]> git.proxmox.com Git - mirror_qemu.git/blob - hw/arm/smmuv3.c
Merge tag 'patchew/20200219160953.13771-1-imammedo@redhat.com' of https://github...
[mirror_qemu.git] / hw / arm / smmuv3.c
1 /*
2 * Copyright (C) 2014-2016 Broadcom Corporation
3 * Copyright (c) 2017 Red Hat, Inc.
4 * Written by Prem Mallappa, Eric Auger
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, see <http://www.gnu.org/licenses/>.
17 */
18
19 #include "qemu/osdep.h"
20 #include "hw/irq.h"
21 #include "hw/sysbus.h"
22 #include "migration/vmstate.h"
23 #include "hw/qdev-core.h"
24 #include "hw/pci/pci.h"
25 #include "exec/address-spaces.h"
26 #include "cpu.h"
27 #include "trace.h"
28 #include "qemu/log.h"
29 #include "qemu/error-report.h"
30 #include "qapi/error.h"
31
32 #include "hw/arm/smmuv3.h"
33 #include "smmuv3-internal.h"
34
35 /**
36 * smmuv3_trigger_irq - pulse @irq if enabled and update
37 * GERROR register in case of GERROR interrupt
38 *
39 * @irq: irq type
40 * @gerror_mask: mask of gerrors to toggle (relevant if @irq is GERROR)
41 */
42 static void smmuv3_trigger_irq(SMMUv3State *s, SMMUIrq irq,
43 uint32_t gerror_mask)
44 {
45
46 bool pulse = false;
47
48 switch (irq) {
49 case SMMU_IRQ_EVTQ:
50 pulse = smmuv3_eventq_irq_enabled(s);
51 break;
52 case SMMU_IRQ_PRIQ:
53 qemu_log_mask(LOG_UNIMP, "PRI not yet supported\n");
54 break;
55 case SMMU_IRQ_CMD_SYNC:
56 pulse = true;
57 break;
58 case SMMU_IRQ_GERROR:
59 {
60 uint32_t pending = s->gerror ^ s->gerrorn;
61 uint32_t new_gerrors = ~pending & gerror_mask;
62
63 if (!new_gerrors) {
64 /* only toggle non pending errors */
65 return;
66 }
67 s->gerror ^= new_gerrors;
68 trace_smmuv3_write_gerror(new_gerrors, s->gerror);
69
70 pulse = smmuv3_gerror_irq_enabled(s);
71 break;
72 }
73 }
74 if (pulse) {
75 trace_smmuv3_trigger_irq(irq);
76 qemu_irq_pulse(s->irq[irq]);
77 }
78 }
79
80 static void smmuv3_write_gerrorn(SMMUv3State *s, uint32_t new_gerrorn)
81 {
82 uint32_t pending = s->gerror ^ s->gerrorn;
83 uint32_t toggled = s->gerrorn ^ new_gerrorn;
84
85 if (toggled & ~pending) {
86 qemu_log_mask(LOG_GUEST_ERROR,
87 "guest toggles non pending errors = 0x%x\n",
88 toggled & ~pending);
89 }
90
91 /*
92 * We do not raise any error in case guest toggles bits corresponding
93 * to not active IRQs (CONSTRAINED UNPREDICTABLE)
94 */
95 s->gerrorn = new_gerrorn;
96
97 trace_smmuv3_write_gerrorn(toggled & pending, s->gerrorn);
98 }
99
100 static inline MemTxResult queue_read(SMMUQueue *q, void *data)
101 {
102 dma_addr_t addr = Q_CONS_ENTRY(q);
103
104 return dma_memory_read(&address_space_memory, addr, data, q->entry_size);
105 }
106
107 static MemTxResult queue_write(SMMUQueue *q, void *data)
108 {
109 dma_addr_t addr = Q_PROD_ENTRY(q);
110 MemTxResult ret;
111
112 ret = dma_memory_write(&address_space_memory, addr, data, q->entry_size);
113 if (ret != MEMTX_OK) {
114 return ret;
115 }
116
117 queue_prod_incr(q);
118 return MEMTX_OK;
119 }
120
121 static MemTxResult smmuv3_write_eventq(SMMUv3State *s, Evt *evt)
122 {
123 SMMUQueue *q = &s->eventq;
124 MemTxResult r;
125
126 if (!smmuv3_eventq_enabled(s)) {
127 return MEMTX_ERROR;
128 }
129
130 if (smmuv3_q_full(q)) {
131 return MEMTX_ERROR;
132 }
133
134 r = queue_write(q, evt);
135 if (r != MEMTX_OK) {
136 return r;
137 }
138
139 if (!smmuv3_q_empty(q)) {
140 smmuv3_trigger_irq(s, SMMU_IRQ_EVTQ, 0);
141 }
142 return MEMTX_OK;
143 }
144
145 void smmuv3_record_event(SMMUv3State *s, SMMUEventInfo *info)
146 {
147 Evt evt = {};
148 MemTxResult r;
149
150 if (!smmuv3_eventq_enabled(s)) {
151 return;
152 }
153
154 EVT_SET_TYPE(&evt, info->type);
155 EVT_SET_SID(&evt, info->sid);
156
157 switch (info->type) {
158 case SMMU_EVT_NONE:
159 return;
160 case SMMU_EVT_F_UUT:
161 EVT_SET_SSID(&evt, info->u.f_uut.ssid);
162 EVT_SET_SSV(&evt, info->u.f_uut.ssv);
163 EVT_SET_ADDR(&evt, info->u.f_uut.addr);
164 EVT_SET_RNW(&evt, info->u.f_uut.rnw);
165 EVT_SET_PNU(&evt, info->u.f_uut.pnu);
166 EVT_SET_IND(&evt, info->u.f_uut.ind);
167 break;
168 case SMMU_EVT_C_BAD_STREAMID:
169 EVT_SET_SSID(&evt, info->u.c_bad_streamid.ssid);
170 EVT_SET_SSV(&evt, info->u.c_bad_streamid.ssv);
171 break;
172 case SMMU_EVT_F_STE_FETCH:
173 EVT_SET_SSID(&evt, info->u.f_ste_fetch.ssid);
174 EVT_SET_SSV(&evt, info->u.f_ste_fetch.ssv);
175 EVT_SET_ADDR2(&evt, info->u.f_ste_fetch.addr);
176 break;
177 case SMMU_EVT_C_BAD_STE:
178 EVT_SET_SSID(&evt, info->u.c_bad_ste.ssid);
179 EVT_SET_SSV(&evt, info->u.c_bad_ste.ssv);
180 break;
181 case SMMU_EVT_F_STREAM_DISABLED:
182 break;
183 case SMMU_EVT_F_TRANS_FORBIDDEN:
184 EVT_SET_ADDR(&evt, info->u.f_transl_forbidden.addr);
185 EVT_SET_RNW(&evt, info->u.f_transl_forbidden.rnw);
186 break;
187 case SMMU_EVT_C_BAD_SUBSTREAMID:
188 EVT_SET_SSID(&evt, info->u.c_bad_substream.ssid);
189 break;
190 case SMMU_EVT_F_CD_FETCH:
191 EVT_SET_SSID(&evt, info->u.f_cd_fetch.ssid);
192 EVT_SET_SSV(&evt, info->u.f_cd_fetch.ssv);
193 EVT_SET_ADDR(&evt, info->u.f_cd_fetch.addr);
194 break;
195 case SMMU_EVT_C_BAD_CD:
196 EVT_SET_SSID(&evt, info->u.c_bad_cd.ssid);
197 EVT_SET_SSV(&evt, info->u.c_bad_cd.ssv);
198 break;
199 case SMMU_EVT_F_WALK_EABT:
200 case SMMU_EVT_F_TRANSLATION:
201 case SMMU_EVT_F_ADDR_SIZE:
202 case SMMU_EVT_F_ACCESS:
203 case SMMU_EVT_F_PERMISSION:
204 EVT_SET_STALL(&evt, info->u.f_walk_eabt.stall);
205 EVT_SET_STAG(&evt, info->u.f_walk_eabt.stag);
206 EVT_SET_SSID(&evt, info->u.f_walk_eabt.ssid);
207 EVT_SET_SSV(&evt, info->u.f_walk_eabt.ssv);
208 EVT_SET_S2(&evt, info->u.f_walk_eabt.s2);
209 EVT_SET_ADDR(&evt, info->u.f_walk_eabt.addr);
210 EVT_SET_RNW(&evt, info->u.f_walk_eabt.rnw);
211 EVT_SET_PNU(&evt, info->u.f_walk_eabt.pnu);
212 EVT_SET_IND(&evt, info->u.f_walk_eabt.ind);
213 EVT_SET_CLASS(&evt, info->u.f_walk_eabt.class);
214 EVT_SET_ADDR2(&evt, info->u.f_walk_eabt.addr2);
215 break;
216 case SMMU_EVT_F_CFG_CONFLICT:
217 EVT_SET_SSID(&evt, info->u.f_cfg_conflict.ssid);
218 EVT_SET_SSV(&evt, info->u.f_cfg_conflict.ssv);
219 break;
220 /* rest is not implemented */
221 case SMMU_EVT_F_BAD_ATS_TREQ:
222 case SMMU_EVT_F_TLB_CONFLICT:
223 case SMMU_EVT_E_PAGE_REQ:
224 default:
225 g_assert_not_reached();
226 }
227
228 trace_smmuv3_record_event(smmu_event_string(info->type), info->sid);
229 r = smmuv3_write_eventq(s, &evt);
230 if (r != MEMTX_OK) {
231 smmuv3_trigger_irq(s, SMMU_IRQ_GERROR, R_GERROR_EVENTQ_ABT_ERR_MASK);
232 }
233 info->recorded = true;
234 }
235
236 static void smmuv3_init_regs(SMMUv3State *s)
237 {
238 /**
239 * IDR0: stage1 only, AArch64 only, coherent access, 16b ASID,
240 * multi-level stream table
241 */
242 s->idr[0] = FIELD_DP32(s->idr[0], IDR0, S1P, 1); /* stage 1 supported */
243 s->idr[0] = FIELD_DP32(s->idr[0], IDR0, TTF, 2); /* AArch64 PTW only */
244 s->idr[0] = FIELD_DP32(s->idr[0], IDR0, COHACC, 1); /* IO coherent */
245 s->idr[0] = FIELD_DP32(s->idr[0], IDR0, ASID16, 1); /* 16-bit ASID */
246 s->idr[0] = FIELD_DP32(s->idr[0], IDR0, TTENDIAN, 2); /* little endian */
247 s->idr[0] = FIELD_DP32(s->idr[0], IDR0, STALL_MODEL, 1); /* No stall */
248 /* terminated transaction will always be aborted/error returned */
249 s->idr[0] = FIELD_DP32(s->idr[0], IDR0, TERM_MODEL, 1);
250 /* 2-level stream table supported */
251 s->idr[0] = FIELD_DP32(s->idr[0], IDR0, STLEVEL, 1);
252
253 s->idr[1] = FIELD_DP32(s->idr[1], IDR1, SIDSIZE, SMMU_IDR1_SIDSIZE);
254 s->idr[1] = FIELD_DP32(s->idr[1], IDR1, EVENTQS, SMMU_EVENTQS);
255 s->idr[1] = FIELD_DP32(s->idr[1], IDR1, CMDQS, SMMU_CMDQS);
256
257 /* 4K and 64K granule support */
258 s->idr[5] = FIELD_DP32(s->idr[5], IDR5, GRAN4K, 1);
259 s->idr[5] = FIELD_DP32(s->idr[5], IDR5, GRAN64K, 1);
260 s->idr[5] = FIELD_DP32(s->idr[5], IDR5, OAS, SMMU_IDR5_OAS); /* 44 bits */
261
262 s->cmdq.base = deposit64(s->cmdq.base, 0, 5, SMMU_CMDQS);
263 s->cmdq.prod = 0;
264 s->cmdq.cons = 0;
265 s->cmdq.entry_size = sizeof(struct Cmd);
266 s->eventq.base = deposit64(s->eventq.base, 0, 5, SMMU_EVENTQS);
267 s->eventq.prod = 0;
268 s->eventq.cons = 0;
269 s->eventq.entry_size = sizeof(struct Evt);
270
271 s->features = 0;
272 s->sid_split = 0;
273 }
274
275 static int smmu_get_ste(SMMUv3State *s, dma_addr_t addr, STE *buf,
276 SMMUEventInfo *event)
277 {
278 int ret;
279
280 trace_smmuv3_get_ste(addr);
281 /* TODO: guarantee 64-bit single-copy atomicity */
282 ret = dma_memory_read(&address_space_memory, addr,
283 (void *)buf, sizeof(*buf));
284 if (ret != MEMTX_OK) {
285 qemu_log_mask(LOG_GUEST_ERROR,
286 "Cannot fetch pte at address=0x%"PRIx64"\n", addr);
287 event->type = SMMU_EVT_F_STE_FETCH;
288 event->u.f_ste_fetch.addr = addr;
289 return -EINVAL;
290 }
291 return 0;
292
293 }
294
295 /* @ssid > 0 not supported yet */
296 static int smmu_get_cd(SMMUv3State *s, STE *ste, uint32_t ssid,
297 CD *buf, SMMUEventInfo *event)
298 {
299 dma_addr_t addr = STE_CTXPTR(ste);
300 int ret;
301
302 trace_smmuv3_get_cd(addr);
303 /* TODO: guarantee 64-bit single-copy atomicity */
304 ret = dma_memory_read(&address_space_memory, addr,
305 (void *)buf, sizeof(*buf));
306 if (ret != MEMTX_OK) {
307 qemu_log_mask(LOG_GUEST_ERROR,
308 "Cannot fetch pte at address=0x%"PRIx64"\n", addr);
309 event->type = SMMU_EVT_F_CD_FETCH;
310 event->u.f_ste_fetch.addr = addr;
311 return -EINVAL;
312 }
313 return 0;
314 }
315
316 /* Returns < 0 in case of invalid STE, 0 otherwise */
317 static int decode_ste(SMMUv3State *s, SMMUTransCfg *cfg,
318 STE *ste, SMMUEventInfo *event)
319 {
320 uint32_t config;
321
322 if (!STE_VALID(ste)) {
323 if (!event->inval_ste_allowed) {
324 qemu_log_mask(LOG_GUEST_ERROR, "invalid STE\n");
325 }
326 goto bad_ste;
327 }
328
329 config = STE_CONFIG(ste);
330
331 if (STE_CFG_ABORT(config)) {
332 cfg->aborted = true;
333 return 0;
334 }
335
336 if (STE_CFG_BYPASS(config)) {
337 cfg->bypassed = true;
338 return 0;
339 }
340
341 if (STE_CFG_S2_ENABLED(config)) {
342 qemu_log_mask(LOG_UNIMP, "SMMUv3 does not support stage 2 yet\n");
343 goto bad_ste;
344 }
345
346 if (STE_S1CDMAX(ste) != 0) {
347 qemu_log_mask(LOG_UNIMP,
348 "SMMUv3 does not support multiple context descriptors yet\n");
349 goto bad_ste;
350 }
351
352 if (STE_S1STALLD(ste)) {
353 qemu_log_mask(LOG_UNIMP,
354 "SMMUv3 S1 stalling fault model not allowed yet\n");
355 goto bad_ste;
356 }
357 return 0;
358
359 bad_ste:
360 event->type = SMMU_EVT_C_BAD_STE;
361 return -EINVAL;
362 }
363
364 /**
365 * smmu_find_ste - Return the stream table entry associated
366 * to the sid
367 *
368 * @s: smmuv3 handle
369 * @sid: stream ID
370 * @ste: returned stream table entry
371 * @event: handle to an event info
372 *
373 * Supports linear and 2-level stream table
374 * Return 0 on success, -EINVAL otherwise
375 */
376 static int smmu_find_ste(SMMUv3State *s, uint32_t sid, STE *ste,
377 SMMUEventInfo *event)
378 {
379 dma_addr_t addr, strtab_base;
380 uint32_t log2size;
381 int strtab_size_shift;
382 int ret;
383
384 trace_smmuv3_find_ste(sid, s->features, s->sid_split);
385 log2size = FIELD_EX32(s->strtab_base_cfg, STRTAB_BASE_CFG, LOG2SIZE);
386 /*
387 * Check SID range against both guest-configured and implementation limits
388 */
389 if (sid >= (1 << MIN(log2size, SMMU_IDR1_SIDSIZE))) {
390 event->type = SMMU_EVT_C_BAD_STREAMID;
391 return -EINVAL;
392 }
393 if (s->features & SMMU_FEATURE_2LVL_STE) {
394 int l1_ste_offset, l2_ste_offset, max_l2_ste, span;
395 dma_addr_t l1ptr, l2ptr;
396 STEDesc l1std;
397
398 /*
399 * Align strtab base address to table size. For this purpose, assume it
400 * is not bounded by SMMU_IDR1_SIDSIZE.
401 */
402 strtab_size_shift = MAX(5, (int)log2size - s->sid_split - 1 + 3);
403 strtab_base = s->strtab_base & SMMU_BASE_ADDR_MASK &
404 ~MAKE_64BIT_MASK(0, strtab_size_shift);
405 l1_ste_offset = sid >> s->sid_split;
406 l2_ste_offset = sid & ((1 << s->sid_split) - 1);
407 l1ptr = (dma_addr_t)(strtab_base + l1_ste_offset * sizeof(l1std));
408 /* TODO: guarantee 64-bit single-copy atomicity */
409 ret = dma_memory_read(&address_space_memory, l1ptr,
410 (uint8_t *)&l1std, sizeof(l1std));
411 if (ret != MEMTX_OK) {
412 qemu_log_mask(LOG_GUEST_ERROR,
413 "Could not read L1PTR at 0X%"PRIx64"\n", l1ptr);
414 event->type = SMMU_EVT_F_STE_FETCH;
415 event->u.f_ste_fetch.addr = l1ptr;
416 return -EINVAL;
417 }
418
419 span = L1STD_SPAN(&l1std);
420
421 if (!span) {
422 /* l2ptr is not valid */
423 if (!event->inval_ste_allowed) {
424 qemu_log_mask(LOG_GUEST_ERROR,
425 "invalid sid=%d (L1STD span=0)\n", sid);
426 }
427 event->type = SMMU_EVT_C_BAD_STREAMID;
428 return -EINVAL;
429 }
430 max_l2_ste = (1 << span) - 1;
431 l2ptr = l1std_l2ptr(&l1std);
432 trace_smmuv3_find_ste_2lvl(s->strtab_base, l1ptr, l1_ste_offset,
433 l2ptr, l2_ste_offset, max_l2_ste);
434 if (l2_ste_offset > max_l2_ste) {
435 qemu_log_mask(LOG_GUEST_ERROR,
436 "l2_ste_offset=%d > max_l2_ste=%d\n",
437 l2_ste_offset, max_l2_ste);
438 event->type = SMMU_EVT_C_BAD_STE;
439 return -EINVAL;
440 }
441 addr = l2ptr + l2_ste_offset * sizeof(*ste);
442 } else {
443 strtab_size_shift = log2size + 5;
444 strtab_base = s->strtab_base & SMMU_BASE_ADDR_MASK &
445 ~MAKE_64BIT_MASK(0, strtab_size_shift);
446 addr = strtab_base + sid * sizeof(*ste);
447 }
448
449 if (smmu_get_ste(s, addr, ste, event)) {
450 return -EINVAL;
451 }
452
453 return 0;
454 }
455
456 static int decode_cd(SMMUTransCfg *cfg, CD *cd, SMMUEventInfo *event)
457 {
458 int ret = -EINVAL;
459 int i;
460
461 if (!CD_VALID(cd) || !CD_AARCH64(cd)) {
462 goto bad_cd;
463 }
464 if (!CD_A(cd)) {
465 goto bad_cd; /* SMMU_IDR0.TERM_MODEL == 1 */
466 }
467 if (CD_S(cd)) {
468 goto bad_cd; /* !STE_SECURE && SMMU_IDR0.STALL_MODEL == 1 */
469 }
470 if (CD_HA(cd) || CD_HD(cd)) {
471 goto bad_cd; /* HTTU = 0 */
472 }
473
474 /* we support only those at the moment */
475 cfg->aa64 = true;
476 cfg->stage = 1;
477
478 cfg->oas = oas2bits(CD_IPS(cd));
479 cfg->oas = MIN(oas2bits(SMMU_IDR5_OAS), cfg->oas);
480 cfg->tbi = CD_TBI(cd);
481 cfg->asid = CD_ASID(cd);
482
483 trace_smmuv3_decode_cd(cfg->oas);
484
485 /* decode data dependent on TT */
486 for (i = 0; i <= 1; i++) {
487 int tg, tsz;
488 SMMUTransTableInfo *tt = &cfg->tt[i];
489
490 cfg->tt[i].disabled = CD_EPD(cd, i);
491 if (cfg->tt[i].disabled) {
492 continue;
493 }
494
495 tsz = CD_TSZ(cd, i);
496 if (tsz < 16 || tsz > 39) {
497 goto bad_cd;
498 }
499
500 tg = CD_TG(cd, i);
501 tt->granule_sz = tg2granule(tg, i);
502 if ((tt->granule_sz != 12 && tt->granule_sz != 16) || CD_ENDI(cd)) {
503 goto bad_cd;
504 }
505
506 tt->tsz = tsz;
507 tt->ttb = CD_TTB(cd, i);
508 if (tt->ttb & ~(MAKE_64BIT_MASK(0, cfg->oas))) {
509 goto bad_cd;
510 }
511 trace_smmuv3_decode_cd_tt(i, tt->tsz, tt->ttb, tt->granule_sz);
512 }
513
514 event->record_trans_faults = CD_R(cd);
515
516 return 0;
517
518 bad_cd:
519 event->type = SMMU_EVT_C_BAD_CD;
520 return ret;
521 }
522
523 /**
524 * smmuv3_decode_config - Prepare the translation configuration
525 * for the @mr iommu region
526 * @mr: iommu memory region the translation config must be prepared for
527 * @cfg: output translation configuration which is populated through
528 * the different configuration decoding steps
529 * @event: must be zero'ed by the caller
530 *
531 * return < 0 in case of config decoding error (@event is filled
532 * accordingly). Return 0 otherwise.
533 */
534 static int smmuv3_decode_config(IOMMUMemoryRegion *mr, SMMUTransCfg *cfg,
535 SMMUEventInfo *event)
536 {
537 SMMUDevice *sdev = container_of(mr, SMMUDevice, iommu);
538 uint32_t sid = smmu_get_sid(sdev);
539 SMMUv3State *s = sdev->smmu;
540 int ret;
541 STE ste;
542 CD cd;
543
544 ret = smmu_find_ste(s, sid, &ste, event);
545 if (ret) {
546 return ret;
547 }
548
549 ret = decode_ste(s, cfg, &ste, event);
550 if (ret) {
551 return ret;
552 }
553
554 if (cfg->aborted || cfg->bypassed) {
555 return 0;
556 }
557
558 ret = smmu_get_cd(s, &ste, 0 /* ssid */, &cd, event);
559 if (ret) {
560 return ret;
561 }
562
563 return decode_cd(cfg, &cd, event);
564 }
565
566 /**
567 * smmuv3_get_config - Look up for a cached copy of configuration data for
568 * @sdev and on cache miss performs a configuration structure decoding from
569 * guest RAM.
570 *
571 * @sdev: SMMUDevice handle
572 * @event: output event info
573 *
574 * The configuration cache contains data resulting from both STE and CD
575 * decoding under the form of an SMMUTransCfg struct. The hash table is indexed
576 * by the SMMUDevice handle.
577 */
578 static SMMUTransCfg *smmuv3_get_config(SMMUDevice *sdev, SMMUEventInfo *event)
579 {
580 SMMUv3State *s = sdev->smmu;
581 SMMUState *bc = &s->smmu_state;
582 SMMUTransCfg *cfg;
583
584 cfg = g_hash_table_lookup(bc->configs, sdev);
585 if (cfg) {
586 sdev->cfg_cache_hits++;
587 trace_smmuv3_config_cache_hit(smmu_get_sid(sdev),
588 sdev->cfg_cache_hits, sdev->cfg_cache_misses,
589 100 * sdev->cfg_cache_hits /
590 (sdev->cfg_cache_hits + sdev->cfg_cache_misses));
591 } else {
592 sdev->cfg_cache_misses++;
593 trace_smmuv3_config_cache_miss(smmu_get_sid(sdev),
594 sdev->cfg_cache_hits, sdev->cfg_cache_misses,
595 100 * sdev->cfg_cache_hits /
596 (sdev->cfg_cache_hits + sdev->cfg_cache_misses));
597 cfg = g_new0(SMMUTransCfg, 1);
598
599 if (!smmuv3_decode_config(&sdev->iommu, cfg, event)) {
600 g_hash_table_insert(bc->configs, sdev, cfg);
601 } else {
602 g_free(cfg);
603 cfg = NULL;
604 }
605 }
606 return cfg;
607 }
608
609 static void smmuv3_flush_config(SMMUDevice *sdev)
610 {
611 SMMUv3State *s = sdev->smmu;
612 SMMUState *bc = &s->smmu_state;
613
614 trace_smmuv3_config_cache_inv(smmu_get_sid(sdev));
615 g_hash_table_remove(bc->configs, sdev);
616 }
617
618 static IOMMUTLBEntry smmuv3_translate(IOMMUMemoryRegion *mr, hwaddr addr,
619 IOMMUAccessFlags flag, int iommu_idx)
620 {
621 SMMUDevice *sdev = container_of(mr, SMMUDevice, iommu);
622 SMMUv3State *s = sdev->smmu;
623 uint32_t sid = smmu_get_sid(sdev);
624 SMMUEventInfo event = {.type = SMMU_EVT_NONE,
625 .sid = sid,
626 .inval_ste_allowed = false};
627 SMMUPTWEventInfo ptw_info = {};
628 SMMUTranslationStatus status;
629 SMMUState *bs = ARM_SMMU(s);
630 uint64_t page_mask, aligned_addr;
631 IOMMUTLBEntry *cached_entry = NULL;
632 SMMUTransTableInfo *tt;
633 SMMUTransCfg *cfg = NULL;
634 IOMMUTLBEntry entry = {
635 .target_as = &address_space_memory,
636 .iova = addr,
637 .translated_addr = addr,
638 .addr_mask = ~(hwaddr)0,
639 .perm = IOMMU_NONE,
640 };
641 SMMUIOTLBKey key, *new_key;
642
643 qemu_mutex_lock(&s->mutex);
644
645 if (!smmu_enabled(s)) {
646 status = SMMU_TRANS_DISABLE;
647 goto epilogue;
648 }
649
650 cfg = smmuv3_get_config(sdev, &event);
651 if (!cfg) {
652 status = SMMU_TRANS_ERROR;
653 goto epilogue;
654 }
655
656 if (cfg->aborted) {
657 status = SMMU_TRANS_ABORT;
658 goto epilogue;
659 }
660
661 if (cfg->bypassed) {
662 status = SMMU_TRANS_BYPASS;
663 goto epilogue;
664 }
665
666 tt = select_tt(cfg, addr);
667 if (!tt) {
668 if (event.record_trans_faults) {
669 event.type = SMMU_EVT_F_TRANSLATION;
670 event.u.f_translation.addr = addr;
671 event.u.f_translation.rnw = flag & 0x1;
672 }
673 status = SMMU_TRANS_ERROR;
674 goto epilogue;
675 }
676
677 page_mask = (1ULL << (tt->granule_sz)) - 1;
678 aligned_addr = addr & ~page_mask;
679
680 key.asid = cfg->asid;
681 key.iova = aligned_addr;
682
683 cached_entry = g_hash_table_lookup(bs->iotlb, &key);
684 if (cached_entry) {
685 cfg->iotlb_hits++;
686 trace_smmu_iotlb_cache_hit(cfg->asid, aligned_addr,
687 cfg->iotlb_hits, cfg->iotlb_misses,
688 100 * cfg->iotlb_hits /
689 (cfg->iotlb_hits + cfg->iotlb_misses));
690 if ((flag & IOMMU_WO) && !(cached_entry->perm & IOMMU_WO)) {
691 status = SMMU_TRANS_ERROR;
692 if (event.record_trans_faults) {
693 event.type = SMMU_EVT_F_PERMISSION;
694 event.u.f_permission.addr = addr;
695 event.u.f_permission.rnw = flag & 0x1;
696 }
697 } else {
698 status = SMMU_TRANS_SUCCESS;
699 }
700 goto epilogue;
701 }
702
703 cfg->iotlb_misses++;
704 trace_smmu_iotlb_cache_miss(cfg->asid, addr & ~page_mask,
705 cfg->iotlb_hits, cfg->iotlb_misses,
706 100 * cfg->iotlb_hits /
707 (cfg->iotlb_hits + cfg->iotlb_misses));
708
709 if (g_hash_table_size(bs->iotlb) >= SMMU_IOTLB_MAX_SIZE) {
710 smmu_iotlb_inv_all(bs);
711 }
712
713 cached_entry = g_new0(IOMMUTLBEntry, 1);
714
715 if (smmu_ptw(cfg, aligned_addr, flag, cached_entry, &ptw_info)) {
716 g_free(cached_entry);
717 switch (ptw_info.type) {
718 case SMMU_PTW_ERR_WALK_EABT:
719 event.type = SMMU_EVT_F_WALK_EABT;
720 event.u.f_walk_eabt.addr = addr;
721 event.u.f_walk_eabt.rnw = flag & 0x1;
722 event.u.f_walk_eabt.class = 0x1;
723 event.u.f_walk_eabt.addr2 = ptw_info.addr;
724 break;
725 case SMMU_PTW_ERR_TRANSLATION:
726 if (event.record_trans_faults) {
727 event.type = SMMU_EVT_F_TRANSLATION;
728 event.u.f_translation.addr = addr;
729 event.u.f_translation.rnw = flag & 0x1;
730 }
731 break;
732 case SMMU_PTW_ERR_ADDR_SIZE:
733 if (event.record_trans_faults) {
734 event.type = SMMU_EVT_F_ADDR_SIZE;
735 event.u.f_addr_size.addr = addr;
736 event.u.f_addr_size.rnw = flag & 0x1;
737 }
738 break;
739 case SMMU_PTW_ERR_ACCESS:
740 if (event.record_trans_faults) {
741 event.type = SMMU_EVT_F_ACCESS;
742 event.u.f_access.addr = addr;
743 event.u.f_access.rnw = flag & 0x1;
744 }
745 break;
746 case SMMU_PTW_ERR_PERMISSION:
747 if (event.record_trans_faults) {
748 event.type = SMMU_EVT_F_PERMISSION;
749 event.u.f_permission.addr = addr;
750 event.u.f_permission.rnw = flag & 0x1;
751 }
752 break;
753 default:
754 g_assert_not_reached();
755 }
756 status = SMMU_TRANS_ERROR;
757 } else {
758 new_key = g_new0(SMMUIOTLBKey, 1);
759 new_key->asid = cfg->asid;
760 new_key->iova = aligned_addr;
761 g_hash_table_insert(bs->iotlb, new_key, cached_entry);
762 status = SMMU_TRANS_SUCCESS;
763 }
764
765 epilogue:
766 qemu_mutex_unlock(&s->mutex);
767 switch (status) {
768 case SMMU_TRANS_SUCCESS:
769 entry.perm = flag;
770 entry.translated_addr = cached_entry->translated_addr +
771 (addr & page_mask);
772 entry.addr_mask = cached_entry->addr_mask;
773 trace_smmuv3_translate_success(mr->parent_obj.name, sid, addr,
774 entry.translated_addr, entry.perm);
775 break;
776 case SMMU_TRANS_DISABLE:
777 entry.perm = flag;
778 entry.addr_mask = ~TARGET_PAGE_MASK;
779 trace_smmuv3_translate_disable(mr->parent_obj.name, sid, addr,
780 entry.perm);
781 break;
782 case SMMU_TRANS_BYPASS:
783 entry.perm = flag;
784 entry.addr_mask = ~TARGET_PAGE_MASK;
785 trace_smmuv3_translate_bypass(mr->parent_obj.name, sid, addr,
786 entry.perm);
787 break;
788 case SMMU_TRANS_ABORT:
789 /* no event is recorded on abort */
790 trace_smmuv3_translate_abort(mr->parent_obj.name, sid, addr,
791 entry.perm);
792 break;
793 case SMMU_TRANS_ERROR:
794 qemu_log_mask(LOG_GUEST_ERROR,
795 "%s translation failed for iova=0x%"PRIx64"(%s)\n",
796 mr->parent_obj.name, addr, smmu_event_string(event.type));
797 smmuv3_record_event(s, &event);
798 break;
799 }
800
801 return entry;
802 }
803
804 /**
805 * smmuv3_notify_iova - call the notifier @n for a given
806 * @asid and @iova tuple.
807 *
808 * @mr: IOMMU mr region handle
809 * @n: notifier to be called
810 * @asid: address space ID or negative value if we don't care
811 * @iova: iova
812 */
813 static void smmuv3_notify_iova(IOMMUMemoryRegion *mr,
814 IOMMUNotifier *n,
815 int asid,
816 dma_addr_t iova)
817 {
818 SMMUDevice *sdev = container_of(mr, SMMUDevice, iommu);
819 SMMUEventInfo event = {.inval_ste_allowed = true};
820 SMMUTransTableInfo *tt;
821 SMMUTransCfg *cfg;
822 IOMMUTLBEntry entry;
823
824 cfg = smmuv3_get_config(sdev, &event);
825 if (!cfg) {
826 return;
827 }
828
829 if (asid >= 0 && cfg->asid != asid) {
830 return;
831 }
832
833 tt = select_tt(cfg, iova);
834 if (!tt) {
835 return;
836 }
837
838 entry.target_as = &address_space_memory;
839 entry.iova = iova;
840 entry.addr_mask = (1 << tt->granule_sz) - 1;
841 entry.perm = IOMMU_NONE;
842
843 memory_region_notify_one(n, &entry);
844 }
845
846 /* invalidate an asid/iova tuple in all mr's */
847 static void smmuv3_inv_notifiers_iova(SMMUState *s, int asid, dma_addr_t iova)
848 {
849 SMMUDevice *sdev;
850
851 QLIST_FOREACH(sdev, &s->devices_with_notifiers, next) {
852 IOMMUMemoryRegion *mr = &sdev->iommu;
853 IOMMUNotifier *n;
854
855 trace_smmuv3_inv_notifiers_iova(mr->parent_obj.name, asid, iova);
856
857 IOMMU_NOTIFIER_FOREACH(n, mr) {
858 smmuv3_notify_iova(mr, n, asid, iova);
859 }
860 }
861 }
862
863 static int smmuv3_cmdq_consume(SMMUv3State *s)
864 {
865 SMMUState *bs = ARM_SMMU(s);
866 SMMUCmdError cmd_error = SMMU_CERROR_NONE;
867 SMMUQueue *q = &s->cmdq;
868 SMMUCommandType type = 0;
869
870 if (!smmuv3_cmdq_enabled(s)) {
871 return 0;
872 }
873 /*
874 * some commands depend on register values, typically CR0. In case those
875 * register values change while handling the command, spec says it
876 * is UNPREDICTABLE whether the command is interpreted under the new
877 * or old value.
878 */
879
880 while (!smmuv3_q_empty(q)) {
881 uint32_t pending = s->gerror ^ s->gerrorn;
882 Cmd cmd;
883
884 trace_smmuv3_cmdq_consume(Q_PROD(q), Q_CONS(q),
885 Q_PROD_WRAP(q), Q_CONS_WRAP(q));
886
887 if (FIELD_EX32(pending, GERROR, CMDQ_ERR)) {
888 break;
889 }
890
891 if (queue_read(q, &cmd) != MEMTX_OK) {
892 cmd_error = SMMU_CERROR_ABT;
893 break;
894 }
895
896 type = CMD_TYPE(&cmd);
897
898 trace_smmuv3_cmdq_opcode(smmu_cmd_string(type));
899
900 qemu_mutex_lock(&s->mutex);
901 switch (type) {
902 case SMMU_CMD_SYNC:
903 if (CMD_SYNC_CS(&cmd) & CMD_SYNC_SIG_IRQ) {
904 smmuv3_trigger_irq(s, SMMU_IRQ_CMD_SYNC, 0);
905 }
906 break;
907 case SMMU_CMD_PREFETCH_CONFIG:
908 case SMMU_CMD_PREFETCH_ADDR:
909 break;
910 case SMMU_CMD_CFGI_STE:
911 {
912 uint32_t sid = CMD_SID(&cmd);
913 IOMMUMemoryRegion *mr = smmu_iommu_mr(bs, sid);
914 SMMUDevice *sdev;
915
916 if (CMD_SSEC(&cmd)) {
917 cmd_error = SMMU_CERROR_ILL;
918 break;
919 }
920
921 if (!mr) {
922 break;
923 }
924
925 trace_smmuv3_cmdq_cfgi_ste(sid);
926 sdev = container_of(mr, SMMUDevice, iommu);
927 smmuv3_flush_config(sdev);
928
929 break;
930 }
931 case SMMU_CMD_CFGI_STE_RANGE: /* same as SMMU_CMD_CFGI_ALL */
932 {
933 uint32_t start = CMD_SID(&cmd), end, i;
934 uint8_t range = CMD_STE_RANGE(&cmd);
935
936 if (CMD_SSEC(&cmd)) {
937 cmd_error = SMMU_CERROR_ILL;
938 break;
939 }
940
941 end = start + (1 << (range + 1)) - 1;
942 trace_smmuv3_cmdq_cfgi_ste_range(start, end);
943
944 for (i = start; i <= end; i++) {
945 IOMMUMemoryRegion *mr = smmu_iommu_mr(bs, i);
946 SMMUDevice *sdev;
947
948 if (!mr) {
949 continue;
950 }
951 sdev = container_of(mr, SMMUDevice, iommu);
952 smmuv3_flush_config(sdev);
953 }
954 break;
955 }
956 case SMMU_CMD_CFGI_CD:
957 case SMMU_CMD_CFGI_CD_ALL:
958 {
959 uint32_t sid = CMD_SID(&cmd);
960 IOMMUMemoryRegion *mr = smmu_iommu_mr(bs, sid);
961 SMMUDevice *sdev;
962
963 if (CMD_SSEC(&cmd)) {
964 cmd_error = SMMU_CERROR_ILL;
965 break;
966 }
967
968 if (!mr) {
969 break;
970 }
971
972 trace_smmuv3_cmdq_cfgi_cd(sid);
973 sdev = container_of(mr, SMMUDevice, iommu);
974 smmuv3_flush_config(sdev);
975 break;
976 }
977 case SMMU_CMD_TLBI_NH_ASID:
978 {
979 uint16_t asid = CMD_ASID(&cmd);
980
981 trace_smmuv3_cmdq_tlbi_nh_asid(asid);
982 smmu_inv_notifiers_all(&s->smmu_state);
983 smmu_iotlb_inv_asid(bs, asid);
984 break;
985 }
986 case SMMU_CMD_TLBI_NH_ALL:
987 case SMMU_CMD_TLBI_NSNH_ALL:
988 trace_smmuv3_cmdq_tlbi_nh();
989 smmu_inv_notifiers_all(&s->smmu_state);
990 smmu_iotlb_inv_all(bs);
991 break;
992 case SMMU_CMD_TLBI_NH_VAA:
993 {
994 dma_addr_t addr = CMD_ADDR(&cmd);
995 uint16_t vmid = CMD_VMID(&cmd);
996
997 trace_smmuv3_cmdq_tlbi_nh_vaa(vmid, addr);
998 smmuv3_inv_notifiers_iova(bs, -1, addr);
999 smmu_iotlb_inv_all(bs);
1000 break;
1001 }
1002 case SMMU_CMD_TLBI_NH_VA:
1003 {
1004 uint16_t asid = CMD_ASID(&cmd);
1005 uint16_t vmid = CMD_VMID(&cmd);
1006 dma_addr_t addr = CMD_ADDR(&cmd);
1007 bool leaf = CMD_LEAF(&cmd);
1008
1009 trace_smmuv3_cmdq_tlbi_nh_va(vmid, asid, addr, leaf);
1010 smmuv3_inv_notifiers_iova(bs, asid, addr);
1011 smmu_iotlb_inv_iova(bs, asid, addr);
1012 break;
1013 }
1014 case SMMU_CMD_TLBI_EL3_ALL:
1015 case SMMU_CMD_TLBI_EL3_VA:
1016 case SMMU_CMD_TLBI_EL2_ALL:
1017 case SMMU_CMD_TLBI_EL2_ASID:
1018 case SMMU_CMD_TLBI_EL2_VA:
1019 case SMMU_CMD_TLBI_EL2_VAA:
1020 case SMMU_CMD_TLBI_S12_VMALL:
1021 case SMMU_CMD_TLBI_S2_IPA:
1022 case SMMU_CMD_ATC_INV:
1023 case SMMU_CMD_PRI_RESP:
1024 case SMMU_CMD_RESUME:
1025 case SMMU_CMD_STALL_TERM:
1026 trace_smmuv3_unhandled_cmd(type);
1027 break;
1028 default:
1029 cmd_error = SMMU_CERROR_ILL;
1030 qemu_log_mask(LOG_GUEST_ERROR,
1031 "Illegal command type: %d\n", CMD_TYPE(&cmd));
1032 break;
1033 }
1034 qemu_mutex_unlock(&s->mutex);
1035 if (cmd_error) {
1036 break;
1037 }
1038 /*
1039 * We only increment the cons index after the completion of
1040 * the command. We do that because the SYNC returns immediately
1041 * and does not check the completion of previous commands
1042 */
1043 queue_cons_incr(q);
1044 }
1045
1046 if (cmd_error) {
1047 trace_smmuv3_cmdq_consume_error(smmu_cmd_string(type), cmd_error);
1048 smmu_write_cmdq_err(s, cmd_error);
1049 smmuv3_trigger_irq(s, SMMU_IRQ_GERROR, R_GERROR_CMDQ_ERR_MASK);
1050 }
1051
1052 trace_smmuv3_cmdq_consume_out(Q_PROD(q), Q_CONS(q),
1053 Q_PROD_WRAP(q), Q_CONS_WRAP(q));
1054
1055 return 0;
1056 }
1057
1058 static MemTxResult smmu_writell(SMMUv3State *s, hwaddr offset,
1059 uint64_t data, MemTxAttrs attrs)
1060 {
1061 switch (offset) {
1062 case A_GERROR_IRQ_CFG0:
1063 s->gerror_irq_cfg0 = data;
1064 return MEMTX_OK;
1065 case A_STRTAB_BASE:
1066 s->strtab_base = data;
1067 return MEMTX_OK;
1068 case A_CMDQ_BASE:
1069 s->cmdq.base = data;
1070 s->cmdq.log2size = extract64(s->cmdq.base, 0, 5);
1071 if (s->cmdq.log2size > SMMU_CMDQS) {
1072 s->cmdq.log2size = SMMU_CMDQS;
1073 }
1074 return MEMTX_OK;
1075 case A_EVENTQ_BASE:
1076 s->eventq.base = data;
1077 s->eventq.log2size = extract64(s->eventq.base, 0, 5);
1078 if (s->eventq.log2size > SMMU_EVENTQS) {
1079 s->eventq.log2size = SMMU_EVENTQS;
1080 }
1081 return MEMTX_OK;
1082 case A_EVENTQ_IRQ_CFG0:
1083 s->eventq_irq_cfg0 = data;
1084 return MEMTX_OK;
1085 default:
1086 qemu_log_mask(LOG_UNIMP,
1087 "%s Unexpected 64-bit access to 0x%"PRIx64" (WI)\n",
1088 __func__, offset);
1089 return MEMTX_OK;
1090 }
1091 }
1092
1093 static MemTxResult smmu_writel(SMMUv3State *s, hwaddr offset,
1094 uint64_t data, MemTxAttrs attrs)
1095 {
1096 switch (offset) {
1097 case A_CR0:
1098 s->cr[0] = data;
1099 s->cr0ack = data & ~SMMU_CR0_RESERVED;
1100 /* in case the command queue has been enabled */
1101 smmuv3_cmdq_consume(s);
1102 return MEMTX_OK;
1103 case A_CR1:
1104 s->cr[1] = data;
1105 return MEMTX_OK;
1106 case A_CR2:
1107 s->cr[2] = data;
1108 return MEMTX_OK;
1109 case A_IRQ_CTRL:
1110 s->irq_ctrl = data;
1111 return MEMTX_OK;
1112 case A_GERRORN:
1113 smmuv3_write_gerrorn(s, data);
1114 /*
1115 * By acknowledging the CMDQ_ERR, SW may notify cmds can
1116 * be processed again
1117 */
1118 smmuv3_cmdq_consume(s);
1119 return MEMTX_OK;
1120 case A_GERROR_IRQ_CFG0: /* 64b */
1121 s->gerror_irq_cfg0 = deposit64(s->gerror_irq_cfg0, 0, 32, data);
1122 return MEMTX_OK;
1123 case A_GERROR_IRQ_CFG0 + 4:
1124 s->gerror_irq_cfg0 = deposit64(s->gerror_irq_cfg0, 32, 32, data);
1125 return MEMTX_OK;
1126 case A_GERROR_IRQ_CFG1:
1127 s->gerror_irq_cfg1 = data;
1128 return MEMTX_OK;
1129 case A_GERROR_IRQ_CFG2:
1130 s->gerror_irq_cfg2 = data;
1131 return MEMTX_OK;
1132 case A_STRTAB_BASE: /* 64b */
1133 s->strtab_base = deposit64(s->strtab_base, 0, 32, data);
1134 return MEMTX_OK;
1135 case A_STRTAB_BASE + 4:
1136 s->strtab_base = deposit64(s->strtab_base, 32, 32, data);
1137 return MEMTX_OK;
1138 case A_STRTAB_BASE_CFG:
1139 s->strtab_base_cfg = data;
1140 if (FIELD_EX32(data, STRTAB_BASE_CFG, FMT) == 1) {
1141 s->sid_split = FIELD_EX32(data, STRTAB_BASE_CFG, SPLIT);
1142 s->features |= SMMU_FEATURE_2LVL_STE;
1143 }
1144 return MEMTX_OK;
1145 case A_CMDQ_BASE: /* 64b */
1146 s->cmdq.base = deposit64(s->cmdq.base, 0, 32, data);
1147 s->cmdq.log2size = extract64(s->cmdq.base, 0, 5);
1148 if (s->cmdq.log2size > SMMU_CMDQS) {
1149 s->cmdq.log2size = SMMU_CMDQS;
1150 }
1151 return MEMTX_OK;
1152 case A_CMDQ_BASE + 4: /* 64b */
1153 s->cmdq.base = deposit64(s->cmdq.base, 32, 32, data);
1154 return MEMTX_OK;
1155 case A_CMDQ_PROD:
1156 s->cmdq.prod = data;
1157 smmuv3_cmdq_consume(s);
1158 return MEMTX_OK;
1159 case A_CMDQ_CONS:
1160 s->cmdq.cons = data;
1161 return MEMTX_OK;
1162 case A_EVENTQ_BASE: /* 64b */
1163 s->eventq.base = deposit64(s->eventq.base, 0, 32, data);
1164 s->eventq.log2size = extract64(s->eventq.base, 0, 5);
1165 if (s->eventq.log2size > SMMU_EVENTQS) {
1166 s->eventq.log2size = SMMU_EVENTQS;
1167 }
1168 return MEMTX_OK;
1169 case A_EVENTQ_BASE + 4:
1170 s->eventq.base = deposit64(s->eventq.base, 32, 32, data);
1171 return MEMTX_OK;
1172 case A_EVENTQ_PROD:
1173 s->eventq.prod = data;
1174 return MEMTX_OK;
1175 case A_EVENTQ_CONS:
1176 s->eventq.cons = data;
1177 return MEMTX_OK;
1178 case A_EVENTQ_IRQ_CFG0: /* 64b */
1179 s->eventq_irq_cfg0 = deposit64(s->eventq_irq_cfg0, 0, 32, data);
1180 return MEMTX_OK;
1181 case A_EVENTQ_IRQ_CFG0 + 4:
1182 s->eventq_irq_cfg0 = deposit64(s->eventq_irq_cfg0, 32, 32, data);
1183 return MEMTX_OK;
1184 case A_EVENTQ_IRQ_CFG1:
1185 s->eventq_irq_cfg1 = data;
1186 return MEMTX_OK;
1187 case A_EVENTQ_IRQ_CFG2:
1188 s->eventq_irq_cfg2 = data;
1189 return MEMTX_OK;
1190 default:
1191 qemu_log_mask(LOG_UNIMP,
1192 "%s Unexpected 32-bit access to 0x%"PRIx64" (WI)\n",
1193 __func__, offset);
1194 return MEMTX_OK;
1195 }
1196 }
1197
1198 static MemTxResult smmu_write_mmio(void *opaque, hwaddr offset, uint64_t data,
1199 unsigned size, MemTxAttrs attrs)
1200 {
1201 SMMUState *sys = opaque;
1202 SMMUv3State *s = ARM_SMMUV3(sys);
1203 MemTxResult r;
1204
1205 /* CONSTRAINED UNPREDICTABLE choice to have page0/1 be exact aliases */
1206 offset &= ~0x10000;
1207
1208 switch (size) {
1209 case 8:
1210 r = smmu_writell(s, offset, data, attrs);
1211 break;
1212 case 4:
1213 r = smmu_writel(s, offset, data, attrs);
1214 break;
1215 default:
1216 r = MEMTX_ERROR;
1217 break;
1218 }
1219
1220 trace_smmuv3_write_mmio(offset, data, size, r);
1221 return r;
1222 }
1223
1224 static MemTxResult smmu_readll(SMMUv3State *s, hwaddr offset,
1225 uint64_t *data, MemTxAttrs attrs)
1226 {
1227 switch (offset) {
1228 case A_GERROR_IRQ_CFG0:
1229 *data = s->gerror_irq_cfg0;
1230 return MEMTX_OK;
1231 case A_STRTAB_BASE:
1232 *data = s->strtab_base;
1233 return MEMTX_OK;
1234 case A_CMDQ_BASE:
1235 *data = s->cmdq.base;
1236 return MEMTX_OK;
1237 case A_EVENTQ_BASE:
1238 *data = s->eventq.base;
1239 return MEMTX_OK;
1240 default:
1241 *data = 0;
1242 qemu_log_mask(LOG_UNIMP,
1243 "%s Unexpected 64-bit access to 0x%"PRIx64" (RAZ)\n",
1244 __func__, offset);
1245 return MEMTX_OK;
1246 }
1247 }
1248
1249 static MemTxResult smmu_readl(SMMUv3State *s, hwaddr offset,
1250 uint64_t *data, MemTxAttrs attrs)
1251 {
1252 switch (offset) {
1253 case A_IDREGS ... A_IDREGS + 0x2f:
1254 *data = smmuv3_idreg(offset - A_IDREGS);
1255 return MEMTX_OK;
1256 case A_IDR0 ... A_IDR5:
1257 *data = s->idr[(offset - A_IDR0) / 4];
1258 return MEMTX_OK;
1259 case A_IIDR:
1260 *data = s->iidr;
1261 return MEMTX_OK;
1262 case A_CR0:
1263 *data = s->cr[0];
1264 return MEMTX_OK;
1265 case A_CR0ACK:
1266 *data = s->cr0ack;
1267 return MEMTX_OK;
1268 case A_CR1:
1269 *data = s->cr[1];
1270 return MEMTX_OK;
1271 case A_CR2:
1272 *data = s->cr[2];
1273 return MEMTX_OK;
1274 case A_STATUSR:
1275 *data = s->statusr;
1276 return MEMTX_OK;
1277 case A_IRQ_CTRL:
1278 case A_IRQ_CTRL_ACK:
1279 *data = s->irq_ctrl;
1280 return MEMTX_OK;
1281 case A_GERROR:
1282 *data = s->gerror;
1283 return MEMTX_OK;
1284 case A_GERRORN:
1285 *data = s->gerrorn;
1286 return MEMTX_OK;
1287 case A_GERROR_IRQ_CFG0: /* 64b */
1288 *data = extract64(s->gerror_irq_cfg0, 0, 32);
1289 return MEMTX_OK;
1290 case A_GERROR_IRQ_CFG0 + 4:
1291 *data = extract64(s->gerror_irq_cfg0, 32, 32);
1292 return MEMTX_OK;
1293 case A_GERROR_IRQ_CFG1:
1294 *data = s->gerror_irq_cfg1;
1295 return MEMTX_OK;
1296 case A_GERROR_IRQ_CFG2:
1297 *data = s->gerror_irq_cfg2;
1298 return MEMTX_OK;
1299 case A_STRTAB_BASE: /* 64b */
1300 *data = extract64(s->strtab_base, 0, 32);
1301 return MEMTX_OK;
1302 case A_STRTAB_BASE + 4: /* 64b */
1303 *data = extract64(s->strtab_base, 32, 32);
1304 return MEMTX_OK;
1305 case A_STRTAB_BASE_CFG:
1306 *data = s->strtab_base_cfg;
1307 return MEMTX_OK;
1308 case A_CMDQ_BASE: /* 64b */
1309 *data = extract64(s->cmdq.base, 0, 32);
1310 return MEMTX_OK;
1311 case A_CMDQ_BASE + 4:
1312 *data = extract64(s->cmdq.base, 32, 32);
1313 return MEMTX_OK;
1314 case A_CMDQ_PROD:
1315 *data = s->cmdq.prod;
1316 return MEMTX_OK;
1317 case A_CMDQ_CONS:
1318 *data = s->cmdq.cons;
1319 return MEMTX_OK;
1320 case A_EVENTQ_BASE: /* 64b */
1321 *data = extract64(s->eventq.base, 0, 32);
1322 return MEMTX_OK;
1323 case A_EVENTQ_BASE + 4: /* 64b */
1324 *data = extract64(s->eventq.base, 32, 32);
1325 return MEMTX_OK;
1326 case A_EVENTQ_PROD:
1327 *data = s->eventq.prod;
1328 return MEMTX_OK;
1329 case A_EVENTQ_CONS:
1330 *data = s->eventq.cons;
1331 return MEMTX_OK;
1332 default:
1333 *data = 0;
1334 qemu_log_mask(LOG_UNIMP,
1335 "%s unhandled 32-bit access at 0x%"PRIx64" (RAZ)\n",
1336 __func__, offset);
1337 return MEMTX_OK;
1338 }
1339 }
1340
1341 static MemTxResult smmu_read_mmio(void *opaque, hwaddr offset, uint64_t *data,
1342 unsigned size, MemTxAttrs attrs)
1343 {
1344 SMMUState *sys = opaque;
1345 SMMUv3State *s = ARM_SMMUV3(sys);
1346 MemTxResult r;
1347
1348 /* CONSTRAINED UNPREDICTABLE choice to have page0/1 be exact aliases */
1349 offset &= ~0x10000;
1350
1351 switch (size) {
1352 case 8:
1353 r = smmu_readll(s, offset, data, attrs);
1354 break;
1355 case 4:
1356 r = smmu_readl(s, offset, data, attrs);
1357 break;
1358 default:
1359 r = MEMTX_ERROR;
1360 break;
1361 }
1362
1363 trace_smmuv3_read_mmio(offset, *data, size, r);
1364 return r;
1365 }
1366
1367 static const MemoryRegionOps smmu_mem_ops = {
1368 .read_with_attrs = smmu_read_mmio,
1369 .write_with_attrs = smmu_write_mmio,
1370 .endianness = DEVICE_LITTLE_ENDIAN,
1371 .valid = {
1372 .min_access_size = 4,
1373 .max_access_size = 8,
1374 },
1375 .impl = {
1376 .min_access_size = 4,
1377 .max_access_size = 8,
1378 },
1379 };
1380
1381 static void smmu_init_irq(SMMUv3State *s, SysBusDevice *dev)
1382 {
1383 int i;
1384
1385 for (i = 0; i < ARRAY_SIZE(s->irq); i++) {
1386 sysbus_init_irq(dev, &s->irq[i]);
1387 }
1388 }
1389
1390 static void smmu_reset(DeviceState *dev)
1391 {
1392 SMMUv3State *s = ARM_SMMUV3(dev);
1393 SMMUv3Class *c = ARM_SMMUV3_GET_CLASS(s);
1394
1395 c->parent_reset(dev);
1396
1397 smmuv3_init_regs(s);
1398 }
1399
1400 static void smmu_realize(DeviceState *d, Error **errp)
1401 {
1402 SMMUState *sys = ARM_SMMU(d);
1403 SMMUv3State *s = ARM_SMMUV3(sys);
1404 SMMUv3Class *c = ARM_SMMUV3_GET_CLASS(s);
1405 SysBusDevice *dev = SYS_BUS_DEVICE(d);
1406 Error *local_err = NULL;
1407
1408 c->parent_realize(d, &local_err);
1409 if (local_err) {
1410 error_propagate(errp, local_err);
1411 return;
1412 }
1413
1414 qemu_mutex_init(&s->mutex);
1415
1416 memory_region_init_io(&sys->iomem, OBJECT(s),
1417 &smmu_mem_ops, sys, TYPE_ARM_SMMUV3, 0x20000);
1418
1419 sys->mrtypename = TYPE_SMMUV3_IOMMU_MEMORY_REGION;
1420
1421 sysbus_init_mmio(dev, &sys->iomem);
1422
1423 smmu_init_irq(s, dev);
1424 }
1425
1426 static const VMStateDescription vmstate_smmuv3_queue = {
1427 .name = "smmuv3_queue",
1428 .version_id = 1,
1429 .minimum_version_id = 1,
1430 .fields = (VMStateField[]) {
1431 VMSTATE_UINT64(base, SMMUQueue),
1432 VMSTATE_UINT32(prod, SMMUQueue),
1433 VMSTATE_UINT32(cons, SMMUQueue),
1434 VMSTATE_UINT8(log2size, SMMUQueue),
1435 VMSTATE_END_OF_LIST(),
1436 },
1437 };
1438
1439 static const VMStateDescription vmstate_smmuv3 = {
1440 .name = "smmuv3",
1441 .version_id = 1,
1442 .minimum_version_id = 1,
1443 .fields = (VMStateField[]) {
1444 VMSTATE_UINT32(features, SMMUv3State),
1445 VMSTATE_UINT8(sid_size, SMMUv3State),
1446 VMSTATE_UINT8(sid_split, SMMUv3State),
1447
1448 VMSTATE_UINT32_ARRAY(cr, SMMUv3State, 3),
1449 VMSTATE_UINT32(cr0ack, SMMUv3State),
1450 VMSTATE_UINT32(statusr, SMMUv3State),
1451 VMSTATE_UINT32(irq_ctrl, SMMUv3State),
1452 VMSTATE_UINT32(gerror, SMMUv3State),
1453 VMSTATE_UINT32(gerrorn, SMMUv3State),
1454 VMSTATE_UINT64(gerror_irq_cfg0, SMMUv3State),
1455 VMSTATE_UINT32(gerror_irq_cfg1, SMMUv3State),
1456 VMSTATE_UINT32(gerror_irq_cfg2, SMMUv3State),
1457 VMSTATE_UINT64(strtab_base, SMMUv3State),
1458 VMSTATE_UINT32(strtab_base_cfg, SMMUv3State),
1459 VMSTATE_UINT64(eventq_irq_cfg0, SMMUv3State),
1460 VMSTATE_UINT32(eventq_irq_cfg1, SMMUv3State),
1461 VMSTATE_UINT32(eventq_irq_cfg2, SMMUv3State),
1462
1463 VMSTATE_STRUCT(cmdq, SMMUv3State, 0, vmstate_smmuv3_queue, SMMUQueue),
1464 VMSTATE_STRUCT(eventq, SMMUv3State, 0, vmstate_smmuv3_queue, SMMUQueue),
1465
1466 VMSTATE_END_OF_LIST(),
1467 },
1468 };
1469
1470 static void smmuv3_instance_init(Object *obj)
1471 {
1472 /* Nothing much to do here as of now */
1473 }
1474
1475 static void smmuv3_class_init(ObjectClass *klass, void *data)
1476 {
1477 DeviceClass *dc = DEVICE_CLASS(klass);
1478 SMMUv3Class *c = ARM_SMMUV3_CLASS(klass);
1479
1480 dc->vmsd = &vmstate_smmuv3;
1481 device_class_set_parent_reset(dc, smmu_reset, &c->parent_reset);
1482 c->parent_realize = dc->realize;
1483 dc->realize = smmu_realize;
1484 }
1485
1486 static int smmuv3_notify_flag_changed(IOMMUMemoryRegion *iommu,
1487 IOMMUNotifierFlag old,
1488 IOMMUNotifierFlag new,
1489 Error **errp)
1490 {
1491 SMMUDevice *sdev = container_of(iommu, SMMUDevice, iommu);
1492 SMMUv3State *s3 = sdev->smmu;
1493 SMMUState *s = &(s3->smmu_state);
1494
1495 if (new & IOMMU_NOTIFIER_MAP) {
1496 error_setg(errp,
1497 "device %02x.%02x.%x requires iommu MAP notifier which is "
1498 "not currently supported", pci_bus_num(sdev->bus),
1499 PCI_SLOT(sdev->devfn), PCI_FUNC(sdev->devfn));
1500 return -EINVAL;
1501 }
1502
1503 if (old == IOMMU_NOTIFIER_NONE) {
1504 trace_smmuv3_notify_flag_add(iommu->parent_obj.name);
1505 QLIST_INSERT_HEAD(&s->devices_with_notifiers, sdev, next);
1506 } else if (new == IOMMU_NOTIFIER_NONE) {
1507 trace_smmuv3_notify_flag_del(iommu->parent_obj.name);
1508 QLIST_REMOVE(sdev, next);
1509 }
1510 return 0;
1511 }
1512
1513 static void smmuv3_iommu_memory_region_class_init(ObjectClass *klass,
1514 void *data)
1515 {
1516 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
1517
1518 imrc->translate = smmuv3_translate;
1519 imrc->notify_flag_changed = smmuv3_notify_flag_changed;
1520 }
1521
1522 static const TypeInfo smmuv3_type_info = {
1523 .name = TYPE_ARM_SMMUV3,
1524 .parent = TYPE_ARM_SMMU,
1525 .instance_size = sizeof(SMMUv3State),
1526 .instance_init = smmuv3_instance_init,
1527 .class_size = sizeof(SMMUv3Class),
1528 .class_init = smmuv3_class_init,
1529 };
1530
1531 static const TypeInfo smmuv3_iommu_memory_region_info = {
1532 .parent = TYPE_IOMMU_MEMORY_REGION,
1533 .name = TYPE_SMMUV3_IOMMU_MEMORY_REGION,
1534 .class_init = smmuv3_iommu_memory_region_class_init,
1535 };
1536
1537 static void smmuv3_register_types(void)
1538 {
1539 type_register(&smmuv3_type_info);
1540 type_register(&smmuv3_iommu_memory_region_info);
1541 }
1542
1543 type_init(smmuv3_register_types)
1544