]> git.proxmox.com Git - qemu.git/blob - gdbstub.c
Merge remote branch 'qemu-kvm/uq/master' into staging
[qemu.git] / gdbstub.c
1 /*
2 * gdb server stub
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "config.h"
20 #include "qemu-common.h"
21 #ifdef CONFIG_USER_ONLY
22 #include <stdlib.h>
23 #include <stdio.h>
24 #include <stdarg.h>
25 #include <string.h>
26 #include <errno.h>
27 #include <unistd.h>
28 #include <fcntl.h>
29
30 #include "qemu.h"
31 #else
32 #include "monitor.h"
33 #include "qemu-char.h"
34 #include "sysemu.h"
35 #include "gdbstub.h"
36 #endif
37
38 #define MAX_PACKET_LENGTH 4096
39
40 #include "qemu_socket.h"
41 #include "kvm.h"
42
43
44 enum {
45 GDB_SIGNAL_0 = 0,
46 GDB_SIGNAL_INT = 2,
47 GDB_SIGNAL_TRAP = 5,
48 GDB_SIGNAL_UNKNOWN = 143
49 };
50
51 #ifdef CONFIG_USER_ONLY
52
53 /* Map target signal numbers to GDB protocol signal numbers and vice
54 * versa. For user emulation's currently supported systems, we can
55 * assume most signals are defined.
56 */
57
58 static int gdb_signal_table[] = {
59 0,
60 TARGET_SIGHUP,
61 TARGET_SIGINT,
62 TARGET_SIGQUIT,
63 TARGET_SIGILL,
64 TARGET_SIGTRAP,
65 TARGET_SIGABRT,
66 -1, /* SIGEMT */
67 TARGET_SIGFPE,
68 TARGET_SIGKILL,
69 TARGET_SIGBUS,
70 TARGET_SIGSEGV,
71 TARGET_SIGSYS,
72 TARGET_SIGPIPE,
73 TARGET_SIGALRM,
74 TARGET_SIGTERM,
75 TARGET_SIGURG,
76 TARGET_SIGSTOP,
77 TARGET_SIGTSTP,
78 TARGET_SIGCONT,
79 TARGET_SIGCHLD,
80 TARGET_SIGTTIN,
81 TARGET_SIGTTOU,
82 TARGET_SIGIO,
83 TARGET_SIGXCPU,
84 TARGET_SIGXFSZ,
85 TARGET_SIGVTALRM,
86 TARGET_SIGPROF,
87 TARGET_SIGWINCH,
88 -1, /* SIGLOST */
89 TARGET_SIGUSR1,
90 TARGET_SIGUSR2,
91 #ifdef TARGET_SIGPWR
92 TARGET_SIGPWR,
93 #else
94 -1,
95 #endif
96 -1, /* SIGPOLL */
97 -1,
98 -1,
99 -1,
100 -1,
101 -1,
102 -1,
103 -1,
104 -1,
105 -1,
106 -1,
107 -1,
108 #ifdef __SIGRTMIN
109 __SIGRTMIN + 1,
110 __SIGRTMIN + 2,
111 __SIGRTMIN + 3,
112 __SIGRTMIN + 4,
113 __SIGRTMIN + 5,
114 __SIGRTMIN + 6,
115 __SIGRTMIN + 7,
116 __SIGRTMIN + 8,
117 __SIGRTMIN + 9,
118 __SIGRTMIN + 10,
119 __SIGRTMIN + 11,
120 __SIGRTMIN + 12,
121 __SIGRTMIN + 13,
122 __SIGRTMIN + 14,
123 __SIGRTMIN + 15,
124 __SIGRTMIN + 16,
125 __SIGRTMIN + 17,
126 __SIGRTMIN + 18,
127 __SIGRTMIN + 19,
128 __SIGRTMIN + 20,
129 __SIGRTMIN + 21,
130 __SIGRTMIN + 22,
131 __SIGRTMIN + 23,
132 __SIGRTMIN + 24,
133 __SIGRTMIN + 25,
134 __SIGRTMIN + 26,
135 __SIGRTMIN + 27,
136 __SIGRTMIN + 28,
137 __SIGRTMIN + 29,
138 __SIGRTMIN + 30,
139 __SIGRTMIN + 31,
140 -1, /* SIGCANCEL */
141 __SIGRTMIN,
142 __SIGRTMIN + 32,
143 __SIGRTMIN + 33,
144 __SIGRTMIN + 34,
145 __SIGRTMIN + 35,
146 __SIGRTMIN + 36,
147 __SIGRTMIN + 37,
148 __SIGRTMIN + 38,
149 __SIGRTMIN + 39,
150 __SIGRTMIN + 40,
151 __SIGRTMIN + 41,
152 __SIGRTMIN + 42,
153 __SIGRTMIN + 43,
154 __SIGRTMIN + 44,
155 __SIGRTMIN + 45,
156 __SIGRTMIN + 46,
157 __SIGRTMIN + 47,
158 __SIGRTMIN + 48,
159 __SIGRTMIN + 49,
160 __SIGRTMIN + 50,
161 __SIGRTMIN + 51,
162 __SIGRTMIN + 52,
163 __SIGRTMIN + 53,
164 __SIGRTMIN + 54,
165 __SIGRTMIN + 55,
166 __SIGRTMIN + 56,
167 __SIGRTMIN + 57,
168 __SIGRTMIN + 58,
169 __SIGRTMIN + 59,
170 __SIGRTMIN + 60,
171 __SIGRTMIN + 61,
172 __SIGRTMIN + 62,
173 __SIGRTMIN + 63,
174 __SIGRTMIN + 64,
175 __SIGRTMIN + 65,
176 __SIGRTMIN + 66,
177 __SIGRTMIN + 67,
178 __SIGRTMIN + 68,
179 __SIGRTMIN + 69,
180 __SIGRTMIN + 70,
181 __SIGRTMIN + 71,
182 __SIGRTMIN + 72,
183 __SIGRTMIN + 73,
184 __SIGRTMIN + 74,
185 __SIGRTMIN + 75,
186 __SIGRTMIN + 76,
187 __SIGRTMIN + 77,
188 __SIGRTMIN + 78,
189 __SIGRTMIN + 79,
190 __SIGRTMIN + 80,
191 __SIGRTMIN + 81,
192 __SIGRTMIN + 82,
193 __SIGRTMIN + 83,
194 __SIGRTMIN + 84,
195 __SIGRTMIN + 85,
196 __SIGRTMIN + 86,
197 __SIGRTMIN + 87,
198 __SIGRTMIN + 88,
199 __SIGRTMIN + 89,
200 __SIGRTMIN + 90,
201 __SIGRTMIN + 91,
202 __SIGRTMIN + 92,
203 __SIGRTMIN + 93,
204 __SIGRTMIN + 94,
205 __SIGRTMIN + 95,
206 -1, /* SIGINFO */
207 -1, /* UNKNOWN */
208 -1, /* DEFAULT */
209 -1,
210 -1,
211 -1,
212 -1,
213 -1,
214 -1
215 #endif
216 };
217 #else
218 /* In system mode we only need SIGINT and SIGTRAP; other signals
219 are not yet supported. */
220
221 enum {
222 TARGET_SIGINT = 2,
223 TARGET_SIGTRAP = 5
224 };
225
226 static int gdb_signal_table[] = {
227 -1,
228 -1,
229 TARGET_SIGINT,
230 -1,
231 -1,
232 TARGET_SIGTRAP
233 };
234 #endif
235
236 #ifdef CONFIG_USER_ONLY
237 static int target_signal_to_gdb (int sig)
238 {
239 int i;
240 for (i = 0; i < ARRAY_SIZE (gdb_signal_table); i++)
241 if (gdb_signal_table[i] == sig)
242 return i;
243 return GDB_SIGNAL_UNKNOWN;
244 }
245 #endif
246
247 static int gdb_signal_to_target (int sig)
248 {
249 if (sig < ARRAY_SIZE (gdb_signal_table))
250 return gdb_signal_table[sig];
251 else
252 return -1;
253 }
254
255 //#define DEBUG_GDB
256
257 typedef struct GDBRegisterState {
258 int base_reg;
259 int num_regs;
260 gdb_reg_cb get_reg;
261 gdb_reg_cb set_reg;
262 const char *xml;
263 struct GDBRegisterState *next;
264 } GDBRegisterState;
265
266 enum RSState {
267 RS_INACTIVE,
268 RS_IDLE,
269 RS_GETLINE,
270 RS_CHKSUM1,
271 RS_CHKSUM2,
272 RS_SYSCALL,
273 };
274 typedef struct GDBState {
275 CPUState *c_cpu; /* current CPU for step/continue ops */
276 CPUState *g_cpu; /* current CPU for other ops */
277 CPUState *query_cpu; /* for q{f|s}ThreadInfo */
278 enum RSState state; /* parsing state */
279 char line_buf[MAX_PACKET_LENGTH];
280 int line_buf_index;
281 int line_csum;
282 uint8_t last_packet[MAX_PACKET_LENGTH + 4];
283 int last_packet_len;
284 int signal;
285 #ifdef CONFIG_USER_ONLY
286 int fd;
287 int running_state;
288 #else
289 CharDriverState *chr;
290 CharDriverState *mon_chr;
291 #endif
292 } GDBState;
293
294 /* By default use no IRQs and no timers while single stepping so as to
295 * make single stepping like an ICE HW step.
296 */
297 static int sstep_flags = SSTEP_ENABLE|SSTEP_NOIRQ|SSTEP_NOTIMER;
298
299 static GDBState *gdbserver_state;
300
301 /* This is an ugly hack to cope with both new and old gdb.
302 If gdb sends qXfer:features:read then assume we're talking to a newish
303 gdb that understands target descriptions. */
304 static int gdb_has_xml;
305
306 #ifdef CONFIG_USER_ONLY
307 /* XXX: This is not thread safe. Do we care? */
308 static int gdbserver_fd = -1;
309
310 static int get_char(GDBState *s)
311 {
312 uint8_t ch;
313 int ret;
314
315 for(;;) {
316 ret = recv(s->fd, &ch, 1, 0);
317 if (ret < 0) {
318 if (errno == ECONNRESET)
319 s->fd = -1;
320 if (errno != EINTR && errno != EAGAIN)
321 return -1;
322 } else if (ret == 0) {
323 close(s->fd);
324 s->fd = -1;
325 return -1;
326 } else {
327 break;
328 }
329 }
330 return ch;
331 }
332 #endif
333
334 static gdb_syscall_complete_cb gdb_current_syscall_cb;
335
336 static enum {
337 GDB_SYS_UNKNOWN,
338 GDB_SYS_ENABLED,
339 GDB_SYS_DISABLED,
340 } gdb_syscall_mode;
341
342 /* If gdb is connected when the first semihosting syscall occurs then use
343 remote gdb syscalls. Otherwise use native file IO. */
344 int use_gdb_syscalls(void)
345 {
346 if (gdb_syscall_mode == GDB_SYS_UNKNOWN) {
347 gdb_syscall_mode = (gdbserver_state ? GDB_SYS_ENABLED
348 : GDB_SYS_DISABLED);
349 }
350 return gdb_syscall_mode == GDB_SYS_ENABLED;
351 }
352
353 /* Resume execution. */
354 static inline void gdb_continue(GDBState *s)
355 {
356 #ifdef CONFIG_USER_ONLY
357 s->running_state = 1;
358 #else
359 vm_start();
360 #endif
361 }
362
363 static void put_buffer(GDBState *s, const uint8_t *buf, int len)
364 {
365 #ifdef CONFIG_USER_ONLY
366 int ret;
367
368 while (len > 0) {
369 ret = send(s->fd, buf, len, 0);
370 if (ret < 0) {
371 if (errno != EINTR && errno != EAGAIN)
372 return;
373 } else {
374 buf += ret;
375 len -= ret;
376 }
377 }
378 #else
379 qemu_chr_write(s->chr, buf, len);
380 #endif
381 }
382
383 static inline int fromhex(int v)
384 {
385 if (v >= '0' && v <= '9')
386 return v - '0';
387 else if (v >= 'A' && v <= 'F')
388 return v - 'A' + 10;
389 else if (v >= 'a' && v <= 'f')
390 return v - 'a' + 10;
391 else
392 return 0;
393 }
394
395 static inline int tohex(int v)
396 {
397 if (v < 10)
398 return v + '0';
399 else
400 return v - 10 + 'a';
401 }
402
403 static void memtohex(char *buf, const uint8_t *mem, int len)
404 {
405 int i, c;
406 char *q;
407 q = buf;
408 for(i = 0; i < len; i++) {
409 c = mem[i];
410 *q++ = tohex(c >> 4);
411 *q++ = tohex(c & 0xf);
412 }
413 *q = '\0';
414 }
415
416 static void hextomem(uint8_t *mem, const char *buf, int len)
417 {
418 int i;
419
420 for(i = 0; i < len; i++) {
421 mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
422 buf += 2;
423 }
424 }
425
426 /* return -1 if error, 0 if OK */
427 static int put_packet_binary(GDBState *s, const char *buf, int len)
428 {
429 int csum, i;
430 uint8_t *p;
431
432 for(;;) {
433 p = s->last_packet;
434 *(p++) = '$';
435 memcpy(p, buf, len);
436 p += len;
437 csum = 0;
438 for(i = 0; i < len; i++) {
439 csum += buf[i];
440 }
441 *(p++) = '#';
442 *(p++) = tohex((csum >> 4) & 0xf);
443 *(p++) = tohex((csum) & 0xf);
444
445 s->last_packet_len = p - s->last_packet;
446 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
447
448 #ifdef CONFIG_USER_ONLY
449 i = get_char(s);
450 if (i < 0)
451 return -1;
452 if (i == '+')
453 break;
454 #else
455 break;
456 #endif
457 }
458 return 0;
459 }
460
461 /* return -1 if error, 0 if OK */
462 static int put_packet(GDBState *s, const char *buf)
463 {
464 #ifdef DEBUG_GDB
465 printf("reply='%s'\n", buf);
466 #endif
467
468 return put_packet_binary(s, buf, strlen(buf));
469 }
470
471 /* The GDB remote protocol transfers values in target byte order. This means
472 we can use the raw memory access routines to access the value buffer.
473 Conveniently, these also handle the case where the buffer is mis-aligned.
474 */
475 #define GET_REG8(val) do { \
476 stb_p(mem_buf, val); \
477 return 1; \
478 } while(0)
479 #define GET_REG16(val) do { \
480 stw_p(mem_buf, val); \
481 return 2; \
482 } while(0)
483 #define GET_REG32(val) do { \
484 stl_p(mem_buf, val); \
485 return 4; \
486 } while(0)
487 #define GET_REG64(val) do { \
488 stq_p(mem_buf, val); \
489 return 8; \
490 } while(0)
491
492 #if TARGET_LONG_BITS == 64
493 #define GET_REGL(val) GET_REG64(val)
494 #define ldtul_p(addr) ldq_p(addr)
495 #else
496 #define GET_REGL(val) GET_REG32(val)
497 #define ldtul_p(addr) ldl_p(addr)
498 #endif
499
500 #if defined(TARGET_I386)
501
502 #ifdef TARGET_X86_64
503 static const int gpr_map[16] = {
504 R_EAX, R_EBX, R_ECX, R_EDX, R_ESI, R_EDI, R_EBP, R_ESP,
505 8, 9, 10, 11, 12, 13, 14, 15
506 };
507 #else
508 #define gpr_map gpr_map32
509 #endif
510 static const int gpr_map32[8] = { 0, 1, 2, 3, 4, 5, 6, 7 };
511
512 #define NUM_CORE_REGS (CPU_NB_REGS * 2 + 25)
513
514 #define IDX_IP_REG CPU_NB_REGS
515 #define IDX_FLAGS_REG (IDX_IP_REG + 1)
516 #define IDX_SEG_REGS (IDX_FLAGS_REG + 1)
517 #define IDX_FP_REGS (IDX_SEG_REGS + 6)
518 #define IDX_XMM_REGS (IDX_FP_REGS + 16)
519 #define IDX_MXCSR_REG (IDX_XMM_REGS + CPU_NB_REGS)
520
521 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
522 {
523 if (n < CPU_NB_REGS) {
524 if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
525 GET_REG64(env->regs[gpr_map[n]]);
526 } else if (n < CPU_NB_REGS32) {
527 GET_REG32(env->regs[gpr_map32[n]]);
528 }
529 } else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) {
530 #ifdef USE_X86LDOUBLE
531 /* FIXME: byteswap float values - after fixing fpregs layout. */
532 memcpy(mem_buf, &env->fpregs[n - IDX_FP_REGS], 10);
533 #else
534 memset(mem_buf, 0, 10);
535 #endif
536 return 10;
537 } else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) {
538 n -= IDX_XMM_REGS;
539 if (n < CPU_NB_REGS32 ||
540 (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK)) {
541 stq_p(mem_buf, env->xmm_regs[n].XMM_Q(0));
542 stq_p(mem_buf + 8, env->xmm_regs[n].XMM_Q(1));
543 return 16;
544 }
545 } else {
546 switch (n) {
547 case IDX_IP_REG:
548 if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
549 GET_REG64(env->eip);
550 } else {
551 GET_REG32(env->eip);
552 }
553 case IDX_FLAGS_REG: GET_REG32(env->eflags);
554
555 case IDX_SEG_REGS: GET_REG32(env->segs[R_CS].selector);
556 case IDX_SEG_REGS + 1: GET_REG32(env->segs[R_SS].selector);
557 case IDX_SEG_REGS + 2: GET_REG32(env->segs[R_DS].selector);
558 case IDX_SEG_REGS + 3: GET_REG32(env->segs[R_ES].selector);
559 case IDX_SEG_REGS + 4: GET_REG32(env->segs[R_FS].selector);
560 case IDX_SEG_REGS + 5: GET_REG32(env->segs[R_GS].selector);
561
562 case IDX_FP_REGS + 8: GET_REG32(env->fpuc);
563 case IDX_FP_REGS + 9: GET_REG32((env->fpus & ~0x3800) |
564 (env->fpstt & 0x7) << 11);
565 case IDX_FP_REGS + 10: GET_REG32(0); /* ftag */
566 case IDX_FP_REGS + 11: GET_REG32(0); /* fiseg */
567 case IDX_FP_REGS + 12: GET_REG32(0); /* fioff */
568 case IDX_FP_REGS + 13: GET_REG32(0); /* foseg */
569 case IDX_FP_REGS + 14: GET_REG32(0); /* fooff */
570 case IDX_FP_REGS + 15: GET_REG32(0); /* fop */
571
572 case IDX_MXCSR_REG: GET_REG32(env->mxcsr);
573 }
574 }
575 return 0;
576 }
577
578 static int cpu_x86_gdb_load_seg(CPUState *env, int sreg, uint8_t *mem_buf)
579 {
580 uint16_t selector = ldl_p(mem_buf);
581
582 if (selector != env->segs[sreg].selector) {
583 #if defined(CONFIG_USER_ONLY)
584 cpu_x86_load_seg(env, sreg, selector);
585 #else
586 unsigned int limit, flags;
587 target_ulong base;
588
589 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
590 base = selector << 4;
591 limit = 0xffff;
592 flags = 0;
593 } else {
594 if (!cpu_x86_get_descr_debug(env, selector, &base, &limit, &flags))
595 return 4;
596 }
597 cpu_x86_load_seg_cache(env, sreg, selector, base, limit, flags);
598 #endif
599 }
600 return 4;
601 }
602
603 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
604 {
605 uint32_t tmp;
606
607 if (n < CPU_NB_REGS) {
608 if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
609 env->regs[gpr_map[n]] = ldtul_p(mem_buf);
610 return sizeof(target_ulong);
611 } else if (n < CPU_NB_REGS32) {
612 n = gpr_map32[n];
613 env->regs[n] &= ~0xffffffffUL;
614 env->regs[n] |= (uint32_t)ldl_p(mem_buf);
615 return 4;
616 }
617 } else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) {
618 #ifdef USE_X86LDOUBLE
619 /* FIXME: byteswap float values - after fixing fpregs layout. */
620 memcpy(&env->fpregs[n - IDX_FP_REGS], mem_buf, 10);
621 #endif
622 return 10;
623 } else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) {
624 n -= IDX_XMM_REGS;
625 if (n < CPU_NB_REGS32 ||
626 (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK)) {
627 env->xmm_regs[n].XMM_Q(0) = ldq_p(mem_buf);
628 env->xmm_regs[n].XMM_Q(1) = ldq_p(mem_buf + 8);
629 return 16;
630 }
631 } else {
632 switch (n) {
633 case IDX_IP_REG:
634 if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
635 env->eip = ldq_p(mem_buf);
636 return 8;
637 } else {
638 env->eip &= ~0xffffffffUL;
639 env->eip |= (uint32_t)ldl_p(mem_buf);
640 return 4;
641 }
642 case IDX_FLAGS_REG:
643 env->eflags = ldl_p(mem_buf);
644 return 4;
645
646 case IDX_SEG_REGS: return cpu_x86_gdb_load_seg(env, R_CS, mem_buf);
647 case IDX_SEG_REGS + 1: return cpu_x86_gdb_load_seg(env, R_SS, mem_buf);
648 case IDX_SEG_REGS + 2: return cpu_x86_gdb_load_seg(env, R_DS, mem_buf);
649 case IDX_SEG_REGS + 3: return cpu_x86_gdb_load_seg(env, R_ES, mem_buf);
650 case IDX_SEG_REGS + 4: return cpu_x86_gdb_load_seg(env, R_FS, mem_buf);
651 case IDX_SEG_REGS + 5: return cpu_x86_gdb_load_seg(env, R_GS, mem_buf);
652
653 case IDX_FP_REGS + 8:
654 env->fpuc = ldl_p(mem_buf);
655 return 4;
656 case IDX_FP_REGS + 9:
657 tmp = ldl_p(mem_buf);
658 env->fpstt = (tmp >> 11) & 7;
659 env->fpus = tmp & ~0x3800;
660 return 4;
661 case IDX_FP_REGS + 10: /* ftag */ return 4;
662 case IDX_FP_REGS + 11: /* fiseg */ return 4;
663 case IDX_FP_REGS + 12: /* fioff */ return 4;
664 case IDX_FP_REGS + 13: /* foseg */ return 4;
665 case IDX_FP_REGS + 14: /* fooff */ return 4;
666 case IDX_FP_REGS + 15: /* fop */ return 4;
667
668 case IDX_MXCSR_REG:
669 env->mxcsr = ldl_p(mem_buf);
670 return 4;
671 }
672 }
673 /* Unrecognised register. */
674 return 0;
675 }
676
677 #elif defined (TARGET_PPC)
678
679 /* Old gdb always expects FP registers. Newer (xml-aware) gdb only
680 expects whatever the target description contains. Due to a
681 historical mishap the FP registers appear in between core integer
682 regs and PC, MSR, CR, and so forth. We hack round this by giving the
683 FP regs zero size when talking to a newer gdb. */
684 #define NUM_CORE_REGS 71
685 #if defined (TARGET_PPC64)
686 #define GDB_CORE_XML "power64-core.xml"
687 #else
688 #define GDB_CORE_XML "power-core.xml"
689 #endif
690
691 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
692 {
693 if (n < 32) {
694 /* gprs */
695 GET_REGL(env->gpr[n]);
696 } else if (n < 64) {
697 /* fprs */
698 if (gdb_has_xml)
699 return 0;
700 stfq_p(mem_buf, env->fpr[n-32]);
701 return 8;
702 } else {
703 switch (n) {
704 case 64: GET_REGL(env->nip);
705 case 65: GET_REGL(env->msr);
706 case 66:
707 {
708 uint32_t cr = 0;
709 int i;
710 for (i = 0; i < 8; i++)
711 cr |= env->crf[i] << (32 - ((i + 1) * 4));
712 GET_REG32(cr);
713 }
714 case 67: GET_REGL(env->lr);
715 case 68: GET_REGL(env->ctr);
716 case 69: GET_REGL(env->xer);
717 case 70:
718 {
719 if (gdb_has_xml)
720 return 0;
721 GET_REG32(0); /* fpscr */
722 }
723 }
724 }
725 return 0;
726 }
727
728 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
729 {
730 if (n < 32) {
731 /* gprs */
732 env->gpr[n] = ldtul_p(mem_buf);
733 return sizeof(target_ulong);
734 } else if (n < 64) {
735 /* fprs */
736 if (gdb_has_xml)
737 return 0;
738 env->fpr[n-32] = ldfq_p(mem_buf);
739 return 8;
740 } else {
741 switch (n) {
742 case 64:
743 env->nip = ldtul_p(mem_buf);
744 return sizeof(target_ulong);
745 case 65:
746 ppc_store_msr(env, ldtul_p(mem_buf));
747 return sizeof(target_ulong);
748 case 66:
749 {
750 uint32_t cr = ldl_p(mem_buf);
751 int i;
752 for (i = 0; i < 8; i++)
753 env->crf[i] = (cr >> (32 - ((i + 1) * 4))) & 0xF;
754 return 4;
755 }
756 case 67:
757 env->lr = ldtul_p(mem_buf);
758 return sizeof(target_ulong);
759 case 68:
760 env->ctr = ldtul_p(mem_buf);
761 return sizeof(target_ulong);
762 case 69:
763 env->xer = ldtul_p(mem_buf);
764 return sizeof(target_ulong);
765 case 70:
766 /* fpscr */
767 if (gdb_has_xml)
768 return 0;
769 return 4;
770 }
771 }
772 return 0;
773 }
774
775 #elif defined (TARGET_SPARC)
776
777 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
778 #define NUM_CORE_REGS 86
779 #else
780 #define NUM_CORE_REGS 72
781 #endif
782
783 #ifdef TARGET_ABI32
784 #define GET_REGA(val) GET_REG32(val)
785 #else
786 #define GET_REGA(val) GET_REGL(val)
787 #endif
788
789 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
790 {
791 if (n < 8) {
792 /* g0..g7 */
793 GET_REGA(env->gregs[n]);
794 }
795 if (n < 32) {
796 /* register window */
797 GET_REGA(env->regwptr[n - 8]);
798 }
799 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
800 if (n < 64) {
801 /* fprs */
802 GET_REG32(*((uint32_t *)&env->fpr[n - 32]));
803 }
804 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
805 switch (n) {
806 case 64: GET_REGA(env->y);
807 case 65: GET_REGA(GET_PSR(env));
808 case 66: GET_REGA(env->wim);
809 case 67: GET_REGA(env->tbr);
810 case 68: GET_REGA(env->pc);
811 case 69: GET_REGA(env->npc);
812 case 70: GET_REGA(env->fsr);
813 case 71: GET_REGA(0); /* csr */
814 default: GET_REGA(0);
815 }
816 #else
817 if (n < 64) {
818 /* f0-f31 */
819 GET_REG32(*((uint32_t *)&env->fpr[n - 32]));
820 }
821 if (n < 80) {
822 /* f32-f62 (double width, even numbers only) */
823 uint64_t val;
824
825 val = (uint64_t)*((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) << 32;
826 val |= *((uint32_t *)&env->fpr[(n - 64) * 2 + 33]);
827 GET_REG64(val);
828 }
829 switch (n) {
830 case 80: GET_REGL(env->pc);
831 case 81: GET_REGL(env->npc);
832 case 82: GET_REGL(((uint64_t)GET_CCR(env) << 32) |
833 ((env->asi & 0xff) << 24) |
834 ((env->pstate & 0xfff) << 8) |
835 GET_CWP64(env));
836 case 83: GET_REGL(env->fsr);
837 case 84: GET_REGL(env->fprs);
838 case 85: GET_REGL(env->y);
839 }
840 #endif
841 return 0;
842 }
843
844 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
845 {
846 #if defined(TARGET_ABI32)
847 abi_ulong tmp;
848
849 tmp = ldl_p(mem_buf);
850 #else
851 target_ulong tmp;
852
853 tmp = ldtul_p(mem_buf);
854 #endif
855
856 if (n < 8) {
857 /* g0..g7 */
858 env->gregs[n] = tmp;
859 } else if (n < 32) {
860 /* register window */
861 env->regwptr[n - 8] = tmp;
862 }
863 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
864 else if (n < 64) {
865 /* fprs */
866 *((uint32_t *)&env->fpr[n - 32]) = tmp;
867 } else {
868 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
869 switch (n) {
870 case 64: env->y = tmp; break;
871 case 65: PUT_PSR(env, tmp); break;
872 case 66: env->wim = tmp; break;
873 case 67: env->tbr = tmp; break;
874 case 68: env->pc = tmp; break;
875 case 69: env->npc = tmp; break;
876 case 70: env->fsr = tmp; break;
877 default: return 0;
878 }
879 }
880 return 4;
881 #else
882 else if (n < 64) {
883 /* f0-f31 */
884 env->fpr[n] = ldfl_p(mem_buf);
885 return 4;
886 } else if (n < 80) {
887 /* f32-f62 (double width, even numbers only) */
888 *((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) = tmp >> 32;
889 *((uint32_t *)&env->fpr[(n - 64) * 2 + 33]) = tmp;
890 } else {
891 switch (n) {
892 case 80: env->pc = tmp; break;
893 case 81: env->npc = tmp; break;
894 case 82:
895 PUT_CCR(env, tmp >> 32);
896 env->asi = (tmp >> 24) & 0xff;
897 env->pstate = (tmp >> 8) & 0xfff;
898 PUT_CWP64(env, tmp & 0xff);
899 break;
900 case 83: env->fsr = tmp; break;
901 case 84: env->fprs = tmp; break;
902 case 85: env->y = tmp; break;
903 default: return 0;
904 }
905 }
906 return 8;
907 #endif
908 }
909 #elif defined (TARGET_ARM)
910
911 /* Old gdb always expect FPA registers. Newer (xml-aware) gdb only expect
912 whatever the target description contains. Due to a historical mishap
913 the FPA registers appear in between core integer regs and the CPSR.
914 We hack round this by giving the FPA regs zero size when talking to a
915 newer gdb. */
916 #define NUM_CORE_REGS 26
917 #define GDB_CORE_XML "arm-core.xml"
918
919 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
920 {
921 if (n < 16) {
922 /* Core integer register. */
923 GET_REG32(env->regs[n]);
924 }
925 if (n < 24) {
926 /* FPA registers. */
927 if (gdb_has_xml)
928 return 0;
929 memset(mem_buf, 0, 12);
930 return 12;
931 }
932 switch (n) {
933 case 24:
934 /* FPA status register. */
935 if (gdb_has_xml)
936 return 0;
937 GET_REG32(0);
938 case 25:
939 /* CPSR */
940 GET_REG32(cpsr_read(env));
941 }
942 /* Unknown register. */
943 return 0;
944 }
945
946 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
947 {
948 uint32_t tmp;
949
950 tmp = ldl_p(mem_buf);
951
952 /* Mask out low bit of PC to workaround gdb bugs. This will probably
953 cause problems if we ever implement the Jazelle DBX extensions. */
954 if (n == 15)
955 tmp &= ~1;
956
957 if (n < 16) {
958 /* Core integer register. */
959 env->regs[n] = tmp;
960 return 4;
961 }
962 if (n < 24) { /* 16-23 */
963 /* FPA registers (ignored). */
964 if (gdb_has_xml)
965 return 0;
966 return 12;
967 }
968 switch (n) {
969 case 24:
970 /* FPA status register (ignored). */
971 if (gdb_has_xml)
972 return 0;
973 return 4;
974 case 25:
975 /* CPSR */
976 cpsr_write (env, tmp, 0xffffffff);
977 return 4;
978 }
979 /* Unknown register. */
980 return 0;
981 }
982
983 #elif defined (TARGET_M68K)
984
985 #define NUM_CORE_REGS 18
986
987 #define GDB_CORE_XML "cf-core.xml"
988
989 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
990 {
991 if (n < 8) {
992 /* D0-D7 */
993 GET_REG32(env->dregs[n]);
994 } else if (n < 16) {
995 /* A0-A7 */
996 GET_REG32(env->aregs[n - 8]);
997 } else {
998 switch (n) {
999 case 16: GET_REG32(env->sr);
1000 case 17: GET_REG32(env->pc);
1001 }
1002 }
1003 /* FP registers not included here because they vary between
1004 ColdFire and m68k. Use XML bits for these. */
1005 return 0;
1006 }
1007
1008 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1009 {
1010 uint32_t tmp;
1011
1012 tmp = ldl_p(mem_buf);
1013
1014 if (n < 8) {
1015 /* D0-D7 */
1016 env->dregs[n] = tmp;
1017 } else if (n < 16) {
1018 /* A0-A7 */
1019 env->aregs[n - 8] = tmp;
1020 } else {
1021 switch (n) {
1022 case 16: env->sr = tmp; break;
1023 case 17: env->pc = tmp; break;
1024 default: return 0;
1025 }
1026 }
1027 return 4;
1028 }
1029 #elif defined (TARGET_MIPS)
1030
1031 #define NUM_CORE_REGS 73
1032
1033 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1034 {
1035 if (n < 32) {
1036 GET_REGL(env->active_tc.gpr[n]);
1037 }
1038 if (env->CP0_Config1 & (1 << CP0C1_FP)) {
1039 if (n >= 38 && n < 70) {
1040 if (env->CP0_Status & (1 << CP0St_FR))
1041 GET_REGL(env->active_fpu.fpr[n - 38].d);
1042 else
1043 GET_REGL(env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX]);
1044 }
1045 switch (n) {
1046 case 70: GET_REGL((int32_t)env->active_fpu.fcr31);
1047 case 71: GET_REGL((int32_t)env->active_fpu.fcr0);
1048 }
1049 }
1050 switch (n) {
1051 case 32: GET_REGL((int32_t)env->CP0_Status);
1052 case 33: GET_REGL(env->active_tc.LO[0]);
1053 case 34: GET_REGL(env->active_tc.HI[0]);
1054 case 35: GET_REGL(env->CP0_BadVAddr);
1055 case 36: GET_REGL((int32_t)env->CP0_Cause);
1056 case 37: GET_REGL(env->active_tc.PC | !!(env->hflags & MIPS_HFLAG_M16));
1057 case 72: GET_REGL(0); /* fp */
1058 case 89: GET_REGL((int32_t)env->CP0_PRid);
1059 }
1060 if (n >= 73 && n <= 88) {
1061 /* 16 embedded regs. */
1062 GET_REGL(0);
1063 }
1064
1065 return 0;
1066 }
1067
1068 /* convert MIPS rounding mode in FCR31 to IEEE library */
1069 static unsigned int ieee_rm[] =
1070 {
1071 float_round_nearest_even,
1072 float_round_to_zero,
1073 float_round_up,
1074 float_round_down
1075 };
1076 #define RESTORE_ROUNDING_MODE \
1077 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
1078
1079 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1080 {
1081 target_ulong tmp;
1082
1083 tmp = ldtul_p(mem_buf);
1084
1085 if (n < 32) {
1086 env->active_tc.gpr[n] = tmp;
1087 return sizeof(target_ulong);
1088 }
1089 if (env->CP0_Config1 & (1 << CP0C1_FP)
1090 && n >= 38 && n < 73) {
1091 if (n < 70) {
1092 if (env->CP0_Status & (1 << CP0St_FR))
1093 env->active_fpu.fpr[n - 38].d = tmp;
1094 else
1095 env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX] = tmp;
1096 }
1097 switch (n) {
1098 case 70:
1099 env->active_fpu.fcr31 = tmp & 0xFF83FFFF;
1100 /* set rounding mode */
1101 RESTORE_ROUNDING_MODE;
1102 #ifndef CONFIG_SOFTFLOAT
1103 /* no floating point exception for native float */
1104 SET_FP_ENABLE(env->active_fpu.fcr31, 0);
1105 #endif
1106 break;
1107 case 71: env->active_fpu.fcr0 = tmp; break;
1108 }
1109 return sizeof(target_ulong);
1110 }
1111 switch (n) {
1112 case 32: env->CP0_Status = tmp; break;
1113 case 33: env->active_tc.LO[0] = tmp; break;
1114 case 34: env->active_tc.HI[0] = tmp; break;
1115 case 35: env->CP0_BadVAddr = tmp; break;
1116 case 36: env->CP0_Cause = tmp; break;
1117 case 37:
1118 env->active_tc.PC = tmp & ~(target_ulong)1;
1119 if (tmp & 1) {
1120 env->hflags |= MIPS_HFLAG_M16;
1121 } else {
1122 env->hflags &= ~(MIPS_HFLAG_M16);
1123 }
1124 break;
1125 case 72: /* fp, ignored */ break;
1126 default:
1127 if (n > 89)
1128 return 0;
1129 /* Other registers are readonly. Ignore writes. */
1130 break;
1131 }
1132
1133 return sizeof(target_ulong);
1134 }
1135 #elif defined (TARGET_SH4)
1136
1137 /* Hint: Use "set architecture sh4" in GDB to see fpu registers */
1138 /* FIXME: We should use XML for this. */
1139
1140 #define NUM_CORE_REGS 59
1141
1142 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1143 {
1144 if (n < 8) {
1145 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
1146 GET_REGL(env->gregs[n + 16]);
1147 } else {
1148 GET_REGL(env->gregs[n]);
1149 }
1150 } else if (n < 16) {
1151 GET_REGL(env->gregs[n - 8]);
1152 } else if (n >= 25 && n < 41) {
1153 GET_REGL(env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)]);
1154 } else if (n >= 43 && n < 51) {
1155 GET_REGL(env->gregs[n - 43]);
1156 } else if (n >= 51 && n < 59) {
1157 GET_REGL(env->gregs[n - (51 - 16)]);
1158 }
1159 switch (n) {
1160 case 16: GET_REGL(env->pc);
1161 case 17: GET_REGL(env->pr);
1162 case 18: GET_REGL(env->gbr);
1163 case 19: GET_REGL(env->vbr);
1164 case 20: GET_REGL(env->mach);
1165 case 21: GET_REGL(env->macl);
1166 case 22: GET_REGL(env->sr);
1167 case 23: GET_REGL(env->fpul);
1168 case 24: GET_REGL(env->fpscr);
1169 case 41: GET_REGL(env->ssr);
1170 case 42: GET_REGL(env->spc);
1171 }
1172
1173 return 0;
1174 }
1175
1176 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1177 {
1178 uint32_t tmp;
1179
1180 tmp = ldl_p(mem_buf);
1181
1182 if (n < 8) {
1183 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
1184 env->gregs[n + 16] = tmp;
1185 } else {
1186 env->gregs[n] = tmp;
1187 }
1188 return 4;
1189 } else if (n < 16) {
1190 env->gregs[n - 8] = tmp;
1191 return 4;
1192 } else if (n >= 25 && n < 41) {
1193 env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)] = tmp;
1194 } else if (n >= 43 && n < 51) {
1195 env->gregs[n - 43] = tmp;
1196 return 4;
1197 } else if (n >= 51 && n < 59) {
1198 env->gregs[n - (51 - 16)] = tmp;
1199 return 4;
1200 }
1201 switch (n) {
1202 case 16: env->pc = tmp;
1203 case 17: env->pr = tmp;
1204 case 18: env->gbr = tmp;
1205 case 19: env->vbr = tmp;
1206 case 20: env->mach = tmp;
1207 case 21: env->macl = tmp;
1208 case 22: env->sr = tmp;
1209 case 23: env->fpul = tmp;
1210 case 24: env->fpscr = tmp;
1211 case 41: env->ssr = tmp;
1212 case 42: env->spc = tmp;
1213 default: return 0;
1214 }
1215
1216 return 4;
1217 }
1218 #elif defined (TARGET_MICROBLAZE)
1219
1220 #define NUM_CORE_REGS (32 + 5)
1221
1222 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1223 {
1224 if (n < 32) {
1225 GET_REG32(env->regs[n]);
1226 } else {
1227 GET_REG32(env->sregs[n - 32]);
1228 }
1229 return 0;
1230 }
1231
1232 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1233 {
1234 uint32_t tmp;
1235
1236 if (n > NUM_CORE_REGS)
1237 return 0;
1238
1239 tmp = ldl_p(mem_buf);
1240
1241 if (n < 32) {
1242 env->regs[n] = tmp;
1243 } else {
1244 env->sregs[n - 32] = tmp;
1245 }
1246 return 4;
1247 }
1248 #elif defined (TARGET_CRIS)
1249
1250 #define NUM_CORE_REGS 49
1251
1252 static int
1253 read_register_crisv10(CPUState *env, uint8_t *mem_buf, int n)
1254 {
1255 if (n < 15) {
1256 GET_REG32(env->regs[n]);
1257 }
1258
1259 if (n == 15) {
1260 GET_REG32(env->pc);
1261 }
1262
1263 if (n < 32) {
1264 switch (n) {
1265 case 16:
1266 GET_REG8(env->pregs[n - 16]);
1267 break;
1268 case 17:
1269 GET_REG8(env->pregs[n - 16]);
1270 break;
1271 case 20:
1272 case 21:
1273 GET_REG16(env->pregs[n - 16]);
1274 break;
1275 default:
1276 if (n >= 23) {
1277 GET_REG32(env->pregs[n - 16]);
1278 }
1279 break;
1280 }
1281 }
1282 return 0;
1283 }
1284
1285 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1286 {
1287 uint8_t srs;
1288
1289 if (env->pregs[PR_VR] < 32)
1290 return read_register_crisv10(env, mem_buf, n);
1291
1292 srs = env->pregs[PR_SRS];
1293 if (n < 16) {
1294 GET_REG32(env->regs[n]);
1295 }
1296
1297 if (n >= 21 && n < 32) {
1298 GET_REG32(env->pregs[n - 16]);
1299 }
1300 if (n >= 33 && n < 49) {
1301 GET_REG32(env->sregs[srs][n - 33]);
1302 }
1303 switch (n) {
1304 case 16: GET_REG8(env->pregs[0]);
1305 case 17: GET_REG8(env->pregs[1]);
1306 case 18: GET_REG32(env->pregs[2]);
1307 case 19: GET_REG8(srs);
1308 case 20: GET_REG16(env->pregs[4]);
1309 case 32: GET_REG32(env->pc);
1310 }
1311
1312 return 0;
1313 }
1314
1315 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1316 {
1317 uint32_t tmp;
1318
1319 if (n > 49)
1320 return 0;
1321
1322 tmp = ldl_p(mem_buf);
1323
1324 if (n < 16) {
1325 env->regs[n] = tmp;
1326 }
1327
1328 if (n >= 21 && n < 32) {
1329 env->pregs[n - 16] = tmp;
1330 }
1331
1332 /* FIXME: Should support function regs be writable? */
1333 switch (n) {
1334 case 16: return 1;
1335 case 17: return 1;
1336 case 18: env->pregs[PR_PID] = tmp; break;
1337 case 19: return 1;
1338 case 20: return 2;
1339 case 32: env->pc = tmp; break;
1340 }
1341
1342 return 4;
1343 }
1344 #elif defined (TARGET_ALPHA)
1345
1346 #define NUM_CORE_REGS 65
1347
1348 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1349 {
1350 if (n < 31) {
1351 GET_REGL(env->ir[n]);
1352 }
1353 else if (n == 31) {
1354 GET_REGL(0);
1355 }
1356 else if (n<63) {
1357 uint64_t val;
1358
1359 val = *((uint64_t *)&env->fir[n-32]);
1360 GET_REGL(val);
1361 }
1362 else if (n==63) {
1363 GET_REGL(env->fpcr);
1364 }
1365 else if (n==64) {
1366 GET_REGL(env->pc);
1367 }
1368 else {
1369 GET_REGL(0);
1370 }
1371
1372 return 0;
1373 }
1374
1375 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1376 {
1377 target_ulong tmp;
1378 tmp = ldtul_p(mem_buf);
1379
1380 if (n < 31) {
1381 env->ir[n] = tmp;
1382 }
1383
1384 if (n > 31 && n < 63) {
1385 env->fir[n - 32] = ldfl_p(mem_buf);
1386 }
1387
1388 if (n == 64 ) {
1389 env->pc=tmp;
1390 }
1391
1392 return 8;
1393 }
1394 #elif defined (TARGET_S390X)
1395
1396 #define NUM_CORE_REGS S390_NUM_TOTAL_REGS
1397
1398 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1399 {
1400 switch (n) {
1401 case S390_PSWM_REGNUM: GET_REGL(env->psw.mask); break;
1402 case S390_PSWA_REGNUM: GET_REGL(env->psw.addr); break;
1403 case S390_R0_REGNUM ... S390_R15_REGNUM:
1404 GET_REGL(env->regs[n-S390_R0_REGNUM]); break;
1405 case S390_A0_REGNUM ... S390_A15_REGNUM:
1406 GET_REG32(env->aregs[n-S390_A0_REGNUM]); break;
1407 case S390_FPC_REGNUM: GET_REG32(env->fpc); break;
1408 case S390_F0_REGNUM ... S390_F15_REGNUM:
1409 /* XXX */
1410 break;
1411 case S390_PC_REGNUM: GET_REGL(env->psw.addr); break;
1412 case S390_CC_REGNUM: GET_REG32(env->cc); break;
1413 }
1414
1415 return 0;
1416 }
1417
1418 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1419 {
1420 target_ulong tmpl;
1421 uint32_t tmp32;
1422 int r = 8;
1423 tmpl = ldtul_p(mem_buf);
1424 tmp32 = ldl_p(mem_buf);
1425
1426 switch (n) {
1427 case S390_PSWM_REGNUM: env->psw.mask = tmpl; break;
1428 case S390_PSWA_REGNUM: env->psw.addr = tmpl; break;
1429 case S390_R0_REGNUM ... S390_R15_REGNUM:
1430 env->regs[n-S390_R0_REGNUM] = tmpl; break;
1431 case S390_A0_REGNUM ... S390_A15_REGNUM:
1432 env->aregs[n-S390_A0_REGNUM] = tmp32; r=4; break;
1433 case S390_FPC_REGNUM: env->fpc = tmp32; r=4; break;
1434 case S390_F0_REGNUM ... S390_F15_REGNUM:
1435 /* XXX */
1436 break;
1437 case S390_PC_REGNUM: env->psw.addr = tmpl; break;
1438 case S390_CC_REGNUM: env->cc = tmp32; r=4; break;
1439 }
1440
1441 return r;
1442 }
1443 #else
1444
1445 #define NUM_CORE_REGS 0
1446
1447 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1448 {
1449 return 0;
1450 }
1451
1452 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1453 {
1454 return 0;
1455 }
1456
1457 #endif
1458
1459 static int num_g_regs = NUM_CORE_REGS;
1460
1461 #ifdef GDB_CORE_XML
1462 /* Encode data using the encoding for 'x' packets. */
1463 static int memtox(char *buf, const char *mem, int len)
1464 {
1465 char *p = buf;
1466 char c;
1467
1468 while (len--) {
1469 c = *(mem++);
1470 switch (c) {
1471 case '#': case '$': case '*': case '}':
1472 *(p++) = '}';
1473 *(p++) = c ^ 0x20;
1474 break;
1475 default:
1476 *(p++) = c;
1477 break;
1478 }
1479 }
1480 return p - buf;
1481 }
1482
1483 static const char *get_feature_xml(const char *p, const char **newp)
1484 {
1485 extern const char *const xml_builtin[][2];
1486 size_t len;
1487 int i;
1488 const char *name;
1489 static char target_xml[1024];
1490
1491 len = 0;
1492 while (p[len] && p[len] != ':')
1493 len++;
1494 *newp = p + len;
1495
1496 name = NULL;
1497 if (strncmp(p, "target.xml", len) == 0) {
1498 /* Generate the XML description for this CPU. */
1499 if (!target_xml[0]) {
1500 GDBRegisterState *r;
1501
1502 snprintf(target_xml, sizeof(target_xml),
1503 "<?xml version=\"1.0\"?>"
1504 "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
1505 "<target>"
1506 "<xi:include href=\"%s\"/>",
1507 GDB_CORE_XML);
1508
1509 for (r = first_cpu->gdb_regs; r; r = r->next) {
1510 pstrcat(target_xml, sizeof(target_xml), "<xi:include href=\"");
1511 pstrcat(target_xml, sizeof(target_xml), r->xml);
1512 pstrcat(target_xml, sizeof(target_xml), "\"/>");
1513 }
1514 pstrcat(target_xml, sizeof(target_xml), "</target>");
1515 }
1516 return target_xml;
1517 }
1518 for (i = 0; ; i++) {
1519 name = xml_builtin[i][0];
1520 if (!name || (strncmp(name, p, len) == 0 && strlen(name) == len))
1521 break;
1522 }
1523 return name ? xml_builtin[i][1] : NULL;
1524 }
1525 #endif
1526
1527 static int gdb_read_register(CPUState *env, uint8_t *mem_buf, int reg)
1528 {
1529 GDBRegisterState *r;
1530
1531 if (reg < NUM_CORE_REGS)
1532 return cpu_gdb_read_register(env, mem_buf, reg);
1533
1534 for (r = env->gdb_regs; r; r = r->next) {
1535 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
1536 return r->get_reg(env, mem_buf, reg - r->base_reg);
1537 }
1538 }
1539 return 0;
1540 }
1541
1542 static int gdb_write_register(CPUState *env, uint8_t *mem_buf, int reg)
1543 {
1544 GDBRegisterState *r;
1545
1546 if (reg < NUM_CORE_REGS)
1547 return cpu_gdb_write_register(env, mem_buf, reg);
1548
1549 for (r = env->gdb_regs; r; r = r->next) {
1550 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
1551 return r->set_reg(env, mem_buf, reg - r->base_reg);
1552 }
1553 }
1554 return 0;
1555 }
1556
1557 /* Register a supplemental set of CPU registers. If g_pos is nonzero it
1558 specifies the first register number and these registers are included in
1559 a standard "g" packet. Direction is relative to gdb, i.e. get_reg is
1560 gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
1561 */
1562
1563 void gdb_register_coprocessor(CPUState * env,
1564 gdb_reg_cb get_reg, gdb_reg_cb set_reg,
1565 int num_regs, const char *xml, int g_pos)
1566 {
1567 GDBRegisterState *s;
1568 GDBRegisterState **p;
1569 static int last_reg = NUM_CORE_REGS;
1570
1571 s = (GDBRegisterState *)qemu_mallocz(sizeof(GDBRegisterState));
1572 s->base_reg = last_reg;
1573 s->num_regs = num_regs;
1574 s->get_reg = get_reg;
1575 s->set_reg = set_reg;
1576 s->xml = xml;
1577 p = &env->gdb_regs;
1578 while (*p) {
1579 /* Check for duplicates. */
1580 if (strcmp((*p)->xml, xml) == 0)
1581 return;
1582 p = &(*p)->next;
1583 }
1584 /* Add to end of list. */
1585 last_reg += num_regs;
1586 *p = s;
1587 if (g_pos) {
1588 if (g_pos != s->base_reg) {
1589 fprintf(stderr, "Error: Bad gdb register numbering for '%s'\n"
1590 "Expected %d got %d\n", xml, g_pos, s->base_reg);
1591 } else {
1592 num_g_regs = last_reg;
1593 }
1594 }
1595 }
1596
1597 #ifndef CONFIG_USER_ONLY
1598 static const int xlat_gdb_type[] = {
1599 [GDB_WATCHPOINT_WRITE] = BP_GDB | BP_MEM_WRITE,
1600 [GDB_WATCHPOINT_READ] = BP_GDB | BP_MEM_READ,
1601 [GDB_WATCHPOINT_ACCESS] = BP_GDB | BP_MEM_ACCESS,
1602 };
1603 #endif
1604
1605 static int gdb_breakpoint_insert(target_ulong addr, target_ulong len, int type)
1606 {
1607 CPUState *env;
1608 int err = 0;
1609
1610 if (kvm_enabled())
1611 return kvm_insert_breakpoint(gdbserver_state->c_cpu, addr, len, type);
1612
1613 switch (type) {
1614 case GDB_BREAKPOINT_SW:
1615 case GDB_BREAKPOINT_HW:
1616 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1617 err = cpu_breakpoint_insert(env, addr, BP_GDB, NULL);
1618 if (err)
1619 break;
1620 }
1621 return err;
1622 #ifndef CONFIG_USER_ONLY
1623 case GDB_WATCHPOINT_WRITE:
1624 case GDB_WATCHPOINT_READ:
1625 case GDB_WATCHPOINT_ACCESS:
1626 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1627 err = cpu_watchpoint_insert(env, addr, len, xlat_gdb_type[type],
1628 NULL);
1629 if (err)
1630 break;
1631 }
1632 return err;
1633 #endif
1634 default:
1635 return -ENOSYS;
1636 }
1637 }
1638
1639 static int gdb_breakpoint_remove(target_ulong addr, target_ulong len, int type)
1640 {
1641 CPUState *env;
1642 int err = 0;
1643
1644 if (kvm_enabled())
1645 return kvm_remove_breakpoint(gdbserver_state->c_cpu, addr, len, type);
1646
1647 switch (type) {
1648 case GDB_BREAKPOINT_SW:
1649 case GDB_BREAKPOINT_HW:
1650 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1651 err = cpu_breakpoint_remove(env, addr, BP_GDB);
1652 if (err)
1653 break;
1654 }
1655 return err;
1656 #ifndef CONFIG_USER_ONLY
1657 case GDB_WATCHPOINT_WRITE:
1658 case GDB_WATCHPOINT_READ:
1659 case GDB_WATCHPOINT_ACCESS:
1660 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1661 err = cpu_watchpoint_remove(env, addr, len, xlat_gdb_type[type]);
1662 if (err)
1663 break;
1664 }
1665 return err;
1666 #endif
1667 default:
1668 return -ENOSYS;
1669 }
1670 }
1671
1672 static void gdb_breakpoint_remove_all(void)
1673 {
1674 CPUState *env;
1675
1676 if (kvm_enabled()) {
1677 kvm_remove_all_breakpoints(gdbserver_state->c_cpu);
1678 return;
1679 }
1680
1681 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1682 cpu_breakpoint_remove_all(env, BP_GDB);
1683 #ifndef CONFIG_USER_ONLY
1684 cpu_watchpoint_remove_all(env, BP_GDB);
1685 #endif
1686 }
1687 }
1688
1689 static void gdb_set_cpu_pc(GDBState *s, target_ulong pc)
1690 {
1691 #if defined(TARGET_I386)
1692 cpu_synchronize_state(s->c_cpu);
1693 s->c_cpu->eip = pc;
1694 #elif defined (TARGET_PPC)
1695 s->c_cpu->nip = pc;
1696 #elif defined (TARGET_SPARC)
1697 s->c_cpu->pc = pc;
1698 s->c_cpu->npc = pc + 4;
1699 #elif defined (TARGET_ARM)
1700 s->c_cpu->regs[15] = pc;
1701 #elif defined (TARGET_SH4)
1702 s->c_cpu->pc = pc;
1703 #elif defined (TARGET_MIPS)
1704 s->c_cpu->active_tc.PC = pc & ~(target_ulong)1;
1705 if (pc & 1) {
1706 s->c_cpu->hflags |= MIPS_HFLAG_M16;
1707 } else {
1708 s->c_cpu->hflags &= ~(MIPS_HFLAG_M16);
1709 }
1710 #elif defined (TARGET_MICROBLAZE)
1711 s->c_cpu->sregs[SR_PC] = pc;
1712 #elif defined (TARGET_CRIS)
1713 s->c_cpu->pc = pc;
1714 #elif defined (TARGET_ALPHA)
1715 s->c_cpu->pc = pc;
1716 #elif defined (TARGET_S390X)
1717 cpu_synchronize_state(s->c_cpu);
1718 s->c_cpu->psw.addr = pc;
1719 #endif
1720 }
1721
1722 static inline int gdb_id(CPUState *env)
1723 {
1724 #if defined(CONFIG_USER_ONLY) && defined(CONFIG_USE_NPTL)
1725 return env->host_tid;
1726 #else
1727 return env->cpu_index + 1;
1728 #endif
1729 }
1730
1731 static CPUState *find_cpu(uint32_t thread_id)
1732 {
1733 CPUState *env;
1734
1735 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1736 if (gdb_id(env) == thread_id) {
1737 return env;
1738 }
1739 }
1740
1741 return NULL;
1742 }
1743
1744 static int gdb_handle_packet(GDBState *s, const char *line_buf)
1745 {
1746 CPUState *env;
1747 const char *p;
1748 uint32_t thread;
1749 int ch, reg_size, type, res;
1750 char buf[MAX_PACKET_LENGTH];
1751 uint8_t mem_buf[MAX_PACKET_LENGTH];
1752 uint8_t *registers;
1753 target_ulong addr, len;
1754
1755 #ifdef DEBUG_GDB
1756 printf("command='%s'\n", line_buf);
1757 #endif
1758 p = line_buf;
1759 ch = *p++;
1760 switch(ch) {
1761 case '?':
1762 /* TODO: Make this return the correct value for user-mode. */
1763 snprintf(buf, sizeof(buf), "T%02xthread:%02x;", GDB_SIGNAL_TRAP,
1764 gdb_id(s->c_cpu));
1765 put_packet(s, buf);
1766 /* Remove all the breakpoints when this query is issued,
1767 * because gdb is doing and initial connect and the state
1768 * should be cleaned up.
1769 */
1770 gdb_breakpoint_remove_all();
1771 break;
1772 case 'c':
1773 if (*p != '\0') {
1774 addr = strtoull(p, (char **)&p, 16);
1775 gdb_set_cpu_pc(s, addr);
1776 }
1777 s->signal = 0;
1778 gdb_continue(s);
1779 return RS_IDLE;
1780 case 'C':
1781 s->signal = gdb_signal_to_target (strtoul(p, (char **)&p, 16));
1782 if (s->signal == -1)
1783 s->signal = 0;
1784 gdb_continue(s);
1785 return RS_IDLE;
1786 case 'v':
1787 if (strncmp(p, "Cont", 4) == 0) {
1788 int res_signal, res_thread;
1789
1790 p += 4;
1791 if (*p == '?') {
1792 put_packet(s, "vCont;c;C;s;S");
1793 break;
1794 }
1795 res = 0;
1796 res_signal = 0;
1797 res_thread = 0;
1798 while (*p) {
1799 int action, signal;
1800
1801 if (*p++ != ';') {
1802 res = 0;
1803 break;
1804 }
1805 action = *p++;
1806 signal = 0;
1807 if (action == 'C' || action == 'S') {
1808 signal = strtoul(p, (char **)&p, 16);
1809 } else if (action != 'c' && action != 's') {
1810 res = 0;
1811 break;
1812 }
1813 thread = 0;
1814 if (*p == ':') {
1815 thread = strtoull(p+1, (char **)&p, 16);
1816 }
1817 action = tolower(action);
1818 if (res == 0 || (res == 'c' && action == 's')) {
1819 res = action;
1820 res_signal = signal;
1821 res_thread = thread;
1822 }
1823 }
1824 if (res) {
1825 if (res_thread != -1 && res_thread != 0) {
1826 env = find_cpu(res_thread);
1827 if (env == NULL) {
1828 put_packet(s, "E22");
1829 break;
1830 }
1831 s->c_cpu = env;
1832 }
1833 if (res == 's') {
1834 cpu_single_step(s->c_cpu, sstep_flags);
1835 }
1836 s->signal = res_signal;
1837 gdb_continue(s);
1838 return RS_IDLE;
1839 }
1840 break;
1841 } else {
1842 goto unknown_command;
1843 }
1844 case 'k':
1845 /* Kill the target */
1846 fprintf(stderr, "\nQEMU: Terminated via GDBstub\n");
1847 exit(0);
1848 case 'D':
1849 /* Detach packet */
1850 gdb_breakpoint_remove_all();
1851 gdb_continue(s);
1852 put_packet(s, "OK");
1853 break;
1854 case 's':
1855 if (*p != '\0') {
1856 addr = strtoull(p, (char **)&p, 16);
1857 gdb_set_cpu_pc(s, addr);
1858 }
1859 cpu_single_step(s->c_cpu, sstep_flags);
1860 gdb_continue(s);
1861 return RS_IDLE;
1862 case 'F':
1863 {
1864 target_ulong ret;
1865 target_ulong err;
1866
1867 ret = strtoull(p, (char **)&p, 16);
1868 if (*p == ',') {
1869 p++;
1870 err = strtoull(p, (char **)&p, 16);
1871 } else {
1872 err = 0;
1873 }
1874 if (*p == ',')
1875 p++;
1876 type = *p;
1877 if (gdb_current_syscall_cb)
1878 gdb_current_syscall_cb(s->c_cpu, ret, err);
1879 if (type == 'C') {
1880 put_packet(s, "T02");
1881 } else {
1882 gdb_continue(s);
1883 }
1884 }
1885 break;
1886 case 'g':
1887 cpu_synchronize_state(s->g_cpu);
1888 len = 0;
1889 for (addr = 0; addr < num_g_regs; addr++) {
1890 reg_size = gdb_read_register(s->g_cpu, mem_buf + len, addr);
1891 len += reg_size;
1892 }
1893 memtohex(buf, mem_buf, len);
1894 put_packet(s, buf);
1895 break;
1896 case 'G':
1897 cpu_synchronize_state(s->g_cpu);
1898 registers = mem_buf;
1899 len = strlen(p) / 2;
1900 hextomem((uint8_t *)registers, p, len);
1901 for (addr = 0; addr < num_g_regs && len > 0; addr++) {
1902 reg_size = gdb_write_register(s->g_cpu, registers, addr);
1903 len -= reg_size;
1904 registers += reg_size;
1905 }
1906 put_packet(s, "OK");
1907 break;
1908 case 'm':
1909 addr = strtoull(p, (char **)&p, 16);
1910 if (*p == ',')
1911 p++;
1912 len = strtoull(p, NULL, 16);
1913 if (cpu_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 0) != 0) {
1914 put_packet (s, "E14");
1915 } else {
1916 memtohex(buf, mem_buf, len);
1917 put_packet(s, buf);
1918 }
1919 break;
1920 case 'M':
1921 addr = strtoull(p, (char **)&p, 16);
1922 if (*p == ',')
1923 p++;
1924 len = strtoull(p, (char **)&p, 16);
1925 if (*p == ':')
1926 p++;
1927 hextomem(mem_buf, p, len);
1928 if (cpu_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 1) != 0)
1929 put_packet(s, "E14");
1930 else
1931 put_packet(s, "OK");
1932 break;
1933 case 'p':
1934 /* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable.
1935 This works, but can be very slow. Anything new enough to
1936 understand XML also knows how to use this properly. */
1937 if (!gdb_has_xml)
1938 goto unknown_command;
1939 addr = strtoull(p, (char **)&p, 16);
1940 reg_size = gdb_read_register(s->g_cpu, mem_buf, addr);
1941 if (reg_size) {
1942 memtohex(buf, mem_buf, reg_size);
1943 put_packet(s, buf);
1944 } else {
1945 put_packet(s, "E14");
1946 }
1947 break;
1948 case 'P':
1949 if (!gdb_has_xml)
1950 goto unknown_command;
1951 addr = strtoull(p, (char **)&p, 16);
1952 if (*p == '=')
1953 p++;
1954 reg_size = strlen(p) / 2;
1955 hextomem(mem_buf, p, reg_size);
1956 gdb_write_register(s->g_cpu, mem_buf, addr);
1957 put_packet(s, "OK");
1958 break;
1959 case 'Z':
1960 case 'z':
1961 type = strtoul(p, (char **)&p, 16);
1962 if (*p == ',')
1963 p++;
1964 addr = strtoull(p, (char **)&p, 16);
1965 if (*p == ',')
1966 p++;
1967 len = strtoull(p, (char **)&p, 16);
1968 if (ch == 'Z')
1969 res = gdb_breakpoint_insert(addr, len, type);
1970 else
1971 res = gdb_breakpoint_remove(addr, len, type);
1972 if (res >= 0)
1973 put_packet(s, "OK");
1974 else if (res == -ENOSYS)
1975 put_packet(s, "");
1976 else
1977 put_packet(s, "E22");
1978 break;
1979 case 'H':
1980 type = *p++;
1981 thread = strtoull(p, (char **)&p, 16);
1982 if (thread == -1 || thread == 0) {
1983 put_packet(s, "OK");
1984 break;
1985 }
1986 env = find_cpu(thread);
1987 if (env == NULL) {
1988 put_packet(s, "E22");
1989 break;
1990 }
1991 switch (type) {
1992 case 'c':
1993 s->c_cpu = env;
1994 put_packet(s, "OK");
1995 break;
1996 case 'g':
1997 s->g_cpu = env;
1998 put_packet(s, "OK");
1999 break;
2000 default:
2001 put_packet(s, "E22");
2002 break;
2003 }
2004 break;
2005 case 'T':
2006 thread = strtoull(p, (char **)&p, 16);
2007 env = find_cpu(thread);
2008
2009 if (env != NULL) {
2010 put_packet(s, "OK");
2011 } else {
2012 put_packet(s, "E22");
2013 }
2014 break;
2015 case 'q':
2016 case 'Q':
2017 /* parse any 'q' packets here */
2018 if (!strcmp(p,"qemu.sstepbits")) {
2019 /* Query Breakpoint bit definitions */
2020 snprintf(buf, sizeof(buf), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
2021 SSTEP_ENABLE,
2022 SSTEP_NOIRQ,
2023 SSTEP_NOTIMER);
2024 put_packet(s, buf);
2025 break;
2026 } else if (strncmp(p,"qemu.sstep",10) == 0) {
2027 /* Display or change the sstep_flags */
2028 p += 10;
2029 if (*p != '=') {
2030 /* Display current setting */
2031 snprintf(buf, sizeof(buf), "0x%x", sstep_flags);
2032 put_packet(s, buf);
2033 break;
2034 }
2035 p++;
2036 type = strtoul(p, (char **)&p, 16);
2037 sstep_flags = type;
2038 put_packet(s, "OK");
2039 break;
2040 } else if (strcmp(p,"C") == 0) {
2041 /* "Current thread" remains vague in the spec, so always return
2042 * the first CPU (gdb returns the first thread). */
2043 put_packet(s, "QC1");
2044 break;
2045 } else if (strcmp(p,"fThreadInfo") == 0) {
2046 s->query_cpu = first_cpu;
2047 goto report_cpuinfo;
2048 } else if (strcmp(p,"sThreadInfo") == 0) {
2049 report_cpuinfo:
2050 if (s->query_cpu) {
2051 snprintf(buf, sizeof(buf), "m%x", gdb_id(s->query_cpu));
2052 put_packet(s, buf);
2053 s->query_cpu = s->query_cpu->next_cpu;
2054 } else
2055 put_packet(s, "l");
2056 break;
2057 } else if (strncmp(p,"ThreadExtraInfo,", 16) == 0) {
2058 thread = strtoull(p+16, (char **)&p, 16);
2059 env = find_cpu(thread);
2060 if (env != NULL) {
2061 cpu_synchronize_state(env);
2062 len = snprintf((char *)mem_buf, sizeof(mem_buf),
2063 "CPU#%d [%s]", env->cpu_index,
2064 env->halted ? "halted " : "running");
2065 memtohex(buf, mem_buf, len);
2066 put_packet(s, buf);
2067 }
2068 break;
2069 }
2070 #ifdef CONFIG_USER_ONLY
2071 else if (strncmp(p, "Offsets", 7) == 0) {
2072 TaskState *ts = s->c_cpu->opaque;
2073
2074 snprintf(buf, sizeof(buf),
2075 "Text=" TARGET_ABI_FMT_lx ";Data=" TARGET_ABI_FMT_lx
2076 ";Bss=" TARGET_ABI_FMT_lx,
2077 ts->info->code_offset,
2078 ts->info->data_offset,
2079 ts->info->data_offset);
2080 put_packet(s, buf);
2081 break;
2082 }
2083 #else /* !CONFIG_USER_ONLY */
2084 else if (strncmp(p, "Rcmd,", 5) == 0) {
2085 int len = strlen(p + 5);
2086
2087 if ((len % 2) != 0) {
2088 put_packet(s, "E01");
2089 break;
2090 }
2091 hextomem(mem_buf, p + 5, len);
2092 len = len / 2;
2093 mem_buf[len++] = 0;
2094 qemu_chr_read(s->mon_chr, mem_buf, len);
2095 put_packet(s, "OK");
2096 break;
2097 }
2098 #endif /* !CONFIG_USER_ONLY */
2099 if (strncmp(p, "Supported", 9) == 0) {
2100 snprintf(buf, sizeof(buf), "PacketSize=%x", MAX_PACKET_LENGTH);
2101 #ifdef GDB_CORE_XML
2102 pstrcat(buf, sizeof(buf), ";qXfer:features:read+");
2103 #endif
2104 put_packet(s, buf);
2105 break;
2106 }
2107 #ifdef GDB_CORE_XML
2108 if (strncmp(p, "Xfer:features:read:", 19) == 0) {
2109 const char *xml;
2110 target_ulong total_len;
2111
2112 gdb_has_xml = 1;
2113 p += 19;
2114 xml = get_feature_xml(p, &p);
2115 if (!xml) {
2116 snprintf(buf, sizeof(buf), "E00");
2117 put_packet(s, buf);
2118 break;
2119 }
2120
2121 if (*p == ':')
2122 p++;
2123 addr = strtoul(p, (char **)&p, 16);
2124 if (*p == ',')
2125 p++;
2126 len = strtoul(p, (char **)&p, 16);
2127
2128 total_len = strlen(xml);
2129 if (addr > total_len) {
2130 snprintf(buf, sizeof(buf), "E00");
2131 put_packet(s, buf);
2132 break;
2133 }
2134 if (len > (MAX_PACKET_LENGTH - 5) / 2)
2135 len = (MAX_PACKET_LENGTH - 5) / 2;
2136 if (len < total_len - addr) {
2137 buf[0] = 'm';
2138 len = memtox(buf + 1, xml + addr, len);
2139 } else {
2140 buf[0] = 'l';
2141 len = memtox(buf + 1, xml + addr, total_len - addr);
2142 }
2143 put_packet_binary(s, buf, len + 1);
2144 break;
2145 }
2146 #endif
2147 /* Unrecognised 'q' command. */
2148 goto unknown_command;
2149
2150 default:
2151 unknown_command:
2152 /* put empty packet */
2153 buf[0] = '\0';
2154 put_packet(s, buf);
2155 break;
2156 }
2157 return RS_IDLE;
2158 }
2159
2160 void gdb_set_stop_cpu(CPUState *env)
2161 {
2162 gdbserver_state->c_cpu = env;
2163 gdbserver_state->g_cpu = env;
2164 }
2165
2166 #ifndef CONFIG_USER_ONLY
2167 static void gdb_vm_state_change(void *opaque, int running, int reason)
2168 {
2169 GDBState *s = gdbserver_state;
2170 CPUState *env = s->c_cpu;
2171 char buf[256];
2172 const char *type;
2173 int ret;
2174
2175 if (running || (reason != EXCP_DEBUG && reason != EXCP_INTERRUPT) ||
2176 s->state == RS_INACTIVE || s->state == RS_SYSCALL)
2177 return;
2178
2179 /* disable single step if it was enable */
2180 cpu_single_step(env, 0);
2181
2182 if (reason == EXCP_DEBUG) {
2183 if (env->watchpoint_hit) {
2184 switch (env->watchpoint_hit->flags & BP_MEM_ACCESS) {
2185 case BP_MEM_READ:
2186 type = "r";
2187 break;
2188 case BP_MEM_ACCESS:
2189 type = "a";
2190 break;
2191 default:
2192 type = "";
2193 break;
2194 }
2195 snprintf(buf, sizeof(buf),
2196 "T%02xthread:%02x;%swatch:" TARGET_FMT_lx ";",
2197 GDB_SIGNAL_TRAP, gdb_id(env), type,
2198 env->watchpoint_hit->vaddr);
2199 put_packet(s, buf);
2200 env->watchpoint_hit = NULL;
2201 return;
2202 }
2203 tb_flush(env);
2204 ret = GDB_SIGNAL_TRAP;
2205 } else {
2206 ret = GDB_SIGNAL_INT;
2207 }
2208 snprintf(buf, sizeof(buf), "T%02xthread:%02x;", ret, gdb_id(env));
2209 put_packet(s, buf);
2210 }
2211 #endif
2212
2213 /* Send a gdb syscall request.
2214 This accepts limited printf-style format specifiers, specifically:
2215 %x - target_ulong argument printed in hex.
2216 %lx - 64-bit argument printed in hex.
2217 %s - string pointer (target_ulong) and length (int) pair. */
2218 void gdb_do_syscall(gdb_syscall_complete_cb cb, const char *fmt, ...)
2219 {
2220 va_list va;
2221 char buf[256];
2222 char *p;
2223 target_ulong addr;
2224 uint64_t i64;
2225 GDBState *s;
2226
2227 s = gdbserver_state;
2228 if (!s)
2229 return;
2230 gdb_current_syscall_cb = cb;
2231 s->state = RS_SYSCALL;
2232 #ifndef CONFIG_USER_ONLY
2233 vm_stop(EXCP_DEBUG);
2234 #endif
2235 s->state = RS_IDLE;
2236 va_start(va, fmt);
2237 p = buf;
2238 *(p++) = 'F';
2239 while (*fmt) {
2240 if (*fmt == '%') {
2241 fmt++;
2242 switch (*fmt++) {
2243 case 'x':
2244 addr = va_arg(va, target_ulong);
2245 p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx, addr);
2246 break;
2247 case 'l':
2248 if (*(fmt++) != 'x')
2249 goto bad_format;
2250 i64 = va_arg(va, uint64_t);
2251 p += snprintf(p, &buf[sizeof(buf)] - p, "%" PRIx64, i64);
2252 break;
2253 case 's':
2254 addr = va_arg(va, target_ulong);
2255 p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx "/%x",
2256 addr, va_arg(va, int));
2257 break;
2258 default:
2259 bad_format:
2260 fprintf(stderr, "gdbstub: Bad syscall format string '%s'\n",
2261 fmt - 1);
2262 break;
2263 }
2264 } else {
2265 *(p++) = *(fmt++);
2266 }
2267 }
2268 *p = 0;
2269 va_end(va);
2270 put_packet(s, buf);
2271 #ifdef CONFIG_USER_ONLY
2272 gdb_handlesig(s->c_cpu, 0);
2273 #else
2274 cpu_exit(s->c_cpu);
2275 #endif
2276 }
2277
2278 static void gdb_read_byte(GDBState *s, int ch)
2279 {
2280 int i, csum;
2281 uint8_t reply;
2282
2283 #ifndef CONFIG_USER_ONLY
2284 if (s->last_packet_len) {
2285 /* Waiting for a response to the last packet. If we see the start
2286 of a new command then abandon the previous response. */
2287 if (ch == '-') {
2288 #ifdef DEBUG_GDB
2289 printf("Got NACK, retransmitting\n");
2290 #endif
2291 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
2292 }
2293 #ifdef DEBUG_GDB
2294 else if (ch == '+')
2295 printf("Got ACK\n");
2296 else
2297 printf("Got '%c' when expecting ACK/NACK\n", ch);
2298 #endif
2299 if (ch == '+' || ch == '$')
2300 s->last_packet_len = 0;
2301 if (ch != '$')
2302 return;
2303 }
2304 if (vm_running) {
2305 /* when the CPU is running, we cannot do anything except stop
2306 it when receiving a char */
2307 vm_stop(EXCP_INTERRUPT);
2308 } else
2309 #endif
2310 {
2311 switch(s->state) {
2312 case RS_IDLE:
2313 if (ch == '$') {
2314 s->line_buf_index = 0;
2315 s->state = RS_GETLINE;
2316 }
2317 break;
2318 case RS_GETLINE:
2319 if (ch == '#') {
2320 s->state = RS_CHKSUM1;
2321 } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
2322 s->state = RS_IDLE;
2323 } else {
2324 s->line_buf[s->line_buf_index++] = ch;
2325 }
2326 break;
2327 case RS_CHKSUM1:
2328 s->line_buf[s->line_buf_index] = '\0';
2329 s->line_csum = fromhex(ch) << 4;
2330 s->state = RS_CHKSUM2;
2331 break;
2332 case RS_CHKSUM2:
2333 s->line_csum |= fromhex(ch);
2334 csum = 0;
2335 for(i = 0; i < s->line_buf_index; i++) {
2336 csum += s->line_buf[i];
2337 }
2338 if (s->line_csum != (csum & 0xff)) {
2339 reply = '-';
2340 put_buffer(s, &reply, 1);
2341 s->state = RS_IDLE;
2342 } else {
2343 reply = '+';
2344 put_buffer(s, &reply, 1);
2345 s->state = gdb_handle_packet(s, s->line_buf);
2346 }
2347 break;
2348 default:
2349 abort();
2350 }
2351 }
2352 }
2353
2354 #ifdef CONFIG_USER_ONLY
2355 int
2356 gdb_queuesig (void)
2357 {
2358 GDBState *s;
2359
2360 s = gdbserver_state;
2361
2362 if (gdbserver_fd < 0 || s->fd < 0)
2363 return 0;
2364 else
2365 return 1;
2366 }
2367
2368 int
2369 gdb_handlesig (CPUState *env, int sig)
2370 {
2371 GDBState *s;
2372 char buf[256];
2373 int n;
2374
2375 s = gdbserver_state;
2376 if (gdbserver_fd < 0 || s->fd < 0)
2377 return sig;
2378
2379 /* disable single step if it was enabled */
2380 cpu_single_step(env, 0);
2381 tb_flush(env);
2382
2383 if (sig != 0)
2384 {
2385 snprintf(buf, sizeof(buf), "S%02x", target_signal_to_gdb (sig));
2386 put_packet(s, buf);
2387 }
2388 /* put_packet() might have detected that the peer terminated the
2389 connection. */
2390 if (s->fd < 0)
2391 return sig;
2392
2393 sig = 0;
2394 s->state = RS_IDLE;
2395 s->running_state = 0;
2396 while (s->running_state == 0) {
2397 n = read (s->fd, buf, 256);
2398 if (n > 0)
2399 {
2400 int i;
2401
2402 for (i = 0; i < n; i++)
2403 gdb_read_byte (s, buf[i]);
2404 }
2405 else if (n == 0 || errno != EAGAIN)
2406 {
2407 /* XXX: Connection closed. Should probably wait for annother
2408 connection before continuing. */
2409 return sig;
2410 }
2411 }
2412 sig = s->signal;
2413 s->signal = 0;
2414 return sig;
2415 }
2416
2417 /* Tell the remote gdb that the process has exited. */
2418 void gdb_exit(CPUState *env, int code)
2419 {
2420 GDBState *s;
2421 char buf[4];
2422
2423 s = gdbserver_state;
2424 if (gdbserver_fd < 0 || s->fd < 0)
2425 return;
2426
2427 snprintf(buf, sizeof(buf), "W%02x", code);
2428 put_packet(s, buf);
2429 }
2430
2431 /* Tell the remote gdb that the process has exited due to SIG. */
2432 void gdb_signalled(CPUState *env, int sig)
2433 {
2434 GDBState *s;
2435 char buf[4];
2436
2437 s = gdbserver_state;
2438 if (gdbserver_fd < 0 || s->fd < 0)
2439 return;
2440
2441 snprintf(buf, sizeof(buf), "X%02x", target_signal_to_gdb (sig));
2442 put_packet(s, buf);
2443 }
2444
2445 static void gdb_accept(void)
2446 {
2447 GDBState *s;
2448 struct sockaddr_in sockaddr;
2449 socklen_t len;
2450 int val, fd;
2451
2452 for(;;) {
2453 len = sizeof(sockaddr);
2454 fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
2455 if (fd < 0 && errno != EINTR) {
2456 perror("accept");
2457 return;
2458 } else if (fd >= 0) {
2459 #ifndef _WIN32
2460 fcntl(fd, F_SETFD, FD_CLOEXEC);
2461 #endif
2462 break;
2463 }
2464 }
2465
2466 /* set short latency */
2467 val = 1;
2468 setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
2469
2470 s = qemu_mallocz(sizeof(GDBState));
2471 s->c_cpu = first_cpu;
2472 s->g_cpu = first_cpu;
2473 s->fd = fd;
2474 gdb_has_xml = 0;
2475
2476 gdbserver_state = s;
2477
2478 fcntl(fd, F_SETFL, O_NONBLOCK);
2479 }
2480
2481 static int gdbserver_open(int port)
2482 {
2483 struct sockaddr_in sockaddr;
2484 int fd, val, ret;
2485
2486 fd = socket(PF_INET, SOCK_STREAM, 0);
2487 if (fd < 0) {
2488 perror("socket");
2489 return -1;
2490 }
2491 #ifndef _WIN32
2492 fcntl(fd, F_SETFD, FD_CLOEXEC);
2493 #endif
2494
2495 /* allow fast reuse */
2496 val = 1;
2497 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *)&val, sizeof(val));
2498
2499 sockaddr.sin_family = AF_INET;
2500 sockaddr.sin_port = htons(port);
2501 sockaddr.sin_addr.s_addr = 0;
2502 ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
2503 if (ret < 0) {
2504 perror("bind");
2505 return -1;
2506 }
2507 ret = listen(fd, 0);
2508 if (ret < 0) {
2509 perror("listen");
2510 return -1;
2511 }
2512 return fd;
2513 }
2514
2515 int gdbserver_start(int port)
2516 {
2517 gdbserver_fd = gdbserver_open(port);
2518 if (gdbserver_fd < 0)
2519 return -1;
2520 /* accept connections */
2521 gdb_accept();
2522 return 0;
2523 }
2524
2525 /* Disable gdb stub for child processes. */
2526 void gdbserver_fork(CPUState *env)
2527 {
2528 GDBState *s = gdbserver_state;
2529 if (gdbserver_fd < 0 || s->fd < 0)
2530 return;
2531 close(s->fd);
2532 s->fd = -1;
2533 cpu_breakpoint_remove_all(env, BP_GDB);
2534 cpu_watchpoint_remove_all(env, BP_GDB);
2535 }
2536 #else
2537 static int gdb_chr_can_receive(void *opaque)
2538 {
2539 /* We can handle an arbitrarily large amount of data.
2540 Pick the maximum packet size, which is as good as anything. */
2541 return MAX_PACKET_LENGTH;
2542 }
2543
2544 static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size)
2545 {
2546 int i;
2547
2548 for (i = 0; i < size; i++) {
2549 gdb_read_byte(gdbserver_state, buf[i]);
2550 }
2551 }
2552
2553 static void gdb_chr_event(void *opaque, int event)
2554 {
2555 switch (event) {
2556 case CHR_EVENT_OPENED:
2557 vm_stop(EXCP_INTERRUPT);
2558 gdb_has_xml = 0;
2559 break;
2560 default:
2561 break;
2562 }
2563 }
2564
2565 static void gdb_monitor_output(GDBState *s, const char *msg, int len)
2566 {
2567 char buf[MAX_PACKET_LENGTH];
2568
2569 buf[0] = 'O';
2570 if (len > (MAX_PACKET_LENGTH/2) - 1)
2571 len = (MAX_PACKET_LENGTH/2) - 1;
2572 memtohex(buf + 1, (uint8_t *)msg, len);
2573 put_packet(s, buf);
2574 }
2575
2576 static int gdb_monitor_write(CharDriverState *chr, const uint8_t *buf, int len)
2577 {
2578 const char *p = (const char *)buf;
2579 int max_sz;
2580
2581 max_sz = (sizeof(gdbserver_state->last_packet) - 2) / 2;
2582 for (;;) {
2583 if (len <= max_sz) {
2584 gdb_monitor_output(gdbserver_state, p, len);
2585 break;
2586 }
2587 gdb_monitor_output(gdbserver_state, p, max_sz);
2588 p += max_sz;
2589 len -= max_sz;
2590 }
2591 return len;
2592 }
2593
2594 #ifndef _WIN32
2595 static void gdb_sigterm_handler(int signal)
2596 {
2597 if (vm_running)
2598 vm_stop(EXCP_INTERRUPT);
2599 }
2600 #endif
2601
2602 int gdbserver_start(const char *device)
2603 {
2604 GDBState *s;
2605 char gdbstub_device_name[128];
2606 CharDriverState *chr = NULL;
2607 CharDriverState *mon_chr;
2608
2609 if (!device)
2610 return -1;
2611 if (strcmp(device, "none") != 0) {
2612 if (strstart(device, "tcp:", NULL)) {
2613 /* enforce required TCP attributes */
2614 snprintf(gdbstub_device_name, sizeof(gdbstub_device_name),
2615 "%s,nowait,nodelay,server", device);
2616 device = gdbstub_device_name;
2617 }
2618 #ifndef _WIN32
2619 else if (strcmp(device, "stdio") == 0) {
2620 struct sigaction act;
2621
2622 memset(&act, 0, sizeof(act));
2623 act.sa_handler = gdb_sigterm_handler;
2624 sigaction(SIGINT, &act, NULL);
2625 }
2626 #endif
2627 chr = qemu_chr_open("gdb", device, NULL);
2628 if (!chr)
2629 return -1;
2630
2631 qemu_chr_add_handlers(chr, gdb_chr_can_receive, gdb_chr_receive,
2632 gdb_chr_event, NULL);
2633 }
2634
2635 s = gdbserver_state;
2636 if (!s) {
2637 s = qemu_mallocz(sizeof(GDBState));
2638 gdbserver_state = s;
2639
2640 qemu_add_vm_change_state_handler(gdb_vm_state_change, NULL);
2641
2642 /* Initialize a monitor terminal for gdb */
2643 mon_chr = qemu_mallocz(sizeof(*mon_chr));
2644 mon_chr->chr_write = gdb_monitor_write;
2645 monitor_init(mon_chr, 0);
2646 } else {
2647 if (s->chr)
2648 qemu_chr_close(s->chr);
2649 mon_chr = s->mon_chr;
2650 memset(s, 0, sizeof(GDBState));
2651 }
2652 s->c_cpu = first_cpu;
2653 s->g_cpu = first_cpu;
2654 s->chr = chr;
2655 s->state = chr ? RS_IDLE : RS_INACTIVE;
2656 s->mon_chr = mon_chr;
2657
2658 return 0;
2659 }
2660 #endif