]> git.proxmox.com Git - qemu.git/blob - gdbstub.c
preliminary patch to support more PowerPC CPUs (Jocelyn Mayer)
[qemu.git] / gdbstub.c
1 /*
2 * gdb server stub
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20 #ifdef CONFIG_USER_ONLY
21 #include <stdlib.h>
22 #include <stdio.h>
23 #include <stdarg.h>
24 #include <string.h>
25 #include <errno.h>
26 #include <unistd.h>
27
28 #include "qemu.h"
29 #else
30 #include "vl.h"
31 #endif
32
33 #include <sys/socket.h>
34 #include <netinet/in.h>
35 #include <netinet/tcp.h>
36 #include <signal.h>
37
38 //#define DEBUG_GDB
39
40 enum RSState {
41 RS_IDLE,
42 RS_GETLINE,
43 RS_CHKSUM1,
44 RS_CHKSUM2,
45 };
46 /* XXX: This is not thread safe. Do we care? */
47 static int gdbserver_fd = -1;
48
49 typedef struct GDBState {
50 enum RSState state; /* parsing state */
51 int fd;
52 char line_buf[4096];
53 int line_buf_index;
54 int line_csum;
55 #ifdef CONFIG_USER_ONLY
56 int running_state;
57 #endif
58 } GDBState;
59
60 #ifdef CONFIG_USER_ONLY
61 /* XXX: remove this hack. */
62 static GDBState gdbserver_state;
63 #endif
64
65 static int get_char(GDBState *s)
66 {
67 uint8_t ch;
68 int ret;
69
70 for(;;) {
71 ret = read(s->fd, &ch, 1);
72 if (ret < 0) {
73 if (errno != EINTR && errno != EAGAIN)
74 return -1;
75 } else if (ret == 0) {
76 return -1;
77 } else {
78 break;
79 }
80 }
81 return ch;
82 }
83
84 static void put_buffer(GDBState *s, const uint8_t *buf, int len)
85 {
86 int ret;
87
88 while (len > 0) {
89 ret = write(s->fd, buf, len);
90 if (ret < 0) {
91 if (errno != EINTR && errno != EAGAIN)
92 return;
93 } else {
94 buf += ret;
95 len -= ret;
96 }
97 }
98 }
99
100 static inline int fromhex(int v)
101 {
102 if (v >= '0' && v <= '9')
103 return v - '0';
104 else if (v >= 'A' && v <= 'F')
105 return v - 'A' + 10;
106 else if (v >= 'a' && v <= 'f')
107 return v - 'a' + 10;
108 else
109 return 0;
110 }
111
112 static inline int tohex(int v)
113 {
114 if (v < 10)
115 return v + '0';
116 else
117 return v - 10 + 'a';
118 }
119
120 static void memtohex(char *buf, const uint8_t *mem, int len)
121 {
122 int i, c;
123 char *q;
124 q = buf;
125 for(i = 0; i < len; i++) {
126 c = mem[i];
127 *q++ = tohex(c >> 4);
128 *q++ = tohex(c & 0xf);
129 }
130 *q = '\0';
131 }
132
133 static void hextomem(uint8_t *mem, const char *buf, int len)
134 {
135 int i;
136
137 for(i = 0; i < len; i++) {
138 mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
139 buf += 2;
140 }
141 }
142
143 /* return -1 if error, 0 if OK */
144 static int put_packet(GDBState *s, char *buf)
145 {
146 char buf1[3];
147 int len, csum, ch, i;
148
149 #ifdef DEBUG_GDB
150 printf("reply='%s'\n", buf);
151 #endif
152
153 for(;;) {
154 buf1[0] = '$';
155 put_buffer(s, buf1, 1);
156 len = strlen(buf);
157 put_buffer(s, buf, len);
158 csum = 0;
159 for(i = 0; i < len; i++) {
160 csum += buf[i];
161 }
162 buf1[0] = '#';
163 buf1[1] = tohex((csum >> 4) & 0xf);
164 buf1[2] = tohex((csum) & 0xf);
165
166 put_buffer(s, buf1, 3);
167
168 ch = get_char(s);
169 if (ch < 0)
170 return -1;
171 if (ch == '+')
172 break;
173 }
174 return 0;
175 }
176
177 #if defined(TARGET_I386)
178
179 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
180 {
181 uint32_t *registers = (uint32_t *)mem_buf;
182 int i, fpus;
183
184 for(i = 0; i < 8; i++) {
185 registers[i] = env->regs[i];
186 }
187 registers[8] = env->eip;
188 registers[9] = env->eflags;
189 registers[10] = env->segs[R_CS].selector;
190 registers[11] = env->segs[R_SS].selector;
191 registers[12] = env->segs[R_DS].selector;
192 registers[13] = env->segs[R_ES].selector;
193 registers[14] = env->segs[R_FS].selector;
194 registers[15] = env->segs[R_GS].selector;
195 /* XXX: convert floats */
196 for(i = 0; i < 8; i++) {
197 memcpy(mem_buf + 16 * 4 + i * 10, &env->fpregs[i], 10);
198 }
199 registers[36] = env->fpuc;
200 fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
201 registers[37] = fpus;
202 registers[38] = 0; /* XXX: convert tags */
203 registers[39] = 0; /* fiseg */
204 registers[40] = 0; /* fioff */
205 registers[41] = 0; /* foseg */
206 registers[42] = 0; /* fooff */
207 registers[43] = 0; /* fop */
208
209 for(i = 0; i < 16; i++)
210 tswapls(&registers[i]);
211 for(i = 36; i < 44; i++)
212 tswapls(&registers[i]);
213 return 44 * 4;
214 }
215
216 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
217 {
218 uint32_t *registers = (uint32_t *)mem_buf;
219 int i;
220
221 for(i = 0; i < 8; i++) {
222 env->regs[i] = tswapl(registers[i]);
223 }
224 env->eip = tswapl(registers[8]);
225 env->eflags = tswapl(registers[9]);
226 #if defined(CONFIG_USER_ONLY)
227 #define LOAD_SEG(index, sreg)\
228 if (tswapl(registers[index]) != env->segs[sreg].selector)\
229 cpu_x86_load_seg(env, sreg, tswapl(registers[index]));
230 LOAD_SEG(10, R_CS);
231 LOAD_SEG(11, R_SS);
232 LOAD_SEG(12, R_DS);
233 LOAD_SEG(13, R_ES);
234 LOAD_SEG(14, R_FS);
235 LOAD_SEG(15, R_GS);
236 #endif
237 }
238
239 #elif defined (TARGET_PPC)
240 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
241 {
242 uint32_t *registers = (uint32_t *)mem_buf, tmp;
243 int i;
244
245 /* fill in gprs */
246 for(i = 0; i < 32; i++) {
247 registers[i] = tswapl(env->gpr[i]);
248 }
249 /* fill in fprs */
250 for (i = 0; i < 32; i++) {
251 registers[(i * 2) + 32] = tswapl(*((uint32_t *)&env->fpr[i]));
252 registers[(i * 2) + 33] = tswapl(*((uint32_t *)&env->fpr[i] + 1));
253 }
254 /* nip, msr, ccr, lnk, ctr, xer, mq */
255 registers[96] = tswapl(env->nip);
256 registers[97] = tswapl(do_load_msr(env));
257 tmp = 0;
258 for (i = 0; i < 8; i++)
259 tmp |= env->crf[i] << (32 - ((i + 1) * 4));
260 registers[98] = tswapl(tmp);
261 registers[99] = tswapl(env->lr);
262 registers[100] = tswapl(env->ctr);
263 registers[101] = tswapl(do_load_xer(env));
264 registers[102] = 0;
265
266 return 103 * 4;
267 }
268
269 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
270 {
271 uint32_t *registers = (uint32_t *)mem_buf;
272 int i;
273
274 /* fill in gprs */
275 for (i = 0; i < 32; i++) {
276 env->gpr[i] = tswapl(registers[i]);
277 }
278 /* fill in fprs */
279 for (i = 0; i < 32; i++) {
280 *((uint32_t *)&env->fpr[i]) = tswapl(registers[(i * 2) + 32]);
281 *((uint32_t *)&env->fpr[i] + 1) = tswapl(registers[(i * 2) + 33]);
282 }
283 /* nip, msr, ccr, lnk, ctr, xer, mq */
284 env->nip = tswapl(registers[96]);
285 do_store_msr(env, tswapl(registers[97]));
286 registers[98] = tswapl(registers[98]);
287 for (i = 0; i < 8; i++)
288 env->crf[i] = (registers[98] >> (32 - ((i + 1) * 4))) & 0xF;
289 env->lr = tswapl(registers[99]);
290 env->ctr = tswapl(registers[100]);
291 do_store_xer(env, tswapl(registers[101]));
292 }
293 #elif defined (TARGET_SPARC)
294 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
295 {
296 target_ulong *registers = (target_ulong *)mem_buf;
297 int i;
298
299 /* fill in g0..g7 */
300 for(i = 0; i < 7; i++) {
301 registers[i] = tswapl(env->gregs[i]);
302 }
303 /* fill in register window */
304 for(i = 0; i < 24; i++) {
305 registers[i + 8] = tswapl(env->regwptr[i]);
306 }
307 /* fill in fprs */
308 for (i = 0; i < 32; i++) {
309 registers[i + 32] = tswapl(*((uint32_t *)&env->fpr[i]));
310 }
311 #ifndef TARGET_SPARC64
312 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
313 registers[64] = tswapl(env->y);
314 {
315 target_ulong tmp;
316
317 tmp = GET_PSR(env);
318 registers[65] = tswapl(tmp);
319 }
320 registers[66] = tswapl(env->wim);
321 registers[67] = tswapl(env->tbr);
322 registers[68] = tswapl(env->pc);
323 registers[69] = tswapl(env->npc);
324 registers[70] = tswapl(env->fsr);
325 registers[71] = 0; /* csr */
326 registers[72] = 0;
327 return 73 * sizeof(target_ulong);
328 #else
329 for (i = 0; i < 32; i += 2) {
330 registers[i/2 + 64] = tswapl(*((uint64_t *)&env->fpr[i]));
331 }
332 registers[81] = tswapl(env->pc);
333 registers[82] = tswapl(env->npc);
334 registers[83] = tswapl(env->tstate[env->tl]);
335 registers[84] = tswapl(env->fsr);
336 registers[85] = tswapl(env->fprs);
337 registers[86] = tswapl(env->y);
338 return 87 * sizeof(target_ulong);
339 #endif
340 }
341
342 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
343 {
344 target_ulong *registers = (target_ulong *)mem_buf;
345 int i;
346
347 /* fill in g0..g7 */
348 for(i = 0; i < 7; i++) {
349 env->gregs[i] = tswapl(registers[i]);
350 }
351 /* fill in register window */
352 for(i = 0; i < 24; i++) {
353 env->regwptr[i] = tswapl(registers[i + 8]);
354 }
355 /* fill in fprs */
356 for (i = 0; i < 32; i++) {
357 *((uint32_t *)&env->fpr[i]) = tswapl(registers[i + 32]);
358 }
359 #ifndef TARGET_SPARC64
360 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
361 env->y = tswapl(registers[64]);
362 PUT_PSR(env, tswapl(registers[65]));
363 env->wim = tswapl(registers[66]);
364 env->tbr = tswapl(registers[67]);
365 env->pc = tswapl(registers[68]);
366 env->npc = tswapl(registers[69]);
367 env->fsr = tswapl(registers[70]);
368 #else
369 for (i = 0; i < 32; i += 2) {
370 uint64_t tmp;
371 tmp = tswapl(registers[i/2 + 64]) << 32;
372 tmp |= tswapl(registers[i/2 + 64 + 1]);
373 *((uint64_t *)&env->fpr[i]) = tmp;
374 }
375 env->pc = tswapl(registers[81]);
376 env->npc = tswapl(registers[82]);
377 env->tstate[env->tl] = tswapl(registers[83]);
378 env->fsr = tswapl(registers[84]);
379 env->fprs = tswapl(registers[85]);
380 env->y = tswapl(registers[86]);
381 #endif
382 }
383 #elif defined (TARGET_ARM)
384 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
385 {
386 int i;
387 uint8_t *ptr;
388
389 ptr = mem_buf;
390 /* 16 core integer registers (4 bytes each). */
391 for (i = 0; i < 16; i++)
392 {
393 *(uint32_t *)ptr = tswapl(env->regs[i]);
394 ptr += 4;
395 }
396 /* 8 FPA registers (12 bytes each), FPS (4 bytes).
397 Not yet implemented. */
398 memset (ptr, 0, 8 * 12 + 4);
399 ptr += 8 * 12 + 4;
400 /* CPSR (4 bytes). */
401 *(uint32_t *)ptr = tswapl (env->cpsr);
402 ptr += 4;
403
404 return ptr - mem_buf;
405 }
406
407 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
408 {
409 int i;
410 uint8_t *ptr;
411
412 ptr = mem_buf;
413 /* Core integer registers. */
414 for (i = 0; i < 16; i++)
415 {
416 env->regs[i] = tswapl(*(uint32_t *)ptr);
417 ptr += 4;
418 }
419 /* Ignore FPA regs and scr. */
420 ptr += 8 * 12 + 4;
421 env->cpsr = tswapl(*(uint32_t *)ptr);
422 }
423 #else
424 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
425 {
426 return 0;
427 }
428
429 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
430 {
431 }
432
433 #endif
434
435 static int gdb_handle_packet(GDBState *s, CPUState *env, const char *line_buf)
436 {
437 const char *p;
438 int ch, reg_size, type;
439 char buf[4096];
440 uint8_t mem_buf[2000];
441 uint32_t *registers;
442 uint32_t addr, len;
443
444 #ifdef DEBUG_GDB
445 printf("command='%s'\n", line_buf);
446 #endif
447 p = line_buf;
448 ch = *p++;
449 switch(ch) {
450 case '?':
451 /* TODO: Make this return the correct value for user-mode. */
452 snprintf(buf, sizeof(buf), "S%02x", SIGTRAP);
453 put_packet(s, buf);
454 break;
455 case 'c':
456 if (*p != '\0') {
457 addr = strtoul(p, (char **)&p, 16);
458 #if defined(TARGET_I386)
459 env->eip = addr;
460 #elif defined (TARGET_PPC)
461 env->nip = addr;
462 #elif defined (TARGET_SPARC)
463 env->pc = addr;
464 env->npc = addr + 4;
465 #endif
466 }
467 #ifdef CONFIG_USER_ONLY
468 s->running_state = 1;
469 #else
470 vm_start();
471 #endif
472 return RS_IDLE;
473 case 's':
474 if (*p != '\0') {
475 addr = strtoul(p, (char **)&p, 16);
476 #if defined(TARGET_I386)
477 env->eip = addr;
478 #elif defined (TARGET_PPC)
479 env->nip = addr;
480 #elif defined (TARGET_SPARC)
481 env->pc = addr;
482 env->npc = addr + 4;
483 #endif
484 }
485 cpu_single_step(env, 1);
486 #ifdef CONFIG_USER_ONLY
487 s->running_state = 1;
488 #else
489 vm_start();
490 #endif
491 return RS_IDLE;
492 case 'g':
493 reg_size = cpu_gdb_read_registers(env, mem_buf);
494 memtohex(buf, mem_buf, reg_size);
495 put_packet(s, buf);
496 break;
497 case 'G':
498 registers = (void *)mem_buf;
499 len = strlen(p) / 2;
500 hextomem((uint8_t *)registers, p, len);
501 cpu_gdb_write_registers(env, mem_buf, len);
502 put_packet(s, "OK");
503 break;
504 case 'm':
505 addr = strtoul(p, (char **)&p, 16);
506 if (*p == ',')
507 p++;
508 len = strtoul(p, NULL, 16);
509 if (cpu_memory_rw_debug(env, addr, mem_buf, len, 0) != 0)
510 memset(mem_buf, 0, len);
511 memtohex(buf, mem_buf, len);
512 put_packet(s, buf);
513 break;
514 case 'M':
515 addr = strtoul(p, (char **)&p, 16);
516 if (*p == ',')
517 p++;
518 len = strtoul(p, (char **)&p, 16);
519 if (*p == ':')
520 p++;
521 hextomem(mem_buf, p, len);
522 if (cpu_memory_rw_debug(env, addr, mem_buf, len, 1) != 0)
523 put_packet(s, "E14");
524 else
525 put_packet(s, "OK");
526 break;
527 case 'Z':
528 type = strtoul(p, (char **)&p, 16);
529 if (*p == ',')
530 p++;
531 addr = strtoul(p, (char **)&p, 16);
532 if (*p == ',')
533 p++;
534 len = strtoul(p, (char **)&p, 16);
535 if (type == 0 || type == 1) {
536 if (cpu_breakpoint_insert(env, addr) < 0)
537 goto breakpoint_error;
538 put_packet(s, "OK");
539 } else {
540 breakpoint_error:
541 put_packet(s, "E22");
542 }
543 break;
544 case 'z':
545 type = strtoul(p, (char **)&p, 16);
546 if (*p == ',')
547 p++;
548 addr = strtoul(p, (char **)&p, 16);
549 if (*p == ',')
550 p++;
551 len = strtoul(p, (char **)&p, 16);
552 if (type == 0 || type == 1) {
553 cpu_breakpoint_remove(env, addr);
554 put_packet(s, "OK");
555 } else {
556 goto breakpoint_error;
557 }
558 break;
559 default:
560 // unknown_command:
561 /* put empty packet */
562 buf[0] = '\0';
563 put_packet(s, buf);
564 break;
565 }
566 return RS_IDLE;
567 }
568
569 extern void tb_flush(CPUState *env);
570
571 #ifndef CONFIG_USER_ONLY
572 static void gdb_vm_stopped(void *opaque, int reason)
573 {
574 GDBState *s = opaque;
575 char buf[256];
576 int ret;
577
578 /* disable single step if it was enable */
579 cpu_single_step(cpu_single_env, 0);
580
581 if (reason == EXCP_DEBUG) {
582 tb_flush(cpu_single_env);
583 ret = SIGTRAP;
584 }
585 else
586 ret = 0;
587 snprintf(buf, sizeof(buf), "S%02x", ret);
588 put_packet(s, buf);
589 }
590 #endif
591
592 static void gdb_read_byte(GDBState *s, CPUState *env, int ch)
593 {
594 int i, csum;
595 char reply[1];
596
597 #ifndef CONFIG_USER_ONLY
598 if (vm_running) {
599 /* when the CPU is running, we cannot do anything except stop
600 it when receiving a char */
601 vm_stop(EXCP_INTERRUPT);
602 } else
603 #endif
604 {
605 switch(s->state) {
606 case RS_IDLE:
607 if (ch == '$') {
608 s->line_buf_index = 0;
609 s->state = RS_GETLINE;
610 }
611 break;
612 case RS_GETLINE:
613 if (ch == '#') {
614 s->state = RS_CHKSUM1;
615 } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
616 s->state = RS_IDLE;
617 } else {
618 s->line_buf[s->line_buf_index++] = ch;
619 }
620 break;
621 case RS_CHKSUM1:
622 s->line_buf[s->line_buf_index] = '\0';
623 s->line_csum = fromhex(ch) << 4;
624 s->state = RS_CHKSUM2;
625 break;
626 case RS_CHKSUM2:
627 s->line_csum |= fromhex(ch);
628 csum = 0;
629 for(i = 0; i < s->line_buf_index; i++) {
630 csum += s->line_buf[i];
631 }
632 if (s->line_csum != (csum & 0xff)) {
633 reply[0] = '-';
634 put_buffer(s, reply, 1);
635 s->state = RS_IDLE;
636 } else {
637 reply[0] = '+';
638 put_buffer(s, reply, 1);
639 s->state = gdb_handle_packet(s, env, s->line_buf);
640 }
641 break;
642 }
643 }
644 }
645
646 #ifdef CONFIG_USER_ONLY
647 int
648 gdb_handlesig (CPUState *env, int sig)
649 {
650 GDBState *s;
651 char buf[256];
652 int n;
653
654 if (gdbserver_fd < 0)
655 return sig;
656
657 s = &gdbserver_state;
658
659 /* disable single step if it was enabled */
660 cpu_single_step(env, 0);
661 tb_flush(env);
662
663 if (sig != 0)
664 {
665 snprintf(buf, sizeof(buf), "S%02x", sig);
666 put_packet(s, buf);
667 }
668
669 sig = 0;
670 s->state = RS_IDLE;
671 s->running_state = 0;
672 while (s->running_state == 0) {
673 n = read (s->fd, buf, 256);
674 if (n > 0)
675 {
676 int i;
677
678 for (i = 0; i < n; i++)
679 gdb_read_byte (s, env, buf[i]);
680 }
681 else if (n == 0 || errno != EAGAIN)
682 {
683 /* XXX: Connection closed. Should probably wait for annother
684 connection before continuing. */
685 return sig;
686 }
687 }
688 return sig;
689 }
690
691 /* Tell the remote gdb that the process has exited. */
692 void gdb_exit(CPUState *env, int code)
693 {
694 GDBState *s;
695 char buf[4];
696
697 if (gdbserver_fd < 0)
698 return;
699
700 s = &gdbserver_state;
701
702 snprintf(buf, sizeof(buf), "W%02x", code);
703 put_packet(s, buf);
704 }
705
706 #else
707 static int gdb_can_read(void *opaque)
708 {
709 return 256;
710 }
711
712 static void gdb_read(void *opaque, const uint8_t *buf, int size)
713 {
714 GDBState *s = opaque;
715 int i;
716 if (size == 0) {
717 /* end of connection */
718 qemu_del_vm_stop_handler(gdb_vm_stopped, s);
719 qemu_del_fd_read_handler(s->fd);
720 qemu_free(s);
721 vm_start();
722 } else {
723 for(i = 0; i < size; i++)
724 gdb_read_byte(s, cpu_single_env, buf[i]);
725 }
726 }
727
728 #endif
729
730 static void gdb_accept(void *opaque, const uint8_t *buf, int size)
731 {
732 GDBState *s;
733 struct sockaddr_in sockaddr;
734 socklen_t len;
735 int val, fd;
736
737 for(;;) {
738 len = sizeof(sockaddr);
739 fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
740 if (fd < 0 && errno != EINTR) {
741 perror("accept");
742 return;
743 } else if (fd >= 0) {
744 break;
745 }
746 }
747
748 /* set short latency */
749 val = 1;
750 setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, &val, sizeof(val));
751
752 #ifdef CONFIG_USER_ONLY
753 s = &gdbserver_state;
754 memset (s, 0, sizeof (GDBState));
755 #else
756 s = qemu_mallocz(sizeof(GDBState));
757 if (!s) {
758 close(fd);
759 return;
760 }
761 #endif
762 s->fd = fd;
763
764 fcntl(fd, F_SETFL, O_NONBLOCK);
765
766 #ifndef CONFIG_USER_ONLY
767 /* stop the VM */
768 vm_stop(EXCP_INTERRUPT);
769
770 /* start handling I/O */
771 qemu_add_fd_read_handler(s->fd, gdb_can_read, gdb_read, s);
772 /* when the VM is stopped, the following callback is called */
773 qemu_add_vm_stop_handler(gdb_vm_stopped, s);
774 #endif
775 }
776
777 static int gdbserver_open(int port)
778 {
779 struct sockaddr_in sockaddr;
780 int fd, val, ret;
781
782 fd = socket(PF_INET, SOCK_STREAM, 0);
783 if (fd < 0) {
784 perror("socket");
785 return -1;
786 }
787
788 /* allow fast reuse */
789 val = 1;
790 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, &val, sizeof(val));
791
792 sockaddr.sin_family = AF_INET;
793 sockaddr.sin_port = htons(port);
794 sockaddr.sin_addr.s_addr = 0;
795 ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
796 if (ret < 0) {
797 perror("bind");
798 return -1;
799 }
800 ret = listen(fd, 0);
801 if (ret < 0) {
802 perror("listen");
803 return -1;
804 }
805 #ifndef CONFIG_USER_ONLY
806 fcntl(fd, F_SETFL, O_NONBLOCK);
807 #endif
808 return fd;
809 }
810
811 int gdbserver_start(int port)
812 {
813 gdbserver_fd = gdbserver_open(port);
814 if (gdbserver_fd < 0)
815 return -1;
816 /* accept connections */
817 #ifdef CONFIG_USER_ONLY
818 gdb_accept (NULL, NULL, 0);
819 #else
820 qemu_add_fd_read_handler(gdbserver_fd, NULL, gdb_accept, NULL);
821 #endif
822 return 0;
823 }