 tmp = tmp + (tmp >> mp_hash_shift);
93 return &mountpoint_hashtable[tmp & mp_hash_mask];
1da177e4
LT
94}
95
99b7db7b
NP
96/*
97 * allocation is serialized by namespace_sem, but we need the spinlock to
98 * serialize with freeing.
99 */
b105e270 100static int mnt_alloc_id(struct mount *mnt)
73cd49ec
MS
101{
102 int res;
103
104retry:
105 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
99b7db7b 106 spin_lock(&mnt_id_lock);
15169fe7 107 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
f21f6220 108 if (!res)
15169fe7 109 mnt_id_start = mnt->mnt_id + 1;
99b7db7b 110 spin_unlock(&mnt_id_lock);
73cd49ec
MS
111 if (res == -EAGAIN)
112 goto retry;
113
114 return res;
115}
116
b105e270 117static void mnt_free_id(struct mount *mnt)
73cd49ec 118{
15169fe7 119 int id = mnt->mnt_id;
99b7db7b 120 spin_lock(&mnt_id_lock);
f21f6220
AV
121 ida_remove(&mnt_id_ida, id);
122 if (mnt_id_start > id)
123 mnt_id_start = id;
99b7db7b 124 spin_unlock(&mnt_id_lock);
73cd49ec
MS
125}
126
719f5d7f
MS
127/*
128 * Allocate a new peer group ID
129 *
130 * mnt_group_ida is protected by namespace_sem
131 */
4b8b21f4 132static int mnt_alloc_group_id(struct mount *mnt)
719f5d7f 133{
f21f6220
AV
134 int res;
135
719f5d7f
MS
136 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
137 return -ENOMEM;
138
f21f6220
AV
139 res = ida_get_new_above(&mnt_group_ida,
140 mnt_group_start,
15169fe7 141 &mnt->mnt_group_id);
f21f6220 142 if (!res)
15169fe7 143 mnt_group_start = mnt->mnt_group_id + 1;
f21f6220
AV
144
145 return res;
719f5d7f
MS
146}
147
148/*
149 * Release a peer group ID
150 */
4b8b21f4 151void mnt_release_group_id(struct mount *mnt)
719f5d7f 152{
15169fe7 153 int id = mnt->mnt_group_id;
f21f6220
AV
154 ida_remove(&mnt_group_ida, id);
155 if (mnt_group_start > id)
156 mnt_group_start = id;
15169fe7 157 mnt->mnt_group_id = 0;
719f5d7f
MS
158}
159
b3e19d92
NP
160/*
161 * vfsmount lock must be held for read
162 */
83adc753 163static inline void mnt_add_count(struct mount *mnt, int n)
b3e19d92
NP
164{
165#ifdef CONFIG_SMP
68e8a9fe 166 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
b3e19d92
NP
167#else
168 preempt_disable();
68e8a9fe 169 mnt->mnt_count += n;
b3e19d92
NP
170 preempt_enable();
171#endif
172}
173
b3e19d92
NP
174/*
175 * vfsmount lock must be held for write
176 */
83adc753 177unsigned int mnt_get_count(struct mount *mnt)
b3e19d92
NP
178{
179#ifdef CONFIG_SMP
f03c6599 180 unsigned int count = 0;
b3e19d92
NP
181 int cpu;
182
183 for_each_possible_cpu(cpu) {
68e8a9fe 184 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
b3e19d92
NP
185 }
186
187 return count;
188#else
68e8a9fe 189 return mnt->mnt_count;
b3e19d92
NP
190#endif
191}
192
b105e270 193static struct mount *alloc_vfsmnt(const char *name)
1da177e4 194{
c63181e6
AV
195 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
196 if (mnt) {
73cd49ec
MS
197 int err;
198
c63181e6 199 err = mnt_alloc_id(mnt);
88b38782
LZ
200 if (err)
201 goto out_free_cache;
202
203 if (name) {
c63181e6
AV
204 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
205 if (!mnt->mnt_devname)
88b38782 206 goto out_free_id;
73cd49ec
MS
207 }
208
b3e19d92 209#ifdef CONFIG_SMP
c63181e6
AV
210 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
211 if (!mnt->mnt_pcp)
b3e19d92
NP
212 goto out_free_devname;
213
c63181e6 214 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
b3e19d92 215#else
c63181e6
AV
216 mnt->mnt_count = 1;
217 mnt->mnt_writers = 0;
b3e19d92
NP
218#endif
219
c63181e6
AV
220 INIT_LIST_HEAD(&mnt->mnt_hash);
221 INIT_LIST_HEAD(&mnt->mnt_child);
222 INIT_LIST_HEAD(&mnt->mnt_mounts);
223 INIT_LIST_HEAD(&mnt->mnt_list);
224 INIT_LIST_HEAD(&mnt->mnt_expire);
225 INIT_LIST_HEAD(&mnt->mnt_share);
226 INIT_LIST_HEAD(&mnt->mnt_slave_list);
227 INIT_LIST_HEAD(&mnt->mnt_slave);
2504c5d6
AG
228#ifdef CONFIG_FSNOTIFY
229 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
d3ef3d73 230#endif
1da177e4 231 }
c63181e6 232 return mnt;
88b38782 233
d3ef3d73 234#ifdef CONFIG_SMP
235out_free_devname:
c63181e6 236 kfree(mnt->mnt_devname);
d3ef3d73 237#endif
88b38782 238out_free_id:
c63181e6 239 mnt_free_id(mnt);
88b38782 240out_free_cache:
c63181e6 241 kmem_cache_free(mnt_cache, mnt);
88b38782 242 return NULL;
1da177e4
LT
243}
244
3d733633
DH
245/*
246 * Most r/o checks on a fs are for operations that take
247 * discrete amounts of time, like a write() or unlink().
248 * We must keep track of when those operations start
249 * (for permission checks) and when they end, so that
250 * we can determine when writes are able to occur to
251 * a filesystem.
252 */
253/*
254 * __mnt_is_readonly: check whether a mount is read-only
255 * @mnt: the mount to check for its write status
256 *
257 * This shouldn't be used directly ouside of the VFS.
258 * It does not guarantee that the filesystem will stay
259 * r/w, just that it is right *now*. This can not and
260 * should not be used in place of IS_RDONLY(inode).
261 * mnt_want/drop_write() will _keep_ the filesystem
262 * r/w.
263 */
264int __mnt_is_readonly(struct vfsmount *mnt)
265{
2e4b7fcd
DH
266 if (mnt->mnt_flags & MNT_READONLY)
267 return 1;
268 if (mnt->mnt_sb->s_flags & MS_RDONLY)
269 return 1;
270 return 0;
3d733633
DH
271}
272EXPORT_SYMBOL_GPL(__mnt_is_readonly);
273
83adc753 274static inline void mnt_inc_writers(struct mount *mnt)
d3ef3d73 275{
276#ifdef CONFIG_SMP
68e8a9fe 277 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
d3ef3d73 278#else
68e8a9fe 279 mnt->mnt_writers++;
d3ef3d73 280#endif
281}
3d733633 282
83adc753 283static inline void mnt_dec_writers(struct mount *mnt)
3d733633 284{
d3ef3d73 285#ifdef CONFIG_SMP
68e8a9fe 286 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
d3ef3d73 287#else
68e8a9fe 288 mnt->mnt_writers--;
d3ef3d73 289#endif
3d733633 290}
3d733633 291
83adc753 292static unsigned int mnt_get_writers(struct mount *mnt)
3d733633 293{
d3ef3d73 294#ifdef CONFIG_SMP
295 unsigned int count = 0;
3d733633 296 int cpu;
3d733633
DH
297
298 for_each_possible_cpu(cpu) {
68e8a9fe 299 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
3d733633 300 }
3d733633 301
d3ef3d73 302 return count;
303#else
304 return mnt->mnt_writers;
305#endif
3d733633
DH
306}
307
4ed5e82f
MS
308static int mnt_is_readonly(struct vfsmount *mnt)
309{
310 if (mnt->mnt_sb->s_readonly_remount)
311 return 1;
312 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
313 smp_rmb();
314 return __mnt_is_readonly(mnt);
315}
316
8366025e 317/*
eb04c282
JK
318 * Most r/o & frozen checks on a fs are for operations that take discrete
319 * amounts of time, like a write() or unlink(). We must keep track of when
320 * those operations start (for permission checks) and when they end, so that we
321 * can determine when writes are able to occur to a filesystem.
8366025e
DH
322 */
323/**
eb04c282 324 * __mnt_want_write - get write access to a mount without freeze protection
83adc753 325 * @m: the mount on which to take a write
8366025e 326 *
eb04c282
JK
327 * This tells the low-level filesystem that a write is about to be performed to
328 * it, and makes sure that writes are allowed (mnt it read-write) before
329 * returning success. This operation does not protect against filesystem being
330 * frozen. When the write operation is finished, __mnt_drop_write() must be
331 * called. This is effectively a refcount.
8366025e 332 */
eb04c282 333int __mnt_want_write(struct vfsmount *m)
8366025e 334{
83adc753 335 struct mount *mnt = real_mount(m);
3d733633 336 int ret = 0;
3d733633 337
d3ef3d73 338 preempt_disable();
c6653a83 339 mnt_inc_writers(mnt);
d3ef3d73 340 /*
c6653a83 341 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73 342 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
343 * incremented count after it has set MNT_WRITE_HOLD.
344 */
345 smp_mb();
1e75529e 346 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
d3ef3d73 347 cpu_relax();
348 /*
349 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
350 * be set to match its requirements. So we must not load that until
351 * MNT_WRITE_HOLD is cleared.
352 */
353 smp_rmb();
4ed5e82f 354 if (mnt_is_readonly(m)) {
c6653a83 355 mnt_dec_writers(mnt);
3d733633 356 ret = -EROFS;
3d733633 357 }
d3ef3d73 358 preempt_enable();
eb04c282
JK
359
360 return ret;
361}
362
363/**
364 * mnt_want_write - get write access to a mount
365 * @m: the mount on which to take a write
366 *
367 * This tells the low-level filesystem that a write is about to be performed to
368 * it, and makes sure that writes are allowed (mount is read-write, filesystem
369 * is not frozen) before returning success. When the write operation is
370 * finished, mnt_drop_write() must be called. This is effectively a refcount.
371 */
372int mnt_want_write(struct vfsmount *m)
373{
374 int ret;
375
376 sb_start_write(m->mnt_sb);
377 ret = __mnt_want_write(m);
378 if (ret)
379 sb_end_write(m->mnt_sb);
3d733633 380 return ret;
8366025e
DH
381}
382EXPORT_SYMBOL_GPL(mnt_want_write);
383
96029c4e 384/**
385 * mnt_clone_write - get write access to a mount
386 * @mnt: the mount on which to take a write
387 *
388 * This is effectively like mnt_want_write, except
389 * it must only be used to take an extra write reference
390 * on a mountpoint that we already know has a write reference
391 * on it. This allows some optimisation.
392 *
393 * After finished, mnt_drop_write must be called as usual to
394 * drop the reference.
395 */
396int mnt_clone_write(struct vfsmount *mnt)
397{
398 /* superblock may be r/o */
399 if (__mnt_is_readonly(mnt))
400 return -EROFS;
401 preempt_disable();
83adc753 402 mnt_inc_writers(real_mount(mnt));
96029c4e 403 preempt_enable();
404 return 0;
405}
406EXPORT_SYMBOL_GPL(mnt_clone_write);
407
408/**
eb04c282 409 * __mnt_want_write_file - get write access to a file's mount
96029c4e 410 * @file: the file who's mount on which to take a write
411 *
eb04c282 412 * This is like __mnt_want_write, but it takes a file and can
96029c4e 413 * do some optimisations if the file is open for write already
414 */
eb04c282 415int __mnt_want_write_file(struct file *file)
96029c4e 416{
496ad9aa 417 struct inode *inode = file_inode(file);
eb04c282 418
2d8dd38a 419 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
eb04c282 420 return __mnt_want_write(file->f_path.mnt);
96029c4e 421 else
422 return mnt_clone_write(file->f_path.mnt);
423}
eb04c282
JK
424
425/**
426 * mnt_want_write_file - get write access to a file's mount
427 * @file: the file who's mount on which to take a write
428 *
429 * This is like mnt_want_write, but it takes a file and can
430 * do some optimisations if the file is open for write already
431 */
432int mnt_want_write_file(struct file *file)
433{
434 int ret;
435
436 sb_start_write(file->f_path.mnt->mnt_sb);
437 ret = __mnt_want_write_file(file);
438 if (ret)
439 sb_end_write(file->f_path.mnt->mnt_sb);
440 return ret;
441}
96029c4e 442EXPORT_SYMBOL_GPL(mnt_want_write_file);
443
8366025e 444/**
eb04c282 445 * __mnt_drop_write - give up write access to a mount
8366025e
DH
446 * @mnt: the mount on which to give up write access
447 *
448 * Tells the low-level filesystem that we are done
449 * performing writes to it. Must be matched with
eb04c282 450 * __mnt_want_write() call above.
8366025e 451 */
eb04c282 452void __mnt_drop_write(struct vfsmount *mnt)
8366025e 453{
d3ef3d73 454 preempt_disable();
83adc753 455 mnt_dec_writers(real_mount(mnt));
d3ef3d73 456 preempt_enable();
8366025e 457}
eb04c282
JK
458
459/**
460 * mnt_drop_write - give up write access to a mount
461 * @mnt: the mount on which to give up write access
462 *
463 * Tells the low-level filesystem that we are done performing writes to it and
464 * also allows filesystem to be frozen again. Must be matched with
465 * mnt_want_write() call above.
466 */
467void mnt_drop_write(struct vfsmount *mnt)
468{
469 __mnt_drop_write(mnt);
470 sb_end_write(mnt->mnt_sb);
471}
8366025e
DH
472EXPORT_SYMBOL_GPL(mnt_drop_write);
473
eb04c282
JK
474void __mnt_drop_write_file(struct file *file)
475{
476 __mnt_drop_write(file->f_path.mnt);
477}
478
2a79f17e
AV
479void mnt_drop_write_file(struct file *file)
480{
481 mnt_drop_write(file->f_path.mnt);
482}
483EXPORT_SYMBOL(mnt_drop_write_file);
484
83adc753 485static int mnt_make_readonly(struct mount *mnt)
8366025e 486{
3d733633
DH
487 int ret = 0;
488
719ea2fb 489 lock_mount_hash();
83adc753 490 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
3d733633 491 /*
d3ef3d73 492 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
493 * should be visible before we do.
3d733633 494 */
d3ef3d73 495 smp_mb();
496
3d733633 497 /*
d3ef3d73 498 * With writers on hold, if this value is zero, then there are
499 * definitely no active writers (although held writers may subsequently
500 * increment the count, they'll have to wait, and decrement it after
501 * seeing MNT_READONLY).
502 *
503 * It is OK to have counter incremented on one CPU and decremented on
504 * another: the sum will add up correctly. The danger would be when we
505 * sum up each counter, if we read a counter before it is incremented,
506 * but then read another CPU's count which it has been subsequently
507 * decremented from -- we would see more decrements than we should.
508 * MNT_WRITE_HOLD protects against this scenario, because
509 * mnt_want_write first increments count, then smp_mb, then spins on
510 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
511 * we're counting up here.
3d733633 512 */
c6653a83 513 if (mnt_get_writers(mnt) > 0)
d3ef3d73 514 ret = -EBUSY;
515 else
83adc753 516 mnt->mnt.mnt_flags |= MNT_READONLY;
d3ef3d73 517 /*
518 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
519 * that become unheld will see MNT_READONLY.
520 */
521 smp_wmb();
83adc753 522 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
719ea2fb 523 unlock_mount_hash();
3d733633 524 return ret;
8366025e 525}
8366025e 526
83adc753 527static void __mnt_unmake_readonly(struct mount *mnt)
2e4b7fcd 528{
719ea2fb 529 lock_mount_hash();
83adc753 530 mnt->mnt.mnt_flags &= ~MNT_READONLY;
719ea2fb 531 unlock_mount_hash();
2e4b7fcd
DH
532}
533
4ed5e82f
MS
534int sb_prepare_remount_readonly(struct super_block *sb)
535{
536 struct mount *mnt;
537 int err = 0;
538
8e8b8796
MS
539 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
540 if (atomic_long_read(&sb->s_remove_count))
541 return -EBUSY;
542
719ea2fb 543 lock_mount_hash();
4ed5e82f
MS
544 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
545 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
546 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
547 smp_mb();
548 if (mnt_get_writers(mnt) > 0) {
549 err = -EBUSY;
550 break;
551 }
552 }
553 }
8e8b8796
MS
554 if (!err && atomic_long_read(&sb->s_remove_count))
555 err = -EBUSY;
556
4ed5e82f
MS
557 if (!err) {
558 sb->s_readonly_remount = 1;
559 smp_wmb();
560 }
561 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
562 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
563 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
564 }
719ea2fb 565 unlock_mount_hash();
4ed5e82f
MS
566
567 return err;
568}
569
b105e270 570static void free_vfsmnt(struct mount *mnt)
1da177e4 571{
52ba1621 572 kfree(mnt->mnt_devname);
73cd49ec 573 mnt_free_id(mnt);
d3ef3d73 574#ifdef CONFIG_SMP
68e8a9fe 575 free_percpu(mnt->mnt_pcp);
d3ef3d73 576#endif
b105e270 577 kmem_cache_free(mnt_cache, mnt);
1da177e4
LT
578}
579
48a066e7
AV
580/* call under rcu_read_lock */
581bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
582{
583 struct mount *mnt;
584 if (read_seqretry(&mount_lock, seq))
585 return false;
586 if (bastard == NULL)
587 return true;
588 mnt = real_mount(bastard);
589 mnt_add_count(mnt, 1);
590 if (likely(!read_seqretry(&mount_lock, seq)))
591 return true;
592 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
593 mnt_add_count(mnt, -1);
594 return false;
595 }
596 rcu_read_unlock();
597 mntput(bastard);
598 rcu_read_lock();
599 return false;
600}
601
1da177e4 602/*
474279dc 603 * find the first mount at @dentry on vfsmount @mnt.
48a066e7 604 * call under rcu_read_lock()
1da177e4 605 */
474279dc 606struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 607{
0818bf27 608 struct list_head *head = m_hash(mnt, dentry);
474279dc
AV
609 struct mount *p;
610
48a066e7 611 list_for_each_entry_rcu(p, head, mnt_hash)
474279dc
AV
612 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
613 return p;
614 return NULL;
615}
616
617/*
618 * find the last mount at @dentry on vfsmount @mnt.
48a066e7 619 * mount_lock must be held.
474279dc
AV
620 */
621struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
622{
0818bf27 623 struct list_head *head = m_hash(mnt, dentry);
1d6a32ac 624 struct mount *p, *res = NULL;
474279dc 625
1d6a32ac 626 list_for_each_entry(p, head, mnt_hash)
474279dc 627 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
1d6a32ac
AV
628 goto found;
629 return res;
630found:
631 res = p;
632 list_for_each_entry_continue(p, head, mnt_hash) {
633 if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry)
634 break;
635 res = p;
636 }
637 return res;
1da177e4
LT
638}
639
a05964f3 640/*
f015f126
DH
641 * lookup_mnt - Return the first child mount mounted at path
642 *
643 * "First" means first mounted chronologically. If you create the
644 * following mounts:
645 *
646 * mount /dev/sda1 /mnt
647 * mount /dev/sda2 /mnt
648 * mount /dev/sda3 /mnt
649 *
650 * Then lookup_mnt() on the base /mnt dentry in the root mount will
651 * return successively the root dentry and vfsmount of /dev/sda1, then
652 * /dev/sda2, then /dev/sda3, then NULL.
653 *
654 * lookup_mnt takes a reference to the found vfsmount.
a05964f3 655 */
1c755af4 656struct vfsmount *lookup_mnt(struct path *path)
a05964f3 657{
c7105365 658 struct mount *child_mnt;
48a066e7
AV
659 struct vfsmount *m;
660 unsigned seq;
99b7db7b 661
48a066e7
AV
662 rcu_read_lock();
663 do {
664 seq = read_seqbegin(&mount_lock);
665 child_mnt = __lookup_mnt(path->mnt, path->dentry);
666 m = child_mnt ? &child_mnt->mnt : NULL;
667 } while (!legitimize_mnt(m, seq));
668 rcu_read_unlock();
669 return m;
a05964f3
RP
670}
671
84d17192
AV
672static struct mountpoint *new_mountpoint(struct dentry *dentry)
673{
0818bf27 674 struct hlist_head *chain = mp_hash(dentry);
84d17192 675 struct mountpoint *mp;
eed81007 676 int ret;
84d17192 677
0818bf27 678 hlist_for_each_entry(mp, chain, m_hash) {
84d17192
AV
679 if (mp->m_dentry == dentry) {
680 /* might be worth a WARN_ON() */
681 if (d_unlinked(dentry))
682 return ERR_PTR(-ENOENT);
683 mp->m_count++;
684 return mp;
685 }
686 }
687
688 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
689 if (!mp)
690 return ERR_PTR(-ENOMEM);
691
eed81007
MS
692 ret = d_set_mounted(dentry);
693 if (ret) {
84d17192 694 kfree(mp);
eed81007 695 return ERR_PTR(ret);
84d17192 696 }
eed81007 697
84d17192
AV
698 mp->m_dentry = dentry;
699 mp->m_count = 1;
0818bf27 700 hlist_add_head(&mp->m_hash, chain);
84d17192
AV
701 return mp;
702}
703
704static void put_mountpoint(struct mountpoint *mp)
705{
706 if (!--mp->m_count) {
707 struct dentry *dentry = mp->m_dentry;
708 spin_lock(&dentry->d_lock);
709 dentry->d_flags &= ~DCACHE_MOUNTED;
710 spin_unlock(&dentry->d_lock);
0818bf27 711 hlist_del(&mp->m_hash);
84d17192
AV
712 kfree(mp);
713 }
714}
715
143c8c91 716static inline int check_mnt(struct mount *mnt)
1da177e4 717{
6b3286ed 718 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
719}
720
99b7db7b
NP
721/*
722 * vfsmount lock must be held for write
723 */
6b3286ed 724static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
725{
726 if (ns) {
727 ns->event = ++event;
728 wake_up_interruptible(&ns->poll);
729 }
730}
731
99b7db7b
NP
732/*
733 * vfsmount lock must be held for write
734 */
6b3286ed 735static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
736{
737 if (ns && ns->event != event) {
738 ns->event = event;
739 wake_up_interruptible(&ns->poll);
740 }
741}
742
99b7db7b
NP
743/*
744 * vfsmount lock must be held for write
745 */
419148da
AV
746static void detach_mnt(struct mount *mnt, struct path *old_path)
747{
a73324da 748 old_path->dentry = mnt->mnt_mountpoint;
0714a533
AV
749 old_path->mnt = &mnt->mnt_parent->mnt;
750 mnt->mnt_parent = mnt;
a73324da 751 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
6b41d536 752 list_del_init(&mnt->mnt_child);
1b8e5564 753 list_del_init(&mnt->mnt_hash);
84d17192
AV
754 put_mountpoint(mnt->mnt_mp);
755 mnt->mnt_mp = NULL;
1da177e4
LT
756}
757
99b7db7b
NP
758/*
759 * vfsmount lock must be held for write
760 */
84d17192
AV
761void mnt_set_mountpoint(struct mount *mnt,
762 struct mountpoint *mp,
44d964d6 763 struct mount *child_mnt)
b90fa9ae 764{
84d17192 765 mp->m_count++;
3a2393d7 766 mnt_add_count(mnt, 1); /* essentially, that's mntget */
84d17192 767 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
3a2393d7 768 child_mnt->mnt_parent = mnt;
84d17192 769 child_mnt->mnt_mp = mp;
b90fa9ae
RP
770}
771
99b7db7b
NP
772/*
773 * vfsmount lock must be held for write
774 */
84d17192
AV
775static void attach_mnt(struct mount *mnt,
776 struct mount *parent,
777 struct mountpoint *mp)
1da177e4 778{
84d17192 779 mnt_set_mountpoint(parent, mp, mnt);
1d6a32ac 780 list_add(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
84d17192 781 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
b90fa9ae
RP
782}
783
784/*
99b7db7b 785 * vfsmount lock must be held for write
b90fa9ae 786 */
1d6a32ac 787static void commit_tree(struct mount *mnt, struct mount *shadows)
b90fa9ae 788{
0714a533 789 struct mount *parent = mnt->mnt_parent;
83adc753 790 struct mount *m;
b90fa9ae 791 LIST_HEAD(head);
143c8c91 792 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae 793
0714a533 794 BUG_ON(parent == mnt);
b90fa9ae 795
1a4eeaf2 796 list_add_tail(&head, &mnt->mnt_list);
f7a99c5b 797 list_for_each_entry(m, &head, mnt_list)
143c8c91 798 m->mnt_ns = n;
f03c6599 799
b90fa9ae
RP
800 list_splice(&head, n->list.prev);
801
1d6a32ac
AV
802 if (shadows)
803 list_add(&mnt->mnt_hash, &shadows->mnt_hash);
804 else
805 list_add(&mnt->mnt_hash,
0818bf27 806 m_hash(&parent->mnt, mnt->mnt_mountpoint));
6b41d536 807 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
6b3286ed 808 touch_mnt_namespace(n);
1da177e4
LT
809}
810
909b0a88 811static struct mount *next_mnt(struct mount *p, struct mount *root)
1da177e4 812{
6b41d536
AV
813 struct list_head *next = p->mnt_mounts.next;
814 if (next == &p->mnt_mounts) {
1da177e4 815 while (1) {
909b0a88 816 if (p == root)
1da177e4 817 return NULL;
6b41d536
AV
818 next = p->mnt_child.next;
819 if (next != &p->mnt_parent->mnt_mounts)
1da177e4 820 break;
0714a533 821 p = p->mnt_parent;
1da177e4
LT
822 }
823 }
6b41d536 824 return list_entry(next, struct mount, mnt_child);
1da177e4
LT
825}
826
315fc83e 827static struct mount *skip_mnt_tree(struct mount *p)
9676f0c6 828{
6b41d536
AV
829 struct list_head *prev = p->mnt_mounts.prev;
830 while (prev != &p->mnt_mounts) {
831 p = list_entry(prev, struct mount, mnt_child);
832 prev = p->mnt_mounts.prev;
9676f0c6
RP
833 }
834 return p;
835}
836
9d412a43
AV
837struct vfsmount *
838vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
839{
b105e270 840 struct mount *mnt;
9d412a43
AV
841 struct dentry *root;
842
843 if (!type)
844 return ERR_PTR(-ENODEV);
845
846 mnt = alloc_vfsmnt(name);
847 if (!mnt)
848 return ERR_PTR(-ENOMEM);
849
850 if (flags & MS_KERNMOUNT)
b105e270 851 mnt->mnt.mnt_flags = MNT_INTERNAL;
9d412a43
AV
852
853 root = mount_fs(type, flags, name, data);
854 if (IS_ERR(root)) {
855 free_vfsmnt(mnt);
856 return ERR_CAST(root);
857 }
858
b105e270
AV
859 mnt->mnt.mnt_root = root;
860 mnt->mnt.mnt_sb = root->d_sb;
a73324da 861 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 862 mnt->mnt_parent = mnt;
719ea2fb 863 lock_mount_hash();
39f7c4db 864 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
719ea2fb 865 unlock_mount_hash();
b105e270 866 return &mnt->mnt;
9d412a43
AV
867}
868EXPORT_SYMBOL_GPL(vfs_kern_mount);
869
87129cc0 870static struct mount *clone_mnt(struct mount *old, struct dentry *root,
36341f64 871 int flag)
1da177e4 872{
87129cc0 873 struct super_block *sb = old->mnt.mnt_sb;
be34d1a3
DH
874 struct mount *mnt;
875 int err;
1da177e4 876
be34d1a3
DH
877 mnt = alloc_vfsmnt(old->mnt_devname);
878 if (!mnt)
879 return ERR_PTR(-ENOMEM);
719f5d7f 880
7a472ef4 881 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
be34d1a3
DH
882 mnt->mnt_group_id = 0; /* not a peer of original */
883 else
884 mnt->mnt_group_id = old->mnt_group_id;
b90fa9ae 885
be34d1a3
DH
886 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
887 err = mnt_alloc_group_id(mnt);
888 if (err)
889 goto out_free;
1da177e4 890 }
be34d1a3
DH
891
892 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD;
132c94e3
EB
893 /* Don't allow unprivileged users to change mount flags */
894 if ((flag & CL_UNPRIVILEGED) && (mnt->mnt.mnt_flags & MNT_READONLY))
895 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
896
5ff9d8a6
EB
897 /* Don't allow unprivileged users to reveal what is under a mount */
898 if ((flag & CL_UNPRIVILEGED) && list_empty(&old->mnt_expire))
899 mnt->mnt.mnt_flags |= MNT_LOCKED;
900
be34d1a3
DH
901 atomic_inc(&sb->s_active);
902 mnt->mnt.mnt_sb = sb;
903 mnt->mnt.mnt_root = dget(root);
904 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
905 mnt->mnt_parent = mnt;
719ea2fb 906 lock_mount_hash();
be34d1a3 907 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
719ea2fb 908 unlock_mount_hash();
be34d1a3 909
7a472ef4
EB
910 if ((flag & CL_SLAVE) ||
911 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
be34d1a3
DH
912 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
913 mnt->mnt_master = old;
914 CLEAR_MNT_SHARED(mnt);
915 } else if (!(flag & CL_PRIVATE)) {
916 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
917 list_add(&mnt->mnt_share, &old->mnt_share);
918 if (IS_MNT_SLAVE(old))
919 list_add(&mnt->mnt_slave, &old->mnt_slave);
920 mnt->mnt_master = old->mnt_master;
921 }
922 if (flag & CL_MAKE_SHARED)
923 set_mnt_shared(mnt);
924
925 /* stick the duplicate mount on the same expiry list
926 * as the original if that was on one */
927 if (flag & CL_EXPIRE) {
928 if (!list_empty(&old->mnt_expire))
929 list_add(&mnt->mnt_expire, &old->mnt_expire);
930 }
931
cb338d06 932 return mnt;
719f5d7f
MS
933
934 out_free:
935 free_vfsmnt(mnt);
be34d1a3 936 return ERR_PTR(err);
1da177e4
LT
937}
938
48a066e7
AV
939static void delayed_free(struct rcu_head *head)
940{
941 struct mount *mnt = container_of(head, struct mount, mnt_rcu);
942 kfree(mnt->mnt_devname);
943#ifdef CONFIG_SMP
944 free_percpu(mnt->mnt_pcp);
945#endif
946 kmem_cache_free(mnt_cache, mnt);
947}
948
900148dc 949static void mntput_no_expire(struct mount *mnt)
b3e19d92 950{
b3e19d92 951put_again:
48a066e7
AV
952 rcu_read_lock();
953 mnt_add_count(mnt, -1);
954 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
955 rcu_read_unlock();
f03c6599 956 return;
b3e19d92 957 }
719ea2fb 958 lock_mount_hash();
b3e19d92 959 if (mnt_get_count(mnt)) {
48a066e7 960 rcu_read_unlock();
719ea2fb 961 unlock_mount_hash();
99b7db7b
NP
962 return;
963 }
863d684f
AV
964 if (unlikely(mnt->mnt_pinned)) {
965 mnt_add_count(mnt, mnt->mnt_pinned + 1);
966 mnt->mnt_pinned = 0;
48a066e7 967 rcu_read_unlock();
719ea2fb 968 unlock_mount_hash();
900148dc 969 acct_auto_close_mnt(&mnt->mnt);
b3e19d92 970 goto put_again;
7b7b1ace 971 }
48a066e7
AV
972 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
973 rcu_read_unlock();
974 unlock_mount_hash();
975 return;
976 }
977 mnt->mnt.mnt_flags |= MNT_DOOMED;
978 rcu_read_unlock();
962830df 979
39f7c4db 980 list_del(&mnt->mnt_instance);
719ea2fb 981 unlock_mount_hash();
649a795a
AV
982
983 /*
984 * This probably indicates that somebody messed
985 * up a mnt_want/drop_write() pair. If this
986 * happens, the filesystem was probably unable
987 * to make r/w->r/o transitions.
988 */
989 /*
990 * The locking used to deal with mnt_count decrement provides barriers,
991 * so mnt_get_writers() below is safe.
992 */
993 WARN_ON(mnt_get_writers(mnt));
994 fsnotify_vfsmount_delete(&mnt->mnt);
995 dput(mnt->mnt.mnt_root);
996 deactivate_super(mnt->mnt.mnt_sb);
48a066e7
AV
997 mnt_free_id(mnt);
998 call_rcu(&mnt->mnt_rcu, delayed_free);
b3e19d92 999}
b3e19d92
NP
1000
1001void mntput(struct vfsmount *mnt)
1002{
1003 if (mnt) {
863d684f 1004 struct mount *m = real_mount(mnt);
b3e19d92 1005 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
863d684f
AV
1006 if (unlikely(m->mnt_expiry_mark))
1007 m->mnt_expiry_mark = 0;
1008 mntput_no_expire(m);
b3e19d92
NP
1009 }
1010}
1011EXPORT_SYMBOL(mntput);
1012
1013struct vfsmount *mntget(struct vfsmount *mnt)
1014{
1015 if (mnt)
83adc753 1016 mnt_add_count(real_mount(mnt), 1);
b3e19d92
NP
1017 return mnt;
1018}
1019EXPORT_SYMBOL(mntget);
1020
7b7b1ace
AV
1021void mnt_pin(struct vfsmount *mnt)
1022{
719ea2fb 1023 lock_mount_hash();
863d684f 1024 real_mount(mnt)->mnt_pinned++;
719ea2fb 1025 unlock_mount_hash();
7b7b1ace 1026}
7b7b1ace
AV
1027EXPORT_SYMBOL(mnt_pin);
1028
863d684f 1029void mnt_unpin(struct vfsmount *m)
7b7b1ace 1030{
863d684f 1031 struct mount *mnt = real_mount(m);
719ea2fb 1032 lock_mount_hash();
7b7b1ace 1033 if (mnt->mnt_pinned) {
863d684f 1034 mnt_add_count(mnt, 1);
7b7b1ace
AV
1035 mnt->mnt_pinned--;
1036 }
719ea2fb 1037 unlock_mount_hash();
7b7b1ace 1038}
7b7b1ace 1039EXPORT_SYMBOL(mnt_unpin);
1da177e4 1040
b3b304a2
MS
1041static inline void mangle(struct seq_file *m, const char *s)
1042{
1043 seq_escape(m, s, " \t\n\\");
1044}
1045
1046/*
1047 * Simple .show_options callback for filesystems which don't want to
1048 * implement more complex mount option showing.
1049 *
1050 * See also save_mount_options().
1051 */
34c80b1d 1052int generic_show_options(struct seq_file *m, struct dentry *root)
b3b304a2 1053{
2a32cebd
AV
1054 const char *options;
1055
1056 rcu_read_lock();
34c80b1d 1057 options = rcu_dereference(root->d_sb->s_options);
b3b304a2
MS
1058
1059 if (options != NULL && options[0]) {
1060 seq_putc(m, ',');
1061 mangle(m, options);
1062 }
2a32cebd 1063 rcu_read_unlock();
b3b304a2
MS
1064
1065 return 0;
1066}
1067EXPORT_SYMBOL(generic_show_options);
1068
1069/*
1070 * If filesystem uses generic_show_options(), this function should be
1071 * called from the fill_super() callback.
1072 *
1073 * The .remount_fs callback usually needs to be handled in a special
1074 * way, to make sure, that previous options are not overwritten if the
1075 * remount fails.
1076 *
1077 * Also note, that if the filesystem's .remount_fs function doesn't
1078 * reset all options to their default value, but changes only newly
1079 * given options, then the displayed options will not reflect reality
1080 * any more.
1081 */
1082void save_mount_options(struct super_block *sb, char *options)
1083{
2a32cebd
AV
1084 BUG_ON(sb->s_options);
1085 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
b3b304a2
MS
1086}
1087EXPORT_SYMBOL(save_mount_options);
1088
2a32cebd
AV
1089void replace_mount_options(struct super_block *sb, char *options)
1090{
1091 char *old = sb->s_options;
1092 rcu_assign_pointer(sb->s_options, options);
1093 if (old) {
1094 synchronize_rcu();
1095 kfree(old);
1096 }
1097}
1098EXPORT_SYMBOL(replace_mount_options);
1099
a1a2c409 1100#ifdef CONFIG_PROC_FS
0226f492 1101/* iterator; we want it to have access to namespace_sem, thus here... */
1da177e4
LT
1102static void *m_start(struct seq_file *m, loff_t *pos)
1103{
6ce6e24e 1104 struct proc_mounts *p = proc_mounts(m);
1da177e4 1105
390c6843 1106 down_read(&namespace_sem);
a1a2c409 1107 return seq_list_start(&p->ns->list, *pos);
1da177e4
LT
1108}
1109
1110static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1111{
6ce6e24e 1112 struct proc_mounts *p = proc_mounts(m);
b0765fb8 1113
a1a2c409 1114 return seq_list_next(v, &p->ns->list, pos);
1da177e4
LT
1115}
1116
1117static void m_stop(struct seq_file *m, void *v)
1118{
390c6843 1119 up_read(&namespace_sem);
1da177e4
LT
1120}
1121
0226f492 1122static int m_show(struct seq_file *m, void *v)
2d4d4864 1123{
6ce6e24e 1124 struct proc_mounts *p = proc_mounts(m);
1a4eeaf2 1125 struct mount *r = list_entry(v, struct mount, mnt_list);
0226f492 1126 return p->show(m, &r->mnt);
1da177e4
LT
1127}
1128
a1a2c409 1129const struct seq_operations mounts_op = {
1da177e4
LT
1130 .start = m_start,
1131 .next = m_next,
1132 .stop = m_stop,
0226f492 1133 .show = m_show,
b4629fe2 1134};
a1a2c409 1135#endif /* CONFIG_PROC_FS */
b4629fe2 1136
1da177e4
LT
1137/**
1138 * may_umount_tree - check if a mount tree is busy
1139 * @mnt: root of mount tree
1140 *
1141 * This is called to check if a tree of mounts has any
1142 * open files, pwds, chroots or sub mounts that are
1143 * busy.
1144 */
909b0a88 1145int may_umount_tree(struct vfsmount *m)
1da177e4 1146{
909b0a88 1147 struct mount *mnt = real_mount(m);
36341f64
RP
1148 int actual_refs = 0;
1149 int minimum_refs = 0;
315fc83e 1150 struct mount *p;
909b0a88 1151 BUG_ON(!m);
1da177e4 1152
b3e19d92 1153 /* write lock needed for mnt_get_count */
719ea2fb 1154 lock_mount_hash();
909b0a88 1155 for (p = mnt; p; p = next_mnt(p, mnt)) {
83adc753 1156 actual_refs += mnt_get_count(p);
1da177e4 1157 minimum_refs += 2;
1da177e4 1158 }
719ea2fb 1159 unlock_mount_hash();
1da177e4
LT
1160
1161 if (actual_refs > minimum_refs)
e3474a8e 1162 return 0;
1da177e4 1163
e3474a8e 1164 return 1;
1da177e4
LT
1165}
1166
1167EXPORT_SYMBOL(may_umount_tree);
1168
1169/**
1170 * may_umount - check if a mount point is busy
1171 * @mnt: root of mount
1172 *
1173 * This is called to check if a mount point has any
1174 * open files, pwds, chroots or sub mounts. If the
1175 * mount has sub mounts this will return busy
1176 * regardless of whether the sub mounts are busy.
1177 *
1178 * Doesn't take quota and stuff into account. IOW, in some cases it will
1179 * give false negatives. The main reason why it's here is that we need
1180 * a non-destructive way to look for easily umountable filesystems.
1181 */
1182int may_umount(struct vfsmount *mnt)
1183{
e3474a8e 1184 int ret = 1;
8ad08d8a 1185 down_read(&namespace_sem);
719ea2fb 1186 lock_mount_hash();
1ab59738 1187 if (propagate_mount_busy(real_mount(mnt), 2))
e3474a8e 1188 ret = 0;
719ea2fb 1189 unlock_mount_hash();
8ad08d8a 1190 up_read(&namespace_sem);
a05964f3 1191 return ret;
1da177e4
LT
1192}
1193
1194EXPORT_SYMBOL(may_umount);
1195
e3197d83
AV
1196static LIST_HEAD(unmounted); /* protected by namespace_sem */
1197
97216be0 1198static void namespace_unlock(void)
70fbcdf4 1199{
d5e50f74 1200 struct mount *mnt;
97216be0
AV
1201 LIST_HEAD(head);
1202
1203 if (likely(list_empty(&unmounted))) {
1204 up_write(&namespace_sem);
1205 return;
1206 }
1207
1208 list_splice_init(&unmounted, &head);
1209 up_write(&namespace_sem);
1210
48a066e7
AV
1211 synchronize_rcu();
1212
97216be0
AV
1213 while (!list_empty(&head)) {
1214 mnt = list_first_entry(&head, struct mount, mnt_hash);
1b8e5564 1215 list_del_init(&mnt->mnt_hash);
aba809cf
AV
1216 if (mnt->mnt_ex_mountpoint.mnt)
1217 path_put(&mnt->mnt_ex_mountpoint);
d5e50f74 1218 mntput(&mnt->mnt);
70fbcdf4
RP
1219 }
1220}
1221
97216be0 1222static inline void namespace_lock(void)
e3197d83 1223{
97216be0 1224 down_write(&namespace_sem);
e3197d83
AV
1225}
1226
99b7db7b 1227/*
48a066e7 1228 * mount_lock must be held
99b7db7b 1229 * namespace_sem must be held for write
48a066e7
AV
1230 * how = 0 => just this tree, don't propagate
1231 * how = 1 => propagate; we know that nobody else has reference to any victims
1232 * how = 2 => lazy umount
99b7db7b 1233 */
48a066e7 1234void umount_tree(struct mount *mnt, int how)
1da177e4 1235{
7b8a53fd 1236 LIST_HEAD(tmp_list);
315fc83e 1237 struct mount *p;
1da177e4 1238
909b0a88 1239 for (p = mnt; p; p = next_mnt(p, mnt))
1b8e5564 1240 list_move(&p->mnt_hash, &tmp_list);
1da177e4 1241
48a066e7 1242 if (how)
7b8a53fd 1243 propagate_umount(&tmp_list);
a05964f3 1244
1b8e5564 1245 list_for_each_entry(p, &tmp_list, mnt_hash) {
6776db3d 1246 list_del_init(&p->mnt_expire);
1a4eeaf2 1247 list_del_init(&p->mnt_list);
143c8c91
AV
1248 __touch_mnt_namespace(p->mnt_ns);
1249 p->mnt_ns = NULL;
48a066e7
AV
1250 if (how < 2)
1251 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
6b41d536 1252 list_del_init(&p->mnt_child);
676da58d 1253 if (mnt_has_parent(p)) {
84d17192 1254 put_mountpoint(p->mnt_mp);
aba809cf
AV
1255 /* move the reference to mountpoint into ->mnt_ex_mountpoint */
1256 p->mnt_ex_mountpoint.dentry = p->mnt_mountpoint;
1257 p->mnt_ex_mountpoint.mnt = &p->mnt_parent->mnt;
1258 p->mnt_mountpoint = p->mnt.mnt_root;
1259 p->mnt_parent = p;
84d17192 1260 p->mnt_mp = NULL;
7c4b93d8 1261 }
0f0afb1d 1262 change_mnt_propagation(p, MS_PRIVATE);
1da177e4 1263 }
328e6d90 1264 list_splice(&tmp_list, &unmounted);
1da177e4
LT
1265}
1266
b54b9be7 1267static void shrink_submounts(struct mount *mnt);
c35038be 1268
1ab59738 1269static int do_umount(struct mount *mnt, int flags)
1da177e4 1270{
1ab59738 1271 struct super_block *sb = mnt->mnt.mnt_sb;
1da177e4
LT
1272 int retval;
1273
1ab59738 1274 retval = security_sb_umount(&mnt->mnt, flags);
1da177e4
LT
1275 if (retval)
1276 return retval;
1277
1278 /*
1279 * Allow userspace to request a mountpoint be expired rather than
1280 * unmounting unconditionally. Unmount only happens if:
1281 * (1) the mark is already set (the mark is cleared by mntput())
1282 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1283 */
1284 if (flags & MNT_EXPIRE) {
1ab59738 1285 if (&mnt->mnt == current->fs->root.mnt ||
1da177e4
LT
1286 flags & (MNT_FORCE | MNT_DETACH))
1287 return -EINVAL;
1288
b3e19d92
NP
1289 /*
1290 * probably don't strictly need the lock here if we examined
1291 * all race cases, but it's a slowpath.
1292 */
719ea2fb 1293 lock_mount_hash();
83adc753 1294 if (mnt_get_count(mnt) != 2) {
719ea2fb 1295 unlock_mount_hash();
1da177e4 1296 return -EBUSY;
b3e19d92 1297 }
719ea2fb 1298 unlock_mount_hash();
1da177e4 1299
863d684f 1300 if (!xchg(&mnt->mnt_expiry_mark, 1))
1da177e4
LT
1301 return -EAGAIN;
1302 }
1303
1304 /*
1305 * If we may have to abort operations to get out of this
1306 * mount, and they will themselves hold resources we must
1307 * allow the fs to do things. In the Unix tradition of
1308 * 'Gee thats tricky lets do it in userspace' the umount_begin
1309 * might fail to complete on the first run through as other tasks
1310 * must return, and the like. Thats for the mount program to worry
1311 * about for the moment.
1312 */
1313
42faad99 1314 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1315 sb->s_op->umount_begin(sb);
42faad99 1316 }
1da177e4
LT
1317
1318 /*
1319 * No sense to grab the lock for this test, but test itself looks
1320 * somewhat bogus. Suggestions for better replacement?
1321 * Ho-hum... In principle, we might treat that as umount + switch
1322 * to rootfs. GC would eventually take care of the old vfsmount.
1323 * Actually it makes sense, especially if rootfs would contain a
1324 * /reboot - static binary that would close all descriptors and
1325 * call reboot(9). Then init(8) could umount root and exec /reboot.
1326 */
1ab59738 1327 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1328 /*
1329 * Special case for "unmounting" root ...
1330 * we just try to remount it readonly.
1331 */
1332 down_write(&sb->s_umount);
4aa98cf7 1333 if (!(sb->s_flags & MS_RDONLY))
1da177e4 1334 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1da177e4
LT
1335 up_write(&sb->s_umount);
1336 return retval;
1337 }
1338
97216be0 1339 namespace_lock();
719ea2fb 1340 lock_mount_hash();
5addc5dd 1341 event++;
1da177e4 1342
48a066e7 1343 if (flags & MNT_DETACH) {
1a4eeaf2 1344 if (!list_empty(&mnt->mnt_list))
48a066e7 1345 umount_tree(mnt, 2);
1da177e4 1346 retval = 0;
48a066e7
AV
1347 } else {
1348 shrink_submounts(mnt);
1349 retval = -EBUSY;
1350 if (!propagate_mount_busy(mnt, 2)) {
1351 if (!list_empty(&mnt->mnt_list))
1352 umount_tree(mnt, 1);
1353 retval = 0;
1354 }
1da177e4 1355 }
719ea2fb 1356 unlock_mount_hash();
e3197d83 1357 namespace_unlock();
1da177e4
LT
1358 return retval;
1359}
1360
9b40bc90
AV
1361/*
1362 * Is the caller allowed to modify his namespace?
1363 */
1364static inline bool may_mount(void)
1365{
1366 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1367}
1368
1da177e4
LT
1369/*
1370 * Now umount can handle mount points as well as block devices.
1371 * This is important for filesystems which use unnamed block devices.
1372 *
1373 * We now support a flag for forced unmount like the other 'big iron'
1374 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1375 */
1376
bdc480e3 1377SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1da177e4 1378{
2d8f3038 1379 struct path path;
900148dc 1380 struct mount *mnt;
1da177e4 1381 int retval;
db1f05bb 1382 int lookup_flags = 0;
1da177e4 1383
db1f05bb
MS
1384 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1385 return -EINVAL;
1386
9b40bc90
AV
1387 if (!may_mount())
1388 return -EPERM;
1389
db1f05bb
MS
1390 if (!(flags & UMOUNT_NOFOLLOW))
1391 lookup_flags |= LOOKUP_FOLLOW;
1392
197df04c 1393 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1da177e4
LT
1394 if (retval)
1395 goto out;
900148dc 1396 mnt = real_mount(path.mnt);
1da177e4 1397 retval = -EINVAL;
2d8f3038 1398 if (path.dentry != path.mnt->mnt_root)
1da177e4 1399 goto dput_and_out;
143c8c91 1400 if (!check_mnt(mnt))
1da177e4 1401 goto dput_and_out;
5ff9d8a6
EB
1402 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1403 goto dput_and_out;
1da177e4 1404
900148dc 1405 retval = do_umount(mnt, flags);
1da177e4 1406dput_and_out:
429731b1 1407 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038 1408 dput(path.dentry);
900148dc 1409 mntput_no_expire(mnt);
1da177e4
LT
1410out:
1411 return retval;
1412}
1413
1414#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1415
1416/*
b58fed8b 1417 * The 2.0 compatible umount. No flags.
1da177e4 1418 */
bdc480e3 1419SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1420{
b58fed8b 1421 return sys_umount(name, 0);
1da177e4
LT
1422}
1423
1424#endif
1425
4ce5d2b1 1426static bool is_mnt_ns_file(struct dentry *dentry)
8823c079 1427{
4ce5d2b1
EB
1428 /* Is this a proxy for a mount namespace? */
1429 struct inode *inode = dentry->d_inode;
0bb80f24 1430 struct proc_ns *ei;
8823c079
EB
1431
1432 if (!proc_ns_inode(inode))
1433 return false;
1434
0bb80f24 1435 ei = get_proc_ns(inode);
8823c079
EB
1436 if (ei->ns_ops != &mntns_operations)
1437 return false;
1438
4ce5d2b1
EB
1439 return true;
1440}
1441
1442static bool mnt_ns_loop(struct dentry *dentry)
1443{
1444 /* Could bind mounting the mount namespace inode cause a
1445 * mount namespace loop?
1446 */
1447 struct mnt_namespace *mnt_ns;
1448 if (!is_mnt_ns_file(dentry))
1449 return false;
1450
1451 mnt_ns = get_proc_ns(dentry->d_inode)->ns;
8823c079
EB
1452 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1453}
1454
87129cc0 1455struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
36341f64 1456 int flag)
1da177e4 1457{
84d17192 1458 struct mount *res, *p, *q, *r, *parent;
1da177e4 1459
4ce5d2b1
EB
1460 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1461 return ERR_PTR(-EINVAL);
1462
1463 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
be34d1a3 1464 return ERR_PTR(-EINVAL);
9676f0c6 1465
36341f64 1466 res = q = clone_mnt(mnt, dentry, flag);
be34d1a3
DH
1467 if (IS_ERR(q))
1468 return q;
1469
5ff9d8a6 1470 q->mnt.mnt_flags &= ~MNT_LOCKED;
a73324da 1471 q->mnt_mountpoint = mnt->mnt_mountpoint;
1da177e4
LT
1472
1473 p = mnt;
6b41d536 1474 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
315fc83e 1475 struct mount *s;
7ec02ef1 1476 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1477 continue;
1478
909b0a88 1479 for (s = r; s; s = next_mnt(s, r)) {
4ce5d2b1
EB
1480 if (!(flag & CL_COPY_UNBINDABLE) &&
1481 IS_MNT_UNBINDABLE(s)) {
1482 s = skip_mnt_tree(s);
1483 continue;
1484 }
1485 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1486 is_mnt_ns_file(s->mnt.mnt_root)) {
9676f0c6
RP
1487 s = skip_mnt_tree(s);
1488 continue;
1489 }
0714a533
AV
1490 while (p != s->mnt_parent) {
1491 p = p->mnt_parent;
1492 q = q->mnt_parent;
1da177e4 1493 }
87129cc0 1494 p = s;
84d17192 1495 parent = q;
87129cc0 1496 q = clone_mnt(p, p->mnt.mnt_root, flag);
be34d1a3
DH
1497 if (IS_ERR(q))
1498 goto out;
719ea2fb 1499 lock_mount_hash();
1a4eeaf2 1500 list_add_tail(&q->mnt_list, &res->mnt_list);
84d17192 1501 attach_mnt(q, parent, p->mnt_mp);
719ea2fb 1502 unlock_mount_hash();
1da177e4
LT
1503 }
1504 }
1505 return res;
be34d1a3 1506out:
1da177e4 1507 if (res) {
719ea2fb 1508 lock_mount_hash();
328e6d90 1509 umount_tree(res, 0);
719ea2fb 1510 unlock_mount_hash();
1da177e4 1511 }
be34d1a3 1512 return q;
1da177e4
LT
1513}
1514
be34d1a3
DH
1515/* Caller should check returned pointer for errors */
1516
589ff870 1517struct vfsmount *collect_mounts(struct path *path)
8aec0809 1518{
cb338d06 1519 struct mount *tree;
97216be0 1520 namespace_lock();
87129cc0
AV
1521 tree = copy_tree(real_mount(path->mnt), path->dentry,
1522 CL_COPY_ALL | CL_PRIVATE);
328e6d90 1523 namespace_unlock();
be34d1a3 1524 if (IS_ERR(tree))
52e220d3 1525 return ERR_CAST(tree);
be34d1a3 1526 return &tree->mnt;
8aec0809
AV
1527}
1528
1529void drop_collected_mounts(struct vfsmount *mnt)
1530{
97216be0 1531 namespace_lock();
719ea2fb 1532 lock_mount_hash();
328e6d90 1533 umount_tree(real_mount(mnt), 0);
719ea2fb 1534 unlock_mount_hash();
3ab6abee 1535 namespace_unlock();
8aec0809
AV
1536}
1537
1f707137
AV
1538int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1539 struct vfsmount *root)
1540{
1a4eeaf2 1541 struct mount *mnt;
1f707137
AV
1542 int res = f(root, arg);
1543 if (res)
1544 return res;
1a4eeaf2
AV
1545 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1546 res = f(&mnt->mnt, arg);
1f707137
AV
1547 if (res)
1548 return res;
1549 }
1550 return 0;
1551}
1552
4b8b21f4 1553static void cleanup_group_ids(struct mount *mnt, struct mount *end)
719f5d7f 1554{
315fc83e 1555 struct mount *p;
719f5d7f 1556
909b0a88 1557 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
fc7be130 1558 if (p->mnt_group_id && !IS_MNT_SHARED(p))
4b8b21f4 1559 mnt_release_group_id(p);
719f5d7f
MS
1560 }
1561}
1562
4b8b21f4 1563static int invent_group_ids(struct mount *mnt, bool recurse)
719f5d7f 1564{
315fc83e 1565 struct mount *p;
719f5d7f 1566
909b0a88 1567 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
fc7be130 1568 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
4b8b21f4 1569 int err = mnt_alloc_group_id(p);
719f5d7f 1570 if (err) {
4b8b21f4 1571 cleanup_group_ids(mnt, p);
719f5d7f
MS
1572 return err;
1573 }
1574 }
1575 }
1576
1577 return 0;
1578}
1579
b90fa9ae
RP
1580/*
1581 * @source_mnt : mount tree to be attached
21444403
RP
1582 * @nd : place the mount tree @source_mnt is attached
1583 * @parent_nd : if non-null, detach the source_mnt from its parent and
1584 * store the parent mount and mountpoint dentry.
1585 * (done when source_mnt is moved)
b90fa9ae
RP
1586 *
1587 * NOTE: in the table below explains the semantics when a source mount
1588 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1589 * ---------------------------------------------------------------------------
1590 * | BIND MOUNT OPERATION |
1591 * |**************************************************************************
1592 * | source-->| shared | private | slave | unbindable |
1593 * | dest | | | | |
1594 * | | | | | | |
1595 * | v | | | | |
1596 * |**************************************************************************
1597 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1598 * | | | | | |
1599 * |non-shared| shared (+) | private | slave (*) | invalid |
1600 * ***************************************************************************
b90fa9ae
RP
1601 * A bind operation clones the source mount and mounts the clone on the
1602 * destination mount.
1603 *
1604 * (++) the cloned mount is propagated to all the mounts in the propagation
1605 * tree of the destination mount and the cloned mount is added to
1606 * the peer group of the source mount.
1607 * (+) the cloned mount is created under the destination mount and is marked
1608 * as shared. The cloned mount is added to the peer group of the source
1609 * mount.
5afe0022
RP
1610 * (+++) the mount is propagated to all the mounts in the propagation tree
1611 * of the destination mount and the cloned mount is made slave
1612 * of the same master as that of the source mount. The cloned mount
1613 * is marked as 'shared and slave'.
1614 * (*) the cloned mount is made a slave of the same master as that of the
1615 * source mount.
1616 *
9676f0c6
RP
1617 * ---------------------------------------------------------------------------
1618 * | MOVE MOUNT OPERATION |
1619 * |**************************************************************************
1620 * | source-->| shared | private | slave | unbindable |
1621 * | dest | | | | |
1622 * | | | | | | |
1623 * | v | | | | |
1624 * |**************************************************************************
1625 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1626 * | | | | | |
1627 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1628 * ***************************************************************************
5afe0022
RP
1629 *
1630 * (+) the mount is moved to the destination. And is then propagated to
1631 * all the mounts in the propagation tree of the destination mount.
21444403 1632 * (+*) the mount is moved to the destination.
5afe0022
RP
1633 * (+++) the mount is moved to the destination and is then propagated to
1634 * all the mounts belonging to the destination mount's propagation tree.
1635 * the mount is marked as 'shared and slave'.
1636 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
1637 *
1638 * if the source mount is a tree, the operations explained above is
1639 * applied to each mount in the tree.
1640 * Must be called without spinlocks held, since this function can sleep
1641 * in allocations.
1642 */
0fb54e50 1643static int attach_recursive_mnt(struct mount *source_mnt,
84d17192
AV
1644 struct mount *dest_mnt,
1645 struct mountpoint *dest_mp,
1646 struct path *parent_path)
b90fa9ae
RP
1647{
1648 LIST_HEAD(tree_list);
315fc83e 1649 struct mount *child, *p;
719f5d7f 1650 int err;
b90fa9ae 1651
fc7be130 1652 if (IS_MNT_SHARED(dest_mnt)) {
0fb54e50 1653 err = invent_group_ids(source_mnt, true);
719f5d7f
MS
1654 if (err)
1655 goto out;
0b1b901b
AV
1656 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
1657 if (err)
1658 goto out_cleanup_ids;
1659 lock_mount_hash();
909b0a88 1660 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
0f0afb1d 1661 set_mnt_shared(p);
0b1b901b
AV
1662 } else {
1663 lock_mount_hash();
b90fa9ae 1664 }
1a390689 1665 if (parent_path) {
0fb54e50 1666 detach_mnt(source_mnt, parent_path);
84d17192 1667 attach_mnt(source_mnt, dest_mnt, dest_mp);
143c8c91 1668 touch_mnt_namespace(source_mnt->mnt_ns);
21444403 1669 } else {
84d17192 1670 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1d6a32ac 1671 commit_tree(source_mnt, NULL);
21444403 1672 }
b90fa9ae 1673
1b8e5564 1674 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1d6a32ac 1675 struct mount *q;
1b8e5564 1676 list_del_init(&child->mnt_hash);
1d6a32ac
AV
1677 q = __lookup_mnt_last(&child->mnt_parent->mnt,
1678 child->mnt_mountpoint);
1679 commit_tree(child, q);
b90fa9ae 1680 }
719ea2fb 1681 unlock_mount_hash();
99b7db7b 1682
b90fa9ae 1683 return 0;
719f5d7f
MS
1684
1685 out_cleanup_ids:
0b1b901b 1686 cleanup_group_ids(source_mnt, NULL);
719f5d7f
MS
1687 out:
1688 return err;
b90fa9ae
RP
1689}
1690
84d17192 1691static struct mountpoint *lock_mount(struct path *path)
b12cea91
AV
1692{
1693 struct vfsmount *mnt;
84d17192 1694 struct dentry *dentry = path->dentry;
b12cea91 1695retry:
84d17192
AV
1696 mutex_lock(&dentry->d_inode->i_mutex);
1697 if (unlikely(cant_mount(dentry))) {
1698 mutex_unlock(&dentry->d_inode->i_mutex);
1699 return ERR_PTR(-ENOENT);
b12cea91 1700 }
97216be0 1701 namespace_lock();
b12cea91 1702 mnt = lookup_mnt(path);
84d17192
AV
1703 if (likely(!mnt)) {
1704 struct mountpoint *mp = new_mountpoint(dentry);
1705 if (IS_ERR(mp)) {
97216be0 1706 namespace_unlock();
84d17192
AV
1707 mutex_unlock(&dentry->d_inode->i_mutex);
1708 return mp;
1709 }
1710 return mp;
1711 }
97216be0 1712 namespace_unlock();
b12cea91
AV
1713 mutex_unlock(&path->dentry->d_inode->i_mutex);
1714 path_put(path);
1715 path->mnt = mnt;
84d17192 1716 dentry = path->dentry = dget(mnt->mnt_root);
b12cea91
AV
1717 goto retry;
1718}
1719
84d17192 1720static void unlock_mount(struct mountpoint *where)
b12cea91 1721{
84d17192
AV
1722 struct dentry *dentry = where->m_dentry;
1723 put_mountpoint(where);
328e6d90 1724 namespace_unlock();
84d17192 1725 mutex_unlock(&dentry->d_inode->i_mutex);
b12cea91
AV
1726}
1727
84d17192 1728static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1da177e4 1729{
95bc5f25 1730 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1da177e4
LT
1731 return -EINVAL;
1732
84d17192 1733 if (S_ISDIR(mp->m_dentry->d_inode->i_mode) !=
95bc5f25 1734 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1da177e4
LT
1735 return -ENOTDIR;
1736
84d17192 1737 return attach_recursive_mnt(mnt, p, mp, NULL);
1da177e4
LT
1738}
1739
7a2e8a8f
VA
1740/*
1741 * Sanity check the flags to change_mnt_propagation.
1742 */
1743
1744static int flags_to_propagation_type(int flags)
1745{
7c6e984d 1746 int type = flags & ~(MS_REC | MS_SILENT);
7a2e8a8f
VA
1747
1748 /* Fail if any non-propagation flags are set */
1749 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1750 return 0;
1751 /* Only one propagation flag should be set */
1752 if (!is_power_of_2(type))
1753 return 0;
1754 return type;
1755}
1756
07b20889
RP
1757/*
1758 * recursively change the type of the mountpoint.
1759 */
0a0d8a46 1760static int do_change_type(struct path *path, int flag)
07b20889 1761{
315fc83e 1762 struct mount *m;
4b8b21f4 1763 struct mount *mnt = real_mount(path->mnt);
07b20889 1764 int recurse = flag & MS_REC;
7a2e8a8f 1765 int type;
719f5d7f 1766 int err = 0;
07b20889 1767
2d92ab3c 1768 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
1769 return -EINVAL;
1770
7a2e8a8f
VA
1771 type = flags_to_propagation_type(flag);
1772 if (!type)
1773 return -EINVAL;
1774
97216be0 1775 namespace_lock();
719f5d7f
MS
1776 if (type == MS_SHARED) {
1777 err = invent_group_ids(mnt, recurse);
1778 if (err)
1779 goto out_unlock;
1780 }
1781
719ea2fb 1782 lock_mount_hash();
909b0a88 1783 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
0f0afb1d 1784 change_mnt_propagation(m, type);
719ea2fb 1785 unlock_mount_hash();
719f5d7f
MS
1786
1787 out_unlock:
97216be0 1788 namespace_unlock();
719f5d7f 1789 return err;
07b20889
RP
1790}
1791
5ff9d8a6
EB
1792static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
1793{
1794 struct mount *child;
1795 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
1796 if (!is_subdir(child->mnt_mountpoint, dentry))
1797 continue;
1798
1799 if (child->mnt.mnt_flags & MNT_LOCKED)
1800 return true;
1801 }
1802 return false;
1803}
1804
1da177e4
LT
1805/*
1806 * do loopback mount.
1807 */
808d4e3c 1808static int do_loopback(struct path *path, const char *old_name,
2dafe1c4 1809 int recurse)
1da177e4 1810{
2d92ab3c 1811 struct path old_path;
84d17192
AV
1812 struct mount *mnt = NULL, *old, *parent;
1813 struct mountpoint *mp;
57eccb83 1814 int err;
1da177e4
LT
1815 if (!old_name || !*old_name)
1816 return -EINVAL;
815d405c 1817 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1da177e4
LT
1818 if (err)
1819 return err;
1820
8823c079 1821 err = -EINVAL;
4ce5d2b1 1822 if (mnt_ns_loop(old_path.dentry))
8823c079
EB
1823 goto out;
1824
84d17192
AV
1825 mp = lock_mount(path);
1826 err = PTR_ERR(mp);
1827 if (IS_ERR(mp))
b12cea91
AV
1828 goto out;
1829
87129cc0 1830 old = real_mount(old_path.mnt);
84d17192 1831 parent = real_mount(path->mnt);
87129cc0 1832
1da177e4 1833 err = -EINVAL;
fc7be130 1834 if (IS_MNT_UNBINDABLE(old))
b12cea91 1835 goto out2;
9676f0c6 1836
84d17192 1837 if (!check_mnt(parent) || !check_mnt(old))
b12cea91 1838 goto out2;
1da177e4 1839
5ff9d8a6
EB
1840 if (!recurse && has_locked_children(old, old_path.dentry))
1841 goto out2;
1842
ccd48bc7 1843 if (recurse)
4ce5d2b1 1844 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
ccd48bc7 1845 else
87129cc0 1846 mnt = clone_mnt(old, old_path.dentry, 0);
ccd48bc7 1847
be34d1a3
DH
1848 if (IS_ERR(mnt)) {
1849 err = PTR_ERR(mnt);
e9c5d8a5 1850 goto out2;
be34d1a3 1851 }
ccd48bc7 1852
5ff9d8a6
EB
1853 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
1854
84d17192 1855 err = graft_tree(mnt, parent, mp);
ccd48bc7 1856 if (err) {
719ea2fb 1857 lock_mount_hash();
328e6d90 1858 umount_tree(mnt, 0);
719ea2fb 1859 unlock_mount_hash();
5b83d2c5 1860 }
b12cea91 1861out2:
84d17192 1862 unlock_mount(mp);
ccd48bc7 1863out:
2d92ab3c 1864 path_put(&old_path);
1da177e4
LT
1865 return err;
1866}
1867
2e4b7fcd
DH
1868static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1869{
1870 int error = 0;
1871 int readonly_request = 0;
1872
1873 if (ms_flags & MS_RDONLY)
1874 readonly_request = 1;
1875 if (readonly_request == __mnt_is_readonly(mnt))
1876 return 0;
1877
90563b19
EB
1878 if (mnt->mnt_flags & MNT_LOCK_READONLY)
1879 return -EPERM;
1880
2e4b7fcd 1881 if (readonly_request)
83adc753 1882 error = mnt_make_readonly(real_mount(mnt));
2e4b7fcd 1883 else
83adc753 1884 __mnt_unmake_readonly(real_mount(mnt));
2e4b7fcd
DH
1885 return error;
1886}
1887
1da177e4
LT
1888/*
1889 * change filesystem flags. dir should be a physical root of filesystem.
1890 * If you've mounted a non-root directory somewhere and want to do remount
1891 * on it - tough luck.
1892 */
0a0d8a46 1893static int do_remount(struct path *path, int flags, int mnt_flags,
1da177e4
LT
1894 void *data)
1895{
1896 int err;
2d92ab3c 1897 struct super_block *sb = path->mnt->mnt_sb;
143c8c91 1898 struct mount *mnt = real_mount(path->mnt);
1da177e4 1899
143c8c91 1900 if (!check_mnt(mnt))
1da177e4
LT
1901 return -EINVAL;
1902
2d92ab3c 1903 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
1904 return -EINVAL;
1905
ff36fe2c
EP
1906 err = security_sb_remount(sb, data);
1907 if (err)
1908 return err;
1909
1da177e4 1910 down_write(&sb->s_umount);
2e4b7fcd 1911 if (flags & MS_BIND)
2d92ab3c 1912 err = change_mount_flags(path->mnt, flags);
57eccb83
AV
1913 else if (!capable(CAP_SYS_ADMIN))
1914 err = -EPERM;
4aa98cf7 1915 else
2e4b7fcd 1916 err = do_remount_sb(sb, flags, data, 0);
7b43a79f 1917 if (!err) {
719ea2fb 1918 lock_mount_hash();
143c8c91
AV
1919 mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK;
1920 mnt->mnt.mnt_flags = mnt_flags;
143c8c91 1921 touch_mnt_namespace(mnt->mnt_ns);
719ea2fb 1922 unlock_mount_hash();
0e55a7cc 1923 }
6339dab8 1924 up_write(&sb->s_umount);
1da177e4
LT
1925 return err;
1926}
1927
cbbe362c 1928static inline int tree_contains_unbindable(struct mount *mnt)
9676f0c6 1929{
315fc83e 1930 struct mount *p;
909b0a88 1931 for (p = mnt; p; p = next_mnt(p, mnt)) {
fc7be130 1932 if (IS_MNT_UNBINDABLE(p))
9676f0c6
RP
1933 return 1;
1934 }
1935 return 0;
1936}
1937
808d4e3c 1938static int do_move_mount(struct path *path, const char *old_name)
1da177e4 1939{
2d92ab3c 1940 struct path old_path, parent_path;
676da58d 1941 struct mount *p;
0fb54e50 1942 struct mount *old;
84d17192 1943 struct mountpoint *mp;
57eccb83 1944 int err;
1da177e4
LT
1945 if (!old_name || !*old_name)
1946 return -EINVAL;
2d92ab3c 1947 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
1948 if (err)
1949 return err;
1950
84d17192
AV
1951 mp = lock_mount(path);
1952 err = PTR_ERR(mp);
1953 if (IS_ERR(mp))
cc53ce53
DH
1954 goto out;
1955
143c8c91 1956 old = real_mount(old_path.mnt);
fc7be130 1957 p = real_mount(path->mnt);
143c8c91 1958
1da177e4 1959 err = -EINVAL;
fc7be130 1960 if (!check_mnt(p) || !check_mnt(old))
1da177e4
LT
1961 goto out1;
1962
5ff9d8a6
EB
1963 if (old->mnt.mnt_flags & MNT_LOCKED)
1964 goto out1;
1965
1da177e4 1966 err = -EINVAL;
2d92ab3c 1967 if (old_path.dentry != old_path.mnt->mnt_root)
21444403 1968 goto out1;
1da177e4 1969
676da58d 1970 if (!mnt_has_parent(old))
21444403 1971 goto out1;
1da177e4 1972
2d92ab3c
AV
1973 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1974 S_ISDIR(old_path.dentry->d_inode->i_mode))
21444403
RP
1975 goto out1;
1976 /*
1977 * Don't move a mount residing in a shared parent.
1978 */
fc7be130 1979 if (IS_MNT_SHARED(old->mnt_parent))
21444403 1980 goto out1;
9676f0c6
RP
1981 /*
1982 * Don't move a mount tree containing unbindable mounts to a destination
1983 * mount which is shared.
1984 */
fc7be130 1985 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
9676f0c6 1986 goto out1;
1da177e4 1987 err = -ELOOP;
fc7be130 1988 for (; mnt_has_parent(p); p = p->mnt_parent)
676da58d 1989 if (p == old)
21444403 1990 goto out1;
1da177e4 1991
84d17192 1992 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
4ac91378 1993 if (err)
21444403 1994 goto out1;
1da177e4
LT
1995
1996 /* if the mount is moved, it should no longer be expire
1997 * automatically */
6776db3d 1998 list_del_init(&old->mnt_expire);
1da177e4 1999out1:
84d17192 2000 unlock_mount(mp);
1da177e4 2001out:
1da177e4 2002 if (!err)
1a390689 2003 path_put(&parent_path);
2d92ab3c 2004 path_put(&old_path);
1da177e4
LT
2005 return err;
2006}
2007
9d412a43
AV
2008static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2009{
2010 int err;
2011 const char *subtype = strchr(fstype, '.');
2012 if (subtype) {
2013 subtype++;
2014 err = -EINVAL;
2015 if (!subtype[0])
2016 goto err;
2017 } else
2018 subtype = "";
2019
2020 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2021 err = -ENOMEM;
2022 if (!mnt->mnt_sb->s_subtype)
2023 goto err;
2024 return mnt;
2025
2026 err:
2027 mntput(mnt);
2028 return ERR_PTR(err);
2029}
2030
9d412a43
AV
2031/*
2032 * add a mount into a namespace's mount tree
2033 */
95bc5f25 2034static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
9d412a43 2035{
84d17192
AV
2036 struct mountpoint *mp;
2037 struct mount *parent;
9d412a43
AV
2038 int err;
2039
48a066e7 2040 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL | MNT_DOOMED | MNT_SYNC_UMOUNT);
9d412a43 2041
84d17192
AV
2042 mp = lock_mount(path);
2043 if (IS_ERR(mp))
2044 return PTR_ERR(mp);
9d412a43 2045
84d17192 2046 parent = real_mount(path->mnt);
9d412a43 2047 err = -EINVAL;
84d17192 2048 if (unlikely(!check_mnt(parent))) {
156cacb1
AV
2049 /* that's acceptable only for automounts done in private ns */
2050 if (!(mnt_flags & MNT_SHRINKABLE))
2051 goto unlock;
2052 /* ... and for those we'd better have mountpoint still alive */
84d17192 2053 if (!parent->mnt_ns)
156cacb1
AV
2054 goto unlock;
2055 }
9d412a43
AV
2056
2057 /* Refuse the same filesystem on the same mount point */
2058 err = -EBUSY;
95bc5f25 2059 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
9d412a43
AV
2060 path->mnt->mnt_root == path->dentry)
2061 goto unlock;
2062
2063 err = -EINVAL;
95bc5f25 2064 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
9d412a43
AV
2065 goto unlock;
2066
95bc5f25 2067 newmnt->mnt.mnt_flags = mnt_flags;
84d17192 2068 err = graft_tree(newmnt, parent, mp);
9d412a43
AV
2069
2070unlock:
84d17192 2071 unlock_mount(mp);
9d412a43
AV
2072 return err;
2073}
b1e75df4 2074
1da177e4
LT
2075/*
2076 * create a new mount for userspace and request it to be added into the
2077 * namespace's tree
2078 */
0c55cfc4 2079static int do_new_mount(struct path *path, const char *fstype, int flags,
808d4e3c 2080 int mnt_flags, const char *name, void *data)
1da177e4 2081{
0c55cfc4 2082 struct file_system_type *type;
9b40bc90 2083 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
1da177e4 2084 struct vfsmount *mnt;
15f9a3f3 2085 int err;
1da177e4 2086
0c55cfc4 2087 if (!fstype)
1da177e4
LT
2088 return -EINVAL;
2089
0c55cfc4
EB
2090 type = get_fs_type(fstype);
2091 if (!type)
2092 return -ENODEV;
2093
2094 if (user_ns != &init_user_ns) {
2095 if (!(type->fs_flags & FS_USERNS_MOUNT)) {
2096 put_filesystem(type);
2097 return -EPERM;
2098 }
2099 /* Only in special cases allow devices from mounts
2100 * created outside the initial user namespace.
2101 */
2102 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2103 flags |= MS_NODEV;
2104 mnt_flags |= MNT_NODEV;
2105 }
2106 }
2107
2108 mnt = vfs_kern_mount(type, flags, name, data);
2109 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2110 !mnt->mnt_sb->s_subtype)
2111 mnt = fs_set_subtype(mnt, fstype);
2112
2113 put_filesystem(type);
1da177e4
LT
2114 if (IS_ERR(mnt))
2115 return PTR_ERR(mnt);
2116
95bc5f25 2117 err = do_add_mount(real_mount(mnt), path, mnt_flags);
15f9a3f3
AV
2118 if (err)
2119 mntput(mnt);
2120 return err;
1da177e4
LT
2121}
2122
19a167af
AV
2123int finish_automount(struct vfsmount *m, struct path *path)
2124{
6776db3d 2125 struct mount *mnt = real_mount(m);
19a167af
AV
2126 int err;
2127 /* The new mount record should have at least 2 refs to prevent it being
2128 * expired before we get a chance to add it
2129 */
6776db3d 2130 BUG_ON(mnt_get_count(mnt) < 2);
19a167af
AV
2131
2132 if (m->mnt_sb == path->mnt->mnt_sb &&
2133 m->mnt_root == path->dentry) {
b1e75df4
AV
2134 err = -ELOOP;
2135 goto fail;
19a167af
AV
2136 }
2137
95bc5f25 2138 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
b1e75df4
AV
2139 if (!err)
2140 return 0;
2141fail:
2142 /* remove m from any expiration list it may be on */
6776db3d 2143 if (!list_empty(&mnt->mnt_expire)) {
97216be0 2144 namespace_lock();
6776db3d 2145 list_del_init(&mnt->mnt_expire);
97216be0 2146 namespace_unlock();
19a167af 2147 }
b1e75df4
AV
2148 mntput(m);
2149 mntput(m);
19a167af
AV
2150 return err;
2151}
2152
ea5b778a
DH
2153/**
2154 * mnt_set_expiry - Put a mount on an expiration list
2155 * @mnt: The mount to list.
2156 * @expiry_list: The list to add the mount to.
2157 */
2158void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2159{
97216be0 2160 namespace_lock();
ea5b778a 2161
6776db3d 2162 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
ea5b778a 2163
97216be0 2164 namespace_unlock();
ea5b778a
DH
2165}
2166EXPORT_SYMBOL(mnt_set_expiry);
2167
1da177e4
LT
2168/*
2169 * process a list of expirable mountpoints with the intent of discarding any
2170 * mountpoints that aren't in use and haven't been touched since last we came
2171 * here
2172 */
2173void mark_mounts_for_expiry(struct list_head *mounts)
2174{
761d5c38 2175 struct mount *mnt, *next;
1da177e4
LT
2176 LIST_HEAD(graveyard);
2177
2178 if (list_empty(mounts))
2179 return;
2180
97216be0 2181 namespace_lock();
719ea2fb 2182 lock_mount_hash();
1da177e4
LT
2183
2184 /* extract from the expiration list every vfsmount that matches the
2185 * following criteria:
2186 * - only referenced by its parent vfsmount
2187 * - still marked for expiry (marked on the last call here; marks are
2188 * cleared by mntput())
2189 */
6776db3d 2190 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
863d684f 2191 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1ab59738 2192 propagate_mount_busy(mnt, 1))
1da177e4 2193 continue;
6776db3d 2194 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 2195 }
bcc5c7d2 2196 while (!list_empty(&graveyard)) {
6776db3d 2197 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
143c8c91 2198 touch_mnt_namespace(mnt->mnt_ns);
328e6d90 2199 umount_tree(mnt, 1);
bcc5c7d2 2200 }
719ea2fb 2201 unlock_mount_hash();
3ab6abee 2202 namespace_unlock();
5528f911
TM
2203}
2204
2205EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2206
2207/*
2208 * Ripoff of 'select_parent()'
2209 *
2210 * search the list of submounts for a given mountpoint, and move any
2211 * shrinkable submounts to the 'graveyard' list.
2212 */
692afc31 2213static int select_submounts(struct mount *parent, struct list_head *graveyard)
5528f911 2214{
692afc31 2215 struct mount *this_parent = parent;
5528f911
TM
2216 struct list_head *next;
2217 int found = 0;
2218
2219repeat:
6b41d536 2220 next = this_parent->mnt_mounts.next;
5528f911 2221resume:
6b41d536 2222 while (next != &this_parent->mnt_mounts) {
5528f911 2223 struct list_head *tmp = next;
6b41d536 2224 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
5528f911
TM
2225
2226 next = tmp->next;
692afc31 2227 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1da177e4 2228 continue;
5528f911
TM
2229 /*
2230 * Descend a level if the d_mounts list is non-empty.
2231 */
6b41d536 2232 if (!list_empty(&mnt->mnt_mounts)) {
5528f911
TM
2233 this_parent = mnt;
2234 goto repeat;
2235 }
1da177e4 2236
1ab59738 2237 if (!propagate_mount_busy(mnt, 1)) {
6776db3d 2238 list_move_tail(&mnt->mnt_expire, graveyard);
5528f911
TM
2239 found++;
2240 }
1da177e4 2241 }
5528f911
TM
2242 /*
2243 * All done at this level ... ascend and resume the search
2244 */
2245 if (this_parent != parent) {
6b41d536 2246 next = this_parent->mnt_child.next;
0714a533 2247 this_parent = this_parent->mnt_parent;
5528f911
TM
2248 goto resume;
2249 }
2250 return found;
2251}
2252
2253/*
2254 * process a list of expirable mountpoints with the intent of discarding any
2255 * submounts of a specific parent mountpoint
99b7db7b 2256 *
48a066e7 2257 * mount_lock must be held for write
5528f911 2258 */
b54b9be7 2259static void shrink_submounts(struct mount *mnt)
5528f911
TM
2260{
2261 LIST_HEAD(graveyard);
761d5c38 2262 struct mount *m;
5528f911 2263
5528f911 2264 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 2265 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 2266 while (!list_empty(&graveyard)) {
761d5c38 2267 m = list_first_entry(&graveyard, struct mount,
6776db3d 2268 mnt_expire);
143c8c91 2269 touch_mnt_namespace(m->mnt_ns);
328e6d90 2270 umount_tree(m, 1);
bcc5c7d2
AV
2271 }
2272 }
1da177e4
LT
2273}
2274
1da177e4
LT
2275/*
2276 * Some copy_from_user() implementations do not return the exact number of
2277 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2278 * Note that this function differs from copy_from_user() in that it will oops
2279 * on bad values of `to', rather than returning a short copy.
2280 */
b58fed8b
RP
2281static long exact_copy_from_user(void *to, const void __user * from,
2282 unsigned long n)
1da177e4
LT
2283{
2284 char *t = to;
2285 const char __user *f = from;
2286 char c;
2287
2288 if (!access_ok(VERIFY_READ, from, n))
2289 return n;
2290
2291 while (n) {
2292 if (__get_user(c, f)) {
2293 memset(t, 0, n);
2294 break;
2295 }
2296 *t++ = c;
2297 f++;
2298 n--;
2299 }
2300 return n;
2301}
2302
b58fed8b 2303int copy_mount_options(const void __user * data, unsigned long *where)
1da177e4
LT
2304{
2305 int i;
2306 unsigned long page;
2307 unsigned long size;
b58fed8b 2308
1da177e4
LT
2309 *where = 0;
2310 if (!data)
2311 return 0;
2312
2313 if (!(page = __get_free_page(GFP_KERNEL)))
2314 return -ENOMEM;
2315
2316 /* We only care that *some* data at the address the user
2317 * gave us is valid. Just in case, we'll zero
2318 * the remainder of the page.
2319 */
2320 /* copy_from_user cannot cross TASK_SIZE ! */
2321 size = TASK_SIZE - (unsigned long)data;
2322 if (size > PAGE_SIZE)
2323 size = PAGE_SIZE;
2324
2325 i = size - exact_copy_from_user((void *)page, data, size);
2326 if (!i) {
b58fed8b 2327 free_page(page);
1da177e4
LT
2328 return -EFAULT;
2329 }
2330 if (i != PAGE_SIZE)
2331 memset((char *)page + i, 0, PAGE_SIZE - i);
2332 *where = page;
2333 return 0;
2334}
2335
eca6f534
VN
2336int copy_mount_string(const void __user *data, char **where)
2337{
2338 char *tmp;
2339
2340 if (!data) {
2341 *where = NULL;
2342 return 0;
2343 }
2344
2345 tmp = strndup_user(data, PAGE_SIZE);
2346 if (IS_ERR(tmp))
2347 return PTR_ERR(tmp);
2348
2349 *where = tmp;
2350 return 0;
2351}
2352
1da177e4
LT
2353/*
2354 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2355 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2356 *
2357 * data is a (void *) that can point to any structure up to
2358 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2359 * information (or be NULL).
2360 *
2361 * Pre-0.97 versions of mount() didn't have a flags word.
2362 * When the flags word was introduced its top half was required
2363 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2364 * Therefore, if this magic number is present, it carries no information
2365 * and must be discarded.
2366 */
808d4e3c
AV
2367long do_mount(const char *dev_name, const char *dir_name,
2368 const char *type_page, unsigned long flags, void *data_page)
1da177e4 2369{
2d92ab3c 2370 struct path path;
1da177e4
LT
2371 int retval = 0;
2372 int mnt_flags = 0;
2373
2374 /* Discard magic */
2375 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2376 flags &= ~MS_MGC_MSK;
2377
2378 /* Basic sanity checks */
2379
2380 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2381 return -EINVAL;
1da177e4
LT
2382
2383 if (data_page)
2384 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2385
a27ab9f2
TH
2386 /* ... and get the mountpoint */
2387 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2388 if (retval)
2389 return retval;
2390
2391 retval = security_sb_mount(dev_name, &path,
2392 type_page, flags, data_page);
0d5cadb8
AV
2393 if (!retval && !may_mount())
2394 retval = -EPERM;
a27ab9f2
TH
2395 if (retval)
2396 goto dput_out;
2397
613cbe3d
AK
2398 /* Default to relatime unless overriden */
2399 if (!(flags & MS_NOATIME))
2400 mnt_flags |= MNT_RELATIME;
0a1c01c9 2401
1da177e4
LT
2402 /* Separate the per-mountpoint flags */
2403 if (flags & MS_NOSUID)
2404 mnt_flags |= MNT_NOSUID;
2405 if (flags & MS_NODEV)
2406 mnt_flags |= MNT_NODEV;
2407 if (flags & MS_NOEXEC)
2408 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
2409 if (flags & MS_NOATIME)
2410 mnt_flags |= MNT_NOATIME;
2411 if (flags & MS_NODIRATIME)
2412 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
2413 if (flags & MS_STRICTATIME)
2414 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2e4b7fcd
DH
2415 if (flags & MS_RDONLY)
2416 mnt_flags |= MNT_READONLY;
fc33a7bb 2417
7a4dec53 2418 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
d0adde57
MG
2419 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2420 MS_STRICTATIME);
1da177e4 2421
1da177e4 2422 if (flags & MS_REMOUNT)
2d92ab3c 2423 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
1da177e4
LT
2424 data_page);
2425 else if (flags & MS_BIND)
2d92ab3c 2426 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 2427 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 2428 retval = do_change_type(&path, flags);
1da177e4 2429 else if (flags & MS_MOVE)
2d92ab3c 2430 retval = do_move_mount(&path, dev_name);
1da177e4 2431 else
2d92ab3c 2432 retval = do_new_mount(&path, type_page, flags, mnt_flags,
1da177e4
LT
2433 dev_name, data_page);
2434dput_out:
2d92ab3c 2435 path_put(&path);
1da177e4
LT
2436 return retval;
2437}
2438
771b1371
EB
2439static void free_mnt_ns(struct mnt_namespace *ns)
2440{
98f842e6 2441 proc_free_inum(ns->proc_inum);
771b1371
EB
2442 put_user_ns(ns->user_ns);
2443 kfree(ns);
2444}
2445
8823c079
EB
2446/*
2447 * Assign a sequence number so we can detect when we attempt to bind
2448 * mount a reference to an older mount namespace into the current
2449 * mount namespace, preventing reference counting loops. A 64bit
2450 * number incrementing at 10Ghz will take 12,427 years to wrap which
2451 * is effectively never, so we can ignore the possibility.
2452 */
2453static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2454
771b1371 2455static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
cf8d2c11
TM
2456{
2457 struct mnt_namespace *new_ns;
98f842e6 2458 int ret;
cf8d2c11
TM
2459
2460 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2461 if (!new_ns)
2462 return ERR_PTR(-ENOMEM);
98f842e6
EB
2463 ret = proc_alloc_inum(&new_ns->proc_inum);
2464 if (ret) {
2465 kfree(new_ns);
2466 return ERR_PTR(ret);
2467 }
8823c079 2468 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
cf8d2c11
TM
2469 atomic_set(&new_ns->count, 1);
2470 new_ns->root = NULL;
2471 INIT_LIST_HEAD(&new_ns->list);
2472 init_waitqueue_head(&new_ns->poll);
2473 new_ns->event = 0;
771b1371 2474 new_ns->user_ns = get_user_ns(user_ns);
cf8d2c11
TM
2475 return new_ns;
2476}
2477
9559f689
AV
2478struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2479 struct user_namespace *user_ns, struct fs_struct *new_fs)
1da177e4 2480{
6b3286ed 2481 struct mnt_namespace *new_ns;
7f2da1e7 2482 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
315fc83e 2483 struct mount *p, *q;
9559f689 2484 struct mount *old;
cb338d06 2485 struct mount *new;
7a472ef4 2486 int copy_flags;
1da177e4 2487
9559f689
AV
2488 BUG_ON(!ns);
2489
2490 if (likely(!(flags & CLONE_NEWNS))) {
2491 get_mnt_ns(ns);
2492 return ns;
2493 }
2494
2495 old = ns->root;
2496
771b1371 2497 new_ns = alloc_mnt_ns(user_ns);
cf8d2c11
TM
2498 if (IS_ERR(new_ns))
2499 return new_ns;
1da177e4 2500
97216be0 2501 namespace_lock();
1da177e4 2502 /* First pass: copy the tree topology */
4ce5d2b1 2503 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
9559f689 2504 if (user_ns != ns->user_ns)
132c94e3 2505 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
7a472ef4 2506 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
be34d1a3 2507 if (IS_ERR(new)) {
328e6d90 2508 namespace_unlock();
771b1371 2509 free_mnt_ns(new_ns);
be34d1a3 2510 return ERR_CAST(new);
1da177e4 2511 }
be08d6d2 2512 new_ns->root = new;
1a4eeaf2 2513 list_add_tail(&new_ns->list, &new->mnt_list);
1da177e4
LT
2514
2515 /*
2516 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2517 * as belonging to new namespace. We have already acquired a private
2518 * fs_struct, so tsk->fs->lock is not needed.
2519 */
909b0a88 2520 p = old;
cb338d06 2521 q = new;
1da177e4 2522 while (p) {
143c8c91 2523 q->mnt_ns = new_ns;
9559f689
AV
2524 if (new_fs) {
2525 if (&p->mnt == new_fs->root.mnt) {
2526 new_fs->root.mnt = mntget(&q->mnt);
315fc83e 2527 rootmnt = &p->mnt;
1da177e4 2528 }
9559f689
AV
2529 if (&p->mnt == new_fs->pwd.mnt) {
2530 new_fs->pwd.mnt = mntget(&q->mnt);
315fc83e 2531 pwdmnt = &p->mnt;
1da177e4 2532 }
1da177e4 2533 }
909b0a88
AV
2534 p = next_mnt(p, old);
2535 q = next_mnt(q, new);
4ce5d2b1
EB
2536 if (!q)
2537 break;
2538 while (p->mnt.mnt_root != q->mnt.mnt_root)
2539 p = next_mnt(p, old);
1da177e4 2540 }
328e6d90 2541 namespace_unlock();
1da177e4 2542
1da177e4 2543 if (rootmnt)
f03c6599 2544 mntput(rootmnt);
1da177e4 2545 if (pwdmnt)
f03c6599 2546 mntput(pwdmnt);
1da177e4 2547
741a2951 2548 return new_ns;
1da177e4
LT
2549}
2550
cf8d2c11
TM
2551/**
2552 * create_mnt_ns - creates a private namespace and adds a root filesystem
2553 * @mnt: pointer to the new root filesystem mountpoint
2554 */
1a4eeaf2 2555static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
cf8d2c11 2556{
771b1371 2557 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
cf8d2c11 2558 if (!IS_ERR(new_ns)) {
1a4eeaf2
AV
2559 struct mount *mnt = real_mount(m);
2560 mnt->mnt_ns = new_ns;
be08d6d2 2561 new_ns->root = mnt;
b1983cd8 2562 list_add(&mnt->mnt_list, &new_ns->list);
c1334495 2563 } else {
1a4eeaf2 2564 mntput(m);
cf8d2c11
TM
2565 }
2566 return new_ns;
2567}
cf8d2c11 2568
ea441d11
AV
2569struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2570{
2571 struct mnt_namespace *ns;
d31da0f0 2572 struct super_block *s;
ea441d11
AV
2573 struct path path;
2574 int err;
2575
2576 ns = create_mnt_ns(mnt);
2577 if (IS_ERR(ns))
2578 return ERR_CAST(ns);
2579
2580 err = vfs_path_lookup(mnt->mnt_root, mnt,
2581 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2582
2583 put_mnt_ns(ns);
2584
2585 if (err)
2586 return ERR_PTR(err);
2587
2588 /* trade a vfsmount reference for active sb one */
d31da0f0
AV
2589 s = path.mnt->mnt_sb;
2590 atomic_inc(&s->s_active);
ea441d11
AV
2591 mntput(path.mnt);
2592 /* lock the sucker */
d31da0f0 2593 down_write(&s->s_umount);
ea441d11
AV
2594 /* ... and return the root of (sub)tree on it */
2595 return path.dentry;
2596}
2597EXPORT_SYMBOL(mount_subtree);
2598
bdc480e3
HC
2599SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2600 char __user *, type, unsigned long, flags, void __user *, data)
1da177e4 2601{
eca6f534
VN
2602 int ret;
2603 char *kernel_type;
91a27b2a 2604 struct filename *kernel_dir;
eca6f534 2605 char *kernel_dev;
1da177e4 2606 unsigned long data_page;
1da177e4 2607
eca6f534
VN
2608 ret = copy_mount_string(type, &kernel_type);
2609 if (ret < 0)
2610 goto out_type;
1da177e4 2611
eca6f534
VN
2612 kernel_dir = getname(dir_name);
2613 if (IS_ERR(kernel_dir)) {
2614 ret = PTR_ERR(kernel_dir);
2615 goto out_dir;
2616 }
1da177e4 2617
eca6f534
VN
2618 ret = copy_mount_string(dev_name, &kernel_dev);
2619 if (ret < 0)
2620 goto out_dev;
1da177e4 2621
eca6f534
VN
2622 ret = copy_mount_options(data, &data_page);
2623 if (ret < 0)
2624 goto out_data;
1da177e4 2625
91a27b2a 2626 ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags,
eca6f534 2627 (void *) data_page);
1da177e4 2628
eca6f534
VN
2629 free_page(data_page);
2630out_data:
2631 kfree(kernel_dev);
2632out_dev:
2633 putname(kernel_dir);
2634out_dir:
2635 kfree(kernel_type);
2636out_type:
2637 return ret;
1da177e4
LT
2638}
2639
afac7cba
AV
2640/*
2641 * Return true if path is reachable from root
2642 *
48a066e7 2643 * namespace_sem or mount_lock is held
afac7cba 2644 */
643822b4 2645bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
afac7cba
AV
2646 const struct path *root)
2647{
643822b4 2648 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
a73324da 2649 dentry = mnt->mnt_mountpoint;
0714a533 2650 mnt = mnt->mnt_parent;
afac7cba 2651 }
643822b4 2652 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
afac7cba
AV
2653}
2654
2655int path_is_under(struct path *path1, struct path *path2)
2656{
2657 int res;
48a066e7 2658 read_seqlock_excl(&mount_lock);
643822b4 2659 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
48a066e7 2660 read_sequnlock_excl(&mount_lock);
afac7cba
AV
2661 return res;
2662}
2663EXPORT_SYMBOL(path_is_under);
2664
1da177e4
LT
2665/*
2666 * pivot_root Semantics:
2667 * Moves the root file system of the current process to the directory put_old,
2668 * makes new_root as the new root file system of the current process, and sets
2669 * root/cwd of all processes which had them on the current root to new_root.
2670 *
2671 * Restrictions:
2672 * The new_root and put_old must be directories, and must not be on the
2673 * same file system as the current process root. The put_old must be
2674 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2675 * pointed to by put_old must yield the same directory as new_root. No other
2676 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2677 *
4a0d11fa
NB
2678 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2679 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2680 * in this situation.
2681 *
1da177e4
LT
2682 * Notes:
2683 * - we don't move root/cwd if they are not at the root (reason: if something
2684 * cared enough to change them, it's probably wrong to force them elsewhere)
2685 * - it's okay to pick a root that isn't the root of a file system, e.g.
2686 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2687 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2688 * first.
2689 */
3480b257
HC
2690SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2691 const char __user *, put_old)
1da177e4 2692{
2d8f3038 2693 struct path new, old, parent_path, root_parent, root;
84d17192
AV
2694 struct mount *new_mnt, *root_mnt, *old_mnt;
2695 struct mountpoint *old_mp, *root_mp;
1da177e4
LT
2696 int error;
2697
9b40bc90 2698 if (!may_mount())
1da177e4
LT
2699 return -EPERM;
2700
2d8f3038 2701 error = user_path_dir(new_root, &new);
1da177e4
LT
2702 if (error)
2703 goto out0;
1da177e4 2704
2d8f3038 2705 error = user_path_dir(put_old, &old);
1da177e4
LT
2706 if (error)
2707 goto out1;
2708
2d8f3038 2709 error = security_sb_pivotroot(&old, &new);
b12cea91
AV
2710 if (error)
2711 goto out2;
1da177e4 2712
f7ad3c6b 2713 get_fs_root(current->fs, &root);
84d17192
AV
2714 old_mp = lock_mount(&old);
2715 error = PTR_ERR(old_mp);
2716 if (IS_ERR(old_mp))
b12cea91
AV
2717 goto out3;
2718
1da177e4 2719 error = -EINVAL;
419148da
AV
2720 new_mnt = real_mount(new.mnt);
2721 root_mnt = real_mount(root.mnt);
84d17192
AV
2722 old_mnt = real_mount(old.mnt);
2723 if (IS_MNT_SHARED(old_mnt) ||
fc7be130
AV
2724 IS_MNT_SHARED(new_mnt->mnt_parent) ||
2725 IS_MNT_SHARED(root_mnt->mnt_parent))
b12cea91 2726 goto out4;
143c8c91 2727 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
b12cea91 2728 goto out4;
5ff9d8a6
EB
2729 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
2730 goto out4;
1da177e4 2731 error = -ENOENT;
f3da392e 2732 if (d_unlinked(new.dentry))
b12cea91 2733 goto out4;
1da177e4 2734 error = -EBUSY;
84d17192 2735 if (new_mnt == root_mnt || old_mnt == root_mnt)
b12cea91 2736 goto out4; /* loop, on the same file system */
1da177e4 2737 error = -EINVAL;
8c3ee42e 2738 if (root.mnt->mnt_root != root.dentry)
b12cea91 2739 goto out4; /* not a mountpoint */
676da58d 2740 if (!mnt_has_parent(root_mnt))
b12cea91 2741 goto out4; /* not attached */
84d17192 2742 root_mp = root_mnt->mnt_mp;
2d8f3038 2743 if (new.mnt->mnt_root != new.dentry)
b12cea91 2744 goto out4; /* not a mountpoint */
676da58d 2745 if (!mnt_has_parent(new_mnt))
b12cea91 2746 goto out4; /* not attached */
4ac91378 2747 /* make sure we can reach put_old from new_root */
84d17192 2748 if (!is_path_reachable(old_mnt, old.dentry, &new))
b12cea91 2749 goto out4;
84d17192 2750 root_mp->m_count++; /* pin it so it won't go away */
719ea2fb 2751 lock_mount_hash();
419148da
AV
2752 detach_mnt(new_mnt, &parent_path);
2753 detach_mnt(root_mnt, &root_parent);
5ff9d8a6
EB
2754 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
2755 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
2756 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2757 }
4ac91378 2758 /* mount old root on put_old */
84d17192 2759 attach_mnt(root_mnt, old_mnt, old_mp);
4ac91378 2760 /* mount new_root on / */
84d17192 2761 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
6b3286ed 2762 touch_mnt_namespace(current->nsproxy->mnt_ns);
719ea2fb 2763 unlock_mount_hash();
2d8f3038 2764 chroot_fs_refs(&root, &new);
84d17192 2765 put_mountpoint(root_mp);
1da177e4 2766 error = 0;
b12cea91 2767out4:
84d17192 2768 unlock_mount(old_mp);
b12cea91
AV
2769 if (!error) {
2770 path_put(&root_parent);
2771 path_put(&parent_path);
2772 }
2773out3:
8c3ee42e 2774 path_put(&root);
b12cea91 2775out2:
2d8f3038 2776 path_put(&old);
1da177e4 2777out1:
2d8f3038 2778 path_put(&new);
1da177e4 2779out0:
1da177e4 2780 return error;
1da177e4
LT
2781}
2782
2783static void __init init_mount_tree(void)
2784{
2785 struct vfsmount *mnt;
6b3286ed 2786 struct mnt_namespace *ns;
ac748a09 2787 struct path root;
0c55cfc4 2788 struct file_system_type *type;
1da177e4 2789
0c55cfc4
EB
2790 type = get_fs_type("rootfs");
2791 if (!type)
2792 panic("Can't find rootfs type");
2793 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
2794 put_filesystem(type);
1da177e4
LT
2795 if (IS_ERR(mnt))
2796 panic("Can't create rootfs");
b3e19d92 2797
3b22edc5
TM
2798 ns = create_mnt_ns(mnt);
2799 if (IS_ERR(ns))
1da177e4 2800 panic("Can't allocate initial namespace");
6b3286ed
KK
2801
2802 init_task.nsproxy->mnt_ns = ns;
2803 get_mnt_ns(ns);
2804
be08d6d2
AV
2805 root.mnt = mnt;
2806 root.dentry = mnt->mnt_root;
ac748a09
JB
2807
2808 set_fs_pwd(current->fs, &root);
2809 set_fs_root(current->fs, &root);
1da177e4
LT
2810}
2811
74bf17cf 2812void __init mnt_init(void)
1da177e4 2813{
13f14b4d 2814 unsigned u;
15a67dd8 2815 int err;
1da177e4 2816
7d6fec45 2817 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
20c2df83 2818 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 2819
0818bf27
AV
2820 mount_hashtable = alloc_large_system_hash("Mount-cache",
2821 sizeof(struct list_head),
2822 mhash_entries, 19,
2823 0,
2824 &m_hash_shift, &m_hash_mask, 0, 0);
2825 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
2826 sizeof(struct hlist_head),
2827 mphash_entries, 19,
2828 0,
2829 &mp_hash_shift, &mp_hash_mask, 0, 0);
1da177e4 2830
84d17192 2831 if (!mount_hashtable || !mountpoint_hashtable)
1da177e4
LT
2832 panic("Failed to allocate mount hash table\n");
2833
0818bf27 2834 for (u = 0; u <= m_hash_mask; u++)
13f14b4d 2835 INIT_LIST_HEAD(&mount_hashtable[u]);
0818bf27
AV
2836 for (u = 0; u <= mp_hash_mask; u++)
2837 INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
1da177e4 2838
4b93dc9b
TH
2839 kernfs_init();
2840
15a67dd8
RD
2841 err = sysfs_init();
2842 if (err)
2843 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 2844 __func__, err);
00d26666
GKH
2845 fs_kobj = kobject_create_and_add("fs", NULL);
2846 if (!fs_kobj)
8e24eea7 2847 printk(KERN_WARNING "%s: kobj create error\n", __func__);
1da177e4
LT
2848 init_rootfs();
2849 init_mount_tree();
2850}
2851
616511d0 2852void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 2853{
d498b25a 2854 if (!atomic_dec_and_test(&ns->count))
616511d0 2855 return;
7b00ed6f 2856 drop_collected_mounts(&ns->root->mnt);
771b1371 2857 free_mnt_ns(ns);
1da177e4 2858}
9d412a43
AV
2859
2860struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2861{
423e0ab0
TC
2862 struct vfsmount *mnt;
2863 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2864 if (!IS_ERR(mnt)) {
2865 /*
2866 * it is a longterm mount, don't release mnt until
2867 * we unmount before file sys is unregistered
2868 */
f7a99c5b 2869 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
423e0ab0
TC
2870 }
2871 return mnt;
9d412a43
AV
2872}
2873EXPORT_SYMBOL_GPL(kern_mount_data);
423e0ab0
TC
2874
2875void kern_unmount(struct vfsmount *mnt)
2876{
2877 /* release long term mount so mount point can be released */
2878 if (!IS_ERR_OR_NULL(mnt)) {
f7a99c5b 2879 real_mount(mnt)->mnt_ns = NULL;
48a066e7 2880 synchronize_rcu(); /* yecchhh... */
423e0ab0
TC
2881 mntput(mnt);
2882 }
2883}
2884EXPORT_SYMBOL(kern_unmount);
02125a82
AV
2885
2886bool our_mnt(struct vfsmount *mnt)
2887{
143c8c91 2888 return check_mnt(real_mount(mnt));
02125a82 2889}
8823c079 2890
3151527e
EB
2891bool current_chrooted(void)
2892{
2893 /* Does the current process have a non-standard root */
2894 struct path ns_root;
2895 struct path fs_root;
2896 bool chrooted;
2897
2898 /* Find the namespace root */
2899 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
2900 ns_root.dentry = ns_root.mnt->mnt_root;
2901 path_get(&ns_root);
2902 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
2903 ;
2904
2905 get_fs_root(current->fs, &fs_root);
2906
2907 chrooted = !path_equal(&fs_root, &ns_root);
2908
2909 path_put(&fs_root);
2910 path_put(&ns_root);
2911
2912 return chrooted;
2913}
2914
e51db735 2915bool fs_fully_visible(struct file_system_type *type)
87a8ebd6
EB
2916{
2917 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
2918 struct mount *mnt;
e51db735 2919 bool visible = false;
87a8ebd6 2920
e51db735
EB
2921 if (unlikely(!ns))
2922 return false;
2923
44bb4385 2924 down_read(&namespace_sem);
87a8ebd6 2925 list_for_each_entry(mnt, &ns->list, mnt_list) {
e51db735
EB
2926 struct mount *child;
2927 if (mnt->mnt.mnt_sb->s_type != type)
2928 continue;
2929
2930 /* This mount is not fully visible if there are any child mounts
2931 * that cover anything except for empty directories.
2932 */
2933 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2934 struct inode *inode = child->mnt_mountpoint->d_inode;
2935 if (!S_ISDIR(inode->i_mode))
2936 goto next;
41301ae7 2937 if (inode->i_nlink > 2)
e51db735 2938 goto next;
87a8ebd6 2939 }
e51db735
EB
2940 visible = true;
2941 goto found;
2942 next: ;
87a8ebd6 2943 }
e51db735 2944found:
44bb4385 2945 up_read(&namespace_sem);
e51db735 2946 return visible;
87a8ebd6
EB
2947}
2948
8823c079
EB
2949static void *mntns_get(struct task_struct *task)
2950{
2951 struct mnt_namespace *ns = NULL;
2952 struct nsproxy *nsproxy;
2953
2954 rcu_read_lock();
2955 nsproxy = task_nsproxy(task);
2956 if (nsproxy) {
2957 ns = nsproxy->mnt_ns;
2958 get_mnt_ns(ns);
2959 }
2960 rcu_read_unlock();
2961
2962 return ns;
2963}
2964
2965static void mntns_put(void *ns)
2966{
2967 put_mnt_ns(ns);
2968}
2969
2970static int mntns_install(struct nsproxy *nsproxy, void *ns)
2971{
2972 struct fs_struct *fs = current->fs;
2973 struct mnt_namespace *mnt_ns = ns;
2974 struct path root;
2975
0c55cfc4 2976 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
c7b96acf
EB
2977 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
2978 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
ae11e0f1 2979 return -EPERM;
8823c079
EB
2980
2981 if (fs->users != 1)
2982 return -EINVAL;
2983
2984 get_mnt_ns(mnt_ns);
2985 put_mnt_ns(nsproxy->mnt_ns);
2986 nsproxy->mnt_ns = mnt_ns;
2987
2988 /* Find the root */
2989 root.mnt = &mnt_ns->root->mnt;
2990 root.dentry = mnt_ns->root->mnt.mnt_root;
2991 path_get(&root);
2992 while(d_mountpoint(root.dentry) && follow_down_one(&root))
2993 ;
2994
2995 /* Update the pwd and root */
2996 set_fs_pwd(fs, &root);
2997 set_fs_root(fs, &root);
2998
2999 path_put(&root);
3000 return 0;
3001}
3002
98f842e6
EB
3003static unsigned int mntns_inum(void *ns)
3004{
3005 struct mnt_namespace *mnt_ns = ns;
3006 return mnt_ns->proc_inum;
3007}
3008
8823c079
EB
3009const struct proc_ns_operations mntns_operations = {
3010 .name = "mnt",
3011 .type = CLONE_NEWNS,
3012 .get = mntns_get,
3013 .put = mntns_put,
3014 .install = mntns_install,
98f842e6 3015 .inum = mntns_inum,
8823c079 3016};