]> git.proxmox.com Git - qemu.git/blob - gdbstub.c
update
[qemu.git] / gdbstub.c
1 /*
2 * gdb server stub
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20 #include "vl.h"
21
22 #include <sys/socket.h>
23 #include <netinet/in.h>
24 #include <netinet/tcp.h>
25 #include <signal.h>
26
27 //#define DEBUG_GDB
28
29 enum RSState {
30 RS_IDLE,
31 RS_GETLINE,
32 RS_CHKSUM1,
33 RS_CHKSUM2,
34 };
35
36 static int gdbserver_fd;
37
38 typedef struct GDBState {
39 enum RSState state;
40 int fd;
41 char line_buf[4096];
42 int line_buf_index;
43 int line_csum;
44 } GDBState;
45
46 static int get_char(GDBState *s)
47 {
48 uint8_t ch;
49 int ret;
50
51 for(;;) {
52 ret = read(s->fd, &ch, 1);
53 if (ret < 0) {
54 if (errno != EINTR && errno != EAGAIN)
55 return -1;
56 } else if (ret == 0) {
57 return -1;
58 } else {
59 break;
60 }
61 }
62 return ch;
63 }
64
65 static void put_buffer(GDBState *s, const uint8_t *buf, int len)
66 {
67 int ret;
68
69 while (len > 0) {
70 ret = write(s->fd, buf, len);
71 if (ret < 0) {
72 if (errno != EINTR && errno != EAGAIN)
73 return;
74 } else {
75 buf += ret;
76 len -= ret;
77 }
78 }
79 }
80
81 static inline int fromhex(int v)
82 {
83 if (v >= '0' && v <= '9')
84 return v - '0';
85 else if (v >= 'A' && v <= 'F')
86 return v - 'A' + 10;
87 else if (v >= 'a' && v <= 'f')
88 return v - 'a' + 10;
89 else
90 return 0;
91 }
92
93 static inline int tohex(int v)
94 {
95 if (v < 10)
96 return v + '0';
97 else
98 return v - 10 + 'a';
99 }
100
101 static void memtohex(char *buf, const uint8_t *mem, int len)
102 {
103 int i, c;
104 char *q;
105 q = buf;
106 for(i = 0; i < len; i++) {
107 c = mem[i];
108 *q++ = tohex(c >> 4);
109 *q++ = tohex(c & 0xf);
110 }
111 *q = '\0';
112 }
113
114 static void hextomem(uint8_t *mem, const char *buf, int len)
115 {
116 int i;
117
118 for(i = 0; i < len; i++) {
119 mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
120 buf += 2;
121 }
122 }
123
124 /* return -1 if error, 0 if OK */
125 static int put_packet(GDBState *s, char *buf)
126 {
127 char buf1[3];
128 int len, csum, ch, i;
129
130 #ifdef DEBUG_GDB
131 printf("reply='%s'\n", buf);
132 #endif
133
134 for(;;) {
135 buf1[0] = '$';
136 put_buffer(s, buf1, 1);
137 len = strlen(buf);
138 put_buffer(s, buf, len);
139 csum = 0;
140 for(i = 0; i < len; i++) {
141 csum += buf[i];
142 }
143 buf1[0] = '#';
144 buf1[1] = tohex((csum >> 4) & 0xf);
145 buf1[2] = tohex((csum) & 0xf);
146
147 put_buffer(s, buf1, 3);
148
149 ch = get_char(s);
150 if (ch < 0)
151 return -1;
152 if (ch == '+')
153 break;
154 }
155 return 0;
156 }
157
158 #if defined(TARGET_I386)
159
160 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
161 {
162 uint32_t *registers = (uint32_t *)mem_buf;
163 int i, fpus;
164
165 for(i = 0; i < 8; i++) {
166 registers[i] = env->regs[i];
167 }
168 registers[8] = env->eip;
169 registers[9] = env->eflags;
170 registers[10] = env->segs[R_CS].selector;
171 registers[11] = env->segs[R_SS].selector;
172 registers[12] = env->segs[R_DS].selector;
173 registers[13] = env->segs[R_ES].selector;
174 registers[14] = env->segs[R_FS].selector;
175 registers[15] = env->segs[R_GS].selector;
176 /* XXX: convert floats */
177 for(i = 0; i < 8; i++) {
178 memcpy(mem_buf + 16 * 4 + i * 10, &env->fpregs[i], 10);
179 }
180 registers[36] = env->fpuc;
181 fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
182 registers[37] = fpus;
183 registers[38] = 0; /* XXX: convert tags */
184 registers[39] = 0; /* fiseg */
185 registers[40] = 0; /* fioff */
186 registers[41] = 0; /* foseg */
187 registers[42] = 0; /* fooff */
188 registers[43] = 0; /* fop */
189
190 for(i = 0; i < 16; i++)
191 tswapls(&registers[i]);
192 for(i = 36; i < 44; i++)
193 tswapls(&registers[i]);
194 return 44 * 4;
195 }
196
197 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
198 {
199 uint32_t *registers = (uint32_t *)mem_buf;
200 int i;
201
202 for(i = 0; i < 8; i++) {
203 env->regs[i] = tswapl(registers[i]);
204 }
205 env->eip = tswapl(registers[8]);
206 env->eflags = tswapl(registers[9]);
207 #if defined(CONFIG_USER_ONLY)
208 #define LOAD_SEG(index, sreg)\
209 if (tswapl(registers[index]) != env->segs[sreg].selector)\
210 cpu_x86_load_seg(env, sreg, tswapl(registers[index]));
211 LOAD_SEG(10, R_CS);
212 LOAD_SEG(11, R_SS);
213 LOAD_SEG(12, R_DS);
214 LOAD_SEG(13, R_ES);
215 LOAD_SEG(14, R_FS);
216 LOAD_SEG(15, R_GS);
217 #endif
218 }
219
220 #elif defined (TARGET_PPC)
221 static uint32_t from_le32 (uint32_t *buf)
222 {
223 uint8_t *p = (uint8_t *)buf;
224
225 return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
226 }
227
228 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
229 {
230 uint32_t *registers = (uint32_t *)mem_buf, tmp;
231 int i;
232
233 /* fill in gprs */
234 for(i = 0; i < 32; i++) {
235 registers[i] = tswapl(env->gpr[i]);
236 }
237 /* fill in fprs */
238 for (i = 0; i < 32; i++) {
239 registers[(i * 2) + 32] = tswapl(*((uint32_t *)&env->fpr[i]));
240 registers[(i * 2) + 33] = tswapl(*((uint32_t *)&env->fpr[i] + 1));
241 }
242 /* nip, msr, ccr, lnk, ctr, xer, mq */
243 registers[96] = tswapl(env->nip);
244 registers[97] = tswapl(_load_msr(env));
245 tmp = 0;
246 for (i = 0; i < 8; i++)
247 tmp |= env->crf[i] << (32 - ((i + 1) * 4));
248 registers[98] = tswapl(tmp);
249 registers[99] = tswapl(env->lr);
250 registers[100] = tswapl(env->ctr);
251 registers[101] = tswapl(_load_xer(env));
252 registers[102] = 0;
253
254 return 103 * 4;
255 }
256
257 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
258 {
259 uint32_t *registers = (uint32_t *)mem_buf;
260 int i;
261
262 /* fill in gprs */
263 for (i = 0; i < 32; i++) {
264 env->gpr[i] = tswapl(registers[i]);
265 }
266 /* fill in fprs */
267 for (i = 0; i < 32; i++) {
268 *((uint32_t *)&env->fpr[i]) = tswapl(registers[(i * 2) + 32]);
269 *((uint32_t *)&env->fpr[i] + 1) = tswapl(registers[(i * 2) + 33]);
270 }
271 /* nip, msr, ccr, lnk, ctr, xer, mq */
272 env->nip = tswapl(registers[96]);
273 _store_msr(env, tswapl(registers[97]));
274 registers[98] = tswapl(registers[98]);
275 for (i = 0; i < 8; i++)
276 env->crf[i] = (registers[98] >> (32 - ((i + 1) * 4))) & 0xF;
277 env->lr = tswapl(registers[99]);
278 env->ctr = tswapl(registers[100]);
279 _store_xer(env, tswapl(registers[101]));
280 }
281 #elif defined (TARGET_SPARC)
282 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
283 {
284 uint32_t *registers = (uint32_t *)mem_buf, tmp;
285 int i;
286
287 /* fill in g0..g7 */
288 for(i = 0; i < 7; i++) {
289 registers[i] = tswapl(env->gregs[i]);
290 }
291 /* fill in register window */
292 for(i = 0; i < 24; i++) {
293 registers[i + 8] = tswapl(env->regwptr[i]);
294 }
295 /* fill in fprs */
296 for (i = 0; i < 32; i++) {
297 registers[i + 32] = tswapl(*((uint32_t *)&env->fpr[i]));
298 }
299 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
300 registers[64] = tswapl(env->y);
301 tmp = (0<<28) | (4<<24) | env->psr \
302 | (env->psrs? PSR_S : 0) \
303 | (env->psrs? PSR_PS : 0) \
304 | (env->psret? PSR_ET : 0) \
305 | env->cwp;
306 registers[65] = tswapl(tmp);
307 registers[66] = tswapl(env->wim);
308 registers[67] = tswapl(env->tbr);
309 registers[68] = tswapl(env->pc);
310 registers[69] = tswapl(env->npc);
311 registers[70] = tswapl(env->fsr);
312 registers[71] = 0; /* csr */
313 registers[72] = 0;
314
315 return 73 * 4;
316 }
317
318 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
319 {
320 uint32_t *registers = (uint32_t *)mem_buf, tmp;
321 int i;
322
323 /* fill in g0..g7 */
324 for(i = 0; i < 7; i++) {
325 env->gregs[i] = tswapl(registers[i]);
326 }
327 /* fill in register window */
328 for(i = 0; i < 24; i++) {
329 env->regwptr[i] = tswapl(registers[i]);
330 }
331 /* fill in fprs */
332 for (i = 0; i < 32; i++) {
333 *((uint32_t *)&env->fpr[i]) = tswapl(registers[i + 32]);
334 }
335 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
336 env->y = tswapl(registers[64]);
337 tmp = tswapl(registers[65]);
338 env->psr = tmp & ~PSR_ICC;
339 env->psrs = (tmp & PSR_S)? 1 : 0;
340 env->psrps = (tmp & PSR_PS)? 1 : 0;
341 env->psret = (tmp & PSR_ET)? 1 : 0;
342 env->cwp = (tmp & PSR_CWP);
343 env->wim = tswapl(registers[66]);
344 env->tbr = tswapl(registers[67]);
345 env->pc = tswapl(registers[68]);
346 env->npc = tswapl(registers[69]);
347 env->fsr = tswapl(registers[70]);
348 }
349 #else
350
351 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
352 {
353 return 0;
354 }
355
356 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
357 {
358 }
359
360 #endif
361
362 /* port = 0 means default port */
363 static int gdb_handle_packet(GDBState *s, const char *line_buf)
364 {
365 CPUState *env = cpu_single_env;
366 const char *p;
367 int ch, reg_size, type;
368 char buf[4096];
369 uint8_t mem_buf[2000];
370 uint32_t *registers;
371 uint32_t addr, len;
372
373 #ifdef DEBUG_GDB
374 printf("command='%s'\n", line_buf);
375 #endif
376 p = line_buf;
377 ch = *p++;
378 switch(ch) {
379 case '?':
380 snprintf(buf, sizeof(buf), "S%02x", SIGTRAP);
381 put_packet(s, buf);
382 break;
383 case 'c':
384 if (*p != '\0') {
385 addr = strtoul(p, (char **)&p, 16);
386 #if defined(TARGET_I386)
387 env->eip = addr;
388 #elif defined (TARGET_PPC)
389 env->nip = addr;
390 #endif
391 }
392 vm_start();
393 break;
394 case 's':
395 if (*p != '\0') {
396 addr = strtoul(p, (char **)&p, 16);
397 #if defined(TARGET_I386)
398 env->eip = addr;
399 #elif defined (TARGET_PPC)
400 env->nip = addr;
401 #endif
402 }
403 cpu_single_step(env, 1);
404 vm_start();
405 break;
406 case 'g':
407 reg_size = cpu_gdb_read_registers(env, mem_buf);
408 memtohex(buf, mem_buf, reg_size);
409 put_packet(s, buf);
410 break;
411 case 'G':
412 registers = (void *)mem_buf;
413 len = strlen(p) / 2;
414 hextomem((uint8_t *)registers, p, len);
415 cpu_gdb_write_registers(env, mem_buf, len);
416 put_packet(s, "OK");
417 break;
418 case 'm':
419 addr = strtoul(p, (char **)&p, 16);
420 if (*p == ',')
421 p++;
422 len = strtoul(p, NULL, 16);
423 if (cpu_memory_rw_debug(env, addr, mem_buf, len, 0) != 0)
424 memset(mem_buf, 0, len);
425 memtohex(buf, mem_buf, len);
426 put_packet(s, buf);
427 break;
428 case 'M':
429 addr = strtoul(p, (char **)&p, 16);
430 if (*p == ',')
431 p++;
432 len = strtoul(p, (char **)&p, 16);
433 if (*p == ',')
434 p++;
435 hextomem(mem_buf, p, len);
436 if (cpu_memory_rw_debug(env, addr, mem_buf, len, 1) != 0)
437 put_packet(s, "ENN");
438 else
439 put_packet(s, "OK");
440 break;
441 case 'Z':
442 type = strtoul(p, (char **)&p, 16);
443 if (*p == ',')
444 p++;
445 addr = strtoul(p, (char **)&p, 16);
446 if (*p == ',')
447 p++;
448 len = strtoul(p, (char **)&p, 16);
449 if (type == 0 || type == 1) {
450 if (cpu_breakpoint_insert(env, addr) < 0)
451 goto breakpoint_error;
452 put_packet(s, "OK");
453 } else {
454 breakpoint_error:
455 put_packet(s, "ENN");
456 }
457 break;
458 case 'z':
459 type = strtoul(p, (char **)&p, 16);
460 if (*p == ',')
461 p++;
462 addr = strtoul(p, (char **)&p, 16);
463 if (*p == ',')
464 p++;
465 len = strtoul(p, (char **)&p, 16);
466 if (type == 0 || type == 1) {
467 cpu_breakpoint_remove(env, addr);
468 put_packet(s, "OK");
469 } else {
470 goto breakpoint_error;
471 }
472 break;
473 default:
474 // unknown_command:
475 /* put empty packet */
476 buf[0] = '\0';
477 put_packet(s, buf);
478 break;
479 }
480 return RS_IDLE;
481 }
482
483 static void gdb_vm_stopped(void *opaque, int reason)
484 {
485 GDBState *s = opaque;
486 char buf[256];
487 int ret;
488
489 /* disable single step if it was enable */
490 cpu_single_step(cpu_single_env, 0);
491
492 if (reason == EXCP_DEBUG)
493 ret = SIGTRAP;
494 else
495 ret = 0;
496 snprintf(buf, sizeof(buf), "S%02x", ret);
497 put_packet(s, buf);
498 }
499
500 static void gdb_read_byte(GDBState *s, int ch)
501 {
502 int i, csum;
503 char reply[1];
504
505 if (vm_running) {
506 /* when the CPU is running, we cannot do anything except stop
507 it when receiving a char */
508 vm_stop(EXCP_INTERRUPT);
509 } else {
510 switch(s->state) {
511 case RS_IDLE:
512 if (ch == '$') {
513 s->line_buf_index = 0;
514 s->state = RS_GETLINE;
515 }
516 break;
517 case RS_GETLINE:
518 if (ch == '#') {
519 s->state = RS_CHKSUM1;
520 } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
521 s->state = RS_IDLE;
522 } else {
523 s->line_buf[s->line_buf_index++] = ch;
524 }
525 break;
526 case RS_CHKSUM1:
527 s->line_buf[s->line_buf_index] = '\0';
528 s->line_csum = fromhex(ch) << 4;
529 s->state = RS_CHKSUM2;
530 break;
531 case RS_CHKSUM2:
532 s->line_csum |= fromhex(ch);
533 csum = 0;
534 for(i = 0; i < s->line_buf_index; i++) {
535 csum += s->line_buf[i];
536 }
537 if (s->line_csum != (csum & 0xff)) {
538 reply[0] = '-';
539 put_buffer(s, reply, 1);
540 s->state = RS_IDLE;
541 } else {
542 reply[0] = '+';
543 put_buffer(s, reply, 1);
544 s->state = gdb_handle_packet(s, s->line_buf);
545 }
546 break;
547 }
548 }
549 }
550
551 static int gdb_can_read(void *opaque)
552 {
553 return 256;
554 }
555
556 static void gdb_read(void *opaque, const uint8_t *buf, int size)
557 {
558 GDBState *s = opaque;
559 int i;
560 if (size == 0) {
561 /* end of connection */
562 qemu_del_vm_stop_handler(gdb_vm_stopped, s);
563 qemu_del_fd_read_handler(s->fd);
564 qemu_free(s);
565 vm_start();
566 } else {
567 for(i = 0; i < size; i++)
568 gdb_read_byte(s, buf[i]);
569 }
570 }
571
572 static void gdb_accept(void *opaque, const uint8_t *buf, int size)
573 {
574 GDBState *s;
575 struct sockaddr_in sockaddr;
576 socklen_t len;
577 int val, fd;
578
579 for(;;) {
580 len = sizeof(sockaddr);
581 fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
582 if (fd < 0 && errno != EINTR) {
583 perror("accept");
584 return;
585 } else if (fd >= 0) {
586 break;
587 }
588 }
589
590 /* set short latency */
591 val = 1;
592 setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, &val, sizeof(val));
593
594 s = qemu_mallocz(sizeof(GDBState));
595 if (!s) {
596 close(fd);
597 return;
598 }
599 s->fd = fd;
600
601 fcntl(fd, F_SETFL, O_NONBLOCK);
602
603 /* stop the VM */
604 vm_stop(EXCP_INTERRUPT);
605
606 /* start handling I/O */
607 qemu_add_fd_read_handler(s->fd, gdb_can_read, gdb_read, s);
608 /* when the VM is stopped, the following callback is called */
609 qemu_add_vm_stop_handler(gdb_vm_stopped, s);
610 }
611
612 static int gdbserver_open(int port)
613 {
614 struct sockaddr_in sockaddr;
615 int fd, val, ret;
616
617 fd = socket(PF_INET, SOCK_STREAM, 0);
618 if (fd < 0) {
619 perror("socket");
620 return -1;
621 }
622
623 /* allow fast reuse */
624 val = 1;
625 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, &val, sizeof(val));
626
627 sockaddr.sin_family = AF_INET;
628 sockaddr.sin_port = htons(port);
629 sockaddr.sin_addr.s_addr = 0;
630 ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
631 if (ret < 0) {
632 perror("bind");
633 return -1;
634 }
635 ret = listen(fd, 0);
636 if (ret < 0) {
637 perror("listen");
638 return -1;
639 }
640 fcntl(fd, F_SETFL, O_NONBLOCK);
641 return fd;
642 }
643
644 int gdbserver_start(int port)
645 {
646 gdbserver_fd = gdbserver_open(port);
647 if (gdbserver_fd < 0)
648 return -1;
649 /* accept connections */
650 qemu_add_fd_read_handler(gdbserver_fd, NULL, gdb_accept, NULL);
651 return 0;
652 }