]> git.proxmox.com Git - mirror_ubuntu-disco-kernel.git/blob - fs/xfs/xfs_file.c
UBUNTU: Ubuntu-5.0.0-29.31
[mirror_ubuntu-disco-kernel.git] / fs / xfs / xfs_file.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_da_format.h"
14 #include "xfs_da_btree.h"
15 #include "xfs_inode.h"
16 #include "xfs_trans.h"
17 #include "xfs_inode_item.h"
18 #include "xfs_bmap.h"
19 #include "xfs_bmap_util.h"
20 #include "xfs_error.h"
21 #include "xfs_dir2.h"
22 #include "xfs_dir2_priv.h"
23 #include "xfs_ioctl.h"
24 #include "xfs_trace.h"
25 #include "xfs_log.h"
26 #include "xfs_icache.h"
27 #include "xfs_pnfs.h"
28 #include "xfs_iomap.h"
29 #include "xfs_reflink.h"
30
31 #include <linux/dcache.h>
32 #include <linux/falloc.h>
33 #include <linux/pagevec.h>
34 #include <linux/backing-dev.h>
35 #include <linux/mman.h>
36
37 static const struct vm_operations_struct xfs_file_vm_ops;
38
39 int
40 xfs_update_prealloc_flags(
41 struct xfs_inode *ip,
42 enum xfs_prealloc_flags flags)
43 {
44 struct xfs_trans *tp;
45 int error;
46
47 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
48 0, 0, 0, &tp);
49 if (error)
50 return error;
51
52 xfs_ilock(ip, XFS_ILOCK_EXCL);
53 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
54
55 if (!(flags & XFS_PREALLOC_INVISIBLE)) {
56 VFS_I(ip)->i_mode &= ~S_ISUID;
57 if (VFS_I(ip)->i_mode & S_IXGRP)
58 VFS_I(ip)->i_mode &= ~S_ISGID;
59 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
60 }
61
62 if (flags & XFS_PREALLOC_SET)
63 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
64 if (flags & XFS_PREALLOC_CLEAR)
65 ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
66
67 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
68 if (flags & XFS_PREALLOC_SYNC)
69 xfs_trans_set_sync(tp);
70 return xfs_trans_commit(tp);
71 }
72
73 /*
74 * Fsync operations on directories are much simpler than on regular files,
75 * as there is no file data to flush, and thus also no need for explicit
76 * cache flush operations, and there are no non-transaction metadata updates
77 * on directories either.
78 */
79 STATIC int
80 xfs_dir_fsync(
81 struct file *file,
82 loff_t start,
83 loff_t end,
84 int datasync)
85 {
86 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
87 struct xfs_mount *mp = ip->i_mount;
88 xfs_lsn_t lsn = 0;
89
90 trace_xfs_dir_fsync(ip);
91
92 xfs_ilock(ip, XFS_ILOCK_SHARED);
93 if (xfs_ipincount(ip))
94 lsn = ip->i_itemp->ili_last_lsn;
95 xfs_iunlock(ip, XFS_ILOCK_SHARED);
96
97 if (!lsn)
98 return 0;
99 return xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
100 }
101
102 STATIC int
103 xfs_file_fsync(
104 struct file *file,
105 loff_t start,
106 loff_t end,
107 int datasync)
108 {
109 struct inode *inode = file->f_mapping->host;
110 struct xfs_inode *ip = XFS_I(inode);
111 struct xfs_mount *mp = ip->i_mount;
112 int error = 0;
113 int log_flushed = 0;
114 xfs_lsn_t lsn = 0;
115
116 trace_xfs_file_fsync(ip);
117
118 error = file_write_and_wait_range(file, start, end);
119 if (error)
120 return error;
121
122 if (XFS_FORCED_SHUTDOWN(mp))
123 return -EIO;
124
125 xfs_iflags_clear(ip, XFS_ITRUNCATED);
126
127 /*
128 * If we have an RT and/or log subvolume we need to make sure to flush
129 * the write cache the device used for file data first. This is to
130 * ensure newly written file data make it to disk before logging the new
131 * inode size in case of an extending write.
132 */
133 if (XFS_IS_REALTIME_INODE(ip))
134 xfs_blkdev_issue_flush(mp->m_rtdev_targp);
135 else if (mp->m_logdev_targp != mp->m_ddev_targp)
136 xfs_blkdev_issue_flush(mp->m_ddev_targp);
137
138 /*
139 * All metadata updates are logged, which means that we just have to
140 * flush the log up to the latest LSN that touched the inode. If we have
141 * concurrent fsync/fdatasync() calls, we need them to all block on the
142 * log force before we clear the ili_fsync_fields field. This ensures
143 * that we don't get a racing sync operation that does not wait for the
144 * metadata to hit the journal before returning. If we race with
145 * clearing the ili_fsync_fields, then all that will happen is the log
146 * force will do nothing as the lsn will already be on disk. We can't
147 * race with setting ili_fsync_fields because that is done under
148 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
149 * until after the ili_fsync_fields is cleared.
150 */
151 xfs_ilock(ip, XFS_ILOCK_SHARED);
152 if (xfs_ipincount(ip)) {
153 if (!datasync ||
154 (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
155 lsn = ip->i_itemp->ili_last_lsn;
156 }
157
158 if (lsn) {
159 error = xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
160 ip->i_itemp->ili_fsync_fields = 0;
161 }
162 xfs_iunlock(ip, XFS_ILOCK_SHARED);
163
164 /*
165 * If we only have a single device, and the log force about was
166 * a no-op we might have to flush the data device cache here.
167 * This can only happen for fdatasync/O_DSYNC if we were overwriting
168 * an already allocated file and thus do not have any metadata to
169 * commit.
170 */
171 if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
172 mp->m_logdev_targp == mp->m_ddev_targp)
173 xfs_blkdev_issue_flush(mp->m_ddev_targp);
174
175 return error;
176 }
177
178 STATIC ssize_t
179 xfs_file_dio_aio_read(
180 struct kiocb *iocb,
181 struct iov_iter *to)
182 {
183 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
184 size_t count = iov_iter_count(to);
185 ssize_t ret;
186
187 trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
188
189 if (!count)
190 return 0; /* skip atime */
191
192 file_accessed(iocb->ki_filp);
193
194 xfs_ilock(ip, XFS_IOLOCK_SHARED);
195 ret = iomap_dio_rw(iocb, to, &xfs_iomap_ops, NULL);
196 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
197
198 return ret;
199 }
200
201 static noinline ssize_t
202 xfs_file_dax_read(
203 struct kiocb *iocb,
204 struct iov_iter *to)
205 {
206 struct xfs_inode *ip = XFS_I(iocb->ki_filp->f_mapping->host);
207 size_t count = iov_iter_count(to);
208 ssize_t ret = 0;
209
210 trace_xfs_file_dax_read(ip, count, iocb->ki_pos);
211
212 if (!count)
213 return 0; /* skip atime */
214
215 if (iocb->ki_flags & IOCB_NOWAIT) {
216 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
217 return -EAGAIN;
218 } else {
219 xfs_ilock(ip, XFS_IOLOCK_SHARED);
220 }
221
222 ret = dax_iomap_rw(iocb, to, &xfs_iomap_ops);
223 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
224
225 file_accessed(iocb->ki_filp);
226 return ret;
227 }
228
229 STATIC ssize_t
230 xfs_file_buffered_aio_read(
231 struct kiocb *iocb,
232 struct iov_iter *to)
233 {
234 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
235 ssize_t ret;
236
237 trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
238
239 if (iocb->ki_flags & IOCB_NOWAIT) {
240 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
241 return -EAGAIN;
242 } else {
243 xfs_ilock(ip, XFS_IOLOCK_SHARED);
244 }
245 ret = generic_file_read_iter(iocb, to);
246 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
247
248 return ret;
249 }
250
251 STATIC ssize_t
252 xfs_file_read_iter(
253 struct kiocb *iocb,
254 struct iov_iter *to)
255 {
256 struct inode *inode = file_inode(iocb->ki_filp);
257 struct xfs_mount *mp = XFS_I(inode)->i_mount;
258 ssize_t ret = 0;
259
260 XFS_STATS_INC(mp, xs_read_calls);
261
262 if (XFS_FORCED_SHUTDOWN(mp))
263 return -EIO;
264
265 if (IS_DAX(inode))
266 ret = xfs_file_dax_read(iocb, to);
267 else if (iocb->ki_flags & IOCB_DIRECT)
268 ret = xfs_file_dio_aio_read(iocb, to);
269 else
270 ret = xfs_file_buffered_aio_read(iocb, to);
271
272 if (ret > 0)
273 XFS_STATS_ADD(mp, xs_read_bytes, ret);
274 return ret;
275 }
276
277 /*
278 * Common pre-write limit and setup checks.
279 *
280 * Called with the iolocked held either shared and exclusive according to
281 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
282 * if called for a direct write beyond i_size.
283 */
284 STATIC ssize_t
285 xfs_file_aio_write_checks(
286 struct kiocb *iocb,
287 struct iov_iter *from,
288 int *iolock)
289 {
290 struct file *file = iocb->ki_filp;
291 struct inode *inode = file->f_mapping->host;
292 struct xfs_inode *ip = XFS_I(inode);
293 ssize_t error = 0;
294 size_t count = iov_iter_count(from);
295 bool drained_dio = false;
296 loff_t isize;
297
298 restart:
299 error = generic_write_checks(iocb, from);
300 if (error <= 0)
301 return error;
302
303 error = xfs_break_layouts(inode, iolock, BREAK_WRITE);
304 if (error)
305 return error;
306
307 /*
308 * For changing security info in file_remove_privs() we need i_rwsem
309 * exclusively.
310 */
311 if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
312 xfs_iunlock(ip, *iolock);
313 *iolock = XFS_IOLOCK_EXCL;
314 xfs_ilock(ip, *iolock);
315 goto restart;
316 }
317 /*
318 * If the offset is beyond the size of the file, we need to zero any
319 * blocks that fall between the existing EOF and the start of this
320 * write. If zeroing is needed and we are currently holding the
321 * iolock shared, we need to update it to exclusive which implies
322 * having to redo all checks before.
323 *
324 * We need to serialise against EOF updates that occur in IO
325 * completions here. We want to make sure that nobody is changing the
326 * size while we do this check until we have placed an IO barrier (i.e.
327 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
328 * The spinlock effectively forms a memory barrier once we have the
329 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
330 * and hence be able to correctly determine if we need to run zeroing.
331 */
332 spin_lock(&ip->i_flags_lock);
333 isize = i_size_read(inode);
334 if (iocb->ki_pos > isize) {
335 spin_unlock(&ip->i_flags_lock);
336 if (!drained_dio) {
337 if (*iolock == XFS_IOLOCK_SHARED) {
338 xfs_iunlock(ip, *iolock);
339 *iolock = XFS_IOLOCK_EXCL;
340 xfs_ilock(ip, *iolock);
341 iov_iter_reexpand(from, count);
342 }
343 /*
344 * We now have an IO submission barrier in place, but
345 * AIO can do EOF updates during IO completion and hence
346 * we now need to wait for all of them to drain. Non-AIO
347 * DIO will have drained before we are given the
348 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
349 * no-op.
350 */
351 inode_dio_wait(inode);
352 drained_dio = true;
353 goto restart;
354 }
355
356 trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize);
357 error = iomap_zero_range(inode, isize, iocb->ki_pos - isize,
358 NULL, &xfs_iomap_ops);
359 if (error)
360 return error;
361 } else
362 spin_unlock(&ip->i_flags_lock);
363
364 /*
365 * Updating the timestamps will grab the ilock again from
366 * xfs_fs_dirty_inode, so we have to call it after dropping the
367 * lock above. Eventually we should look into a way to avoid
368 * the pointless lock roundtrip.
369 */
370 if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
371 error = file_update_time(file);
372 if (error)
373 return error;
374 }
375
376 /*
377 * If we're writing the file then make sure to clear the setuid and
378 * setgid bits if the process is not being run by root. This keeps
379 * people from modifying setuid and setgid binaries.
380 */
381 if (!IS_NOSEC(inode))
382 return file_remove_privs(file);
383 return 0;
384 }
385
386 static int
387 xfs_dio_write_end_io(
388 struct kiocb *iocb,
389 ssize_t size,
390 unsigned flags)
391 {
392 struct inode *inode = file_inode(iocb->ki_filp);
393 struct xfs_inode *ip = XFS_I(inode);
394 loff_t offset = iocb->ki_pos;
395 int error = 0;
396
397 trace_xfs_end_io_direct_write(ip, offset, size);
398
399 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
400 return -EIO;
401
402 if (size <= 0)
403 return size;
404
405 /*
406 * Capture amount written on completion as we can't reliably account
407 * for it on submission.
408 */
409 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size);
410
411 if (flags & IOMAP_DIO_COW) {
412 error = xfs_reflink_end_cow(ip, offset, size);
413 if (error)
414 return error;
415 }
416
417 /*
418 * Unwritten conversion updates the in-core isize after extent
419 * conversion but before updating the on-disk size. Updating isize any
420 * earlier allows a racing dio read to find unwritten extents before
421 * they are converted.
422 */
423 if (flags & IOMAP_DIO_UNWRITTEN)
424 return xfs_iomap_write_unwritten(ip, offset, size, true);
425
426 /*
427 * We need to update the in-core inode size here so that we don't end up
428 * with the on-disk inode size being outside the in-core inode size. We
429 * have no other method of updating EOF for AIO, so always do it here
430 * if necessary.
431 *
432 * We need to lock the test/set EOF update as we can be racing with
433 * other IO completions here to update the EOF. Failing to serialise
434 * here can result in EOF moving backwards and Bad Things Happen when
435 * that occurs.
436 */
437 spin_lock(&ip->i_flags_lock);
438 if (offset + size > i_size_read(inode)) {
439 i_size_write(inode, offset + size);
440 spin_unlock(&ip->i_flags_lock);
441 error = xfs_setfilesize(ip, offset, size);
442 } else {
443 spin_unlock(&ip->i_flags_lock);
444 }
445
446 return error;
447 }
448
449 /*
450 * xfs_file_dio_aio_write - handle direct IO writes
451 *
452 * Lock the inode appropriately to prepare for and issue a direct IO write.
453 * By separating it from the buffered write path we remove all the tricky to
454 * follow locking changes and looping.
455 *
456 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
457 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
458 * pages are flushed out.
459 *
460 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
461 * allowing them to be done in parallel with reads and other direct IO writes.
462 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
463 * needs to do sub-block zeroing and that requires serialisation against other
464 * direct IOs to the same block. In this case we need to serialise the
465 * submission of the unaligned IOs so that we don't get racing block zeroing in
466 * the dio layer. To avoid the problem with aio, we also need to wait for
467 * outstanding IOs to complete so that unwritten extent conversion is completed
468 * before we try to map the overlapping block. This is currently implemented by
469 * hitting it with a big hammer (i.e. inode_dio_wait()).
470 *
471 * Returns with locks held indicated by @iolock and errors indicated by
472 * negative return values.
473 */
474 STATIC ssize_t
475 xfs_file_dio_aio_write(
476 struct kiocb *iocb,
477 struct iov_iter *from)
478 {
479 struct file *file = iocb->ki_filp;
480 struct address_space *mapping = file->f_mapping;
481 struct inode *inode = mapping->host;
482 struct xfs_inode *ip = XFS_I(inode);
483 struct xfs_mount *mp = ip->i_mount;
484 ssize_t ret = 0;
485 int unaligned_io = 0;
486 int iolock;
487 size_t count = iov_iter_count(from);
488 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ?
489 mp->m_rtdev_targp : mp->m_ddev_targp;
490
491 /* DIO must be aligned to device logical sector size */
492 if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
493 return -EINVAL;
494
495 /*
496 * Don't take the exclusive iolock here unless the I/O is unaligned to
497 * the file system block size. We don't need to consider the EOF
498 * extension case here because xfs_file_aio_write_checks() will relock
499 * the inode as necessary for EOF zeroing cases and fill out the new
500 * inode size as appropriate.
501 */
502 if ((iocb->ki_pos & mp->m_blockmask) ||
503 ((iocb->ki_pos + count) & mp->m_blockmask)) {
504 unaligned_io = 1;
505
506 /*
507 * We can't properly handle unaligned direct I/O to reflink
508 * files yet, as we can't unshare a partial block.
509 */
510 if (xfs_is_reflink_inode(ip)) {
511 trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count);
512 return -EREMCHG;
513 }
514 iolock = XFS_IOLOCK_EXCL;
515 } else {
516 iolock = XFS_IOLOCK_SHARED;
517 }
518
519 if (iocb->ki_flags & IOCB_NOWAIT) {
520 if (!xfs_ilock_nowait(ip, iolock))
521 return -EAGAIN;
522 } else {
523 xfs_ilock(ip, iolock);
524 }
525
526 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
527 if (ret)
528 goto out;
529 count = iov_iter_count(from);
530
531 /*
532 * If we are doing unaligned IO, wait for all other IO to drain,
533 * otherwise demote the lock if we had to take the exclusive lock
534 * for other reasons in xfs_file_aio_write_checks.
535 */
536 if (unaligned_io) {
537 /* If we are going to wait for other DIO to finish, bail */
538 if (iocb->ki_flags & IOCB_NOWAIT) {
539 if (atomic_read(&inode->i_dio_count))
540 return -EAGAIN;
541 } else {
542 inode_dio_wait(inode);
543 }
544 } else if (iolock == XFS_IOLOCK_EXCL) {
545 xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
546 iolock = XFS_IOLOCK_SHARED;
547 }
548
549 trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
550 ret = iomap_dio_rw(iocb, from, &xfs_iomap_ops, xfs_dio_write_end_io);
551 out:
552 xfs_iunlock(ip, iolock);
553
554 /*
555 * No fallback to buffered IO on errors for XFS, direct IO will either
556 * complete fully or fail.
557 */
558 ASSERT(ret < 0 || ret == count);
559 return ret;
560 }
561
562 static noinline ssize_t
563 xfs_file_dax_write(
564 struct kiocb *iocb,
565 struct iov_iter *from)
566 {
567 struct inode *inode = iocb->ki_filp->f_mapping->host;
568 struct xfs_inode *ip = XFS_I(inode);
569 int iolock = XFS_IOLOCK_EXCL;
570 ssize_t ret, error = 0;
571 size_t count;
572 loff_t pos;
573
574 if (iocb->ki_flags & IOCB_NOWAIT) {
575 if (!xfs_ilock_nowait(ip, iolock))
576 return -EAGAIN;
577 } else {
578 xfs_ilock(ip, iolock);
579 }
580
581 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
582 if (ret)
583 goto out;
584
585 pos = iocb->ki_pos;
586 count = iov_iter_count(from);
587
588 trace_xfs_file_dax_write(ip, count, pos);
589 ret = dax_iomap_rw(iocb, from, &xfs_iomap_ops);
590 if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
591 i_size_write(inode, iocb->ki_pos);
592 error = xfs_setfilesize(ip, pos, ret);
593 }
594 out:
595 xfs_iunlock(ip, iolock);
596 if (error)
597 return error;
598
599 if (ret > 0) {
600 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
601
602 /* Handle various SYNC-type writes */
603 ret = generic_write_sync(iocb, ret);
604 }
605 return ret;
606 }
607
608 STATIC ssize_t
609 xfs_file_buffered_aio_write(
610 struct kiocb *iocb,
611 struct iov_iter *from)
612 {
613 struct file *file = iocb->ki_filp;
614 struct address_space *mapping = file->f_mapping;
615 struct inode *inode = mapping->host;
616 struct xfs_inode *ip = XFS_I(inode);
617 ssize_t ret;
618 int enospc = 0;
619 int iolock;
620
621 if (iocb->ki_flags & IOCB_NOWAIT)
622 return -EOPNOTSUPP;
623
624 write_retry:
625 iolock = XFS_IOLOCK_EXCL;
626 xfs_ilock(ip, iolock);
627
628 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
629 if (ret)
630 goto out;
631
632 /* We can write back this queue in page reclaim */
633 current->backing_dev_info = inode_to_bdi(inode);
634
635 trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
636 ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops);
637 if (likely(ret >= 0))
638 iocb->ki_pos += ret;
639
640 /*
641 * If we hit a space limit, try to free up some lingering preallocated
642 * space before returning an error. In the case of ENOSPC, first try to
643 * write back all dirty inodes to free up some of the excess reserved
644 * metadata space. This reduces the chances that the eofblocks scan
645 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
646 * also behaves as a filter to prevent too many eofblocks scans from
647 * running at the same time.
648 */
649 if (ret == -EDQUOT && !enospc) {
650 xfs_iunlock(ip, iolock);
651 enospc = xfs_inode_free_quota_eofblocks(ip);
652 if (enospc)
653 goto write_retry;
654 enospc = xfs_inode_free_quota_cowblocks(ip);
655 if (enospc)
656 goto write_retry;
657 iolock = 0;
658 } else if (ret == -ENOSPC && !enospc) {
659 struct xfs_eofblocks eofb = {0};
660
661 enospc = 1;
662 xfs_flush_inodes(ip->i_mount);
663
664 xfs_iunlock(ip, iolock);
665 eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
666 xfs_icache_free_eofblocks(ip->i_mount, &eofb);
667 xfs_icache_free_cowblocks(ip->i_mount, &eofb);
668 goto write_retry;
669 }
670
671 current->backing_dev_info = NULL;
672 out:
673 if (iolock)
674 xfs_iunlock(ip, iolock);
675
676 if (ret > 0) {
677 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
678 /* Handle various SYNC-type writes */
679 ret = generic_write_sync(iocb, ret);
680 }
681 return ret;
682 }
683
684 STATIC ssize_t
685 xfs_file_write_iter(
686 struct kiocb *iocb,
687 struct iov_iter *from)
688 {
689 struct file *file = iocb->ki_filp;
690 struct address_space *mapping = file->f_mapping;
691 struct inode *inode = mapping->host;
692 struct xfs_inode *ip = XFS_I(inode);
693 ssize_t ret;
694 size_t ocount = iov_iter_count(from);
695
696 XFS_STATS_INC(ip->i_mount, xs_write_calls);
697
698 if (ocount == 0)
699 return 0;
700
701 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
702 return -EIO;
703
704 if (IS_DAX(inode))
705 return xfs_file_dax_write(iocb, from);
706
707 if (iocb->ki_flags & IOCB_DIRECT) {
708 /*
709 * Allow a directio write to fall back to a buffered
710 * write *only* in the case that we're doing a reflink
711 * CoW. In all other directio scenarios we do not
712 * allow an operation to fall back to buffered mode.
713 */
714 ret = xfs_file_dio_aio_write(iocb, from);
715 if (ret != -EREMCHG)
716 return ret;
717 }
718
719 return xfs_file_buffered_aio_write(iocb, from);
720 }
721
722 static void
723 xfs_wait_dax_page(
724 struct inode *inode)
725 {
726 struct xfs_inode *ip = XFS_I(inode);
727
728 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
729 schedule();
730 xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
731 }
732
733 static int
734 xfs_break_dax_layouts(
735 struct inode *inode,
736 bool *retry)
737 {
738 struct page *page;
739
740 ASSERT(xfs_isilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL));
741
742 page = dax_layout_busy_page(inode->i_mapping);
743 if (!page)
744 return 0;
745
746 *retry = true;
747 return ___wait_var_event(&page->_refcount,
748 atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE,
749 0, 0, xfs_wait_dax_page(inode));
750 }
751
752 int
753 xfs_break_layouts(
754 struct inode *inode,
755 uint *iolock,
756 enum layout_break_reason reason)
757 {
758 bool retry;
759 int error;
760
761 ASSERT(xfs_isilocked(XFS_I(inode), XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL));
762
763 do {
764 retry = false;
765 switch (reason) {
766 case BREAK_UNMAP:
767 error = xfs_break_dax_layouts(inode, &retry);
768 if (error || retry)
769 break;
770 /* fall through */
771 case BREAK_WRITE:
772 error = xfs_break_leased_layouts(inode, iolock, &retry);
773 break;
774 default:
775 WARN_ON_ONCE(1);
776 error = -EINVAL;
777 }
778 } while (error == 0 && retry);
779
780 return error;
781 }
782
783 #define XFS_FALLOC_FL_SUPPORTED \
784 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
785 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \
786 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
787
788 STATIC long
789 xfs_file_fallocate(
790 struct file *file,
791 int mode,
792 loff_t offset,
793 loff_t len)
794 {
795 struct inode *inode = file_inode(file);
796 struct xfs_inode *ip = XFS_I(inode);
797 long error;
798 enum xfs_prealloc_flags flags = 0;
799 uint iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
800 loff_t new_size = 0;
801 bool do_file_insert = false;
802
803 if (!S_ISREG(inode->i_mode))
804 return -EINVAL;
805 if (mode & ~XFS_FALLOC_FL_SUPPORTED)
806 return -EOPNOTSUPP;
807
808 xfs_ilock(ip, iolock);
809 error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP);
810 if (error)
811 goto out_unlock;
812
813 if (mode & FALLOC_FL_PUNCH_HOLE) {
814 error = xfs_free_file_space(ip, offset, len);
815 if (error)
816 goto out_unlock;
817 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
818 unsigned int blksize_mask = i_blocksize(inode) - 1;
819
820 if (offset & blksize_mask || len & blksize_mask) {
821 error = -EINVAL;
822 goto out_unlock;
823 }
824
825 /*
826 * There is no need to overlap collapse range with EOF,
827 * in which case it is effectively a truncate operation
828 */
829 if (offset + len >= i_size_read(inode)) {
830 error = -EINVAL;
831 goto out_unlock;
832 }
833
834 new_size = i_size_read(inode) - len;
835
836 error = xfs_collapse_file_space(ip, offset, len);
837 if (error)
838 goto out_unlock;
839 } else if (mode & FALLOC_FL_INSERT_RANGE) {
840 unsigned int blksize_mask = i_blocksize(inode) - 1;
841 loff_t isize = i_size_read(inode);
842
843 if (offset & blksize_mask || len & blksize_mask) {
844 error = -EINVAL;
845 goto out_unlock;
846 }
847
848 /*
849 * New inode size must not exceed ->s_maxbytes, accounting for
850 * possible signed overflow.
851 */
852 if (inode->i_sb->s_maxbytes - isize < len) {
853 error = -EFBIG;
854 goto out_unlock;
855 }
856 new_size = isize + len;
857
858 /* Offset should be less than i_size */
859 if (offset >= isize) {
860 error = -EINVAL;
861 goto out_unlock;
862 }
863 do_file_insert = true;
864 } else {
865 flags |= XFS_PREALLOC_SET;
866
867 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
868 offset + len > i_size_read(inode)) {
869 new_size = offset + len;
870 error = inode_newsize_ok(inode, new_size);
871 if (error)
872 goto out_unlock;
873 }
874
875 if (mode & FALLOC_FL_ZERO_RANGE)
876 error = xfs_zero_file_space(ip, offset, len);
877 else {
878 if (mode & FALLOC_FL_UNSHARE_RANGE) {
879 error = xfs_reflink_unshare(ip, offset, len);
880 if (error)
881 goto out_unlock;
882 }
883 error = xfs_alloc_file_space(ip, offset, len,
884 XFS_BMAPI_PREALLOC);
885 }
886 if (error)
887 goto out_unlock;
888 }
889
890 if (file->f_flags & O_DSYNC)
891 flags |= XFS_PREALLOC_SYNC;
892
893 error = xfs_update_prealloc_flags(ip, flags);
894 if (error)
895 goto out_unlock;
896
897 /* Change file size if needed */
898 if (new_size) {
899 struct iattr iattr;
900
901 iattr.ia_valid = ATTR_SIZE;
902 iattr.ia_size = new_size;
903 error = xfs_vn_setattr_size(file_dentry(file), &iattr);
904 if (error)
905 goto out_unlock;
906 }
907
908 /*
909 * Perform hole insertion now that the file size has been
910 * updated so that if we crash during the operation we don't
911 * leave shifted extents past EOF and hence losing access to
912 * the data that is contained within them.
913 */
914 if (do_file_insert)
915 error = xfs_insert_file_space(ip, offset, len);
916
917 out_unlock:
918 xfs_iunlock(ip, iolock);
919 return error;
920 }
921
922
923 STATIC loff_t
924 xfs_file_remap_range(
925 struct file *file_in,
926 loff_t pos_in,
927 struct file *file_out,
928 loff_t pos_out,
929 loff_t len,
930 unsigned int remap_flags)
931 {
932 struct inode *inode_in = file_inode(file_in);
933 struct xfs_inode *src = XFS_I(inode_in);
934 struct inode *inode_out = file_inode(file_out);
935 struct xfs_inode *dest = XFS_I(inode_out);
936 struct xfs_mount *mp = src->i_mount;
937 loff_t remapped = 0;
938 xfs_extlen_t cowextsize;
939 int ret;
940
941 if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
942 return -EINVAL;
943
944 if (!xfs_sb_version_hasreflink(&mp->m_sb))
945 return -EOPNOTSUPP;
946
947 if (XFS_FORCED_SHUTDOWN(mp))
948 return -EIO;
949
950 /* Prepare and then clone file data. */
951 ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out,
952 &len, remap_flags);
953 if (ret < 0 || len == 0)
954 return ret;
955
956 trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out);
957
958 ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, len,
959 &remapped);
960 if (ret)
961 goto out_unlock;
962
963 /*
964 * Carry the cowextsize hint from src to dest if we're sharing the
965 * entire source file to the entire destination file, the source file
966 * has a cowextsize hint, and the destination file does not.
967 */
968 cowextsize = 0;
969 if (pos_in == 0 && len == i_size_read(inode_in) &&
970 (src->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) &&
971 pos_out == 0 && len >= i_size_read(inode_out) &&
972 !(dest->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE))
973 cowextsize = src->i_d.di_cowextsize;
974
975 ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize,
976 remap_flags);
977
978 out_unlock:
979 xfs_reflink_remap_unlock(file_in, file_out);
980 if (ret)
981 trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_);
982 return remapped > 0 ? remapped : ret;
983 }
984
985 STATIC int
986 xfs_file_open(
987 struct inode *inode,
988 struct file *file)
989 {
990 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
991 return -EFBIG;
992 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
993 return -EIO;
994 file->f_mode |= FMODE_NOWAIT;
995 return 0;
996 }
997
998 STATIC int
999 xfs_dir_open(
1000 struct inode *inode,
1001 struct file *file)
1002 {
1003 struct xfs_inode *ip = XFS_I(inode);
1004 int mode;
1005 int error;
1006
1007 error = xfs_file_open(inode, file);
1008 if (error)
1009 return error;
1010
1011 /*
1012 * If there are any blocks, read-ahead block 0 as we're almost
1013 * certain to have the next operation be a read there.
1014 */
1015 mode = xfs_ilock_data_map_shared(ip);
1016 if (ip->i_d.di_nextents > 0)
1017 error = xfs_dir3_data_readahead(ip, 0, -1);
1018 xfs_iunlock(ip, mode);
1019 return error;
1020 }
1021
1022 STATIC int
1023 xfs_file_release(
1024 struct inode *inode,
1025 struct file *filp)
1026 {
1027 return xfs_release(XFS_I(inode));
1028 }
1029
1030 STATIC int
1031 xfs_file_readdir(
1032 struct file *file,
1033 struct dir_context *ctx)
1034 {
1035 struct inode *inode = file_inode(file);
1036 xfs_inode_t *ip = XFS_I(inode);
1037 size_t bufsize;
1038
1039 /*
1040 * The Linux API doesn't pass down the total size of the buffer
1041 * we read into down to the filesystem. With the filldir concept
1042 * it's not needed for correct information, but the XFS dir2 leaf
1043 * code wants an estimate of the buffer size to calculate it's
1044 * readahead window and size the buffers used for mapping to
1045 * physical blocks.
1046 *
1047 * Try to give it an estimate that's good enough, maybe at some
1048 * point we can change the ->readdir prototype to include the
1049 * buffer size. For now we use the current glibc buffer size.
1050 */
1051 bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_d.di_size);
1052
1053 return xfs_readdir(NULL, ip, ctx, bufsize);
1054 }
1055
1056 STATIC loff_t
1057 xfs_file_llseek(
1058 struct file *file,
1059 loff_t offset,
1060 int whence)
1061 {
1062 struct inode *inode = file->f_mapping->host;
1063
1064 if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount))
1065 return -EIO;
1066
1067 switch (whence) {
1068 default:
1069 return generic_file_llseek(file, offset, whence);
1070 case SEEK_HOLE:
1071 offset = iomap_seek_hole(inode, offset, &xfs_iomap_ops);
1072 break;
1073 case SEEK_DATA:
1074 offset = iomap_seek_data(inode, offset, &xfs_iomap_ops);
1075 break;
1076 }
1077
1078 if (offset < 0)
1079 return offset;
1080 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1081 }
1082
1083 /*
1084 * Locking for serialisation of IO during page faults. This results in a lock
1085 * ordering of:
1086 *
1087 * mmap_sem (MM)
1088 * sb_start_pagefault(vfs, freeze)
1089 * i_mmaplock (XFS - truncate serialisation)
1090 * page_lock (MM)
1091 * i_lock (XFS - extent map serialisation)
1092 */
1093 static vm_fault_t
1094 __xfs_filemap_fault(
1095 struct vm_fault *vmf,
1096 enum page_entry_size pe_size,
1097 bool write_fault)
1098 {
1099 struct inode *inode = file_inode(vmf->vma->vm_file);
1100 struct xfs_inode *ip = XFS_I(inode);
1101 vm_fault_t ret;
1102
1103 trace_xfs_filemap_fault(ip, pe_size, write_fault);
1104
1105 if (write_fault) {
1106 sb_start_pagefault(inode->i_sb);
1107 file_update_time(vmf->vma->vm_file);
1108 }
1109
1110 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1111 if (IS_DAX(inode)) {
1112 pfn_t pfn;
1113
1114 ret = dax_iomap_fault(vmf, pe_size, &pfn, NULL, &xfs_iomap_ops);
1115 if (ret & VM_FAULT_NEEDDSYNC)
1116 ret = dax_finish_sync_fault(vmf, pe_size, pfn);
1117 } else {
1118 if (write_fault)
1119 ret = iomap_page_mkwrite(vmf, &xfs_iomap_ops);
1120 else
1121 ret = filemap_fault(vmf);
1122 }
1123 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1124
1125 if (write_fault)
1126 sb_end_pagefault(inode->i_sb);
1127 return ret;
1128 }
1129
1130 static vm_fault_t
1131 xfs_filemap_fault(
1132 struct vm_fault *vmf)
1133 {
1134 /* DAX can shortcut the normal fault path on write faults! */
1135 return __xfs_filemap_fault(vmf, PE_SIZE_PTE,
1136 IS_DAX(file_inode(vmf->vma->vm_file)) &&
1137 (vmf->flags & FAULT_FLAG_WRITE));
1138 }
1139
1140 static vm_fault_t
1141 xfs_filemap_huge_fault(
1142 struct vm_fault *vmf,
1143 enum page_entry_size pe_size)
1144 {
1145 if (!IS_DAX(file_inode(vmf->vma->vm_file)))
1146 return VM_FAULT_FALLBACK;
1147
1148 /* DAX can shortcut the normal fault path on write faults! */
1149 return __xfs_filemap_fault(vmf, pe_size,
1150 (vmf->flags & FAULT_FLAG_WRITE));
1151 }
1152
1153 static vm_fault_t
1154 xfs_filemap_page_mkwrite(
1155 struct vm_fault *vmf)
1156 {
1157 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1158 }
1159
1160 /*
1161 * pfn_mkwrite was originally intended to ensure we capture time stamp updates
1162 * on write faults. In reality, it needs to serialise against truncate and
1163 * prepare memory for writing so handle is as standard write fault.
1164 */
1165 static vm_fault_t
1166 xfs_filemap_pfn_mkwrite(
1167 struct vm_fault *vmf)
1168 {
1169
1170 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1171 }
1172
1173 static const struct vm_operations_struct xfs_file_vm_ops = {
1174 .fault = xfs_filemap_fault,
1175 .huge_fault = xfs_filemap_huge_fault,
1176 .map_pages = filemap_map_pages,
1177 .page_mkwrite = xfs_filemap_page_mkwrite,
1178 .pfn_mkwrite = xfs_filemap_pfn_mkwrite,
1179 };
1180
1181 STATIC int
1182 xfs_file_mmap(
1183 struct file *filp,
1184 struct vm_area_struct *vma)
1185 {
1186 /*
1187 * We don't support synchronous mappings for non-DAX files. At least
1188 * until someone comes with a sensible use case.
1189 */
1190 if (!IS_DAX(file_inode(filp)) && (vma->vm_flags & VM_SYNC))
1191 return -EOPNOTSUPP;
1192
1193 file_accessed(filp);
1194 vma->vm_ops = &xfs_file_vm_ops;
1195 if (IS_DAX(file_inode(filp)))
1196 vma->vm_flags |= VM_HUGEPAGE;
1197 return 0;
1198 }
1199
1200 const struct file_operations xfs_file_operations = {
1201 .llseek = xfs_file_llseek,
1202 .read_iter = xfs_file_read_iter,
1203 .write_iter = xfs_file_write_iter,
1204 .splice_read = generic_file_splice_read,
1205 .splice_write = iter_file_splice_write,
1206 .unlocked_ioctl = xfs_file_ioctl,
1207 #ifdef CONFIG_COMPAT
1208 .compat_ioctl = xfs_file_compat_ioctl,
1209 #endif
1210 .mmap = xfs_file_mmap,
1211 .mmap_supported_flags = MAP_SYNC,
1212 .open = xfs_file_open,
1213 .release = xfs_file_release,
1214 .fsync = xfs_file_fsync,
1215 .get_unmapped_area = thp_get_unmapped_area,
1216 .fallocate = xfs_file_fallocate,
1217 .remap_file_range = xfs_file_remap_range,
1218 };
1219
1220 const struct file_operations xfs_dir_file_operations = {
1221 .open = xfs_dir_open,
1222 .read = generic_read_dir,
1223 .iterate_shared = xfs_file_readdir,
1224 .llseek = generic_file_llseek,
1225 .unlocked_ioctl = xfs_file_ioctl,
1226 #ifdef CONFIG_COMPAT
1227 .compat_ioctl = xfs_file_compat_ioctl,
1228 #endif
1229 .fsync = xfs_dir_fsync,
1230 };