]> git.proxmox.com Git - qemu.git/blob - hw/arm/omap1.c
Merge remote-tracking branch 'bonzini/hw-dirs' into staging
[qemu.git] / hw / arm / omap1.c
1 /*
2 * TI OMAP processors emulation.
3 *
4 * Copyright (C) 2006-2008 Andrzej Zaborowski <balrog@zabor.org>
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation; either version 2 or
9 * (at your option) version 3 of the License.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License along
17 * with this program; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "hw/hw.h"
20 #include "hw/arm-misc.h"
21 #include "hw/omap.h"
22 #include "sysemu/sysemu.h"
23 #include "hw/soc_dma.h"
24 #include "sysemu/blockdev.h"
25 #include "qemu/range.h"
26 #include "hw/sysbus.h"
27
28 /* Should signal the TCMI/GPMC */
29 uint32_t omap_badwidth_read8(void *opaque, hwaddr addr)
30 {
31 uint8_t ret;
32
33 OMAP_8B_REG(addr);
34 cpu_physical_memory_read(addr, (void *) &ret, 1);
35 return ret;
36 }
37
38 void omap_badwidth_write8(void *opaque, hwaddr addr,
39 uint32_t value)
40 {
41 uint8_t val8 = value;
42
43 OMAP_8B_REG(addr);
44 cpu_physical_memory_write(addr, (void *) &val8, 1);
45 }
46
47 uint32_t omap_badwidth_read16(void *opaque, hwaddr addr)
48 {
49 uint16_t ret;
50
51 OMAP_16B_REG(addr);
52 cpu_physical_memory_read(addr, (void *) &ret, 2);
53 return ret;
54 }
55
56 void omap_badwidth_write16(void *opaque, hwaddr addr,
57 uint32_t value)
58 {
59 uint16_t val16 = value;
60
61 OMAP_16B_REG(addr);
62 cpu_physical_memory_write(addr, (void *) &val16, 2);
63 }
64
65 uint32_t omap_badwidth_read32(void *opaque, hwaddr addr)
66 {
67 uint32_t ret;
68
69 OMAP_32B_REG(addr);
70 cpu_physical_memory_read(addr, (void *) &ret, 4);
71 return ret;
72 }
73
74 void omap_badwidth_write32(void *opaque, hwaddr addr,
75 uint32_t value)
76 {
77 OMAP_32B_REG(addr);
78 cpu_physical_memory_write(addr, (void *) &value, 4);
79 }
80
81 /* MPU OS timers */
82 struct omap_mpu_timer_s {
83 MemoryRegion iomem;
84 qemu_irq irq;
85 omap_clk clk;
86 uint32_t val;
87 int64_t time;
88 QEMUTimer *timer;
89 QEMUBH *tick;
90 int64_t rate;
91 int it_ena;
92
93 int enable;
94 int ptv;
95 int ar;
96 int st;
97 uint32_t reset_val;
98 };
99
100 static inline uint32_t omap_timer_read(struct omap_mpu_timer_s *timer)
101 {
102 uint64_t distance = qemu_get_clock_ns(vm_clock) - timer->time;
103
104 if (timer->st && timer->enable && timer->rate)
105 return timer->val - muldiv64(distance >> (timer->ptv + 1),
106 timer->rate, get_ticks_per_sec());
107 else
108 return timer->val;
109 }
110
111 static inline void omap_timer_sync(struct omap_mpu_timer_s *timer)
112 {
113 timer->val = omap_timer_read(timer);
114 timer->time = qemu_get_clock_ns(vm_clock);
115 }
116
117 static inline void omap_timer_update(struct omap_mpu_timer_s *timer)
118 {
119 int64_t expires;
120
121 if (timer->enable && timer->st && timer->rate) {
122 timer->val = timer->reset_val; /* Should skip this on clk enable */
123 expires = muldiv64((uint64_t) timer->val << (timer->ptv + 1),
124 get_ticks_per_sec(), timer->rate);
125
126 /* If timer expiry would be sooner than in about 1 ms and
127 * auto-reload isn't set, then fire immediately. This is a hack
128 * to make systems like PalmOS run in acceptable time. PalmOS
129 * sets the interval to a very low value and polls the status bit
130 * in a busy loop when it wants to sleep just a couple of CPU
131 * ticks. */
132 if (expires > (get_ticks_per_sec() >> 10) || timer->ar)
133 qemu_mod_timer(timer->timer, timer->time + expires);
134 else
135 qemu_bh_schedule(timer->tick);
136 } else
137 qemu_del_timer(timer->timer);
138 }
139
140 static void omap_timer_fire(void *opaque)
141 {
142 struct omap_mpu_timer_s *timer = opaque;
143
144 if (!timer->ar) {
145 timer->val = 0;
146 timer->st = 0;
147 }
148
149 if (timer->it_ena)
150 /* Edge-triggered irq */
151 qemu_irq_pulse(timer->irq);
152 }
153
154 static void omap_timer_tick(void *opaque)
155 {
156 struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
157
158 omap_timer_sync(timer);
159 omap_timer_fire(timer);
160 omap_timer_update(timer);
161 }
162
163 static void omap_timer_clk_update(void *opaque, int line, int on)
164 {
165 struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
166
167 omap_timer_sync(timer);
168 timer->rate = on ? omap_clk_getrate(timer->clk) : 0;
169 omap_timer_update(timer);
170 }
171
172 static void omap_timer_clk_setup(struct omap_mpu_timer_s *timer)
173 {
174 omap_clk_adduser(timer->clk,
175 qemu_allocate_irqs(omap_timer_clk_update, timer, 1)[0]);
176 timer->rate = omap_clk_getrate(timer->clk);
177 }
178
179 static uint64_t omap_mpu_timer_read(void *opaque, hwaddr addr,
180 unsigned size)
181 {
182 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
183
184 if (size != 4) {
185 return omap_badwidth_read32(opaque, addr);
186 }
187
188 switch (addr) {
189 case 0x00: /* CNTL_TIMER */
190 return (s->enable << 5) | (s->ptv << 2) | (s->ar << 1) | s->st;
191
192 case 0x04: /* LOAD_TIM */
193 break;
194
195 case 0x08: /* READ_TIM */
196 return omap_timer_read(s);
197 }
198
199 OMAP_BAD_REG(addr);
200 return 0;
201 }
202
203 static void omap_mpu_timer_write(void *opaque, hwaddr addr,
204 uint64_t value, unsigned size)
205 {
206 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
207
208 if (size != 4) {
209 return omap_badwidth_write32(opaque, addr, value);
210 }
211
212 switch (addr) {
213 case 0x00: /* CNTL_TIMER */
214 omap_timer_sync(s);
215 s->enable = (value >> 5) & 1;
216 s->ptv = (value >> 2) & 7;
217 s->ar = (value >> 1) & 1;
218 s->st = value & 1;
219 omap_timer_update(s);
220 return;
221
222 case 0x04: /* LOAD_TIM */
223 s->reset_val = value;
224 return;
225
226 case 0x08: /* READ_TIM */
227 OMAP_RO_REG(addr);
228 break;
229
230 default:
231 OMAP_BAD_REG(addr);
232 }
233 }
234
235 static const MemoryRegionOps omap_mpu_timer_ops = {
236 .read = omap_mpu_timer_read,
237 .write = omap_mpu_timer_write,
238 .endianness = DEVICE_LITTLE_ENDIAN,
239 };
240
241 static void omap_mpu_timer_reset(struct omap_mpu_timer_s *s)
242 {
243 qemu_del_timer(s->timer);
244 s->enable = 0;
245 s->reset_val = 31337;
246 s->val = 0;
247 s->ptv = 0;
248 s->ar = 0;
249 s->st = 0;
250 s->it_ena = 1;
251 }
252
253 static struct omap_mpu_timer_s *omap_mpu_timer_init(MemoryRegion *system_memory,
254 hwaddr base,
255 qemu_irq irq, omap_clk clk)
256 {
257 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *)
258 g_malloc0(sizeof(struct omap_mpu_timer_s));
259
260 s->irq = irq;
261 s->clk = clk;
262 s->timer = qemu_new_timer_ns(vm_clock, omap_timer_tick, s);
263 s->tick = qemu_bh_new(omap_timer_fire, s);
264 omap_mpu_timer_reset(s);
265 omap_timer_clk_setup(s);
266
267 memory_region_init_io(&s->iomem, &omap_mpu_timer_ops, s,
268 "omap-mpu-timer", 0x100);
269
270 memory_region_add_subregion(system_memory, base, &s->iomem);
271
272 return s;
273 }
274
275 /* Watchdog timer */
276 struct omap_watchdog_timer_s {
277 struct omap_mpu_timer_s timer;
278 MemoryRegion iomem;
279 uint8_t last_wr;
280 int mode;
281 int free;
282 int reset;
283 };
284
285 static uint64_t omap_wd_timer_read(void *opaque, hwaddr addr,
286 unsigned size)
287 {
288 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
289
290 if (size != 2) {
291 return omap_badwidth_read16(opaque, addr);
292 }
293
294 switch (addr) {
295 case 0x00: /* CNTL_TIMER */
296 return (s->timer.ptv << 9) | (s->timer.ar << 8) |
297 (s->timer.st << 7) | (s->free << 1);
298
299 case 0x04: /* READ_TIMER */
300 return omap_timer_read(&s->timer);
301
302 case 0x08: /* TIMER_MODE */
303 return s->mode << 15;
304 }
305
306 OMAP_BAD_REG(addr);
307 return 0;
308 }
309
310 static void omap_wd_timer_write(void *opaque, hwaddr addr,
311 uint64_t value, unsigned size)
312 {
313 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
314
315 if (size != 2) {
316 return omap_badwidth_write16(opaque, addr, value);
317 }
318
319 switch (addr) {
320 case 0x00: /* CNTL_TIMER */
321 omap_timer_sync(&s->timer);
322 s->timer.ptv = (value >> 9) & 7;
323 s->timer.ar = (value >> 8) & 1;
324 s->timer.st = (value >> 7) & 1;
325 s->free = (value >> 1) & 1;
326 omap_timer_update(&s->timer);
327 break;
328
329 case 0x04: /* LOAD_TIMER */
330 s->timer.reset_val = value & 0xffff;
331 break;
332
333 case 0x08: /* TIMER_MODE */
334 if (!s->mode && ((value >> 15) & 1))
335 omap_clk_get(s->timer.clk);
336 s->mode |= (value >> 15) & 1;
337 if (s->last_wr == 0xf5) {
338 if ((value & 0xff) == 0xa0) {
339 if (s->mode) {
340 s->mode = 0;
341 omap_clk_put(s->timer.clk);
342 }
343 } else {
344 /* XXX: on T|E hardware somehow this has no effect,
345 * on Zire 71 it works as specified. */
346 s->reset = 1;
347 qemu_system_reset_request();
348 }
349 }
350 s->last_wr = value & 0xff;
351 break;
352
353 default:
354 OMAP_BAD_REG(addr);
355 }
356 }
357
358 static const MemoryRegionOps omap_wd_timer_ops = {
359 .read = omap_wd_timer_read,
360 .write = omap_wd_timer_write,
361 .endianness = DEVICE_NATIVE_ENDIAN,
362 };
363
364 static void omap_wd_timer_reset(struct omap_watchdog_timer_s *s)
365 {
366 qemu_del_timer(s->timer.timer);
367 if (!s->mode)
368 omap_clk_get(s->timer.clk);
369 s->mode = 1;
370 s->free = 1;
371 s->reset = 0;
372 s->timer.enable = 1;
373 s->timer.it_ena = 1;
374 s->timer.reset_val = 0xffff;
375 s->timer.val = 0;
376 s->timer.st = 0;
377 s->timer.ptv = 0;
378 s->timer.ar = 0;
379 omap_timer_update(&s->timer);
380 }
381
382 static struct omap_watchdog_timer_s *omap_wd_timer_init(MemoryRegion *memory,
383 hwaddr base,
384 qemu_irq irq, omap_clk clk)
385 {
386 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *)
387 g_malloc0(sizeof(struct omap_watchdog_timer_s));
388
389 s->timer.irq = irq;
390 s->timer.clk = clk;
391 s->timer.timer = qemu_new_timer_ns(vm_clock, omap_timer_tick, &s->timer);
392 omap_wd_timer_reset(s);
393 omap_timer_clk_setup(&s->timer);
394
395 memory_region_init_io(&s->iomem, &omap_wd_timer_ops, s,
396 "omap-wd-timer", 0x100);
397 memory_region_add_subregion(memory, base, &s->iomem);
398
399 return s;
400 }
401
402 /* 32-kHz timer */
403 struct omap_32khz_timer_s {
404 struct omap_mpu_timer_s timer;
405 MemoryRegion iomem;
406 };
407
408 static uint64_t omap_os_timer_read(void *opaque, hwaddr addr,
409 unsigned size)
410 {
411 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
412 int offset = addr & OMAP_MPUI_REG_MASK;
413
414 if (size != 4) {
415 return omap_badwidth_read32(opaque, addr);
416 }
417
418 switch (offset) {
419 case 0x00: /* TVR */
420 return s->timer.reset_val;
421
422 case 0x04: /* TCR */
423 return omap_timer_read(&s->timer);
424
425 case 0x08: /* CR */
426 return (s->timer.ar << 3) | (s->timer.it_ena << 2) | s->timer.st;
427
428 default:
429 break;
430 }
431 OMAP_BAD_REG(addr);
432 return 0;
433 }
434
435 static void omap_os_timer_write(void *opaque, hwaddr addr,
436 uint64_t value, unsigned size)
437 {
438 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
439 int offset = addr & OMAP_MPUI_REG_MASK;
440
441 if (size != 4) {
442 return omap_badwidth_write32(opaque, addr, value);
443 }
444
445 switch (offset) {
446 case 0x00: /* TVR */
447 s->timer.reset_val = value & 0x00ffffff;
448 break;
449
450 case 0x04: /* TCR */
451 OMAP_RO_REG(addr);
452 break;
453
454 case 0x08: /* CR */
455 s->timer.ar = (value >> 3) & 1;
456 s->timer.it_ena = (value >> 2) & 1;
457 if (s->timer.st != (value & 1) || (value & 2)) {
458 omap_timer_sync(&s->timer);
459 s->timer.enable = value & 1;
460 s->timer.st = value & 1;
461 omap_timer_update(&s->timer);
462 }
463 break;
464
465 default:
466 OMAP_BAD_REG(addr);
467 }
468 }
469
470 static const MemoryRegionOps omap_os_timer_ops = {
471 .read = omap_os_timer_read,
472 .write = omap_os_timer_write,
473 .endianness = DEVICE_NATIVE_ENDIAN,
474 };
475
476 static void omap_os_timer_reset(struct omap_32khz_timer_s *s)
477 {
478 qemu_del_timer(s->timer.timer);
479 s->timer.enable = 0;
480 s->timer.it_ena = 0;
481 s->timer.reset_val = 0x00ffffff;
482 s->timer.val = 0;
483 s->timer.st = 0;
484 s->timer.ptv = 0;
485 s->timer.ar = 1;
486 }
487
488 static struct omap_32khz_timer_s *omap_os_timer_init(MemoryRegion *memory,
489 hwaddr base,
490 qemu_irq irq, omap_clk clk)
491 {
492 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *)
493 g_malloc0(sizeof(struct omap_32khz_timer_s));
494
495 s->timer.irq = irq;
496 s->timer.clk = clk;
497 s->timer.timer = qemu_new_timer_ns(vm_clock, omap_timer_tick, &s->timer);
498 omap_os_timer_reset(s);
499 omap_timer_clk_setup(&s->timer);
500
501 memory_region_init_io(&s->iomem, &omap_os_timer_ops, s,
502 "omap-os-timer", 0x800);
503 memory_region_add_subregion(memory, base, &s->iomem);
504
505 return s;
506 }
507
508 /* Ultra Low-Power Device Module */
509 static uint64_t omap_ulpd_pm_read(void *opaque, hwaddr addr,
510 unsigned size)
511 {
512 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
513 uint16_t ret;
514
515 if (size != 2) {
516 return omap_badwidth_read16(opaque, addr);
517 }
518
519 switch (addr) {
520 case 0x14: /* IT_STATUS */
521 ret = s->ulpd_pm_regs[addr >> 2];
522 s->ulpd_pm_regs[addr >> 2] = 0;
523 qemu_irq_lower(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
524 return ret;
525
526 case 0x18: /* Reserved */
527 case 0x1c: /* Reserved */
528 case 0x20: /* Reserved */
529 case 0x28: /* Reserved */
530 case 0x2c: /* Reserved */
531 OMAP_BAD_REG(addr);
532 /* fall through */
533 case 0x00: /* COUNTER_32_LSB */
534 case 0x04: /* COUNTER_32_MSB */
535 case 0x08: /* COUNTER_HIGH_FREQ_LSB */
536 case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
537 case 0x10: /* GAUGING_CTRL */
538 case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
539 case 0x30: /* CLOCK_CTRL */
540 case 0x34: /* SOFT_REQ */
541 case 0x38: /* COUNTER_32_FIQ */
542 case 0x3c: /* DPLL_CTRL */
543 case 0x40: /* STATUS_REQ */
544 /* XXX: check clk::usecount state for every clock */
545 case 0x48: /* LOCL_TIME */
546 case 0x4c: /* APLL_CTRL */
547 case 0x50: /* POWER_CTRL */
548 return s->ulpd_pm_regs[addr >> 2];
549 }
550
551 OMAP_BAD_REG(addr);
552 return 0;
553 }
554
555 static inline void omap_ulpd_clk_update(struct omap_mpu_state_s *s,
556 uint16_t diff, uint16_t value)
557 {
558 if (diff & (1 << 4)) /* USB_MCLK_EN */
559 omap_clk_onoff(omap_findclk(s, "usb_clk0"), (value >> 4) & 1);
560 if (diff & (1 << 5)) /* DIS_USB_PVCI_CLK */
561 omap_clk_onoff(omap_findclk(s, "usb_w2fc_ck"), (~value >> 5) & 1);
562 }
563
564 static inline void omap_ulpd_req_update(struct omap_mpu_state_s *s,
565 uint16_t diff, uint16_t value)
566 {
567 if (diff & (1 << 0)) /* SOFT_DPLL_REQ */
568 omap_clk_canidle(omap_findclk(s, "dpll4"), (~value >> 0) & 1);
569 if (diff & (1 << 1)) /* SOFT_COM_REQ */
570 omap_clk_canidle(omap_findclk(s, "com_mclk_out"), (~value >> 1) & 1);
571 if (diff & (1 << 2)) /* SOFT_SDW_REQ */
572 omap_clk_canidle(omap_findclk(s, "bt_mclk_out"), (~value >> 2) & 1);
573 if (diff & (1 << 3)) /* SOFT_USB_REQ */
574 omap_clk_canidle(omap_findclk(s, "usb_clk0"), (~value >> 3) & 1);
575 }
576
577 static void omap_ulpd_pm_write(void *opaque, hwaddr addr,
578 uint64_t value, unsigned size)
579 {
580 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
581 int64_t now, ticks;
582 int div, mult;
583 static const int bypass_div[4] = { 1, 2, 4, 4 };
584 uint16_t diff;
585
586 if (size != 2) {
587 return omap_badwidth_write16(opaque, addr, value);
588 }
589
590 switch (addr) {
591 case 0x00: /* COUNTER_32_LSB */
592 case 0x04: /* COUNTER_32_MSB */
593 case 0x08: /* COUNTER_HIGH_FREQ_LSB */
594 case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
595 case 0x14: /* IT_STATUS */
596 case 0x40: /* STATUS_REQ */
597 OMAP_RO_REG(addr);
598 break;
599
600 case 0x10: /* GAUGING_CTRL */
601 /* Bits 0 and 1 seem to be confused in the OMAP 310 TRM */
602 if ((s->ulpd_pm_regs[addr >> 2] ^ value) & 1) {
603 now = qemu_get_clock_ns(vm_clock);
604
605 if (value & 1)
606 s->ulpd_gauge_start = now;
607 else {
608 now -= s->ulpd_gauge_start;
609
610 /* 32-kHz ticks */
611 ticks = muldiv64(now, 32768, get_ticks_per_sec());
612 s->ulpd_pm_regs[0x00 >> 2] = (ticks >> 0) & 0xffff;
613 s->ulpd_pm_regs[0x04 >> 2] = (ticks >> 16) & 0xffff;
614 if (ticks >> 32) /* OVERFLOW_32K */
615 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 2;
616
617 /* High frequency ticks */
618 ticks = muldiv64(now, 12000000, get_ticks_per_sec());
619 s->ulpd_pm_regs[0x08 >> 2] = (ticks >> 0) & 0xffff;
620 s->ulpd_pm_regs[0x0c >> 2] = (ticks >> 16) & 0xffff;
621 if (ticks >> 32) /* OVERFLOW_HI_FREQ */
622 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 1;
623
624 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 0; /* IT_GAUGING */
625 qemu_irq_raise(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
626 }
627 }
628 s->ulpd_pm_regs[addr >> 2] = value;
629 break;
630
631 case 0x18: /* Reserved */
632 case 0x1c: /* Reserved */
633 case 0x20: /* Reserved */
634 case 0x28: /* Reserved */
635 case 0x2c: /* Reserved */
636 OMAP_BAD_REG(addr);
637 /* fall through */
638 case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
639 case 0x38: /* COUNTER_32_FIQ */
640 case 0x48: /* LOCL_TIME */
641 case 0x50: /* POWER_CTRL */
642 s->ulpd_pm_regs[addr >> 2] = value;
643 break;
644
645 case 0x30: /* CLOCK_CTRL */
646 diff = s->ulpd_pm_regs[addr >> 2] ^ value;
647 s->ulpd_pm_regs[addr >> 2] = value & 0x3f;
648 omap_ulpd_clk_update(s, diff, value);
649 break;
650
651 case 0x34: /* SOFT_REQ */
652 diff = s->ulpd_pm_regs[addr >> 2] ^ value;
653 s->ulpd_pm_regs[addr >> 2] = value & 0x1f;
654 omap_ulpd_req_update(s, diff, value);
655 break;
656
657 case 0x3c: /* DPLL_CTRL */
658 /* XXX: OMAP310 TRM claims bit 3 is PLL_ENABLE, and bit 4 is
659 * omitted altogether, probably a typo. */
660 /* This register has identical semantics with DPLL(1:3) control
661 * registers, see omap_dpll_write() */
662 diff = s->ulpd_pm_regs[addr >> 2] & value;
663 s->ulpd_pm_regs[addr >> 2] = value & 0x2fff;
664 if (diff & (0x3ff << 2)) {
665 if (value & (1 << 4)) { /* PLL_ENABLE */
666 div = ((value >> 5) & 3) + 1; /* PLL_DIV */
667 mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
668 } else {
669 div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
670 mult = 1;
671 }
672 omap_clk_setrate(omap_findclk(s, "dpll4"), div, mult);
673 }
674
675 /* Enter the desired mode. */
676 s->ulpd_pm_regs[addr >> 2] =
677 (s->ulpd_pm_regs[addr >> 2] & 0xfffe) |
678 ((s->ulpd_pm_regs[addr >> 2] >> 4) & 1);
679
680 /* Act as if the lock is restored. */
681 s->ulpd_pm_regs[addr >> 2] |= 2;
682 break;
683
684 case 0x4c: /* APLL_CTRL */
685 diff = s->ulpd_pm_regs[addr >> 2] & value;
686 s->ulpd_pm_regs[addr >> 2] = value & 0xf;
687 if (diff & (1 << 0)) /* APLL_NDPLL_SWITCH */
688 omap_clk_reparent(omap_findclk(s, "ck_48m"), omap_findclk(s,
689 (value & (1 << 0)) ? "apll" : "dpll4"));
690 break;
691
692 default:
693 OMAP_BAD_REG(addr);
694 }
695 }
696
697 static const MemoryRegionOps omap_ulpd_pm_ops = {
698 .read = omap_ulpd_pm_read,
699 .write = omap_ulpd_pm_write,
700 .endianness = DEVICE_NATIVE_ENDIAN,
701 };
702
703 static void omap_ulpd_pm_reset(struct omap_mpu_state_s *mpu)
704 {
705 mpu->ulpd_pm_regs[0x00 >> 2] = 0x0001;
706 mpu->ulpd_pm_regs[0x04 >> 2] = 0x0000;
707 mpu->ulpd_pm_regs[0x08 >> 2] = 0x0001;
708 mpu->ulpd_pm_regs[0x0c >> 2] = 0x0000;
709 mpu->ulpd_pm_regs[0x10 >> 2] = 0x0000;
710 mpu->ulpd_pm_regs[0x18 >> 2] = 0x01;
711 mpu->ulpd_pm_regs[0x1c >> 2] = 0x01;
712 mpu->ulpd_pm_regs[0x20 >> 2] = 0x01;
713 mpu->ulpd_pm_regs[0x24 >> 2] = 0x03ff;
714 mpu->ulpd_pm_regs[0x28 >> 2] = 0x01;
715 mpu->ulpd_pm_regs[0x2c >> 2] = 0x01;
716 omap_ulpd_clk_update(mpu, mpu->ulpd_pm_regs[0x30 >> 2], 0x0000);
717 mpu->ulpd_pm_regs[0x30 >> 2] = 0x0000;
718 omap_ulpd_req_update(mpu, mpu->ulpd_pm_regs[0x34 >> 2], 0x0000);
719 mpu->ulpd_pm_regs[0x34 >> 2] = 0x0000;
720 mpu->ulpd_pm_regs[0x38 >> 2] = 0x0001;
721 mpu->ulpd_pm_regs[0x3c >> 2] = 0x2211;
722 mpu->ulpd_pm_regs[0x40 >> 2] = 0x0000; /* FIXME: dump a real STATUS_REQ */
723 mpu->ulpd_pm_regs[0x48 >> 2] = 0x960;
724 mpu->ulpd_pm_regs[0x4c >> 2] = 0x08;
725 mpu->ulpd_pm_regs[0x50 >> 2] = 0x08;
726 omap_clk_setrate(omap_findclk(mpu, "dpll4"), 1, 4);
727 omap_clk_reparent(omap_findclk(mpu, "ck_48m"), omap_findclk(mpu, "dpll4"));
728 }
729
730 static void omap_ulpd_pm_init(MemoryRegion *system_memory,
731 hwaddr base,
732 struct omap_mpu_state_s *mpu)
733 {
734 memory_region_init_io(&mpu->ulpd_pm_iomem, &omap_ulpd_pm_ops, mpu,
735 "omap-ulpd-pm", 0x800);
736 memory_region_add_subregion(system_memory, base, &mpu->ulpd_pm_iomem);
737 omap_ulpd_pm_reset(mpu);
738 }
739
740 /* OMAP Pin Configuration */
741 static uint64_t omap_pin_cfg_read(void *opaque, hwaddr addr,
742 unsigned size)
743 {
744 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
745
746 if (size != 4) {
747 return omap_badwidth_read32(opaque, addr);
748 }
749
750 switch (addr) {
751 case 0x00: /* FUNC_MUX_CTRL_0 */
752 case 0x04: /* FUNC_MUX_CTRL_1 */
753 case 0x08: /* FUNC_MUX_CTRL_2 */
754 return s->func_mux_ctrl[addr >> 2];
755
756 case 0x0c: /* COMP_MODE_CTRL_0 */
757 return s->comp_mode_ctrl[0];
758
759 case 0x10: /* FUNC_MUX_CTRL_3 */
760 case 0x14: /* FUNC_MUX_CTRL_4 */
761 case 0x18: /* FUNC_MUX_CTRL_5 */
762 case 0x1c: /* FUNC_MUX_CTRL_6 */
763 case 0x20: /* FUNC_MUX_CTRL_7 */
764 case 0x24: /* FUNC_MUX_CTRL_8 */
765 case 0x28: /* FUNC_MUX_CTRL_9 */
766 case 0x2c: /* FUNC_MUX_CTRL_A */
767 case 0x30: /* FUNC_MUX_CTRL_B */
768 case 0x34: /* FUNC_MUX_CTRL_C */
769 case 0x38: /* FUNC_MUX_CTRL_D */
770 return s->func_mux_ctrl[(addr >> 2) - 1];
771
772 case 0x40: /* PULL_DWN_CTRL_0 */
773 case 0x44: /* PULL_DWN_CTRL_1 */
774 case 0x48: /* PULL_DWN_CTRL_2 */
775 case 0x4c: /* PULL_DWN_CTRL_3 */
776 return s->pull_dwn_ctrl[(addr & 0xf) >> 2];
777
778 case 0x50: /* GATE_INH_CTRL_0 */
779 return s->gate_inh_ctrl[0];
780
781 case 0x60: /* VOLTAGE_CTRL_0 */
782 return s->voltage_ctrl[0];
783
784 case 0x70: /* TEST_DBG_CTRL_0 */
785 return s->test_dbg_ctrl[0];
786
787 case 0x80: /* MOD_CONF_CTRL_0 */
788 return s->mod_conf_ctrl[0];
789 }
790
791 OMAP_BAD_REG(addr);
792 return 0;
793 }
794
795 static inline void omap_pin_funcmux0_update(struct omap_mpu_state_s *s,
796 uint32_t diff, uint32_t value)
797 {
798 if (s->compat1509) {
799 if (diff & (1 << 9)) /* BLUETOOTH */
800 omap_clk_onoff(omap_findclk(s, "bt_mclk_out"),
801 (~value >> 9) & 1);
802 if (diff & (1 << 7)) /* USB.CLKO */
803 omap_clk_onoff(omap_findclk(s, "usb.clko"),
804 (value >> 7) & 1);
805 }
806 }
807
808 static inline void omap_pin_funcmux1_update(struct omap_mpu_state_s *s,
809 uint32_t diff, uint32_t value)
810 {
811 if (s->compat1509) {
812 if (diff & (1 << 31)) /* MCBSP3_CLK_HIZ_DI */
813 omap_clk_onoff(omap_findclk(s, "mcbsp3.clkx"),
814 (value >> 31) & 1);
815 if (diff & (1 << 1)) /* CLK32K */
816 omap_clk_onoff(omap_findclk(s, "clk32k_out"),
817 (~value >> 1) & 1);
818 }
819 }
820
821 static inline void omap_pin_modconf1_update(struct omap_mpu_state_s *s,
822 uint32_t diff, uint32_t value)
823 {
824 if (diff & (1 << 31)) /* CONF_MOD_UART3_CLK_MODE_R */
825 omap_clk_reparent(omap_findclk(s, "uart3_ck"),
826 omap_findclk(s, ((value >> 31) & 1) ?
827 "ck_48m" : "armper_ck"));
828 if (diff & (1 << 30)) /* CONF_MOD_UART2_CLK_MODE_R */
829 omap_clk_reparent(omap_findclk(s, "uart2_ck"),
830 omap_findclk(s, ((value >> 30) & 1) ?
831 "ck_48m" : "armper_ck"));
832 if (diff & (1 << 29)) /* CONF_MOD_UART1_CLK_MODE_R */
833 omap_clk_reparent(omap_findclk(s, "uart1_ck"),
834 omap_findclk(s, ((value >> 29) & 1) ?
835 "ck_48m" : "armper_ck"));
836 if (diff & (1 << 23)) /* CONF_MOD_MMC_SD_CLK_REQ_R */
837 omap_clk_reparent(omap_findclk(s, "mmc_ck"),
838 omap_findclk(s, ((value >> 23) & 1) ?
839 "ck_48m" : "armper_ck"));
840 if (diff & (1 << 12)) /* CONF_MOD_COM_MCLK_12_48_S */
841 omap_clk_reparent(omap_findclk(s, "com_mclk_out"),
842 omap_findclk(s, ((value >> 12) & 1) ?
843 "ck_48m" : "armper_ck"));
844 if (diff & (1 << 9)) /* CONF_MOD_USB_HOST_HHC_UHO */
845 omap_clk_onoff(omap_findclk(s, "usb_hhc_ck"), (value >> 9) & 1);
846 }
847
848 static void omap_pin_cfg_write(void *opaque, hwaddr addr,
849 uint64_t value, unsigned size)
850 {
851 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
852 uint32_t diff;
853
854 if (size != 4) {
855 return omap_badwidth_write32(opaque, addr, value);
856 }
857
858 switch (addr) {
859 case 0x00: /* FUNC_MUX_CTRL_0 */
860 diff = s->func_mux_ctrl[addr >> 2] ^ value;
861 s->func_mux_ctrl[addr >> 2] = value;
862 omap_pin_funcmux0_update(s, diff, value);
863 return;
864
865 case 0x04: /* FUNC_MUX_CTRL_1 */
866 diff = s->func_mux_ctrl[addr >> 2] ^ value;
867 s->func_mux_ctrl[addr >> 2] = value;
868 omap_pin_funcmux1_update(s, diff, value);
869 return;
870
871 case 0x08: /* FUNC_MUX_CTRL_2 */
872 s->func_mux_ctrl[addr >> 2] = value;
873 return;
874
875 case 0x0c: /* COMP_MODE_CTRL_0 */
876 s->comp_mode_ctrl[0] = value;
877 s->compat1509 = (value != 0x0000eaef);
878 omap_pin_funcmux0_update(s, ~0, s->func_mux_ctrl[0]);
879 omap_pin_funcmux1_update(s, ~0, s->func_mux_ctrl[1]);
880 return;
881
882 case 0x10: /* FUNC_MUX_CTRL_3 */
883 case 0x14: /* FUNC_MUX_CTRL_4 */
884 case 0x18: /* FUNC_MUX_CTRL_5 */
885 case 0x1c: /* FUNC_MUX_CTRL_6 */
886 case 0x20: /* FUNC_MUX_CTRL_7 */
887 case 0x24: /* FUNC_MUX_CTRL_8 */
888 case 0x28: /* FUNC_MUX_CTRL_9 */
889 case 0x2c: /* FUNC_MUX_CTRL_A */
890 case 0x30: /* FUNC_MUX_CTRL_B */
891 case 0x34: /* FUNC_MUX_CTRL_C */
892 case 0x38: /* FUNC_MUX_CTRL_D */
893 s->func_mux_ctrl[(addr >> 2) - 1] = value;
894 return;
895
896 case 0x40: /* PULL_DWN_CTRL_0 */
897 case 0x44: /* PULL_DWN_CTRL_1 */
898 case 0x48: /* PULL_DWN_CTRL_2 */
899 case 0x4c: /* PULL_DWN_CTRL_3 */
900 s->pull_dwn_ctrl[(addr & 0xf) >> 2] = value;
901 return;
902
903 case 0x50: /* GATE_INH_CTRL_0 */
904 s->gate_inh_ctrl[0] = value;
905 return;
906
907 case 0x60: /* VOLTAGE_CTRL_0 */
908 s->voltage_ctrl[0] = value;
909 return;
910
911 case 0x70: /* TEST_DBG_CTRL_0 */
912 s->test_dbg_ctrl[0] = value;
913 return;
914
915 case 0x80: /* MOD_CONF_CTRL_0 */
916 diff = s->mod_conf_ctrl[0] ^ value;
917 s->mod_conf_ctrl[0] = value;
918 omap_pin_modconf1_update(s, diff, value);
919 return;
920
921 default:
922 OMAP_BAD_REG(addr);
923 }
924 }
925
926 static const MemoryRegionOps omap_pin_cfg_ops = {
927 .read = omap_pin_cfg_read,
928 .write = omap_pin_cfg_write,
929 .endianness = DEVICE_NATIVE_ENDIAN,
930 };
931
932 static void omap_pin_cfg_reset(struct omap_mpu_state_s *mpu)
933 {
934 /* Start in Compatibility Mode. */
935 mpu->compat1509 = 1;
936 omap_pin_funcmux0_update(mpu, mpu->func_mux_ctrl[0], 0);
937 omap_pin_funcmux1_update(mpu, mpu->func_mux_ctrl[1], 0);
938 omap_pin_modconf1_update(mpu, mpu->mod_conf_ctrl[0], 0);
939 memset(mpu->func_mux_ctrl, 0, sizeof(mpu->func_mux_ctrl));
940 memset(mpu->comp_mode_ctrl, 0, sizeof(mpu->comp_mode_ctrl));
941 memset(mpu->pull_dwn_ctrl, 0, sizeof(mpu->pull_dwn_ctrl));
942 memset(mpu->gate_inh_ctrl, 0, sizeof(mpu->gate_inh_ctrl));
943 memset(mpu->voltage_ctrl, 0, sizeof(mpu->voltage_ctrl));
944 memset(mpu->test_dbg_ctrl, 0, sizeof(mpu->test_dbg_ctrl));
945 memset(mpu->mod_conf_ctrl, 0, sizeof(mpu->mod_conf_ctrl));
946 }
947
948 static void omap_pin_cfg_init(MemoryRegion *system_memory,
949 hwaddr base,
950 struct omap_mpu_state_s *mpu)
951 {
952 memory_region_init_io(&mpu->pin_cfg_iomem, &omap_pin_cfg_ops, mpu,
953 "omap-pin-cfg", 0x800);
954 memory_region_add_subregion(system_memory, base, &mpu->pin_cfg_iomem);
955 omap_pin_cfg_reset(mpu);
956 }
957
958 /* Device Identification, Die Identification */
959 static uint64_t omap_id_read(void *opaque, hwaddr addr,
960 unsigned size)
961 {
962 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
963
964 if (size != 4) {
965 return omap_badwidth_read32(opaque, addr);
966 }
967
968 switch (addr) {
969 case 0xfffe1800: /* DIE_ID_LSB */
970 return 0xc9581f0e;
971 case 0xfffe1804: /* DIE_ID_MSB */
972 return 0xa8858bfa;
973
974 case 0xfffe2000: /* PRODUCT_ID_LSB */
975 return 0x00aaaafc;
976 case 0xfffe2004: /* PRODUCT_ID_MSB */
977 return 0xcafeb574;
978
979 case 0xfffed400: /* JTAG_ID_LSB */
980 switch (s->mpu_model) {
981 case omap310:
982 return 0x03310315;
983 case omap1510:
984 return 0x03310115;
985 default:
986 hw_error("%s: bad mpu model\n", __FUNCTION__);
987 }
988 break;
989
990 case 0xfffed404: /* JTAG_ID_MSB */
991 switch (s->mpu_model) {
992 case omap310:
993 return 0xfb57402f;
994 case omap1510:
995 return 0xfb47002f;
996 default:
997 hw_error("%s: bad mpu model\n", __FUNCTION__);
998 }
999 break;
1000 }
1001
1002 OMAP_BAD_REG(addr);
1003 return 0;
1004 }
1005
1006 static void omap_id_write(void *opaque, hwaddr addr,
1007 uint64_t value, unsigned size)
1008 {
1009 if (size != 4) {
1010 return omap_badwidth_write32(opaque, addr, value);
1011 }
1012
1013 OMAP_BAD_REG(addr);
1014 }
1015
1016 static const MemoryRegionOps omap_id_ops = {
1017 .read = omap_id_read,
1018 .write = omap_id_write,
1019 .endianness = DEVICE_NATIVE_ENDIAN,
1020 };
1021
1022 static void omap_id_init(MemoryRegion *memory, struct omap_mpu_state_s *mpu)
1023 {
1024 memory_region_init_io(&mpu->id_iomem, &omap_id_ops, mpu,
1025 "omap-id", 0x100000000ULL);
1026 memory_region_init_alias(&mpu->id_iomem_e18, "omap-id-e18", &mpu->id_iomem,
1027 0xfffe1800, 0x800);
1028 memory_region_add_subregion(memory, 0xfffe1800, &mpu->id_iomem_e18);
1029 memory_region_init_alias(&mpu->id_iomem_ed4, "omap-id-ed4", &mpu->id_iomem,
1030 0xfffed400, 0x100);
1031 memory_region_add_subregion(memory, 0xfffed400, &mpu->id_iomem_ed4);
1032 if (!cpu_is_omap15xx(mpu)) {
1033 memory_region_init_alias(&mpu->id_iomem_ed4, "omap-id-e20",
1034 &mpu->id_iomem, 0xfffe2000, 0x800);
1035 memory_region_add_subregion(memory, 0xfffe2000, &mpu->id_iomem_e20);
1036 }
1037 }
1038
1039 /* MPUI Control (Dummy) */
1040 static uint64_t omap_mpui_read(void *opaque, hwaddr addr,
1041 unsigned size)
1042 {
1043 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1044
1045 if (size != 4) {
1046 return omap_badwidth_read32(opaque, addr);
1047 }
1048
1049 switch (addr) {
1050 case 0x00: /* CTRL */
1051 return s->mpui_ctrl;
1052 case 0x04: /* DEBUG_ADDR */
1053 return 0x01ffffff;
1054 case 0x08: /* DEBUG_DATA */
1055 return 0xffffffff;
1056 case 0x0c: /* DEBUG_FLAG */
1057 return 0x00000800;
1058 case 0x10: /* STATUS */
1059 return 0x00000000;
1060
1061 /* Not in OMAP310 */
1062 case 0x14: /* DSP_STATUS */
1063 case 0x18: /* DSP_BOOT_CONFIG */
1064 return 0x00000000;
1065 case 0x1c: /* DSP_MPUI_CONFIG */
1066 return 0x0000ffff;
1067 }
1068
1069 OMAP_BAD_REG(addr);
1070 return 0;
1071 }
1072
1073 static void omap_mpui_write(void *opaque, hwaddr addr,
1074 uint64_t value, unsigned size)
1075 {
1076 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1077
1078 if (size != 4) {
1079 return omap_badwidth_write32(opaque, addr, value);
1080 }
1081
1082 switch (addr) {
1083 case 0x00: /* CTRL */
1084 s->mpui_ctrl = value & 0x007fffff;
1085 break;
1086
1087 case 0x04: /* DEBUG_ADDR */
1088 case 0x08: /* DEBUG_DATA */
1089 case 0x0c: /* DEBUG_FLAG */
1090 case 0x10: /* STATUS */
1091 /* Not in OMAP310 */
1092 case 0x14: /* DSP_STATUS */
1093 OMAP_RO_REG(addr);
1094 break;
1095 case 0x18: /* DSP_BOOT_CONFIG */
1096 case 0x1c: /* DSP_MPUI_CONFIG */
1097 break;
1098
1099 default:
1100 OMAP_BAD_REG(addr);
1101 }
1102 }
1103
1104 static const MemoryRegionOps omap_mpui_ops = {
1105 .read = omap_mpui_read,
1106 .write = omap_mpui_write,
1107 .endianness = DEVICE_NATIVE_ENDIAN,
1108 };
1109
1110 static void omap_mpui_reset(struct omap_mpu_state_s *s)
1111 {
1112 s->mpui_ctrl = 0x0003ff1b;
1113 }
1114
1115 static void omap_mpui_init(MemoryRegion *memory, hwaddr base,
1116 struct omap_mpu_state_s *mpu)
1117 {
1118 memory_region_init_io(&mpu->mpui_iomem, &omap_mpui_ops, mpu,
1119 "omap-mpui", 0x100);
1120 memory_region_add_subregion(memory, base, &mpu->mpui_iomem);
1121
1122 omap_mpui_reset(mpu);
1123 }
1124
1125 /* TIPB Bridges */
1126 struct omap_tipb_bridge_s {
1127 qemu_irq abort;
1128 MemoryRegion iomem;
1129
1130 int width_intr;
1131 uint16_t control;
1132 uint16_t alloc;
1133 uint16_t buffer;
1134 uint16_t enh_control;
1135 };
1136
1137 static uint64_t omap_tipb_bridge_read(void *opaque, hwaddr addr,
1138 unsigned size)
1139 {
1140 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1141
1142 if (size < 2) {
1143 return omap_badwidth_read16(opaque, addr);
1144 }
1145
1146 switch (addr) {
1147 case 0x00: /* TIPB_CNTL */
1148 return s->control;
1149 case 0x04: /* TIPB_BUS_ALLOC */
1150 return s->alloc;
1151 case 0x08: /* MPU_TIPB_CNTL */
1152 return s->buffer;
1153 case 0x0c: /* ENHANCED_TIPB_CNTL */
1154 return s->enh_control;
1155 case 0x10: /* ADDRESS_DBG */
1156 case 0x14: /* DATA_DEBUG_LOW */
1157 case 0x18: /* DATA_DEBUG_HIGH */
1158 return 0xffff;
1159 case 0x1c: /* DEBUG_CNTR_SIG */
1160 return 0x00f8;
1161 }
1162
1163 OMAP_BAD_REG(addr);
1164 return 0;
1165 }
1166
1167 static void omap_tipb_bridge_write(void *opaque, hwaddr addr,
1168 uint64_t value, unsigned size)
1169 {
1170 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1171
1172 if (size < 2) {
1173 return omap_badwidth_write16(opaque, addr, value);
1174 }
1175
1176 switch (addr) {
1177 case 0x00: /* TIPB_CNTL */
1178 s->control = value & 0xffff;
1179 break;
1180
1181 case 0x04: /* TIPB_BUS_ALLOC */
1182 s->alloc = value & 0x003f;
1183 break;
1184
1185 case 0x08: /* MPU_TIPB_CNTL */
1186 s->buffer = value & 0x0003;
1187 break;
1188
1189 case 0x0c: /* ENHANCED_TIPB_CNTL */
1190 s->width_intr = !(value & 2);
1191 s->enh_control = value & 0x000f;
1192 break;
1193
1194 case 0x10: /* ADDRESS_DBG */
1195 case 0x14: /* DATA_DEBUG_LOW */
1196 case 0x18: /* DATA_DEBUG_HIGH */
1197 case 0x1c: /* DEBUG_CNTR_SIG */
1198 OMAP_RO_REG(addr);
1199 break;
1200
1201 default:
1202 OMAP_BAD_REG(addr);
1203 }
1204 }
1205
1206 static const MemoryRegionOps omap_tipb_bridge_ops = {
1207 .read = omap_tipb_bridge_read,
1208 .write = omap_tipb_bridge_write,
1209 .endianness = DEVICE_NATIVE_ENDIAN,
1210 };
1211
1212 static void omap_tipb_bridge_reset(struct omap_tipb_bridge_s *s)
1213 {
1214 s->control = 0xffff;
1215 s->alloc = 0x0009;
1216 s->buffer = 0x0000;
1217 s->enh_control = 0x000f;
1218 }
1219
1220 static struct omap_tipb_bridge_s *omap_tipb_bridge_init(
1221 MemoryRegion *memory, hwaddr base,
1222 qemu_irq abort_irq, omap_clk clk)
1223 {
1224 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *)
1225 g_malloc0(sizeof(struct omap_tipb_bridge_s));
1226
1227 s->abort = abort_irq;
1228 omap_tipb_bridge_reset(s);
1229
1230 memory_region_init_io(&s->iomem, &omap_tipb_bridge_ops, s,
1231 "omap-tipb-bridge", 0x100);
1232 memory_region_add_subregion(memory, base, &s->iomem);
1233
1234 return s;
1235 }
1236
1237 /* Dummy Traffic Controller's Memory Interface */
1238 static uint64_t omap_tcmi_read(void *opaque, hwaddr addr,
1239 unsigned size)
1240 {
1241 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1242 uint32_t ret;
1243
1244 if (size != 4) {
1245 return omap_badwidth_read32(opaque, addr);
1246 }
1247
1248 switch (addr) {
1249 case 0x00: /* IMIF_PRIO */
1250 case 0x04: /* EMIFS_PRIO */
1251 case 0x08: /* EMIFF_PRIO */
1252 case 0x0c: /* EMIFS_CONFIG */
1253 case 0x10: /* EMIFS_CS0_CONFIG */
1254 case 0x14: /* EMIFS_CS1_CONFIG */
1255 case 0x18: /* EMIFS_CS2_CONFIG */
1256 case 0x1c: /* EMIFS_CS3_CONFIG */
1257 case 0x24: /* EMIFF_MRS */
1258 case 0x28: /* TIMEOUT1 */
1259 case 0x2c: /* TIMEOUT2 */
1260 case 0x30: /* TIMEOUT3 */
1261 case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
1262 case 0x40: /* EMIFS_CFG_DYN_WAIT */
1263 return s->tcmi_regs[addr >> 2];
1264
1265 case 0x20: /* EMIFF_SDRAM_CONFIG */
1266 ret = s->tcmi_regs[addr >> 2];
1267 s->tcmi_regs[addr >> 2] &= ~1; /* XXX: Clear SLRF on SDRAM access */
1268 /* XXX: We can try using the VGA_DIRTY flag for this */
1269 return ret;
1270 }
1271
1272 OMAP_BAD_REG(addr);
1273 return 0;
1274 }
1275
1276 static void omap_tcmi_write(void *opaque, hwaddr addr,
1277 uint64_t value, unsigned size)
1278 {
1279 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1280
1281 if (size != 4) {
1282 return omap_badwidth_write32(opaque, addr, value);
1283 }
1284
1285 switch (addr) {
1286 case 0x00: /* IMIF_PRIO */
1287 case 0x04: /* EMIFS_PRIO */
1288 case 0x08: /* EMIFF_PRIO */
1289 case 0x10: /* EMIFS_CS0_CONFIG */
1290 case 0x14: /* EMIFS_CS1_CONFIG */
1291 case 0x18: /* EMIFS_CS2_CONFIG */
1292 case 0x1c: /* EMIFS_CS3_CONFIG */
1293 case 0x20: /* EMIFF_SDRAM_CONFIG */
1294 case 0x24: /* EMIFF_MRS */
1295 case 0x28: /* TIMEOUT1 */
1296 case 0x2c: /* TIMEOUT2 */
1297 case 0x30: /* TIMEOUT3 */
1298 case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
1299 case 0x40: /* EMIFS_CFG_DYN_WAIT */
1300 s->tcmi_regs[addr >> 2] = value;
1301 break;
1302 case 0x0c: /* EMIFS_CONFIG */
1303 s->tcmi_regs[addr >> 2] = (value & 0xf) | (1 << 4);
1304 break;
1305
1306 default:
1307 OMAP_BAD_REG(addr);
1308 }
1309 }
1310
1311 static const MemoryRegionOps omap_tcmi_ops = {
1312 .read = omap_tcmi_read,
1313 .write = omap_tcmi_write,
1314 .endianness = DEVICE_NATIVE_ENDIAN,
1315 };
1316
1317 static void omap_tcmi_reset(struct omap_mpu_state_s *mpu)
1318 {
1319 mpu->tcmi_regs[0x00 >> 2] = 0x00000000;
1320 mpu->tcmi_regs[0x04 >> 2] = 0x00000000;
1321 mpu->tcmi_regs[0x08 >> 2] = 0x00000000;
1322 mpu->tcmi_regs[0x0c >> 2] = 0x00000010;
1323 mpu->tcmi_regs[0x10 >> 2] = 0x0010fffb;
1324 mpu->tcmi_regs[0x14 >> 2] = 0x0010fffb;
1325 mpu->tcmi_regs[0x18 >> 2] = 0x0010fffb;
1326 mpu->tcmi_regs[0x1c >> 2] = 0x0010fffb;
1327 mpu->tcmi_regs[0x20 >> 2] = 0x00618800;
1328 mpu->tcmi_regs[0x24 >> 2] = 0x00000037;
1329 mpu->tcmi_regs[0x28 >> 2] = 0x00000000;
1330 mpu->tcmi_regs[0x2c >> 2] = 0x00000000;
1331 mpu->tcmi_regs[0x30 >> 2] = 0x00000000;
1332 mpu->tcmi_regs[0x3c >> 2] = 0x00000003;
1333 mpu->tcmi_regs[0x40 >> 2] = 0x00000000;
1334 }
1335
1336 static void omap_tcmi_init(MemoryRegion *memory, hwaddr base,
1337 struct omap_mpu_state_s *mpu)
1338 {
1339 memory_region_init_io(&mpu->tcmi_iomem, &omap_tcmi_ops, mpu,
1340 "omap-tcmi", 0x100);
1341 memory_region_add_subregion(memory, base, &mpu->tcmi_iomem);
1342 omap_tcmi_reset(mpu);
1343 }
1344
1345 /* Digital phase-locked loops control */
1346 struct dpll_ctl_s {
1347 MemoryRegion iomem;
1348 uint16_t mode;
1349 omap_clk dpll;
1350 };
1351
1352 static uint64_t omap_dpll_read(void *opaque, hwaddr addr,
1353 unsigned size)
1354 {
1355 struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1356
1357 if (size != 2) {
1358 return omap_badwidth_read16(opaque, addr);
1359 }
1360
1361 if (addr == 0x00) /* CTL_REG */
1362 return s->mode;
1363
1364 OMAP_BAD_REG(addr);
1365 return 0;
1366 }
1367
1368 static void omap_dpll_write(void *opaque, hwaddr addr,
1369 uint64_t value, unsigned size)
1370 {
1371 struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1372 uint16_t diff;
1373 static const int bypass_div[4] = { 1, 2, 4, 4 };
1374 int div, mult;
1375
1376 if (size != 2) {
1377 return omap_badwidth_write16(opaque, addr, value);
1378 }
1379
1380 if (addr == 0x00) { /* CTL_REG */
1381 /* See omap_ulpd_pm_write() too */
1382 diff = s->mode & value;
1383 s->mode = value & 0x2fff;
1384 if (diff & (0x3ff << 2)) {
1385 if (value & (1 << 4)) { /* PLL_ENABLE */
1386 div = ((value >> 5) & 3) + 1; /* PLL_DIV */
1387 mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
1388 } else {
1389 div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
1390 mult = 1;
1391 }
1392 omap_clk_setrate(s->dpll, div, mult);
1393 }
1394
1395 /* Enter the desired mode. */
1396 s->mode = (s->mode & 0xfffe) | ((s->mode >> 4) & 1);
1397
1398 /* Act as if the lock is restored. */
1399 s->mode |= 2;
1400 } else {
1401 OMAP_BAD_REG(addr);
1402 }
1403 }
1404
1405 static const MemoryRegionOps omap_dpll_ops = {
1406 .read = omap_dpll_read,
1407 .write = omap_dpll_write,
1408 .endianness = DEVICE_NATIVE_ENDIAN,
1409 };
1410
1411 static void omap_dpll_reset(struct dpll_ctl_s *s)
1412 {
1413 s->mode = 0x2002;
1414 omap_clk_setrate(s->dpll, 1, 1);
1415 }
1416
1417 static struct dpll_ctl_s *omap_dpll_init(MemoryRegion *memory,
1418 hwaddr base, omap_clk clk)
1419 {
1420 struct dpll_ctl_s *s = g_malloc0(sizeof(*s));
1421 memory_region_init_io(&s->iomem, &omap_dpll_ops, s, "omap-dpll", 0x100);
1422
1423 s->dpll = clk;
1424 omap_dpll_reset(s);
1425
1426 memory_region_add_subregion(memory, base, &s->iomem);
1427 return s;
1428 }
1429
1430 /* MPU Clock/Reset/Power Mode Control */
1431 static uint64_t omap_clkm_read(void *opaque, hwaddr addr,
1432 unsigned size)
1433 {
1434 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1435
1436 if (size != 2) {
1437 return omap_badwidth_read16(opaque, addr);
1438 }
1439
1440 switch (addr) {
1441 case 0x00: /* ARM_CKCTL */
1442 return s->clkm.arm_ckctl;
1443
1444 case 0x04: /* ARM_IDLECT1 */
1445 return s->clkm.arm_idlect1;
1446
1447 case 0x08: /* ARM_IDLECT2 */
1448 return s->clkm.arm_idlect2;
1449
1450 case 0x0c: /* ARM_EWUPCT */
1451 return s->clkm.arm_ewupct;
1452
1453 case 0x10: /* ARM_RSTCT1 */
1454 return s->clkm.arm_rstct1;
1455
1456 case 0x14: /* ARM_RSTCT2 */
1457 return s->clkm.arm_rstct2;
1458
1459 case 0x18: /* ARM_SYSST */
1460 return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start;
1461
1462 case 0x1c: /* ARM_CKOUT1 */
1463 return s->clkm.arm_ckout1;
1464
1465 case 0x20: /* ARM_CKOUT2 */
1466 break;
1467 }
1468
1469 OMAP_BAD_REG(addr);
1470 return 0;
1471 }
1472
1473 static inline void omap_clkm_ckctl_update(struct omap_mpu_state_s *s,
1474 uint16_t diff, uint16_t value)
1475 {
1476 omap_clk clk;
1477
1478 if (diff & (1 << 14)) { /* ARM_INTHCK_SEL */
1479 if (value & (1 << 14))
1480 /* Reserved */;
1481 else {
1482 clk = omap_findclk(s, "arminth_ck");
1483 omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1484 }
1485 }
1486 if (diff & (1 << 12)) { /* ARM_TIMXO */
1487 clk = omap_findclk(s, "armtim_ck");
1488 if (value & (1 << 12))
1489 omap_clk_reparent(clk, omap_findclk(s, "clkin"));
1490 else
1491 omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1492 }
1493 /* XXX: en_dspck */
1494 if (diff & (3 << 10)) { /* DSPMMUDIV */
1495 clk = omap_findclk(s, "dspmmu_ck");
1496 omap_clk_setrate(clk, 1 << ((value >> 10) & 3), 1);
1497 }
1498 if (diff & (3 << 8)) { /* TCDIV */
1499 clk = omap_findclk(s, "tc_ck");
1500 omap_clk_setrate(clk, 1 << ((value >> 8) & 3), 1);
1501 }
1502 if (diff & (3 << 6)) { /* DSPDIV */
1503 clk = omap_findclk(s, "dsp_ck");
1504 omap_clk_setrate(clk, 1 << ((value >> 6) & 3), 1);
1505 }
1506 if (diff & (3 << 4)) { /* ARMDIV */
1507 clk = omap_findclk(s, "arm_ck");
1508 omap_clk_setrate(clk, 1 << ((value >> 4) & 3), 1);
1509 }
1510 if (diff & (3 << 2)) { /* LCDDIV */
1511 clk = omap_findclk(s, "lcd_ck");
1512 omap_clk_setrate(clk, 1 << ((value >> 2) & 3), 1);
1513 }
1514 if (diff & (3 << 0)) { /* PERDIV */
1515 clk = omap_findclk(s, "armper_ck");
1516 omap_clk_setrate(clk, 1 << ((value >> 0) & 3), 1);
1517 }
1518 }
1519
1520 static inline void omap_clkm_idlect1_update(struct omap_mpu_state_s *s,
1521 uint16_t diff, uint16_t value)
1522 {
1523 omap_clk clk;
1524
1525 if (value & (1 << 11)) { /* SETARM_IDLE */
1526 cpu_interrupt(&s->cpu->env, CPU_INTERRUPT_HALT);
1527 }
1528 if (!(value & (1 << 10))) /* WKUP_MODE */
1529 qemu_system_shutdown_request(); /* XXX: disable wakeup from IRQ */
1530
1531 #define SET_CANIDLE(clock, bit) \
1532 if (diff & (1 << bit)) { \
1533 clk = omap_findclk(s, clock); \
1534 omap_clk_canidle(clk, (value >> bit) & 1); \
1535 }
1536 SET_CANIDLE("mpuwd_ck", 0) /* IDLWDT_ARM */
1537 SET_CANIDLE("armxor_ck", 1) /* IDLXORP_ARM */
1538 SET_CANIDLE("mpuper_ck", 2) /* IDLPER_ARM */
1539 SET_CANIDLE("lcd_ck", 3) /* IDLLCD_ARM */
1540 SET_CANIDLE("lb_ck", 4) /* IDLLB_ARM */
1541 SET_CANIDLE("hsab_ck", 5) /* IDLHSAB_ARM */
1542 SET_CANIDLE("tipb_ck", 6) /* IDLIF_ARM */
1543 SET_CANIDLE("dma_ck", 6) /* IDLIF_ARM */
1544 SET_CANIDLE("tc_ck", 6) /* IDLIF_ARM */
1545 SET_CANIDLE("dpll1", 7) /* IDLDPLL_ARM */
1546 SET_CANIDLE("dpll2", 7) /* IDLDPLL_ARM */
1547 SET_CANIDLE("dpll3", 7) /* IDLDPLL_ARM */
1548 SET_CANIDLE("mpui_ck", 8) /* IDLAPI_ARM */
1549 SET_CANIDLE("armtim_ck", 9) /* IDLTIM_ARM */
1550 }
1551
1552 static inline void omap_clkm_idlect2_update(struct omap_mpu_state_s *s,
1553 uint16_t diff, uint16_t value)
1554 {
1555 omap_clk clk;
1556
1557 #define SET_ONOFF(clock, bit) \
1558 if (diff & (1 << bit)) { \
1559 clk = omap_findclk(s, clock); \
1560 omap_clk_onoff(clk, (value >> bit) & 1); \
1561 }
1562 SET_ONOFF("mpuwd_ck", 0) /* EN_WDTCK */
1563 SET_ONOFF("armxor_ck", 1) /* EN_XORPCK */
1564 SET_ONOFF("mpuper_ck", 2) /* EN_PERCK */
1565 SET_ONOFF("lcd_ck", 3) /* EN_LCDCK */
1566 SET_ONOFF("lb_ck", 4) /* EN_LBCK */
1567 SET_ONOFF("hsab_ck", 5) /* EN_HSABCK */
1568 SET_ONOFF("mpui_ck", 6) /* EN_APICK */
1569 SET_ONOFF("armtim_ck", 7) /* EN_TIMCK */
1570 SET_CANIDLE("dma_ck", 8) /* DMACK_REQ */
1571 SET_ONOFF("arm_gpio_ck", 9) /* EN_GPIOCK */
1572 SET_ONOFF("lbfree_ck", 10) /* EN_LBFREECK */
1573 }
1574
1575 static inline void omap_clkm_ckout1_update(struct omap_mpu_state_s *s,
1576 uint16_t diff, uint16_t value)
1577 {
1578 omap_clk clk;
1579
1580 if (diff & (3 << 4)) { /* TCLKOUT */
1581 clk = omap_findclk(s, "tclk_out");
1582 switch ((value >> 4) & 3) {
1583 case 1:
1584 omap_clk_reparent(clk, omap_findclk(s, "ck_gen3"));
1585 omap_clk_onoff(clk, 1);
1586 break;
1587 case 2:
1588 omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1589 omap_clk_onoff(clk, 1);
1590 break;
1591 default:
1592 omap_clk_onoff(clk, 0);
1593 }
1594 }
1595 if (diff & (3 << 2)) { /* DCLKOUT */
1596 clk = omap_findclk(s, "dclk_out");
1597 switch ((value >> 2) & 3) {
1598 case 0:
1599 omap_clk_reparent(clk, omap_findclk(s, "dspmmu_ck"));
1600 break;
1601 case 1:
1602 omap_clk_reparent(clk, omap_findclk(s, "ck_gen2"));
1603 break;
1604 case 2:
1605 omap_clk_reparent(clk, omap_findclk(s, "dsp_ck"));
1606 break;
1607 case 3:
1608 omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1609 break;
1610 }
1611 }
1612 if (diff & (3 << 0)) { /* ACLKOUT */
1613 clk = omap_findclk(s, "aclk_out");
1614 switch ((value >> 0) & 3) {
1615 case 1:
1616 omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1617 omap_clk_onoff(clk, 1);
1618 break;
1619 case 2:
1620 omap_clk_reparent(clk, omap_findclk(s, "arm_ck"));
1621 omap_clk_onoff(clk, 1);
1622 break;
1623 case 3:
1624 omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1625 omap_clk_onoff(clk, 1);
1626 break;
1627 default:
1628 omap_clk_onoff(clk, 0);
1629 }
1630 }
1631 }
1632
1633 static void omap_clkm_write(void *opaque, hwaddr addr,
1634 uint64_t value, unsigned size)
1635 {
1636 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1637 uint16_t diff;
1638 omap_clk clk;
1639 static const char *clkschemename[8] = {
1640 "fully synchronous", "fully asynchronous", "synchronous scalable",
1641 "mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4",
1642 };
1643
1644 if (size != 2) {
1645 return omap_badwidth_write16(opaque, addr, value);
1646 }
1647
1648 switch (addr) {
1649 case 0x00: /* ARM_CKCTL */
1650 diff = s->clkm.arm_ckctl ^ value;
1651 s->clkm.arm_ckctl = value & 0x7fff;
1652 omap_clkm_ckctl_update(s, diff, value);
1653 return;
1654
1655 case 0x04: /* ARM_IDLECT1 */
1656 diff = s->clkm.arm_idlect1 ^ value;
1657 s->clkm.arm_idlect1 = value & 0x0fff;
1658 omap_clkm_idlect1_update(s, diff, value);
1659 return;
1660
1661 case 0x08: /* ARM_IDLECT2 */
1662 diff = s->clkm.arm_idlect2 ^ value;
1663 s->clkm.arm_idlect2 = value & 0x07ff;
1664 omap_clkm_idlect2_update(s, diff, value);
1665 return;
1666
1667 case 0x0c: /* ARM_EWUPCT */
1668 s->clkm.arm_ewupct = value & 0x003f;
1669 return;
1670
1671 case 0x10: /* ARM_RSTCT1 */
1672 diff = s->clkm.arm_rstct1 ^ value;
1673 s->clkm.arm_rstct1 = value & 0x0007;
1674 if (value & 9) {
1675 qemu_system_reset_request();
1676 s->clkm.cold_start = 0xa;
1677 }
1678 if (diff & ~value & 4) { /* DSP_RST */
1679 omap_mpui_reset(s);
1680 omap_tipb_bridge_reset(s->private_tipb);
1681 omap_tipb_bridge_reset(s->public_tipb);
1682 }
1683 if (diff & 2) { /* DSP_EN */
1684 clk = omap_findclk(s, "dsp_ck");
1685 omap_clk_canidle(clk, (~value >> 1) & 1);
1686 }
1687 return;
1688
1689 case 0x14: /* ARM_RSTCT2 */
1690 s->clkm.arm_rstct2 = value & 0x0001;
1691 return;
1692
1693 case 0x18: /* ARM_SYSST */
1694 if ((s->clkm.clocking_scheme ^ (value >> 11)) & 7) {
1695 s->clkm.clocking_scheme = (value >> 11) & 7;
1696 printf("%s: clocking scheme set to %s\n", __FUNCTION__,
1697 clkschemename[s->clkm.clocking_scheme]);
1698 }
1699 s->clkm.cold_start &= value & 0x3f;
1700 return;
1701
1702 case 0x1c: /* ARM_CKOUT1 */
1703 diff = s->clkm.arm_ckout1 ^ value;
1704 s->clkm.arm_ckout1 = value & 0x003f;
1705 omap_clkm_ckout1_update(s, diff, value);
1706 return;
1707
1708 case 0x20: /* ARM_CKOUT2 */
1709 default:
1710 OMAP_BAD_REG(addr);
1711 }
1712 }
1713
1714 static const MemoryRegionOps omap_clkm_ops = {
1715 .read = omap_clkm_read,
1716 .write = omap_clkm_write,
1717 .endianness = DEVICE_NATIVE_ENDIAN,
1718 };
1719
1720 static uint64_t omap_clkdsp_read(void *opaque, hwaddr addr,
1721 unsigned size)
1722 {
1723 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1724
1725 if (size != 2) {
1726 return omap_badwidth_read16(opaque, addr);
1727 }
1728
1729 switch (addr) {
1730 case 0x04: /* DSP_IDLECT1 */
1731 return s->clkm.dsp_idlect1;
1732
1733 case 0x08: /* DSP_IDLECT2 */
1734 return s->clkm.dsp_idlect2;
1735
1736 case 0x14: /* DSP_RSTCT2 */
1737 return s->clkm.dsp_rstct2;
1738
1739 case 0x18: /* DSP_SYSST */
1740 return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start |
1741 (s->cpu->env.halted << 6); /* Quite useless... */
1742 }
1743
1744 OMAP_BAD_REG(addr);
1745 return 0;
1746 }
1747
1748 static inline void omap_clkdsp_idlect1_update(struct omap_mpu_state_s *s,
1749 uint16_t diff, uint16_t value)
1750 {
1751 omap_clk clk;
1752
1753 SET_CANIDLE("dspxor_ck", 1); /* IDLXORP_DSP */
1754 }
1755
1756 static inline void omap_clkdsp_idlect2_update(struct omap_mpu_state_s *s,
1757 uint16_t diff, uint16_t value)
1758 {
1759 omap_clk clk;
1760
1761 SET_ONOFF("dspxor_ck", 1); /* EN_XORPCK */
1762 }
1763
1764 static void omap_clkdsp_write(void *opaque, hwaddr addr,
1765 uint64_t value, unsigned size)
1766 {
1767 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1768 uint16_t diff;
1769
1770 if (size != 2) {
1771 return omap_badwidth_write16(opaque, addr, value);
1772 }
1773
1774 switch (addr) {
1775 case 0x04: /* DSP_IDLECT1 */
1776 diff = s->clkm.dsp_idlect1 ^ value;
1777 s->clkm.dsp_idlect1 = value & 0x01f7;
1778 omap_clkdsp_idlect1_update(s, diff, value);
1779 break;
1780
1781 case 0x08: /* DSP_IDLECT2 */
1782 s->clkm.dsp_idlect2 = value & 0x0037;
1783 diff = s->clkm.dsp_idlect1 ^ value;
1784 omap_clkdsp_idlect2_update(s, diff, value);
1785 break;
1786
1787 case 0x14: /* DSP_RSTCT2 */
1788 s->clkm.dsp_rstct2 = value & 0x0001;
1789 break;
1790
1791 case 0x18: /* DSP_SYSST */
1792 s->clkm.cold_start &= value & 0x3f;
1793 break;
1794
1795 default:
1796 OMAP_BAD_REG(addr);
1797 }
1798 }
1799
1800 static const MemoryRegionOps omap_clkdsp_ops = {
1801 .read = omap_clkdsp_read,
1802 .write = omap_clkdsp_write,
1803 .endianness = DEVICE_NATIVE_ENDIAN,
1804 };
1805
1806 static void omap_clkm_reset(struct omap_mpu_state_s *s)
1807 {
1808 if (s->wdt && s->wdt->reset)
1809 s->clkm.cold_start = 0x6;
1810 s->clkm.clocking_scheme = 0;
1811 omap_clkm_ckctl_update(s, ~0, 0x3000);
1812 s->clkm.arm_ckctl = 0x3000;
1813 omap_clkm_idlect1_update(s, s->clkm.arm_idlect1 ^ 0x0400, 0x0400);
1814 s->clkm.arm_idlect1 = 0x0400;
1815 omap_clkm_idlect2_update(s, s->clkm.arm_idlect2 ^ 0x0100, 0x0100);
1816 s->clkm.arm_idlect2 = 0x0100;
1817 s->clkm.arm_ewupct = 0x003f;
1818 s->clkm.arm_rstct1 = 0x0000;
1819 s->clkm.arm_rstct2 = 0x0000;
1820 s->clkm.arm_ckout1 = 0x0015;
1821 s->clkm.dpll1_mode = 0x2002;
1822 omap_clkdsp_idlect1_update(s, s->clkm.dsp_idlect1 ^ 0x0040, 0x0040);
1823 s->clkm.dsp_idlect1 = 0x0040;
1824 omap_clkdsp_idlect2_update(s, ~0, 0x0000);
1825 s->clkm.dsp_idlect2 = 0x0000;
1826 s->clkm.dsp_rstct2 = 0x0000;
1827 }
1828
1829 static void omap_clkm_init(MemoryRegion *memory, hwaddr mpu_base,
1830 hwaddr dsp_base, struct omap_mpu_state_s *s)
1831 {
1832 memory_region_init_io(&s->clkm_iomem, &omap_clkm_ops, s,
1833 "omap-clkm", 0x100);
1834 memory_region_init_io(&s->clkdsp_iomem, &omap_clkdsp_ops, s,
1835 "omap-clkdsp", 0x1000);
1836
1837 s->clkm.arm_idlect1 = 0x03ff;
1838 s->clkm.arm_idlect2 = 0x0100;
1839 s->clkm.dsp_idlect1 = 0x0002;
1840 omap_clkm_reset(s);
1841 s->clkm.cold_start = 0x3a;
1842
1843 memory_region_add_subregion(memory, mpu_base, &s->clkm_iomem);
1844 memory_region_add_subregion(memory, dsp_base, &s->clkdsp_iomem);
1845 }
1846
1847 /* MPU I/O */
1848 struct omap_mpuio_s {
1849 qemu_irq irq;
1850 qemu_irq kbd_irq;
1851 qemu_irq *in;
1852 qemu_irq handler[16];
1853 qemu_irq wakeup;
1854 MemoryRegion iomem;
1855
1856 uint16_t inputs;
1857 uint16_t outputs;
1858 uint16_t dir;
1859 uint16_t edge;
1860 uint16_t mask;
1861 uint16_t ints;
1862
1863 uint16_t debounce;
1864 uint16_t latch;
1865 uint8_t event;
1866
1867 uint8_t buttons[5];
1868 uint8_t row_latch;
1869 uint8_t cols;
1870 int kbd_mask;
1871 int clk;
1872 };
1873
1874 static void omap_mpuio_set(void *opaque, int line, int level)
1875 {
1876 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1877 uint16_t prev = s->inputs;
1878
1879 if (level)
1880 s->inputs |= 1 << line;
1881 else
1882 s->inputs &= ~(1 << line);
1883
1884 if (((1 << line) & s->dir & ~s->mask) && s->clk) {
1885 if ((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) {
1886 s->ints |= 1 << line;
1887 qemu_irq_raise(s->irq);
1888 /* TODO: wakeup */
1889 }
1890 if ((s->event & (1 << 0)) && /* SET_GPIO_EVENT_MODE */
1891 (s->event >> 1) == line) /* PIN_SELECT */
1892 s->latch = s->inputs;
1893 }
1894 }
1895
1896 static void omap_mpuio_kbd_update(struct omap_mpuio_s *s)
1897 {
1898 int i;
1899 uint8_t *row, rows = 0, cols = ~s->cols;
1900
1901 for (row = s->buttons + 4, i = 1 << 4; i; row --, i >>= 1)
1902 if (*row & cols)
1903 rows |= i;
1904
1905 qemu_set_irq(s->kbd_irq, rows && !s->kbd_mask && s->clk);
1906 s->row_latch = ~rows;
1907 }
1908
1909 static uint64_t omap_mpuio_read(void *opaque, hwaddr addr,
1910 unsigned size)
1911 {
1912 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1913 int offset = addr & OMAP_MPUI_REG_MASK;
1914 uint16_t ret;
1915
1916 if (size != 2) {
1917 return omap_badwidth_read16(opaque, addr);
1918 }
1919
1920 switch (offset) {
1921 case 0x00: /* INPUT_LATCH */
1922 return s->inputs;
1923
1924 case 0x04: /* OUTPUT_REG */
1925 return s->outputs;
1926
1927 case 0x08: /* IO_CNTL */
1928 return s->dir;
1929
1930 case 0x10: /* KBR_LATCH */
1931 return s->row_latch;
1932
1933 case 0x14: /* KBC_REG */
1934 return s->cols;
1935
1936 case 0x18: /* GPIO_EVENT_MODE_REG */
1937 return s->event;
1938
1939 case 0x1c: /* GPIO_INT_EDGE_REG */
1940 return s->edge;
1941
1942 case 0x20: /* KBD_INT */
1943 return (~s->row_latch & 0x1f) && !s->kbd_mask;
1944
1945 case 0x24: /* GPIO_INT */
1946 ret = s->ints;
1947 s->ints &= s->mask;
1948 if (ret)
1949 qemu_irq_lower(s->irq);
1950 return ret;
1951
1952 case 0x28: /* KBD_MASKIT */
1953 return s->kbd_mask;
1954
1955 case 0x2c: /* GPIO_MASKIT */
1956 return s->mask;
1957
1958 case 0x30: /* GPIO_DEBOUNCING_REG */
1959 return s->debounce;
1960
1961 case 0x34: /* GPIO_LATCH_REG */
1962 return s->latch;
1963 }
1964
1965 OMAP_BAD_REG(addr);
1966 return 0;
1967 }
1968
1969 static void omap_mpuio_write(void *opaque, hwaddr addr,
1970 uint64_t value, unsigned size)
1971 {
1972 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1973 int offset = addr & OMAP_MPUI_REG_MASK;
1974 uint16_t diff;
1975 int ln;
1976
1977 if (size != 2) {
1978 return omap_badwidth_write16(opaque, addr, value);
1979 }
1980
1981 switch (offset) {
1982 case 0x04: /* OUTPUT_REG */
1983 diff = (s->outputs ^ value) & ~s->dir;
1984 s->outputs = value;
1985 while ((ln = ffs(diff))) {
1986 ln --;
1987 if (s->handler[ln])
1988 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
1989 diff &= ~(1 << ln);
1990 }
1991 break;
1992
1993 case 0x08: /* IO_CNTL */
1994 diff = s->outputs & (s->dir ^ value);
1995 s->dir = value;
1996
1997 value = s->outputs & ~s->dir;
1998 while ((ln = ffs(diff))) {
1999 ln --;
2000 if (s->handler[ln])
2001 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2002 diff &= ~(1 << ln);
2003 }
2004 break;
2005
2006 case 0x14: /* KBC_REG */
2007 s->cols = value;
2008 omap_mpuio_kbd_update(s);
2009 break;
2010
2011 case 0x18: /* GPIO_EVENT_MODE_REG */
2012 s->event = value & 0x1f;
2013 break;
2014
2015 case 0x1c: /* GPIO_INT_EDGE_REG */
2016 s->edge = value;
2017 break;
2018
2019 case 0x28: /* KBD_MASKIT */
2020 s->kbd_mask = value & 1;
2021 omap_mpuio_kbd_update(s);
2022 break;
2023
2024 case 0x2c: /* GPIO_MASKIT */
2025 s->mask = value;
2026 break;
2027
2028 case 0x30: /* GPIO_DEBOUNCING_REG */
2029 s->debounce = value & 0x1ff;
2030 break;
2031
2032 case 0x00: /* INPUT_LATCH */
2033 case 0x10: /* KBR_LATCH */
2034 case 0x20: /* KBD_INT */
2035 case 0x24: /* GPIO_INT */
2036 case 0x34: /* GPIO_LATCH_REG */
2037 OMAP_RO_REG(addr);
2038 return;
2039
2040 default:
2041 OMAP_BAD_REG(addr);
2042 return;
2043 }
2044 }
2045
2046 static const MemoryRegionOps omap_mpuio_ops = {
2047 .read = omap_mpuio_read,
2048 .write = omap_mpuio_write,
2049 .endianness = DEVICE_NATIVE_ENDIAN,
2050 };
2051
2052 static void omap_mpuio_reset(struct omap_mpuio_s *s)
2053 {
2054 s->inputs = 0;
2055 s->outputs = 0;
2056 s->dir = ~0;
2057 s->event = 0;
2058 s->edge = 0;
2059 s->kbd_mask = 0;
2060 s->mask = 0;
2061 s->debounce = 0;
2062 s->latch = 0;
2063 s->ints = 0;
2064 s->row_latch = 0x1f;
2065 s->clk = 1;
2066 }
2067
2068 static void omap_mpuio_onoff(void *opaque, int line, int on)
2069 {
2070 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2071
2072 s->clk = on;
2073 if (on)
2074 omap_mpuio_kbd_update(s);
2075 }
2076
2077 static struct omap_mpuio_s *omap_mpuio_init(MemoryRegion *memory,
2078 hwaddr base,
2079 qemu_irq kbd_int, qemu_irq gpio_int, qemu_irq wakeup,
2080 omap_clk clk)
2081 {
2082 struct omap_mpuio_s *s = (struct omap_mpuio_s *)
2083 g_malloc0(sizeof(struct omap_mpuio_s));
2084
2085 s->irq = gpio_int;
2086 s->kbd_irq = kbd_int;
2087 s->wakeup = wakeup;
2088 s->in = qemu_allocate_irqs(omap_mpuio_set, s, 16);
2089 omap_mpuio_reset(s);
2090
2091 memory_region_init_io(&s->iomem, &omap_mpuio_ops, s,
2092 "omap-mpuio", 0x800);
2093 memory_region_add_subregion(memory, base, &s->iomem);
2094
2095 omap_clk_adduser(clk, qemu_allocate_irqs(omap_mpuio_onoff, s, 1)[0]);
2096
2097 return s;
2098 }
2099
2100 qemu_irq *omap_mpuio_in_get(struct omap_mpuio_s *s)
2101 {
2102 return s->in;
2103 }
2104
2105 void omap_mpuio_out_set(struct omap_mpuio_s *s, int line, qemu_irq handler)
2106 {
2107 if (line >= 16 || line < 0)
2108 hw_error("%s: No GPIO line %i\n", __FUNCTION__, line);
2109 s->handler[line] = handler;
2110 }
2111
2112 void omap_mpuio_key(struct omap_mpuio_s *s, int row, int col, int down)
2113 {
2114 if (row >= 5 || row < 0)
2115 hw_error("%s: No key %i-%i\n", __FUNCTION__, col, row);
2116
2117 if (down)
2118 s->buttons[row] |= 1 << col;
2119 else
2120 s->buttons[row] &= ~(1 << col);
2121
2122 omap_mpuio_kbd_update(s);
2123 }
2124
2125 /* MicroWire Interface */
2126 struct omap_uwire_s {
2127 MemoryRegion iomem;
2128 qemu_irq txirq;
2129 qemu_irq rxirq;
2130 qemu_irq txdrq;
2131
2132 uint16_t txbuf;
2133 uint16_t rxbuf;
2134 uint16_t control;
2135 uint16_t setup[5];
2136
2137 uWireSlave *chip[4];
2138 };
2139
2140 static void omap_uwire_transfer_start(struct omap_uwire_s *s)
2141 {
2142 int chipselect = (s->control >> 10) & 3; /* INDEX */
2143 uWireSlave *slave = s->chip[chipselect];
2144
2145 if ((s->control >> 5) & 0x1f) { /* NB_BITS_WR */
2146 if (s->control & (1 << 12)) /* CS_CMD */
2147 if (slave && slave->send)
2148 slave->send(slave->opaque,
2149 s->txbuf >> (16 - ((s->control >> 5) & 0x1f)));
2150 s->control &= ~(1 << 14); /* CSRB */
2151 /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2152 * a DRQ. When is the level IRQ supposed to be reset? */
2153 }
2154
2155 if ((s->control >> 0) & 0x1f) { /* NB_BITS_RD */
2156 if (s->control & (1 << 12)) /* CS_CMD */
2157 if (slave && slave->receive)
2158 s->rxbuf = slave->receive(slave->opaque);
2159 s->control |= 1 << 15; /* RDRB */
2160 /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2161 * a DRQ. When is the level IRQ supposed to be reset? */
2162 }
2163 }
2164
2165 static uint64_t omap_uwire_read(void *opaque, hwaddr addr,
2166 unsigned size)
2167 {
2168 struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2169 int offset = addr & OMAP_MPUI_REG_MASK;
2170
2171 if (size != 2) {
2172 return omap_badwidth_read16(opaque, addr);
2173 }
2174
2175 switch (offset) {
2176 case 0x00: /* RDR */
2177 s->control &= ~(1 << 15); /* RDRB */
2178 return s->rxbuf;
2179
2180 case 0x04: /* CSR */
2181 return s->control;
2182
2183 case 0x08: /* SR1 */
2184 return s->setup[0];
2185 case 0x0c: /* SR2 */
2186 return s->setup[1];
2187 case 0x10: /* SR3 */
2188 return s->setup[2];
2189 case 0x14: /* SR4 */
2190 return s->setup[3];
2191 case 0x18: /* SR5 */
2192 return s->setup[4];
2193 }
2194
2195 OMAP_BAD_REG(addr);
2196 return 0;
2197 }
2198
2199 static void omap_uwire_write(void *opaque, hwaddr addr,
2200 uint64_t value, unsigned size)
2201 {
2202 struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2203 int offset = addr & OMAP_MPUI_REG_MASK;
2204
2205 if (size != 2) {
2206 return omap_badwidth_write16(opaque, addr, value);
2207 }
2208
2209 switch (offset) {
2210 case 0x00: /* TDR */
2211 s->txbuf = value; /* TD */
2212 if ((s->setup[4] & (1 << 2)) && /* AUTO_TX_EN */
2213 ((s->setup[4] & (1 << 3)) || /* CS_TOGGLE_TX_EN */
2214 (s->control & (1 << 12)))) { /* CS_CMD */
2215 s->control |= 1 << 14; /* CSRB */
2216 omap_uwire_transfer_start(s);
2217 }
2218 break;
2219
2220 case 0x04: /* CSR */
2221 s->control = value & 0x1fff;
2222 if (value & (1 << 13)) /* START */
2223 omap_uwire_transfer_start(s);
2224 break;
2225
2226 case 0x08: /* SR1 */
2227 s->setup[0] = value & 0x003f;
2228 break;
2229
2230 case 0x0c: /* SR2 */
2231 s->setup[1] = value & 0x0fc0;
2232 break;
2233
2234 case 0x10: /* SR3 */
2235 s->setup[2] = value & 0x0003;
2236 break;
2237
2238 case 0x14: /* SR4 */
2239 s->setup[3] = value & 0x0001;
2240 break;
2241
2242 case 0x18: /* SR5 */
2243 s->setup[4] = value & 0x000f;
2244 break;
2245
2246 default:
2247 OMAP_BAD_REG(addr);
2248 return;
2249 }
2250 }
2251
2252 static const MemoryRegionOps omap_uwire_ops = {
2253 .read = omap_uwire_read,
2254 .write = omap_uwire_write,
2255 .endianness = DEVICE_NATIVE_ENDIAN,
2256 };
2257
2258 static void omap_uwire_reset(struct omap_uwire_s *s)
2259 {
2260 s->control = 0;
2261 s->setup[0] = 0;
2262 s->setup[1] = 0;
2263 s->setup[2] = 0;
2264 s->setup[3] = 0;
2265 s->setup[4] = 0;
2266 }
2267
2268 static struct omap_uwire_s *omap_uwire_init(MemoryRegion *system_memory,
2269 hwaddr base,
2270 qemu_irq txirq, qemu_irq rxirq,
2271 qemu_irq dma,
2272 omap_clk clk)
2273 {
2274 struct omap_uwire_s *s = (struct omap_uwire_s *)
2275 g_malloc0(sizeof(struct omap_uwire_s));
2276
2277 s->txirq = txirq;
2278 s->rxirq = rxirq;
2279 s->txdrq = dma;
2280 omap_uwire_reset(s);
2281
2282 memory_region_init_io(&s->iomem, &omap_uwire_ops, s, "omap-uwire", 0x800);
2283 memory_region_add_subregion(system_memory, base, &s->iomem);
2284
2285 return s;
2286 }
2287
2288 void omap_uwire_attach(struct omap_uwire_s *s,
2289 uWireSlave *slave, int chipselect)
2290 {
2291 if (chipselect < 0 || chipselect > 3) {
2292 fprintf(stderr, "%s: Bad chipselect %i\n", __FUNCTION__, chipselect);
2293 exit(-1);
2294 }
2295
2296 s->chip[chipselect] = slave;
2297 }
2298
2299 /* Pseudonoise Pulse-Width Light Modulator */
2300 struct omap_pwl_s {
2301 MemoryRegion iomem;
2302 uint8_t output;
2303 uint8_t level;
2304 uint8_t enable;
2305 int clk;
2306 };
2307
2308 static void omap_pwl_update(struct omap_pwl_s *s)
2309 {
2310 int output = (s->clk && s->enable) ? s->level : 0;
2311
2312 if (output != s->output) {
2313 s->output = output;
2314 printf("%s: Backlight now at %i/256\n", __FUNCTION__, output);
2315 }
2316 }
2317
2318 static uint64_t omap_pwl_read(void *opaque, hwaddr addr,
2319 unsigned size)
2320 {
2321 struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2322 int offset = addr & OMAP_MPUI_REG_MASK;
2323
2324 if (size != 1) {
2325 return omap_badwidth_read8(opaque, addr);
2326 }
2327
2328 switch (offset) {
2329 case 0x00: /* PWL_LEVEL */
2330 return s->level;
2331 case 0x04: /* PWL_CTRL */
2332 return s->enable;
2333 }
2334 OMAP_BAD_REG(addr);
2335 return 0;
2336 }
2337
2338 static void omap_pwl_write(void *opaque, hwaddr addr,
2339 uint64_t value, unsigned size)
2340 {
2341 struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2342 int offset = addr & OMAP_MPUI_REG_MASK;
2343
2344 if (size != 1) {
2345 return omap_badwidth_write8(opaque, addr, value);
2346 }
2347
2348 switch (offset) {
2349 case 0x00: /* PWL_LEVEL */
2350 s->level = value;
2351 omap_pwl_update(s);
2352 break;
2353 case 0x04: /* PWL_CTRL */
2354 s->enable = value & 1;
2355 omap_pwl_update(s);
2356 break;
2357 default:
2358 OMAP_BAD_REG(addr);
2359 return;
2360 }
2361 }
2362
2363 static const MemoryRegionOps omap_pwl_ops = {
2364 .read = omap_pwl_read,
2365 .write = omap_pwl_write,
2366 .endianness = DEVICE_NATIVE_ENDIAN,
2367 };
2368
2369 static void omap_pwl_reset(struct omap_pwl_s *s)
2370 {
2371 s->output = 0;
2372 s->level = 0;
2373 s->enable = 0;
2374 s->clk = 1;
2375 omap_pwl_update(s);
2376 }
2377
2378 static void omap_pwl_clk_update(void *opaque, int line, int on)
2379 {
2380 struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2381
2382 s->clk = on;
2383 omap_pwl_update(s);
2384 }
2385
2386 static struct omap_pwl_s *omap_pwl_init(MemoryRegion *system_memory,
2387 hwaddr base,
2388 omap_clk clk)
2389 {
2390 struct omap_pwl_s *s = g_malloc0(sizeof(*s));
2391
2392 omap_pwl_reset(s);
2393
2394 memory_region_init_io(&s->iomem, &omap_pwl_ops, s,
2395 "omap-pwl", 0x800);
2396 memory_region_add_subregion(system_memory, base, &s->iomem);
2397
2398 omap_clk_adduser(clk, qemu_allocate_irqs(omap_pwl_clk_update, s, 1)[0]);
2399 return s;
2400 }
2401
2402 /* Pulse-Width Tone module */
2403 struct omap_pwt_s {
2404 MemoryRegion iomem;
2405 uint8_t frc;
2406 uint8_t vrc;
2407 uint8_t gcr;
2408 omap_clk clk;
2409 };
2410
2411 static uint64_t omap_pwt_read(void *opaque, hwaddr addr,
2412 unsigned size)
2413 {
2414 struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
2415 int offset = addr & OMAP_MPUI_REG_MASK;
2416
2417 if (size != 1) {
2418 return omap_badwidth_read8(opaque, addr);
2419 }
2420
2421 switch (offset) {
2422 case 0x00: /* FRC */
2423 return s->frc;
2424 case 0x04: /* VCR */
2425 return s->vrc;
2426 case 0x08: /* GCR */
2427 return s->gcr;
2428 }
2429 OMAP_BAD_REG(addr);
2430 return 0;
2431 }
2432
2433 static void omap_pwt_write(void *opaque, hwaddr addr,
2434 uint64_t value, unsigned size)
2435 {
2436 struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
2437 int offset = addr & OMAP_MPUI_REG_MASK;
2438
2439 if (size != 1) {
2440 return omap_badwidth_write8(opaque, addr, value);
2441 }
2442
2443 switch (offset) {
2444 case 0x00: /* FRC */
2445 s->frc = value & 0x3f;
2446 break;
2447 case 0x04: /* VRC */
2448 if ((value ^ s->vrc) & 1) {
2449 if (value & 1)
2450 printf("%s: %iHz buzz on\n", __FUNCTION__, (int)
2451 /* 1.5 MHz from a 12-MHz or 13-MHz PWT_CLK */
2452 ((omap_clk_getrate(s->clk) >> 3) /
2453 /* Pre-multiplexer divider */
2454 ((s->gcr & 2) ? 1 : 154) /
2455 /* Octave multiplexer */
2456 (2 << (value & 3)) *
2457 /* 101/107 divider */
2458 ((value & (1 << 2)) ? 101 : 107) *
2459 /* 49/55 divider */
2460 ((value & (1 << 3)) ? 49 : 55) *
2461 /* 50/63 divider */
2462 ((value & (1 << 4)) ? 50 : 63) *
2463 /* 80/127 divider */
2464 ((value & (1 << 5)) ? 80 : 127) /
2465 (107 * 55 * 63 * 127)));
2466 else
2467 printf("%s: silence!\n", __FUNCTION__);
2468 }
2469 s->vrc = value & 0x7f;
2470 break;
2471 case 0x08: /* GCR */
2472 s->gcr = value & 3;
2473 break;
2474 default:
2475 OMAP_BAD_REG(addr);
2476 return;
2477 }
2478 }
2479
2480 static const MemoryRegionOps omap_pwt_ops = {
2481 .read =omap_pwt_read,
2482 .write = omap_pwt_write,
2483 .endianness = DEVICE_NATIVE_ENDIAN,
2484 };
2485
2486 static void omap_pwt_reset(struct omap_pwt_s *s)
2487 {
2488 s->frc = 0;
2489 s->vrc = 0;
2490 s->gcr = 0;
2491 }
2492
2493 static struct omap_pwt_s *omap_pwt_init(MemoryRegion *system_memory,
2494 hwaddr base,
2495 omap_clk clk)
2496 {
2497 struct omap_pwt_s *s = g_malloc0(sizeof(*s));
2498 s->clk = clk;
2499 omap_pwt_reset(s);
2500
2501 memory_region_init_io(&s->iomem, &omap_pwt_ops, s,
2502 "omap-pwt", 0x800);
2503 memory_region_add_subregion(system_memory, base, &s->iomem);
2504 return s;
2505 }
2506
2507 /* Real-time Clock module */
2508 struct omap_rtc_s {
2509 MemoryRegion iomem;
2510 qemu_irq irq;
2511 qemu_irq alarm;
2512 QEMUTimer *clk;
2513
2514 uint8_t interrupts;
2515 uint8_t status;
2516 int16_t comp_reg;
2517 int running;
2518 int pm_am;
2519 int auto_comp;
2520 int round;
2521 struct tm alarm_tm;
2522 time_t alarm_ti;
2523
2524 struct tm current_tm;
2525 time_t ti;
2526 uint64_t tick;
2527 };
2528
2529 static void omap_rtc_interrupts_update(struct omap_rtc_s *s)
2530 {
2531 /* s->alarm is level-triggered */
2532 qemu_set_irq(s->alarm, (s->status >> 6) & 1);
2533 }
2534
2535 static void omap_rtc_alarm_update(struct omap_rtc_s *s)
2536 {
2537 s->alarm_ti = mktimegm(&s->alarm_tm);
2538 if (s->alarm_ti == -1)
2539 printf("%s: conversion failed\n", __FUNCTION__);
2540 }
2541
2542 static uint64_t omap_rtc_read(void *opaque, hwaddr addr,
2543 unsigned size)
2544 {
2545 struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2546 int offset = addr & OMAP_MPUI_REG_MASK;
2547 uint8_t i;
2548
2549 if (size != 1) {
2550 return omap_badwidth_read8(opaque, addr);
2551 }
2552
2553 switch (offset) {
2554 case 0x00: /* SECONDS_REG */
2555 return to_bcd(s->current_tm.tm_sec);
2556
2557 case 0x04: /* MINUTES_REG */
2558 return to_bcd(s->current_tm.tm_min);
2559
2560 case 0x08: /* HOURS_REG */
2561 if (s->pm_am)
2562 return ((s->current_tm.tm_hour > 11) << 7) |
2563 to_bcd(((s->current_tm.tm_hour - 1) % 12) + 1);
2564 else
2565 return to_bcd(s->current_tm.tm_hour);
2566
2567 case 0x0c: /* DAYS_REG */
2568 return to_bcd(s->current_tm.tm_mday);
2569
2570 case 0x10: /* MONTHS_REG */
2571 return to_bcd(s->current_tm.tm_mon + 1);
2572
2573 case 0x14: /* YEARS_REG */
2574 return to_bcd(s->current_tm.tm_year % 100);
2575
2576 case 0x18: /* WEEK_REG */
2577 return s->current_tm.tm_wday;
2578
2579 case 0x20: /* ALARM_SECONDS_REG */
2580 return to_bcd(s->alarm_tm.tm_sec);
2581
2582 case 0x24: /* ALARM_MINUTES_REG */
2583 return to_bcd(s->alarm_tm.tm_min);
2584
2585 case 0x28: /* ALARM_HOURS_REG */
2586 if (s->pm_am)
2587 return ((s->alarm_tm.tm_hour > 11) << 7) |
2588 to_bcd(((s->alarm_tm.tm_hour - 1) % 12) + 1);
2589 else
2590 return to_bcd(s->alarm_tm.tm_hour);
2591
2592 case 0x2c: /* ALARM_DAYS_REG */
2593 return to_bcd(s->alarm_tm.tm_mday);
2594
2595 case 0x30: /* ALARM_MONTHS_REG */
2596 return to_bcd(s->alarm_tm.tm_mon + 1);
2597
2598 case 0x34: /* ALARM_YEARS_REG */
2599 return to_bcd(s->alarm_tm.tm_year % 100);
2600
2601 case 0x40: /* RTC_CTRL_REG */
2602 return (s->pm_am << 3) | (s->auto_comp << 2) |
2603 (s->round << 1) | s->running;
2604
2605 case 0x44: /* RTC_STATUS_REG */
2606 i = s->status;
2607 s->status &= ~0x3d;
2608 return i;
2609
2610 case 0x48: /* RTC_INTERRUPTS_REG */
2611 return s->interrupts;
2612
2613 case 0x4c: /* RTC_COMP_LSB_REG */
2614 return ((uint16_t) s->comp_reg) & 0xff;
2615
2616 case 0x50: /* RTC_COMP_MSB_REG */
2617 return ((uint16_t) s->comp_reg) >> 8;
2618 }
2619
2620 OMAP_BAD_REG(addr);
2621 return 0;
2622 }
2623
2624 static void omap_rtc_write(void *opaque, hwaddr addr,
2625 uint64_t value, unsigned size)
2626 {
2627 struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2628 int offset = addr & OMAP_MPUI_REG_MASK;
2629 struct tm new_tm;
2630 time_t ti[2];
2631
2632 if (size != 1) {
2633 return omap_badwidth_write8(opaque, addr, value);
2634 }
2635
2636 switch (offset) {
2637 case 0x00: /* SECONDS_REG */
2638 #ifdef ALMDEBUG
2639 printf("RTC SEC_REG <-- %02x\n", value);
2640 #endif
2641 s->ti -= s->current_tm.tm_sec;
2642 s->ti += from_bcd(value);
2643 return;
2644
2645 case 0x04: /* MINUTES_REG */
2646 #ifdef ALMDEBUG
2647 printf("RTC MIN_REG <-- %02x\n", value);
2648 #endif
2649 s->ti -= s->current_tm.tm_min * 60;
2650 s->ti += from_bcd(value) * 60;
2651 return;
2652
2653 case 0x08: /* HOURS_REG */
2654 #ifdef ALMDEBUG
2655 printf("RTC HRS_REG <-- %02x\n", value);
2656 #endif
2657 s->ti -= s->current_tm.tm_hour * 3600;
2658 if (s->pm_am) {
2659 s->ti += (from_bcd(value & 0x3f) & 12) * 3600;
2660 s->ti += ((value >> 7) & 1) * 43200;
2661 } else
2662 s->ti += from_bcd(value & 0x3f) * 3600;
2663 return;
2664
2665 case 0x0c: /* DAYS_REG */
2666 #ifdef ALMDEBUG
2667 printf("RTC DAY_REG <-- %02x\n", value);
2668 #endif
2669 s->ti -= s->current_tm.tm_mday * 86400;
2670 s->ti += from_bcd(value) * 86400;
2671 return;
2672
2673 case 0x10: /* MONTHS_REG */
2674 #ifdef ALMDEBUG
2675 printf("RTC MTH_REG <-- %02x\n", value);
2676 #endif
2677 memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2678 new_tm.tm_mon = from_bcd(value);
2679 ti[0] = mktimegm(&s->current_tm);
2680 ti[1] = mktimegm(&new_tm);
2681
2682 if (ti[0] != -1 && ti[1] != -1) {
2683 s->ti -= ti[0];
2684 s->ti += ti[1];
2685 } else {
2686 /* A less accurate version */
2687 s->ti -= s->current_tm.tm_mon * 2592000;
2688 s->ti += from_bcd(value) * 2592000;
2689 }
2690 return;
2691
2692 case 0x14: /* YEARS_REG */
2693 #ifdef ALMDEBUG
2694 printf("RTC YRS_REG <-- %02x\n", value);
2695 #endif
2696 memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2697 new_tm.tm_year += from_bcd(value) - (new_tm.tm_year % 100);
2698 ti[0] = mktimegm(&s->current_tm);
2699 ti[1] = mktimegm(&new_tm);
2700
2701 if (ti[0] != -1 && ti[1] != -1) {
2702 s->ti -= ti[0];
2703 s->ti += ti[1];
2704 } else {
2705 /* A less accurate version */
2706 s->ti -= (s->current_tm.tm_year % 100) * 31536000;
2707 s->ti += from_bcd(value) * 31536000;
2708 }
2709 return;
2710
2711 case 0x18: /* WEEK_REG */
2712 return; /* Ignored */
2713
2714 case 0x20: /* ALARM_SECONDS_REG */
2715 #ifdef ALMDEBUG
2716 printf("ALM SEC_REG <-- %02x\n", value);
2717 #endif
2718 s->alarm_tm.tm_sec = from_bcd(value);
2719 omap_rtc_alarm_update(s);
2720 return;
2721
2722 case 0x24: /* ALARM_MINUTES_REG */
2723 #ifdef ALMDEBUG
2724 printf("ALM MIN_REG <-- %02x\n", value);
2725 #endif
2726 s->alarm_tm.tm_min = from_bcd(value);
2727 omap_rtc_alarm_update(s);
2728 return;
2729
2730 case 0x28: /* ALARM_HOURS_REG */
2731 #ifdef ALMDEBUG
2732 printf("ALM HRS_REG <-- %02x\n", value);
2733 #endif
2734 if (s->pm_am)
2735 s->alarm_tm.tm_hour =
2736 ((from_bcd(value & 0x3f)) % 12) +
2737 ((value >> 7) & 1) * 12;
2738 else
2739 s->alarm_tm.tm_hour = from_bcd(value);
2740 omap_rtc_alarm_update(s);
2741 return;
2742
2743 case 0x2c: /* ALARM_DAYS_REG */
2744 #ifdef ALMDEBUG
2745 printf("ALM DAY_REG <-- %02x\n", value);
2746 #endif
2747 s->alarm_tm.tm_mday = from_bcd(value);
2748 omap_rtc_alarm_update(s);
2749 return;
2750
2751 case 0x30: /* ALARM_MONTHS_REG */
2752 #ifdef ALMDEBUG
2753 printf("ALM MON_REG <-- %02x\n", value);
2754 #endif
2755 s->alarm_tm.tm_mon = from_bcd(value);
2756 omap_rtc_alarm_update(s);
2757 return;
2758
2759 case 0x34: /* ALARM_YEARS_REG */
2760 #ifdef ALMDEBUG
2761 printf("ALM YRS_REG <-- %02x\n", value);
2762 #endif
2763 s->alarm_tm.tm_year = from_bcd(value);
2764 omap_rtc_alarm_update(s);
2765 return;
2766
2767 case 0x40: /* RTC_CTRL_REG */
2768 #ifdef ALMDEBUG
2769 printf("RTC CONTROL <-- %02x\n", value);
2770 #endif
2771 s->pm_am = (value >> 3) & 1;
2772 s->auto_comp = (value >> 2) & 1;
2773 s->round = (value >> 1) & 1;
2774 s->running = value & 1;
2775 s->status &= 0xfd;
2776 s->status |= s->running << 1;
2777 return;
2778
2779 case 0x44: /* RTC_STATUS_REG */
2780 #ifdef ALMDEBUG
2781 printf("RTC STATUSL <-- %02x\n", value);
2782 #endif
2783 s->status &= ~((value & 0xc0) ^ 0x80);
2784 omap_rtc_interrupts_update(s);
2785 return;
2786
2787 case 0x48: /* RTC_INTERRUPTS_REG */
2788 #ifdef ALMDEBUG
2789 printf("RTC INTRS <-- %02x\n", value);
2790 #endif
2791 s->interrupts = value;
2792 return;
2793
2794 case 0x4c: /* RTC_COMP_LSB_REG */
2795 #ifdef ALMDEBUG
2796 printf("RTC COMPLSB <-- %02x\n", value);
2797 #endif
2798 s->comp_reg &= 0xff00;
2799 s->comp_reg |= 0x00ff & value;
2800 return;
2801
2802 case 0x50: /* RTC_COMP_MSB_REG */
2803 #ifdef ALMDEBUG
2804 printf("RTC COMPMSB <-- %02x\n", value);
2805 #endif
2806 s->comp_reg &= 0x00ff;
2807 s->comp_reg |= 0xff00 & (value << 8);
2808 return;
2809
2810 default:
2811 OMAP_BAD_REG(addr);
2812 return;
2813 }
2814 }
2815
2816 static const MemoryRegionOps omap_rtc_ops = {
2817 .read = omap_rtc_read,
2818 .write = omap_rtc_write,
2819 .endianness = DEVICE_NATIVE_ENDIAN,
2820 };
2821
2822 static void omap_rtc_tick(void *opaque)
2823 {
2824 struct omap_rtc_s *s = opaque;
2825
2826 if (s->round) {
2827 /* Round to nearest full minute. */
2828 if (s->current_tm.tm_sec < 30)
2829 s->ti -= s->current_tm.tm_sec;
2830 else
2831 s->ti += 60 - s->current_tm.tm_sec;
2832
2833 s->round = 0;
2834 }
2835
2836 localtime_r(&s->ti, &s->current_tm);
2837
2838 if ((s->interrupts & 0x08) && s->ti == s->alarm_ti) {
2839 s->status |= 0x40;
2840 omap_rtc_interrupts_update(s);
2841 }
2842
2843 if (s->interrupts & 0x04)
2844 switch (s->interrupts & 3) {
2845 case 0:
2846 s->status |= 0x04;
2847 qemu_irq_pulse(s->irq);
2848 break;
2849 case 1:
2850 if (s->current_tm.tm_sec)
2851 break;
2852 s->status |= 0x08;
2853 qemu_irq_pulse(s->irq);
2854 break;
2855 case 2:
2856 if (s->current_tm.tm_sec || s->current_tm.tm_min)
2857 break;
2858 s->status |= 0x10;
2859 qemu_irq_pulse(s->irq);
2860 break;
2861 case 3:
2862 if (s->current_tm.tm_sec ||
2863 s->current_tm.tm_min || s->current_tm.tm_hour)
2864 break;
2865 s->status |= 0x20;
2866 qemu_irq_pulse(s->irq);
2867 break;
2868 }
2869
2870 /* Move on */
2871 if (s->running)
2872 s->ti ++;
2873 s->tick += 1000;
2874
2875 /*
2876 * Every full hour add a rough approximation of the compensation
2877 * register to the 32kHz Timer (which drives the RTC) value.
2878 */
2879 if (s->auto_comp && !s->current_tm.tm_sec && !s->current_tm.tm_min)
2880 s->tick += s->comp_reg * 1000 / 32768;
2881
2882 qemu_mod_timer(s->clk, s->tick);
2883 }
2884
2885 static void omap_rtc_reset(struct omap_rtc_s *s)
2886 {
2887 struct tm tm;
2888
2889 s->interrupts = 0;
2890 s->comp_reg = 0;
2891 s->running = 0;
2892 s->pm_am = 0;
2893 s->auto_comp = 0;
2894 s->round = 0;
2895 s->tick = qemu_get_clock_ms(rtc_clock);
2896 memset(&s->alarm_tm, 0, sizeof(s->alarm_tm));
2897 s->alarm_tm.tm_mday = 0x01;
2898 s->status = 1 << 7;
2899 qemu_get_timedate(&tm, 0);
2900 s->ti = mktimegm(&tm);
2901
2902 omap_rtc_alarm_update(s);
2903 omap_rtc_tick(s);
2904 }
2905
2906 static struct omap_rtc_s *omap_rtc_init(MemoryRegion *system_memory,
2907 hwaddr base,
2908 qemu_irq timerirq, qemu_irq alarmirq,
2909 omap_clk clk)
2910 {
2911 struct omap_rtc_s *s = (struct omap_rtc_s *)
2912 g_malloc0(sizeof(struct omap_rtc_s));
2913
2914 s->irq = timerirq;
2915 s->alarm = alarmirq;
2916 s->clk = qemu_new_timer_ms(rtc_clock, omap_rtc_tick, s);
2917
2918 omap_rtc_reset(s);
2919
2920 memory_region_init_io(&s->iomem, &omap_rtc_ops, s,
2921 "omap-rtc", 0x800);
2922 memory_region_add_subregion(system_memory, base, &s->iomem);
2923
2924 return s;
2925 }
2926
2927 /* Multi-channel Buffered Serial Port interfaces */
2928 struct omap_mcbsp_s {
2929 MemoryRegion iomem;
2930 qemu_irq txirq;
2931 qemu_irq rxirq;
2932 qemu_irq txdrq;
2933 qemu_irq rxdrq;
2934
2935 uint16_t spcr[2];
2936 uint16_t rcr[2];
2937 uint16_t xcr[2];
2938 uint16_t srgr[2];
2939 uint16_t mcr[2];
2940 uint16_t pcr;
2941 uint16_t rcer[8];
2942 uint16_t xcer[8];
2943 int tx_rate;
2944 int rx_rate;
2945 int tx_req;
2946 int rx_req;
2947
2948 I2SCodec *codec;
2949 QEMUTimer *source_timer;
2950 QEMUTimer *sink_timer;
2951 };
2952
2953 static void omap_mcbsp_intr_update(struct omap_mcbsp_s *s)
2954 {
2955 int irq;
2956
2957 switch ((s->spcr[0] >> 4) & 3) { /* RINTM */
2958 case 0:
2959 irq = (s->spcr[0] >> 1) & 1; /* RRDY */
2960 break;
2961 case 3:
2962 irq = (s->spcr[0] >> 3) & 1; /* RSYNCERR */
2963 break;
2964 default:
2965 irq = 0;
2966 break;
2967 }
2968
2969 if (irq)
2970 qemu_irq_pulse(s->rxirq);
2971
2972 switch ((s->spcr[1] >> 4) & 3) { /* XINTM */
2973 case 0:
2974 irq = (s->spcr[1] >> 1) & 1; /* XRDY */
2975 break;
2976 case 3:
2977 irq = (s->spcr[1] >> 3) & 1; /* XSYNCERR */
2978 break;
2979 default:
2980 irq = 0;
2981 break;
2982 }
2983
2984 if (irq)
2985 qemu_irq_pulse(s->txirq);
2986 }
2987
2988 static void omap_mcbsp_rx_newdata(struct omap_mcbsp_s *s)
2989 {
2990 if ((s->spcr[0] >> 1) & 1) /* RRDY */
2991 s->spcr[0] |= 1 << 2; /* RFULL */
2992 s->spcr[0] |= 1 << 1; /* RRDY */
2993 qemu_irq_raise(s->rxdrq);
2994 omap_mcbsp_intr_update(s);
2995 }
2996
2997 static void omap_mcbsp_source_tick(void *opaque)
2998 {
2999 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3000 static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3001
3002 if (!s->rx_rate)
3003 return;
3004 if (s->rx_req)
3005 printf("%s: Rx FIFO overrun\n", __FUNCTION__);
3006
3007 s->rx_req = s->rx_rate << bps[(s->rcr[0] >> 5) & 7];
3008
3009 omap_mcbsp_rx_newdata(s);
3010 qemu_mod_timer(s->source_timer, qemu_get_clock_ns(vm_clock) +
3011 get_ticks_per_sec());
3012 }
3013
3014 static void omap_mcbsp_rx_start(struct omap_mcbsp_s *s)
3015 {
3016 if (!s->codec || !s->codec->rts)
3017 omap_mcbsp_source_tick(s);
3018 else if (s->codec->in.len) {
3019 s->rx_req = s->codec->in.len;
3020 omap_mcbsp_rx_newdata(s);
3021 }
3022 }
3023
3024 static void omap_mcbsp_rx_stop(struct omap_mcbsp_s *s)
3025 {
3026 qemu_del_timer(s->source_timer);
3027 }
3028
3029 static void omap_mcbsp_rx_done(struct omap_mcbsp_s *s)
3030 {
3031 s->spcr[0] &= ~(1 << 1); /* RRDY */
3032 qemu_irq_lower(s->rxdrq);
3033 omap_mcbsp_intr_update(s);
3034 }
3035
3036 static void omap_mcbsp_tx_newdata(struct omap_mcbsp_s *s)
3037 {
3038 s->spcr[1] |= 1 << 1; /* XRDY */
3039 qemu_irq_raise(s->txdrq);
3040 omap_mcbsp_intr_update(s);
3041 }
3042
3043 static void omap_mcbsp_sink_tick(void *opaque)
3044 {
3045 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3046 static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3047
3048 if (!s->tx_rate)
3049 return;
3050 if (s->tx_req)
3051 printf("%s: Tx FIFO underrun\n", __FUNCTION__);
3052
3053 s->tx_req = s->tx_rate << bps[(s->xcr[0] >> 5) & 7];
3054
3055 omap_mcbsp_tx_newdata(s);
3056 qemu_mod_timer(s->sink_timer, qemu_get_clock_ns(vm_clock) +
3057 get_ticks_per_sec());
3058 }
3059
3060 static void omap_mcbsp_tx_start(struct omap_mcbsp_s *s)
3061 {
3062 if (!s->codec || !s->codec->cts)
3063 omap_mcbsp_sink_tick(s);
3064 else if (s->codec->out.size) {
3065 s->tx_req = s->codec->out.size;
3066 omap_mcbsp_tx_newdata(s);
3067 }
3068 }
3069
3070 static void omap_mcbsp_tx_done(struct omap_mcbsp_s *s)
3071 {
3072 s->spcr[1] &= ~(1 << 1); /* XRDY */
3073 qemu_irq_lower(s->txdrq);
3074 omap_mcbsp_intr_update(s);
3075 if (s->codec && s->codec->cts)
3076 s->codec->tx_swallow(s->codec->opaque);
3077 }
3078
3079 static void omap_mcbsp_tx_stop(struct omap_mcbsp_s *s)
3080 {
3081 s->tx_req = 0;
3082 omap_mcbsp_tx_done(s);
3083 qemu_del_timer(s->sink_timer);
3084 }
3085
3086 static void omap_mcbsp_req_update(struct omap_mcbsp_s *s)
3087 {
3088 int prev_rx_rate, prev_tx_rate;
3089 int rx_rate = 0, tx_rate = 0;
3090 int cpu_rate = 1500000; /* XXX */
3091
3092 /* TODO: check CLKSTP bit */
3093 if (s->spcr[1] & (1 << 6)) { /* GRST */
3094 if (s->spcr[0] & (1 << 0)) { /* RRST */
3095 if ((s->srgr[1] & (1 << 13)) && /* CLKSM */
3096 (s->pcr & (1 << 8))) { /* CLKRM */
3097 if (~s->pcr & (1 << 7)) /* SCLKME */
3098 rx_rate = cpu_rate /
3099 ((s->srgr[0] & 0xff) + 1); /* CLKGDV */
3100 } else
3101 if (s->codec)
3102 rx_rate = s->codec->rx_rate;
3103 }
3104
3105 if (s->spcr[1] & (1 << 0)) { /* XRST */
3106 if ((s->srgr[1] & (1 << 13)) && /* CLKSM */
3107 (s->pcr & (1 << 9))) { /* CLKXM */
3108 if (~s->pcr & (1 << 7)) /* SCLKME */
3109 tx_rate = cpu_rate /
3110 ((s->srgr[0] & 0xff) + 1); /* CLKGDV */
3111 } else
3112 if (s->codec)
3113 tx_rate = s->codec->tx_rate;
3114 }
3115 }
3116 prev_tx_rate = s->tx_rate;
3117 prev_rx_rate = s->rx_rate;
3118 s->tx_rate = tx_rate;
3119 s->rx_rate = rx_rate;
3120
3121 if (s->codec)
3122 s->codec->set_rate(s->codec->opaque, rx_rate, tx_rate);
3123
3124 if (!prev_tx_rate && tx_rate)
3125 omap_mcbsp_tx_start(s);
3126 else if (s->tx_rate && !tx_rate)
3127 omap_mcbsp_tx_stop(s);
3128
3129 if (!prev_rx_rate && rx_rate)
3130 omap_mcbsp_rx_start(s);
3131 else if (prev_tx_rate && !tx_rate)
3132 omap_mcbsp_rx_stop(s);
3133 }
3134
3135 static uint64_t omap_mcbsp_read(void *opaque, hwaddr addr,
3136 unsigned size)
3137 {
3138 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3139 int offset = addr & OMAP_MPUI_REG_MASK;
3140 uint16_t ret;
3141
3142 if (size != 2) {
3143 return omap_badwidth_read16(opaque, addr);
3144 }
3145
3146 switch (offset) {
3147 case 0x00: /* DRR2 */
3148 if (((s->rcr[0] >> 5) & 7) < 3) /* RWDLEN1 */
3149 return 0x0000;
3150 /* Fall through. */
3151 case 0x02: /* DRR1 */
3152 if (s->rx_req < 2) {
3153 printf("%s: Rx FIFO underrun\n", __FUNCTION__);
3154 omap_mcbsp_rx_done(s);
3155 } else {
3156 s->tx_req -= 2;
3157 if (s->codec && s->codec->in.len >= 2) {
3158 ret = s->codec->in.fifo[s->codec->in.start ++] << 8;
3159 ret |= s->codec->in.fifo[s->codec->in.start ++];
3160 s->codec->in.len -= 2;
3161 } else
3162 ret = 0x0000;
3163 if (!s->tx_req)
3164 omap_mcbsp_rx_done(s);
3165 return ret;
3166 }
3167 return 0x0000;
3168
3169 case 0x04: /* DXR2 */
3170 case 0x06: /* DXR1 */
3171 return 0x0000;
3172
3173 case 0x08: /* SPCR2 */
3174 return s->spcr[1];
3175 case 0x0a: /* SPCR1 */
3176 return s->spcr[0];
3177 case 0x0c: /* RCR2 */
3178 return s->rcr[1];
3179 case 0x0e: /* RCR1 */
3180 return s->rcr[0];
3181 case 0x10: /* XCR2 */
3182 return s->xcr[1];
3183 case 0x12: /* XCR1 */
3184 return s->xcr[0];
3185 case 0x14: /* SRGR2 */
3186 return s->srgr[1];
3187 case 0x16: /* SRGR1 */
3188 return s->srgr[0];
3189 case 0x18: /* MCR2 */
3190 return s->mcr[1];
3191 case 0x1a: /* MCR1 */
3192 return s->mcr[0];
3193 case 0x1c: /* RCERA */
3194 return s->rcer[0];
3195 case 0x1e: /* RCERB */
3196 return s->rcer[1];
3197 case 0x20: /* XCERA */
3198 return s->xcer[0];
3199 case 0x22: /* XCERB */
3200 return s->xcer[1];
3201 case 0x24: /* PCR0 */
3202 return s->pcr;
3203 case 0x26: /* RCERC */
3204 return s->rcer[2];
3205 case 0x28: /* RCERD */
3206 return s->rcer[3];
3207 case 0x2a: /* XCERC */
3208 return s->xcer[2];
3209 case 0x2c: /* XCERD */
3210 return s->xcer[3];
3211 case 0x2e: /* RCERE */
3212 return s->rcer[4];
3213 case 0x30: /* RCERF */
3214 return s->rcer[5];
3215 case 0x32: /* XCERE */
3216 return s->xcer[4];
3217 case 0x34: /* XCERF */
3218 return s->xcer[5];
3219 case 0x36: /* RCERG */
3220 return s->rcer[6];
3221 case 0x38: /* RCERH */
3222 return s->rcer[7];
3223 case 0x3a: /* XCERG */
3224 return s->xcer[6];
3225 case 0x3c: /* XCERH */
3226 return s->xcer[7];
3227 }
3228
3229 OMAP_BAD_REG(addr);
3230 return 0;
3231 }
3232
3233 static void omap_mcbsp_writeh(void *opaque, hwaddr addr,
3234 uint32_t value)
3235 {
3236 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3237 int offset = addr & OMAP_MPUI_REG_MASK;
3238
3239 switch (offset) {
3240 case 0x00: /* DRR2 */
3241 case 0x02: /* DRR1 */
3242 OMAP_RO_REG(addr);
3243 return;
3244
3245 case 0x04: /* DXR2 */
3246 if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */
3247 return;
3248 /* Fall through. */
3249 case 0x06: /* DXR1 */
3250 if (s->tx_req > 1) {
3251 s->tx_req -= 2;
3252 if (s->codec && s->codec->cts) {
3253 s->codec->out.fifo[s->codec->out.len ++] = (value >> 8) & 0xff;
3254 s->codec->out.fifo[s->codec->out.len ++] = (value >> 0) & 0xff;
3255 }
3256 if (s->tx_req < 2)
3257 omap_mcbsp_tx_done(s);
3258 } else
3259 printf("%s: Tx FIFO overrun\n", __FUNCTION__);
3260 return;
3261
3262 case 0x08: /* SPCR2 */
3263 s->spcr[1] &= 0x0002;
3264 s->spcr[1] |= 0x03f9 & value;
3265 s->spcr[1] |= 0x0004 & (value << 2); /* XEMPTY := XRST */
3266 if (~value & 1) /* XRST */
3267 s->spcr[1] &= ~6;
3268 omap_mcbsp_req_update(s);
3269 return;
3270 case 0x0a: /* SPCR1 */
3271 s->spcr[0] &= 0x0006;
3272 s->spcr[0] |= 0xf8f9 & value;
3273 if (value & (1 << 15)) /* DLB */
3274 printf("%s: Digital Loopback mode enable attempt\n", __FUNCTION__);
3275 if (~value & 1) { /* RRST */
3276 s->spcr[0] &= ~6;
3277 s->rx_req = 0;
3278 omap_mcbsp_rx_done(s);
3279 }
3280 omap_mcbsp_req_update(s);
3281 return;
3282
3283 case 0x0c: /* RCR2 */
3284 s->rcr[1] = value & 0xffff;
3285 return;
3286 case 0x0e: /* RCR1 */
3287 s->rcr[0] = value & 0x7fe0;
3288 return;
3289 case 0x10: /* XCR2 */
3290 s->xcr[1] = value & 0xffff;
3291 return;
3292 case 0x12: /* XCR1 */
3293 s->xcr[0] = value & 0x7fe0;
3294 return;
3295 case 0x14: /* SRGR2 */
3296 s->srgr[1] = value & 0xffff;
3297 omap_mcbsp_req_update(s);
3298 return;
3299 case 0x16: /* SRGR1 */
3300 s->srgr[0] = value & 0xffff;
3301 omap_mcbsp_req_update(s);
3302 return;
3303 case 0x18: /* MCR2 */
3304 s->mcr[1] = value & 0x03e3;
3305 if (value & 3) /* XMCM */
3306 printf("%s: Tx channel selection mode enable attempt\n",
3307 __FUNCTION__);
3308 return;
3309 case 0x1a: /* MCR1 */
3310 s->mcr[0] = value & 0x03e1;
3311 if (value & 1) /* RMCM */
3312 printf("%s: Rx channel selection mode enable attempt\n",
3313 __FUNCTION__);
3314 return;
3315 case 0x1c: /* RCERA */
3316 s->rcer[0] = value & 0xffff;
3317 return;
3318 case 0x1e: /* RCERB */
3319 s->rcer[1] = value & 0xffff;
3320 return;
3321 case 0x20: /* XCERA */
3322 s->xcer[0] = value & 0xffff;
3323 return;
3324 case 0x22: /* XCERB */
3325 s->xcer[1] = value & 0xffff;
3326 return;
3327 case 0x24: /* PCR0 */
3328 s->pcr = value & 0x7faf;
3329 return;
3330 case 0x26: /* RCERC */
3331 s->rcer[2] = value & 0xffff;
3332 return;
3333 case 0x28: /* RCERD */
3334 s->rcer[3] = value & 0xffff;
3335 return;
3336 case 0x2a: /* XCERC */
3337 s->xcer[2] = value & 0xffff;
3338 return;
3339 case 0x2c: /* XCERD */
3340 s->xcer[3] = value & 0xffff;
3341 return;
3342 case 0x2e: /* RCERE */
3343 s->rcer[4] = value & 0xffff;
3344 return;
3345 case 0x30: /* RCERF */
3346 s->rcer[5] = value & 0xffff;
3347 return;
3348 case 0x32: /* XCERE */
3349 s->xcer[4] = value & 0xffff;
3350 return;
3351 case 0x34: /* XCERF */
3352 s->xcer[5] = value & 0xffff;
3353 return;
3354 case 0x36: /* RCERG */
3355 s->rcer[6] = value & 0xffff;
3356 return;
3357 case 0x38: /* RCERH */
3358 s->rcer[7] = value & 0xffff;
3359 return;
3360 case 0x3a: /* XCERG */
3361 s->xcer[6] = value & 0xffff;
3362 return;
3363 case 0x3c: /* XCERH */
3364 s->xcer[7] = value & 0xffff;
3365 return;
3366 }
3367
3368 OMAP_BAD_REG(addr);
3369 }
3370
3371 static void omap_mcbsp_writew(void *opaque, hwaddr addr,
3372 uint32_t value)
3373 {
3374 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3375 int offset = addr & OMAP_MPUI_REG_MASK;
3376
3377 if (offset == 0x04) { /* DXR */
3378 if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */
3379 return;
3380 if (s->tx_req > 3) {
3381 s->tx_req -= 4;
3382 if (s->codec && s->codec->cts) {
3383 s->codec->out.fifo[s->codec->out.len ++] =
3384 (value >> 24) & 0xff;
3385 s->codec->out.fifo[s->codec->out.len ++] =
3386 (value >> 16) & 0xff;
3387 s->codec->out.fifo[s->codec->out.len ++] =
3388 (value >> 8) & 0xff;
3389 s->codec->out.fifo[s->codec->out.len ++] =
3390 (value >> 0) & 0xff;
3391 }
3392 if (s->tx_req < 4)
3393 omap_mcbsp_tx_done(s);
3394 } else
3395 printf("%s: Tx FIFO overrun\n", __FUNCTION__);
3396 return;
3397 }
3398
3399 omap_badwidth_write16(opaque, addr, value);
3400 }
3401
3402 static void omap_mcbsp_write(void *opaque, hwaddr addr,
3403 uint64_t value, unsigned size)
3404 {
3405 switch (size) {
3406 case 2: return omap_mcbsp_writeh(opaque, addr, value);
3407 case 4: return omap_mcbsp_writew(opaque, addr, value);
3408 default: return omap_badwidth_write16(opaque, addr, value);
3409 }
3410 }
3411
3412 static const MemoryRegionOps omap_mcbsp_ops = {
3413 .read = omap_mcbsp_read,
3414 .write = omap_mcbsp_write,
3415 .endianness = DEVICE_NATIVE_ENDIAN,
3416 };
3417
3418 static void omap_mcbsp_reset(struct omap_mcbsp_s *s)
3419 {
3420 memset(&s->spcr, 0, sizeof(s->spcr));
3421 memset(&s->rcr, 0, sizeof(s->rcr));
3422 memset(&s->xcr, 0, sizeof(s->xcr));
3423 s->srgr[0] = 0x0001;
3424 s->srgr[1] = 0x2000;
3425 memset(&s->mcr, 0, sizeof(s->mcr));
3426 memset(&s->pcr, 0, sizeof(s->pcr));
3427 memset(&s->rcer, 0, sizeof(s->rcer));
3428 memset(&s->xcer, 0, sizeof(s->xcer));
3429 s->tx_req = 0;
3430 s->rx_req = 0;
3431 s->tx_rate = 0;
3432 s->rx_rate = 0;
3433 qemu_del_timer(s->source_timer);
3434 qemu_del_timer(s->sink_timer);
3435 }
3436
3437 static struct omap_mcbsp_s *omap_mcbsp_init(MemoryRegion *system_memory,
3438 hwaddr base,
3439 qemu_irq txirq, qemu_irq rxirq,
3440 qemu_irq *dma, omap_clk clk)
3441 {
3442 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *)
3443 g_malloc0(sizeof(struct omap_mcbsp_s));
3444
3445 s->txirq = txirq;
3446 s->rxirq = rxirq;
3447 s->txdrq = dma[0];
3448 s->rxdrq = dma[1];
3449 s->sink_timer = qemu_new_timer_ns(vm_clock, omap_mcbsp_sink_tick, s);
3450 s->source_timer = qemu_new_timer_ns(vm_clock, omap_mcbsp_source_tick, s);
3451 omap_mcbsp_reset(s);
3452
3453 memory_region_init_io(&s->iomem, &omap_mcbsp_ops, s, "omap-mcbsp", 0x800);
3454 memory_region_add_subregion(system_memory, base, &s->iomem);
3455
3456 return s;
3457 }
3458
3459 static void omap_mcbsp_i2s_swallow(void *opaque, int line, int level)
3460 {
3461 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3462
3463 if (s->rx_rate) {
3464 s->rx_req = s->codec->in.len;
3465 omap_mcbsp_rx_newdata(s);
3466 }
3467 }
3468
3469 static void omap_mcbsp_i2s_start(void *opaque, int line, int level)
3470 {
3471 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3472
3473 if (s->tx_rate) {
3474 s->tx_req = s->codec->out.size;
3475 omap_mcbsp_tx_newdata(s);
3476 }
3477 }
3478
3479 void omap_mcbsp_i2s_attach(struct omap_mcbsp_s *s, I2SCodec *slave)
3480 {
3481 s->codec = slave;
3482 slave->rx_swallow = qemu_allocate_irqs(omap_mcbsp_i2s_swallow, s, 1)[0];
3483 slave->tx_start = qemu_allocate_irqs(omap_mcbsp_i2s_start, s, 1)[0];
3484 }
3485
3486 /* LED Pulse Generators */
3487 struct omap_lpg_s {
3488 MemoryRegion iomem;
3489 QEMUTimer *tm;
3490
3491 uint8_t control;
3492 uint8_t power;
3493 int64_t on;
3494 int64_t period;
3495 int clk;
3496 int cycle;
3497 };
3498
3499 static void omap_lpg_tick(void *opaque)
3500 {
3501 struct omap_lpg_s *s = opaque;
3502
3503 if (s->cycle)
3504 qemu_mod_timer(s->tm, qemu_get_clock_ms(vm_clock) + s->period - s->on);
3505 else
3506 qemu_mod_timer(s->tm, qemu_get_clock_ms(vm_clock) + s->on);
3507
3508 s->cycle = !s->cycle;
3509 printf("%s: LED is %s\n", __FUNCTION__, s->cycle ? "on" : "off");
3510 }
3511
3512 static void omap_lpg_update(struct omap_lpg_s *s)
3513 {
3514 int64_t on, period = 1, ticks = 1000;
3515 static const int per[8] = { 1, 2, 4, 8, 12, 16, 20, 24 };
3516
3517 if (~s->control & (1 << 6)) /* LPGRES */
3518 on = 0;
3519 else if (s->control & (1 << 7)) /* PERM_ON */
3520 on = period;
3521 else {
3522 period = muldiv64(ticks, per[s->control & 7], /* PERCTRL */
3523 256 / 32);
3524 on = (s->clk && s->power) ? muldiv64(ticks,
3525 per[(s->control >> 3) & 7], 256) : 0; /* ONCTRL */
3526 }
3527
3528 qemu_del_timer(s->tm);
3529 if (on == period && s->on < s->period)
3530 printf("%s: LED is on\n", __FUNCTION__);
3531 else if (on == 0 && s->on)
3532 printf("%s: LED is off\n", __FUNCTION__);
3533 else if (on && (on != s->on || period != s->period)) {
3534 s->cycle = 0;
3535 s->on = on;
3536 s->period = period;
3537 omap_lpg_tick(s);
3538 return;
3539 }
3540
3541 s->on = on;
3542 s->period = period;
3543 }
3544
3545 static void omap_lpg_reset(struct omap_lpg_s *s)
3546 {
3547 s->control = 0x00;
3548 s->power = 0x00;
3549 s->clk = 1;
3550 omap_lpg_update(s);
3551 }
3552
3553 static uint64_t omap_lpg_read(void *opaque, hwaddr addr,
3554 unsigned size)
3555 {
3556 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3557 int offset = addr & OMAP_MPUI_REG_MASK;
3558
3559 if (size != 1) {
3560 return omap_badwidth_read8(opaque, addr);
3561 }
3562
3563 switch (offset) {
3564 case 0x00: /* LCR */
3565 return s->control;
3566
3567 case 0x04: /* PMR */
3568 return s->power;
3569 }
3570
3571 OMAP_BAD_REG(addr);
3572 return 0;
3573 }
3574
3575 static void omap_lpg_write(void *opaque, hwaddr addr,
3576 uint64_t value, unsigned size)
3577 {
3578 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3579 int offset = addr & OMAP_MPUI_REG_MASK;
3580
3581 if (size != 1) {
3582 return omap_badwidth_write8(opaque, addr, value);
3583 }
3584
3585 switch (offset) {
3586 case 0x00: /* LCR */
3587 if (~value & (1 << 6)) /* LPGRES */
3588 omap_lpg_reset(s);
3589 s->control = value & 0xff;
3590 omap_lpg_update(s);
3591 return;
3592
3593 case 0x04: /* PMR */
3594 s->power = value & 0x01;
3595 omap_lpg_update(s);
3596 return;
3597
3598 default:
3599 OMAP_BAD_REG(addr);
3600 return;
3601 }
3602 }
3603
3604 static const MemoryRegionOps omap_lpg_ops = {
3605 .read = omap_lpg_read,
3606 .write = omap_lpg_write,
3607 .endianness = DEVICE_NATIVE_ENDIAN,
3608 };
3609
3610 static void omap_lpg_clk_update(void *opaque, int line, int on)
3611 {
3612 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3613
3614 s->clk = on;
3615 omap_lpg_update(s);
3616 }
3617
3618 static struct omap_lpg_s *omap_lpg_init(MemoryRegion *system_memory,
3619 hwaddr base, omap_clk clk)
3620 {
3621 struct omap_lpg_s *s = (struct omap_lpg_s *)
3622 g_malloc0(sizeof(struct omap_lpg_s));
3623
3624 s->tm = qemu_new_timer_ms(vm_clock, omap_lpg_tick, s);
3625
3626 omap_lpg_reset(s);
3627
3628 memory_region_init_io(&s->iomem, &omap_lpg_ops, s, "omap-lpg", 0x800);
3629 memory_region_add_subregion(system_memory, base, &s->iomem);
3630
3631 omap_clk_adduser(clk, qemu_allocate_irqs(omap_lpg_clk_update, s, 1)[0]);
3632
3633 return s;
3634 }
3635
3636 /* MPUI Peripheral Bridge configuration */
3637 static uint64_t omap_mpui_io_read(void *opaque, hwaddr addr,
3638 unsigned size)
3639 {
3640 if (size != 2) {
3641 return omap_badwidth_read16(opaque, addr);
3642 }
3643
3644 if (addr == OMAP_MPUI_BASE) /* CMR */
3645 return 0xfe4d;
3646
3647 OMAP_BAD_REG(addr);
3648 return 0;
3649 }
3650
3651 static void omap_mpui_io_write(void *opaque, hwaddr addr,
3652 uint64_t value, unsigned size)
3653 {
3654 /* FIXME: infinite loop */
3655 omap_badwidth_write16(opaque, addr, value);
3656 }
3657
3658 static const MemoryRegionOps omap_mpui_io_ops = {
3659 .read = omap_mpui_io_read,
3660 .write = omap_mpui_io_write,
3661 .endianness = DEVICE_NATIVE_ENDIAN,
3662 };
3663
3664 static void omap_setup_mpui_io(MemoryRegion *system_memory,
3665 struct omap_mpu_state_s *mpu)
3666 {
3667 memory_region_init_io(&mpu->mpui_io_iomem, &omap_mpui_io_ops, mpu,
3668 "omap-mpui-io", 0x7fff);
3669 memory_region_add_subregion(system_memory, OMAP_MPUI_BASE,
3670 &mpu->mpui_io_iomem);
3671 }
3672
3673 /* General chip reset */
3674 static void omap1_mpu_reset(void *opaque)
3675 {
3676 struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3677
3678 omap_dma_reset(mpu->dma);
3679 omap_mpu_timer_reset(mpu->timer[0]);
3680 omap_mpu_timer_reset(mpu->timer[1]);
3681 omap_mpu_timer_reset(mpu->timer[2]);
3682 omap_wd_timer_reset(mpu->wdt);
3683 omap_os_timer_reset(mpu->os_timer);
3684 omap_lcdc_reset(mpu->lcd);
3685 omap_ulpd_pm_reset(mpu);
3686 omap_pin_cfg_reset(mpu);
3687 omap_mpui_reset(mpu);
3688 omap_tipb_bridge_reset(mpu->private_tipb);
3689 omap_tipb_bridge_reset(mpu->public_tipb);
3690 omap_dpll_reset(mpu->dpll[0]);
3691 omap_dpll_reset(mpu->dpll[1]);
3692 omap_dpll_reset(mpu->dpll[2]);
3693 omap_uart_reset(mpu->uart[0]);
3694 omap_uart_reset(mpu->uart[1]);
3695 omap_uart_reset(mpu->uart[2]);
3696 omap_mmc_reset(mpu->mmc);
3697 omap_mpuio_reset(mpu->mpuio);
3698 omap_uwire_reset(mpu->microwire);
3699 omap_pwl_reset(mpu->pwl);
3700 omap_pwt_reset(mpu->pwt);
3701 omap_rtc_reset(mpu->rtc);
3702 omap_mcbsp_reset(mpu->mcbsp1);
3703 omap_mcbsp_reset(mpu->mcbsp2);
3704 omap_mcbsp_reset(mpu->mcbsp3);
3705 omap_lpg_reset(mpu->led[0]);
3706 omap_lpg_reset(mpu->led[1]);
3707 omap_clkm_reset(mpu);
3708 cpu_reset(CPU(mpu->cpu));
3709 }
3710
3711 static const struct omap_map_s {
3712 hwaddr phys_dsp;
3713 hwaddr phys_mpu;
3714 uint32_t size;
3715 const char *name;
3716 } omap15xx_dsp_mm[] = {
3717 /* Strobe 0 */
3718 { 0xe1010000, 0xfffb0000, 0x800, "UART1 BT" }, /* CS0 */
3719 { 0xe1010800, 0xfffb0800, 0x800, "UART2 COM" }, /* CS1 */
3720 { 0xe1011800, 0xfffb1800, 0x800, "McBSP1 audio" }, /* CS3 */
3721 { 0xe1012000, 0xfffb2000, 0x800, "MCSI2 communication" }, /* CS4 */
3722 { 0xe1012800, 0xfffb2800, 0x800, "MCSI1 BT u-Law" }, /* CS5 */
3723 { 0xe1013000, 0xfffb3000, 0x800, "uWire" }, /* CS6 */
3724 { 0xe1013800, 0xfffb3800, 0x800, "I^2C" }, /* CS7 */
3725 { 0xe1014000, 0xfffb4000, 0x800, "USB W2FC" }, /* CS8 */
3726 { 0xe1014800, 0xfffb4800, 0x800, "RTC" }, /* CS9 */
3727 { 0xe1015000, 0xfffb5000, 0x800, "MPUIO" }, /* CS10 */
3728 { 0xe1015800, 0xfffb5800, 0x800, "PWL" }, /* CS11 */
3729 { 0xe1016000, 0xfffb6000, 0x800, "PWT" }, /* CS12 */
3730 { 0xe1017000, 0xfffb7000, 0x800, "McBSP3" }, /* CS14 */
3731 { 0xe1017800, 0xfffb7800, 0x800, "MMC" }, /* CS15 */
3732 { 0xe1019000, 0xfffb9000, 0x800, "32-kHz timer" }, /* CS18 */
3733 { 0xe1019800, 0xfffb9800, 0x800, "UART3" }, /* CS19 */
3734 { 0xe101c800, 0xfffbc800, 0x800, "TIPB switches" }, /* CS25 */
3735 /* Strobe 1 */
3736 { 0xe101e000, 0xfffce000, 0x800, "GPIOs" }, /* CS28 */
3737
3738 { 0 }
3739 };
3740
3741 static void omap_setup_dsp_mapping(MemoryRegion *system_memory,
3742 const struct omap_map_s *map)
3743 {
3744 MemoryRegion *io;
3745
3746 for (; map->phys_dsp; map ++) {
3747 io = g_new(MemoryRegion, 1);
3748 memory_region_init_alias(io, map->name,
3749 system_memory, map->phys_mpu, map->size);
3750 memory_region_add_subregion(system_memory, map->phys_dsp, io);
3751 }
3752 }
3753
3754 void omap_mpu_wakeup(void *opaque, int irq, int req)
3755 {
3756 struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3757
3758 if (mpu->cpu->env.halted) {
3759 cpu_interrupt(&mpu->cpu->env, CPU_INTERRUPT_EXITTB);
3760 }
3761 }
3762
3763 static const struct dma_irq_map omap1_dma_irq_map[] = {
3764 { 0, OMAP_INT_DMA_CH0_6 },
3765 { 0, OMAP_INT_DMA_CH1_7 },
3766 { 0, OMAP_INT_DMA_CH2_8 },
3767 { 0, OMAP_INT_DMA_CH3 },
3768 { 0, OMAP_INT_DMA_CH4 },
3769 { 0, OMAP_INT_DMA_CH5 },
3770 { 1, OMAP_INT_1610_DMA_CH6 },
3771 { 1, OMAP_INT_1610_DMA_CH7 },
3772 { 1, OMAP_INT_1610_DMA_CH8 },
3773 { 1, OMAP_INT_1610_DMA_CH9 },
3774 { 1, OMAP_INT_1610_DMA_CH10 },
3775 { 1, OMAP_INT_1610_DMA_CH11 },
3776 { 1, OMAP_INT_1610_DMA_CH12 },
3777 { 1, OMAP_INT_1610_DMA_CH13 },
3778 { 1, OMAP_INT_1610_DMA_CH14 },
3779 { 1, OMAP_INT_1610_DMA_CH15 }
3780 };
3781
3782 /* DMA ports for OMAP1 */
3783 static int omap_validate_emiff_addr(struct omap_mpu_state_s *s,
3784 hwaddr addr)
3785 {
3786 return range_covers_byte(OMAP_EMIFF_BASE, s->sdram_size, addr);
3787 }
3788
3789 static int omap_validate_emifs_addr(struct omap_mpu_state_s *s,
3790 hwaddr addr)
3791 {
3792 return range_covers_byte(OMAP_EMIFS_BASE, OMAP_EMIFF_BASE - OMAP_EMIFS_BASE,
3793 addr);
3794 }
3795
3796 static int omap_validate_imif_addr(struct omap_mpu_state_s *s,
3797 hwaddr addr)
3798 {
3799 return range_covers_byte(OMAP_IMIF_BASE, s->sram_size, addr);
3800 }
3801
3802 static int omap_validate_tipb_addr(struct omap_mpu_state_s *s,
3803 hwaddr addr)
3804 {
3805 return range_covers_byte(0xfffb0000, 0xffff0000 - 0xfffb0000, addr);
3806 }
3807
3808 static int omap_validate_local_addr(struct omap_mpu_state_s *s,
3809 hwaddr addr)
3810 {
3811 return range_covers_byte(OMAP_LOCALBUS_BASE, 0x1000000, addr);
3812 }
3813
3814 static int omap_validate_tipb_mpui_addr(struct omap_mpu_state_s *s,
3815 hwaddr addr)
3816 {
3817 return range_covers_byte(0xe1010000, 0xe1020004 - 0xe1010000, addr);
3818 }
3819
3820 struct omap_mpu_state_s *omap310_mpu_init(MemoryRegion *system_memory,
3821 unsigned long sdram_size,
3822 const char *core)
3823 {
3824 int i;
3825 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *)
3826 g_malloc0(sizeof(struct omap_mpu_state_s));
3827 qemu_irq *cpu_irq;
3828 qemu_irq dma_irqs[6];
3829 DriveInfo *dinfo;
3830 SysBusDevice *busdev;
3831
3832 if (!core)
3833 core = "ti925t";
3834
3835 /* Core */
3836 s->mpu_model = omap310;
3837 s->cpu = cpu_arm_init(core);
3838 if (s->cpu == NULL) {
3839 fprintf(stderr, "Unable to find CPU definition\n");
3840 exit(1);
3841 }
3842 s->sdram_size = sdram_size;
3843 s->sram_size = OMAP15XX_SRAM_SIZE;
3844
3845 s->wakeup = qemu_allocate_irqs(omap_mpu_wakeup, s, 1)[0];
3846
3847 /* Clocks */
3848 omap_clk_init(s);
3849
3850 /* Memory-mapped stuff */
3851 memory_region_init_ram(&s->emiff_ram, "omap1.dram", s->sdram_size);
3852 vmstate_register_ram_global(&s->emiff_ram);
3853 memory_region_add_subregion(system_memory, OMAP_EMIFF_BASE, &s->emiff_ram);
3854 memory_region_init_ram(&s->imif_ram, "omap1.sram", s->sram_size);
3855 vmstate_register_ram_global(&s->imif_ram);
3856 memory_region_add_subregion(system_memory, OMAP_IMIF_BASE, &s->imif_ram);
3857
3858 omap_clkm_init(system_memory, 0xfffece00, 0xe1008000, s);
3859
3860 cpu_irq = arm_pic_init_cpu(s->cpu);
3861 s->ih[0] = qdev_create(NULL, "omap-intc");
3862 qdev_prop_set_uint32(s->ih[0], "size", 0x100);
3863 qdev_prop_set_ptr(s->ih[0], "clk", omap_findclk(s, "arminth_ck"));
3864 qdev_init_nofail(s->ih[0]);
3865 busdev = SYS_BUS_DEVICE(s->ih[0]);
3866 sysbus_connect_irq(busdev, 0, cpu_irq[ARM_PIC_CPU_IRQ]);
3867 sysbus_connect_irq(busdev, 1, cpu_irq[ARM_PIC_CPU_FIQ]);
3868 sysbus_mmio_map(busdev, 0, 0xfffecb00);
3869 s->ih[1] = qdev_create(NULL, "omap-intc");
3870 qdev_prop_set_uint32(s->ih[1], "size", 0x800);
3871 qdev_prop_set_ptr(s->ih[1], "clk", omap_findclk(s, "arminth_ck"));
3872 qdev_init_nofail(s->ih[1]);
3873 busdev = SYS_BUS_DEVICE(s->ih[1]);
3874 sysbus_connect_irq(busdev, 0,
3875 qdev_get_gpio_in(s->ih[0], OMAP_INT_15XX_IH2_IRQ));
3876 /* The second interrupt controller's FIQ output is not wired up */
3877 sysbus_mmio_map(busdev, 0, 0xfffe0000);
3878
3879 for (i = 0; i < 6; i++) {
3880 dma_irqs[i] = qdev_get_gpio_in(s->ih[omap1_dma_irq_map[i].ih],
3881 omap1_dma_irq_map[i].intr);
3882 }
3883 s->dma = omap_dma_init(0xfffed800, dma_irqs, system_memory,
3884 qdev_get_gpio_in(s->ih[0], OMAP_INT_DMA_LCD),
3885 s, omap_findclk(s, "dma_ck"), omap_dma_3_1);
3886
3887 s->port[emiff ].addr_valid = omap_validate_emiff_addr;
3888 s->port[emifs ].addr_valid = omap_validate_emifs_addr;
3889 s->port[imif ].addr_valid = omap_validate_imif_addr;
3890 s->port[tipb ].addr_valid = omap_validate_tipb_addr;
3891 s->port[local ].addr_valid = omap_validate_local_addr;
3892 s->port[tipb_mpui].addr_valid = omap_validate_tipb_mpui_addr;
3893
3894 /* Register SDRAM and SRAM DMA ports for fast transfers. */
3895 soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->emiff_ram),
3896 OMAP_EMIFF_BASE, s->sdram_size);
3897 soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->imif_ram),
3898 OMAP_IMIF_BASE, s->sram_size);
3899
3900 s->timer[0] = omap_mpu_timer_init(system_memory, 0xfffec500,
3901 qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER1),
3902 omap_findclk(s, "mputim_ck"));
3903 s->timer[1] = omap_mpu_timer_init(system_memory, 0xfffec600,
3904 qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER2),
3905 omap_findclk(s, "mputim_ck"));
3906 s->timer[2] = omap_mpu_timer_init(system_memory, 0xfffec700,
3907 qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER3),
3908 omap_findclk(s, "mputim_ck"));
3909
3910 s->wdt = omap_wd_timer_init(system_memory, 0xfffec800,
3911 qdev_get_gpio_in(s->ih[0], OMAP_INT_WD_TIMER),
3912 omap_findclk(s, "armwdt_ck"));
3913
3914 s->os_timer = omap_os_timer_init(system_memory, 0xfffb9000,
3915 qdev_get_gpio_in(s->ih[1], OMAP_INT_OS_TIMER),
3916 omap_findclk(s, "clk32-kHz"));
3917
3918 s->lcd = omap_lcdc_init(system_memory, 0xfffec000,
3919 qdev_get_gpio_in(s->ih[0], OMAP_INT_LCD_CTRL),
3920 omap_dma_get_lcdch(s->dma),
3921 omap_findclk(s, "lcd_ck"));
3922
3923 omap_ulpd_pm_init(system_memory, 0xfffe0800, s);
3924 omap_pin_cfg_init(system_memory, 0xfffe1000, s);
3925 omap_id_init(system_memory, s);
3926
3927 omap_mpui_init(system_memory, 0xfffec900, s);
3928
3929 s->private_tipb = omap_tipb_bridge_init(system_memory, 0xfffeca00,
3930 qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PRIV),
3931 omap_findclk(s, "tipb_ck"));
3932 s->public_tipb = omap_tipb_bridge_init(system_memory, 0xfffed300,
3933 qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PUB),
3934 omap_findclk(s, "tipb_ck"));
3935
3936 omap_tcmi_init(system_memory, 0xfffecc00, s);
3937
3938 s->uart[0] = omap_uart_init(0xfffb0000,
3939 qdev_get_gpio_in(s->ih[1], OMAP_INT_UART1),
3940 omap_findclk(s, "uart1_ck"),
3941 omap_findclk(s, "uart1_ck"),
3942 s->drq[OMAP_DMA_UART1_TX], s->drq[OMAP_DMA_UART1_RX],
3943 "uart1",
3944 serial_hds[0]);
3945 s->uart[1] = omap_uart_init(0xfffb0800,
3946 qdev_get_gpio_in(s->ih[1], OMAP_INT_UART2),
3947 omap_findclk(s, "uart2_ck"),
3948 omap_findclk(s, "uart2_ck"),
3949 s->drq[OMAP_DMA_UART2_TX], s->drq[OMAP_DMA_UART2_RX],
3950 "uart2",
3951 serial_hds[0] ? serial_hds[1] : NULL);
3952 s->uart[2] = omap_uart_init(0xfffb9800,
3953 qdev_get_gpio_in(s->ih[0], OMAP_INT_UART3),
3954 omap_findclk(s, "uart3_ck"),
3955 omap_findclk(s, "uart3_ck"),
3956 s->drq[OMAP_DMA_UART3_TX], s->drq[OMAP_DMA_UART3_RX],
3957 "uart3",
3958 serial_hds[0] && serial_hds[1] ? serial_hds[2] : NULL);
3959
3960 s->dpll[0] = omap_dpll_init(system_memory, 0xfffecf00,
3961 omap_findclk(s, "dpll1"));
3962 s->dpll[1] = omap_dpll_init(system_memory, 0xfffed000,
3963 omap_findclk(s, "dpll2"));
3964 s->dpll[2] = omap_dpll_init(system_memory, 0xfffed100,
3965 omap_findclk(s, "dpll3"));
3966
3967 dinfo = drive_get(IF_SD, 0, 0);
3968 if (!dinfo) {
3969 fprintf(stderr, "qemu: missing SecureDigital device\n");
3970 exit(1);
3971 }
3972 s->mmc = omap_mmc_init(0xfffb7800, system_memory, dinfo->bdrv,
3973 qdev_get_gpio_in(s->ih[1], OMAP_INT_OQN),
3974 &s->drq[OMAP_DMA_MMC_TX],
3975 omap_findclk(s, "mmc_ck"));
3976
3977 s->mpuio = omap_mpuio_init(system_memory, 0xfffb5000,
3978 qdev_get_gpio_in(s->ih[1], OMAP_INT_KEYBOARD),
3979 qdev_get_gpio_in(s->ih[1], OMAP_INT_MPUIO),
3980 s->wakeup, omap_findclk(s, "clk32-kHz"));
3981
3982 s->gpio = qdev_create(NULL, "omap-gpio");
3983 qdev_prop_set_int32(s->gpio, "mpu_model", s->mpu_model);
3984 qdev_prop_set_ptr(s->gpio, "clk", omap_findclk(s, "arm_gpio_ck"));
3985 qdev_init_nofail(s->gpio);
3986 sysbus_connect_irq(SYS_BUS_DEVICE(s->gpio), 0,
3987 qdev_get_gpio_in(s->ih[0], OMAP_INT_GPIO_BANK1));
3988 sysbus_mmio_map(SYS_BUS_DEVICE(s->gpio), 0, 0xfffce000);
3989
3990 s->microwire = omap_uwire_init(system_memory, 0xfffb3000,
3991 qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireTX),
3992 qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireRX),
3993 s->drq[OMAP_DMA_UWIRE_TX], omap_findclk(s, "mpuper_ck"));
3994
3995 s->pwl = omap_pwl_init(system_memory, 0xfffb5800,
3996 omap_findclk(s, "armxor_ck"));
3997 s->pwt = omap_pwt_init(system_memory, 0xfffb6000,
3998 omap_findclk(s, "armxor_ck"));
3999
4000 s->i2c[0] = qdev_create(NULL, "omap_i2c");
4001 qdev_prop_set_uint8(s->i2c[0], "revision", 0x11);
4002 qdev_prop_set_ptr(s->i2c[0], "fclk", omap_findclk(s, "mpuper_ck"));
4003 qdev_init_nofail(s->i2c[0]);
4004 busdev = SYS_BUS_DEVICE(s->i2c[0]);
4005 sysbus_connect_irq(busdev, 0, qdev_get_gpio_in(s->ih[1], OMAP_INT_I2C));
4006 sysbus_connect_irq(busdev, 1, s->drq[OMAP_DMA_I2C_TX]);
4007 sysbus_connect_irq(busdev, 2, s->drq[OMAP_DMA_I2C_RX]);
4008 sysbus_mmio_map(busdev, 0, 0xfffb3800);
4009
4010 s->rtc = omap_rtc_init(system_memory, 0xfffb4800,
4011 qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_TIMER),
4012 qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_ALARM),
4013 omap_findclk(s, "clk32-kHz"));
4014
4015 s->mcbsp1 = omap_mcbsp_init(system_memory, 0xfffb1800,
4016 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1TX),
4017 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1RX),
4018 &s->drq[OMAP_DMA_MCBSP1_TX], omap_findclk(s, "dspxor_ck"));
4019 s->mcbsp2 = omap_mcbsp_init(system_memory, 0xfffb1000,
4020 qdev_get_gpio_in(s->ih[0],
4021 OMAP_INT_310_McBSP2_TX),
4022 qdev_get_gpio_in(s->ih[0],
4023 OMAP_INT_310_McBSP2_RX),
4024 &s->drq[OMAP_DMA_MCBSP2_TX], omap_findclk(s, "mpuper_ck"));
4025 s->mcbsp3 = omap_mcbsp_init(system_memory, 0xfffb7000,
4026 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3TX),
4027 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3RX),
4028 &s->drq[OMAP_DMA_MCBSP3_TX], omap_findclk(s, "dspxor_ck"));
4029
4030 s->led[0] = omap_lpg_init(system_memory,
4031 0xfffbd000, omap_findclk(s, "clk32-kHz"));
4032 s->led[1] = omap_lpg_init(system_memory,
4033 0xfffbd800, omap_findclk(s, "clk32-kHz"));
4034
4035 /* Register mappings not currenlty implemented:
4036 * MCSI2 Comm fffb2000 - fffb27ff (not mapped on OMAP310)
4037 * MCSI1 Bluetooth fffb2800 - fffb2fff (not mapped on OMAP310)
4038 * USB W2FC fffb4000 - fffb47ff
4039 * Camera Interface fffb6800 - fffb6fff
4040 * USB Host fffba000 - fffba7ff
4041 * FAC fffba800 - fffbafff
4042 * HDQ/1-Wire fffbc000 - fffbc7ff
4043 * TIPB switches fffbc800 - fffbcfff
4044 * Mailbox fffcf000 - fffcf7ff
4045 * Local bus IF fffec100 - fffec1ff
4046 * Local bus MMU fffec200 - fffec2ff
4047 * DSP MMU fffed200 - fffed2ff
4048 */
4049
4050 omap_setup_dsp_mapping(system_memory, omap15xx_dsp_mm);
4051 omap_setup_mpui_io(system_memory, s);
4052
4053 qemu_register_reset(omap1_mpu_reset, s);
4054
4055 return s;
4056 }