]> git.proxmox.com Git - qemu.git/blob - gdbstub.c
Merge remote-tracking branch 'sstabellini/saverestore-8' into staging
[qemu.git] / gdbstub.c
1 /*
2 * gdb server stub
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "config.h"
20 #include "qemu-common.h"
21 #ifdef CONFIG_USER_ONLY
22 #include <stdlib.h>
23 #include <stdio.h>
24 #include <stdarg.h>
25 #include <string.h>
26 #include <errno.h>
27 #include <unistd.h>
28 #include <fcntl.h>
29
30 #include "qemu.h"
31 #else
32 #include "monitor.h"
33 #include "qemu-char.h"
34 #include "sysemu.h"
35 #include "gdbstub.h"
36 #endif
37
38 #define MAX_PACKET_LENGTH 4096
39
40 #include "cpu.h"
41 #include "qemu_socket.h"
42 #include "kvm.h"
43
44 #ifndef TARGET_CPU_MEMORY_RW_DEBUG
45 static inline int target_memory_rw_debug(CPUArchState *env, target_ulong addr,
46 uint8_t *buf, int len, int is_write)
47 {
48 return cpu_memory_rw_debug(env, addr, buf, len, is_write);
49 }
50 #else
51 /* target_memory_rw_debug() defined in cpu.h */
52 #endif
53
54 enum {
55 GDB_SIGNAL_0 = 0,
56 GDB_SIGNAL_INT = 2,
57 GDB_SIGNAL_QUIT = 3,
58 GDB_SIGNAL_TRAP = 5,
59 GDB_SIGNAL_ABRT = 6,
60 GDB_SIGNAL_ALRM = 14,
61 GDB_SIGNAL_IO = 23,
62 GDB_SIGNAL_XCPU = 24,
63 GDB_SIGNAL_UNKNOWN = 143
64 };
65
66 #ifdef CONFIG_USER_ONLY
67
68 /* Map target signal numbers to GDB protocol signal numbers and vice
69 * versa. For user emulation's currently supported systems, we can
70 * assume most signals are defined.
71 */
72
73 static int gdb_signal_table[] = {
74 0,
75 TARGET_SIGHUP,
76 TARGET_SIGINT,
77 TARGET_SIGQUIT,
78 TARGET_SIGILL,
79 TARGET_SIGTRAP,
80 TARGET_SIGABRT,
81 -1, /* SIGEMT */
82 TARGET_SIGFPE,
83 TARGET_SIGKILL,
84 TARGET_SIGBUS,
85 TARGET_SIGSEGV,
86 TARGET_SIGSYS,
87 TARGET_SIGPIPE,
88 TARGET_SIGALRM,
89 TARGET_SIGTERM,
90 TARGET_SIGURG,
91 TARGET_SIGSTOP,
92 TARGET_SIGTSTP,
93 TARGET_SIGCONT,
94 TARGET_SIGCHLD,
95 TARGET_SIGTTIN,
96 TARGET_SIGTTOU,
97 TARGET_SIGIO,
98 TARGET_SIGXCPU,
99 TARGET_SIGXFSZ,
100 TARGET_SIGVTALRM,
101 TARGET_SIGPROF,
102 TARGET_SIGWINCH,
103 -1, /* SIGLOST */
104 TARGET_SIGUSR1,
105 TARGET_SIGUSR2,
106 #ifdef TARGET_SIGPWR
107 TARGET_SIGPWR,
108 #else
109 -1,
110 #endif
111 -1, /* SIGPOLL */
112 -1,
113 -1,
114 -1,
115 -1,
116 -1,
117 -1,
118 -1,
119 -1,
120 -1,
121 -1,
122 -1,
123 #ifdef __SIGRTMIN
124 __SIGRTMIN + 1,
125 __SIGRTMIN + 2,
126 __SIGRTMIN + 3,
127 __SIGRTMIN + 4,
128 __SIGRTMIN + 5,
129 __SIGRTMIN + 6,
130 __SIGRTMIN + 7,
131 __SIGRTMIN + 8,
132 __SIGRTMIN + 9,
133 __SIGRTMIN + 10,
134 __SIGRTMIN + 11,
135 __SIGRTMIN + 12,
136 __SIGRTMIN + 13,
137 __SIGRTMIN + 14,
138 __SIGRTMIN + 15,
139 __SIGRTMIN + 16,
140 __SIGRTMIN + 17,
141 __SIGRTMIN + 18,
142 __SIGRTMIN + 19,
143 __SIGRTMIN + 20,
144 __SIGRTMIN + 21,
145 __SIGRTMIN + 22,
146 __SIGRTMIN + 23,
147 __SIGRTMIN + 24,
148 __SIGRTMIN + 25,
149 __SIGRTMIN + 26,
150 __SIGRTMIN + 27,
151 __SIGRTMIN + 28,
152 __SIGRTMIN + 29,
153 __SIGRTMIN + 30,
154 __SIGRTMIN + 31,
155 -1, /* SIGCANCEL */
156 __SIGRTMIN,
157 __SIGRTMIN + 32,
158 __SIGRTMIN + 33,
159 __SIGRTMIN + 34,
160 __SIGRTMIN + 35,
161 __SIGRTMIN + 36,
162 __SIGRTMIN + 37,
163 __SIGRTMIN + 38,
164 __SIGRTMIN + 39,
165 __SIGRTMIN + 40,
166 __SIGRTMIN + 41,
167 __SIGRTMIN + 42,
168 __SIGRTMIN + 43,
169 __SIGRTMIN + 44,
170 __SIGRTMIN + 45,
171 __SIGRTMIN + 46,
172 __SIGRTMIN + 47,
173 __SIGRTMIN + 48,
174 __SIGRTMIN + 49,
175 __SIGRTMIN + 50,
176 __SIGRTMIN + 51,
177 __SIGRTMIN + 52,
178 __SIGRTMIN + 53,
179 __SIGRTMIN + 54,
180 __SIGRTMIN + 55,
181 __SIGRTMIN + 56,
182 __SIGRTMIN + 57,
183 __SIGRTMIN + 58,
184 __SIGRTMIN + 59,
185 __SIGRTMIN + 60,
186 __SIGRTMIN + 61,
187 __SIGRTMIN + 62,
188 __SIGRTMIN + 63,
189 __SIGRTMIN + 64,
190 __SIGRTMIN + 65,
191 __SIGRTMIN + 66,
192 __SIGRTMIN + 67,
193 __SIGRTMIN + 68,
194 __SIGRTMIN + 69,
195 __SIGRTMIN + 70,
196 __SIGRTMIN + 71,
197 __SIGRTMIN + 72,
198 __SIGRTMIN + 73,
199 __SIGRTMIN + 74,
200 __SIGRTMIN + 75,
201 __SIGRTMIN + 76,
202 __SIGRTMIN + 77,
203 __SIGRTMIN + 78,
204 __SIGRTMIN + 79,
205 __SIGRTMIN + 80,
206 __SIGRTMIN + 81,
207 __SIGRTMIN + 82,
208 __SIGRTMIN + 83,
209 __SIGRTMIN + 84,
210 __SIGRTMIN + 85,
211 __SIGRTMIN + 86,
212 __SIGRTMIN + 87,
213 __SIGRTMIN + 88,
214 __SIGRTMIN + 89,
215 __SIGRTMIN + 90,
216 __SIGRTMIN + 91,
217 __SIGRTMIN + 92,
218 __SIGRTMIN + 93,
219 __SIGRTMIN + 94,
220 __SIGRTMIN + 95,
221 -1, /* SIGINFO */
222 -1, /* UNKNOWN */
223 -1, /* DEFAULT */
224 -1,
225 -1,
226 -1,
227 -1,
228 -1,
229 -1
230 #endif
231 };
232 #else
233 /* In system mode we only need SIGINT and SIGTRAP; other signals
234 are not yet supported. */
235
236 enum {
237 TARGET_SIGINT = 2,
238 TARGET_SIGTRAP = 5
239 };
240
241 static int gdb_signal_table[] = {
242 -1,
243 -1,
244 TARGET_SIGINT,
245 -1,
246 -1,
247 TARGET_SIGTRAP
248 };
249 #endif
250
251 #ifdef CONFIG_USER_ONLY
252 static int target_signal_to_gdb (int sig)
253 {
254 int i;
255 for (i = 0; i < ARRAY_SIZE (gdb_signal_table); i++)
256 if (gdb_signal_table[i] == sig)
257 return i;
258 return GDB_SIGNAL_UNKNOWN;
259 }
260 #endif
261
262 static int gdb_signal_to_target (int sig)
263 {
264 if (sig < ARRAY_SIZE (gdb_signal_table))
265 return gdb_signal_table[sig];
266 else
267 return -1;
268 }
269
270 //#define DEBUG_GDB
271
272 typedef struct GDBRegisterState {
273 int base_reg;
274 int num_regs;
275 gdb_reg_cb get_reg;
276 gdb_reg_cb set_reg;
277 const char *xml;
278 struct GDBRegisterState *next;
279 } GDBRegisterState;
280
281 enum RSState {
282 RS_INACTIVE,
283 RS_IDLE,
284 RS_GETLINE,
285 RS_CHKSUM1,
286 RS_CHKSUM2,
287 RS_SYSCALL,
288 };
289 typedef struct GDBState {
290 CPUArchState *c_cpu; /* current CPU for step/continue ops */
291 CPUArchState *g_cpu; /* current CPU for other ops */
292 CPUArchState *query_cpu; /* for q{f|s}ThreadInfo */
293 enum RSState state; /* parsing state */
294 char line_buf[MAX_PACKET_LENGTH];
295 int line_buf_index;
296 int line_csum;
297 uint8_t last_packet[MAX_PACKET_LENGTH + 4];
298 int last_packet_len;
299 int signal;
300 #ifdef CONFIG_USER_ONLY
301 int fd;
302 int running_state;
303 #else
304 CharDriverState *chr;
305 CharDriverState *mon_chr;
306 #endif
307 } GDBState;
308
309 /* By default use no IRQs and no timers while single stepping so as to
310 * make single stepping like an ICE HW step.
311 */
312 static int sstep_flags = SSTEP_ENABLE|SSTEP_NOIRQ|SSTEP_NOTIMER;
313
314 static GDBState *gdbserver_state;
315
316 /* This is an ugly hack to cope with both new and old gdb.
317 If gdb sends qXfer:features:read then assume we're talking to a newish
318 gdb that understands target descriptions. */
319 static int gdb_has_xml;
320
321 #ifdef CONFIG_USER_ONLY
322 /* XXX: This is not thread safe. Do we care? */
323 static int gdbserver_fd = -1;
324
325 static int get_char(GDBState *s)
326 {
327 uint8_t ch;
328 int ret;
329
330 for(;;) {
331 ret = qemu_recv(s->fd, &ch, 1, 0);
332 if (ret < 0) {
333 if (errno == ECONNRESET)
334 s->fd = -1;
335 if (errno != EINTR && errno != EAGAIN)
336 return -1;
337 } else if (ret == 0) {
338 close(s->fd);
339 s->fd = -1;
340 return -1;
341 } else {
342 break;
343 }
344 }
345 return ch;
346 }
347 #endif
348
349 static gdb_syscall_complete_cb gdb_current_syscall_cb;
350
351 static enum {
352 GDB_SYS_UNKNOWN,
353 GDB_SYS_ENABLED,
354 GDB_SYS_DISABLED,
355 } gdb_syscall_mode;
356
357 /* If gdb is connected when the first semihosting syscall occurs then use
358 remote gdb syscalls. Otherwise use native file IO. */
359 int use_gdb_syscalls(void)
360 {
361 if (gdb_syscall_mode == GDB_SYS_UNKNOWN) {
362 gdb_syscall_mode = (gdbserver_state ? GDB_SYS_ENABLED
363 : GDB_SYS_DISABLED);
364 }
365 return gdb_syscall_mode == GDB_SYS_ENABLED;
366 }
367
368 /* Resume execution. */
369 static inline void gdb_continue(GDBState *s)
370 {
371 #ifdef CONFIG_USER_ONLY
372 s->running_state = 1;
373 #else
374 vm_start();
375 #endif
376 }
377
378 static void put_buffer(GDBState *s, const uint8_t *buf, int len)
379 {
380 #ifdef CONFIG_USER_ONLY
381 int ret;
382
383 while (len > 0) {
384 ret = send(s->fd, buf, len, 0);
385 if (ret < 0) {
386 if (errno != EINTR && errno != EAGAIN)
387 return;
388 } else {
389 buf += ret;
390 len -= ret;
391 }
392 }
393 #else
394 qemu_chr_fe_write(s->chr, buf, len);
395 #endif
396 }
397
398 static inline int fromhex(int v)
399 {
400 if (v >= '0' && v <= '9')
401 return v - '0';
402 else if (v >= 'A' && v <= 'F')
403 return v - 'A' + 10;
404 else if (v >= 'a' && v <= 'f')
405 return v - 'a' + 10;
406 else
407 return 0;
408 }
409
410 static inline int tohex(int v)
411 {
412 if (v < 10)
413 return v + '0';
414 else
415 return v - 10 + 'a';
416 }
417
418 static void memtohex(char *buf, const uint8_t *mem, int len)
419 {
420 int i, c;
421 char *q;
422 q = buf;
423 for(i = 0; i < len; i++) {
424 c = mem[i];
425 *q++ = tohex(c >> 4);
426 *q++ = tohex(c & 0xf);
427 }
428 *q = '\0';
429 }
430
431 static void hextomem(uint8_t *mem, const char *buf, int len)
432 {
433 int i;
434
435 for(i = 0; i < len; i++) {
436 mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
437 buf += 2;
438 }
439 }
440
441 /* return -1 if error, 0 if OK */
442 static int put_packet_binary(GDBState *s, const char *buf, int len)
443 {
444 int csum, i;
445 uint8_t *p;
446
447 for(;;) {
448 p = s->last_packet;
449 *(p++) = '$';
450 memcpy(p, buf, len);
451 p += len;
452 csum = 0;
453 for(i = 0; i < len; i++) {
454 csum += buf[i];
455 }
456 *(p++) = '#';
457 *(p++) = tohex((csum >> 4) & 0xf);
458 *(p++) = tohex((csum) & 0xf);
459
460 s->last_packet_len = p - s->last_packet;
461 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
462
463 #ifdef CONFIG_USER_ONLY
464 i = get_char(s);
465 if (i < 0)
466 return -1;
467 if (i == '+')
468 break;
469 #else
470 break;
471 #endif
472 }
473 return 0;
474 }
475
476 /* return -1 if error, 0 if OK */
477 static int put_packet(GDBState *s, const char *buf)
478 {
479 #ifdef DEBUG_GDB
480 printf("reply='%s'\n", buf);
481 #endif
482
483 return put_packet_binary(s, buf, strlen(buf));
484 }
485
486 /* The GDB remote protocol transfers values in target byte order. This means
487 we can use the raw memory access routines to access the value buffer.
488 Conveniently, these also handle the case where the buffer is mis-aligned.
489 */
490 #define GET_REG8(val) do { \
491 stb_p(mem_buf, val); \
492 return 1; \
493 } while(0)
494 #define GET_REG16(val) do { \
495 stw_p(mem_buf, val); \
496 return 2; \
497 } while(0)
498 #define GET_REG32(val) do { \
499 stl_p(mem_buf, val); \
500 return 4; \
501 } while(0)
502 #define GET_REG64(val) do { \
503 stq_p(mem_buf, val); \
504 return 8; \
505 } while(0)
506
507 #if TARGET_LONG_BITS == 64
508 #define GET_REGL(val) GET_REG64(val)
509 #define ldtul_p(addr) ldq_p(addr)
510 #else
511 #define GET_REGL(val) GET_REG32(val)
512 #define ldtul_p(addr) ldl_p(addr)
513 #endif
514
515 #if defined(TARGET_I386)
516
517 #ifdef TARGET_X86_64
518 static const int gpr_map[16] = {
519 R_EAX, R_EBX, R_ECX, R_EDX, R_ESI, R_EDI, R_EBP, R_ESP,
520 8, 9, 10, 11, 12, 13, 14, 15
521 };
522 #else
523 #define gpr_map gpr_map32
524 #endif
525 static const int gpr_map32[8] = { 0, 1, 2, 3, 4, 5, 6, 7 };
526
527 #define NUM_CORE_REGS (CPU_NB_REGS * 2 + 25)
528
529 #define IDX_IP_REG CPU_NB_REGS
530 #define IDX_FLAGS_REG (IDX_IP_REG + 1)
531 #define IDX_SEG_REGS (IDX_FLAGS_REG + 1)
532 #define IDX_FP_REGS (IDX_SEG_REGS + 6)
533 #define IDX_XMM_REGS (IDX_FP_REGS + 16)
534 #define IDX_MXCSR_REG (IDX_XMM_REGS + CPU_NB_REGS)
535
536 static int cpu_gdb_read_register(CPUX86State *env, uint8_t *mem_buf, int n)
537 {
538 if (n < CPU_NB_REGS) {
539 if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
540 GET_REG64(env->regs[gpr_map[n]]);
541 } else if (n < CPU_NB_REGS32) {
542 GET_REG32(env->regs[gpr_map32[n]]);
543 }
544 } else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) {
545 #ifdef USE_X86LDOUBLE
546 /* FIXME: byteswap float values - after fixing fpregs layout. */
547 memcpy(mem_buf, &env->fpregs[n - IDX_FP_REGS], 10);
548 #else
549 memset(mem_buf, 0, 10);
550 #endif
551 return 10;
552 } else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) {
553 n -= IDX_XMM_REGS;
554 if (n < CPU_NB_REGS32 ||
555 (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK)) {
556 stq_p(mem_buf, env->xmm_regs[n].XMM_Q(0));
557 stq_p(mem_buf + 8, env->xmm_regs[n].XMM_Q(1));
558 return 16;
559 }
560 } else {
561 switch (n) {
562 case IDX_IP_REG:
563 if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
564 GET_REG64(env->eip);
565 } else {
566 GET_REG32(env->eip);
567 }
568 case IDX_FLAGS_REG: GET_REG32(env->eflags);
569
570 case IDX_SEG_REGS: GET_REG32(env->segs[R_CS].selector);
571 case IDX_SEG_REGS + 1: GET_REG32(env->segs[R_SS].selector);
572 case IDX_SEG_REGS + 2: GET_REG32(env->segs[R_DS].selector);
573 case IDX_SEG_REGS + 3: GET_REG32(env->segs[R_ES].selector);
574 case IDX_SEG_REGS + 4: GET_REG32(env->segs[R_FS].selector);
575 case IDX_SEG_REGS + 5: GET_REG32(env->segs[R_GS].selector);
576
577 case IDX_FP_REGS + 8: GET_REG32(env->fpuc);
578 case IDX_FP_REGS + 9: GET_REG32((env->fpus & ~0x3800) |
579 (env->fpstt & 0x7) << 11);
580 case IDX_FP_REGS + 10: GET_REG32(0); /* ftag */
581 case IDX_FP_REGS + 11: GET_REG32(0); /* fiseg */
582 case IDX_FP_REGS + 12: GET_REG32(0); /* fioff */
583 case IDX_FP_REGS + 13: GET_REG32(0); /* foseg */
584 case IDX_FP_REGS + 14: GET_REG32(0); /* fooff */
585 case IDX_FP_REGS + 15: GET_REG32(0); /* fop */
586
587 case IDX_MXCSR_REG: GET_REG32(env->mxcsr);
588 }
589 }
590 return 0;
591 }
592
593 static int cpu_x86_gdb_load_seg(CPUX86State *env, int sreg, uint8_t *mem_buf)
594 {
595 uint16_t selector = ldl_p(mem_buf);
596
597 if (selector != env->segs[sreg].selector) {
598 #if defined(CONFIG_USER_ONLY)
599 cpu_x86_load_seg(env, sreg, selector);
600 #else
601 unsigned int limit, flags;
602 target_ulong base;
603
604 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
605 base = selector << 4;
606 limit = 0xffff;
607 flags = 0;
608 } else {
609 if (!cpu_x86_get_descr_debug(env, selector, &base, &limit, &flags))
610 return 4;
611 }
612 cpu_x86_load_seg_cache(env, sreg, selector, base, limit, flags);
613 #endif
614 }
615 return 4;
616 }
617
618 static int cpu_gdb_write_register(CPUX86State *env, uint8_t *mem_buf, int n)
619 {
620 uint32_t tmp;
621
622 if (n < CPU_NB_REGS) {
623 if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
624 env->regs[gpr_map[n]] = ldtul_p(mem_buf);
625 return sizeof(target_ulong);
626 } else if (n < CPU_NB_REGS32) {
627 n = gpr_map32[n];
628 env->regs[n] &= ~0xffffffffUL;
629 env->regs[n] |= (uint32_t)ldl_p(mem_buf);
630 return 4;
631 }
632 } else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) {
633 #ifdef USE_X86LDOUBLE
634 /* FIXME: byteswap float values - after fixing fpregs layout. */
635 memcpy(&env->fpregs[n - IDX_FP_REGS], mem_buf, 10);
636 #endif
637 return 10;
638 } else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) {
639 n -= IDX_XMM_REGS;
640 if (n < CPU_NB_REGS32 ||
641 (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK)) {
642 env->xmm_regs[n].XMM_Q(0) = ldq_p(mem_buf);
643 env->xmm_regs[n].XMM_Q(1) = ldq_p(mem_buf + 8);
644 return 16;
645 }
646 } else {
647 switch (n) {
648 case IDX_IP_REG:
649 if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
650 env->eip = ldq_p(mem_buf);
651 return 8;
652 } else {
653 env->eip &= ~0xffffffffUL;
654 env->eip |= (uint32_t)ldl_p(mem_buf);
655 return 4;
656 }
657 case IDX_FLAGS_REG:
658 env->eflags = ldl_p(mem_buf);
659 return 4;
660
661 case IDX_SEG_REGS: return cpu_x86_gdb_load_seg(env, R_CS, mem_buf);
662 case IDX_SEG_REGS + 1: return cpu_x86_gdb_load_seg(env, R_SS, mem_buf);
663 case IDX_SEG_REGS + 2: return cpu_x86_gdb_load_seg(env, R_DS, mem_buf);
664 case IDX_SEG_REGS + 3: return cpu_x86_gdb_load_seg(env, R_ES, mem_buf);
665 case IDX_SEG_REGS + 4: return cpu_x86_gdb_load_seg(env, R_FS, mem_buf);
666 case IDX_SEG_REGS + 5: return cpu_x86_gdb_load_seg(env, R_GS, mem_buf);
667
668 case IDX_FP_REGS + 8:
669 env->fpuc = ldl_p(mem_buf);
670 return 4;
671 case IDX_FP_REGS + 9:
672 tmp = ldl_p(mem_buf);
673 env->fpstt = (tmp >> 11) & 7;
674 env->fpus = tmp & ~0x3800;
675 return 4;
676 case IDX_FP_REGS + 10: /* ftag */ return 4;
677 case IDX_FP_REGS + 11: /* fiseg */ return 4;
678 case IDX_FP_REGS + 12: /* fioff */ return 4;
679 case IDX_FP_REGS + 13: /* foseg */ return 4;
680 case IDX_FP_REGS + 14: /* fooff */ return 4;
681 case IDX_FP_REGS + 15: /* fop */ return 4;
682
683 case IDX_MXCSR_REG:
684 env->mxcsr = ldl_p(mem_buf);
685 return 4;
686 }
687 }
688 /* Unrecognised register. */
689 return 0;
690 }
691
692 #elif defined (TARGET_PPC)
693
694 /* Old gdb always expects FP registers. Newer (xml-aware) gdb only
695 expects whatever the target description contains. Due to a
696 historical mishap the FP registers appear in between core integer
697 regs and PC, MSR, CR, and so forth. We hack round this by giving the
698 FP regs zero size when talking to a newer gdb. */
699 #define NUM_CORE_REGS 71
700 #if defined (TARGET_PPC64)
701 #define GDB_CORE_XML "power64-core.xml"
702 #else
703 #define GDB_CORE_XML "power-core.xml"
704 #endif
705
706 static int cpu_gdb_read_register(CPUPPCState *env, uint8_t *mem_buf, int n)
707 {
708 if (n < 32) {
709 /* gprs */
710 GET_REGL(env->gpr[n]);
711 } else if (n < 64) {
712 /* fprs */
713 if (gdb_has_xml)
714 return 0;
715 stfq_p(mem_buf, env->fpr[n-32]);
716 return 8;
717 } else {
718 switch (n) {
719 case 64: GET_REGL(env->nip);
720 case 65: GET_REGL(env->msr);
721 case 66:
722 {
723 uint32_t cr = 0;
724 int i;
725 for (i = 0; i < 8; i++)
726 cr |= env->crf[i] << (32 - ((i + 1) * 4));
727 GET_REG32(cr);
728 }
729 case 67: GET_REGL(env->lr);
730 case 68: GET_REGL(env->ctr);
731 case 69: GET_REGL(env->xer);
732 case 70:
733 {
734 if (gdb_has_xml)
735 return 0;
736 GET_REG32(env->fpscr);
737 }
738 }
739 }
740 return 0;
741 }
742
743 static int cpu_gdb_write_register(CPUPPCState *env, uint8_t *mem_buf, int n)
744 {
745 if (n < 32) {
746 /* gprs */
747 env->gpr[n] = ldtul_p(mem_buf);
748 return sizeof(target_ulong);
749 } else if (n < 64) {
750 /* fprs */
751 if (gdb_has_xml)
752 return 0;
753 env->fpr[n-32] = ldfq_p(mem_buf);
754 return 8;
755 } else {
756 switch (n) {
757 case 64:
758 env->nip = ldtul_p(mem_buf);
759 return sizeof(target_ulong);
760 case 65:
761 ppc_store_msr(env, ldtul_p(mem_buf));
762 return sizeof(target_ulong);
763 case 66:
764 {
765 uint32_t cr = ldl_p(mem_buf);
766 int i;
767 for (i = 0; i < 8; i++)
768 env->crf[i] = (cr >> (32 - ((i + 1) * 4))) & 0xF;
769 return 4;
770 }
771 case 67:
772 env->lr = ldtul_p(mem_buf);
773 return sizeof(target_ulong);
774 case 68:
775 env->ctr = ldtul_p(mem_buf);
776 return sizeof(target_ulong);
777 case 69:
778 env->xer = ldtul_p(mem_buf);
779 return sizeof(target_ulong);
780 case 70:
781 /* fpscr */
782 if (gdb_has_xml)
783 return 0;
784 return 4;
785 }
786 }
787 return 0;
788 }
789
790 #elif defined (TARGET_SPARC)
791
792 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
793 #define NUM_CORE_REGS 86
794 #else
795 #define NUM_CORE_REGS 72
796 #endif
797
798 #ifdef TARGET_ABI32
799 #define GET_REGA(val) GET_REG32(val)
800 #else
801 #define GET_REGA(val) GET_REGL(val)
802 #endif
803
804 static int cpu_gdb_read_register(CPUSPARCState *env, uint8_t *mem_buf, int n)
805 {
806 if (n < 8) {
807 /* g0..g7 */
808 GET_REGA(env->gregs[n]);
809 }
810 if (n < 32) {
811 /* register window */
812 GET_REGA(env->regwptr[n - 8]);
813 }
814 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
815 if (n < 64) {
816 /* fprs */
817 if (n & 1) {
818 GET_REG32(env->fpr[(n - 32) / 2].l.lower);
819 } else {
820 GET_REG32(env->fpr[(n - 32) / 2].l.upper);
821 }
822 }
823 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
824 switch (n) {
825 case 64: GET_REGA(env->y);
826 case 65: GET_REGA(cpu_get_psr(env));
827 case 66: GET_REGA(env->wim);
828 case 67: GET_REGA(env->tbr);
829 case 68: GET_REGA(env->pc);
830 case 69: GET_REGA(env->npc);
831 case 70: GET_REGA(env->fsr);
832 case 71: GET_REGA(0); /* csr */
833 default: GET_REGA(0);
834 }
835 #else
836 if (n < 64) {
837 /* f0-f31 */
838 if (n & 1) {
839 GET_REG32(env->fpr[(n - 32) / 2].l.lower);
840 } else {
841 GET_REG32(env->fpr[(n - 32) / 2].l.upper);
842 }
843 }
844 if (n < 80) {
845 /* f32-f62 (double width, even numbers only) */
846 GET_REG64(env->fpr[(n - 32) / 2].ll);
847 }
848 switch (n) {
849 case 80: GET_REGL(env->pc);
850 case 81: GET_REGL(env->npc);
851 case 82: GET_REGL((cpu_get_ccr(env) << 32) |
852 ((env->asi & 0xff) << 24) |
853 ((env->pstate & 0xfff) << 8) |
854 cpu_get_cwp64(env));
855 case 83: GET_REGL(env->fsr);
856 case 84: GET_REGL(env->fprs);
857 case 85: GET_REGL(env->y);
858 }
859 #endif
860 return 0;
861 }
862
863 static int cpu_gdb_write_register(CPUSPARCState *env, uint8_t *mem_buf, int n)
864 {
865 #if defined(TARGET_ABI32)
866 abi_ulong tmp;
867
868 tmp = ldl_p(mem_buf);
869 #else
870 target_ulong tmp;
871
872 tmp = ldtul_p(mem_buf);
873 #endif
874
875 if (n < 8) {
876 /* g0..g7 */
877 env->gregs[n] = tmp;
878 } else if (n < 32) {
879 /* register window */
880 env->regwptr[n - 8] = tmp;
881 }
882 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
883 else if (n < 64) {
884 /* fprs */
885 /* f0-f31 */
886 if (n & 1) {
887 env->fpr[(n - 32) / 2].l.lower = tmp;
888 } else {
889 env->fpr[(n - 32) / 2].l.upper = tmp;
890 }
891 } else {
892 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
893 switch (n) {
894 case 64: env->y = tmp; break;
895 case 65: cpu_put_psr(env, tmp); break;
896 case 66: env->wim = tmp; break;
897 case 67: env->tbr = tmp; break;
898 case 68: env->pc = tmp; break;
899 case 69: env->npc = tmp; break;
900 case 70: env->fsr = tmp; break;
901 default: return 0;
902 }
903 }
904 return 4;
905 #else
906 else if (n < 64) {
907 /* f0-f31 */
908 tmp = ldl_p(mem_buf);
909 if (n & 1) {
910 env->fpr[(n - 32) / 2].l.lower = tmp;
911 } else {
912 env->fpr[(n - 32) / 2].l.upper = tmp;
913 }
914 return 4;
915 } else if (n < 80) {
916 /* f32-f62 (double width, even numbers only) */
917 env->fpr[(n - 32) / 2].ll = tmp;
918 } else {
919 switch (n) {
920 case 80: env->pc = tmp; break;
921 case 81: env->npc = tmp; break;
922 case 82:
923 cpu_put_ccr(env, tmp >> 32);
924 env->asi = (tmp >> 24) & 0xff;
925 env->pstate = (tmp >> 8) & 0xfff;
926 cpu_put_cwp64(env, tmp & 0xff);
927 break;
928 case 83: env->fsr = tmp; break;
929 case 84: env->fprs = tmp; break;
930 case 85: env->y = tmp; break;
931 default: return 0;
932 }
933 }
934 return 8;
935 #endif
936 }
937 #elif defined (TARGET_ARM)
938
939 /* Old gdb always expect FPA registers. Newer (xml-aware) gdb only expect
940 whatever the target description contains. Due to a historical mishap
941 the FPA registers appear in between core integer regs and the CPSR.
942 We hack round this by giving the FPA regs zero size when talking to a
943 newer gdb. */
944 #define NUM_CORE_REGS 26
945 #define GDB_CORE_XML "arm-core.xml"
946
947 static int cpu_gdb_read_register(CPUARMState *env, uint8_t *mem_buf, int n)
948 {
949 if (n < 16) {
950 /* Core integer register. */
951 GET_REG32(env->regs[n]);
952 }
953 if (n < 24) {
954 /* FPA registers. */
955 if (gdb_has_xml)
956 return 0;
957 memset(mem_buf, 0, 12);
958 return 12;
959 }
960 switch (n) {
961 case 24:
962 /* FPA status register. */
963 if (gdb_has_xml)
964 return 0;
965 GET_REG32(0);
966 case 25:
967 /* CPSR */
968 GET_REG32(cpsr_read(env));
969 }
970 /* Unknown register. */
971 return 0;
972 }
973
974 static int cpu_gdb_write_register(CPUARMState *env, uint8_t *mem_buf, int n)
975 {
976 uint32_t tmp;
977
978 tmp = ldl_p(mem_buf);
979
980 /* Mask out low bit of PC to workaround gdb bugs. This will probably
981 cause problems if we ever implement the Jazelle DBX extensions. */
982 if (n == 15)
983 tmp &= ~1;
984
985 if (n < 16) {
986 /* Core integer register. */
987 env->regs[n] = tmp;
988 return 4;
989 }
990 if (n < 24) { /* 16-23 */
991 /* FPA registers (ignored). */
992 if (gdb_has_xml)
993 return 0;
994 return 12;
995 }
996 switch (n) {
997 case 24:
998 /* FPA status register (ignored). */
999 if (gdb_has_xml)
1000 return 0;
1001 return 4;
1002 case 25:
1003 /* CPSR */
1004 cpsr_write (env, tmp, 0xffffffff);
1005 return 4;
1006 }
1007 /* Unknown register. */
1008 return 0;
1009 }
1010
1011 #elif defined (TARGET_M68K)
1012
1013 #define NUM_CORE_REGS 18
1014
1015 #define GDB_CORE_XML "cf-core.xml"
1016
1017 static int cpu_gdb_read_register(CPUM68KState *env, uint8_t *mem_buf, int n)
1018 {
1019 if (n < 8) {
1020 /* D0-D7 */
1021 GET_REG32(env->dregs[n]);
1022 } else if (n < 16) {
1023 /* A0-A7 */
1024 GET_REG32(env->aregs[n - 8]);
1025 } else {
1026 switch (n) {
1027 case 16: GET_REG32(env->sr);
1028 case 17: GET_REG32(env->pc);
1029 }
1030 }
1031 /* FP registers not included here because they vary between
1032 ColdFire and m68k. Use XML bits for these. */
1033 return 0;
1034 }
1035
1036 static int cpu_gdb_write_register(CPUM68KState *env, uint8_t *mem_buf, int n)
1037 {
1038 uint32_t tmp;
1039
1040 tmp = ldl_p(mem_buf);
1041
1042 if (n < 8) {
1043 /* D0-D7 */
1044 env->dregs[n] = tmp;
1045 } else if (n < 16) {
1046 /* A0-A7 */
1047 env->aregs[n - 8] = tmp;
1048 } else {
1049 switch (n) {
1050 case 16: env->sr = tmp; break;
1051 case 17: env->pc = tmp; break;
1052 default: return 0;
1053 }
1054 }
1055 return 4;
1056 }
1057 #elif defined (TARGET_MIPS)
1058
1059 #define NUM_CORE_REGS 73
1060
1061 static int cpu_gdb_read_register(CPUMIPSState *env, uint8_t *mem_buf, int n)
1062 {
1063 if (n < 32) {
1064 GET_REGL(env->active_tc.gpr[n]);
1065 }
1066 if (env->CP0_Config1 & (1 << CP0C1_FP)) {
1067 if (n >= 38 && n < 70) {
1068 if (env->CP0_Status & (1 << CP0St_FR))
1069 GET_REGL(env->active_fpu.fpr[n - 38].d);
1070 else
1071 GET_REGL(env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX]);
1072 }
1073 switch (n) {
1074 case 70: GET_REGL((int32_t)env->active_fpu.fcr31);
1075 case 71: GET_REGL((int32_t)env->active_fpu.fcr0);
1076 }
1077 }
1078 switch (n) {
1079 case 32: GET_REGL((int32_t)env->CP0_Status);
1080 case 33: GET_REGL(env->active_tc.LO[0]);
1081 case 34: GET_REGL(env->active_tc.HI[0]);
1082 case 35: GET_REGL(env->CP0_BadVAddr);
1083 case 36: GET_REGL((int32_t)env->CP0_Cause);
1084 case 37: GET_REGL(env->active_tc.PC | !!(env->hflags & MIPS_HFLAG_M16));
1085 case 72: GET_REGL(0); /* fp */
1086 case 89: GET_REGL((int32_t)env->CP0_PRid);
1087 }
1088 if (n >= 73 && n <= 88) {
1089 /* 16 embedded regs. */
1090 GET_REGL(0);
1091 }
1092
1093 return 0;
1094 }
1095
1096 /* convert MIPS rounding mode in FCR31 to IEEE library */
1097 static unsigned int ieee_rm[] =
1098 {
1099 float_round_nearest_even,
1100 float_round_to_zero,
1101 float_round_up,
1102 float_round_down
1103 };
1104 #define RESTORE_ROUNDING_MODE \
1105 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
1106
1107 static int cpu_gdb_write_register(CPUMIPSState *env, uint8_t *mem_buf, int n)
1108 {
1109 target_ulong tmp;
1110
1111 tmp = ldtul_p(mem_buf);
1112
1113 if (n < 32) {
1114 env->active_tc.gpr[n] = tmp;
1115 return sizeof(target_ulong);
1116 }
1117 if (env->CP0_Config1 & (1 << CP0C1_FP)
1118 && n >= 38 && n < 73) {
1119 if (n < 70) {
1120 if (env->CP0_Status & (1 << CP0St_FR))
1121 env->active_fpu.fpr[n - 38].d = tmp;
1122 else
1123 env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX] = tmp;
1124 }
1125 switch (n) {
1126 case 70:
1127 env->active_fpu.fcr31 = tmp & 0xFF83FFFF;
1128 /* set rounding mode */
1129 RESTORE_ROUNDING_MODE;
1130 break;
1131 case 71: env->active_fpu.fcr0 = tmp; break;
1132 }
1133 return sizeof(target_ulong);
1134 }
1135 switch (n) {
1136 case 32: env->CP0_Status = tmp; break;
1137 case 33: env->active_tc.LO[0] = tmp; break;
1138 case 34: env->active_tc.HI[0] = tmp; break;
1139 case 35: env->CP0_BadVAddr = tmp; break;
1140 case 36: env->CP0_Cause = tmp; break;
1141 case 37:
1142 env->active_tc.PC = tmp & ~(target_ulong)1;
1143 if (tmp & 1) {
1144 env->hflags |= MIPS_HFLAG_M16;
1145 } else {
1146 env->hflags &= ~(MIPS_HFLAG_M16);
1147 }
1148 break;
1149 case 72: /* fp, ignored */ break;
1150 default:
1151 if (n > 89)
1152 return 0;
1153 /* Other registers are readonly. Ignore writes. */
1154 break;
1155 }
1156
1157 return sizeof(target_ulong);
1158 }
1159 #elif defined (TARGET_SH4)
1160
1161 /* Hint: Use "set architecture sh4" in GDB to see fpu registers */
1162 /* FIXME: We should use XML for this. */
1163
1164 #define NUM_CORE_REGS 59
1165
1166 static int cpu_gdb_read_register(CPUSH4State *env, uint8_t *mem_buf, int n)
1167 {
1168 if (n < 8) {
1169 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
1170 GET_REGL(env->gregs[n + 16]);
1171 } else {
1172 GET_REGL(env->gregs[n]);
1173 }
1174 } else if (n < 16) {
1175 GET_REGL(env->gregs[n]);
1176 } else if (n >= 25 && n < 41) {
1177 GET_REGL(env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)]);
1178 } else if (n >= 43 && n < 51) {
1179 GET_REGL(env->gregs[n - 43]);
1180 } else if (n >= 51 && n < 59) {
1181 GET_REGL(env->gregs[n - (51 - 16)]);
1182 }
1183 switch (n) {
1184 case 16: GET_REGL(env->pc);
1185 case 17: GET_REGL(env->pr);
1186 case 18: GET_REGL(env->gbr);
1187 case 19: GET_REGL(env->vbr);
1188 case 20: GET_REGL(env->mach);
1189 case 21: GET_REGL(env->macl);
1190 case 22: GET_REGL(env->sr);
1191 case 23: GET_REGL(env->fpul);
1192 case 24: GET_REGL(env->fpscr);
1193 case 41: GET_REGL(env->ssr);
1194 case 42: GET_REGL(env->spc);
1195 }
1196
1197 return 0;
1198 }
1199
1200 static int cpu_gdb_write_register(CPUSH4State *env, uint8_t *mem_buf, int n)
1201 {
1202 uint32_t tmp;
1203
1204 tmp = ldl_p(mem_buf);
1205
1206 if (n < 8) {
1207 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
1208 env->gregs[n + 16] = tmp;
1209 } else {
1210 env->gregs[n] = tmp;
1211 }
1212 return 4;
1213 } else if (n < 16) {
1214 env->gregs[n] = tmp;
1215 return 4;
1216 } else if (n >= 25 && n < 41) {
1217 env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)] = tmp;
1218 return 4;
1219 } else if (n >= 43 && n < 51) {
1220 env->gregs[n - 43] = tmp;
1221 return 4;
1222 } else if (n >= 51 && n < 59) {
1223 env->gregs[n - (51 - 16)] = tmp;
1224 return 4;
1225 }
1226 switch (n) {
1227 case 16: env->pc = tmp; break;
1228 case 17: env->pr = tmp; break;
1229 case 18: env->gbr = tmp; break;
1230 case 19: env->vbr = tmp; break;
1231 case 20: env->mach = tmp; break;
1232 case 21: env->macl = tmp; break;
1233 case 22: env->sr = tmp; break;
1234 case 23: env->fpul = tmp; break;
1235 case 24: env->fpscr = tmp; break;
1236 case 41: env->ssr = tmp; break;
1237 case 42: env->spc = tmp; break;
1238 default: return 0;
1239 }
1240
1241 return 4;
1242 }
1243 #elif defined (TARGET_MICROBLAZE)
1244
1245 #define NUM_CORE_REGS (32 + 5)
1246
1247 static int cpu_gdb_read_register(CPUMBState *env, uint8_t *mem_buf, int n)
1248 {
1249 if (n < 32) {
1250 GET_REG32(env->regs[n]);
1251 } else {
1252 GET_REG32(env->sregs[n - 32]);
1253 }
1254 return 0;
1255 }
1256
1257 static int cpu_gdb_write_register(CPUMBState *env, uint8_t *mem_buf, int n)
1258 {
1259 uint32_t tmp;
1260
1261 if (n > NUM_CORE_REGS)
1262 return 0;
1263
1264 tmp = ldl_p(mem_buf);
1265
1266 if (n < 32) {
1267 env->regs[n] = tmp;
1268 } else {
1269 env->sregs[n - 32] = tmp;
1270 }
1271 return 4;
1272 }
1273 #elif defined (TARGET_CRIS)
1274
1275 #define NUM_CORE_REGS 49
1276
1277 static int
1278 read_register_crisv10(CPUCRISState *env, uint8_t *mem_buf, int n)
1279 {
1280 if (n < 15) {
1281 GET_REG32(env->regs[n]);
1282 }
1283
1284 if (n == 15) {
1285 GET_REG32(env->pc);
1286 }
1287
1288 if (n < 32) {
1289 switch (n) {
1290 case 16:
1291 GET_REG8(env->pregs[n - 16]);
1292 break;
1293 case 17:
1294 GET_REG8(env->pregs[n - 16]);
1295 break;
1296 case 20:
1297 case 21:
1298 GET_REG16(env->pregs[n - 16]);
1299 break;
1300 default:
1301 if (n >= 23) {
1302 GET_REG32(env->pregs[n - 16]);
1303 }
1304 break;
1305 }
1306 }
1307 return 0;
1308 }
1309
1310 static int cpu_gdb_read_register(CPUCRISState *env, uint8_t *mem_buf, int n)
1311 {
1312 uint8_t srs;
1313
1314 if (env->pregs[PR_VR] < 32)
1315 return read_register_crisv10(env, mem_buf, n);
1316
1317 srs = env->pregs[PR_SRS];
1318 if (n < 16) {
1319 GET_REG32(env->regs[n]);
1320 }
1321
1322 if (n >= 21 && n < 32) {
1323 GET_REG32(env->pregs[n - 16]);
1324 }
1325 if (n >= 33 && n < 49) {
1326 GET_REG32(env->sregs[srs][n - 33]);
1327 }
1328 switch (n) {
1329 case 16: GET_REG8(env->pregs[0]);
1330 case 17: GET_REG8(env->pregs[1]);
1331 case 18: GET_REG32(env->pregs[2]);
1332 case 19: GET_REG8(srs);
1333 case 20: GET_REG16(env->pregs[4]);
1334 case 32: GET_REG32(env->pc);
1335 }
1336
1337 return 0;
1338 }
1339
1340 static int cpu_gdb_write_register(CPUCRISState *env, uint8_t *mem_buf, int n)
1341 {
1342 uint32_t tmp;
1343
1344 if (n > 49)
1345 return 0;
1346
1347 tmp = ldl_p(mem_buf);
1348
1349 if (n < 16) {
1350 env->regs[n] = tmp;
1351 }
1352
1353 if (n >= 21 && n < 32) {
1354 env->pregs[n - 16] = tmp;
1355 }
1356
1357 /* FIXME: Should support function regs be writable? */
1358 switch (n) {
1359 case 16: return 1;
1360 case 17: return 1;
1361 case 18: env->pregs[PR_PID] = tmp; break;
1362 case 19: return 1;
1363 case 20: return 2;
1364 case 32: env->pc = tmp; break;
1365 }
1366
1367 return 4;
1368 }
1369 #elif defined (TARGET_ALPHA)
1370
1371 #define NUM_CORE_REGS 67
1372
1373 static int cpu_gdb_read_register(CPUAlphaState *env, uint8_t *mem_buf, int n)
1374 {
1375 uint64_t val;
1376 CPU_DoubleU d;
1377
1378 switch (n) {
1379 case 0 ... 30:
1380 val = env->ir[n];
1381 break;
1382 case 32 ... 62:
1383 d.d = env->fir[n - 32];
1384 val = d.ll;
1385 break;
1386 case 63:
1387 val = cpu_alpha_load_fpcr(env);
1388 break;
1389 case 64:
1390 val = env->pc;
1391 break;
1392 case 66:
1393 val = env->unique;
1394 break;
1395 case 31:
1396 case 65:
1397 /* 31 really is the zero register; 65 is unassigned in the
1398 gdb protocol, but is still required to occupy 8 bytes. */
1399 val = 0;
1400 break;
1401 default:
1402 return 0;
1403 }
1404 GET_REGL(val);
1405 }
1406
1407 static int cpu_gdb_write_register(CPUAlphaState *env, uint8_t *mem_buf, int n)
1408 {
1409 target_ulong tmp = ldtul_p(mem_buf);
1410 CPU_DoubleU d;
1411
1412 switch (n) {
1413 case 0 ... 30:
1414 env->ir[n] = tmp;
1415 break;
1416 case 32 ... 62:
1417 d.ll = tmp;
1418 env->fir[n - 32] = d.d;
1419 break;
1420 case 63:
1421 cpu_alpha_store_fpcr(env, tmp);
1422 break;
1423 case 64:
1424 env->pc = tmp;
1425 break;
1426 case 66:
1427 env->unique = tmp;
1428 break;
1429 case 31:
1430 case 65:
1431 /* 31 really is the zero register; 65 is unassigned in the
1432 gdb protocol, but is still required to occupy 8 bytes. */
1433 break;
1434 default:
1435 return 0;
1436 }
1437 return 8;
1438 }
1439 #elif defined (TARGET_S390X)
1440
1441 #define NUM_CORE_REGS S390_NUM_TOTAL_REGS
1442
1443 static int cpu_gdb_read_register(CPUS390XState *env, uint8_t *mem_buf, int n)
1444 {
1445 switch (n) {
1446 case S390_PSWM_REGNUM: GET_REGL(env->psw.mask); break;
1447 case S390_PSWA_REGNUM: GET_REGL(env->psw.addr); break;
1448 case S390_R0_REGNUM ... S390_R15_REGNUM:
1449 GET_REGL(env->regs[n-S390_R0_REGNUM]); break;
1450 case S390_A0_REGNUM ... S390_A15_REGNUM:
1451 GET_REG32(env->aregs[n-S390_A0_REGNUM]); break;
1452 case S390_FPC_REGNUM: GET_REG32(env->fpc); break;
1453 case S390_F0_REGNUM ... S390_F15_REGNUM:
1454 /* XXX */
1455 break;
1456 case S390_PC_REGNUM: GET_REGL(env->psw.addr); break;
1457 case S390_CC_REGNUM:
1458 env->cc_op = calc_cc(env, env->cc_op, env->cc_src, env->cc_dst,
1459 env->cc_vr);
1460 GET_REG32(env->cc_op);
1461 break;
1462 }
1463
1464 return 0;
1465 }
1466
1467 static int cpu_gdb_write_register(CPUS390XState *env, uint8_t *mem_buf, int n)
1468 {
1469 target_ulong tmpl;
1470 uint32_t tmp32;
1471 int r = 8;
1472 tmpl = ldtul_p(mem_buf);
1473 tmp32 = ldl_p(mem_buf);
1474
1475 switch (n) {
1476 case S390_PSWM_REGNUM: env->psw.mask = tmpl; break;
1477 case S390_PSWA_REGNUM: env->psw.addr = tmpl; break;
1478 case S390_R0_REGNUM ... S390_R15_REGNUM:
1479 env->regs[n-S390_R0_REGNUM] = tmpl; break;
1480 case S390_A0_REGNUM ... S390_A15_REGNUM:
1481 env->aregs[n-S390_A0_REGNUM] = tmp32; r=4; break;
1482 case S390_FPC_REGNUM: env->fpc = tmp32; r=4; break;
1483 case S390_F0_REGNUM ... S390_F15_REGNUM:
1484 /* XXX */
1485 break;
1486 case S390_PC_REGNUM: env->psw.addr = tmpl; break;
1487 case S390_CC_REGNUM: env->cc_op = tmp32; r=4; break;
1488 }
1489
1490 return r;
1491 }
1492 #elif defined (TARGET_LM32)
1493
1494 #include "hw/lm32_pic.h"
1495 #define NUM_CORE_REGS (32 + 7)
1496
1497 static int cpu_gdb_read_register(CPULM32State *env, uint8_t *mem_buf, int n)
1498 {
1499 if (n < 32) {
1500 GET_REG32(env->regs[n]);
1501 } else {
1502 switch (n) {
1503 case 32:
1504 GET_REG32(env->pc);
1505 break;
1506 /* FIXME: put in right exception ID */
1507 case 33:
1508 GET_REG32(0);
1509 break;
1510 case 34:
1511 GET_REG32(env->eba);
1512 break;
1513 case 35:
1514 GET_REG32(env->deba);
1515 break;
1516 case 36:
1517 GET_REG32(env->ie);
1518 break;
1519 case 37:
1520 GET_REG32(lm32_pic_get_im(env->pic_state));
1521 break;
1522 case 38:
1523 GET_REG32(lm32_pic_get_ip(env->pic_state));
1524 break;
1525 }
1526 }
1527 return 0;
1528 }
1529
1530 static int cpu_gdb_write_register(CPULM32State *env, uint8_t *mem_buf, int n)
1531 {
1532 uint32_t tmp;
1533
1534 if (n > NUM_CORE_REGS) {
1535 return 0;
1536 }
1537
1538 tmp = ldl_p(mem_buf);
1539
1540 if (n < 32) {
1541 env->regs[n] = tmp;
1542 } else {
1543 switch (n) {
1544 case 32:
1545 env->pc = tmp;
1546 break;
1547 case 34:
1548 env->eba = tmp;
1549 break;
1550 case 35:
1551 env->deba = tmp;
1552 break;
1553 case 36:
1554 env->ie = tmp;
1555 break;
1556 case 37:
1557 lm32_pic_set_im(env->pic_state, tmp);
1558 break;
1559 case 38:
1560 lm32_pic_set_ip(env->pic_state, tmp);
1561 break;
1562 }
1563 }
1564 return 4;
1565 }
1566 #elif defined(TARGET_XTENSA)
1567
1568 /* Use num_core_regs to see only non-privileged registers in an unmodified gdb.
1569 * Use num_regs to see all registers. gdb modification is required for that:
1570 * reset bit 0 in the 'flags' field of the registers definitions in the
1571 * gdb/xtensa-config.c inside gdb source tree or inside gdb overlay.
1572 */
1573 #define NUM_CORE_REGS (env->config->gdb_regmap.num_regs)
1574 #define num_g_regs NUM_CORE_REGS
1575
1576 static int cpu_gdb_read_register(CPUXtensaState *env, uint8_t *mem_buf, int n)
1577 {
1578 const XtensaGdbReg *reg = env->config->gdb_regmap.reg + n;
1579
1580 if (n < 0 || n >= env->config->gdb_regmap.num_regs) {
1581 return 0;
1582 }
1583
1584 switch (reg->type) {
1585 case 9: /*pc*/
1586 GET_REG32(env->pc);
1587 break;
1588
1589 case 1: /*ar*/
1590 xtensa_sync_phys_from_window(env);
1591 GET_REG32(env->phys_regs[(reg->targno & 0xff) % env->config->nareg]);
1592 break;
1593
1594 case 2: /*SR*/
1595 GET_REG32(env->sregs[reg->targno & 0xff]);
1596 break;
1597
1598 case 3: /*UR*/
1599 GET_REG32(env->uregs[reg->targno & 0xff]);
1600 break;
1601
1602 case 8: /*a*/
1603 GET_REG32(env->regs[reg->targno & 0x0f]);
1604 break;
1605
1606 default:
1607 qemu_log("%s from reg %d of unsupported type %d\n",
1608 __func__, n, reg->type);
1609 return 0;
1610 }
1611 }
1612
1613 static int cpu_gdb_write_register(CPUXtensaState *env, uint8_t *mem_buf, int n)
1614 {
1615 uint32_t tmp;
1616 const XtensaGdbReg *reg = env->config->gdb_regmap.reg + n;
1617
1618 if (n < 0 || n >= env->config->gdb_regmap.num_regs) {
1619 return 0;
1620 }
1621
1622 tmp = ldl_p(mem_buf);
1623
1624 switch (reg->type) {
1625 case 9: /*pc*/
1626 env->pc = tmp;
1627 break;
1628
1629 case 1: /*ar*/
1630 env->phys_regs[(reg->targno & 0xff) % env->config->nareg] = tmp;
1631 xtensa_sync_window_from_phys(env);
1632 break;
1633
1634 case 2: /*SR*/
1635 env->sregs[reg->targno & 0xff] = tmp;
1636 break;
1637
1638 case 3: /*UR*/
1639 env->uregs[reg->targno & 0xff] = tmp;
1640 break;
1641
1642 case 8: /*a*/
1643 env->regs[reg->targno & 0x0f] = tmp;
1644 break;
1645
1646 default:
1647 qemu_log("%s to reg %d of unsupported type %d\n",
1648 __func__, n, reg->type);
1649 return 0;
1650 }
1651
1652 return 4;
1653 }
1654 #else
1655
1656 #define NUM_CORE_REGS 0
1657
1658 static int cpu_gdb_read_register(CPUArchState *env, uint8_t *mem_buf, int n)
1659 {
1660 return 0;
1661 }
1662
1663 static int cpu_gdb_write_register(CPUArchState *env, uint8_t *mem_buf, int n)
1664 {
1665 return 0;
1666 }
1667
1668 #endif
1669
1670 #if !defined(TARGET_XTENSA)
1671 static int num_g_regs = NUM_CORE_REGS;
1672 #endif
1673
1674 #ifdef GDB_CORE_XML
1675 /* Encode data using the encoding for 'x' packets. */
1676 static int memtox(char *buf, const char *mem, int len)
1677 {
1678 char *p = buf;
1679 char c;
1680
1681 while (len--) {
1682 c = *(mem++);
1683 switch (c) {
1684 case '#': case '$': case '*': case '}':
1685 *(p++) = '}';
1686 *(p++) = c ^ 0x20;
1687 break;
1688 default:
1689 *(p++) = c;
1690 break;
1691 }
1692 }
1693 return p - buf;
1694 }
1695
1696 static const char *get_feature_xml(const char *p, const char **newp)
1697 {
1698 size_t len;
1699 int i;
1700 const char *name;
1701 static char target_xml[1024];
1702
1703 len = 0;
1704 while (p[len] && p[len] != ':')
1705 len++;
1706 *newp = p + len;
1707
1708 name = NULL;
1709 if (strncmp(p, "target.xml", len) == 0) {
1710 /* Generate the XML description for this CPU. */
1711 if (!target_xml[0]) {
1712 GDBRegisterState *r;
1713
1714 snprintf(target_xml, sizeof(target_xml),
1715 "<?xml version=\"1.0\"?>"
1716 "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
1717 "<target>"
1718 "<xi:include href=\"%s\"/>",
1719 GDB_CORE_XML);
1720
1721 for (r = first_cpu->gdb_regs; r; r = r->next) {
1722 pstrcat(target_xml, sizeof(target_xml), "<xi:include href=\"");
1723 pstrcat(target_xml, sizeof(target_xml), r->xml);
1724 pstrcat(target_xml, sizeof(target_xml), "\"/>");
1725 }
1726 pstrcat(target_xml, sizeof(target_xml), "</target>");
1727 }
1728 return target_xml;
1729 }
1730 for (i = 0; ; i++) {
1731 name = xml_builtin[i][0];
1732 if (!name || (strncmp(name, p, len) == 0 && strlen(name) == len))
1733 break;
1734 }
1735 return name ? xml_builtin[i][1] : NULL;
1736 }
1737 #endif
1738
1739 static int gdb_read_register(CPUArchState *env, uint8_t *mem_buf, int reg)
1740 {
1741 GDBRegisterState *r;
1742
1743 if (reg < NUM_CORE_REGS)
1744 return cpu_gdb_read_register(env, mem_buf, reg);
1745
1746 for (r = env->gdb_regs; r; r = r->next) {
1747 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
1748 return r->get_reg(env, mem_buf, reg - r->base_reg);
1749 }
1750 }
1751 return 0;
1752 }
1753
1754 static int gdb_write_register(CPUArchState *env, uint8_t *mem_buf, int reg)
1755 {
1756 GDBRegisterState *r;
1757
1758 if (reg < NUM_CORE_REGS)
1759 return cpu_gdb_write_register(env, mem_buf, reg);
1760
1761 for (r = env->gdb_regs; r; r = r->next) {
1762 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
1763 return r->set_reg(env, mem_buf, reg - r->base_reg);
1764 }
1765 }
1766 return 0;
1767 }
1768
1769 #if !defined(TARGET_XTENSA)
1770 /* Register a supplemental set of CPU registers. If g_pos is nonzero it
1771 specifies the first register number and these registers are included in
1772 a standard "g" packet. Direction is relative to gdb, i.e. get_reg is
1773 gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
1774 */
1775
1776 void gdb_register_coprocessor(CPUArchState * env,
1777 gdb_reg_cb get_reg, gdb_reg_cb set_reg,
1778 int num_regs, const char *xml, int g_pos)
1779 {
1780 GDBRegisterState *s;
1781 GDBRegisterState **p;
1782 static int last_reg = NUM_CORE_REGS;
1783
1784 p = &env->gdb_regs;
1785 while (*p) {
1786 /* Check for duplicates. */
1787 if (strcmp((*p)->xml, xml) == 0)
1788 return;
1789 p = &(*p)->next;
1790 }
1791
1792 s = g_new0(GDBRegisterState, 1);
1793 s->base_reg = last_reg;
1794 s->num_regs = num_regs;
1795 s->get_reg = get_reg;
1796 s->set_reg = set_reg;
1797 s->xml = xml;
1798
1799 /* Add to end of list. */
1800 last_reg += num_regs;
1801 *p = s;
1802 if (g_pos) {
1803 if (g_pos != s->base_reg) {
1804 fprintf(stderr, "Error: Bad gdb register numbering for '%s'\n"
1805 "Expected %d got %d\n", xml, g_pos, s->base_reg);
1806 } else {
1807 num_g_regs = last_reg;
1808 }
1809 }
1810 }
1811 #endif
1812
1813 #ifndef CONFIG_USER_ONLY
1814 static const int xlat_gdb_type[] = {
1815 [GDB_WATCHPOINT_WRITE] = BP_GDB | BP_MEM_WRITE,
1816 [GDB_WATCHPOINT_READ] = BP_GDB | BP_MEM_READ,
1817 [GDB_WATCHPOINT_ACCESS] = BP_GDB | BP_MEM_ACCESS,
1818 };
1819 #endif
1820
1821 static int gdb_breakpoint_insert(target_ulong addr, target_ulong len, int type)
1822 {
1823 CPUArchState *env;
1824 int err = 0;
1825
1826 if (kvm_enabled())
1827 return kvm_insert_breakpoint(gdbserver_state->c_cpu, addr, len, type);
1828
1829 switch (type) {
1830 case GDB_BREAKPOINT_SW:
1831 case GDB_BREAKPOINT_HW:
1832 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1833 err = cpu_breakpoint_insert(env, addr, BP_GDB, NULL);
1834 if (err)
1835 break;
1836 }
1837 return err;
1838 #ifndef CONFIG_USER_ONLY
1839 case GDB_WATCHPOINT_WRITE:
1840 case GDB_WATCHPOINT_READ:
1841 case GDB_WATCHPOINT_ACCESS:
1842 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1843 err = cpu_watchpoint_insert(env, addr, len, xlat_gdb_type[type],
1844 NULL);
1845 if (err)
1846 break;
1847 }
1848 return err;
1849 #endif
1850 default:
1851 return -ENOSYS;
1852 }
1853 }
1854
1855 static int gdb_breakpoint_remove(target_ulong addr, target_ulong len, int type)
1856 {
1857 CPUArchState *env;
1858 int err = 0;
1859
1860 if (kvm_enabled())
1861 return kvm_remove_breakpoint(gdbserver_state->c_cpu, addr, len, type);
1862
1863 switch (type) {
1864 case GDB_BREAKPOINT_SW:
1865 case GDB_BREAKPOINT_HW:
1866 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1867 err = cpu_breakpoint_remove(env, addr, BP_GDB);
1868 if (err)
1869 break;
1870 }
1871 return err;
1872 #ifndef CONFIG_USER_ONLY
1873 case GDB_WATCHPOINT_WRITE:
1874 case GDB_WATCHPOINT_READ:
1875 case GDB_WATCHPOINT_ACCESS:
1876 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1877 err = cpu_watchpoint_remove(env, addr, len, xlat_gdb_type[type]);
1878 if (err)
1879 break;
1880 }
1881 return err;
1882 #endif
1883 default:
1884 return -ENOSYS;
1885 }
1886 }
1887
1888 static void gdb_breakpoint_remove_all(void)
1889 {
1890 CPUArchState *env;
1891
1892 if (kvm_enabled()) {
1893 kvm_remove_all_breakpoints(gdbserver_state->c_cpu);
1894 return;
1895 }
1896
1897 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1898 cpu_breakpoint_remove_all(env, BP_GDB);
1899 #ifndef CONFIG_USER_ONLY
1900 cpu_watchpoint_remove_all(env, BP_GDB);
1901 #endif
1902 }
1903 }
1904
1905 static void gdb_set_cpu_pc(GDBState *s, target_ulong pc)
1906 {
1907 #if defined(TARGET_I386)
1908 cpu_synchronize_state(s->c_cpu);
1909 s->c_cpu->eip = pc;
1910 #elif defined (TARGET_PPC)
1911 s->c_cpu->nip = pc;
1912 #elif defined (TARGET_SPARC)
1913 s->c_cpu->pc = pc;
1914 s->c_cpu->npc = pc + 4;
1915 #elif defined (TARGET_ARM)
1916 s->c_cpu->regs[15] = pc;
1917 #elif defined (TARGET_SH4)
1918 s->c_cpu->pc = pc;
1919 #elif defined (TARGET_MIPS)
1920 s->c_cpu->active_tc.PC = pc & ~(target_ulong)1;
1921 if (pc & 1) {
1922 s->c_cpu->hflags |= MIPS_HFLAG_M16;
1923 } else {
1924 s->c_cpu->hflags &= ~(MIPS_HFLAG_M16);
1925 }
1926 #elif defined (TARGET_MICROBLAZE)
1927 s->c_cpu->sregs[SR_PC] = pc;
1928 #elif defined (TARGET_CRIS)
1929 s->c_cpu->pc = pc;
1930 #elif defined (TARGET_ALPHA)
1931 s->c_cpu->pc = pc;
1932 #elif defined (TARGET_S390X)
1933 cpu_synchronize_state(s->c_cpu);
1934 s->c_cpu->psw.addr = pc;
1935 #elif defined (TARGET_LM32)
1936 s->c_cpu->pc = pc;
1937 #elif defined(TARGET_XTENSA)
1938 s->c_cpu->pc = pc;
1939 #endif
1940 }
1941
1942 static inline int gdb_id(CPUArchState *env)
1943 {
1944 #if defined(CONFIG_USER_ONLY) && defined(CONFIG_USE_NPTL)
1945 return env->host_tid;
1946 #else
1947 return env->cpu_index + 1;
1948 #endif
1949 }
1950
1951 static CPUArchState *find_cpu(uint32_t thread_id)
1952 {
1953 CPUArchState *env;
1954
1955 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1956 if (gdb_id(env) == thread_id) {
1957 return env;
1958 }
1959 }
1960
1961 return NULL;
1962 }
1963
1964 static int gdb_handle_packet(GDBState *s, const char *line_buf)
1965 {
1966 CPUArchState *env;
1967 const char *p;
1968 uint32_t thread;
1969 int ch, reg_size, type, res;
1970 char buf[MAX_PACKET_LENGTH];
1971 uint8_t mem_buf[MAX_PACKET_LENGTH];
1972 uint8_t *registers;
1973 target_ulong addr, len;
1974
1975 #ifdef DEBUG_GDB
1976 printf("command='%s'\n", line_buf);
1977 #endif
1978 p = line_buf;
1979 ch = *p++;
1980 switch(ch) {
1981 case '?':
1982 /* TODO: Make this return the correct value for user-mode. */
1983 snprintf(buf, sizeof(buf), "T%02xthread:%02x;", GDB_SIGNAL_TRAP,
1984 gdb_id(s->c_cpu));
1985 put_packet(s, buf);
1986 /* Remove all the breakpoints when this query is issued,
1987 * because gdb is doing and initial connect and the state
1988 * should be cleaned up.
1989 */
1990 gdb_breakpoint_remove_all();
1991 break;
1992 case 'c':
1993 if (*p != '\0') {
1994 addr = strtoull(p, (char **)&p, 16);
1995 gdb_set_cpu_pc(s, addr);
1996 }
1997 s->signal = 0;
1998 gdb_continue(s);
1999 return RS_IDLE;
2000 case 'C':
2001 s->signal = gdb_signal_to_target (strtoul(p, (char **)&p, 16));
2002 if (s->signal == -1)
2003 s->signal = 0;
2004 gdb_continue(s);
2005 return RS_IDLE;
2006 case 'v':
2007 if (strncmp(p, "Cont", 4) == 0) {
2008 int res_signal, res_thread;
2009
2010 p += 4;
2011 if (*p == '?') {
2012 put_packet(s, "vCont;c;C;s;S");
2013 break;
2014 }
2015 res = 0;
2016 res_signal = 0;
2017 res_thread = 0;
2018 while (*p) {
2019 int action, signal;
2020
2021 if (*p++ != ';') {
2022 res = 0;
2023 break;
2024 }
2025 action = *p++;
2026 signal = 0;
2027 if (action == 'C' || action == 'S') {
2028 signal = strtoul(p, (char **)&p, 16);
2029 } else if (action != 'c' && action != 's') {
2030 res = 0;
2031 break;
2032 }
2033 thread = 0;
2034 if (*p == ':') {
2035 thread = strtoull(p+1, (char **)&p, 16);
2036 }
2037 action = tolower(action);
2038 if (res == 0 || (res == 'c' && action == 's')) {
2039 res = action;
2040 res_signal = signal;
2041 res_thread = thread;
2042 }
2043 }
2044 if (res) {
2045 if (res_thread != -1 && res_thread != 0) {
2046 env = find_cpu(res_thread);
2047 if (env == NULL) {
2048 put_packet(s, "E22");
2049 break;
2050 }
2051 s->c_cpu = env;
2052 }
2053 if (res == 's') {
2054 cpu_single_step(s->c_cpu, sstep_flags);
2055 }
2056 s->signal = res_signal;
2057 gdb_continue(s);
2058 return RS_IDLE;
2059 }
2060 break;
2061 } else {
2062 goto unknown_command;
2063 }
2064 case 'k':
2065 #ifdef CONFIG_USER_ONLY
2066 /* Kill the target */
2067 fprintf(stderr, "\nQEMU: Terminated via GDBstub\n");
2068 exit(0);
2069 #endif
2070 case 'D':
2071 /* Detach packet */
2072 gdb_breakpoint_remove_all();
2073 gdb_syscall_mode = GDB_SYS_DISABLED;
2074 gdb_continue(s);
2075 put_packet(s, "OK");
2076 break;
2077 case 's':
2078 if (*p != '\0') {
2079 addr = strtoull(p, (char **)&p, 16);
2080 gdb_set_cpu_pc(s, addr);
2081 }
2082 cpu_single_step(s->c_cpu, sstep_flags);
2083 gdb_continue(s);
2084 return RS_IDLE;
2085 case 'F':
2086 {
2087 target_ulong ret;
2088 target_ulong err;
2089
2090 ret = strtoull(p, (char **)&p, 16);
2091 if (*p == ',') {
2092 p++;
2093 err = strtoull(p, (char **)&p, 16);
2094 } else {
2095 err = 0;
2096 }
2097 if (*p == ',')
2098 p++;
2099 type = *p;
2100 if (gdb_current_syscall_cb)
2101 gdb_current_syscall_cb(s->c_cpu, ret, err);
2102 if (type == 'C') {
2103 put_packet(s, "T02");
2104 } else {
2105 gdb_continue(s);
2106 }
2107 }
2108 break;
2109 case 'g':
2110 cpu_synchronize_state(s->g_cpu);
2111 env = s->g_cpu;
2112 len = 0;
2113 for (addr = 0; addr < num_g_regs; addr++) {
2114 reg_size = gdb_read_register(s->g_cpu, mem_buf + len, addr);
2115 len += reg_size;
2116 }
2117 memtohex(buf, mem_buf, len);
2118 put_packet(s, buf);
2119 break;
2120 case 'G':
2121 cpu_synchronize_state(s->g_cpu);
2122 env = s->g_cpu;
2123 registers = mem_buf;
2124 len = strlen(p) / 2;
2125 hextomem((uint8_t *)registers, p, len);
2126 for (addr = 0; addr < num_g_regs && len > 0; addr++) {
2127 reg_size = gdb_write_register(s->g_cpu, registers, addr);
2128 len -= reg_size;
2129 registers += reg_size;
2130 }
2131 put_packet(s, "OK");
2132 break;
2133 case 'm':
2134 addr = strtoull(p, (char **)&p, 16);
2135 if (*p == ',')
2136 p++;
2137 len = strtoull(p, NULL, 16);
2138 if (target_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 0) != 0) {
2139 put_packet (s, "E14");
2140 } else {
2141 memtohex(buf, mem_buf, len);
2142 put_packet(s, buf);
2143 }
2144 break;
2145 case 'M':
2146 addr = strtoull(p, (char **)&p, 16);
2147 if (*p == ',')
2148 p++;
2149 len = strtoull(p, (char **)&p, 16);
2150 if (*p == ':')
2151 p++;
2152 hextomem(mem_buf, p, len);
2153 if (target_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 1) != 0) {
2154 put_packet(s, "E14");
2155 } else {
2156 put_packet(s, "OK");
2157 }
2158 break;
2159 case 'p':
2160 /* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable.
2161 This works, but can be very slow. Anything new enough to
2162 understand XML also knows how to use this properly. */
2163 if (!gdb_has_xml)
2164 goto unknown_command;
2165 addr = strtoull(p, (char **)&p, 16);
2166 reg_size = gdb_read_register(s->g_cpu, mem_buf, addr);
2167 if (reg_size) {
2168 memtohex(buf, mem_buf, reg_size);
2169 put_packet(s, buf);
2170 } else {
2171 put_packet(s, "E14");
2172 }
2173 break;
2174 case 'P':
2175 if (!gdb_has_xml)
2176 goto unknown_command;
2177 addr = strtoull(p, (char **)&p, 16);
2178 if (*p == '=')
2179 p++;
2180 reg_size = strlen(p) / 2;
2181 hextomem(mem_buf, p, reg_size);
2182 gdb_write_register(s->g_cpu, mem_buf, addr);
2183 put_packet(s, "OK");
2184 break;
2185 case 'Z':
2186 case 'z':
2187 type = strtoul(p, (char **)&p, 16);
2188 if (*p == ',')
2189 p++;
2190 addr = strtoull(p, (char **)&p, 16);
2191 if (*p == ',')
2192 p++;
2193 len = strtoull(p, (char **)&p, 16);
2194 if (ch == 'Z')
2195 res = gdb_breakpoint_insert(addr, len, type);
2196 else
2197 res = gdb_breakpoint_remove(addr, len, type);
2198 if (res >= 0)
2199 put_packet(s, "OK");
2200 else if (res == -ENOSYS)
2201 put_packet(s, "");
2202 else
2203 put_packet(s, "E22");
2204 break;
2205 case 'H':
2206 type = *p++;
2207 thread = strtoull(p, (char **)&p, 16);
2208 if (thread == -1 || thread == 0) {
2209 put_packet(s, "OK");
2210 break;
2211 }
2212 env = find_cpu(thread);
2213 if (env == NULL) {
2214 put_packet(s, "E22");
2215 break;
2216 }
2217 switch (type) {
2218 case 'c':
2219 s->c_cpu = env;
2220 put_packet(s, "OK");
2221 break;
2222 case 'g':
2223 s->g_cpu = env;
2224 put_packet(s, "OK");
2225 break;
2226 default:
2227 put_packet(s, "E22");
2228 break;
2229 }
2230 break;
2231 case 'T':
2232 thread = strtoull(p, (char **)&p, 16);
2233 env = find_cpu(thread);
2234
2235 if (env != NULL) {
2236 put_packet(s, "OK");
2237 } else {
2238 put_packet(s, "E22");
2239 }
2240 break;
2241 case 'q':
2242 case 'Q':
2243 /* parse any 'q' packets here */
2244 if (!strcmp(p,"qemu.sstepbits")) {
2245 /* Query Breakpoint bit definitions */
2246 snprintf(buf, sizeof(buf), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
2247 SSTEP_ENABLE,
2248 SSTEP_NOIRQ,
2249 SSTEP_NOTIMER);
2250 put_packet(s, buf);
2251 break;
2252 } else if (strncmp(p,"qemu.sstep",10) == 0) {
2253 /* Display or change the sstep_flags */
2254 p += 10;
2255 if (*p != '=') {
2256 /* Display current setting */
2257 snprintf(buf, sizeof(buf), "0x%x", sstep_flags);
2258 put_packet(s, buf);
2259 break;
2260 }
2261 p++;
2262 type = strtoul(p, (char **)&p, 16);
2263 sstep_flags = type;
2264 put_packet(s, "OK");
2265 break;
2266 } else if (strcmp(p,"C") == 0) {
2267 /* "Current thread" remains vague in the spec, so always return
2268 * the first CPU (gdb returns the first thread). */
2269 put_packet(s, "QC1");
2270 break;
2271 } else if (strcmp(p,"fThreadInfo") == 0) {
2272 s->query_cpu = first_cpu;
2273 goto report_cpuinfo;
2274 } else if (strcmp(p,"sThreadInfo") == 0) {
2275 report_cpuinfo:
2276 if (s->query_cpu) {
2277 snprintf(buf, sizeof(buf), "m%x", gdb_id(s->query_cpu));
2278 put_packet(s, buf);
2279 s->query_cpu = s->query_cpu->next_cpu;
2280 } else
2281 put_packet(s, "l");
2282 break;
2283 } else if (strncmp(p,"ThreadExtraInfo,", 16) == 0) {
2284 thread = strtoull(p+16, (char **)&p, 16);
2285 env = find_cpu(thread);
2286 if (env != NULL) {
2287 cpu_synchronize_state(env);
2288 len = snprintf((char *)mem_buf, sizeof(mem_buf),
2289 "CPU#%d [%s]", env->cpu_index,
2290 env->halted ? "halted " : "running");
2291 memtohex(buf, mem_buf, len);
2292 put_packet(s, buf);
2293 }
2294 break;
2295 }
2296 #ifdef CONFIG_USER_ONLY
2297 else if (strncmp(p, "Offsets", 7) == 0) {
2298 TaskState *ts = s->c_cpu->opaque;
2299
2300 snprintf(buf, sizeof(buf),
2301 "Text=" TARGET_ABI_FMT_lx ";Data=" TARGET_ABI_FMT_lx
2302 ";Bss=" TARGET_ABI_FMT_lx,
2303 ts->info->code_offset,
2304 ts->info->data_offset,
2305 ts->info->data_offset);
2306 put_packet(s, buf);
2307 break;
2308 }
2309 #else /* !CONFIG_USER_ONLY */
2310 else if (strncmp(p, "Rcmd,", 5) == 0) {
2311 int len = strlen(p + 5);
2312
2313 if ((len % 2) != 0) {
2314 put_packet(s, "E01");
2315 break;
2316 }
2317 hextomem(mem_buf, p + 5, len);
2318 len = len / 2;
2319 mem_buf[len++] = 0;
2320 qemu_chr_be_write(s->mon_chr, mem_buf, len);
2321 put_packet(s, "OK");
2322 break;
2323 }
2324 #endif /* !CONFIG_USER_ONLY */
2325 if (strncmp(p, "Supported", 9) == 0) {
2326 snprintf(buf, sizeof(buf), "PacketSize=%x", MAX_PACKET_LENGTH);
2327 #ifdef GDB_CORE_XML
2328 pstrcat(buf, sizeof(buf), ";qXfer:features:read+");
2329 #endif
2330 put_packet(s, buf);
2331 break;
2332 }
2333 #ifdef GDB_CORE_XML
2334 if (strncmp(p, "Xfer:features:read:", 19) == 0) {
2335 const char *xml;
2336 target_ulong total_len;
2337
2338 gdb_has_xml = 1;
2339 p += 19;
2340 xml = get_feature_xml(p, &p);
2341 if (!xml) {
2342 snprintf(buf, sizeof(buf), "E00");
2343 put_packet(s, buf);
2344 break;
2345 }
2346
2347 if (*p == ':')
2348 p++;
2349 addr = strtoul(p, (char **)&p, 16);
2350 if (*p == ',')
2351 p++;
2352 len = strtoul(p, (char **)&p, 16);
2353
2354 total_len = strlen(xml);
2355 if (addr > total_len) {
2356 snprintf(buf, sizeof(buf), "E00");
2357 put_packet(s, buf);
2358 break;
2359 }
2360 if (len > (MAX_PACKET_LENGTH - 5) / 2)
2361 len = (MAX_PACKET_LENGTH - 5) / 2;
2362 if (len < total_len - addr) {
2363 buf[0] = 'm';
2364 len = memtox(buf + 1, xml + addr, len);
2365 } else {
2366 buf[0] = 'l';
2367 len = memtox(buf + 1, xml + addr, total_len - addr);
2368 }
2369 put_packet_binary(s, buf, len + 1);
2370 break;
2371 }
2372 #endif
2373 /* Unrecognised 'q' command. */
2374 goto unknown_command;
2375
2376 default:
2377 unknown_command:
2378 /* put empty packet */
2379 buf[0] = '\0';
2380 put_packet(s, buf);
2381 break;
2382 }
2383 return RS_IDLE;
2384 }
2385
2386 void gdb_set_stop_cpu(CPUArchState *env)
2387 {
2388 gdbserver_state->c_cpu = env;
2389 gdbserver_state->g_cpu = env;
2390 }
2391
2392 #ifndef CONFIG_USER_ONLY
2393 static void gdb_vm_state_change(void *opaque, int running, RunState state)
2394 {
2395 GDBState *s = gdbserver_state;
2396 CPUArchState *env = s->c_cpu;
2397 char buf[256];
2398 const char *type;
2399 int ret;
2400
2401 if (running || s->state == RS_INACTIVE || s->state == RS_SYSCALL) {
2402 return;
2403 }
2404 switch (state) {
2405 case RUN_STATE_DEBUG:
2406 if (env->watchpoint_hit) {
2407 switch (env->watchpoint_hit->flags & BP_MEM_ACCESS) {
2408 case BP_MEM_READ:
2409 type = "r";
2410 break;
2411 case BP_MEM_ACCESS:
2412 type = "a";
2413 break;
2414 default:
2415 type = "";
2416 break;
2417 }
2418 snprintf(buf, sizeof(buf),
2419 "T%02xthread:%02x;%swatch:" TARGET_FMT_lx ";",
2420 GDB_SIGNAL_TRAP, gdb_id(env), type,
2421 env->watchpoint_hit->vaddr);
2422 env->watchpoint_hit = NULL;
2423 goto send_packet;
2424 }
2425 tb_flush(env);
2426 ret = GDB_SIGNAL_TRAP;
2427 break;
2428 case RUN_STATE_PAUSED:
2429 ret = GDB_SIGNAL_INT;
2430 break;
2431 case RUN_STATE_SHUTDOWN:
2432 ret = GDB_SIGNAL_QUIT;
2433 break;
2434 case RUN_STATE_IO_ERROR:
2435 ret = GDB_SIGNAL_IO;
2436 break;
2437 case RUN_STATE_WATCHDOG:
2438 ret = GDB_SIGNAL_ALRM;
2439 break;
2440 case RUN_STATE_INTERNAL_ERROR:
2441 ret = GDB_SIGNAL_ABRT;
2442 break;
2443 case RUN_STATE_SAVE_VM:
2444 case RUN_STATE_RESTORE_VM:
2445 return;
2446 case RUN_STATE_FINISH_MIGRATE:
2447 ret = GDB_SIGNAL_XCPU;
2448 break;
2449 default:
2450 ret = GDB_SIGNAL_UNKNOWN;
2451 break;
2452 }
2453 snprintf(buf, sizeof(buf), "T%02xthread:%02x;", ret, gdb_id(env));
2454
2455 send_packet:
2456 put_packet(s, buf);
2457
2458 /* disable single step if it was enabled */
2459 cpu_single_step(env, 0);
2460 }
2461 #endif
2462
2463 /* Send a gdb syscall request.
2464 This accepts limited printf-style format specifiers, specifically:
2465 %x - target_ulong argument printed in hex.
2466 %lx - 64-bit argument printed in hex.
2467 %s - string pointer (target_ulong) and length (int) pair. */
2468 void gdb_do_syscall(gdb_syscall_complete_cb cb, const char *fmt, ...)
2469 {
2470 va_list va;
2471 char buf[256];
2472 char *p;
2473 target_ulong addr;
2474 uint64_t i64;
2475 GDBState *s;
2476
2477 s = gdbserver_state;
2478 if (!s)
2479 return;
2480 gdb_current_syscall_cb = cb;
2481 s->state = RS_SYSCALL;
2482 #ifndef CONFIG_USER_ONLY
2483 vm_stop(RUN_STATE_DEBUG);
2484 #endif
2485 s->state = RS_IDLE;
2486 va_start(va, fmt);
2487 p = buf;
2488 *(p++) = 'F';
2489 while (*fmt) {
2490 if (*fmt == '%') {
2491 fmt++;
2492 switch (*fmt++) {
2493 case 'x':
2494 addr = va_arg(va, target_ulong);
2495 p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx, addr);
2496 break;
2497 case 'l':
2498 if (*(fmt++) != 'x')
2499 goto bad_format;
2500 i64 = va_arg(va, uint64_t);
2501 p += snprintf(p, &buf[sizeof(buf)] - p, "%" PRIx64, i64);
2502 break;
2503 case 's':
2504 addr = va_arg(va, target_ulong);
2505 p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx "/%x",
2506 addr, va_arg(va, int));
2507 break;
2508 default:
2509 bad_format:
2510 fprintf(stderr, "gdbstub: Bad syscall format string '%s'\n",
2511 fmt - 1);
2512 break;
2513 }
2514 } else {
2515 *(p++) = *(fmt++);
2516 }
2517 }
2518 *p = 0;
2519 va_end(va);
2520 put_packet(s, buf);
2521 #ifdef CONFIG_USER_ONLY
2522 gdb_handlesig(s->c_cpu, 0);
2523 #else
2524 cpu_exit(s->c_cpu);
2525 #endif
2526 }
2527
2528 static void gdb_read_byte(GDBState *s, int ch)
2529 {
2530 int i, csum;
2531 uint8_t reply;
2532
2533 #ifndef CONFIG_USER_ONLY
2534 if (s->last_packet_len) {
2535 /* Waiting for a response to the last packet. If we see the start
2536 of a new command then abandon the previous response. */
2537 if (ch == '-') {
2538 #ifdef DEBUG_GDB
2539 printf("Got NACK, retransmitting\n");
2540 #endif
2541 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
2542 }
2543 #ifdef DEBUG_GDB
2544 else if (ch == '+')
2545 printf("Got ACK\n");
2546 else
2547 printf("Got '%c' when expecting ACK/NACK\n", ch);
2548 #endif
2549 if (ch == '+' || ch == '$')
2550 s->last_packet_len = 0;
2551 if (ch != '$')
2552 return;
2553 }
2554 if (runstate_is_running()) {
2555 /* when the CPU is running, we cannot do anything except stop
2556 it when receiving a char */
2557 vm_stop(RUN_STATE_PAUSED);
2558 } else
2559 #endif
2560 {
2561 switch(s->state) {
2562 case RS_IDLE:
2563 if (ch == '$') {
2564 s->line_buf_index = 0;
2565 s->state = RS_GETLINE;
2566 }
2567 break;
2568 case RS_GETLINE:
2569 if (ch == '#') {
2570 s->state = RS_CHKSUM1;
2571 } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
2572 s->state = RS_IDLE;
2573 } else {
2574 s->line_buf[s->line_buf_index++] = ch;
2575 }
2576 break;
2577 case RS_CHKSUM1:
2578 s->line_buf[s->line_buf_index] = '\0';
2579 s->line_csum = fromhex(ch) << 4;
2580 s->state = RS_CHKSUM2;
2581 break;
2582 case RS_CHKSUM2:
2583 s->line_csum |= fromhex(ch);
2584 csum = 0;
2585 for(i = 0; i < s->line_buf_index; i++) {
2586 csum += s->line_buf[i];
2587 }
2588 if (s->line_csum != (csum & 0xff)) {
2589 reply = '-';
2590 put_buffer(s, &reply, 1);
2591 s->state = RS_IDLE;
2592 } else {
2593 reply = '+';
2594 put_buffer(s, &reply, 1);
2595 s->state = gdb_handle_packet(s, s->line_buf);
2596 }
2597 break;
2598 default:
2599 abort();
2600 }
2601 }
2602 }
2603
2604 /* Tell the remote gdb that the process has exited. */
2605 void gdb_exit(CPUArchState *env, int code)
2606 {
2607 GDBState *s;
2608 char buf[4];
2609
2610 s = gdbserver_state;
2611 if (!s) {
2612 return;
2613 }
2614 #ifdef CONFIG_USER_ONLY
2615 if (gdbserver_fd < 0 || s->fd < 0) {
2616 return;
2617 }
2618 #endif
2619
2620 snprintf(buf, sizeof(buf), "W%02x", (uint8_t)code);
2621 put_packet(s, buf);
2622
2623 #ifndef CONFIG_USER_ONLY
2624 if (s->chr) {
2625 qemu_chr_delete(s->chr);
2626 }
2627 #endif
2628 }
2629
2630 #ifdef CONFIG_USER_ONLY
2631 int
2632 gdb_queuesig (void)
2633 {
2634 GDBState *s;
2635
2636 s = gdbserver_state;
2637
2638 if (gdbserver_fd < 0 || s->fd < 0)
2639 return 0;
2640 else
2641 return 1;
2642 }
2643
2644 int
2645 gdb_handlesig (CPUArchState *env, int sig)
2646 {
2647 GDBState *s;
2648 char buf[256];
2649 int n;
2650
2651 s = gdbserver_state;
2652 if (gdbserver_fd < 0 || s->fd < 0)
2653 return sig;
2654
2655 /* disable single step if it was enabled */
2656 cpu_single_step(env, 0);
2657 tb_flush(env);
2658
2659 if (sig != 0)
2660 {
2661 snprintf(buf, sizeof(buf), "S%02x", target_signal_to_gdb (sig));
2662 put_packet(s, buf);
2663 }
2664 /* put_packet() might have detected that the peer terminated the
2665 connection. */
2666 if (s->fd < 0)
2667 return sig;
2668
2669 sig = 0;
2670 s->state = RS_IDLE;
2671 s->running_state = 0;
2672 while (s->running_state == 0) {
2673 n = read (s->fd, buf, 256);
2674 if (n > 0)
2675 {
2676 int i;
2677
2678 for (i = 0; i < n; i++)
2679 gdb_read_byte (s, buf[i]);
2680 }
2681 else if (n == 0 || errno != EAGAIN)
2682 {
2683 /* XXX: Connection closed. Should probably wait for another
2684 connection before continuing. */
2685 return sig;
2686 }
2687 }
2688 sig = s->signal;
2689 s->signal = 0;
2690 return sig;
2691 }
2692
2693 /* Tell the remote gdb that the process has exited due to SIG. */
2694 void gdb_signalled(CPUArchState *env, int sig)
2695 {
2696 GDBState *s;
2697 char buf[4];
2698
2699 s = gdbserver_state;
2700 if (gdbserver_fd < 0 || s->fd < 0)
2701 return;
2702
2703 snprintf(buf, sizeof(buf), "X%02x", target_signal_to_gdb (sig));
2704 put_packet(s, buf);
2705 }
2706
2707 static void gdb_accept(void)
2708 {
2709 GDBState *s;
2710 struct sockaddr_in sockaddr;
2711 socklen_t len;
2712 int val, fd;
2713
2714 for(;;) {
2715 len = sizeof(sockaddr);
2716 fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
2717 if (fd < 0 && errno != EINTR) {
2718 perror("accept");
2719 return;
2720 } else if (fd >= 0) {
2721 #ifndef _WIN32
2722 fcntl(fd, F_SETFD, FD_CLOEXEC);
2723 #endif
2724 break;
2725 }
2726 }
2727
2728 /* set short latency */
2729 val = 1;
2730 setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
2731
2732 s = g_malloc0(sizeof(GDBState));
2733 s->c_cpu = first_cpu;
2734 s->g_cpu = first_cpu;
2735 s->fd = fd;
2736 gdb_has_xml = 0;
2737
2738 gdbserver_state = s;
2739
2740 fcntl(fd, F_SETFL, O_NONBLOCK);
2741 }
2742
2743 static int gdbserver_open(int port)
2744 {
2745 struct sockaddr_in sockaddr;
2746 int fd, val, ret;
2747
2748 fd = socket(PF_INET, SOCK_STREAM, 0);
2749 if (fd < 0) {
2750 perror("socket");
2751 return -1;
2752 }
2753 #ifndef _WIN32
2754 fcntl(fd, F_SETFD, FD_CLOEXEC);
2755 #endif
2756
2757 /* allow fast reuse */
2758 val = 1;
2759 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *)&val, sizeof(val));
2760
2761 sockaddr.sin_family = AF_INET;
2762 sockaddr.sin_port = htons(port);
2763 sockaddr.sin_addr.s_addr = 0;
2764 ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
2765 if (ret < 0) {
2766 perror("bind");
2767 close(fd);
2768 return -1;
2769 }
2770 ret = listen(fd, 0);
2771 if (ret < 0) {
2772 perror("listen");
2773 close(fd);
2774 return -1;
2775 }
2776 return fd;
2777 }
2778
2779 int gdbserver_start(int port)
2780 {
2781 gdbserver_fd = gdbserver_open(port);
2782 if (gdbserver_fd < 0)
2783 return -1;
2784 /* accept connections */
2785 gdb_accept();
2786 return 0;
2787 }
2788
2789 /* Disable gdb stub for child processes. */
2790 void gdbserver_fork(CPUArchState *env)
2791 {
2792 GDBState *s = gdbserver_state;
2793 if (gdbserver_fd < 0 || s->fd < 0)
2794 return;
2795 close(s->fd);
2796 s->fd = -1;
2797 cpu_breakpoint_remove_all(env, BP_GDB);
2798 cpu_watchpoint_remove_all(env, BP_GDB);
2799 }
2800 #else
2801 static int gdb_chr_can_receive(void *opaque)
2802 {
2803 /* We can handle an arbitrarily large amount of data.
2804 Pick the maximum packet size, which is as good as anything. */
2805 return MAX_PACKET_LENGTH;
2806 }
2807
2808 static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size)
2809 {
2810 int i;
2811
2812 for (i = 0; i < size; i++) {
2813 gdb_read_byte(gdbserver_state, buf[i]);
2814 }
2815 }
2816
2817 static void gdb_chr_event(void *opaque, int event)
2818 {
2819 switch (event) {
2820 case CHR_EVENT_OPENED:
2821 vm_stop(RUN_STATE_PAUSED);
2822 gdb_has_xml = 0;
2823 break;
2824 default:
2825 break;
2826 }
2827 }
2828
2829 static void gdb_monitor_output(GDBState *s, const char *msg, int len)
2830 {
2831 char buf[MAX_PACKET_LENGTH];
2832
2833 buf[0] = 'O';
2834 if (len > (MAX_PACKET_LENGTH/2) - 1)
2835 len = (MAX_PACKET_LENGTH/2) - 1;
2836 memtohex(buf + 1, (uint8_t *)msg, len);
2837 put_packet(s, buf);
2838 }
2839
2840 static int gdb_monitor_write(CharDriverState *chr, const uint8_t *buf, int len)
2841 {
2842 const char *p = (const char *)buf;
2843 int max_sz;
2844
2845 max_sz = (sizeof(gdbserver_state->last_packet) - 2) / 2;
2846 for (;;) {
2847 if (len <= max_sz) {
2848 gdb_monitor_output(gdbserver_state, p, len);
2849 break;
2850 }
2851 gdb_monitor_output(gdbserver_state, p, max_sz);
2852 p += max_sz;
2853 len -= max_sz;
2854 }
2855 return len;
2856 }
2857
2858 #ifndef _WIN32
2859 static void gdb_sigterm_handler(int signal)
2860 {
2861 if (runstate_is_running()) {
2862 vm_stop(RUN_STATE_PAUSED);
2863 }
2864 }
2865 #endif
2866
2867 int gdbserver_start(const char *device)
2868 {
2869 GDBState *s;
2870 char gdbstub_device_name[128];
2871 CharDriverState *chr = NULL;
2872 CharDriverState *mon_chr;
2873
2874 if (!device)
2875 return -1;
2876 if (strcmp(device, "none") != 0) {
2877 if (strstart(device, "tcp:", NULL)) {
2878 /* enforce required TCP attributes */
2879 snprintf(gdbstub_device_name, sizeof(gdbstub_device_name),
2880 "%s,nowait,nodelay,server", device);
2881 device = gdbstub_device_name;
2882 }
2883 #ifndef _WIN32
2884 else if (strcmp(device, "stdio") == 0) {
2885 struct sigaction act;
2886
2887 memset(&act, 0, sizeof(act));
2888 act.sa_handler = gdb_sigterm_handler;
2889 sigaction(SIGINT, &act, NULL);
2890 }
2891 #endif
2892 chr = qemu_chr_new("gdb", device, NULL);
2893 if (!chr)
2894 return -1;
2895
2896 qemu_chr_add_handlers(chr, gdb_chr_can_receive, gdb_chr_receive,
2897 gdb_chr_event, NULL);
2898 }
2899
2900 s = gdbserver_state;
2901 if (!s) {
2902 s = g_malloc0(sizeof(GDBState));
2903 gdbserver_state = s;
2904
2905 qemu_add_vm_change_state_handler(gdb_vm_state_change, NULL);
2906
2907 /* Initialize a monitor terminal for gdb */
2908 mon_chr = g_malloc0(sizeof(*mon_chr));
2909 mon_chr->chr_write = gdb_monitor_write;
2910 monitor_init(mon_chr, 0);
2911 } else {
2912 if (s->chr)
2913 qemu_chr_delete(s->chr);
2914 mon_chr = s->mon_chr;
2915 memset(s, 0, sizeof(GDBState));
2916 }
2917 s->c_cpu = first_cpu;
2918 s->g_cpu = first_cpu;
2919 s->chr = chr;
2920 s->state = chr ? RS_IDLE : RS_INACTIVE;
2921 s->mon_chr = mon_chr;
2922
2923 return 0;
2924 }
2925 #endif