]> git.proxmox.com Git - qemu.git/blob - gdbstub.c
Fix gdb stub for MIPS64.
[qemu.git] / gdbstub.c
1 /*
2 * gdb server stub
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20 #include "config.h"
21 #ifdef CONFIG_USER_ONLY
22 #include <stdlib.h>
23 #include <stdio.h>
24 #include <stdarg.h>
25 #include <string.h>
26 #include <errno.h>
27 #include <unistd.h>
28 #include <fcntl.h>
29
30 #include "qemu.h"
31 #else
32 #include "vl.h"
33 #endif
34
35 #include "qemu_socket.h"
36 #ifdef _WIN32
37 /* XXX: these constants may be independent of the host ones even for Unix */
38 #ifndef SIGTRAP
39 #define SIGTRAP 5
40 #endif
41 #ifndef SIGINT
42 #define SIGINT 2
43 #endif
44 #else
45 #include <signal.h>
46 #endif
47
48 //#define DEBUG_GDB
49
50 enum RSState {
51 RS_IDLE,
52 RS_GETLINE,
53 RS_CHKSUM1,
54 RS_CHKSUM2,
55 RS_SYSCALL,
56 };
57 typedef struct GDBState {
58 CPUState *env; /* current CPU */
59 enum RSState state; /* parsing state */
60 char line_buf[4096];
61 int line_buf_index;
62 int line_csum;
63 char last_packet[4100];
64 int last_packet_len;
65 #ifdef CONFIG_USER_ONLY
66 int fd;
67 int running_state;
68 #else
69 CharDriverState *chr;
70 #endif
71 } GDBState;
72
73 #ifdef CONFIG_USER_ONLY
74 /* XXX: This is not thread safe. Do we care? */
75 static int gdbserver_fd = -1;
76
77 /* XXX: remove this hack. */
78 static GDBState gdbserver_state;
79
80 static int get_char(GDBState *s)
81 {
82 uint8_t ch;
83 int ret;
84
85 for(;;) {
86 ret = recv(s->fd, &ch, 1, 0);
87 if (ret < 0) {
88 if (errno != EINTR && errno != EAGAIN)
89 return -1;
90 } else if (ret == 0) {
91 return -1;
92 } else {
93 break;
94 }
95 }
96 return ch;
97 }
98 #endif
99
100 /* GDB stub state for use by semihosting syscalls. */
101 static GDBState *gdb_syscall_state;
102 static gdb_syscall_complete_cb gdb_current_syscall_cb;
103
104 enum {
105 GDB_SYS_UNKNOWN,
106 GDB_SYS_ENABLED,
107 GDB_SYS_DISABLED,
108 } gdb_syscall_mode;
109
110 /* If gdb is connected when the first semihosting syscall occurs then use
111 remote gdb syscalls. Otherwise use native file IO. */
112 int use_gdb_syscalls(void)
113 {
114 if (gdb_syscall_mode == GDB_SYS_UNKNOWN) {
115 gdb_syscall_mode = (gdb_syscall_state ? GDB_SYS_ENABLED
116 : GDB_SYS_DISABLED);
117 }
118 return gdb_syscall_mode == GDB_SYS_ENABLED;
119 }
120
121 static void put_buffer(GDBState *s, const uint8_t *buf, int len)
122 {
123 #ifdef CONFIG_USER_ONLY
124 int ret;
125
126 while (len > 0) {
127 ret = send(s->fd, buf, len, 0);
128 if (ret < 0) {
129 if (errno != EINTR && errno != EAGAIN)
130 return;
131 } else {
132 buf += ret;
133 len -= ret;
134 }
135 }
136 #else
137 qemu_chr_write(s->chr, buf, len);
138 #endif
139 }
140
141 static inline int fromhex(int v)
142 {
143 if (v >= '0' && v <= '9')
144 return v - '0';
145 else if (v >= 'A' && v <= 'F')
146 return v - 'A' + 10;
147 else if (v >= 'a' && v <= 'f')
148 return v - 'a' + 10;
149 else
150 return 0;
151 }
152
153 static inline int tohex(int v)
154 {
155 if (v < 10)
156 return v + '0';
157 else
158 return v - 10 + 'a';
159 }
160
161 static void memtohex(char *buf, const uint8_t *mem, int len)
162 {
163 int i, c;
164 char *q;
165 q = buf;
166 for(i = 0; i < len; i++) {
167 c = mem[i];
168 *q++ = tohex(c >> 4);
169 *q++ = tohex(c & 0xf);
170 }
171 *q = '\0';
172 }
173
174 static void hextomem(uint8_t *mem, const char *buf, int len)
175 {
176 int i;
177
178 for(i = 0; i < len; i++) {
179 mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
180 buf += 2;
181 }
182 }
183
184 /* return -1 if error, 0 if OK */
185 static int put_packet(GDBState *s, char *buf)
186 {
187 int len, csum, i;
188 char *p;
189
190 #ifdef DEBUG_GDB
191 printf("reply='%s'\n", buf);
192 #endif
193
194 for(;;) {
195 p = s->last_packet;
196 *(p++) = '$';
197 len = strlen(buf);
198 memcpy(p, buf, len);
199 p += len;
200 csum = 0;
201 for(i = 0; i < len; i++) {
202 csum += buf[i];
203 }
204 *(p++) = '#';
205 *(p++) = tohex((csum >> 4) & 0xf);
206 *(p++) = tohex((csum) & 0xf);
207
208 s->last_packet_len = p - s->last_packet;
209 put_buffer(s, s->last_packet, s->last_packet_len);
210
211 #ifdef CONFIG_USER_ONLY
212 i = get_char(s);
213 if (i < 0)
214 return -1;
215 if (i == '+')
216 break;
217 #else
218 break;
219 #endif
220 }
221 return 0;
222 }
223
224 #if defined(TARGET_I386)
225
226 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
227 {
228 uint32_t *registers = (uint32_t *)mem_buf;
229 int i, fpus;
230
231 for(i = 0; i < 8; i++) {
232 registers[i] = env->regs[i];
233 }
234 registers[8] = env->eip;
235 registers[9] = env->eflags;
236 registers[10] = env->segs[R_CS].selector;
237 registers[11] = env->segs[R_SS].selector;
238 registers[12] = env->segs[R_DS].selector;
239 registers[13] = env->segs[R_ES].selector;
240 registers[14] = env->segs[R_FS].selector;
241 registers[15] = env->segs[R_GS].selector;
242 /* XXX: convert floats */
243 for(i = 0; i < 8; i++) {
244 memcpy(mem_buf + 16 * 4 + i * 10, &env->fpregs[i], 10);
245 }
246 registers[36] = env->fpuc;
247 fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
248 registers[37] = fpus;
249 registers[38] = 0; /* XXX: convert tags */
250 registers[39] = 0; /* fiseg */
251 registers[40] = 0; /* fioff */
252 registers[41] = 0; /* foseg */
253 registers[42] = 0; /* fooff */
254 registers[43] = 0; /* fop */
255
256 for(i = 0; i < 16; i++)
257 tswapls(&registers[i]);
258 for(i = 36; i < 44; i++)
259 tswapls(&registers[i]);
260 return 44 * 4;
261 }
262
263 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
264 {
265 uint32_t *registers = (uint32_t *)mem_buf;
266 int i;
267
268 for(i = 0; i < 8; i++) {
269 env->regs[i] = tswapl(registers[i]);
270 }
271 env->eip = tswapl(registers[8]);
272 env->eflags = tswapl(registers[9]);
273 #if defined(CONFIG_USER_ONLY)
274 #define LOAD_SEG(index, sreg)\
275 if (tswapl(registers[index]) != env->segs[sreg].selector)\
276 cpu_x86_load_seg(env, sreg, tswapl(registers[index]));
277 LOAD_SEG(10, R_CS);
278 LOAD_SEG(11, R_SS);
279 LOAD_SEG(12, R_DS);
280 LOAD_SEG(13, R_ES);
281 LOAD_SEG(14, R_FS);
282 LOAD_SEG(15, R_GS);
283 #endif
284 }
285
286 #elif defined (TARGET_PPC)
287 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
288 {
289 uint32_t *registers = (uint32_t *)mem_buf, tmp;
290 int i;
291
292 /* fill in gprs */
293 for(i = 0; i < 32; i++) {
294 registers[i] = tswapl(env->gpr[i]);
295 }
296 /* fill in fprs */
297 for (i = 0; i < 32; i++) {
298 registers[(i * 2) + 32] = tswapl(*((uint32_t *)&env->fpr[i]));
299 registers[(i * 2) + 33] = tswapl(*((uint32_t *)&env->fpr[i] + 1));
300 }
301 /* nip, msr, ccr, lnk, ctr, xer, mq */
302 registers[96] = tswapl(env->nip);
303 registers[97] = tswapl(do_load_msr(env));
304 tmp = 0;
305 for (i = 0; i < 8; i++)
306 tmp |= env->crf[i] << (32 - ((i + 1) * 4));
307 registers[98] = tswapl(tmp);
308 registers[99] = tswapl(env->lr);
309 registers[100] = tswapl(env->ctr);
310 registers[101] = tswapl(ppc_load_xer(env));
311 registers[102] = 0;
312
313 return 103 * 4;
314 }
315
316 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
317 {
318 uint32_t *registers = (uint32_t *)mem_buf;
319 int i;
320
321 /* fill in gprs */
322 for (i = 0; i < 32; i++) {
323 env->gpr[i] = tswapl(registers[i]);
324 }
325 /* fill in fprs */
326 for (i = 0; i < 32; i++) {
327 *((uint32_t *)&env->fpr[i]) = tswapl(registers[(i * 2) + 32]);
328 *((uint32_t *)&env->fpr[i] + 1) = tswapl(registers[(i * 2) + 33]);
329 }
330 /* nip, msr, ccr, lnk, ctr, xer, mq */
331 env->nip = tswapl(registers[96]);
332 do_store_msr(env, tswapl(registers[97]));
333 registers[98] = tswapl(registers[98]);
334 for (i = 0; i < 8; i++)
335 env->crf[i] = (registers[98] >> (32 - ((i + 1) * 4))) & 0xF;
336 env->lr = tswapl(registers[99]);
337 env->ctr = tswapl(registers[100]);
338 ppc_store_xer(env, tswapl(registers[101]));
339 }
340 #elif defined (TARGET_SPARC)
341 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
342 {
343 target_ulong *registers = (target_ulong *)mem_buf;
344 int i;
345
346 /* fill in g0..g7 */
347 for(i = 0; i < 8; i++) {
348 registers[i] = tswapl(env->gregs[i]);
349 }
350 /* fill in register window */
351 for(i = 0; i < 24; i++) {
352 registers[i + 8] = tswapl(env->regwptr[i]);
353 }
354 #ifndef TARGET_SPARC64
355 /* fill in fprs */
356 for (i = 0; i < 32; i++) {
357 registers[i + 32] = tswapl(*((uint32_t *)&env->fpr[i]));
358 }
359 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
360 registers[64] = tswapl(env->y);
361 {
362 target_ulong tmp;
363
364 tmp = GET_PSR(env);
365 registers[65] = tswapl(tmp);
366 }
367 registers[66] = tswapl(env->wim);
368 registers[67] = tswapl(env->tbr);
369 registers[68] = tswapl(env->pc);
370 registers[69] = tswapl(env->npc);
371 registers[70] = tswapl(env->fsr);
372 registers[71] = 0; /* csr */
373 registers[72] = 0;
374 return 73 * sizeof(target_ulong);
375 #else
376 /* fill in fprs */
377 for (i = 0; i < 64; i += 2) {
378 uint64_t tmp;
379
380 tmp = ((uint64_t)*(uint32_t *)&env->fpr[i]) << 32;
381 tmp |= *(uint32_t *)&env->fpr[i + 1];
382 registers[i / 2 + 32] = tswap64(tmp);
383 }
384 registers[64] = tswapl(env->pc);
385 registers[65] = tswapl(env->npc);
386 registers[66] = tswapl(((uint64_t)GET_CCR(env) << 32) |
387 ((env->asi & 0xff) << 24) |
388 ((env->pstate & 0xfff) << 8) |
389 GET_CWP64(env));
390 registers[67] = tswapl(env->fsr);
391 registers[68] = tswapl(env->fprs);
392 registers[69] = tswapl(env->y);
393 return 70 * sizeof(target_ulong);
394 #endif
395 }
396
397 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
398 {
399 target_ulong *registers = (target_ulong *)mem_buf;
400 int i;
401
402 /* fill in g0..g7 */
403 for(i = 0; i < 7; i++) {
404 env->gregs[i] = tswapl(registers[i]);
405 }
406 /* fill in register window */
407 for(i = 0; i < 24; i++) {
408 env->regwptr[i] = tswapl(registers[i + 8]);
409 }
410 #ifndef TARGET_SPARC64
411 /* fill in fprs */
412 for (i = 0; i < 32; i++) {
413 *((uint32_t *)&env->fpr[i]) = tswapl(registers[i + 32]);
414 }
415 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
416 env->y = tswapl(registers[64]);
417 PUT_PSR(env, tswapl(registers[65]));
418 env->wim = tswapl(registers[66]);
419 env->tbr = tswapl(registers[67]);
420 env->pc = tswapl(registers[68]);
421 env->npc = tswapl(registers[69]);
422 env->fsr = tswapl(registers[70]);
423 #else
424 for (i = 0; i < 64; i += 2) {
425 uint64_t tmp;
426
427 tmp = tswap64(registers[i / 2 + 32]);
428 *((uint32_t *)&env->fpr[i]) = tmp >> 32;
429 *((uint32_t *)&env->fpr[i + 1]) = tmp & 0xffffffff;
430 }
431 env->pc = tswapl(registers[64]);
432 env->npc = tswapl(registers[65]);
433 {
434 uint64_t tmp = tswapl(registers[66]);
435
436 PUT_CCR(env, tmp >> 32);
437 env->asi = (tmp >> 24) & 0xff;
438 env->pstate = (tmp >> 8) & 0xfff;
439 PUT_CWP64(env, tmp & 0xff);
440 }
441 env->fsr = tswapl(registers[67]);
442 env->fprs = tswapl(registers[68]);
443 env->y = tswapl(registers[69]);
444 #endif
445 }
446 #elif defined (TARGET_ARM)
447 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
448 {
449 int i;
450 uint8_t *ptr;
451
452 ptr = mem_buf;
453 /* 16 core integer registers (4 bytes each). */
454 for (i = 0; i < 16; i++)
455 {
456 *(uint32_t *)ptr = tswapl(env->regs[i]);
457 ptr += 4;
458 }
459 /* 8 FPA registers (12 bytes each), FPS (4 bytes).
460 Not yet implemented. */
461 memset (ptr, 0, 8 * 12 + 4);
462 ptr += 8 * 12 + 4;
463 /* CPSR (4 bytes). */
464 *(uint32_t *)ptr = tswapl (cpsr_read(env));
465 ptr += 4;
466
467 return ptr - mem_buf;
468 }
469
470 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
471 {
472 int i;
473 uint8_t *ptr;
474
475 ptr = mem_buf;
476 /* Core integer registers. */
477 for (i = 0; i < 16; i++)
478 {
479 env->regs[i] = tswapl(*(uint32_t *)ptr);
480 ptr += 4;
481 }
482 /* Ignore FPA regs and scr. */
483 ptr += 8 * 12 + 4;
484 cpsr_write (env, tswapl(*(uint32_t *)ptr), 0xffffffff);
485 }
486 #elif defined (TARGET_M68K)
487 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
488 {
489 int i;
490 uint8_t *ptr;
491 CPU_DoubleU u;
492
493 ptr = mem_buf;
494 /* D0-D7 */
495 for (i = 0; i < 8; i++) {
496 *(uint32_t *)ptr = tswapl(env->dregs[i]);
497 ptr += 4;
498 }
499 /* A0-A7 */
500 for (i = 0; i < 8; i++) {
501 *(uint32_t *)ptr = tswapl(env->aregs[i]);
502 ptr += 4;
503 }
504 *(uint32_t *)ptr = tswapl(env->sr);
505 ptr += 4;
506 *(uint32_t *)ptr = tswapl(env->pc);
507 ptr += 4;
508 /* F0-F7. The 68881/68040 have 12-bit extended precision registers.
509 ColdFire has 8-bit double precision registers. */
510 for (i = 0; i < 8; i++) {
511 u.d = env->fregs[i];
512 *(uint32_t *)ptr = tswap32(u.l.upper);
513 *(uint32_t *)ptr = tswap32(u.l.lower);
514 }
515 /* FP control regs (not implemented). */
516 memset (ptr, 0, 3 * 4);
517 ptr += 3 * 4;
518
519 return ptr - mem_buf;
520 }
521
522 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
523 {
524 int i;
525 uint8_t *ptr;
526 CPU_DoubleU u;
527
528 ptr = mem_buf;
529 /* D0-D7 */
530 for (i = 0; i < 8; i++) {
531 env->dregs[i] = tswapl(*(uint32_t *)ptr);
532 ptr += 4;
533 }
534 /* A0-A7 */
535 for (i = 0; i < 8; i++) {
536 env->aregs[i] = tswapl(*(uint32_t *)ptr);
537 ptr += 4;
538 }
539 env->sr = tswapl(*(uint32_t *)ptr);
540 ptr += 4;
541 env->pc = tswapl(*(uint32_t *)ptr);
542 ptr += 4;
543 /* F0-F7. The 68881/68040 have 12-bit extended precision registers.
544 ColdFire has 8-bit double precision registers. */
545 for (i = 0; i < 8; i++) {
546 u.l.upper = tswap32(*(uint32_t *)ptr);
547 u.l.lower = tswap32(*(uint32_t *)ptr);
548 env->fregs[i] = u.d;
549 }
550 /* FP control regs (not implemented). */
551 ptr += 3 * 4;
552 }
553 #elif defined (TARGET_MIPS)
554 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
555 {
556 int i;
557 uint8_t *ptr;
558
559 ptr = mem_buf;
560 for (i = 0; i < 32; i++)
561 {
562 *(target_ulong *)ptr = tswapl(env->gpr[i][env->current_tc]);
563 ptr += sizeof(target_ulong);
564 }
565
566 *(target_ulong *)ptr = (int32_t)tswap32(env->CP0_Status);
567 ptr += sizeof(target_ulong);
568
569 *(target_ulong *)ptr = tswapl(env->LO[0][env->current_tc]);
570 ptr += sizeof(target_ulong);
571
572 *(target_ulong *)ptr = tswapl(env->HI[0][env->current_tc]);
573 ptr += sizeof(target_ulong);
574
575 *(target_ulong *)ptr = tswapl(env->CP0_BadVAddr);
576 ptr += sizeof(target_ulong);
577
578 *(target_ulong *)ptr = (int32_t)tswap32(env->CP0_Cause);
579 ptr += sizeof(target_ulong);
580
581 *(target_ulong *)ptr = tswapl(env->PC[env->current_tc]);
582 ptr += sizeof(target_ulong);
583
584 if (env->CP0_Config1 & (1 << CP0C1_FP))
585 {
586 for (i = 0; i < 32; i++)
587 {
588 if (env->CP0_Status & (1 << CP0St_FR))
589 *(target_ulong *)ptr = tswapl(env->fpu->fpr[i].d);
590 else
591 *(target_ulong *)ptr = tswap32(env->fpu->fpr[i].w[FP_ENDIAN_IDX]);
592 ptr += sizeof(target_ulong);
593 }
594
595 *(target_ulong *)ptr = (int32_t)tswap32(env->fpu->fcr31);
596 ptr += sizeof(target_ulong);
597
598 *(target_ulong *)ptr = (int32_t)tswap32(env->fpu->fcr0);
599 ptr += sizeof(target_ulong);
600 }
601
602 /* "fp", pseudo frame pointer. Not yet implemented in gdb. */
603 *(target_ulong *)ptr = 0;
604 ptr += sizeof(target_ulong);
605
606 /* Registers for embedded use, we just pad them. */
607 for (i = 0; i < 16; i++)
608 {
609 *(target_ulong *)ptr = 0;
610 ptr += sizeof(target_ulong);
611 }
612
613 /* Processor ID. */
614 *(target_ulong *)ptr = (int32_t)tswap32(env->CP0_PRid);
615 ptr += sizeof(target_ulong);
616
617 return ptr - mem_buf;
618 }
619
620 /* convert MIPS rounding mode in FCR31 to IEEE library */
621 static unsigned int ieee_rm[] =
622 {
623 float_round_nearest_even,
624 float_round_to_zero,
625 float_round_up,
626 float_round_down
627 };
628 #define RESTORE_ROUNDING_MODE \
629 set_float_rounding_mode(ieee_rm[env->fpu->fcr31 & 3], &env->fpu->fp_status)
630
631 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
632 {
633 int i;
634 uint8_t *ptr;
635
636 ptr = mem_buf;
637 for (i = 0; i < 32; i++)
638 {
639 env->gpr[i][env->current_tc] = tswapl(*(target_ulong *)ptr);
640 ptr += sizeof(target_ulong);
641 }
642
643 env->CP0_Status = tswapl(*(target_ulong *)ptr);
644 ptr += sizeof(target_ulong);
645
646 env->LO[0][env->current_tc] = tswapl(*(target_ulong *)ptr);
647 ptr += sizeof(target_ulong);
648
649 env->HI[0][env->current_tc] = tswapl(*(target_ulong *)ptr);
650 ptr += sizeof(target_ulong);
651
652 env->CP0_BadVAddr = tswapl(*(target_ulong *)ptr);
653 ptr += sizeof(target_ulong);
654
655 env->CP0_Cause = tswapl(*(target_ulong *)ptr);
656 ptr += sizeof(target_ulong);
657
658 env->PC[env->current_tc] = tswapl(*(target_ulong *)ptr);
659 ptr += sizeof(target_ulong);
660
661 if (env->CP0_Config1 & (1 << CP0C1_FP))
662 {
663 for (i = 0; i < 32; i++)
664 {
665 if (env->CP0_Status & (1 << CP0St_FR))
666 env->fpu->fpr[i].d = tswapl(*(target_ulong *)ptr);
667 else
668 env->fpu->fpr[i].w[FP_ENDIAN_IDX] = tswapl(*(target_ulong *)ptr);
669 ptr += sizeof(target_ulong);
670 }
671
672 env->fpu->fcr31 = tswapl(*(target_ulong *)ptr) & 0xFF83FFFF;
673 ptr += sizeof(target_ulong);
674
675 /* The remaining registers are assumed to be read-only. */
676
677 /* set rounding mode */
678 RESTORE_ROUNDING_MODE;
679
680 #ifndef CONFIG_SOFTFLOAT
681 /* no floating point exception for native float */
682 SET_FP_ENABLE(env->fcr31, 0);
683 #endif
684 }
685 }
686 #elif defined (TARGET_SH4)
687
688 /* Hint: Use "set architecture sh4" in GDB to see fpu registers */
689
690 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
691 {
692 uint32_t *ptr = (uint32_t *)mem_buf;
693 int i;
694
695 #define SAVE(x) *ptr++=tswapl(x)
696 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
697 for (i = 0; i < 8; i++) SAVE(env->gregs[i + 16]);
698 } else {
699 for (i = 0; i < 8; i++) SAVE(env->gregs[i]);
700 }
701 for (i = 8; i < 16; i++) SAVE(env->gregs[i]);
702 SAVE (env->pc);
703 SAVE (env->pr);
704 SAVE (env->gbr);
705 SAVE (env->vbr);
706 SAVE (env->mach);
707 SAVE (env->macl);
708 SAVE (env->sr);
709 SAVE (env->fpul);
710 SAVE (env->fpscr);
711 for (i = 0; i < 16; i++)
712 SAVE(env->fregs[i + ((env->fpscr & FPSCR_FR) ? 16 : 0)]);
713 SAVE (env->ssr);
714 SAVE (env->spc);
715 for (i = 0; i < 8; i++) SAVE(env->gregs[i]);
716 for (i = 0; i < 8; i++) SAVE(env->gregs[i + 16]);
717 return ((uint8_t *)ptr - mem_buf);
718 }
719
720 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
721 {
722 uint32_t *ptr = (uint32_t *)mem_buf;
723 int i;
724
725 #define LOAD(x) (x)=*ptr++;
726 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
727 for (i = 0; i < 8; i++) LOAD(env->gregs[i + 16]);
728 } else {
729 for (i = 0; i < 8; i++) LOAD(env->gregs[i]);
730 }
731 for (i = 8; i < 16; i++) LOAD(env->gregs[i]);
732 LOAD (env->pc);
733 LOAD (env->pr);
734 LOAD (env->gbr);
735 LOAD (env->vbr);
736 LOAD (env->mach);
737 LOAD (env->macl);
738 LOAD (env->sr);
739 LOAD (env->fpul);
740 LOAD (env->fpscr);
741 for (i = 0; i < 16; i++)
742 LOAD(env->fregs[i + ((env->fpscr & FPSCR_FR) ? 16 : 0)]);
743 LOAD (env->ssr);
744 LOAD (env->spc);
745 for (i = 0; i < 8; i++) LOAD(env->gregs[i]);
746 for (i = 0; i < 8; i++) LOAD(env->gregs[i + 16]);
747 }
748 #elif defined (TARGET_CRIS)
749
750 static int cris_save_32 (unsigned char *d, uint32_t value)
751 {
752 *d++ = (value);
753 *d++ = (value >>= 8);
754 *d++ = (value >>= 8);
755 *d++ = (value >>= 8);
756 return 4;
757 }
758 static int cris_save_16 (unsigned char *d, uint32_t value)
759 {
760 *d++ = (value);
761 *d++ = (value >>= 8);
762 return 2;
763 }
764 static int cris_save_8 (unsigned char *d, uint32_t value)
765 {
766 *d++ = (value);
767 return 1;
768 }
769
770 /* FIXME: this will bug on archs not supporting unaligned word accesses. */
771 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
772 {
773 uint8_t *ptr = mem_buf;
774 uint8_t srs;
775 int i;
776
777 for (i = 0; i < 16; i++)
778 ptr += cris_save_32 (ptr, env->regs[i]);
779
780 srs = env->pregs[SR_SRS];
781
782 ptr += cris_save_8 (ptr, env->pregs[0]);
783 ptr += cris_save_8 (ptr, env->pregs[1]);
784 ptr += cris_save_32 (ptr, env->pregs[2]);
785 ptr += cris_save_8 (ptr, srs);
786 ptr += cris_save_16 (ptr, env->pregs[4]);
787
788 for (i = 5; i < 16; i++)
789 ptr += cris_save_32 (ptr, env->pregs[i]);
790
791 ptr += cris_save_32 (ptr, env->pc);
792
793 for (i = 0; i < 16; i++)
794 ptr += cris_save_32 (ptr, env->sregs[srs][i]);
795
796 return ((uint8_t *)ptr - mem_buf);
797 }
798
799 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
800 {
801 uint32_t *ptr = (uint32_t *)mem_buf;
802 int i;
803
804 #define LOAD(x) (x)=*ptr++;
805 for (i = 0; i < 16; i++) LOAD(env->regs[i]);
806 LOAD (env->pc);
807 }
808 #else
809 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
810 {
811 return 0;
812 }
813
814 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
815 {
816 }
817
818 #endif
819
820 static int gdb_handle_packet(GDBState *s, CPUState *env, const char *line_buf)
821 {
822 const char *p;
823 int ch, reg_size, type;
824 char buf[4096];
825 uint8_t mem_buf[4096];
826 uint32_t *registers;
827 target_ulong addr, len;
828
829 #ifdef DEBUG_GDB
830 printf("command='%s'\n", line_buf);
831 #endif
832 p = line_buf;
833 ch = *p++;
834 switch(ch) {
835 case '?':
836 /* TODO: Make this return the correct value for user-mode. */
837 snprintf(buf, sizeof(buf), "S%02x", SIGTRAP);
838 put_packet(s, buf);
839 break;
840 case 'c':
841 if (*p != '\0') {
842 addr = strtoull(p, (char **)&p, 16);
843 #if defined(TARGET_I386)
844 env->eip = addr;
845 #elif defined (TARGET_PPC)
846 env->nip = addr;
847 #elif defined (TARGET_SPARC)
848 env->pc = addr;
849 env->npc = addr + 4;
850 #elif defined (TARGET_ARM)
851 env->regs[15] = addr;
852 #elif defined (TARGET_SH4)
853 env->pc = addr;
854 #elif defined (TARGET_MIPS)
855 env->PC[env->current_tc] = addr;
856 #elif defined (TARGET_CRIS)
857 env->pc = addr;
858 #endif
859 }
860 #ifdef CONFIG_USER_ONLY
861 s->running_state = 1;
862 #else
863 vm_start();
864 #endif
865 return RS_IDLE;
866 case 's':
867 if (*p != '\0') {
868 addr = strtoull(p, (char **)&p, 16);
869 #if defined(TARGET_I386)
870 env->eip = addr;
871 #elif defined (TARGET_PPC)
872 env->nip = addr;
873 #elif defined (TARGET_SPARC)
874 env->pc = addr;
875 env->npc = addr + 4;
876 #elif defined (TARGET_ARM)
877 env->regs[15] = addr;
878 #elif defined (TARGET_SH4)
879 env->pc = addr;
880 #elif defined (TARGET_MIPS)
881 env->PC[env->current_tc] = addr;
882 #elif defined (TARGET_CRIS)
883 env->pc = addr;
884 #endif
885 }
886 cpu_single_step(env, 1);
887 #ifdef CONFIG_USER_ONLY
888 s->running_state = 1;
889 #else
890 vm_start();
891 #endif
892 return RS_IDLE;
893 case 'F':
894 {
895 target_ulong ret;
896 target_ulong err;
897
898 ret = strtoull(p, (char **)&p, 16);
899 if (*p == ',') {
900 p++;
901 err = strtoull(p, (char **)&p, 16);
902 } else {
903 err = 0;
904 }
905 if (*p == ',')
906 p++;
907 type = *p;
908 if (gdb_current_syscall_cb)
909 gdb_current_syscall_cb(s->env, ret, err);
910 if (type == 'C') {
911 put_packet(s, "T02");
912 } else {
913 #ifdef CONFIG_USER_ONLY
914 s->running_state = 1;
915 #else
916 vm_start();
917 #endif
918 }
919 }
920 break;
921 case 'g':
922 reg_size = cpu_gdb_read_registers(env, mem_buf);
923 memtohex(buf, mem_buf, reg_size);
924 put_packet(s, buf);
925 break;
926 case 'G':
927 registers = (void *)mem_buf;
928 len = strlen(p) / 2;
929 hextomem((uint8_t *)registers, p, len);
930 cpu_gdb_write_registers(env, mem_buf, len);
931 put_packet(s, "OK");
932 break;
933 case 'm':
934 addr = strtoull(p, (char **)&p, 16);
935 if (*p == ',')
936 p++;
937 len = strtoull(p, NULL, 16);
938 if (cpu_memory_rw_debug(env, addr, mem_buf, len, 0) != 0) {
939 put_packet (s, "E14");
940 } else {
941 memtohex(buf, mem_buf, len);
942 put_packet(s, buf);
943 }
944 break;
945 case 'M':
946 addr = strtoull(p, (char **)&p, 16);
947 if (*p == ',')
948 p++;
949 len = strtoull(p, (char **)&p, 16);
950 if (*p == ':')
951 p++;
952 hextomem(mem_buf, p, len);
953 if (cpu_memory_rw_debug(env, addr, mem_buf, len, 1) != 0)
954 put_packet(s, "E14");
955 else
956 put_packet(s, "OK");
957 break;
958 case 'Z':
959 type = strtoul(p, (char **)&p, 16);
960 if (*p == ',')
961 p++;
962 addr = strtoull(p, (char **)&p, 16);
963 if (*p == ',')
964 p++;
965 len = strtoull(p, (char **)&p, 16);
966 if (type == 0 || type == 1) {
967 if (cpu_breakpoint_insert(env, addr) < 0)
968 goto breakpoint_error;
969 put_packet(s, "OK");
970 #ifndef CONFIG_USER_ONLY
971 } else if (type == 2) {
972 if (cpu_watchpoint_insert(env, addr) < 0)
973 goto breakpoint_error;
974 put_packet(s, "OK");
975 #endif
976 } else {
977 breakpoint_error:
978 put_packet(s, "E22");
979 }
980 break;
981 case 'z':
982 type = strtoul(p, (char **)&p, 16);
983 if (*p == ',')
984 p++;
985 addr = strtoull(p, (char **)&p, 16);
986 if (*p == ',')
987 p++;
988 len = strtoull(p, (char **)&p, 16);
989 if (type == 0 || type == 1) {
990 cpu_breakpoint_remove(env, addr);
991 put_packet(s, "OK");
992 #ifndef CONFIG_USER_ONLY
993 } else if (type == 2) {
994 cpu_watchpoint_remove(env, addr);
995 put_packet(s, "OK");
996 #endif
997 } else {
998 goto breakpoint_error;
999 }
1000 break;
1001 #ifdef CONFIG_LINUX_USER
1002 case 'q':
1003 if (strncmp(p, "Offsets", 7) == 0) {
1004 TaskState *ts = env->opaque;
1005
1006 sprintf(buf,
1007 "Text=" TARGET_FMT_lx ";Data=" TARGET_FMT_lx ";Bss=" TARGET_FMT_lx,
1008 ts->info->code_offset,
1009 ts->info->data_offset,
1010 ts->info->data_offset);
1011 put_packet(s, buf);
1012 break;
1013 }
1014 /* Fall through. */
1015 #endif
1016 default:
1017 // unknown_command:
1018 /* put empty packet */
1019 buf[0] = '\0';
1020 put_packet(s, buf);
1021 break;
1022 }
1023 return RS_IDLE;
1024 }
1025
1026 extern void tb_flush(CPUState *env);
1027
1028 #ifndef CONFIG_USER_ONLY
1029 static void gdb_vm_stopped(void *opaque, int reason)
1030 {
1031 GDBState *s = opaque;
1032 char buf[256];
1033 int ret;
1034
1035 if (s->state == RS_SYSCALL)
1036 return;
1037
1038 /* disable single step if it was enable */
1039 cpu_single_step(s->env, 0);
1040
1041 if (reason == EXCP_DEBUG) {
1042 if (s->env->watchpoint_hit) {
1043 snprintf(buf, sizeof(buf), "T%02xwatch:" TARGET_FMT_lx ";",
1044 SIGTRAP,
1045 s->env->watchpoint[s->env->watchpoint_hit - 1].vaddr);
1046 put_packet(s, buf);
1047 s->env->watchpoint_hit = 0;
1048 return;
1049 }
1050 tb_flush(s->env);
1051 ret = SIGTRAP;
1052 } else if (reason == EXCP_INTERRUPT) {
1053 ret = SIGINT;
1054 } else {
1055 ret = 0;
1056 }
1057 snprintf(buf, sizeof(buf), "S%02x", ret);
1058 put_packet(s, buf);
1059 }
1060 #endif
1061
1062 /* Send a gdb syscall request.
1063 This accepts limited printf-style format specifiers, specifically:
1064 %x - target_ulong argument printed in hex.
1065 %lx - 64-bit argument printed in hex.
1066 %s - string pointer (target_ulong) and length (int) pair. */
1067 void gdb_do_syscall(gdb_syscall_complete_cb cb, char *fmt, ...)
1068 {
1069 va_list va;
1070 char buf[256];
1071 char *p;
1072 target_ulong addr;
1073 uint64_t i64;
1074 GDBState *s;
1075
1076 s = gdb_syscall_state;
1077 if (!s)
1078 return;
1079 gdb_current_syscall_cb = cb;
1080 s->state = RS_SYSCALL;
1081 #ifndef CONFIG_USER_ONLY
1082 vm_stop(EXCP_DEBUG);
1083 #endif
1084 s->state = RS_IDLE;
1085 va_start(va, fmt);
1086 p = buf;
1087 *(p++) = 'F';
1088 while (*fmt) {
1089 if (*fmt == '%') {
1090 fmt++;
1091 switch (*fmt++) {
1092 case 'x':
1093 addr = va_arg(va, target_ulong);
1094 p += sprintf(p, TARGET_FMT_lx, addr);
1095 break;
1096 case 'l':
1097 if (*(fmt++) != 'x')
1098 goto bad_format;
1099 i64 = va_arg(va, uint64_t);
1100 p += sprintf(p, "%" PRIx64, i64);
1101 break;
1102 case 's':
1103 addr = va_arg(va, target_ulong);
1104 p += sprintf(p, TARGET_FMT_lx "/%x", addr, va_arg(va, int));
1105 break;
1106 default:
1107 bad_format:
1108 fprintf(stderr, "gdbstub: Bad syscall format string '%s'\n",
1109 fmt - 1);
1110 break;
1111 }
1112 } else {
1113 *(p++) = *(fmt++);
1114 }
1115 }
1116 *p = 0;
1117 va_end(va);
1118 put_packet(s, buf);
1119 #ifdef CONFIG_USER_ONLY
1120 gdb_handlesig(s->env, 0);
1121 #else
1122 cpu_interrupt(s->env, CPU_INTERRUPT_EXIT);
1123 #endif
1124 }
1125
1126 static void gdb_read_byte(GDBState *s, int ch)
1127 {
1128 CPUState *env = s->env;
1129 int i, csum;
1130 char reply[1];
1131
1132 #ifndef CONFIG_USER_ONLY
1133 if (s->last_packet_len) {
1134 /* Waiting for a response to the last packet. If we see the start
1135 of a new command then abandon the previous response. */
1136 if (ch == '-') {
1137 #ifdef DEBUG_GDB
1138 printf("Got NACK, retransmitting\n");
1139 #endif
1140 put_buffer(s, s->last_packet, s->last_packet_len);
1141 }
1142 #ifdef DEBUG_GDB
1143 else if (ch == '+')
1144 printf("Got ACK\n");
1145 else
1146 printf("Got '%c' when expecting ACK/NACK\n", ch);
1147 #endif
1148 if (ch == '+' || ch == '$')
1149 s->last_packet_len = 0;
1150 if (ch != '$')
1151 return;
1152 }
1153 if (vm_running) {
1154 /* when the CPU is running, we cannot do anything except stop
1155 it when receiving a char */
1156 vm_stop(EXCP_INTERRUPT);
1157 } else
1158 #endif
1159 {
1160 switch(s->state) {
1161 case RS_IDLE:
1162 if (ch == '$') {
1163 s->line_buf_index = 0;
1164 s->state = RS_GETLINE;
1165 }
1166 break;
1167 case RS_GETLINE:
1168 if (ch == '#') {
1169 s->state = RS_CHKSUM1;
1170 } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
1171 s->state = RS_IDLE;
1172 } else {
1173 s->line_buf[s->line_buf_index++] = ch;
1174 }
1175 break;
1176 case RS_CHKSUM1:
1177 s->line_buf[s->line_buf_index] = '\0';
1178 s->line_csum = fromhex(ch) << 4;
1179 s->state = RS_CHKSUM2;
1180 break;
1181 case RS_CHKSUM2:
1182 s->line_csum |= fromhex(ch);
1183 csum = 0;
1184 for(i = 0; i < s->line_buf_index; i++) {
1185 csum += s->line_buf[i];
1186 }
1187 if (s->line_csum != (csum & 0xff)) {
1188 reply[0] = '-';
1189 put_buffer(s, reply, 1);
1190 s->state = RS_IDLE;
1191 } else {
1192 reply[0] = '+';
1193 put_buffer(s, reply, 1);
1194 s->state = gdb_handle_packet(s, env, s->line_buf);
1195 }
1196 break;
1197 default:
1198 abort();
1199 }
1200 }
1201 }
1202
1203 #ifdef CONFIG_USER_ONLY
1204 int
1205 gdb_handlesig (CPUState *env, int sig)
1206 {
1207 GDBState *s;
1208 char buf[256];
1209 int n;
1210
1211 if (gdbserver_fd < 0)
1212 return sig;
1213
1214 s = &gdbserver_state;
1215
1216 /* disable single step if it was enabled */
1217 cpu_single_step(env, 0);
1218 tb_flush(env);
1219
1220 if (sig != 0)
1221 {
1222 snprintf(buf, sizeof(buf), "S%02x", sig);
1223 put_packet(s, buf);
1224 }
1225
1226 sig = 0;
1227 s->state = RS_IDLE;
1228 s->running_state = 0;
1229 while (s->running_state == 0) {
1230 n = read (s->fd, buf, 256);
1231 if (n > 0)
1232 {
1233 int i;
1234
1235 for (i = 0; i < n; i++)
1236 gdb_read_byte (s, buf[i]);
1237 }
1238 else if (n == 0 || errno != EAGAIN)
1239 {
1240 /* XXX: Connection closed. Should probably wait for annother
1241 connection before continuing. */
1242 return sig;
1243 }
1244 }
1245 return sig;
1246 }
1247
1248 /* Tell the remote gdb that the process has exited. */
1249 void gdb_exit(CPUState *env, int code)
1250 {
1251 GDBState *s;
1252 char buf[4];
1253
1254 if (gdbserver_fd < 0)
1255 return;
1256
1257 s = &gdbserver_state;
1258
1259 snprintf(buf, sizeof(buf), "W%02x", code);
1260 put_packet(s, buf);
1261 }
1262
1263
1264 static void gdb_accept(void *opaque)
1265 {
1266 GDBState *s;
1267 struct sockaddr_in sockaddr;
1268 socklen_t len;
1269 int val, fd;
1270
1271 for(;;) {
1272 len = sizeof(sockaddr);
1273 fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
1274 if (fd < 0 && errno != EINTR) {
1275 perror("accept");
1276 return;
1277 } else if (fd >= 0) {
1278 break;
1279 }
1280 }
1281
1282 /* set short latency */
1283 val = 1;
1284 setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
1285
1286 s = &gdbserver_state;
1287 memset (s, 0, sizeof (GDBState));
1288 s->env = first_cpu; /* XXX: allow to change CPU */
1289 s->fd = fd;
1290
1291 gdb_syscall_state = s;
1292
1293 fcntl(fd, F_SETFL, O_NONBLOCK);
1294 }
1295
1296 static int gdbserver_open(int port)
1297 {
1298 struct sockaddr_in sockaddr;
1299 int fd, val, ret;
1300
1301 fd = socket(PF_INET, SOCK_STREAM, 0);
1302 if (fd < 0) {
1303 perror("socket");
1304 return -1;
1305 }
1306
1307 /* allow fast reuse */
1308 val = 1;
1309 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *)&val, sizeof(val));
1310
1311 sockaddr.sin_family = AF_INET;
1312 sockaddr.sin_port = htons(port);
1313 sockaddr.sin_addr.s_addr = 0;
1314 ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
1315 if (ret < 0) {
1316 perror("bind");
1317 return -1;
1318 }
1319 ret = listen(fd, 0);
1320 if (ret < 0) {
1321 perror("listen");
1322 return -1;
1323 }
1324 return fd;
1325 }
1326
1327 int gdbserver_start(int port)
1328 {
1329 gdbserver_fd = gdbserver_open(port);
1330 if (gdbserver_fd < 0)
1331 return -1;
1332 /* accept connections */
1333 gdb_accept (NULL);
1334 return 0;
1335 }
1336 #else
1337 static int gdb_chr_can_receive(void *opaque)
1338 {
1339 return 1;
1340 }
1341
1342 static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size)
1343 {
1344 GDBState *s = opaque;
1345 int i;
1346
1347 for (i = 0; i < size; i++) {
1348 gdb_read_byte(s, buf[i]);
1349 }
1350 }
1351
1352 static void gdb_chr_event(void *opaque, int event)
1353 {
1354 switch (event) {
1355 case CHR_EVENT_RESET:
1356 vm_stop(EXCP_INTERRUPT);
1357 gdb_syscall_state = opaque;
1358 break;
1359 default:
1360 break;
1361 }
1362 }
1363
1364 int gdbserver_start(const char *port)
1365 {
1366 GDBState *s;
1367 char gdbstub_port_name[128];
1368 int port_num;
1369 char *p;
1370 CharDriverState *chr;
1371
1372 if (!port || !*port)
1373 return -1;
1374
1375 port_num = strtol(port, &p, 10);
1376 if (*p == 0) {
1377 /* A numeric value is interpreted as a port number. */
1378 snprintf(gdbstub_port_name, sizeof(gdbstub_port_name),
1379 "tcp::%d,nowait,nodelay,server", port_num);
1380 port = gdbstub_port_name;
1381 }
1382
1383 chr = qemu_chr_open(port);
1384 if (!chr)
1385 return -1;
1386
1387 s = qemu_mallocz(sizeof(GDBState));
1388 if (!s) {
1389 return -1;
1390 }
1391 s->env = first_cpu; /* XXX: allow to change CPU */
1392 s->chr = chr;
1393 qemu_chr_add_handlers(chr, gdb_chr_can_receive, gdb_chr_receive,
1394 gdb_chr_event, s);
1395 qemu_add_vm_stop_handler(gdb_vm_stopped, s);
1396 return 0;
1397 }
1398 #endif