]> git.proxmox.com Git - qemu.git/blob - hw/arm/pxa2xx.c
Merge git://github.com/hw-claudio/qemu-aarch64-queue into tcg-next
[qemu.git] / hw / arm / pxa2xx.c
1 /*
2 * Intel XScale PXA255/270 processor support.
3 *
4 * Copyright (c) 2006 Openedhand Ltd.
5 * Written by Andrzej Zaborowski <balrog@zabor.org>
6 *
7 * This code is licensed under the GPL.
8 */
9
10 #include "hw/sysbus.h"
11 #include "hw/arm/pxa.h"
12 #include "sysemu/sysemu.h"
13 #include "hw/char/serial.h"
14 #include "hw/i2c/i2c.h"
15 #include "hw/ssi.h"
16 #include "sysemu/char.h"
17 #include "sysemu/blockdev.h"
18
19 static struct {
20 hwaddr io_base;
21 int irqn;
22 } pxa255_serial[] = {
23 { 0x40100000, PXA2XX_PIC_FFUART },
24 { 0x40200000, PXA2XX_PIC_BTUART },
25 { 0x40700000, PXA2XX_PIC_STUART },
26 { 0x41600000, PXA25X_PIC_HWUART },
27 { 0, 0 }
28 }, pxa270_serial[] = {
29 { 0x40100000, PXA2XX_PIC_FFUART },
30 { 0x40200000, PXA2XX_PIC_BTUART },
31 { 0x40700000, PXA2XX_PIC_STUART },
32 { 0, 0 }
33 };
34
35 typedef struct PXASSPDef {
36 hwaddr io_base;
37 int irqn;
38 } PXASSPDef;
39
40 #if 0
41 static PXASSPDef pxa250_ssp[] = {
42 { 0x41000000, PXA2XX_PIC_SSP },
43 { 0, 0 }
44 };
45 #endif
46
47 static PXASSPDef pxa255_ssp[] = {
48 { 0x41000000, PXA2XX_PIC_SSP },
49 { 0x41400000, PXA25X_PIC_NSSP },
50 { 0, 0 }
51 };
52
53 #if 0
54 static PXASSPDef pxa26x_ssp[] = {
55 { 0x41000000, PXA2XX_PIC_SSP },
56 { 0x41400000, PXA25X_PIC_NSSP },
57 { 0x41500000, PXA26X_PIC_ASSP },
58 { 0, 0 }
59 };
60 #endif
61
62 static PXASSPDef pxa27x_ssp[] = {
63 { 0x41000000, PXA2XX_PIC_SSP },
64 { 0x41700000, PXA27X_PIC_SSP2 },
65 { 0x41900000, PXA2XX_PIC_SSP3 },
66 { 0, 0 }
67 };
68
69 #define PMCR 0x00 /* Power Manager Control register */
70 #define PSSR 0x04 /* Power Manager Sleep Status register */
71 #define PSPR 0x08 /* Power Manager Scratch-Pad register */
72 #define PWER 0x0c /* Power Manager Wake-Up Enable register */
73 #define PRER 0x10 /* Power Manager Rising-Edge Detect Enable register */
74 #define PFER 0x14 /* Power Manager Falling-Edge Detect Enable register */
75 #define PEDR 0x18 /* Power Manager Edge-Detect Status register */
76 #define PCFR 0x1c /* Power Manager General Configuration register */
77 #define PGSR0 0x20 /* Power Manager GPIO Sleep-State register 0 */
78 #define PGSR1 0x24 /* Power Manager GPIO Sleep-State register 1 */
79 #define PGSR2 0x28 /* Power Manager GPIO Sleep-State register 2 */
80 #define PGSR3 0x2c /* Power Manager GPIO Sleep-State register 3 */
81 #define RCSR 0x30 /* Reset Controller Status register */
82 #define PSLR 0x34 /* Power Manager Sleep Configuration register */
83 #define PTSR 0x38 /* Power Manager Standby Configuration register */
84 #define PVCR 0x40 /* Power Manager Voltage Change Control register */
85 #define PUCR 0x4c /* Power Manager USIM Card Control/Status register */
86 #define PKWR 0x50 /* Power Manager Keyboard Wake-Up Enable register */
87 #define PKSR 0x54 /* Power Manager Keyboard Level-Detect Status */
88 #define PCMD0 0x80 /* Power Manager I2C Command register File 0 */
89 #define PCMD31 0xfc /* Power Manager I2C Command register File 31 */
90
91 static uint64_t pxa2xx_pm_read(void *opaque, hwaddr addr,
92 unsigned size)
93 {
94 PXA2xxState *s = (PXA2xxState *) opaque;
95
96 switch (addr) {
97 case PMCR ... PCMD31:
98 if (addr & 3)
99 goto fail;
100
101 return s->pm_regs[addr >> 2];
102 default:
103 fail:
104 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
105 break;
106 }
107 return 0;
108 }
109
110 static void pxa2xx_pm_write(void *opaque, hwaddr addr,
111 uint64_t value, unsigned size)
112 {
113 PXA2xxState *s = (PXA2xxState *) opaque;
114
115 switch (addr) {
116 case PMCR:
117 /* Clear the write-one-to-clear bits... */
118 s->pm_regs[addr >> 2] &= ~(value & 0x2a);
119 /* ...and set the plain r/w bits */
120 s->pm_regs[addr >> 2] &= ~0x15;
121 s->pm_regs[addr >> 2] |= value & 0x15;
122 break;
123
124 case PSSR: /* Read-clean registers */
125 case RCSR:
126 case PKSR:
127 s->pm_regs[addr >> 2] &= ~value;
128 break;
129
130 default: /* Read-write registers */
131 if (!(addr & 3)) {
132 s->pm_regs[addr >> 2] = value;
133 break;
134 }
135
136 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
137 break;
138 }
139 }
140
141 static const MemoryRegionOps pxa2xx_pm_ops = {
142 .read = pxa2xx_pm_read,
143 .write = pxa2xx_pm_write,
144 .endianness = DEVICE_NATIVE_ENDIAN,
145 };
146
147 static const VMStateDescription vmstate_pxa2xx_pm = {
148 .name = "pxa2xx_pm",
149 .version_id = 0,
150 .minimum_version_id = 0,
151 .minimum_version_id_old = 0,
152 .fields = (VMStateField[]) {
153 VMSTATE_UINT32_ARRAY(pm_regs, PXA2xxState, 0x40),
154 VMSTATE_END_OF_LIST()
155 }
156 };
157
158 #define CCCR 0x00 /* Core Clock Configuration register */
159 #define CKEN 0x04 /* Clock Enable register */
160 #define OSCC 0x08 /* Oscillator Configuration register */
161 #define CCSR 0x0c /* Core Clock Status register */
162
163 static uint64_t pxa2xx_cm_read(void *opaque, hwaddr addr,
164 unsigned size)
165 {
166 PXA2xxState *s = (PXA2xxState *) opaque;
167
168 switch (addr) {
169 case CCCR:
170 case CKEN:
171 case OSCC:
172 return s->cm_regs[addr >> 2];
173
174 case CCSR:
175 return s->cm_regs[CCCR >> 2] | (3 << 28);
176
177 default:
178 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
179 break;
180 }
181 return 0;
182 }
183
184 static void pxa2xx_cm_write(void *opaque, hwaddr addr,
185 uint64_t value, unsigned size)
186 {
187 PXA2xxState *s = (PXA2xxState *) opaque;
188
189 switch (addr) {
190 case CCCR:
191 case CKEN:
192 s->cm_regs[addr >> 2] = value;
193 break;
194
195 case OSCC:
196 s->cm_regs[addr >> 2] &= ~0x6c;
197 s->cm_regs[addr >> 2] |= value & 0x6e;
198 if ((value >> 1) & 1) /* OON */
199 s->cm_regs[addr >> 2] |= 1 << 0; /* Oscillator is now stable */
200 break;
201
202 default:
203 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
204 break;
205 }
206 }
207
208 static const MemoryRegionOps pxa2xx_cm_ops = {
209 .read = pxa2xx_cm_read,
210 .write = pxa2xx_cm_write,
211 .endianness = DEVICE_NATIVE_ENDIAN,
212 };
213
214 static const VMStateDescription vmstate_pxa2xx_cm = {
215 .name = "pxa2xx_cm",
216 .version_id = 0,
217 .minimum_version_id = 0,
218 .minimum_version_id_old = 0,
219 .fields = (VMStateField[]) {
220 VMSTATE_UINT32_ARRAY(cm_regs, PXA2xxState, 4),
221 VMSTATE_UINT32(clkcfg, PXA2xxState),
222 VMSTATE_UINT32(pmnc, PXA2xxState),
223 VMSTATE_END_OF_LIST()
224 }
225 };
226
227 static int pxa2xx_clkcfg_read(CPUARMState *env, const ARMCPRegInfo *ri,
228 uint64_t *value)
229 {
230 PXA2xxState *s = (PXA2xxState *)ri->opaque;
231 *value = s->clkcfg;
232 return 0;
233 }
234
235 static int pxa2xx_clkcfg_write(CPUARMState *env, const ARMCPRegInfo *ri,
236 uint64_t value)
237 {
238 PXA2xxState *s = (PXA2xxState *)ri->opaque;
239 s->clkcfg = value & 0xf;
240 if (value & 2) {
241 printf("%s: CPU frequency change attempt\n", __func__);
242 }
243 return 0;
244 }
245
246 static int pxa2xx_pwrmode_write(CPUARMState *env, const ARMCPRegInfo *ri,
247 uint64_t value)
248 {
249 PXA2xxState *s = (PXA2xxState *)ri->opaque;
250 static const char *pwrmode[8] = {
251 "Normal", "Idle", "Deep-idle", "Standby",
252 "Sleep", "reserved (!)", "reserved (!)", "Deep-sleep",
253 };
254
255 if (value & 8) {
256 printf("%s: CPU voltage change attempt\n", __func__);
257 }
258 switch (value & 7) {
259 case 0:
260 /* Do nothing */
261 break;
262
263 case 1:
264 /* Idle */
265 if (!(s->cm_regs[CCCR >> 2] & (1 << 31))) { /* CPDIS */
266 cpu_interrupt(CPU(s->cpu), CPU_INTERRUPT_HALT);
267 break;
268 }
269 /* Fall through. */
270
271 case 2:
272 /* Deep-Idle */
273 cpu_interrupt(CPU(s->cpu), CPU_INTERRUPT_HALT);
274 s->pm_regs[RCSR >> 2] |= 0x8; /* Set GPR */
275 goto message;
276
277 case 3:
278 s->cpu->env.uncached_cpsr =
279 ARM_CPU_MODE_SVC | CPSR_A | CPSR_F | CPSR_I;
280 s->cpu->env.cp15.c1_sys = 0;
281 s->cpu->env.cp15.c1_coproc = 0;
282 s->cpu->env.cp15.c2_base0 = 0;
283 s->cpu->env.cp15.c3 = 0;
284 s->pm_regs[PSSR >> 2] |= 0x8; /* Set STS */
285 s->pm_regs[RCSR >> 2] |= 0x8; /* Set GPR */
286
287 /*
288 * The scratch-pad register is almost universally used
289 * for storing the return address on suspend. For the
290 * lack of a resuming bootloader, perform a jump
291 * directly to that address.
292 */
293 memset(s->cpu->env.regs, 0, 4 * 15);
294 s->cpu->env.regs[15] = s->pm_regs[PSPR >> 2];
295
296 #if 0
297 buffer = 0xe59ff000; /* ldr pc, [pc, #0] */
298 cpu_physical_memory_write(0, &buffer, 4);
299 buffer = s->pm_regs[PSPR >> 2];
300 cpu_physical_memory_write(8, &buffer, 4);
301 #endif
302
303 /* Suspend */
304 cpu_interrupt(current_cpu, CPU_INTERRUPT_HALT);
305
306 goto message;
307
308 default:
309 message:
310 printf("%s: machine entered %s mode\n", __func__,
311 pwrmode[value & 7]);
312 }
313
314 return 0;
315 }
316
317 static int pxa2xx_cppmnc_read(CPUARMState *env, const ARMCPRegInfo *ri,
318 uint64_t *value)
319 {
320 PXA2xxState *s = (PXA2xxState *)ri->opaque;
321 *value = s->pmnc;
322 return 0;
323 }
324
325 static int pxa2xx_cppmnc_write(CPUARMState *env, const ARMCPRegInfo *ri,
326 uint64_t value)
327 {
328 PXA2xxState *s = (PXA2xxState *)ri->opaque;
329 s->pmnc = value;
330 return 0;
331 }
332
333 static int pxa2xx_cpccnt_read(CPUARMState *env, const ARMCPRegInfo *ri,
334 uint64_t *value)
335 {
336 PXA2xxState *s = (PXA2xxState *)ri->opaque;
337 if (s->pmnc & 1) {
338 *value = qemu_get_clock_ns(vm_clock);
339 } else {
340 *value = 0;
341 }
342 return 0;
343 }
344
345 static const ARMCPRegInfo pxa_cp_reginfo[] = {
346 /* cp14 crm==1: perf registers */
347 { .name = "CPPMNC", .cp = 14, .crn = 0, .crm = 1, .opc1 = 0, .opc2 = 0,
348 .access = PL1_RW,
349 .readfn = pxa2xx_cppmnc_read, .writefn = pxa2xx_cppmnc_write },
350 { .name = "CPCCNT", .cp = 14, .crn = 1, .crm = 1, .opc1 = 0, .opc2 = 0,
351 .access = PL1_RW,
352 .readfn = pxa2xx_cpccnt_read, .writefn = arm_cp_write_ignore },
353 { .name = "CPINTEN", .cp = 14, .crn = 4, .crm = 1, .opc1 = 0, .opc2 = 0,
354 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
355 { .name = "CPFLAG", .cp = 14, .crn = 5, .crm = 1, .opc1 = 0, .opc2 = 0,
356 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
357 { .name = "CPEVTSEL", .cp = 14, .crn = 8, .crm = 1, .opc1 = 0, .opc2 = 0,
358 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
359 /* cp14 crm==2: performance count registers */
360 { .name = "CPPMN0", .cp = 14, .crn = 0, .crm = 2, .opc1 = 0, .opc2 = 0,
361 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
362 { .name = "CPPMN1", .cp = 14, .crn = 1, .crm = 2, .opc1 = 0, .opc2 = 0,
363 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
364 { .name = "CPPMN2", .cp = 14, .crn = 2, .crm = 2, .opc1 = 0, .opc2 = 0,
365 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
366 { .name = "CPPMN3", .cp = 14, .crn = 2, .crm = 3, .opc1 = 0, .opc2 = 0,
367 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
368 /* cp14 crn==6: CLKCFG */
369 { .name = "CLKCFG", .cp = 14, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
370 .access = PL1_RW,
371 .readfn = pxa2xx_clkcfg_read, .writefn = pxa2xx_clkcfg_write },
372 /* cp14 crn==7: PWRMODE */
373 { .name = "PWRMODE", .cp = 14, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 0,
374 .access = PL1_RW,
375 .readfn = arm_cp_read_zero, .writefn = pxa2xx_pwrmode_write },
376 REGINFO_SENTINEL
377 };
378
379 static void pxa2xx_setup_cp14(PXA2xxState *s)
380 {
381 define_arm_cp_regs_with_opaque(s->cpu, pxa_cp_reginfo, s);
382 }
383
384 #define MDCNFG 0x00 /* SDRAM Configuration register */
385 #define MDREFR 0x04 /* SDRAM Refresh Control register */
386 #define MSC0 0x08 /* Static Memory Control register 0 */
387 #define MSC1 0x0c /* Static Memory Control register 1 */
388 #define MSC2 0x10 /* Static Memory Control register 2 */
389 #define MECR 0x14 /* Expansion Memory Bus Config register */
390 #define SXCNFG 0x1c /* Synchronous Static Memory Config register */
391 #define MCMEM0 0x28 /* PC Card Memory Socket 0 Timing register */
392 #define MCMEM1 0x2c /* PC Card Memory Socket 1 Timing register */
393 #define MCATT0 0x30 /* PC Card Attribute Socket 0 register */
394 #define MCATT1 0x34 /* PC Card Attribute Socket 1 register */
395 #define MCIO0 0x38 /* PC Card I/O Socket 0 Timing register */
396 #define MCIO1 0x3c /* PC Card I/O Socket 1 Timing register */
397 #define MDMRS 0x40 /* SDRAM Mode Register Set Config register */
398 #define BOOT_DEF 0x44 /* Boot-time Default Configuration register */
399 #define ARB_CNTL 0x48 /* Arbiter Control register */
400 #define BSCNTR0 0x4c /* Memory Buffer Strength Control register 0 */
401 #define BSCNTR1 0x50 /* Memory Buffer Strength Control register 1 */
402 #define LCDBSCNTR 0x54 /* LCD Buffer Strength Control register */
403 #define MDMRSLP 0x58 /* Low Power SDRAM Mode Set Config register */
404 #define BSCNTR2 0x5c /* Memory Buffer Strength Control register 2 */
405 #define BSCNTR3 0x60 /* Memory Buffer Strength Control register 3 */
406 #define SA1110 0x64 /* SA-1110 Memory Compatibility register */
407
408 static uint64_t pxa2xx_mm_read(void *opaque, hwaddr addr,
409 unsigned size)
410 {
411 PXA2xxState *s = (PXA2xxState *) opaque;
412
413 switch (addr) {
414 case MDCNFG ... SA1110:
415 if ((addr & 3) == 0)
416 return s->mm_regs[addr >> 2];
417
418 default:
419 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
420 break;
421 }
422 return 0;
423 }
424
425 static void pxa2xx_mm_write(void *opaque, hwaddr addr,
426 uint64_t value, unsigned size)
427 {
428 PXA2xxState *s = (PXA2xxState *) opaque;
429
430 switch (addr) {
431 case MDCNFG ... SA1110:
432 if ((addr & 3) == 0) {
433 s->mm_regs[addr >> 2] = value;
434 break;
435 }
436
437 default:
438 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
439 break;
440 }
441 }
442
443 static const MemoryRegionOps pxa2xx_mm_ops = {
444 .read = pxa2xx_mm_read,
445 .write = pxa2xx_mm_write,
446 .endianness = DEVICE_NATIVE_ENDIAN,
447 };
448
449 static const VMStateDescription vmstate_pxa2xx_mm = {
450 .name = "pxa2xx_mm",
451 .version_id = 0,
452 .minimum_version_id = 0,
453 .minimum_version_id_old = 0,
454 .fields = (VMStateField[]) {
455 VMSTATE_UINT32_ARRAY(mm_regs, PXA2xxState, 0x1a),
456 VMSTATE_END_OF_LIST()
457 }
458 };
459
460 /* Synchronous Serial Ports */
461 typedef struct {
462 SysBusDevice busdev;
463 MemoryRegion iomem;
464 qemu_irq irq;
465 int enable;
466 SSIBus *bus;
467
468 uint32_t sscr[2];
469 uint32_t sspsp;
470 uint32_t ssto;
471 uint32_t ssitr;
472 uint32_t sssr;
473 uint8_t sstsa;
474 uint8_t ssrsa;
475 uint8_t ssacd;
476
477 uint32_t rx_fifo[16];
478 int rx_level;
479 int rx_start;
480 } PXA2xxSSPState;
481
482 #define SSCR0 0x00 /* SSP Control register 0 */
483 #define SSCR1 0x04 /* SSP Control register 1 */
484 #define SSSR 0x08 /* SSP Status register */
485 #define SSITR 0x0c /* SSP Interrupt Test register */
486 #define SSDR 0x10 /* SSP Data register */
487 #define SSTO 0x28 /* SSP Time-Out register */
488 #define SSPSP 0x2c /* SSP Programmable Serial Protocol register */
489 #define SSTSA 0x30 /* SSP TX Time Slot Active register */
490 #define SSRSA 0x34 /* SSP RX Time Slot Active register */
491 #define SSTSS 0x38 /* SSP Time Slot Status register */
492 #define SSACD 0x3c /* SSP Audio Clock Divider register */
493
494 /* Bitfields for above registers */
495 #define SSCR0_SPI(x) (((x) & 0x30) == 0x00)
496 #define SSCR0_SSP(x) (((x) & 0x30) == 0x10)
497 #define SSCR0_UWIRE(x) (((x) & 0x30) == 0x20)
498 #define SSCR0_PSP(x) (((x) & 0x30) == 0x30)
499 #define SSCR0_SSE (1 << 7)
500 #define SSCR0_RIM (1 << 22)
501 #define SSCR0_TIM (1 << 23)
502 #define SSCR0_MOD (1 << 31)
503 #define SSCR0_DSS(x) (((((x) >> 16) & 0x10) | ((x) & 0xf)) + 1)
504 #define SSCR1_RIE (1 << 0)
505 #define SSCR1_TIE (1 << 1)
506 #define SSCR1_LBM (1 << 2)
507 #define SSCR1_MWDS (1 << 5)
508 #define SSCR1_TFT(x) ((((x) >> 6) & 0xf) + 1)
509 #define SSCR1_RFT(x) ((((x) >> 10) & 0xf) + 1)
510 #define SSCR1_EFWR (1 << 14)
511 #define SSCR1_PINTE (1 << 18)
512 #define SSCR1_TINTE (1 << 19)
513 #define SSCR1_RSRE (1 << 20)
514 #define SSCR1_TSRE (1 << 21)
515 #define SSCR1_EBCEI (1 << 29)
516 #define SSITR_INT (7 << 5)
517 #define SSSR_TNF (1 << 2)
518 #define SSSR_RNE (1 << 3)
519 #define SSSR_TFS (1 << 5)
520 #define SSSR_RFS (1 << 6)
521 #define SSSR_ROR (1 << 7)
522 #define SSSR_PINT (1 << 18)
523 #define SSSR_TINT (1 << 19)
524 #define SSSR_EOC (1 << 20)
525 #define SSSR_TUR (1 << 21)
526 #define SSSR_BCE (1 << 23)
527 #define SSSR_RW 0x00bc0080
528
529 static void pxa2xx_ssp_int_update(PXA2xxSSPState *s)
530 {
531 int level = 0;
532
533 level |= s->ssitr & SSITR_INT;
534 level |= (s->sssr & SSSR_BCE) && (s->sscr[1] & SSCR1_EBCEI);
535 level |= (s->sssr & SSSR_TUR) && !(s->sscr[0] & SSCR0_TIM);
536 level |= (s->sssr & SSSR_EOC) && (s->sssr & (SSSR_TINT | SSSR_PINT));
537 level |= (s->sssr & SSSR_TINT) && (s->sscr[1] & SSCR1_TINTE);
538 level |= (s->sssr & SSSR_PINT) && (s->sscr[1] & SSCR1_PINTE);
539 level |= (s->sssr & SSSR_ROR) && !(s->sscr[0] & SSCR0_RIM);
540 level |= (s->sssr & SSSR_RFS) && (s->sscr[1] & SSCR1_RIE);
541 level |= (s->sssr & SSSR_TFS) && (s->sscr[1] & SSCR1_TIE);
542 qemu_set_irq(s->irq, !!level);
543 }
544
545 static void pxa2xx_ssp_fifo_update(PXA2xxSSPState *s)
546 {
547 s->sssr &= ~(0xf << 12); /* Clear RFL */
548 s->sssr &= ~(0xf << 8); /* Clear TFL */
549 s->sssr &= ~SSSR_TFS;
550 s->sssr &= ~SSSR_TNF;
551 if (s->enable) {
552 s->sssr |= ((s->rx_level - 1) & 0xf) << 12;
553 if (s->rx_level >= SSCR1_RFT(s->sscr[1]))
554 s->sssr |= SSSR_RFS;
555 else
556 s->sssr &= ~SSSR_RFS;
557 if (s->rx_level)
558 s->sssr |= SSSR_RNE;
559 else
560 s->sssr &= ~SSSR_RNE;
561 /* TX FIFO is never filled, so it is always in underrun
562 condition if SSP is enabled */
563 s->sssr |= SSSR_TFS;
564 s->sssr |= SSSR_TNF;
565 }
566
567 pxa2xx_ssp_int_update(s);
568 }
569
570 static uint64_t pxa2xx_ssp_read(void *opaque, hwaddr addr,
571 unsigned size)
572 {
573 PXA2xxSSPState *s = (PXA2xxSSPState *) opaque;
574 uint32_t retval;
575
576 switch (addr) {
577 case SSCR0:
578 return s->sscr[0];
579 case SSCR1:
580 return s->sscr[1];
581 case SSPSP:
582 return s->sspsp;
583 case SSTO:
584 return s->ssto;
585 case SSITR:
586 return s->ssitr;
587 case SSSR:
588 return s->sssr | s->ssitr;
589 case SSDR:
590 if (!s->enable)
591 return 0xffffffff;
592 if (s->rx_level < 1) {
593 printf("%s: SSP Rx Underrun\n", __FUNCTION__);
594 return 0xffffffff;
595 }
596 s->rx_level --;
597 retval = s->rx_fifo[s->rx_start ++];
598 s->rx_start &= 0xf;
599 pxa2xx_ssp_fifo_update(s);
600 return retval;
601 case SSTSA:
602 return s->sstsa;
603 case SSRSA:
604 return s->ssrsa;
605 case SSTSS:
606 return 0;
607 case SSACD:
608 return s->ssacd;
609 default:
610 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
611 break;
612 }
613 return 0;
614 }
615
616 static void pxa2xx_ssp_write(void *opaque, hwaddr addr,
617 uint64_t value64, unsigned size)
618 {
619 PXA2xxSSPState *s = (PXA2xxSSPState *) opaque;
620 uint32_t value = value64;
621
622 switch (addr) {
623 case SSCR0:
624 s->sscr[0] = value & 0xc7ffffff;
625 s->enable = value & SSCR0_SSE;
626 if (value & SSCR0_MOD)
627 printf("%s: Attempt to use network mode\n", __FUNCTION__);
628 if (s->enable && SSCR0_DSS(value) < 4)
629 printf("%s: Wrong data size: %i bits\n", __FUNCTION__,
630 SSCR0_DSS(value));
631 if (!(value & SSCR0_SSE)) {
632 s->sssr = 0;
633 s->ssitr = 0;
634 s->rx_level = 0;
635 }
636 pxa2xx_ssp_fifo_update(s);
637 break;
638
639 case SSCR1:
640 s->sscr[1] = value;
641 if (value & (SSCR1_LBM | SSCR1_EFWR))
642 printf("%s: Attempt to use SSP test mode\n", __FUNCTION__);
643 pxa2xx_ssp_fifo_update(s);
644 break;
645
646 case SSPSP:
647 s->sspsp = value;
648 break;
649
650 case SSTO:
651 s->ssto = value;
652 break;
653
654 case SSITR:
655 s->ssitr = value & SSITR_INT;
656 pxa2xx_ssp_int_update(s);
657 break;
658
659 case SSSR:
660 s->sssr &= ~(value & SSSR_RW);
661 pxa2xx_ssp_int_update(s);
662 break;
663
664 case SSDR:
665 if (SSCR0_UWIRE(s->sscr[0])) {
666 if (s->sscr[1] & SSCR1_MWDS)
667 value &= 0xffff;
668 else
669 value &= 0xff;
670 } else
671 /* Note how 32bits overflow does no harm here */
672 value &= (1 << SSCR0_DSS(s->sscr[0])) - 1;
673
674 /* Data goes from here to the Tx FIFO and is shifted out from
675 * there directly to the slave, no need to buffer it.
676 */
677 if (s->enable) {
678 uint32_t readval;
679 readval = ssi_transfer(s->bus, value);
680 if (s->rx_level < 0x10) {
681 s->rx_fifo[(s->rx_start + s->rx_level ++) & 0xf] = readval;
682 } else {
683 s->sssr |= SSSR_ROR;
684 }
685 }
686 pxa2xx_ssp_fifo_update(s);
687 break;
688
689 case SSTSA:
690 s->sstsa = value;
691 break;
692
693 case SSRSA:
694 s->ssrsa = value;
695 break;
696
697 case SSACD:
698 s->ssacd = value;
699 break;
700
701 default:
702 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
703 break;
704 }
705 }
706
707 static const MemoryRegionOps pxa2xx_ssp_ops = {
708 .read = pxa2xx_ssp_read,
709 .write = pxa2xx_ssp_write,
710 .endianness = DEVICE_NATIVE_ENDIAN,
711 };
712
713 static void pxa2xx_ssp_save(QEMUFile *f, void *opaque)
714 {
715 PXA2xxSSPState *s = (PXA2xxSSPState *) opaque;
716 int i;
717
718 qemu_put_be32(f, s->enable);
719
720 qemu_put_be32s(f, &s->sscr[0]);
721 qemu_put_be32s(f, &s->sscr[1]);
722 qemu_put_be32s(f, &s->sspsp);
723 qemu_put_be32s(f, &s->ssto);
724 qemu_put_be32s(f, &s->ssitr);
725 qemu_put_be32s(f, &s->sssr);
726 qemu_put_8s(f, &s->sstsa);
727 qemu_put_8s(f, &s->ssrsa);
728 qemu_put_8s(f, &s->ssacd);
729
730 qemu_put_byte(f, s->rx_level);
731 for (i = 0; i < s->rx_level; i ++)
732 qemu_put_byte(f, s->rx_fifo[(s->rx_start + i) & 0xf]);
733 }
734
735 static int pxa2xx_ssp_load(QEMUFile *f, void *opaque, int version_id)
736 {
737 PXA2xxSSPState *s = (PXA2xxSSPState *) opaque;
738 int i;
739
740 s->enable = qemu_get_be32(f);
741
742 qemu_get_be32s(f, &s->sscr[0]);
743 qemu_get_be32s(f, &s->sscr[1]);
744 qemu_get_be32s(f, &s->sspsp);
745 qemu_get_be32s(f, &s->ssto);
746 qemu_get_be32s(f, &s->ssitr);
747 qemu_get_be32s(f, &s->sssr);
748 qemu_get_8s(f, &s->sstsa);
749 qemu_get_8s(f, &s->ssrsa);
750 qemu_get_8s(f, &s->ssacd);
751
752 s->rx_level = qemu_get_byte(f);
753 s->rx_start = 0;
754 for (i = 0; i < s->rx_level; i ++)
755 s->rx_fifo[i] = qemu_get_byte(f);
756
757 return 0;
758 }
759
760 static int pxa2xx_ssp_init(SysBusDevice *dev)
761 {
762 PXA2xxSSPState *s = FROM_SYSBUS(PXA2xxSSPState, dev);
763
764 sysbus_init_irq(dev, &s->irq);
765
766 memory_region_init_io(&s->iomem, OBJECT(s), &pxa2xx_ssp_ops, s,
767 "pxa2xx-ssp", 0x1000);
768 sysbus_init_mmio(dev, &s->iomem);
769 register_savevm(&dev->qdev, "pxa2xx_ssp", -1, 0,
770 pxa2xx_ssp_save, pxa2xx_ssp_load, s);
771
772 s->bus = ssi_create_bus(&dev->qdev, "ssi");
773 return 0;
774 }
775
776 /* Real-Time Clock */
777 #define RCNR 0x00 /* RTC Counter register */
778 #define RTAR 0x04 /* RTC Alarm register */
779 #define RTSR 0x08 /* RTC Status register */
780 #define RTTR 0x0c /* RTC Timer Trim register */
781 #define RDCR 0x10 /* RTC Day Counter register */
782 #define RYCR 0x14 /* RTC Year Counter register */
783 #define RDAR1 0x18 /* RTC Wristwatch Day Alarm register 1 */
784 #define RYAR1 0x1c /* RTC Wristwatch Year Alarm register 1 */
785 #define RDAR2 0x20 /* RTC Wristwatch Day Alarm register 2 */
786 #define RYAR2 0x24 /* RTC Wristwatch Year Alarm register 2 */
787 #define SWCR 0x28 /* RTC Stopwatch Counter register */
788 #define SWAR1 0x2c /* RTC Stopwatch Alarm register 1 */
789 #define SWAR2 0x30 /* RTC Stopwatch Alarm register 2 */
790 #define RTCPICR 0x34 /* RTC Periodic Interrupt Counter register */
791 #define PIAR 0x38 /* RTC Periodic Interrupt Alarm register */
792
793 typedef struct {
794 SysBusDevice busdev;
795 MemoryRegion iomem;
796 uint32_t rttr;
797 uint32_t rtsr;
798 uint32_t rtar;
799 uint32_t rdar1;
800 uint32_t rdar2;
801 uint32_t ryar1;
802 uint32_t ryar2;
803 uint32_t swar1;
804 uint32_t swar2;
805 uint32_t piar;
806 uint32_t last_rcnr;
807 uint32_t last_rdcr;
808 uint32_t last_rycr;
809 uint32_t last_swcr;
810 uint32_t last_rtcpicr;
811 int64_t last_hz;
812 int64_t last_sw;
813 int64_t last_pi;
814 QEMUTimer *rtc_hz;
815 QEMUTimer *rtc_rdal1;
816 QEMUTimer *rtc_rdal2;
817 QEMUTimer *rtc_swal1;
818 QEMUTimer *rtc_swal2;
819 QEMUTimer *rtc_pi;
820 qemu_irq rtc_irq;
821 } PXA2xxRTCState;
822
823 static inline void pxa2xx_rtc_int_update(PXA2xxRTCState *s)
824 {
825 qemu_set_irq(s->rtc_irq, !!(s->rtsr & 0x2553));
826 }
827
828 static void pxa2xx_rtc_hzupdate(PXA2xxRTCState *s)
829 {
830 int64_t rt = qemu_get_clock_ms(rtc_clock);
831 s->last_rcnr += ((rt - s->last_hz) << 15) /
832 (1000 * ((s->rttr & 0xffff) + 1));
833 s->last_rdcr += ((rt - s->last_hz) << 15) /
834 (1000 * ((s->rttr & 0xffff) + 1));
835 s->last_hz = rt;
836 }
837
838 static void pxa2xx_rtc_swupdate(PXA2xxRTCState *s)
839 {
840 int64_t rt = qemu_get_clock_ms(rtc_clock);
841 if (s->rtsr & (1 << 12))
842 s->last_swcr += (rt - s->last_sw) / 10;
843 s->last_sw = rt;
844 }
845
846 static void pxa2xx_rtc_piupdate(PXA2xxRTCState *s)
847 {
848 int64_t rt = qemu_get_clock_ms(rtc_clock);
849 if (s->rtsr & (1 << 15))
850 s->last_swcr += rt - s->last_pi;
851 s->last_pi = rt;
852 }
853
854 static inline void pxa2xx_rtc_alarm_update(PXA2xxRTCState *s,
855 uint32_t rtsr)
856 {
857 if ((rtsr & (1 << 2)) && !(rtsr & (1 << 0)))
858 qemu_mod_timer(s->rtc_hz, s->last_hz +
859 (((s->rtar - s->last_rcnr) * 1000 *
860 ((s->rttr & 0xffff) + 1)) >> 15));
861 else
862 qemu_del_timer(s->rtc_hz);
863
864 if ((rtsr & (1 << 5)) && !(rtsr & (1 << 4)))
865 qemu_mod_timer(s->rtc_rdal1, s->last_hz +
866 (((s->rdar1 - s->last_rdcr) * 1000 *
867 ((s->rttr & 0xffff) + 1)) >> 15)); /* TODO: fixup */
868 else
869 qemu_del_timer(s->rtc_rdal1);
870
871 if ((rtsr & (1 << 7)) && !(rtsr & (1 << 6)))
872 qemu_mod_timer(s->rtc_rdal2, s->last_hz +
873 (((s->rdar2 - s->last_rdcr) * 1000 *
874 ((s->rttr & 0xffff) + 1)) >> 15)); /* TODO: fixup */
875 else
876 qemu_del_timer(s->rtc_rdal2);
877
878 if ((rtsr & 0x1200) == 0x1200 && !(rtsr & (1 << 8)))
879 qemu_mod_timer(s->rtc_swal1, s->last_sw +
880 (s->swar1 - s->last_swcr) * 10); /* TODO: fixup */
881 else
882 qemu_del_timer(s->rtc_swal1);
883
884 if ((rtsr & 0x1800) == 0x1800 && !(rtsr & (1 << 10)))
885 qemu_mod_timer(s->rtc_swal2, s->last_sw +
886 (s->swar2 - s->last_swcr) * 10); /* TODO: fixup */
887 else
888 qemu_del_timer(s->rtc_swal2);
889
890 if ((rtsr & 0xc000) == 0xc000 && !(rtsr & (1 << 13)))
891 qemu_mod_timer(s->rtc_pi, s->last_pi +
892 (s->piar & 0xffff) - s->last_rtcpicr);
893 else
894 qemu_del_timer(s->rtc_pi);
895 }
896
897 static inline void pxa2xx_rtc_hz_tick(void *opaque)
898 {
899 PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
900 s->rtsr |= (1 << 0);
901 pxa2xx_rtc_alarm_update(s, s->rtsr);
902 pxa2xx_rtc_int_update(s);
903 }
904
905 static inline void pxa2xx_rtc_rdal1_tick(void *opaque)
906 {
907 PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
908 s->rtsr |= (1 << 4);
909 pxa2xx_rtc_alarm_update(s, s->rtsr);
910 pxa2xx_rtc_int_update(s);
911 }
912
913 static inline void pxa2xx_rtc_rdal2_tick(void *opaque)
914 {
915 PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
916 s->rtsr |= (1 << 6);
917 pxa2xx_rtc_alarm_update(s, s->rtsr);
918 pxa2xx_rtc_int_update(s);
919 }
920
921 static inline void pxa2xx_rtc_swal1_tick(void *opaque)
922 {
923 PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
924 s->rtsr |= (1 << 8);
925 pxa2xx_rtc_alarm_update(s, s->rtsr);
926 pxa2xx_rtc_int_update(s);
927 }
928
929 static inline void pxa2xx_rtc_swal2_tick(void *opaque)
930 {
931 PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
932 s->rtsr |= (1 << 10);
933 pxa2xx_rtc_alarm_update(s, s->rtsr);
934 pxa2xx_rtc_int_update(s);
935 }
936
937 static inline void pxa2xx_rtc_pi_tick(void *opaque)
938 {
939 PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
940 s->rtsr |= (1 << 13);
941 pxa2xx_rtc_piupdate(s);
942 s->last_rtcpicr = 0;
943 pxa2xx_rtc_alarm_update(s, s->rtsr);
944 pxa2xx_rtc_int_update(s);
945 }
946
947 static uint64_t pxa2xx_rtc_read(void *opaque, hwaddr addr,
948 unsigned size)
949 {
950 PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
951
952 switch (addr) {
953 case RTTR:
954 return s->rttr;
955 case RTSR:
956 return s->rtsr;
957 case RTAR:
958 return s->rtar;
959 case RDAR1:
960 return s->rdar1;
961 case RDAR2:
962 return s->rdar2;
963 case RYAR1:
964 return s->ryar1;
965 case RYAR2:
966 return s->ryar2;
967 case SWAR1:
968 return s->swar1;
969 case SWAR2:
970 return s->swar2;
971 case PIAR:
972 return s->piar;
973 case RCNR:
974 return s->last_rcnr + ((qemu_get_clock_ms(rtc_clock) - s->last_hz) << 15) /
975 (1000 * ((s->rttr & 0xffff) + 1));
976 case RDCR:
977 return s->last_rdcr + ((qemu_get_clock_ms(rtc_clock) - s->last_hz) << 15) /
978 (1000 * ((s->rttr & 0xffff) + 1));
979 case RYCR:
980 return s->last_rycr;
981 case SWCR:
982 if (s->rtsr & (1 << 12))
983 return s->last_swcr + (qemu_get_clock_ms(rtc_clock) - s->last_sw) / 10;
984 else
985 return s->last_swcr;
986 default:
987 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
988 break;
989 }
990 return 0;
991 }
992
993 static void pxa2xx_rtc_write(void *opaque, hwaddr addr,
994 uint64_t value64, unsigned size)
995 {
996 PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
997 uint32_t value = value64;
998
999 switch (addr) {
1000 case RTTR:
1001 if (!(s->rttr & (1 << 31))) {
1002 pxa2xx_rtc_hzupdate(s);
1003 s->rttr = value;
1004 pxa2xx_rtc_alarm_update(s, s->rtsr);
1005 }
1006 break;
1007
1008 case RTSR:
1009 if ((s->rtsr ^ value) & (1 << 15))
1010 pxa2xx_rtc_piupdate(s);
1011
1012 if ((s->rtsr ^ value) & (1 << 12))
1013 pxa2xx_rtc_swupdate(s);
1014
1015 if (((s->rtsr ^ value) & 0x4aac) | (value & ~0xdaac))
1016 pxa2xx_rtc_alarm_update(s, value);
1017
1018 s->rtsr = (value & 0xdaac) | (s->rtsr & ~(value & ~0xdaac));
1019 pxa2xx_rtc_int_update(s);
1020 break;
1021
1022 case RTAR:
1023 s->rtar = value;
1024 pxa2xx_rtc_alarm_update(s, s->rtsr);
1025 break;
1026
1027 case RDAR1:
1028 s->rdar1 = value;
1029 pxa2xx_rtc_alarm_update(s, s->rtsr);
1030 break;
1031
1032 case RDAR2:
1033 s->rdar2 = value;
1034 pxa2xx_rtc_alarm_update(s, s->rtsr);
1035 break;
1036
1037 case RYAR1:
1038 s->ryar1 = value;
1039 pxa2xx_rtc_alarm_update(s, s->rtsr);
1040 break;
1041
1042 case RYAR2:
1043 s->ryar2 = value;
1044 pxa2xx_rtc_alarm_update(s, s->rtsr);
1045 break;
1046
1047 case SWAR1:
1048 pxa2xx_rtc_swupdate(s);
1049 s->swar1 = value;
1050 s->last_swcr = 0;
1051 pxa2xx_rtc_alarm_update(s, s->rtsr);
1052 break;
1053
1054 case SWAR2:
1055 s->swar2 = value;
1056 pxa2xx_rtc_alarm_update(s, s->rtsr);
1057 break;
1058
1059 case PIAR:
1060 s->piar = value;
1061 pxa2xx_rtc_alarm_update(s, s->rtsr);
1062 break;
1063
1064 case RCNR:
1065 pxa2xx_rtc_hzupdate(s);
1066 s->last_rcnr = value;
1067 pxa2xx_rtc_alarm_update(s, s->rtsr);
1068 break;
1069
1070 case RDCR:
1071 pxa2xx_rtc_hzupdate(s);
1072 s->last_rdcr = value;
1073 pxa2xx_rtc_alarm_update(s, s->rtsr);
1074 break;
1075
1076 case RYCR:
1077 s->last_rycr = value;
1078 break;
1079
1080 case SWCR:
1081 pxa2xx_rtc_swupdate(s);
1082 s->last_swcr = value;
1083 pxa2xx_rtc_alarm_update(s, s->rtsr);
1084 break;
1085
1086 case RTCPICR:
1087 pxa2xx_rtc_piupdate(s);
1088 s->last_rtcpicr = value & 0xffff;
1089 pxa2xx_rtc_alarm_update(s, s->rtsr);
1090 break;
1091
1092 default:
1093 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1094 }
1095 }
1096
1097 static const MemoryRegionOps pxa2xx_rtc_ops = {
1098 .read = pxa2xx_rtc_read,
1099 .write = pxa2xx_rtc_write,
1100 .endianness = DEVICE_NATIVE_ENDIAN,
1101 };
1102
1103 static int pxa2xx_rtc_init(SysBusDevice *dev)
1104 {
1105 PXA2xxRTCState *s = FROM_SYSBUS(PXA2xxRTCState, dev);
1106 struct tm tm;
1107 int wom;
1108
1109 s->rttr = 0x7fff;
1110 s->rtsr = 0;
1111
1112 qemu_get_timedate(&tm, 0);
1113 wom = ((tm.tm_mday - 1) / 7) + 1;
1114
1115 s->last_rcnr = (uint32_t) mktimegm(&tm);
1116 s->last_rdcr = (wom << 20) | ((tm.tm_wday + 1) << 17) |
1117 (tm.tm_hour << 12) | (tm.tm_min << 6) | tm.tm_sec;
1118 s->last_rycr = ((tm.tm_year + 1900) << 9) |
1119 ((tm.tm_mon + 1) << 5) | tm.tm_mday;
1120 s->last_swcr = (tm.tm_hour << 19) |
1121 (tm.tm_min << 13) | (tm.tm_sec << 7);
1122 s->last_rtcpicr = 0;
1123 s->last_hz = s->last_sw = s->last_pi = qemu_get_clock_ms(rtc_clock);
1124
1125 s->rtc_hz = qemu_new_timer_ms(rtc_clock, pxa2xx_rtc_hz_tick, s);
1126 s->rtc_rdal1 = qemu_new_timer_ms(rtc_clock, pxa2xx_rtc_rdal1_tick, s);
1127 s->rtc_rdal2 = qemu_new_timer_ms(rtc_clock, pxa2xx_rtc_rdal2_tick, s);
1128 s->rtc_swal1 = qemu_new_timer_ms(rtc_clock, pxa2xx_rtc_swal1_tick, s);
1129 s->rtc_swal2 = qemu_new_timer_ms(rtc_clock, pxa2xx_rtc_swal2_tick, s);
1130 s->rtc_pi = qemu_new_timer_ms(rtc_clock, pxa2xx_rtc_pi_tick, s);
1131
1132 sysbus_init_irq(dev, &s->rtc_irq);
1133
1134 memory_region_init_io(&s->iomem, OBJECT(s), &pxa2xx_rtc_ops, s,
1135 "pxa2xx-rtc", 0x10000);
1136 sysbus_init_mmio(dev, &s->iomem);
1137
1138 return 0;
1139 }
1140
1141 static void pxa2xx_rtc_pre_save(void *opaque)
1142 {
1143 PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
1144
1145 pxa2xx_rtc_hzupdate(s);
1146 pxa2xx_rtc_piupdate(s);
1147 pxa2xx_rtc_swupdate(s);
1148 }
1149
1150 static int pxa2xx_rtc_post_load(void *opaque, int version_id)
1151 {
1152 PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
1153
1154 pxa2xx_rtc_alarm_update(s, s->rtsr);
1155
1156 return 0;
1157 }
1158
1159 static const VMStateDescription vmstate_pxa2xx_rtc_regs = {
1160 .name = "pxa2xx_rtc",
1161 .version_id = 0,
1162 .minimum_version_id = 0,
1163 .minimum_version_id_old = 0,
1164 .pre_save = pxa2xx_rtc_pre_save,
1165 .post_load = pxa2xx_rtc_post_load,
1166 .fields = (VMStateField[]) {
1167 VMSTATE_UINT32(rttr, PXA2xxRTCState),
1168 VMSTATE_UINT32(rtsr, PXA2xxRTCState),
1169 VMSTATE_UINT32(rtar, PXA2xxRTCState),
1170 VMSTATE_UINT32(rdar1, PXA2xxRTCState),
1171 VMSTATE_UINT32(rdar2, PXA2xxRTCState),
1172 VMSTATE_UINT32(ryar1, PXA2xxRTCState),
1173 VMSTATE_UINT32(ryar2, PXA2xxRTCState),
1174 VMSTATE_UINT32(swar1, PXA2xxRTCState),
1175 VMSTATE_UINT32(swar2, PXA2xxRTCState),
1176 VMSTATE_UINT32(piar, PXA2xxRTCState),
1177 VMSTATE_UINT32(last_rcnr, PXA2xxRTCState),
1178 VMSTATE_UINT32(last_rdcr, PXA2xxRTCState),
1179 VMSTATE_UINT32(last_rycr, PXA2xxRTCState),
1180 VMSTATE_UINT32(last_swcr, PXA2xxRTCState),
1181 VMSTATE_UINT32(last_rtcpicr, PXA2xxRTCState),
1182 VMSTATE_INT64(last_hz, PXA2xxRTCState),
1183 VMSTATE_INT64(last_sw, PXA2xxRTCState),
1184 VMSTATE_INT64(last_pi, PXA2xxRTCState),
1185 VMSTATE_END_OF_LIST(),
1186 },
1187 };
1188
1189 static void pxa2xx_rtc_sysbus_class_init(ObjectClass *klass, void *data)
1190 {
1191 DeviceClass *dc = DEVICE_CLASS(klass);
1192 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
1193
1194 k->init = pxa2xx_rtc_init;
1195 dc->desc = "PXA2xx RTC Controller";
1196 dc->vmsd = &vmstate_pxa2xx_rtc_regs;
1197 }
1198
1199 static const TypeInfo pxa2xx_rtc_sysbus_info = {
1200 .name = "pxa2xx_rtc",
1201 .parent = TYPE_SYS_BUS_DEVICE,
1202 .instance_size = sizeof(PXA2xxRTCState),
1203 .class_init = pxa2xx_rtc_sysbus_class_init,
1204 };
1205
1206 /* I2C Interface */
1207 typedef struct {
1208 I2CSlave i2c;
1209 PXA2xxI2CState *host;
1210 } PXA2xxI2CSlaveState;
1211
1212 struct PXA2xxI2CState {
1213 SysBusDevice busdev;
1214 MemoryRegion iomem;
1215 PXA2xxI2CSlaveState *slave;
1216 i2c_bus *bus;
1217 qemu_irq irq;
1218 uint32_t offset;
1219 uint32_t region_size;
1220
1221 uint16_t control;
1222 uint16_t status;
1223 uint8_t ibmr;
1224 uint8_t data;
1225 };
1226
1227 #define IBMR 0x80 /* I2C Bus Monitor register */
1228 #define IDBR 0x88 /* I2C Data Buffer register */
1229 #define ICR 0x90 /* I2C Control register */
1230 #define ISR 0x98 /* I2C Status register */
1231 #define ISAR 0xa0 /* I2C Slave Address register */
1232
1233 static void pxa2xx_i2c_update(PXA2xxI2CState *s)
1234 {
1235 uint16_t level = 0;
1236 level |= s->status & s->control & (1 << 10); /* BED */
1237 level |= (s->status & (1 << 7)) && (s->control & (1 << 9)); /* IRF */
1238 level |= (s->status & (1 << 6)) && (s->control & (1 << 8)); /* ITE */
1239 level |= s->status & (1 << 9); /* SAD */
1240 qemu_set_irq(s->irq, !!level);
1241 }
1242
1243 /* These are only stubs now. */
1244 static void pxa2xx_i2c_event(I2CSlave *i2c, enum i2c_event event)
1245 {
1246 PXA2xxI2CSlaveState *slave = FROM_I2C_SLAVE(PXA2xxI2CSlaveState, i2c);
1247 PXA2xxI2CState *s = slave->host;
1248
1249 switch (event) {
1250 case I2C_START_SEND:
1251 s->status |= (1 << 9); /* set SAD */
1252 s->status &= ~(1 << 0); /* clear RWM */
1253 break;
1254 case I2C_START_RECV:
1255 s->status |= (1 << 9); /* set SAD */
1256 s->status |= 1 << 0; /* set RWM */
1257 break;
1258 case I2C_FINISH:
1259 s->status |= (1 << 4); /* set SSD */
1260 break;
1261 case I2C_NACK:
1262 s->status |= 1 << 1; /* set ACKNAK */
1263 break;
1264 }
1265 pxa2xx_i2c_update(s);
1266 }
1267
1268 static int pxa2xx_i2c_rx(I2CSlave *i2c)
1269 {
1270 PXA2xxI2CSlaveState *slave = FROM_I2C_SLAVE(PXA2xxI2CSlaveState, i2c);
1271 PXA2xxI2CState *s = slave->host;
1272 if ((s->control & (1 << 14)) || !(s->control & (1 << 6)))
1273 return 0;
1274
1275 if (s->status & (1 << 0)) { /* RWM */
1276 s->status |= 1 << 6; /* set ITE */
1277 }
1278 pxa2xx_i2c_update(s);
1279
1280 return s->data;
1281 }
1282
1283 static int pxa2xx_i2c_tx(I2CSlave *i2c, uint8_t data)
1284 {
1285 PXA2xxI2CSlaveState *slave = FROM_I2C_SLAVE(PXA2xxI2CSlaveState, i2c);
1286 PXA2xxI2CState *s = slave->host;
1287 if ((s->control & (1 << 14)) || !(s->control & (1 << 6)))
1288 return 1;
1289
1290 if (!(s->status & (1 << 0))) { /* RWM */
1291 s->status |= 1 << 7; /* set IRF */
1292 s->data = data;
1293 }
1294 pxa2xx_i2c_update(s);
1295
1296 return 1;
1297 }
1298
1299 static uint64_t pxa2xx_i2c_read(void *opaque, hwaddr addr,
1300 unsigned size)
1301 {
1302 PXA2xxI2CState *s = (PXA2xxI2CState *) opaque;
1303
1304 addr -= s->offset;
1305 switch (addr) {
1306 case ICR:
1307 return s->control;
1308 case ISR:
1309 return s->status | (i2c_bus_busy(s->bus) << 2);
1310 case ISAR:
1311 return s->slave->i2c.address;
1312 case IDBR:
1313 return s->data;
1314 case IBMR:
1315 if (s->status & (1 << 2))
1316 s->ibmr ^= 3; /* Fake SCL and SDA pin changes */
1317 else
1318 s->ibmr = 0;
1319 return s->ibmr;
1320 default:
1321 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1322 break;
1323 }
1324 return 0;
1325 }
1326
1327 static void pxa2xx_i2c_write(void *opaque, hwaddr addr,
1328 uint64_t value64, unsigned size)
1329 {
1330 PXA2xxI2CState *s = (PXA2xxI2CState *) opaque;
1331 uint32_t value = value64;
1332 int ack;
1333
1334 addr -= s->offset;
1335 switch (addr) {
1336 case ICR:
1337 s->control = value & 0xfff7;
1338 if ((value & (1 << 3)) && (value & (1 << 6))) { /* TB and IUE */
1339 /* TODO: slave mode */
1340 if (value & (1 << 0)) { /* START condition */
1341 if (s->data & 1)
1342 s->status |= 1 << 0; /* set RWM */
1343 else
1344 s->status &= ~(1 << 0); /* clear RWM */
1345 ack = !i2c_start_transfer(s->bus, s->data >> 1, s->data & 1);
1346 } else {
1347 if (s->status & (1 << 0)) { /* RWM */
1348 s->data = i2c_recv(s->bus);
1349 if (value & (1 << 2)) /* ACKNAK */
1350 i2c_nack(s->bus);
1351 ack = 1;
1352 } else
1353 ack = !i2c_send(s->bus, s->data);
1354 }
1355
1356 if (value & (1 << 1)) /* STOP condition */
1357 i2c_end_transfer(s->bus);
1358
1359 if (ack) {
1360 if (value & (1 << 0)) /* START condition */
1361 s->status |= 1 << 6; /* set ITE */
1362 else
1363 if (s->status & (1 << 0)) /* RWM */
1364 s->status |= 1 << 7; /* set IRF */
1365 else
1366 s->status |= 1 << 6; /* set ITE */
1367 s->status &= ~(1 << 1); /* clear ACKNAK */
1368 } else {
1369 s->status |= 1 << 6; /* set ITE */
1370 s->status |= 1 << 10; /* set BED */
1371 s->status |= 1 << 1; /* set ACKNAK */
1372 }
1373 }
1374 if (!(value & (1 << 3)) && (value & (1 << 6))) /* !TB and IUE */
1375 if (value & (1 << 4)) /* MA */
1376 i2c_end_transfer(s->bus);
1377 pxa2xx_i2c_update(s);
1378 break;
1379
1380 case ISR:
1381 s->status &= ~(value & 0x07f0);
1382 pxa2xx_i2c_update(s);
1383 break;
1384
1385 case ISAR:
1386 i2c_set_slave_address(&s->slave->i2c, value & 0x7f);
1387 break;
1388
1389 case IDBR:
1390 s->data = value & 0xff;
1391 break;
1392
1393 default:
1394 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1395 }
1396 }
1397
1398 static const MemoryRegionOps pxa2xx_i2c_ops = {
1399 .read = pxa2xx_i2c_read,
1400 .write = pxa2xx_i2c_write,
1401 .endianness = DEVICE_NATIVE_ENDIAN,
1402 };
1403
1404 static const VMStateDescription vmstate_pxa2xx_i2c_slave = {
1405 .name = "pxa2xx_i2c_slave",
1406 .version_id = 1,
1407 .minimum_version_id = 1,
1408 .minimum_version_id_old = 1,
1409 .fields = (VMStateField []) {
1410 VMSTATE_I2C_SLAVE(i2c, PXA2xxI2CSlaveState),
1411 VMSTATE_END_OF_LIST()
1412 }
1413 };
1414
1415 static const VMStateDescription vmstate_pxa2xx_i2c = {
1416 .name = "pxa2xx_i2c",
1417 .version_id = 1,
1418 .minimum_version_id = 1,
1419 .minimum_version_id_old = 1,
1420 .fields = (VMStateField []) {
1421 VMSTATE_UINT16(control, PXA2xxI2CState),
1422 VMSTATE_UINT16(status, PXA2xxI2CState),
1423 VMSTATE_UINT8(ibmr, PXA2xxI2CState),
1424 VMSTATE_UINT8(data, PXA2xxI2CState),
1425 VMSTATE_STRUCT_POINTER(slave, PXA2xxI2CState,
1426 vmstate_pxa2xx_i2c_slave, PXA2xxI2CSlaveState *),
1427 VMSTATE_END_OF_LIST()
1428 }
1429 };
1430
1431 static int pxa2xx_i2c_slave_init(I2CSlave *i2c)
1432 {
1433 /* Nothing to do. */
1434 return 0;
1435 }
1436
1437 static void pxa2xx_i2c_slave_class_init(ObjectClass *klass, void *data)
1438 {
1439 I2CSlaveClass *k = I2C_SLAVE_CLASS(klass);
1440
1441 k->init = pxa2xx_i2c_slave_init;
1442 k->event = pxa2xx_i2c_event;
1443 k->recv = pxa2xx_i2c_rx;
1444 k->send = pxa2xx_i2c_tx;
1445 }
1446
1447 static const TypeInfo pxa2xx_i2c_slave_info = {
1448 .name = "pxa2xx-i2c-slave",
1449 .parent = TYPE_I2C_SLAVE,
1450 .instance_size = sizeof(PXA2xxI2CSlaveState),
1451 .class_init = pxa2xx_i2c_slave_class_init,
1452 };
1453
1454 PXA2xxI2CState *pxa2xx_i2c_init(hwaddr base,
1455 qemu_irq irq, uint32_t region_size)
1456 {
1457 DeviceState *dev;
1458 SysBusDevice *i2c_dev;
1459 PXA2xxI2CState *s;
1460
1461 i2c_dev = SYS_BUS_DEVICE(qdev_create(NULL, "pxa2xx_i2c"));
1462 qdev_prop_set_uint32(&i2c_dev->qdev, "size", region_size + 1);
1463 qdev_prop_set_uint32(&i2c_dev->qdev, "offset", base & region_size);
1464
1465 qdev_init_nofail(&i2c_dev->qdev);
1466
1467 sysbus_mmio_map(i2c_dev, 0, base & ~region_size);
1468 sysbus_connect_irq(i2c_dev, 0, irq);
1469
1470 s = FROM_SYSBUS(PXA2xxI2CState, i2c_dev);
1471 /* FIXME: Should the slave device really be on a separate bus? */
1472 dev = i2c_create_slave(i2c_init_bus(NULL, "dummy"), "pxa2xx-i2c-slave", 0);
1473 s->slave = FROM_I2C_SLAVE(PXA2xxI2CSlaveState, I2C_SLAVE(dev));
1474 s->slave->host = s;
1475
1476 return s;
1477 }
1478
1479 static int pxa2xx_i2c_initfn(SysBusDevice *dev)
1480 {
1481 PXA2xxI2CState *s = FROM_SYSBUS(PXA2xxI2CState, dev);
1482
1483 s->bus = i2c_init_bus(&dev->qdev, "i2c");
1484
1485 memory_region_init_io(&s->iomem, OBJECT(s), &pxa2xx_i2c_ops, s,
1486 "pxa2xx-i2c", s->region_size);
1487 sysbus_init_mmio(dev, &s->iomem);
1488 sysbus_init_irq(dev, &s->irq);
1489
1490 return 0;
1491 }
1492
1493 i2c_bus *pxa2xx_i2c_bus(PXA2xxI2CState *s)
1494 {
1495 return s->bus;
1496 }
1497
1498 static Property pxa2xx_i2c_properties[] = {
1499 DEFINE_PROP_UINT32("size", PXA2xxI2CState, region_size, 0x10000),
1500 DEFINE_PROP_UINT32("offset", PXA2xxI2CState, offset, 0),
1501 DEFINE_PROP_END_OF_LIST(),
1502 };
1503
1504 static void pxa2xx_i2c_class_init(ObjectClass *klass, void *data)
1505 {
1506 DeviceClass *dc = DEVICE_CLASS(klass);
1507 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
1508
1509 k->init = pxa2xx_i2c_initfn;
1510 dc->desc = "PXA2xx I2C Bus Controller";
1511 dc->vmsd = &vmstate_pxa2xx_i2c;
1512 dc->props = pxa2xx_i2c_properties;
1513 }
1514
1515 static const TypeInfo pxa2xx_i2c_info = {
1516 .name = "pxa2xx_i2c",
1517 .parent = TYPE_SYS_BUS_DEVICE,
1518 .instance_size = sizeof(PXA2xxI2CState),
1519 .class_init = pxa2xx_i2c_class_init,
1520 };
1521
1522 /* PXA Inter-IC Sound Controller */
1523 static void pxa2xx_i2s_reset(PXA2xxI2SState *i2s)
1524 {
1525 i2s->rx_len = 0;
1526 i2s->tx_len = 0;
1527 i2s->fifo_len = 0;
1528 i2s->clk = 0x1a;
1529 i2s->control[0] = 0x00;
1530 i2s->control[1] = 0x00;
1531 i2s->status = 0x00;
1532 i2s->mask = 0x00;
1533 }
1534
1535 #define SACR_TFTH(val) ((val >> 8) & 0xf)
1536 #define SACR_RFTH(val) ((val >> 12) & 0xf)
1537 #define SACR_DREC(val) (val & (1 << 3))
1538 #define SACR_DPRL(val) (val & (1 << 4))
1539
1540 static inline void pxa2xx_i2s_update(PXA2xxI2SState *i2s)
1541 {
1542 int rfs, tfs;
1543 rfs = SACR_RFTH(i2s->control[0]) < i2s->rx_len &&
1544 !SACR_DREC(i2s->control[1]);
1545 tfs = (i2s->tx_len || i2s->fifo_len < SACR_TFTH(i2s->control[0])) &&
1546 i2s->enable && !SACR_DPRL(i2s->control[1]);
1547
1548 qemu_set_irq(i2s->rx_dma, rfs);
1549 qemu_set_irq(i2s->tx_dma, tfs);
1550
1551 i2s->status &= 0xe0;
1552 if (i2s->fifo_len < 16 || !i2s->enable)
1553 i2s->status |= 1 << 0; /* TNF */
1554 if (i2s->rx_len)
1555 i2s->status |= 1 << 1; /* RNE */
1556 if (i2s->enable)
1557 i2s->status |= 1 << 2; /* BSY */
1558 if (tfs)
1559 i2s->status |= 1 << 3; /* TFS */
1560 if (rfs)
1561 i2s->status |= 1 << 4; /* RFS */
1562 if (!(i2s->tx_len && i2s->enable))
1563 i2s->status |= i2s->fifo_len << 8; /* TFL */
1564 i2s->status |= MAX(i2s->rx_len, 0xf) << 12; /* RFL */
1565
1566 qemu_set_irq(i2s->irq, i2s->status & i2s->mask);
1567 }
1568
1569 #define SACR0 0x00 /* Serial Audio Global Control register */
1570 #define SACR1 0x04 /* Serial Audio I2S/MSB-Justified Control register */
1571 #define SASR0 0x0c /* Serial Audio Interface and FIFO Status register */
1572 #define SAIMR 0x14 /* Serial Audio Interrupt Mask register */
1573 #define SAICR 0x18 /* Serial Audio Interrupt Clear register */
1574 #define SADIV 0x60 /* Serial Audio Clock Divider register */
1575 #define SADR 0x80 /* Serial Audio Data register */
1576
1577 static uint64_t pxa2xx_i2s_read(void *opaque, hwaddr addr,
1578 unsigned size)
1579 {
1580 PXA2xxI2SState *s = (PXA2xxI2SState *) opaque;
1581
1582 switch (addr) {
1583 case SACR0:
1584 return s->control[0];
1585 case SACR1:
1586 return s->control[1];
1587 case SASR0:
1588 return s->status;
1589 case SAIMR:
1590 return s->mask;
1591 case SAICR:
1592 return 0;
1593 case SADIV:
1594 return s->clk;
1595 case SADR:
1596 if (s->rx_len > 0) {
1597 s->rx_len --;
1598 pxa2xx_i2s_update(s);
1599 return s->codec_in(s->opaque);
1600 }
1601 return 0;
1602 default:
1603 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1604 break;
1605 }
1606 return 0;
1607 }
1608
1609 static void pxa2xx_i2s_write(void *opaque, hwaddr addr,
1610 uint64_t value, unsigned size)
1611 {
1612 PXA2xxI2SState *s = (PXA2xxI2SState *) opaque;
1613 uint32_t *sample;
1614
1615 switch (addr) {
1616 case SACR0:
1617 if (value & (1 << 3)) /* RST */
1618 pxa2xx_i2s_reset(s);
1619 s->control[0] = value & 0xff3d;
1620 if (!s->enable && (value & 1) && s->tx_len) { /* ENB */
1621 for (sample = s->fifo; s->fifo_len > 0; s->fifo_len --, sample ++)
1622 s->codec_out(s->opaque, *sample);
1623 s->status &= ~(1 << 7); /* I2SOFF */
1624 }
1625 if (value & (1 << 4)) /* EFWR */
1626 printf("%s: Attempt to use special function\n", __FUNCTION__);
1627 s->enable = (value & 9) == 1; /* ENB && !RST*/
1628 pxa2xx_i2s_update(s);
1629 break;
1630 case SACR1:
1631 s->control[1] = value & 0x0039;
1632 if (value & (1 << 5)) /* ENLBF */
1633 printf("%s: Attempt to use loopback function\n", __FUNCTION__);
1634 if (value & (1 << 4)) /* DPRL */
1635 s->fifo_len = 0;
1636 pxa2xx_i2s_update(s);
1637 break;
1638 case SAIMR:
1639 s->mask = value & 0x0078;
1640 pxa2xx_i2s_update(s);
1641 break;
1642 case SAICR:
1643 s->status &= ~(value & (3 << 5));
1644 pxa2xx_i2s_update(s);
1645 break;
1646 case SADIV:
1647 s->clk = value & 0x007f;
1648 break;
1649 case SADR:
1650 if (s->tx_len && s->enable) {
1651 s->tx_len --;
1652 pxa2xx_i2s_update(s);
1653 s->codec_out(s->opaque, value);
1654 } else if (s->fifo_len < 16) {
1655 s->fifo[s->fifo_len ++] = value;
1656 pxa2xx_i2s_update(s);
1657 }
1658 break;
1659 default:
1660 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1661 }
1662 }
1663
1664 static const MemoryRegionOps pxa2xx_i2s_ops = {
1665 .read = pxa2xx_i2s_read,
1666 .write = pxa2xx_i2s_write,
1667 .endianness = DEVICE_NATIVE_ENDIAN,
1668 };
1669
1670 static const VMStateDescription vmstate_pxa2xx_i2s = {
1671 .name = "pxa2xx_i2s",
1672 .version_id = 0,
1673 .minimum_version_id = 0,
1674 .minimum_version_id_old = 0,
1675 .fields = (VMStateField[]) {
1676 VMSTATE_UINT32_ARRAY(control, PXA2xxI2SState, 2),
1677 VMSTATE_UINT32(status, PXA2xxI2SState),
1678 VMSTATE_UINT32(mask, PXA2xxI2SState),
1679 VMSTATE_UINT32(clk, PXA2xxI2SState),
1680 VMSTATE_INT32(enable, PXA2xxI2SState),
1681 VMSTATE_INT32(rx_len, PXA2xxI2SState),
1682 VMSTATE_INT32(tx_len, PXA2xxI2SState),
1683 VMSTATE_INT32(fifo_len, PXA2xxI2SState),
1684 VMSTATE_END_OF_LIST()
1685 }
1686 };
1687
1688 static void pxa2xx_i2s_data_req(void *opaque, int tx, int rx)
1689 {
1690 PXA2xxI2SState *s = (PXA2xxI2SState *) opaque;
1691 uint32_t *sample;
1692
1693 /* Signal FIFO errors */
1694 if (s->enable && s->tx_len)
1695 s->status |= 1 << 5; /* TUR */
1696 if (s->enable && s->rx_len)
1697 s->status |= 1 << 6; /* ROR */
1698
1699 /* Should be tx - MIN(tx, s->fifo_len) but we don't really need to
1700 * handle the cases where it makes a difference. */
1701 s->tx_len = tx - s->fifo_len;
1702 s->rx_len = rx;
1703 /* Note that is s->codec_out wasn't set, we wouldn't get called. */
1704 if (s->enable)
1705 for (sample = s->fifo; s->fifo_len; s->fifo_len --, sample ++)
1706 s->codec_out(s->opaque, *sample);
1707 pxa2xx_i2s_update(s);
1708 }
1709
1710 static PXA2xxI2SState *pxa2xx_i2s_init(MemoryRegion *sysmem,
1711 hwaddr base,
1712 qemu_irq irq, qemu_irq rx_dma, qemu_irq tx_dma)
1713 {
1714 PXA2xxI2SState *s = (PXA2xxI2SState *)
1715 g_malloc0(sizeof(PXA2xxI2SState));
1716
1717 s->irq = irq;
1718 s->rx_dma = rx_dma;
1719 s->tx_dma = tx_dma;
1720 s->data_req = pxa2xx_i2s_data_req;
1721
1722 pxa2xx_i2s_reset(s);
1723
1724 memory_region_init_io(&s->iomem, NULL, &pxa2xx_i2s_ops, s,
1725 "pxa2xx-i2s", 0x100000);
1726 memory_region_add_subregion(sysmem, base, &s->iomem);
1727
1728 vmstate_register(NULL, base, &vmstate_pxa2xx_i2s, s);
1729
1730 return s;
1731 }
1732
1733 /* PXA Fast Infra-red Communications Port */
1734 struct PXA2xxFIrState {
1735 MemoryRegion iomem;
1736 qemu_irq irq;
1737 qemu_irq rx_dma;
1738 qemu_irq tx_dma;
1739 int enable;
1740 CharDriverState *chr;
1741
1742 uint8_t control[3];
1743 uint8_t status[2];
1744
1745 int rx_len;
1746 int rx_start;
1747 uint8_t rx_fifo[64];
1748 };
1749
1750 static void pxa2xx_fir_reset(PXA2xxFIrState *s)
1751 {
1752 s->control[0] = 0x00;
1753 s->control[1] = 0x00;
1754 s->control[2] = 0x00;
1755 s->status[0] = 0x00;
1756 s->status[1] = 0x00;
1757 s->enable = 0;
1758 }
1759
1760 static inline void pxa2xx_fir_update(PXA2xxFIrState *s)
1761 {
1762 static const int tresh[4] = { 8, 16, 32, 0 };
1763 int intr = 0;
1764 if ((s->control[0] & (1 << 4)) && /* RXE */
1765 s->rx_len >= tresh[s->control[2] & 3]) /* TRIG */
1766 s->status[0] |= 1 << 4; /* RFS */
1767 else
1768 s->status[0] &= ~(1 << 4); /* RFS */
1769 if (s->control[0] & (1 << 3)) /* TXE */
1770 s->status[0] |= 1 << 3; /* TFS */
1771 else
1772 s->status[0] &= ~(1 << 3); /* TFS */
1773 if (s->rx_len)
1774 s->status[1] |= 1 << 2; /* RNE */
1775 else
1776 s->status[1] &= ~(1 << 2); /* RNE */
1777 if (s->control[0] & (1 << 4)) /* RXE */
1778 s->status[1] |= 1 << 0; /* RSY */
1779 else
1780 s->status[1] &= ~(1 << 0); /* RSY */
1781
1782 intr |= (s->control[0] & (1 << 5)) && /* RIE */
1783 (s->status[0] & (1 << 4)); /* RFS */
1784 intr |= (s->control[0] & (1 << 6)) && /* TIE */
1785 (s->status[0] & (1 << 3)); /* TFS */
1786 intr |= (s->control[2] & (1 << 4)) && /* TRAIL */
1787 (s->status[0] & (1 << 6)); /* EOC */
1788 intr |= (s->control[0] & (1 << 2)) && /* TUS */
1789 (s->status[0] & (1 << 1)); /* TUR */
1790 intr |= s->status[0] & 0x25; /* FRE, RAB, EIF */
1791
1792 qemu_set_irq(s->rx_dma, (s->status[0] >> 4) & 1);
1793 qemu_set_irq(s->tx_dma, (s->status[0] >> 3) & 1);
1794
1795 qemu_set_irq(s->irq, intr && s->enable);
1796 }
1797
1798 #define ICCR0 0x00 /* FICP Control register 0 */
1799 #define ICCR1 0x04 /* FICP Control register 1 */
1800 #define ICCR2 0x08 /* FICP Control register 2 */
1801 #define ICDR 0x0c /* FICP Data register */
1802 #define ICSR0 0x14 /* FICP Status register 0 */
1803 #define ICSR1 0x18 /* FICP Status register 1 */
1804 #define ICFOR 0x1c /* FICP FIFO Occupancy Status register */
1805
1806 static uint64_t pxa2xx_fir_read(void *opaque, hwaddr addr,
1807 unsigned size)
1808 {
1809 PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1810 uint8_t ret;
1811
1812 switch (addr) {
1813 case ICCR0:
1814 return s->control[0];
1815 case ICCR1:
1816 return s->control[1];
1817 case ICCR2:
1818 return s->control[2];
1819 case ICDR:
1820 s->status[0] &= ~0x01;
1821 s->status[1] &= ~0x72;
1822 if (s->rx_len) {
1823 s->rx_len --;
1824 ret = s->rx_fifo[s->rx_start ++];
1825 s->rx_start &= 63;
1826 pxa2xx_fir_update(s);
1827 return ret;
1828 }
1829 printf("%s: Rx FIFO underrun.\n", __FUNCTION__);
1830 break;
1831 case ICSR0:
1832 return s->status[0];
1833 case ICSR1:
1834 return s->status[1] | (1 << 3); /* TNF */
1835 case ICFOR:
1836 return s->rx_len;
1837 default:
1838 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1839 break;
1840 }
1841 return 0;
1842 }
1843
1844 static void pxa2xx_fir_write(void *opaque, hwaddr addr,
1845 uint64_t value64, unsigned size)
1846 {
1847 PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1848 uint32_t value = value64;
1849 uint8_t ch;
1850
1851 switch (addr) {
1852 case ICCR0:
1853 s->control[0] = value;
1854 if (!(value & (1 << 4))) /* RXE */
1855 s->rx_len = s->rx_start = 0;
1856 if (!(value & (1 << 3))) { /* TXE */
1857 /* Nop */
1858 }
1859 s->enable = value & 1; /* ITR */
1860 if (!s->enable)
1861 s->status[0] = 0;
1862 pxa2xx_fir_update(s);
1863 break;
1864 case ICCR1:
1865 s->control[1] = value;
1866 break;
1867 case ICCR2:
1868 s->control[2] = value & 0x3f;
1869 pxa2xx_fir_update(s);
1870 break;
1871 case ICDR:
1872 if (s->control[2] & (1 << 2)) /* TXP */
1873 ch = value;
1874 else
1875 ch = ~value;
1876 if (s->chr && s->enable && (s->control[0] & (1 << 3))) /* TXE */
1877 qemu_chr_fe_write(s->chr, &ch, 1);
1878 break;
1879 case ICSR0:
1880 s->status[0] &= ~(value & 0x66);
1881 pxa2xx_fir_update(s);
1882 break;
1883 case ICFOR:
1884 break;
1885 default:
1886 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1887 }
1888 }
1889
1890 static const MemoryRegionOps pxa2xx_fir_ops = {
1891 .read = pxa2xx_fir_read,
1892 .write = pxa2xx_fir_write,
1893 .endianness = DEVICE_NATIVE_ENDIAN,
1894 };
1895
1896 static int pxa2xx_fir_is_empty(void *opaque)
1897 {
1898 PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1899 return (s->rx_len < 64);
1900 }
1901
1902 static void pxa2xx_fir_rx(void *opaque, const uint8_t *buf, int size)
1903 {
1904 PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1905 if (!(s->control[0] & (1 << 4))) /* RXE */
1906 return;
1907
1908 while (size --) {
1909 s->status[1] |= 1 << 4; /* EOF */
1910 if (s->rx_len >= 64) {
1911 s->status[1] |= 1 << 6; /* ROR */
1912 break;
1913 }
1914
1915 if (s->control[2] & (1 << 3)) /* RXP */
1916 s->rx_fifo[(s->rx_start + s->rx_len ++) & 63] = *(buf ++);
1917 else
1918 s->rx_fifo[(s->rx_start + s->rx_len ++) & 63] = ~*(buf ++);
1919 }
1920
1921 pxa2xx_fir_update(s);
1922 }
1923
1924 static void pxa2xx_fir_event(void *opaque, int event)
1925 {
1926 }
1927
1928 static void pxa2xx_fir_save(QEMUFile *f, void *opaque)
1929 {
1930 PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1931 int i;
1932
1933 qemu_put_be32(f, s->enable);
1934
1935 qemu_put_8s(f, &s->control[0]);
1936 qemu_put_8s(f, &s->control[1]);
1937 qemu_put_8s(f, &s->control[2]);
1938 qemu_put_8s(f, &s->status[0]);
1939 qemu_put_8s(f, &s->status[1]);
1940
1941 qemu_put_byte(f, s->rx_len);
1942 for (i = 0; i < s->rx_len; i ++)
1943 qemu_put_byte(f, s->rx_fifo[(s->rx_start + i) & 63]);
1944 }
1945
1946 static int pxa2xx_fir_load(QEMUFile *f, void *opaque, int version_id)
1947 {
1948 PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1949 int i;
1950
1951 s->enable = qemu_get_be32(f);
1952
1953 qemu_get_8s(f, &s->control[0]);
1954 qemu_get_8s(f, &s->control[1]);
1955 qemu_get_8s(f, &s->control[2]);
1956 qemu_get_8s(f, &s->status[0]);
1957 qemu_get_8s(f, &s->status[1]);
1958
1959 s->rx_len = qemu_get_byte(f);
1960 s->rx_start = 0;
1961 for (i = 0; i < s->rx_len; i ++)
1962 s->rx_fifo[i] = qemu_get_byte(f);
1963
1964 return 0;
1965 }
1966
1967 static PXA2xxFIrState *pxa2xx_fir_init(MemoryRegion *sysmem,
1968 hwaddr base,
1969 qemu_irq irq, qemu_irq rx_dma, qemu_irq tx_dma,
1970 CharDriverState *chr)
1971 {
1972 PXA2xxFIrState *s = (PXA2xxFIrState *)
1973 g_malloc0(sizeof(PXA2xxFIrState));
1974
1975 s->irq = irq;
1976 s->rx_dma = rx_dma;
1977 s->tx_dma = tx_dma;
1978 s->chr = chr;
1979
1980 pxa2xx_fir_reset(s);
1981
1982 memory_region_init_io(&s->iomem, NULL, &pxa2xx_fir_ops, s, "pxa2xx-fir", 0x1000);
1983 memory_region_add_subregion(sysmem, base, &s->iomem);
1984
1985 if (chr) {
1986 qemu_chr_fe_claim_no_fail(chr);
1987 qemu_chr_add_handlers(chr, pxa2xx_fir_is_empty,
1988 pxa2xx_fir_rx, pxa2xx_fir_event, s);
1989 }
1990
1991 register_savevm(NULL, "pxa2xx_fir", 0, 0, pxa2xx_fir_save,
1992 pxa2xx_fir_load, s);
1993
1994 return s;
1995 }
1996
1997 static void pxa2xx_reset(void *opaque, int line, int level)
1998 {
1999 PXA2xxState *s = (PXA2xxState *) opaque;
2000
2001 if (level && (s->pm_regs[PCFR >> 2] & 0x10)) { /* GPR_EN */
2002 cpu_reset(CPU(s->cpu));
2003 /* TODO: reset peripherals */
2004 }
2005 }
2006
2007 /* Initialise a PXA270 integrated chip (ARM based core). */
2008 PXA2xxState *pxa270_init(MemoryRegion *address_space,
2009 unsigned int sdram_size, const char *revision)
2010 {
2011 PXA2xxState *s;
2012 int i;
2013 DriveInfo *dinfo;
2014 s = (PXA2xxState *) g_malloc0(sizeof(PXA2xxState));
2015
2016 if (revision && strncmp(revision, "pxa27", 5)) {
2017 fprintf(stderr, "Machine requires a PXA27x processor.\n");
2018 exit(1);
2019 }
2020 if (!revision)
2021 revision = "pxa270";
2022
2023 s->cpu = cpu_arm_init(revision);
2024 if (s->cpu == NULL) {
2025 fprintf(stderr, "Unable to find CPU definition\n");
2026 exit(1);
2027 }
2028 s->reset = qemu_allocate_irqs(pxa2xx_reset, s, 1)[0];
2029
2030 /* SDRAM & Internal Memory Storage */
2031 memory_region_init_ram(&s->sdram, NULL, "pxa270.sdram", sdram_size);
2032 vmstate_register_ram_global(&s->sdram);
2033 memory_region_add_subregion(address_space, PXA2XX_SDRAM_BASE, &s->sdram);
2034 memory_region_init_ram(&s->internal, NULL, "pxa270.internal", 0x40000);
2035 vmstate_register_ram_global(&s->internal);
2036 memory_region_add_subregion(address_space, PXA2XX_INTERNAL_BASE,
2037 &s->internal);
2038
2039 s->pic = pxa2xx_pic_init(0x40d00000, s->cpu);
2040
2041 s->dma = pxa27x_dma_init(0x40000000,
2042 qdev_get_gpio_in(s->pic, PXA2XX_PIC_DMA));
2043
2044 sysbus_create_varargs("pxa27x-timer", 0x40a00000,
2045 qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 0),
2046 qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 1),
2047 qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 2),
2048 qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 3),
2049 qdev_get_gpio_in(s->pic, PXA27X_PIC_OST_4_11),
2050 NULL);
2051
2052 s->gpio = pxa2xx_gpio_init(0x40e00000, s->cpu, s->pic, 121);
2053
2054 dinfo = drive_get(IF_SD, 0, 0);
2055 if (!dinfo) {
2056 fprintf(stderr, "qemu: missing SecureDigital device\n");
2057 exit(1);
2058 }
2059 s->mmc = pxa2xx_mmci_init(address_space, 0x41100000, dinfo->bdrv,
2060 qdev_get_gpio_in(s->pic, PXA2XX_PIC_MMC),
2061 qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_MMCI),
2062 qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_MMCI));
2063
2064 for (i = 0; pxa270_serial[i].io_base; i++) {
2065 if (serial_hds[i]) {
2066 serial_mm_init(address_space, pxa270_serial[i].io_base, 2,
2067 qdev_get_gpio_in(s->pic, pxa270_serial[i].irqn),
2068 14857000 / 16, serial_hds[i],
2069 DEVICE_NATIVE_ENDIAN);
2070 } else {
2071 break;
2072 }
2073 }
2074 if (serial_hds[i])
2075 s->fir = pxa2xx_fir_init(address_space, 0x40800000,
2076 qdev_get_gpio_in(s->pic, PXA2XX_PIC_ICP),
2077 qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_ICP),
2078 qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_ICP),
2079 serial_hds[i]);
2080
2081 s->lcd = pxa2xx_lcdc_init(address_space, 0x44000000,
2082 qdev_get_gpio_in(s->pic, PXA2XX_PIC_LCD));
2083
2084 s->cm_base = 0x41300000;
2085 s->cm_regs[CCCR >> 2] = 0x02000210; /* 416.0 MHz */
2086 s->clkcfg = 0x00000009; /* Turbo mode active */
2087 memory_region_init_io(&s->cm_iomem, NULL, &pxa2xx_cm_ops, s, "pxa2xx-cm", 0x1000);
2088 memory_region_add_subregion(address_space, s->cm_base, &s->cm_iomem);
2089 vmstate_register(NULL, 0, &vmstate_pxa2xx_cm, s);
2090
2091 pxa2xx_setup_cp14(s);
2092
2093 s->mm_base = 0x48000000;
2094 s->mm_regs[MDMRS >> 2] = 0x00020002;
2095 s->mm_regs[MDREFR >> 2] = 0x03ca4000;
2096 s->mm_regs[MECR >> 2] = 0x00000001; /* Two PC Card sockets */
2097 memory_region_init_io(&s->mm_iomem, NULL, &pxa2xx_mm_ops, s, "pxa2xx-mm", 0x1000);
2098 memory_region_add_subregion(address_space, s->mm_base, &s->mm_iomem);
2099 vmstate_register(NULL, 0, &vmstate_pxa2xx_mm, s);
2100
2101 s->pm_base = 0x40f00000;
2102 memory_region_init_io(&s->pm_iomem, NULL, &pxa2xx_pm_ops, s, "pxa2xx-pm", 0x100);
2103 memory_region_add_subregion(address_space, s->pm_base, &s->pm_iomem);
2104 vmstate_register(NULL, 0, &vmstate_pxa2xx_pm, s);
2105
2106 for (i = 0; pxa27x_ssp[i].io_base; i ++);
2107 s->ssp = (SSIBus **)g_malloc0(sizeof(SSIBus *) * i);
2108 for (i = 0; pxa27x_ssp[i].io_base; i ++) {
2109 DeviceState *dev;
2110 dev = sysbus_create_simple("pxa2xx-ssp", pxa27x_ssp[i].io_base,
2111 qdev_get_gpio_in(s->pic, pxa27x_ssp[i].irqn));
2112 s->ssp[i] = (SSIBus *)qdev_get_child_bus(dev, "ssi");
2113 }
2114
2115 if (usb_enabled(false)) {
2116 sysbus_create_simple("sysbus-ohci", 0x4c000000,
2117 qdev_get_gpio_in(s->pic, PXA2XX_PIC_USBH1));
2118 }
2119
2120 s->pcmcia[0] = pxa2xx_pcmcia_init(address_space, 0x20000000);
2121 s->pcmcia[1] = pxa2xx_pcmcia_init(address_space, 0x30000000);
2122
2123 sysbus_create_simple("pxa2xx_rtc", 0x40900000,
2124 qdev_get_gpio_in(s->pic, PXA2XX_PIC_RTCALARM));
2125
2126 s->i2c[0] = pxa2xx_i2c_init(0x40301600,
2127 qdev_get_gpio_in(s->pic, PXA2XX_PIC_I2C), 0xffff);
2128 s->i2c[1] = pxa2xx_i2c_init(0x40f00100,
2129 qdev_get_gpio_in(s->pic, PXA2XX_PIC_PWRI2C), 0xff);
2130
2131 s->i2s = pxa2xx_i2s_init(address_space, 0x40400000,
2132 qdev_get_gpio_in(s->pic, PXA2XX_PIC_I2S),
2133 qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_I2S),
2134 qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_I2S));
2135
2136 s->kp = pxa27x_keypad_init(address_space, 0x41500000,
2137 qdev_get_gpio_in(s->pic, PXA2XX_PIC_KEYPAD));
2138
2139 /* GPIO1 resets the processor */
2140 /* The handler can be overridden by board-specific code */
2141 qdev_connect_gpio_out(s->gpio, 1, s->reset);
2142 return s;
2143 }
2144
2145 /* Initialise a PXA255 integrated chip (ARM based core). */
2146 PXA2xxState *pxa255_init(MemoryRegion *address_space, unsigned int sdram_size)
2147 {
2148 PXA2xxState *s;
2149 int i;
2150 DriveInfo *dinfo;
2151
2152 s = (PXA2xxState *) g_malloc0(sizeof(PXA2xxState));
2153
2154 s->cpu = cpu_arm_init("pxa255");
2155 if (s->cpu == NULL) {
2156 fprintf(stderr, "Unable to find CPU definition\n");
2157 exit(1);
2158 }
2159 s->reset = qemu_allocate_irqs(pxa2xx_reset, s, 1)[0];
2160
2161 /* SDRAM & Internal Memory Storage */
2162 memory_region_init_ram(&s->sdram, NULL, "pxa255.sdram", sdram_size);
2163 vmstate_register_ram_global(&s->sdram);
2164 memory_region_add_subregion(address_space, PXA2XX_SDRAM_BASE, &s->sdram);
2165 memory_region_init_ram(&s->internal, NULL, "pxa255.internal",
2166 PXA2XX_INTERNAL_SIZE);
2167 vmstate_register_ram_global(&s->internal);
2168 memory_region_add_subregion(address_space, PXA2XX_INTERNAL_BASE,
2169 &s->internal);
2170
2171 s->pic = pxa2xx_pic_init(0x40d00000, s->cpu);
2172
2173 s->dma = pxa255_dma_init(0x40000000,
2174 qdev_get_gpio_in(s->pic, PXA2XX_PIC_DMA));
2175
2176 sysbus_create_varargs("pxa25x-timer", 0x40a00000,
2177 qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 0),
2178 qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 1),
2179 qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 2),
2180 qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 3),
2181 NULL);
2182
2183 s->gpio = pxa2xx_gpio_init(0x40e00000, s->cpu, s->pic, 85);
2184
2185 dinfo = drive_get(IF_SD, 0, 0);
2186 if (!dinfo) {
2187 fprintf(stderr, "qemu: missing SecureDigital device\n");
2188 exit(1);
2189 }
2190 s->mmc = pxa2xx_mmci_init(address_space, 0x41100000, dinfo->bdrv,
2191 qdev_get_gpio_in(s->pic, PXA2XX_PIC_MMC),
2192 qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_MMCI),
2193 qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_MMCI));
2194
2195 for (i = 0; pxa255_serial[i].io_base; i++) {
2196 if (serial_hds[i]) {
2197 serial_mm_init(address_space, pxa255_serial[i].io_base, 2,
2198 qdev_get_gpio_in(s->pic, pxa255_serial[i].irqn),
2199 14745600 / 16, serial_hds[i],
2200 DEVICE_NATIVE_ENDIAN);
2201 } else {
2202 break;
2203 }
2204 }
2205 if (serial_hds[i])
2206 s->fir = pxa2xx_fir_init(address_space, 0x40800000,
2207 qdev_get_gpio_in(s->pic, PXA2XX_PIC_ICP),
2208 qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_ICP),
2209 qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_ICP),
2210 serial_hds[i]);
2211
2212 s->lcd = pxa2xx_lcdc_init(address_space, 0x44000000,
2213 qdev_get_gpio_in(s->pic, PXA2XX_PIC_LCD));
2214
2215 s->cm_base = 0x41300000;
2216 s->cm_regs[CCCR >> 2] = 0x02000210; /* 416.0 MHz */
2217 s->clkcfg = 0x00000009; /* Turbo mode active */
2218 memory_region_init_io(&s->cm_iomem, NULL, &pxa2xx_cm_ops, s, "pxa2xx-cm", 0x1000);
2219 memory_region_add_subregion(address_space, s->cm_base, &s->cm_iomem);
2220 vmstate_register(NULL, 0, &vmstate_pxa2xx_cm, s);
2221
2222 pxa2xx_setup_cp14(s);
2223
2224 s->mm_base = 0x48000000;
2225 s->mm_regs[MDMRS >> 2] = 0x00020002;
2226 s->mm_regs[MDREFR >> 2] = 0x03ca4000;
2227 s->mm_regs[MECR >> 2] = 0x00000001; /* Two PC Card sockets */
2228 memory_region_init_io(&s->mm_iomem, NULL, &pxa2xx_mm_ops, s, "pxa2xx-mm", 0x1000);
2229 memory_region_add_subregion(address_space, s->mm_base, &s->mm_iomem);
2230 vmstate_register(NULL, 0, &vmstate_pxa2xx_mm, s);
2231
2232 s->pm_base = 0x40f00000;
2233 memory_region_init_io(&s->pm_iomem, NULL, &pxa2xx_pm_ops, s, "pxa2xx-pm", 0x100);
2234 memory_region_add_subregion(address_space, s->pm_base, &s->pm_iomem);
2235 vmstate_register(NULL, 0, &vmstate_pxa2xx_pm, s);
2236
2237 for (i = 0; pxa255_ssp[i].io_base; i ++);
2238 s->ssp = (SSIBus **)g_malloc0(sizeof(SSIBus *) * i);
2239 for (i = 0; pxa255_ssp[i].io_base; i ++) {
2240 DeviceState *dev;
2241 dev = sysbus_create_simple("pxa2xx-ssp", pxa255_ssp[i].io_base,
2242 qdev_get_gpio_in(s->pic, pxa255_ssp[i].irqn));
2243 s->ssp[i] = (SSIBus *)qdev_get_child_bus(dev, "ssi");
2244 }
2245
2246 if (usb_enabled(false)) {
2247 sysbus_create_simple("sysbus-ohci", 0x4c000000,
2248 qdev_get_gpio_in(s->pic, PXA2XX_PIC_USBH1));
2249 }
2250
2251 s->pcmcia[0] = pxa2xx_pcmcia_init(address_space, 0x20000000);
2252 s->pcmcia[1] = pxa2xx_pcmcia_init(address_space, 0x30000000);
2253
2254 sysbus_create_simple("pxa2xx_rtc", 0x40900000,
2255 qdev_get_gpio_in(s->pic, PXA2XX_PIC_RTCALARM));
2256
2257 s->i2c[0] = pxa2xx_i2c_init(0x40301600,
2258 qdev_get_gpio_in(s->pic, PXA2XX_PIC_I2C), 0xffff);
2259 s->i2c[1] = pxa2xx_i2c_init(0x40f00100,
2260 qdev_get_gpio_in(s->pic, PXA2XX_PIC_PWRI2C), 0xff);
2261
2262 s->i2s = pxa2xx_i2s_init(address_space, 0x40400000,
2263 qdev_get_gpio_in(s->pic, PXA2XX_PIC_I2S),
2264 qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_I2S),
2265 qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_I2S));
2266
2267 /* GPIO1 resets the processor */
2268 /* The handler can be overridden by board-specific code */
2269 qdev_connect_gpio_out(s->gpio, 1, s->reset);
2270 return s;
2271 }
2272
2273 static void pxa2xx_ssp_class_init(ObjectClass *klass, void *data)
2274 {
2275 SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass);
2276
2277 sdc->init = pxa2xx_ssp_init;
2278 }
2279
2280 static const TypeInfo pxa2xx_ssp_info = {
2281 .name = "pxa2xx-ssp",
2282 .parent = TYPE_SYS_BUS_DEVICE,
2283 .instance_size = sizeof(PXA2xxSSPState),
2284 .class_init = pxa2xx_ssp_class_init,
2285 };
2286
2287 static void pxa2xx_register_types(void)
2288 {
2289 type_register_static(&pxa2xx_i2c_slave_info);
2290 type_register_static(&pxa2xx_ssp_info);
2291 type_register_static(&pxa2xx_i2c_info);
2292 type_register_static(&pxa2xx_rtc_sysbus_info);
2293 }
2294
2295 type_init(pxa2xx_register_types)