]> git.proxmox.com Git - qemu.git/blob - hw/apb_pci.c
Unify IRQ handling.
[qemu.git] / hw / apb_pci.c
1 /*
2 * QEMU Ultrasparc APB PCI host
3 *
4 * Copyright (c) 2006 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 /* XXX This file and most of its contests are somewhat misnamed. The
26 Ultrasparc PCI host is called the PCI Bus Module (PBM). The APB is
27 the secondary PCI bridge. */
28
29 #include "vl.h"
30 typedef target_phys_addr_t pci_addr_t;
31 #include "pci_host.h"
32
33 typedef PCIHostState APBState;
34
35 static void pci_apb_config_writel (void *opaque, target_phys_addr_t addr,
36 uint32_t val)
37 {
38 APBState *s = opaque;
39 int i;
40
41 for (i = 11; i < 32; i++) {
42 if ((val & (1 << i)) != 0)
43 break;
44 }
45 s->config_reg = (1 << 16) | (val & 0x7FC) | (i << 11);
46 }
47
48 static uint32_t pci_apb_config_readl (void *opaque,
49 target_phys_addr_t addr)
50 {
51 APBState *s = opaque;
52 uint32_t val;
53 int devfn;
54
55 devfn = (s->config_reg >> 8) & 0xFF;
56 val = (1 << (devfn >> 3)) | ((devfn & 0x07) << 8) | (s->config_reg & 0xFC);
57 return val;
58 }
59
60 static CPUWriteMemoryFunc *pci_apb_config_write[] = {
61 &pci_apb_config_writel,
62 &pci_apb_config_writel,
63 &pci_apb_config_writel,
64 };
65
66 static CPUReadMemoryFunc *pci_apb_config_read[] = {
67 &pci_apb_config_readl,
68 &pci_apb_config_readl,
69 &pci_apb_config_readl,
70 };
71
72 static void apb_config_writel (void *opaque, target_phys_addr_t addr,
73 uint32_t val)
74 {
75 //PCIBus *s = opaque;
76
77 switch (addr & 0x3f) {
78 case 0x00: // Control/Status
79 case 0x10: // AFSR
80 case 0x18: // AFAR
81 case 0x20: // Diagnostic
82 case 0x28: // Target address space
83 // XXX
84 default:
85 break;
86 }
87 }
88
89 static uint32_t apb_config_readl (void *opaque,
90 target_phys_addr_t addr)
91 {
92 //PCIBus *s = opaque;
93 uint32_t val;
94
95 switch (addr & 0x3f) {
96 case 0x00: // Control/Status
97 case 0x10: // AFSR
98 case 0x18: // AFAR
99 case 0x20: // Diagnostic
100 case 0x28: // Target address space
101 // XXX
102 default:
103 val = 0;
104 break;
105 }
106 return val;
107 }
108
109 static CPUWriteMemoryFunc *apb_config_write[] = {
110 &apb_config_writel,
111 &apb_config_writel,
112 &apb_config_writel,
113 };
114
115 static CPUReadMemoryFunc *apb_config_read[] = {
116 &apb_config_readl,
117 &apb_config_readl,
118 &apb_config_readl,
119 };
120
121 static CPUWriteMemoryFunc *pci_apb_write[] = {
122 &pci_host_data_writeb,
123 &pci_host_data_writew,
124 &pci_host_data_writel,
125 };
126
127 static CPUReadMemoryFunc *pci_apb_read[] = {
128 &pci_host_data_readb,
129 &pci_host_data_readw,
130 &pci_host_data_readl,
131 };
132
133 static void pci_apb_iowriteb (void *opaque, target_phys_addr_t addr,
134 uint32_t val)
135 {
136 cpu_outb(NULL, addr & 0xffff, val);
137 }
138
139 static void pci_apb_iowritew (void *opaque, target_phys_addr_t addr,
140 uint32_t val)
141 {
142 cpu_outw(NULL, addr & 0xffff, val);
143 }
144
145 static void pci_apb_iowritel (void *opaque, target_phys_addr_t addr,
146 uint32_t val)
147 {
148 cpu_outl(NULL, addr & 0xffff, val);
149 }
150
151 static uint32_t pci_apb_ioreadb (void *opaque, target_phys_addr_t addr)
152 {
153 uint32_t val;
154
155 val = cpu_inb(NULL, addr & 0xffff);
156 return val;
157 }
158
159 static uint32_t pci_apb_ioreadw (void *opaque, target_phys_addr_t addr)
160 {
161 uint32_t val;
162
163 val = cpu_inw(NULL, addr & 0xffff);
164 return val;
165 }
166
167 static uint32_t pci_apb_ioreadl (void *opaque, target_phys_addr_t addr)
168 {
169 uint32_t val;
170
171 val = cpu_inl(NULL, addr & 0xffff);
172 return val;
173 }
174
175 static CPUWriteMemoryFunc *pci_apb_iowrite[] = {
176 &pci_apb_iowriteb,
177 &pci_apb_iowritew,
178 &pci_apb_iowritel,
179 };
180
181 static CPUReadMemoryFunc *pci_apb_ioread[] = {
182 &pci_apb_ioreadb,
183 &pci_apb_ioreadw,
184 &pci_apb_ioreadl,
185 };
186
187 /* The APB host has an IRQ line for each IRQ line of each slot. */
188 static int pci_apb_map_irq(PCIDevice *pci_dev, int irq_num)
189 {
190 return ((pci_dev->devfn & 0x18) >> 1) + irq_num;
191 }
192
193 static int pci_pbm_map_irq(PCIDevice *pci_dev, int irq_num)
194 {
195 int bus_offset;
196 if (pci_dev->devfn & 1)
197 bus_offset = 16;
198 else
199 bus_offset = 0;
200 return bus_offset + irq_num;
201 }
202
203 static void pci_apb_set_irq(qemu_irq *pic, int irq_num, int level)
204 {
205 /* PCI IRQ map onto the first 32 INO. */
206 qemu_set_irq(pic[irq_num], level);
207 }
208
209 PCIBus *pci_apb_init(target_ulong special_base, target_ulong mem_base,
210 qemu_irq *pic)
211 {
212 APBState *s;
213 PCIDevice *d;
214 int pci_mem_config, pci_mem_data, apb_config, pci_ioport;
215 PCIDevice *apb;
216 PCIBus *secondary;
217
218 s = qemu_mallocz(sizeof(APBState));
219 /* Ultrasparc PBM main bus */
220 s->bus = pci_register_bus(pci_apb_set_irq, pci_pbm_map_irq, pic, 0, 32);
221
222 pci_mem_config = cpu_register_io_memory(0, pci_apb_config_read,
223 pci_apb_config_write, s);
224 apb_config = cpu_register_io_memory(0, apb_config_read,
225 apb_config_write, s);
226 pci_mem_data = cpu_register_io_memory(0, pci_apb_read,
227 pci_apb_write, s);
228 pci_ioport = cpu_register_io_memory(0, pci_apb_ioread,
229 pci_apb_iowrite, s);
230
231 cpu_register_physical_memory(special_base + 0x2000ULL, 0x40, apb_config);
232 cpu_register_physical_memory(special_base + 0x1000000ULL, 0x10, pci_mem_config);
233 cpu_register_physical_memory(special_base + 0x2000000ULL, 0x10000, pci_ioport);
234 cpu_register_physical_memory(mem_base, 0x10000000, pci_mem_data); // XXX size should be 4G-prom
235
236 d = pci_register_device(s->bus, "Advanced PCI Bus", sizeof(PCIDevice),
237 0, NULL, NULL);
238 d->config[0x00] = 0x8e; // vendor_id : Sun
239 d->config[0x01] = 0x10;
240 d->config[0x02] = 0x00; // device_id
241 d->config[0x03] = 0xa0;
242 d->config[0x04] = 0x06; // command = bus master, pci mem
243 d->config[0x05] = 0x00;
244 d->config[0x06] = 0xa0; // status = fast back-to-back, 66MHz, no error
245 d->config[0x07] = 0x03; // status = medium devsel
246 d->config[0x08] = 0x00; // revision
247 d->config[0x09] = 0x00; // programming i/f
248 d->config[0x0A] = 0x00; // class_sub = pci host
249 d->config[0x0B] = 0x06; // class_base = PCI_bridge
250 d->config[0x0D] = 0x10; // latency_timer
251 d->config[0x0E] = 0x00; // header_type
252
253 /* APB secondary busses */
254 secondary = pci_bridge_init(s->bus, 8, 0x108e5000, pci_apb_map_irq, "Advanced PCI Bus secondary bridge 1");
255 pci_bridge_init(s->bus, 9, 0x108e5000, pci_apb_map_irq, "Advanced PCI Bus secondary bridge 2");
256 return secondary;
257 }
258
259