]> git.proxmox.com Git - qemu.git/blob - gdbstub.c
Add support for the 'k' (kill) and 'D' (detach) packets (Jason Wessel).
[qemu.git] / gdbstub.c
1 /*
2 * gdb server stub
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20 #include "config.h"
21 #ifdef CONFIG_USER_ONLY
22 #include <stdlib.h>
23 #include <stdio.h>
24 #include <stdarg.h>
25 #include <string.h>
26 #include <errno.h>
27 #include <unistd.h>
28 #include <fcntl.h>
29
30 #include "qemu.h"
31 #else
32 #include "qemu-common.h"
33 #include "qemu-char.h"
34 #include "sysemu.h"
35 #include "gdbstub.h"
36 #endif
37
38 #include "qemu_socket.h"
39 #ifdef _WIN32
40 /* XXX: these constants may be independent of the host ones even for Unix */
41 #ifndef SIGTRAP
42 #define SIGTRAP 5
43 #endif
44 #ifndef SIGINT
45 #define SIGINT 2
46 #endif
47 #else
48 #include <signal.h>
49 #endif
50
51 //#define DEBUG_GDB
52
53 enum RSState {
54 RS_IDLE,
55 RS_GETLINE,
56 RS_CHKSUM1,
57 RS_CHKSUM2,
58 RS_SYSCALL,
59 };
60 typedef struct GDBState {
61 CPUState *env; /* current CPU */
62 enum RSState state; /* parsing state */
63 char line_buf[4096];
64 int line_buf_index;
65 int line_csum;
66 uint8_t last_packet[4100];
67 int last_packet_len;
68 #ifdef CONFIG_USER_ONLY
69 int fd;
70 int running_state;
71 #else
72 CharDriverState *chr;
73 #endif
74 } GDBState;
75
76 /* By default use no IRQs and no timers while single stepping so as to
77 * make single stepping like an ICE HW step.
78 */
79 static int sstep_flags = SSTEP_ENABLE|SSTEP_NOIRQ|SSTEP_NOTIMER;
80
81 #ifdef CONFIG_USER_ONLY
82 /* XXX: This is not thread safe. Do we care? */
83 static int gdbserver_fd = -1;
84
85 /* XXX: remove this hack. */
86 static GDBState gdbserver_state;
87
88 static int get_char(GDBState *s)
89 {
90 uint8_t ch;
91 int ret;
92
93 for(;;) {
94 ret = recv(s->fd, &ch, 1, 0);
95 if (ret < 0) {
96 if (errno != EINTR && errno != EAGAIN)
97 return -1;
98 } else if (ret == 0) {
99 return -1;
100 } else {
101 break;
102 }
103 }
104 return ch;
105 }
106 #endif
107
108 /* GDB stub state for use by semihosting syscalls. */
109 static GDBState *gdb_syscall_state;
110 static gdb_syscall_complete_cb gdb_current_syscall_cb;
111
112 enum {
113 GDB_SYS_UNKNOWN,
114 GDB_SYS_ENABLED,
115 GDB_SYS_DISABLED,
116 } gdb_syscall_mode;
117
118 /* If gdb is connected when the first semihosting syscall occurs then use
119 remote gdb syscalls. Otherwise use native file IO. */
120 int use_gdb_syscalls(void)
121 {
122 if (gdb_syscall_mode == GDB_SYS_UNKNOWN) {
123 gdb_syscall_mode = (gdb_syscall_state ? GDB_SYS_ENABLED
124 : GDB_SYS_DISABLED);
125 }
126 return gdb_syscall_mode == GDB_SYS_ENABLED;
127 }
128
129 /* Resume execution. */
130 static inline void gdb_continue(GDBState *s)
131 {
132 #ifdef CONFIG_USER_ONLY
133 s->running_state = 1;
134 #else
135 vm_start();
136 #endif
137 }
138
139 static void put_buffer(GDBState *s, const uint8_t *buf, int len)
140 {
141 #ifdef CONFIG_USER_ONLY
142 int ret;
143
144 while (len > 0) {
145 ret = send(s->fd, buf, len, 0);
146 if (ret < 0) {
147 if (errno != EINTR && errno != EAGAIN)
148 return;
149 } else {
150 buf += ret;
151 len -= ret;
152 }
153 }
154 #else
155 qemu_chr_write(s->chr, buf, len);
156 #endif
157 }
158
159 static inline int fromhex(int v)
160 {
161 if (v >= '0' && v <= '9')
162 return v - '0';
163 else if (v >= 'A' && v <= 'F')
164 return v - 'A' + 10;
165 else if (v >= 'a' && v <= 'f')
166 return v - 'a' + 10;
167 else
168 return 0;
169 }
170
171 static inline int tohex(int v)
172 {
173 if (v < 10)
174 return v + '0';
175 else
176 return v - 10 + 'a';
177 }
178
179 static void memtohex(char *buf, const uint8_t *mem, int len)
180 {
181 int i, c;
182 char *q;
183 q = buf;
184 for(i = 0; i < len; i++) {
185 c = mem[i];
186 *q++ = tohex(c >> 4);
187 *q++ = tohex(c & 0xf);
188 }
189 *q = '\0';
190 }
191
192 static void hextomem(uint8_t *mem, const char *buf, int len)
193 {
194 int i;
195
196 for(i = 0; i < len; i++) {
197 mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
198 buf += 2;
199 }
200 }
201
202 /* return -1 if error, 0 if OK */
203 static int put_packet(GDBState *s, char *buf)
204 {
205 int len, csum, i;
206 uint8_t *p;
207
208 #ifdef DEBUG_GDB
209 printf("reply='%s'\n", buf);
210 #endif
211
212 for(;;) {
213 p = s->last_packet;
214 *(p++) = '$';
215 len = strlen(buf);
216 memcpy(p, buf, len);
217 p += len;
218 csum = 0;
219 for(i = 0; i < len; i++) {
220 csum += buf[i];
221 }
222 *(p++) = '#';
223 *(p++) = tohex((csum >> 4) & 0xf);
224 *(p++) = tohex((csum) & 0xf);
225
226 s->last_packet_len = p - s->last_packet;
227 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
228
229 #ifdef CONFIG_USER_ONLY
230 i = get_char(s);
231 if (i < 0)
232 return -1;
233 if (i == '+')
234 break;
235 #else
236 break;
237 #endif
238 }
239 return 0;
240 }
241
242 #if defined(TARGET_I386)
243
244 #ifdef TARGET_X86_64
245 static const uint8_t gdb_x86_64_regs[16] = {
246 R_EAX, R_EBX, R_ECX, R_EDX, R_ESI, R_EDI, R_EBP, R_ESP,
247 8, 9, 10, 11, 12, 13, 14, 15,
248 };
249 #endif
250
251 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
252 {
253 int i, fpus, nb_regs;
254 uint8_t *p;
255
256 p = mem_buf;
257 #ifdef TARGET_X86_64
258 if (env->hflags & HF_CS64_MASK) {
259 nb_regs = 16;
260 for(i = 0; i < 16; i++) {
261 *(uint64_t *)p = tswap64(env->regs[gdb_x86_64_regs[i]]);
262 p += 8;
263 }
264 *(uint64_t *)p = tswap64(env->eip);
265 p += 8;
266 } else
267 #endif
268 {
269 nb_regs = 8;
270 for(i = 0; i < 8; i++) {
271 *(uint32_t *)p = tswap32(env->regs[i]);
272 p += 4;
273 }
274 *(uint32_t *)p = tswap32(env->eip);
275 p += 4;
276 }
277
278 *(uint32_t *)p = tswap32(env->eflags);
279 p += 4;
280 *(uint32_t *)p = tswap32(env->segs[R_CS].selector);
281 p += 4;
282 *(uint32_t *)p = tswap32(env->segs[R_SS].selector);
283 p += 4;
284 *(uint32_t *)p = tswap32(env->segs[R_DS].selector);
285 p += 4;
286 *(uint32_t *)p = tswap32(env->segs[R_ES].selector);
287 p += 4;
288 *(uint32_t *)p = tswap32(env->segs[R_FS].selector);
289 p += 4;
290 *(uint32_t *)p = tswap32(env->segs[R_GS].selector);
291 p += 4;
292 for(i = 0; i < 8; i++) {
293 /* XXX: convert floats */
294 #ifdef USE_X86LDOUBLE
295 memcpy(p, &env->fpregs[i], 10);
296 #else
297 memset(p, 0, 10);
298 #endif
299 p += 10;
300 }
301 *(uint32_t *)p = tswap32(env->fpuc); /* fctrl */
302 p += 4;
303 fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
304 *(uint32_t *)p = tswap32(fpus); /* fstat */
305 p += 4;
306 *(uint32_t *)p = 0; /* ftag */
307 p += 4;
308 *(uint32_t *)p = 0; /* fiseg */
309 p += 4;
310 *(uint32_t *)p = 0; /* fioff */
311 p += 4;
312 *(uint32_t *)p = 0; /* foseg */
313 p += 4;
314 *(uint32_t *)p = 0; /* fooff */
315 p += 4;
316 *(uint32_t *)p = 0; /* fop */
317 p += 4;
318 for(i = 0; i < nb_regs; i++) {
319 *(uint64_t *)p = tswap64(env->xmm_regs[i].XMM_Q(0));
320 p += 8;
321 *(uint64_t *)p = tswap64(env->xmm_regs[i].XMM_Q(1));
322 p += 8;
323 }
324 *(uint32_t *)p = tswap32(env->mxcsr);
325 p += 4;
326 return p - mem_buf;
327 }
328
329 static inline void cpu_gdb_load_seg(CPUState *env, const uint8_t **pp,
330 int sreg)
331 {
332 const uint8_t *p;
333 uint32_t sel;
334 p = *pp;
335 sel = tswap32(*(uint32_t *)p);
336 p += 4;
337 if (sel != env->segs[sreg].selector) {
338 #if defined(CONFIG_USER_ONLY)
339 cpu_x86_load_seg(env, sreg, sel);
340 #else
341 /* XXX: do it with a debug function which does not raise an
342 exception */
343 #endif
344 }
345 *pp = p;
346 }
347
348 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
349 {
350 const uint8_t *p = mem_buf;
351 int i, nb_regs;
352 uint16_t fpus;
353
354 #ifdef TARGET_X86_64
355 if (env->hflags & HF_CS64_MASK) {
356 nb_regs = 16;
357 for(i = 0; i < 16; i++) {
358 env->regs[gdb_x86_64_regs[i]] = tswap64(*(uint64_t *)p);
359 p += 8;
360 }
361 env->eip = tswap64(*(uint64_t *)p);
362 p += 8;
363 } else
364 #endif
365 {
366 nb_regs = 8;
367 for(i = 0; i < 8; i++) {
368 env->regs[i] = tswap32(*(uint32_t *)p);
369 p += 4;
370 }
371 env->eip = tswap32(*(uint32_t *)p);
372 p += 4;
373 }
374 env->eflags = tswap32(*(uint32_t *)p);
375 p += 4;
376 cpu_gdb_load_seg(env, &p, R_CS);
377 cpu_gdb_load_seg(env, &p, R_SS);
378 cpu_gdb_load_seg(env, &p, R_DS);
379 cpu_gdb_load_seg(env, &p, R_ES);
380 cpu_gdb_load_seg(env, &p, R_FS);
381 cpu_gdb_load_seg(env, &p, R_GS);
382
383 /* FPU state */
384 for(i = 0; i < 8; i++) {
385 /* XXX: convert floats */
386 #ifdef USE_X86LDOUBLE
387 memcpy(&env->fpregs[i], p, 10);
388 #endif
389 p += 10;
390 }
391 env->fpuc = tswap32(*(uint32_t *)p); /* fctrl */
392 p += 4;
393 fpus = tswap32(*(uint32_t *)p);
394 p += 4;
395 env->fpstt = (fpus >> 11) & 7;
396 env->fpus = fpus & ~0x3800;
397 p += 4 * 6;
398
399 if (size >= ((p - mem_buf) + 16 * nb_regs + 4)) {
400 /* SSE state */
401 for(i = 0; i < nb_regs; i++) {
402 env->xmm_regs[i].XMM_Q(0) = tswap64(*(uint64_t *)p);
403 p += 8;
404 env->xmm_regs[i].XMM_Q(1) = tswap64(*(uint64_t *)p);
405 p += 8;
406 }
407 env->mxcsr = tswap32(*(uint32_t *)p);
408 p += 4;
409 }
410 }
411
412 #elif defined (TARGET_PPC)
413 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
414 {
415 uint32_t *registers = (uint32_t *)mem_buf, tmp;
416 int i;
417
418 /* fill in gprs */
419 for(i = 0; i < 32; i++) {
420 registers[i] = tswapl(env->gpr[i]);
421 }
422 /* fill in fprs */
423 for (i = 0; i < 32; i++) {
424 registers[(i * 2) + 32] = tswapl(*((uint32_t *)&env->fpr[i]));
425 registers[(i * 2) + 33] = tswapl(*((uint32_t *)&env->fpr[i] + 1));
426 }
427 /* nip, msr, ccr, lnk, ctr, xer, mq */
428 registers[96] = tswapl(env->nip);
429 registers[97] = tswapl(env->msr);
430 tmp = 0;
431 for (i = 0; i < 8; i++)
432 tmp |= env->crf[i] << (32 - ((i + 1) * 4));
433 registers[98] = tswapl(tmp);
434 registers[99] = tswapl(env->lr);
435 registers[100] = tswapl(env->ctr);
436 registers[101] = tswapl(ppc_load_xer(env));
437 registers[102] = 0;
438
439 return 103 * 4;
440 }
441
442 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
443 {
444 uint32_t *registers = (uint32_t *)mem_buf;
445 int i;
446
447 /* fill in gprs */
448 for (i = 0; i < 32; i++) {
449 env->gpr[i] = tswapl(registers[i]);
450 }
451 /* fill in fprs */
452 for (i = 0; i < 32; i++) {
453 *((uint32_t *)&env->fpr[i]) = tswapl(registers[(i * 2) + 32]);
454 *((uint32_t *)&env->fpr[i] + 1) = tswapl(registers[(i * 2) + 33]);
455 }
456 /* nip, msr, ccr, lnk, ctr, xer, mq */
457 env->nip = tswapl(registers[96]);
458 ppc_store_msr(env, tswapl(registers[97]));
459 registers[98] = tswapl(registers[98]);
460 for (i = 0; i < 8; i++)
461 env->crf[i] = (registers[98] >> (32 - ((i + 1) * 4))) & 0xF;
462 env->lr = tswapl(registers[99]);
463 env->ctr = tswapl(registers[100]);
464 ppc_store_xer(env, tswapl(registers[101]));
465 }
466 #elif defined (TARGET_SPARC)
467 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
468 {
469 target_ulong *registers = (target_ulong *)mem_buf;
470 int i;
471
472 /* fill in g0..g7 */
473 for(i = 0; i < 8; i++) {
474 registers[i] = tswapl(env->gregs[i]);
475 }
476 /* fill in register window */
477 for(i = 0; i < 24; i++) {
478 registers[i + 8] = tswapl(env->regwptr[i]);
479 }
480 #ifndef TARGET_SPARC64
481 /* fill in fprs */
482 for (i = 0; i < 32; i++) {
483 registers[i + 32] = tswapl(*((uint32_t *)&env->fpr[i]));
484 }
485 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
486 registers[64] = tswapl(env->y);
487 {
488 target_ulong tmp;
489
490 tmp = GET_PSR(env);
491 registers[65] = tswapl(tmp);
492 }
493 registers[66] = tswapl(env->wim);
494 registers[67] = tswapl(env->tbr);
495 registers[68] = tswapl(env->pc);
496 registers[69] = tswapl(env->npc);
497 registers[70] = tswapl(env->fsr);
498 registers[71] = 0; /* csr */
499 registers[72] = 0;
500 return 73 * sizeof(target_ulong);
501 #else
502 /* fill in fprs */
503 for (i = 0; i < 64; i += 2) {
504 uint64_t tmp;
505
506 tmp = ((uint64_t)*(uint32_t *)&env->fpr[i]) << 32;
507 tmp |= *(uint32_t *)&env->fpr[i + 1];
508 registers[i / 2 + 32] = tswap64(tmp);
509 }
510 registers[64] = tswapl(env->pc);
511 registers[65] = tswapl(env->npc);
512 registers[66] = tswapl(((uint64_t)GET_CCR(env) << 32) |
513 ((env->asi & 0xff) << 24) |
514 ((env->pstate & 0xfff) << 8) |
515 GET_CWP64(env));
516 registers[67] = tswapl(env->fsr);
517 registers[68] = tswapl(env->fprs);
518 registers[69] = tswapl(env->y);
519 return 70 * sizeof(target_ulong);
520 #endif
521 }
522
523 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
524 {
525 target_ulong *registers = (target_ulong *)mem_buf;
526 int i;
527
528 /* fill in g0..g7 */
529 for(i = 0; i < 7; i++) {
530 env->gregs[i] = tswapl(registers[i]);
531 }
532 /* fill in register window */
533 for(i = 0; i < 24; i++) {
534 env->regwptr[i] = tswapl(registers[i + 8]);
535 }
536 #ifndef TARGET_SPARC64
537 /* fill in fprs */
538 for (i = 0; i < 32; i++) {
539 *((uint32_t *)&env->fpr[i]) = tswapl(registers[i + 32]);
540 }
541 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
542 env->y = tswapl(registers[64]);
543 PUT_PSR(env, tswapl(registers[65]));
544 env->wim = tswapl(registers[66]);
545 env->tbr = tswapl(registers[67]);
546 env->pc = tswapl(registers[68]);
547 env->npc = tswapl(registers[69]);
548 env->fsr = tswapl(registers[70]);
549 #else
550 for (i = 0; i < 64; i += 2) {
551 uint64_t tmp;
552
553 tmp = tswap64(registers[i / 2 + 32]);
554 *((uint32_t *)&env->fpr[i]) = tmp >> 32;
555 *((uint32_t *)&env->fpr[i + 1]) = tmp & 0xffffffff;
556 }
557 env->pc = tswapl(registers[64]);
558 env->npc = tswapl(registers[65]);
559 {
560 uint64_t tmp = tswapl(registers[66]);
561
562 PUT_CCR(env, tmp >> 32);
563 env->asi = (tmp >> 24) & 0xff;
564 env->pstate = (tmp >> 8) & 0xfff;
565 PUT_CWP64(env, tmp & 0xff);
566 }
567 env->fsr = tswapl(registers[67]);
568 env->fprs = tswapl(registers[68]);
569 env->y = tswapl(registers[69]);
570 #endif
571 }
572 #elif defined (TARGET_ARM)
573 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
574 {
575 int i;
576 uint8_t *ptr;
577
578 ptr = mem_buf;
579 /* 16 core integer registers (4 bytes each). */
580 for (i = 0; i < 16; i++)
581 {
582 *(uint32_t *)ptr = tswapl(env->regs[i]);
583 ptr += 4;
584 }
585 /* 8 FPA registers (12 bytes each), FPS (4 bytes).
586 Not yet implemented. */
587 memset (ptr, 0, 8 * 12 + 4);
588 ptr += 8 * 12 + 4;
589 /* CPSR (4 bytes). */
590 *(uint32_t *)ptr = tswapl (cpsr_read(env));
591 ptr += 4;
592
593 return ptr - mem_buf;
594 }
595
596 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
597 {
598 int i;
599 uint8_t *ptr;
600
601 ptr = mem_buf;
602 /* Core integer registers. */
603 for (i = 0; i < 16; i++)
604 {
605 env->regs[i] = tswapl(*(uint32_t *)ptr);
606 ptr += 4;
607 }
608 /* Ignore FPA regs and scr. */
609 ptr += 8 * 12 + 4;
610 cpsr_write (env, tswapl(*(uint32_t *)ptr), 0xffffffff);
611 }
612 #elif defined (TARGET_M68K)
613 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
614 {
615 int i;
616 uint8_t *ptr;
617 CPU_DoubleU u;
618
619 ptr = mem_buf;
620 /* D0-D7 */
621 for (i = 0; i < 8; i++) {
622 *(uint32_t *)ptr = tswapl(env->dregs[i]);
623 ptr += 4;
624 }
625 /* A0-A7 */
626 for (i = 0; i < 8; i++) {
627 *(uint32_t *)ptr = tswapl(env->aregs[i]);
628 ptr += 4;
629 }
630 *(uint32_t *)ptr = tswapl(env->sr);
631 ptr += 4;
632 *(uint32_t *)ptr = tswapl(env->pc);
633 ptr += 4;
634 /* F0-F7. The 68881/68040 have 12-bit extended precision registers.
635 ColdFire has 8-bit double precision registers. */
636 for (i = 0; i < 8; i++) {
637 u.d = env->fregs[i];
638 *(uint32_t *)ptr = tswap32(u.l.upper);
639 *(uint32_t *)ptr = tswap32(u.l.lower);
640 }
641 /* FP control regs (not implemented). */
642 memset (ptr, 0, 3 * 4);
643 ptr += 3 * 4;
644
645 return ptr - mem_buf;
646 }
647
648 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
649 {
650 int i;
651 uint8_t *ptr;
652 CPU_DoubleU u;
653
654 ptr = mem_buf;
655 /* D0-D7 */
656 for (i = 0; i < 8; i++) {
657 env->dregs[i] = tswapl(*(uint32_t *)ptr);
658 ptr += 4;
659 }
660 /* A0-A7 */
661 for (i = 0; i < 8; i++) {
662 env->aregs[i] = tswapl(*(uint32_t *)ptr);
663 ptr += 4;
664 }
665 env->sr = tswapl(*(uint32_t *)ptr);
666 ptr += 4;
667 env->pc = tswapl(*(uint32_t *)ptr);
668 ptr += 4;
669 /* F0-F7. The 68881/68040 have 12-bit extended precision registers.
670 ColdFire has 8-bit double precision registers. */
671 for (i = 0; i < 8; i++) {
672 u.l.upper = tswap32(*(uint32_t *)ptr);
673 u.l.lower = tswap32(*(uint32_t *)ptr);
674 env->fregs[i] = u.d;
675 }
676 /* FP control regs (not implemented). */
677 ptr += 3 * 4;
678 }
679 #elif defined (TARGET_MIPS)
680 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
681 {
682 int i;
683 uint8_t *ptr;
684
685 ptr = mem_buf;
686 for (i = 0; i < 32; i++)
687 {
688 *(target_ulong *)ptr = tswapl(env->gpr[env->current_tc][i]);
689 ptr += sizeof(target_ulong);
690 }
691
692 *(target_ulong *)ptr = (int32_t)tswap32(env->CP0_Status);
693 ptr += sizeof(target_ulong);
694
695 *(target_ulong *)ptr = tswapl(env->LO[env->current_tc][0]);
696 ptr += sizeof(target_ulong);
697
698 *(target_ulong *)ptr = tswapl(env->HI[env->current_tc][0]);
699 ptr += sizeof(target_ulong);
700
701 *(target_ulong *)ptr = tswapl(env->CP0_BadVAddr);
702 ptr += sizeof(target_ulong);
703
704 *(target_ulong *)ptr = (int32_t)tswap32(env->CP0_Cause);
705 ptr += sizeof(target_ulong);
706
707 *(target_ulong *)ptr = tswapl(env->PC[env->current_tc]);
708 ptr += sizeof(target_ulong);
709
710 if (env->CP0_Config1 & (1 << CP0C1_FP))
711 {
712 for (i = 0; i < 32; i++)
713 {
714 if (env->CP0_Status & (1 << CP0St_FR))
715 *(target_ulong *)ptr = tswapl(env->fpu->fpr[i].d);
716 else
717 *(target_ulong *)ptr = tswap32(env->fpu->fpr[i].w[FP_ENDIAN_IDX]);
718 ptr += sizeof(target_ulong);
719 }
720
721 *(target_ulong *)ptr = (int32_t)tswap32(env->fpu->fcr31);
722 ptr += sizeof(target_ulong);
723
724 *(target_ulong *)ptr = (int32_t)tswap32(env->fpu->fcr0);
725 ptr += sizeof(target_ulong);
726 }
727
728 /* "fp", pseudo frame pointer. Not yet implemented in gdb. */
729 *(target_ulong *)ptr = 0;
730 ptr += sizeof(target_ulong);
731
732 /* Registers for embedded use, we just pad them. */
733 for (i = 0; i < 16; i++)
734 {
735 *(target_ulong *)ptr = 0;
736 ptr += sizeof(target_ulong);
737 }
738
739 /* Processor ID. */
740 *(target_ulong *)ptr = (int32_t)tswap32(env->CP0_PRid);
741 ptr += sizeof(target_ulong);
742
743 return ptr - mem_buf;
744 }
745
746 /* convert MIPS rounding mode in FCR31 to IEEE library */
747 static unsigned int ieee_rm[] =
748 {
749 float_round_nearest_even,
750 float_round_to_zero,
751 float_round_up,
752 float_round_down
753 };
754 #define RESTORE_ROUNDING_MODE \
755 set_float_rounding_mode(ieee_rm[env->fpu->fcr31 & 3], &env->fpu->fp_status)
756
757 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
758 {
759 int i;
760 uint8_t *ptr;
761
762 ptr = mem_buf;
763 for (i = 0; i < 32; i++)
764 {
765 env->gpr[env->current_tc][i] = tswapl(*(target_ulong *)ptr);
766 ptr += sizeof(target_ulong);
767 }
768
769 env->CP0_Status = tswapl(*(target_ulong *)ptr);
770 ptr += sizeof(target_ulong);
771
772 env->LO[env->current_tc][0] = tswapl(*(target_ulong *)ptr);
773 ptr += sizeof(target_ulong);
774
775 env->HI[env->current_tc][0] = tswapl(*(target_ulong *)ptr);
776 ptr += sizeof(target_ulong);
777
778 env->CP0_BadVAddr = tswapl(*(target_ulong *)ptr);
779 ptr += sizeof(target_ulong);
780
781 env->CP0_Cause = tswapl(*(target_ulong *)ptr);
782 ptr += sizeof(target_ulong);
783
784 env->PC[env->current_tc] = tswapl(*(target_ulong *)ptr);
785 ptr += sizeof(target_ulong);
786
787 if (env->CP0_Config1 & (1 << CP0C1_FP))
788 {
789 for (i = 0; i < 32; i++)
790 {
791 if (env->CP0_Status & (1 << CP0St_FR))
792 env->fpu->fpr[i].d = tswapl(*(target_ulong *)ptr);
793 else
794 env->fpu->fpr[i].w[FP_ENDIAN_IDX] = tswapl(*(target_ulong *)ptr);
795 ptr += sizeof(target_ulong);
796 }
797
798 env->fpu->fcr31 = tswapl(*(target_ulong *)ptr) & 0xFF83FFFF;
799 ptr += sizeof(target_ulong);
800
801 /* The remaining registers are assumed to be read-only. */
802
803 /* set rounding mode */
804 RESTORE_ROUNDING_MODE;
805
806 #ifndef CONFIG_SOFTFLOAT
807 /* no floating point exception for native float */
808 SET_FP_ENABLE(env->fcr31, 0);
809 #endif
810 }
811 }
812 #elif defined (TARGET_SH4)
813
814 /* Hint: Use "set architecture sh4" in GDB to see fpu registers */
815
816 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
817 {
818 uint32_t *ptr = (uint32_t *)mem_buf;
819 int i;
820
821 #define SAVE(x) *ptr++=tswapl(x)
822 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
823 for (i = 0; i < 8; i++) SAVE(env->gregs[i + 16]);
824 } else {
825 for (i = 0; i < 8; i++) SAVE(env->gregs[i]);
826 }
827 for (i = 8; i < 16; i++) SAVE(env->gregs[i]);
828 SAVE (env->pc);
829 SAVE (env->pr);
830 SAVE (env->gbr);
831 SAVE (env->vbr);
832 SAVE (env->mach);
833 SAVE (env->macl);
834 SAVE (env->sr);
835 SAVE (env->fpul);
836 SAVE (env->fpscr);
837 for (i = 0; i < 16; i++)
838 SAVE(env->fregs[i + ((env->fpscr & FPSCR_FR) ? 16 : 0)]);
839 SAVE (env->ssr);
840 SAVE (env->spc);
841 for (i = 0; i < 8; i++) SAVE(env->gregs[i]);
842 for (i = 0; i < 8; i++) SAVE(env->gregs[i + 16]);
843 return ((uint8_t *)ptr - mem_buf);
844 }
845
846 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
847 {
848 uint32_t *ptr = (uint32_t *)mem_buf;
849 int i;
850
851 #define LOAD(x) (x)=*ptr++;
852 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
853 for (i = 0; i < 8; i++) LOAD(env->gregs[i + 16]);
854 } else {
855 for (i = 0; i < 8; i++) LOAD(env->gregs[i]);
856 }
857 for (i = 8; i < 16; i++) LOAD(env->gregs[i]);
858 LOAD (env->pc);
859 LOAD (env->pr);
860 LOAD (env->gbr);
861 LOAD (env->vbr);
862 LOAD (env->mach);
863 LOAD (env->macl);
864 LOAD (env->sr);
865 LOAD (env->fpul);
866 LOAD (env->fpscr);
867 for (i = 0; i < 16; i++)
868 LOAD(env->fregs[i + ((env->fpscr & FPSCR_FR) ? 16 : 0)]);
869 LOAD (env->ssr);
870 LOAD (env->spc);
871 for (i = 0; i < 8; i++) LOAD(env->gregs[i]);
872 for (i = 0; i < 8; i++) LOAD(env->gregs[i + 16]);
873 }
874 #elif defined (TARGET_CRIS)
875
876 static int cris_save_32 (unsigned char *d, uint32_t value)
877 {
878 *d++ = (value);
879 *d++ = (value >>= 8);
880 *d++ = (value >>= 8);
881 *d++ = (value >>= 8);
882 return 4;
883 }
884 static int cris_save_16 (unsigned char *d, uint32_t value)
885 {
886 *d++ = (value);
887 *d++ = (value >>= 8);
888 return 2;
889 }
890 static int cris_save_8 (unsigned char *d, uint32_t value)
891 {
892 *d++ = (value);
893 return 1;
894 }
895
896 /* FIXME: this will bug on archs not supporting unaligned word accesses. */
897 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
898 {
899 uint8_t *ptr = mem_buf;
900 uint8_t srs;
901 int i;
902
903 for (i = 0; i < 16; i++)
904 ptr += cris_save_32 (ptr, env->regs[i]);
905
906 srs = env->pregs[PR_SRS];
907
908 ptr += cris_save_8 (ptr, env->pregs[0]);
909 ptr += cris_save_8 (ptr, env->pregs[1]);
910 ptr += cris_save_32 (ptr, env->pregs[2]);
911 ptr += cris_save_8 (ptr, srs);
912 ptr += cris_save_16 (ptr, env->pregs[4]);
913
914 for (i = 5; i < 16; i++)
915 ptr += cris_save_32 (ptr, env->pregs[i]);
916
917 ptr += cris_save_32 (ptr, env->pc);
918
919 for (i = 0; i < 16; i++)
920 ptr += cris_save_32 (ptr, env->sregs[srs][i]);
921
922 return ((uint8_t *)ptr - mem_buf);
923 }
924
925 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
926 {
927 uint32_t *ptr = (uint32_t *)mem_buf;
928 int i;
929
930 #define LOAD(x) (x)=*ptr++;
931 for (i = 0; i < 16; i++) LOAD(env->regs[i]);
932 LOAD (env->pc);
933 }
934 #else
935 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
936 {
937 return 0;
938 }
939
940 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
941 {
942 }
943
944 #endif
945
946 static int gdb_handle_packet(GDBState *s, CPUState *env, const char *line_buf)
947 {
948 const char *p;
949 int ch, reg_size, type;
950 char buf[4096];
951 uint8_t mem_buf[4096];
952 uint32_t *registers;
953 target_ulong addr, len;
954
955 #ifdef DEBUG_GDB
956 printf("command='%s'\n", line_buf);
957 #endif
958 p = line_buf;
959 ch = *p++;
960 switch(ch) {
961 case '?':
962 /* TODO: Make this return the correct value for user-mode. */
963 snprintf(buf, sizeof(buf), "S%02x", SIGTRAP);
964 put_packet(s, buf);
965 /* Remove all the breakpoints when this query is issued,
966 * because gdb is doing and initial connect and the state
967 * should be cleaned up.
968 */
969 cpu_breakpoint_remove_all(env);
970 cpu_watchpoint_remove_all(env);
971 break;
972 case 'c':
973 if (*p != '\0') {
974 addr = strtoull(p, (char **)&p, 16);
975 #if defined(TARGET_I386)
976 env->eip = addr;
977 #elif defined (TARGET_PPC)
978 env->nip = addr;
979 #elif defined (TARGET_SPARC)
980 env->pc = addr;
981 env->npc = addr + 4;
982 #elif defined (TARGET_ARM)
983 env->regs[15] = addr;
984 #elif defined (TARGET_SH4)
985 env->pc = addr;
986 #elif defined (TARGET_MIPS)
987 env->PC[env->current_tc] = addr;
988 #elif defined (TARGET_CRIS)
989 env->pc = addr;
990 #endif
991 }
992 gdb_continue(s);
993 return RS_IDLE;
994 case 'k':
995 /* Kill the target */
996 fprintf(stderr, "\nQEMU: Terminated via GDBstub\n");
997 exit(0);
998 case 'D':
999 /* Detach packet */
1000 cpu_breakpoint_remove_all(env);
1001 cpu_watchpoint_remove_all(env);
1002 gdb_continue(s);
1003 put_packet(s, "OK");
1004 break;
1005 case 's':
1006 if (*p != '\0') {
1007 addr = strtoull(p, (char **)&p, 16);
1008 #if defined(TARGET_I386)
1009 env->eip = addr;
1010 #elif defined (TARGET_PPC)
1011 env->nip = addr;
1012 #elif defined (TARGET_SPARC)
1013 env->pc = addr;
1014 env->npc = addr + 4;
1015 #elif defined (TARGET_ARM)
1016 env->regs[15] = addr;
1017 #elif defined (TARGET_SH4)
1018 env->pc = addr;
1019 #elif defined (TARGET_MIPS)
1020 env->PC[env->current_tc] = addr;
1021 #elif defined (TARGET_CRIS)
1022 env->pc = addr;
1023 #endif
1024 }
1025 cpu_single_step(env, sstep_flags);
1026 gdb_continue(s);
1027 return RS_IDLE;
1028 case 'F':
1029 {
1030 target_ulong ret;
1031 target_ulong err;
1032
1033 ret = strtoull(p, (char **)&p, 16);
1034 if (*p == ',') {
1035 p++;
1036 err = strtoull(p, (char **)&p, 16);
1037 } else {
1038 err = 0;
1039 }
1040 if (*p == ',')
1041 p++;
1042 type = *p;
1043 if (gdb_current_syscall_cb)
1044 gdb_current_syscall_cb(s->env, ret, err);
1045 if (type == 'C') {
1046 put_packet(s, "T02");
1047 } else {
1048 gdb_continue(s);
1049 }
1050 }
1051 break;
1052 case 'g':
1053 reg_size = cpu_gdb_read_registers(env, mem_buf);
1054 memtohex(buf, mem_buf, reg_size);
1055 put_packet(s, buf);
1056 break;
1057 case 'G':
1058 registers = (void *)mem_buf;
1059 len = strlen(p) / 2;
1060 hextomem((uint8_t *)registers, p, len);
1061 cpu_gdb_write_registers(env, mem_buf, len);
1062 put_packet(s, "OK");
1063 break;
1064 case 'm':
1065 addr = strtoull(p, (char **)&p, 16);
1066 if (*p == ',')
1067 p++;
1068 len = strtoull(p, NULL, 16);
1069 if (cpu_memory_rw_debug(env, addr, mem_buf, len, 0) != 0) {
1070 put_packet (s, "E14");
1071 } else {
1072 memtohex(buf, mem_buf, len);
1073 put_packet(s, buf);
1074 }
1075 break;
1076 case 'M':
1077 addr = strtoull(p, (char **)&p, 16);
1078 if (*p == ',')
1079 p++;
1080 len = strtoull(p, (char **)&p, 16);
1081 if (*p == ':')
1082 p++;
1083 hextomem(mem_buf, p, len);
1084 if (cpu_memory_rw_debug(env, addr, mem_buf, len, 1) != 0)
1085 put_packet(s, "E14");
1086 else
1087 put_packet(s, "OK");
1088 break;
1089 case 'Z':
1090 type = strtoul(p, (char **)&p, 16);
1091 if (*p == ',')
1092 p++;
1093 addr = strtoull(p, (char **)&p, 16);
1094 if (*p == ',')
1095 p++;
1096 len = strtoull(p, (char **)&p, 16);
1097 if (type == 0 || type == 1) {
1098 if (cpu_breakpoint_insert(env, addr) < 0)
1099 goto breakpoint_error;
1100 put_packet(s, "OK");
1101 #ifndef CONFIG_USER_ONLY
1102 } else if (type == 2) {
1103 if (cpu_watchpoint_insert(env, addr) < 0)
1104 goto breakpoint_error;
1105 put_packet(s, "OK");
1106 #endif
1107 } else {
1108 breakpoint_error:
1109 put_packet(s, "E22");
1110 }
1111 break;
1112 case 'z':
1113 type = strtoul(p, (char **)&p, 16);
1114 if (*p == ',')
1115 p++;
1116 addr = strtoull(p, (char **)&p, 16);
1117 if (*p == ',')
1118 p++;
1119 len = strtoull(p, (char **)&p, 16);
1120 if (type == 0 || type == 1) {
1121 cpu_breakpoint_remove(env, addr);
1122 put_packet(s, "OK");
1123 #ifndef CONFIG_USER_ONLY
1124 } else if (type == 2) {
1125 cpu_watchpoint_remove(env, addr);
1126 put_packet(s, "OK");
1127 #endif
1128 } else {
1129 goto breakpoint_error;
1130 }
1131 break;
1132 case 'q':
1133 case 'Q':
1134 /* parse any 'q' packets here */
1135 if (!strcmp(p,"qemu.sstepbits")) {
1136 /* Query Breakpoint bit definitions */
1137 sprintf(buf,"ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
1138 SSTEP_ENABLE,
1139 SSTEP_NOIRQ,
1140 SSTEP_NOTIMER);
1141 put_packet(s, buf);
1142 break;
1143 } else if (strncmp(p,"qemu.sstep",10) == 0) {
1144 /* Display or change the sstep_flags */
1145 p += 10;
1146 if (*p != '=') {
1147 /* Display current setting */
1148 sprintf(buf,"0x%x", sstep_flags);
1149 put_packet(s, buf);
1150 break;
1151 }
1152 p++;
1153 type = strtoul(p, (char **)&p, 16);
1154 sstep_flags = type;
1155 put_packet(s, "OK");
1156 break;
1157 }
1158 #ifdef CONFIG_LINUX_USER
1159 else if (strncmp(p, "Offsets", 7) == 0) {
1160 TaskState *ts = env->opaque;
1161
1162 sprintf(buf,
1163 "Text=" TARGET_ABI_FMT_lx ";Data=" TARGET_ABI_FMT_lx
1164 ";Bss=" TARGET_ABI_FMT_lx,
1165 ts->info->code_offset,
1166 ts->info->data_offset,
1167 ts->info->data_offset);
1168 put_packet(s, buf);
1169 break;
1170 }
1171 #endif
1172 /* Fall through. */
1173 default:
1174 /* put empty packet */
1175 buf[0] = '\0';
1176 put_packet(s, buf);
1177 break;
1178 }
1179 return RS_IDLE;
1180 }
1181
1182 extern void tb_flush(CPUState *env);
1183
1184 #ifndef CONFIG_USER_ONLY
1185 static void gdb_vm_stopped(void *opaque, int reason)
1186 {
1187 GDBState *s = opaque;
1188 char buf[256];
1189 int ret;
1190
1191 if (s->state == RS_SYSCALL)
1192 return;
1193
1194 /* disable single step if it was enable */
1195 cpu_single_step(s->env, 0);
1196
1197 if (reason == EXCP_DEBUG) {
1198 if (s->env->watchpoint_hit) {
1199 snprintf(buf, sizeof(buf), "T%02xwatch:" TARGET_FMT_lx ";",
1200 SIGTRAP,
1201 s->env->watchpoint[s->env->watchpoint_hit - 1].vaddr);
1202 put_packet(s, buf);
1203 s->env->watchpoint_hit = 0;
1204 return;
1205 }
1206 tb_flush(s->env);
1207 ret = SIGTRAP;
1208 } else if (reason == EXCP_INTERRUPT) {
1209 ret = SIGINT;
1210 } else {
1211 ret = 0;
1212 }
1213 snprintf(buf, sizeof(buf), "S%02x", ret);
1214 put_packet(s, buf);
1215 }
1216 #endif
1217
1218 /* Send a gdb syscall request.
1219 This accepts limited printf-style format specifiers, specifically:
1220 %x - target_ulong argument printed in hex.
1221 %lx - 64-bit argument printed in hex.
1222 %s - string pointer (target_ulong) and length (int) pair. */
1223 void gdb_do_syscall(gdb_syscall_complete_cb cb, char *fmt, ...)
1224 {
1225 va_list va;
1226 char buf[256];
1227 char *p;
1228 target_ulong addr;
1229 uint64_t i64;
1230 GDBState *s;
1231
1232 s = gdb_syscall_state;
1233 if (!s)
1234 return;
1235 gdb_current_syscall_cb = cb;
1236 s->state = RS_SYSCALL;
1237 #ifndef CONFIG_USER_ONLY
1238 vm_stop(EXCP_DEBUG);
1239 #endif
1240 s->state = RS_IDLE;
1241 va_start(va, fmt);
1242 p = buf;
1243 *(p++) = 'F';
1244 while (*fmt) {
1245 if (*fmt == '%') {
1246 fmt++;
1247 switch (*fmt++) {
1248 case 'x':
1249 addr = va_arg(va, target_ulong);
1250 p += sprintf(p, TARGET_FMT_lx, addr);
1251 break;
1252 case 'l':
1253 if (*(fmt++) != 'x')
1254 goto bad_format;
1255 i64 = va_arg(va, uint64_t);
1256 p += sprintf(p, "%" PRIx64, i64);
1257 break;
1258 case 's':
1259 addr = va_arg(va, target_ulong);
1260 p += sprintf(p, TARGET_FMT_lx "/%x", addr, va_arg(va, int));
1261 break;
1262 default:
1263 bad_format:
1264 fprintf(stderr, "gdbstub: Bad syscall format string '%s'\n",
1265 fmt - 1);
1266 break;
1267 }
1268 } else {
1269 *(p++) = *(fmt++);
1270 }
1271 }
1272 *p = 0;
1273 va_end(va);
1274 put_packet(s, buf);
1275 #ifdef CONFIG_USER_ONLY
1276 gdb_handlesig(s->env, 0);
1277 #else
1278 cpu_interrupt(s->env, CPU_INTERRUPT_EXIT);
1279 #endif
1280 }
1281
1282 static void gdb_read_byte(GDBState *s, int ch)
1283 {
1284 CPUState *env = s->env;
1285 int i, csum;
1286 uint8_t reply;
1287
1288 #ifndef CONFIG_USER_ONLY
1289 if (s->last_packet_len) {
1290 /* Waiting for a response to the last packet. If we see the start
1291 of a new command then abandon the previous response. */
1292 if (ch == '-') {
1293 #ifdef DEBUG_GDB
1294 printf("Got NACK, retransmitting\n");
1295 #endif
1296 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
1297 }
1298 #ifdef DEBUG_GDB
1299 else if (ch == '+')
1300 printf("Got ACK\n");
1301 else
1302 printf("Got '%c' when expecting ACK/NACK\n", ch);
1303 #endif
1304 if (ch == '+' || ch == '$')
1305 s->last_packet_len = 0;
1306 if (ch != '$')
1307 return;
1308 }
1309 if (vm_running) {
1310 /* when the CPU is running, we cannot do anything except stop
1311 it when receiving a char */
1312 vm_stop(EXCP_INTERRUPT);
1313 } else
1314 #endif
1315 {
1316 switch(s->state) {
1317 case RS_IDLE:
1318 if (ch == '$') {
1319 s->line_buf_index = 0;
1320 s->state = RS_GETLINE;
1321 }
1322 break;
1323 case RS_GETLINE:
1324 if (ch == '#') {
1325 s->state = RS_CHKSUM1;
1326 } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
1327 s->state = RS_IDLE;
1328 } else {
1329 s->line_buf[s->line_buf_index++] = ch;
1330 }
1331 break;
1332 case RS_CHKSUM1:
1333 s->line_buf[s->line_buf_index] = '\0';
1334 s->line_csum = fromhex(ch) << 4;
1335 s->state = RS_CHKSUM2;
1336 break;
1337 case RS_CHKSUM2:
1338 s->line_csum |= fromhex(ch);
1339 csum = 0;
1340 for(i = 0; i < s->line_buf_index; i++) {
1341 csum += s->line_buf[i];
1342 }
1343 if (s->line_csum != (csum & 0xff)) {
1344 reply = '-';
1345 put_buffer(s, &reply, 1);
1346 s->state = RS_IDLE;
1347 } else {
1348 reply = '+';
1349 put_buffer(s, &reply, 1);
1350 s->state = gdb_handle_packet(s, env, s->line_buf);
1351 }
1352 break;
1353 default:
1354 abort();
1355 }
1356 }
1357 }
1358
1359 #ifdef CONFIG_USER_ONLY
1360 int
1361 gdb_handlesig (CPUState *env, int sig)
1362 {
1363 GDBState *s;
1364 char buf[256];
1365 int n;
1366
1367 if (gdbserver_fd < 0)
1368 return sig;
1369
1370 s = &gdbserver_state;
1371
1372 /* disable single step if it was enabled */
1373 cpu_single_step(env, 0);
1374 tb_flush(env);
1375
1376 if (sig != 0)
1377 {
1378 snprintf(buf, sizeof(buf), "S%02x", sig);
1379 put_packet(s, buf);
1380 }
1381
1382 sig = 0;
1383 s->state = RS_IDLE;
1384 s->running_state = 0;
1385 while (s->running_state == 0) {
1386 n = read (s->fd, buf, 256);
1387 if (n > 0)
1388 {
1389 int i;
1390
1391 for (i = 0; i < n; i++)
1392 gdb_read_byte (s, buf[i]);
1393 }
1394 else if (n == 0 || errno != EAGAIN)
1395 {
1396 /* XXX: Connection closed. Should probably wait for annother
1397 connection before continuing. */
1398 return sig;
1399 }
1400 }
1401 return sig;
1402 }
1403
1404 /* Tell the remote gdb that the process has exited. */
1405 void gdb_exit(CPUState *env, int code)
1406 {
1407 GDBState *s;
1408 char buf[4];
1409
1410 if (gdbserver_fd < 0)
1411 return;
1412
1413 s = &gdbserver_state;
1414
1415 snprintf(buf, sizeof(buf), "W%02x", code);
1416 put_packet(s, buf);
1417 }
1418
1419
1420 static void gdb_accept(void *opaque)
1421 {
1422 GDBState *s;
1423 struct sockaddr_in sockaddr;
1424 socklen_t len;
1425 int val, fd;
1426
1427 for(;;) {
1428 len = sizeof(sockaddr);
1429 fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
1430 if (fd < 0 && errno != EINTR) {
1431 perror("accept");
1432 return;
1433 } else if (fd >= 0) {
1434 break;
1435 }
1436 }
1437
1438 /* set short latency */
1439 val = 1;
1440 setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
1441
1442 s = &gdbserver_state;
1443 memset (s, 0, sizeof (GDBState));
1444 s->env = first_cpu; /* XXX: allow to change CPU */
1445 s->fd = fd;
1446
1447 gdb_syscall_state = s;
1448
1449 fcntl(fd, F_SETFL, O_NONBLOCK);
1450 }
1451
1452 static int gdbserver_open(int port)
1453 {
1454 struct sockaddr_in sockaddr;
1455 int fd, val, ret;
1456
1457 fd = socket(PF_INET, SOCK_STREAM, 0);
1458 if (fd < 0) {
1459 perror("socket");
1460 return -1;
1461 }
1462
1463 /* allow fast reuse */
1464 val = 1;
1465 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *)&val, sizeof(val));
1466
1467 sockaddr.sin_family = AF_INET;
1468 sockaddr.sin_port = htons(port);
1469 sockaddr.sin_addr.s_addr = 0;
1470 ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
1471 if (ret < 0) {
1472 perror("bind");
1473 return -1;
1474 }
1475 ret = listen(fd, 0);
1476 if (ret < 0) {
1477 perror("listen");
1478 return -1;
1479 }
1480 return fd;
1481 }
1482
1483 int gdbserver_start(int port)
1484 {
1485 gdbserver_fd = gdbserver_open(port);
1486 if (gdbserver_fd < 0)
1487 return -1;
1488 /* accept connections */
1489 gdb_accept (NULL);
1490 return 0;
1491 }
1492 #else
1493 static int gdb_chr_can_receive(void *opaque)
1494 {
1495 return 1;
1496 }
1497
1498 static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size)
1499 {
1500 GDBState *s = opaque;
1501 int i;
1502
1503 for (i = 0; i < size; i++) {
1504 gdb_read_byte(s, buf[i]);
1505 }
1506 }
1507
1508 static void gdb_chr_event(void *opaque, int event)
1509 {
1510 switch (event) {
1511 case CHR_EVENT_RESET:
1512 vm_stop(EXCP_INTERRUPT);
1513 gdb_syscall_state = opaque;
1514 break;
1515 default:
1516 break;
1517 }
1518 }
1519
1520 int gdbserver_start(const char *port)
1521 {
1522 GDBState *s;
1523 char gdbstub_port_name[128];
1524 int port_num;
1525 char *p;
1526 CharDriverState *chr;
1527
1528 if (!port || !*port)
1529 return -1;
1530
1531 port_num = strtol(port, &p, 10);
1532 if (*p == 0) {
1533 /* A numeric value is interpreted as a port number. */
1534 snprintf(gdbstub_port_name, sizeof(gdbstub_port_name),
1535 "tcp::%d,nowait,nodelay,server", port_num);
1536 port = gdbstub_port_name;
1537 }
1538
1539 chr = qemu_chr_open(port);
1540 if (!chr)
1541 return -1;
1542
1543 s = qemu_mallocz(sizeof(GDBState));
1544 if (!s) {
1545 return -1;
1546 }
1547 s->env = first_cpu; /* XXX: allow to change CPU */
1548 s->chr = chr;
1549 qemu_chr_add_handlers(chr, gdb_chr_can_receive, gdb_chr_receive,
1550 gdb_chr_event, s);
1551 qemu_add_vm_stop_handler(gdb_vm_stopped, s);
1552 return 0;
1553 }
1554 #endif