]> git.proxmox.com Git - qemu.git/blob - gdbstub.c
-no-fd-bootchk option (Lonnie Mendez)
[qemu.git] / gdbstub.c
1 /*
2 * gdb server stub
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20 #ifdef CONFIG_USER_ONLY
21 #include <stdlib.h>
22 #include <stdio.h>
23 #include <stdarg.h>
24 #include <string.h>
25 #include <errno.h>
26 #include <unistd.h>
27
28 #include "qemu.h"
29 #else
30 #include "vl.h"
31 #endif
32
33 #include "qemu_socket.h"
34 #ifdef _WIN32
35 /* XXX: these constants may be independent of the host ones even for Unix */
36 #ifndef SIGTRAP
37 #define SIGTRAP 5
38 #endif
39 #ifndef SIGINT
40 #define SIGINT 2
41 #endif
42 #else
43 #include <signal.h>
44 #endif
45
46 //#define DEBUG_GDB
47
48 enum RSState {
49 RS_IDLE,
50 RS_GETLINE,
51 RS_CHKSUM1,
52 RS_CHKSUM2,
53 };
54 /* XXX: This is not thread safe. Do we care? */
55 static int gdbserver_fd = -1;
56
57 typedef struct GDBState {
58 CPUState *env; /* current CPU */
59 enum RSState state; /* parsing state */
60 int fd;
61 char line_buf[4096];
62 int line_buf_index;
63 int line_csum;
64 #ifdef CONFIG_USER_ONLY
65 int running_state;
66 #endif
67 } GDBState;
68
69 #ifdef CONFIG_USER_ONLY
70 /* XXX: remove this hack. */
71 static GDBState gdbserver_state;
72 #endif
73
74 static int get_char(GDBState *s)
75 {
76 uint8_t ch;
77 int ret;
78
79 for(;;) {
80 ret = recv(s->fd, &ch, 1, 0);
81 if (ret < 0) {
82 if (errno != EINTR && errno != EAGAIN)
83 return -1;
84 } else if (ret == 0) {
85 return -1;
86 } else {
87 break;
88 }
89 }
90 return ch;
91 }
92
93 static void put_buffer(GDBState *s, const uint8_t *buf, int len)
94 {
95 int ret;
96
97 while (len > 0) {
98 ret = send(s->fd, buf, len, 0);
99 if (ret < 0) {
100 if (errno != EINTR && errno != EAGAIN)
101 return;
102 } else {
103 buf += ret;
104 len -= ret;
105 }
106 }
107 }
108
109 static inline int fromhex(int v)
110 {
111 if (v >= '0' && v <= '9')
112 return v - '0';
113 else if (v >= 'A' && v <= 'F')
114 return v - 'A' + 10;
115 else if (v >= 'a' && v <= 'f')
116 return v - 'a' + 10;
117 else
118 return 0;
119 }
120
121 static inline int tohex(int v)
122 {
123 if (v < 10)
124 return v + '0';
125 else
126 return v - 10 + 'a';
127 }
128
129 static void memtohex(char *buf, const uint8_t *mem, int len)
130 {
131 int i, c;
132 char *q;
133 q = buf;
134 for(i = 0; i < len; i++) {
135 c = mem[i];
136 *q++ = tohex(c >> 4);
137 *q++ = tohex(c & 0xf);
138 }
139 *q = '\0';
140 }
141
142 static void hextomem(uint8_t *mem, const char *buf, int len)
143 {
144 int i;
145
146 for(i = 0; i < len; i++) {
147 mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
148 buf += 2;
149 }
150 }
151
152 /* return -1 if error, 0 if OK */
153 static int put_packet(GDBState *s, char *buf)
154 {
155 char buf1[3];
156 int len, csum, ch, i;
157
158 #ifdef DEBUG_GDB
159 printf("reply='%s'\n", buf);
160 #endif
161
162 for(;;) {
163 buf1[0] = '$';
164 put_buffer(s, buf1, 1);
165 len = strlen(buf);
166 put_buffer(s, buf, len);
167 csum = 0;
168 for(i = 0; i < len; i++) {
169 csum += buf[i];
170 }
171 buf1[0] = '#';
172 buf1[1] = tohex((csum >> 4) & 0xf);
173 buf1[2] = tohex((csum) & 0xf);
174
175 put_buffer(s, buf1, 3);
176
177 ch = get_char(s);
178 if (ch < 0)
179 return -1;
180 if (ch == '+')
181 break;
182 }
183 return 0;
184 }
185
186 #if defined(TARGET_I386)
187
188 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
189 {
190 uint32_t *registers = (uint32_t *)mem_buf;
191 int i, fpus;
192
193 for(i = 0; i < 8; i++) {
194 registers[i] = env->regs[i];
195 }
196 registers[8] = env->eip;
197 registers[9] = env->eflags;
198 registers[10] = env->segs[R_CS].selector;
199 registers[11] = env->segs[R_SS].selector;
200 registers[12] = env->segs[R_DS].selector;
201 registers[13] = env->segs[R_ES].selector;
202 registers[14] = env->segs[R_FS].selector;
203 registers[15] = env->segs[R_GS].selector;
204 /* XXX: convert floats */
205 for(i = 0; i < 8; i++) {
206 memcpy(mem_buf + 16 * 4 + i * 10, &env->fpregs[i], 10);
207 }
208 registers[36] = env->fpuc;
209 fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
210 registers[37] = fpus;
211 registers[38] = 0; /* XXX: convert tags */
212 registers[39] = 0; /* fiseg */
213 registers[40] = 0; /* fioff */
214 registers[41] = 0; /* foseg */
215 registers[42] = 0; /* fooff */
216 registers[43] = 0; /* fop */
217
218 for(i = 0; i < 16; i++)
219 tswapls(&registers[i]);
220 for(i = 36; i < 44; i++)
221 tswapls(&registers[i]);
222 return 44 * 4;
223 }
224
225 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
226 {
227 uint32_t *registers = (uint32_t *)mem_buf;
228 int i;
229
230 for(i = 0; i < 8; i++) {
231 env->regs[i] = tswapl(registers[i]);
232 }
233 env->eip = tswapl(registers[8]);
234 env->eflags = tswapl(registers[9]);
235 #if defined(CONFIG_USER_ONLY)
236 #define LOAD_SEG(index, sreg)\
237 if (tswapl(registers[index]) != env->segs[sreg].selector)\
238 cpu_x86_load_seg(env, sreg, tswapl(registers[index]));
239 LOAD_SEG(10, R_CS);
240 LOAD_SEG(11, R_SS);
241 LOAD_SEG(12, R_DS);
242 LOAD_SEG(13, R_ES);
243 LOAD_SEG(14, R_FS);
244 LOAD_SEG(15, R_GS);
245 #endif
246 }
247
248 #elif defined (TARGET_PPC)
249 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
250 {
251 uint32_t *registers = (uint32_t *)mem_buf, tmp;
252 int i;
253
254 /* fill in gprs */
255 for(i = 0; i < 32; i++) {
256 registers[i] = tswapl(env->gpr[i]);
257 }
258 /* fill in fprs */
259 for (i = 0; i < 32; i++) {
260 registers[(i * 2) + 32] = tswapl(*((uint32_t *)&env->fpr[i]));
261 registers[(i * 2) + 33] = tswapl(*((uint32_t *)&env->fpr[i] + 1));
262 }
263 /* nip, msr, ccr, lnk, ctr, xer, mq */
264 registers[96] = tswapl(env->nip);
265 registers[97] = tswapl(do_load_msr(env));
266 tmp = 0;
267 for (i = 0; i < 8; i++)
268 tmp |= env->crf[i] << (32 - ((i + 1) * 4));
269 registers[98] = tswapl(tmp);
270 registers[99] = tswapl(env->lr);
271 registers[100] = tswapl(env->ctr);
272 registers[101] = tswapl(do_load_xer(env));
273 registers[102] = 0;
274
275 return 103 * 4;
276 }
277
278 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
279 {
280 uint32_t *registers = (uint32_t *)mem_buf;
281 int i;
282
283 /* fill in gprs */
284 for (i = 0; i < 32; i++) {
285 env->gpr[i] = tswapl(registers[i]);
286 }
287 /* fill in fprs */
288 for (i = 0; i < 32; i++) {
289 *((uint32_t *)&env->fpr[i]) = tswapl(registers[(i * 2) + 32]);
290 *((uint32_t *)&env->fpr[i] + 1) = tswapl(registers[(i * 2) + 33]);
291 }
292 /* nip, msr, ccr, lnk, ctr, xer, mq */
293 env->nip = tswapl(registers[96]);
294 do_store_msr(env, tswapl(registers[97]));
295 registers[98] = tswapl(registers[98]);
296 for (i = 0; i < 8; i++)
297 env->crf[i] = (registers[98] >> (32 - ((i + 1) * 4))) & 0xF;
298 env->lr = tswapl(registers[99]);
299 env->ctr = tswapl(registers[100]);
300 do_store_xer(env, tswapl(registers[101]));
301 }
302 #elif defined (TARGET_SPARC)
303 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
304 {
305 target_ulong *registers = (target_ulong *)mem_buf;
306 int i;
307
308 /* fill in g0..g7 */
309 for(i = 0; i < 8; i++) {
310 registers[i] = tswapl(env->gregs[i]);
311 }
312 /* fill in register window */
313 for(i = 0; i < 24; i++) {
314 registers[i + 8] = tswapl(env->regwptr[i]);
315 }
316 /* fill in fprs */
317 for (i = 0; i < 32; i++) {
318 registers[i + 32] = tswapl(*((uint32_t *)&env->fpr[i]));
319 }
320 #ifndef TARGET_SPARC64
321 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
322 registers[64] = tswapl(env->y);
323 {
324 target_ulong tmp;
325
326 tmp = GET_PSR(env);
327 registers[65] = tswapl(tmp);
328 }
329 registers[66] = tswapl(env->wim);
330 registers[67] = tswapl(env->tbr);
331 registers[68] = tswapl(env->pc);
332 registers[69] = tswapl(env->npc);
333 registers[70] = tswapl(env->fsr);
334 registers[71] = 0; /* csr */
335 registers[72] = 0;
336 return 73 * sizeof(target_ulong);
337 #else
338 for (i = 0; i < 32; i += 2) {
339 registers[i/2 + 64] = tswapl(*((uint64_t *)&env->fpr[i]));
340 }
341 registers[81] = tswapl(env->pc);
342 registers[82] = tswapl(env->npc);
343 registers[83] = tswapl(env->tstate[env->tl]);
344 registers[84] = tswapl(env->fsr);
345 registers[85] = tswapl(env->fprs);
346 registers[86] = tswapl(env->y);
347 return 87 * sizeof(target_ulong);
348 #endif
349 }
350
351 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
352 {
353 target_ulong *registers = (target_ulong *)mem_buf;
354 int i;
355
356 /* fill in g0..g7 */
357 for(i = 0; i < 7; i++) {
358 env->gregs[i] = tswapl(registers[i]);
359 }
360 /* fill in register window */
361 for(i = 0; i < 24; i++) {
362 env->regwptr[i] = tswapl(registers[i + 8]);
363 }
364 /* fill in fprs */
365 for (i = 0; i < 32; i++) {
366 *((uint32_t *)&env->fpr[i]) = tswapl(registers[i + 32]);
367 }
368 #ifndef TARGET_SPARC64
369 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
370 env->y = tswapl(registers[64]);
371 PUT_PSR(env, tswapl(registers[65]));
372 env->wim = tswapl(registers[66]);
373 env->tbr = tswapl(registers[67]);
374 env->pc = tswapl(registers[68]);
375 env->npc = tswapl(registers[69]);
376 env->fsr = tswapl(registers[70]);
377 #else
378 for (i = 0; i < 32; i += 2) {
379 uint64_t tmp;
380 tmp = tswapl(registers[i/2 + 64]) << 32;
381 tmp |= tswapl(registers[i/2 + 64 + 1]);
382 *((uint64_t *)&env->fpr[i]) = tmp;
383 }
384 env->pc = tswapl(registers[81]);
385 env->npc = tswapl(registers[82]);
386 env->tstate[env->tl] = tswapl(registers[83]);
387 env->fsr = tswapl(registers[84]);
388 env->fprs = tswapl(registers[85]);
389 env->y = tswapl(registers[86]);
390 #endif
391 }
392 #elif defined (TARGET_ARM)
393 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
394 {
395 int i;
396 uint8_t *ptr;
397
398 ptr = mem_buf;
399 /* 16 core integer registers (4 bytes each). */
400 for (i = 0; i < 16; i++)
401 {
402 *(uint32_t *)ptr = tswapl(env->regs[i]);
403 ptr += 4;
404 }
405 /* 8 FPA registers (12 bytes each), FPS (4 bytes).
406 Not yet implemented. */
407 memset (ptr, 0, 8 * 12 + 4);
408 ptr += 8 * 12 + 4;
409 /* CPSR (4 bytes). */
410 *(uint32_t *)ptr = tswapl (cpsr_read(env));
411 ptr += 4;
412
413 return ptr - mem_buf;
414 }
415
416 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
417 {
418 int i;
419 uint8_t *ptr;
420
421 ptr = mem_buf;
422 /* Core integer registers. */
423 for (i = 0; i < 16; i++)
424 {
425 env->regs[i] = tswapl(*(uint32_t *)ptr);
426 ptr += 4;
427 }
428 /* Ignore FPA regs and scr. */
429 ptr += 8 * 12 + 4;
430 cpsr_write (env, tswapl(*(uint32_t *)ptr), 0xffffffff);
431 }
432 #elif defined (TARGET_MIPS)
433 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
434 {
435 int i;
436 uint8_t *ptr;
437
438 ptr = mem_buf;
439 for (i = 0; i < 32; i++)
440 {
441 *(uint32_t *)ptr = tswapl(env->gpr[i]);
442 ptr += 4;
443 }
444
445 *(uint32_t *)ptr = tswapl(env->CP0_Status);
446 ptr += 4;
447
448 *(uint32_t *)ptr = tswapl(env->LO);
449 ptr += 4;
450
451 *(uint32_t *)ptr = tswapl(env->HI);
452 ptr += 4;
453
454 *(uint32_t *)ptr = tswapl(env->CP0_BadVAddr);
455 ptr += 4;
456
457 *(uint32_t *)ptr = tswapl(env->CP0_Cause);
458 ptr += 4;
459
460 *(uint32_t *)ptr = tswapl(env->PC);
461 ptr += 4;
462
463 /* 32 FP registers, fsr, fir, fp. Not yet implemented. */
464
465 return ptr - mem_buf;
466 }
467
468 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
469 {
470 int i;
471 uint8_t *ptr;
472
473 ptr = mem_buf;
474 for (i = 0; i < 32; i++)
475 {
476 env->gpr[i] = tswapl(*(uint32_t *)ptr);
477 ptr += 4;
478 }
479
480 env->CP0_Status = tswapl(*(uint32_t *)ptr);
481 ptr += 4;
482
483 env->LO = tswapl(*(uint32_t *)ptr);
484 ptr += 4;
485
486 env->HI = tswapl(*(uint32_t *)ptr);
487 ptr += 4;
488
489 env->CP0_BadVAddr = tswapl(*(uint32_t *)ptr);
490 ptr += 4;
491
492 env->CP0_Cause = tswapl(*(uint32_t *)ptr);
493 ptr += 4;
494
495 env->PC = tswapl(*(uint32_t *)ptr);
496 ptr += 4;
497 }
498 #elif defined (TARGET_SH4)
499 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
500 {
501 uint32_t *ptr = (uint32_t *)mem_buf;
502 int i;
503
504 #define SAVE(x) *ptr++=tswapl(x)
505 for (i = 0; i < 16; i++) SAVE(env->gregs[i]);
506 SAVE (env->pc);
507 SAVE (env->pr);
508 SAVE (env->gbr);
509 SAVE (env->vbr);
510 SAVE (env->mach);
511 SAVE (env->macl);
512 SAVE (env->sr);
513 SAVE (0); /* TICKS */
514 SAVE (0); /* STALLS */
515 SAVE (0); /* CYCLES */
516 SAVE (0); /* INSTS */
517 SAVE (0); /* PLR */
518
519 return ((uint8_t *)ptr - mem_buf);
520 }
521
522 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
523 {
524 uint32_t *ptr = (uint32_t *)mem_buf;
525 int i;
526
527 #define LOAD(x) (x)=*ptr++;
528 for (i = 0; i < 16; i++) LOAD(env->gregs[i]);
529 LOAD (env->pc);
530 LOAD (env->pr);
531 LOAD (env->gbr);
532 LOAD (env->vbr);
533 LOAD (env->mach);
534 LOAD (env->macl);
535 LOAD (env->sr);
536 }
537 #else
538 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
539 {
540 return 0;
541 }
542
543 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
544 {
545 }
546
547 #endif
548
549 static int gdb_handle_packet(GDBState *s, CPUState *env, const char *line_buf)
550 {
551 const char *p;
552 int ch, reg_size, type;
553 char buf[4096];
554 uint8_t mem_buf[2000];
555 uint32_t *registers;
556 uint32_t addr, len;
557
558 #ifdef DEBUG_GDB
559 printf("command='%s'\n", line_buf);
560 #endif
561 p = line_buf;
562 ch = *p++;
563 switch(ch) {
564 case '?':
565 /* TODO: Make this return the correct value for user-mode. */
566 snprintf(buf, sizeof(buf), "S%02x", SIGTRAP);
567 put_packet(s, buf);
568 break;
569 case 'c':
570 if (*p != '\0') {
571 addr = strtoul(p, (char **)&p, 16);
572 #if defined(TARGET_I386)
573 env->eip = addr;
574 #elif defined (TARGET_PPC)
575 env->nip = addr;
576 #elif defined (TARGET_SPARC)
577 env->pc = addr;
578 env->npc = addr + 4;
579 #elif defined (TARGET_ARM)
580 env->regs[15] = addr;
581 #elif defined (TARGET_SH4)
582 env->pc = addr;
583 #endif
584 }
585 #ifdef CONFIG_USER_ONLY
586 s->running_state = 1;
587 #else
588 vm_start();
589 #endif
590 return RS_IDLE;
591 case 's':
592 if (*p != '\0') {
593 addr = strtoul(p, (char **)&p, 16);
594 #if defined(TARGET_I386)
595 env->eip = addr;
596 #elif defined (TARGET_PPC)
597 env->nip = addr;
598 #elif defined (TARGET_SPARC)
599 env->pc = addr;
600 env->npc = addr + 4;
601 #elif defined (TARGET_ARM)
602 env->regs[15] = addr;
603 #elif defined (TARGET_SH4)
604 env->pc = addr;
605 #endif
606 }
607 cpu_single_step(env, 1);
608 #ifdef CONFIG_USER_ONLY
609 s->running_state = 1;
610 #else
611 vm_start();
612 #endif
613 return RS_IDLE;
614 case 'g':
615 reg_size = cpu_gdb_read_registers(env, mem_buf);
616 memtohex(buf, mem_buf, reg_size);
617 put_packet(s, buf);
618 break;
619 case 'G':
620 registers = (void *)mem_buf;
621 len = strlen(p) / 2;
622 hextomem((uint8_t *)registers, p, len);
623 cpu_gdb_write_registers(env, mem_buf, len);
624 put_packet(s, "OK");
625 break;
626 case 'm':
627 addr = strtoul(p, (char **)&p, 16);
628 if (*p == ',')
629 p++;
630 len = strtoul(p, NULL, 16);
631 if (cpu_memory_rw_debug(env, addr, mem_buf, len, 0) != 0) {
632 put_packet (s, "E14");
633 } else {
634 memtohex(buf, mem_buf, len);
635 put_packet(s, buf);
636 }
637 break;
638 case 'M':
639 addr = strtoul(p, (char **)&p, 16);
640 if (*p == ',')
641 p++;
642 len = strtoul(p, (char **)&p, 16);
643 if (*p == ':')
644 p++;
645 hextomem(mem_buf, p, len);
646 if (cpu_memory_rw_debug(env, addr, mem_buf, len, 1) != 0)
647 put_packet(s, "E14");
648 else
649 put_packet(s, "OK");
650 break;
651 case 'Z':
652 type = strtoul(p, (char **)&p, 16);
653 if (*p == ',')
654 p++;
655 addr = strtoul(p, (char **)&p, 16);
656 if (*p == ',')
657 p++;
658 len = strtoul(p, (char **)&p, 16);
659 if (type == 0 || type == 1) {
660 if (cpu_breakpoint_insert(env, addr) < 0)
661 goto breakpoint_error;
662 put_packet(s, "OK");
663 } else {
664 breakpoint_error:
665 put_packet(s, "E22");
666 }
667 break;
668 case 'z':
669 type = strtoul(p, (char **)&p, 16);
670 if (*p == ',')
671 p++;
672 addr = strtoul(p, (char **)&p, 16);
673 if (*p == ',')
674 p++;
675 len = strtoul(p, (char **)&p, 16);
676 if (type == 0 || type == 1) {
677 cpu_breakpoint_remove(env, addr);
678 put_packet(s, "OK");
679 } else {
680 goto breakpoint_error;
681 }
682 break;
683 default:
684 // unknown_command:
685 /* put empty packet */
686 buf[0] = '\0';
687 put_packet(s, buf);
688 break;
689 }
690 return RS_IDLE;
691 }
692
693 extern void tb_flush(CPUState *env);
694
695 #ifndef CONFIG_USER_ONLY
696 static void gdb_vm_stopped(void *opaque, int reason)
697 {
698 GDBState *s = opaque;
699 char buf[256];
700 int ret;
701
702 /* disable single step if it was enable */
703 cpu_single_step(s->env, 0);
704
705 if (reason == EXCP_DEBUG) {
706 tb_flush(s->env);
707 ret = SIGTRAP;
708 } else if (reason == EXCP_INTERRUPT) {
709 ret = SIGINT;
710 } else {
711 ret = 0;
712 }
713 snprintf(buf, sizeof(buf), "S%02x", ret);
714 put_packet(s, buf);
715 }
716 #endif
717
718 static void gdb_read_byte(GDBState *s, int ch)
719 {
720 CPUState *env = s->env;
721 int i, csum;
722 char reply[1];
723
724 #ifndef CONFIG_USER_ONLY
725 if (vm_running) {
726 /* when the CPU is running, we cannot do anything except stop
727 it when receiving a char */
728 vm_stop(EXCP_INTERRUPT);
729 } else
730 #endif
731 {
732 switch(s->state) {
733 case RS_IDLE:
734 if (ch == '$') {
735 s->line_buf_index = 0;
736 s->state = RS_GETLINE;
737 }
738 break;
739 case RS_GETLINE:
740 if (ch == '#') {
741 s->state = RS_CHKSUM1;
742 } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
743 s->state = RS_IDLE;
744 } else {
745 s->line_buf[s->line_buf_index++] = ch;
746 }
747 break;
748 case RS_CHKSUM1:
749 s->line_buf[s->line_buf_index] = '\0';
750 s->line_csum = fromhex(ch) << 4;
751 s->state = RS_CHKSUM2;
752 break;
753 case RS_CHKSUM2:
754 s->line_csum |= fromhex(ch);
755 csum = 0;
756 for(i = 0; i < s->line_buf_index; i++) {
757 csum += s->line_buf[i];
758 }
759 if (s->line_csum != (csum & 0xff)) {
760 reply[0] = '-';
761 put_buffer(s, reply, 1);
762 s->state = RS_IDLE;
763 } else {
764 reply[0] = '+';
765 put_buffer(s, reply, 1);
766 s->state = gdb_handle_packet(s, env, s->line_buf);
767 }
768 break;
769 }
770 }
771 }
772
773 #ifdef CONFIG_USER_ONLY
774 int
775 gdb_handlesig (CPUState *env, int sig)
776 {
777 GDBState *s;
778 char buf[256];
779 int n;
780
781 if (gdbserver_fd < 0)
782 return sig;
783
784 s = &gdbserver_state;
785
786 /* disable single step if it was enabled */
787 cpu_single_step(env, 0);
788 tb_flush(env);
789
790 if (sig != 0)
791 {
792 snprintf(buf, sizeof(buf), "S%02x", sig);
793 put_packet(s, buf);
794 }
795
796 sig = 0;
797 s->state = RS_IDLE;
798 s->running_state = 0;
799 while (s->running_state == 0) {
800 n = read (s->fd, buf, 256);
801 if (n > 0)
802 {
803 int i;
804
805 for (i = 0; i < n; i++)
806 gdb_read_byte (s, buf[i]);
807 }
808 else if (n == 0 || errno != EAGAIN)
809 {
810 /* XXX: Connection closed. Should probably wait for annother
811 connection before continuing. */
812 return sig;
813 }
814 }
815 return sig;
816 }
817
818 /* Tell the remote gdb that the process has exited. */
819 void gdb_exit(CPUState *env, int code)
820 {
821 GDBState *s;
822 char buf[4];
823
824 if (gdbserver_fd < 0)
825 return;
826
827 s = &gdbserver_state;
828
829 snprintf(buf, sizeof(buf), "W%02x", code);
830 put_packet(s, buf);
831 }
832
833 #else
834 static void gdb_read(void *opaque)
835 {
836 GDBState *s = opaque;
837 int i, size;
838 uint8_t buf[4096];
839
840 size = recv(s->fd, buf, sizeof(buf), 0);
841 if (size < 0)
842 return;
843 if (size == 0) {
844 /* end of connection */
845 qemu_del_vm_stop_handler(gdb_vm_stopped, s);
846 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
847 qemu_free(s);
848 vm_start();
849 } else {
850 for(i = 0; i < size; i++)
851 gdb_read_byte(s, buf[i]);
852 }
853 }
854
855 #endif
856
857 static void gdb_accept(void *opaque)
858 {
859 GDBState *s;
860 struct sockaddr_in sockaddr;
861 socklen_t len;
862 int val, fd;
863
864 for(;;) {
865 len = sizeof(sockaddr);
866 fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
867 if (fd < 0 && errno != EINTR) {
868 perror("accept");
869 return;
870 } else if (fd >= 0) {
871 break;
872 }
873 }
874
875 /* set short latency */
876 val = 1;
877 setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
878
879 #ifdef CONFIG_USER_ONLY
880 s = &gdbserver_state;
881 memset (s, 0, sizeof (GDBState));
882 #else
883 s = qemu_mallocz(sizeof(GDBState));
884 if (!s) {
885 close(fd);
886 return;
887 }
888 #endif
889 s->env = first_cpu; /* XXX: allow to change CPU */
890 s->fd = fd;
891
892 #ifdef CONFIG_USER_ONLY
893 fcntl(fd, F_SETFL, O_NONBLOCK);
894 #else
895 socket_set_nonblock(fd);
896
897 /* stop the VM */
898 vm_stop(EXCP_INTERRUPT);
899
900 /* start handling I/O */
901 qemu_set_fd_handler(s->fd, gdb_read, NULL, s);
902 /* when the VM is stopped, the following callback is called */
903 qemu_add_vm_stop_handler(gdb_vm_stopped, s);
904 #endif
905 }
906
907 static int gdbserver_open(int port)
908 {
909 struct sockaddr_in sockaddr;
910 int fd, val, ret;
911
912 fd = socket(PF_INET, SOCK_STREAM, 0);
913 if (fd < 0) {
914 perror("socket");
915 return -1;
916 }
917
918 /* allow fast reuse */
919 val = 1;
920 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *)&val, sizeof(val));
921
922 sockaddr.sin_family = AF_INET;
923 sockaddr.sin_port = htons(port);
924 sockaddr.sin_addr.s_addr = 0;
925 ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
926 if (ret < 0) {
927 perror("bind");
928 return -1;
929 }
930 ret = listen(fd, 0);
931 if (ret < 0) {
932 perror("listen");
933 return -1;
934 }
935 #ifndef CONFIG_USER_ONLY
936 socket_set_nonblock(fd);
937 #endif
938 return fd;
939 }
940
941 int gdbserver_start(int port)
942 {
943 gdbserver_fd = gdbserver_open(port);
944 if (gdbserver_fd < 0)
945 return -1;
946 /* accept connections */
947 #ifdef CONFIG_USER_ONLY
948 gdb_accept (NULL);
949 #else
950 qemu_set_fd_handler(gdbserver_fd, gdb_accept, NULL, NULL);
951 #endif
952 return 0;
953 }