]> git.proxmox.com Git - qemu.git/blob - hw/arm/strongarm.c
aio / timers: Convert rtc_clock to be a QEMUClockType
[qemu.git] / hw / arm / strongarm.c
1 /*
2 * StrongARM SA-1100/SA-1110 emulation
3 *
4 * Copyright (C) 2011 Dmitry Eremin-Solenikov
5 *
6 * Largely based on StrongARM emulation:
7 * Copyright (c) 2006 Openedhand Ltd.
8 * Written by Andrzej Zaborowski <balrog@zabor.org>
9 *
10 * UART code based on QEMU 16550A UART emulation
11 * Copyright (c) 2003-2004 Fabrice Bellard
12 * Copyright (c) 2008 Citrix Systems, Inc.
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License version 2 as
16 * published by the Free Software Foundation.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 *
23 * You should have received a copy of the GNU General Public License along
24 * with this program; if not, see <http://www.gnu.org/licenses/>.
25 *
26 * Contributions after 2012-01-13 are licensed under the terms of the
27 * GNU GPL, version 2 or (at your option) any later version.
28 */
29 #include "hw/sysbus.h"
30 #include "strongarm.h"
31 #include "qemu/error-report.h"
32 #include "hw/arm/arm.h"
33 #include "sysemu/char.h"
34 #include "sysemu/sysemu.h"
35 #include "hw/ssi.h"
36
37 //#define DEBUG
38
39 /*
40 TODO
41 - Implement cp15, c14 ?
42 - Implement cp15, c15 !!! (idle used in L)
43 - Implement idle mode handling/DIM
44 - Implement sleep mode/Wake sources
45 - Implement reset control
46 - Implement memory control regs
47 - PCMCIA handling
48 - Maybe support MBGNT/MBREQ
49 - DMA channels
50 - GPCLK
51 - IrDA
52 - MCP
53 - Enhance UART with modem signals
54 */
55
56 #ifdef DEBUG
57 # define DPRINTF(format, ...) printf(format , ## __VA_ARGS__)
58 #else
59 # define DPRINTF(format, ...) do { } while (0)
60 #endif
61
62 static struct {
63 hwaddr io_base;
64 int irq;
65 } sa_serial[] = {
66 { 0x80010000, SA_PIC_UART1 },
67 { 0x80030000, SA_PIC_UART2 },
68 { 0x80050000, SA_PIC_UART3 },
69 { 0, 0 }
70 };
71
72 /* Interrupt Controller */
73
74 #define TYPE_STRONGARM_PIC "strongarm_pic"
75 #define STRONGARM_PIC(obj) \
76 OBJECT_CHECK(StrongARMPICState, (obj), TYPE_STRONGARM_PIC)
77
78 typedef struct StrongARMPICState {
79 SysBusDevice parent_obj;
80
81 MemoryRegion iomem;
82 qemu_irq irq;
83 qemu_irq fiq;
84
85 uint32_t pending;
86 uint32_t enabled;
87 uint32_t is_fiq;
88 uint32_t int_idle;
89 } StrongARMPICState;
90
91 #define ICIP 0x00
92 #define ICMR 0x04
93 #define ICLR 0x08
94 #define ICFP 0x10
95 #define ICPR 0x20
96 #define ICCR 0x0c
97
98 #define SA_PIC_SRCS 32
99
100
101 static void strongarm_pic_update(void *opaque)
102 {
103 StrongARMPICState *s = opaque;
104
105 /* FIXME: reflect DIM */
106 qemu_set_irq(s->fiq, s->pending & s->enabled & s->is_fiq);
107 qemu_set_irq(s->irq, s->pending & s->enabled & ~s->is_fiq);
108 }
109
110 static void strongarm_pic_set_irq(void *opaque, int irq, int level)
111 {
112 StrongARMPICState *s = opaque;
113
114 if (level) {
115 s->pending |= 1 << irq;
116 } else {
117 s->pending &= ~(1 << irq);
118 }
119
120 strongarm_pic_update(s);
121 }
122
123 static uint64_t strongarm_pic_mem_read(void *opaque, hwaddr offset,
124 unsigned size)
125 {
126 StrongARMPICState *s = opaque;
127
128 switch (offset) {
129 case ICIP:
130 return s->pending & ~s->is_fiq & s->enabled;
131 case ICMR:
132 return s->enabled;
133 case ICLR:
134 return s->is_fiq;
135 case ICCR:
136 return s->int_idle == 0;
137 case ICFP:
138 return s->pending & s->is_fiq & s->enabled;
139 case ICPR:
140 return s->pending;
141 default:
142 printf("%s: Bad register offset 0x" TARGET_FMT_plx "\n",
143 __func__, offset);
144 return 0;
145 }
146 }
147
148 static void strongarm_pic_mem_write(void *opaque, hwaddr offset,
149 uint64_t value, unsigned size)
150 {
151 StrongARMPICState *s = opaque;
152
153 switch (offset) {
154 case ICMR:
155 s->enabled = value;
156 break;
157 case ICLR:
158 s->is_fiq = value;
159 break;
160 case ICCR:
161 s->int_idle = (value & 1) ? 0 : ~0;
162 break;
163 default:
164 printf("%s: Bad register offset 0x" TARGET_FMT_plx "\n",
165 __func__, offset);
166 break;
167 }
168 strongarm_pic_update(s);
169 }
170
171 static const MemoryRegionOps strongarm_pic_ops = {
172 .read = strongarm_pic_mem_read,
173 .write = strongarm_pic_mem_write,
174 .endianness = DEVICE_NATIVE_ENDIAN,
175 };
176
177 static int strongarm_pic_initfn(SysBusDevice *sbd)
178 {
179 DeviceState *dev = DEVICE(sbd);
180 StrongARMPICState *s = STRONGARM_PIC(dev);
181
182 qdev_init_gpio_in(dev, strongarm_pic_set_irq, SA_PIC_SRCS);
183 memory_region_init_io(&s->iomem, OBJECT(s), &strongarm_pic_ops, s,
184 "pic", 0x1000);
185 sysbus_init_mmio(sbd, &s->iomem);
186 sysbus_init_irq(sbd, &s->irq);
187 sysbus_init_irq(sbd, &s->fiq);
188
189 return 0;
190 }
191
192 static int strongarm_pic_post_load(void *opaque, int version_id)
193 {
194 strongarm_pic_update(opaque);
195 return 0;
196 }
197
198 static VMStateDescription vmstate_strongarm_pic_regs = {
199 .name = "strongarm_pic",
200 .version_id = 0,
201 .minimum_version_id = 0,
202 .minimum_version_id_old = 0,
203 .post_load = strongarm_pic_post_load,
204 .fields = (VMStateField[]) {
205 VMSTATE_UINT32(pending, StrongARMPICState),
206 VMSTATE_UINT32(enabled, StrongARMPICState),
207 VMSTATE_UINT32(is_fiq, StrongARMPICState),
208 VMSTATE_UINT32(int_idle, StrongARMPICState),
209 VMSTATE_END_OF_LIST(),
210 },
211 };
212
213 static void strongarm_pic_class_init(ObjectClass *klass, void *data)
214 {
215 DeviceClass *dc = DEVICE_CLASS(klass);
216 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
217
218 k->init = strongarm_pic_initfn;
219 dc->desc = "StrongARM PIC";
220 dc->vmsd = &vmstate_strongarm_pic_regs;
221 }
222
223 static const TypeInfo strongarm_pic_info = {
224 .name = TYPE_STRONGARM_PIC,
225 .parent = TYPE_SYS_BUS_DEVICE,
226 .instance_size = sizeof(StrongARMPICState),
227 .class_init = strongarm_pic_class_init,
228 };
229
230 /* Real-Time Clock */
231 #define RTAR 0x00 /* RTC Alarm register */
232 #define RCNR 0x04 /* RTC Counter register */
233 #define RTTR 0x08 /* RTC Timer Trim register */
234 #define RTSR 0x10 /* RTC Status register */
235
236 #define RTSR_AL (1 << 0) /* RTC Alarm detected */
237 #define RTSR_HZ (1 << 1) /* RTC 1Hz detected */
238 #define RTSR_ALE (1 << 2) /* RTC Alarm enable */
239 #define RTSR_HZE (1 << 3) /* RTC 1Hz enable */
240
241 /* 16 LSB of RTTR are clockdiv for internal trim logic,
242 * trim delete isn't emulated, so
243 * f = 32 768 / (RTTR_trim + 1) */
244
245 #define TYPE_STRONGARM_RTC "strongarm-rtc"
246 #define STRONGARM_RTC(obj) \
247 OBJECT_CHECK(StrongARMRTCState, (obj), TYPE_STRONGARM_RTC)
248
249 typedef struct StrongARMRTCState {
250 SysBusDevice parent_obj;
251
252 MemoryRegion iomem;
253 uint32_t rttr;
254 uint32_t rtsr;
255 uint32_t rtar;
256 uint32_t last_rcnr;
257 int64_t last_hz;
258 QEMUTimer *rtc_alarm;
259 QEMUTimer *rtc_hz;
260 qemu_irq rtc_irq;
261 qemu_irq rtc_hz_irq;
262 } StrongARMRTCState;
263
264 static inline void strongarm_rtc_int_update(StrongARMRTCState *s)
265 {
266 qemu_set_irq(s->rtc_irq, s->rtsr & RTSR_AL);
267 qemu_set_irq(s->rtc_hz_irq, s->rtsr & RTSR_HZ);
268 }
269
270 static void strongarm_rtc_hzupdate(StrongARMRTCState *s)
271 {
272 int64_t rt = qemu_clock_get_ms(rtc_clock);
273 s->last_rcnr += ((rt - s->last_hz) << 15) /
274 (1000 * ((s->rttr & 0xffff) + 1));
275 s->last_hz = rt;
276 }
277
278 static inline void strongarm_rtc_timer_update(StrongARMRTCState *s)
279 {
280 if ((s->rtsr & RTSR_HZE) && !(s->rtsr & RTSR_HZ)) {
281 qemu_mod_timer(s->rtc_hz, s->last_hz + 1000);
282 } else {
283 qemu_del_timer(s->rtc_hz);
284 }
285
286 if ((s->rtsr & RTSR_ALE) && !(s->rtsr & RTSR_AL)) {
287 qemu_mod_timer(s->rtc_alarm, s->last_hz +
288 (((s->rtar - s->last_rcnr) * 1000 *
289 ((s->rttr & 0xffff) + 1)) >> 15));
290 } else {
291 qemu_del_timer(s->rtc_alarm);
292 }
293 }
294
295 static inline void strongarm_rtc_alarm_tick(void *opaque)
296 {
297 StrongARMRTCState *s = opaque;
298 s->rtsr |= RTSR_AL;
299 strongarm_rtc_timer_update(s);
300 strongarm_rtc_int_update(s);
301 }
302
303 static inline void strongarm_rtc_hz_tick(void *opaque)
304 {
305 StrongARMRTCState *s = opaque;
306 s->rtsr |= RTSR_HZ;
307 strongarm_rtc_timer_update(s);
308 strongarm_rtc_int_update(s);
309 }
310
311 static uint64_t strongarm_rtc_read(void *opaque, hwaddr addr,
312 unsigned size)
313 {
314 StrongARMRTCState *s = opaque;
315
316 switch (addr) {
317 case RTTR:
318 return s->rttr;
319 case RTSR:
320 return s->rtsr;
321 case RTAR:
322 return s->rtar;
323 case RCNR:
324 return s->last_rcnr +
325 ((qemu_clock_get_ms(rtc_clock) - s->last_hz) << 15) /
326 (1000 * ((s->rttr & 0xffff) + 1));
327 default:
328 printf("%s: Bad register 0x" TARGET_FMT_plx "\n", __func__, addr);
329 return 0;
330 }
331 }
332
333 static void strongarm_rtc_write(void *opaque, hwaddr addr,
334 uint64_t value, unsigned size)
335 {
336 StrongARMRTCState *s = opaque;
337 uint32_t old_rtsr;
338
339 switch (addr) {
340 case RTTR:
341 strongarm_rtc_hzupdate(s);
342 s->rttr = value;
343 strongarm_rtc_timer_update(s);
344 break;
345
346 case RTSR:
347 old_rtsr = s->rtsr;
348 s->rtsr = (value & (RTSR_ALE | RTSR_HZE)) |
349 (s->rtsr & ~(value & (RTSR_AL | RTSR_HZ)));
350
351 if (s->rtsr != old_rtsr) {
352 strongarm_rtc_timer_update(s);
353 }
354
355 strongarm_rtc_int_update(s);
356 break;
357
358 case RTAR:
359 s->rtar = value;
360 strongarm_rtc_timer_update(s);
361 break;
362
363 case RCNR:
364 strongarm_rtc_hzupdate(s);
365 s->last_rcnr = value;
366 strongarm_rtc_timer_update(s);
367 break;
368
369 default:
370 printf("%s: Bad register 0x" TARGET_FMT_plx "\n", __func__, addr);
371 }
372 }
373
374 static const MemoryRegionOps strongarm_rtc_ops = {
375 .read = strongarm_rtc_read,
376 .write = strongarm_rtc_write,
377 .endianness = DEVICE_NATIVE_ENDIAN,
378 };
379
380 static int strongarm_rtc_init(SysBusDevice *dev)
381 {
382 StrongARMRTCState *s = STRONGARM_RTC(dev);
383 struct tm tm;
384
385 s->rttr = 0x0;
386 s->rtsr = 0;
387
388 qemu_get_timedate(&tm, 0);
389
390 s->last_rcnr = (uint32_t) mktimegm(&tm);
391 s->last_hz = qemu_clock_get_ms(rtc_clock);
392
393 s->rtc_alarm = timer_new_ms(rtc_clock, strongarm_rtc_alarm_tick, s);
394 s->rtc_hz = timer_new_ms(rtc_clock, strongarm_rtc_hz_tick, s);
395
396 sysbus_init_irq(dev, &s->rtc_irq);
397 sysbus_init_irq(dev, &s->rtc_hz_irq);
398
399 memory_region_init_io(&s->iomem, OBJECT(s), &strongarm_rtc_ops, s,
400 "rtc", 0x10000);
401 sysbus_init_mmio(dev, &s->iomem);
402
403 return 0;
404 }
405
406 static void strongarm_rtc_pre_save(void *opaque)
407 {
408 StrongARMRTCState *s = opaque;
409
410 strongarm_rtc_hzupdate(s);
411 }
412
413 static int strongarm_rtc_post_load(void *opaque, int version_id)
414 {
415 StrongARMRTCState *s = opaque;
416
417 strongarm_rtc_timer_update(s);
418 strongarm_rtc_int_update(s);
419
420 return 0;
421 }
422
423 static const VMStateDescription vmstate_strongarm_rtc_regs = {
424 .name = "strongarm-rtc",
425 .version_id = 0,
426 .minimum_version_id = 0,
427 .minimum_version_id_old = 0,
428 .pre_save = strongarm_rtc_pre_save,
429 .post_load = strongarm_rtc_post_load,
430 .fields = (VMStateField[]) {
431 VMSTATE_UINT32(rttr, StrongARMRTCState),
432 VMSTATE_UINT32(rtsr, StrongARMRTCState),
433 VMSTATE_UINT32(rtar, StrongARMRTCState),
434 VMSTATE_UINT32(last_rcnr, StrongARMRTCState),
435 VMSTATE_INT64(last_hz, StrongARMRTCState),
436 VMSTATE_END_OF_LIST(),
437 },
438 };
439
440 static void strongarm_rtc_sysbus_class_init(ObjectClass *klass, void *data)
441 {
442 DeviceClass *dc = DEVICE_CLASS(klass);
443 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
444
445 k->init = strongarm_rtc_init;
446 dc->desc = "StrongARM RTC Controller";
447 dc->vmsd = &vmstate_strongarm_rtc_regs;
448 }
449
450 static const TypeInfo strongarm_rtc_sysbus_info = {
451 .name = TYPE_STRONGARM_RTC,
452 .parent = TYPE_SYS_BUS_DEVICE,
453 .instance_size = sizeof(StrongARMRTCState),
454 .class_init = strongarm_rtc_sysbus_class_init,
455 };
456
457 /* GPIO */
458 #define GPLR 0x00
459 #define GPDR 0x04
460 #define GPSR 0x08
461 #define GPCR 0x0c
462 #define GRER 0x10
463 #define GFER 0x14
464 #define GEDR 0x18
465 #define GAFR 0x1c
466
467 #define TYPE_STRONGARM_GPIO "strongarm-gpio"
468 #define STRONGARM_GPIO(obj) \
469 OBJECT_CHECK(StrongARMGPIOInfo, (obj), TYPE_STRONGARM_GPIO)
470
471 typedef struct StrongARMGPIOInfo StrongARMGPIOInfo;
472 struct StrongARMGPIOInfo {
473 SysBusDevice busdev;
474 MemoryRegion iomem;
475 qemu_irq handler[28];
476 qemu_irq irqs[11];
477 qemu_irq irqX;
478
479 uint32_t ilevel;
480 uint32_t olevel;
481 uint32_t dir;
482 uint32_t rising;
483 uint32_t falling;
484 uint32_t status;
485 uint32_t gpsr;
486 uint32_t gafr;
487
488 uint32_t prev_level;
489 };
490
491
492 static void strongarm_gpio_irq_update(StrongARMGPIOInfo *s)
493 {
494 int i;
495 for (i = 0; i < 11; i++) {
496 qemu_set_irq(s->irqs[i], s->status & (1 << i));
497 }
498
499 qemu_set_irq(s->irqX, (s->status & ~0x7ff));
500 }
501
502 static void strongarm_gpio_set(void *opaque, int line, int level)
503 {
504 StrongARMGPIOInfo *s = opaque;
505 uint32_t mask;
506
507 mask = 1 << line;
508
509 if (level) {
510 s->status |= s->rising & mask &
511 ~s->ilevel & ~s->dir;
512 s->ilevel |= mask;
513 } else {
514 s->status |= s->falling & mask &
515 s->ilevel & ~s->dir;
516 s->ilevel &= ~mask;
517 }
518
519 if (s->status & mask) {
520 strongarm_gpio_irq_update(s);
521 }
522 }
523
524 static void strongarm_gpio_handler_update(StrongARMGPIOInfo *s)
525 {
526 uint32_t level, diff;
527 int bit;
528
529 level = s->olevel & s->dir;
530
531 for (diff = s->prev_level ^ level; diff; diff ^= 1 << bit) {
532 bit = ffs(diff) - 1;
533 qemu_set_irq(s->handler[bit], (level >> bit) & 1);
534 }
535
536 s->prev_level = level;
537 }
538
539 static uint64_t strongarm_gpio_read(void *opaque, hwaddr offset,
540 unsigned size)
541 {
542 StrongARMGPIOInfo *s = opaque;
543
544 switch (offset) {
545 case GPDR: /* GPIO Pin-Direction registers */
546 return s->dir;
547
548 case GPSR: /* GPIO Pin-Output Set registers */
549 DPRINTF("%s: Read from a write-only register 0x" TARGET_FMT_plx "\n",
550 __func__, offset);
551 return s->gpsr; /* Return last written value. */
552
553 case GPCR: /* GPIO Pin-Output Clear registers */
554 DPRINTF("%s: Read from a write-only register 0x" TARGET_FMT_plx "\n",
555 __func__, offset);
556 return 31337; /* Specified as unpredictable in the docs. */
557
558 case GRER: /* GPIO Rising-Edge Detect Enable registers */
559 return s->rising;
560
561 case GFER: /* GPIO Falling-Edge Detect Enable registers */
562 return s->falling;
563
564 case GAFR: /* GPIO Alternate Function registers */
565 return s->gafr;
566
567 case GPLR: /* GPIO Pin-Level registers */
568 return (s->olevel & s->dir) |
569 (s->ilevel & ~s->dir);
570
571 case GEDR: /* GPIO Edge Detect Status registers */
572 return s->status;
573
574 default:
575 printf("%s: Bad offset 0x" TARGET_FMT_plx "\n", __func__, offset);
576 }
577
578 return 0;
579 }
580
581 static void strongarm_gpio_write(void *opaque, hwaddr offset,
582 uint64_t value, unsigned size)
583 {
584 StrongARMGPIOInfo *s = opaque;
585
586 switch (offset) {
587 case GPDR: /* GPIO Pin-Direction registers */
588 s->dir = value;
589 strongarm_gpio_handler_update(s);
590 break;
591
592 case GPSR: /* GPIO Pin-Output Set registers */
593 s->olevel |= value;
594 strongarm_gpio_handler_update(s);
595 s->gpsr = value;
596 break;
597
598 case GPCR: /* GPIO Pin-Output Clear registers */
599 s->olevel &= ~value;
600 strongarm_gpio_handler_update(s);
601 break;
602
603 case GRER: /* GPIO Rising-Edge Detect Enable registers */
604 s->rising = value;
605 break;
606
607 case GFER: /* GPIO Falling-Edge Detect Enable registers */
608 s->falling = value;
609 break;
610
611 case GAFR: /* GPIO Alternate Function registers */
612 s->gafr = value;
613 break;
614
615 case GEDR: /* GPIO Edge Detect Status registers */
616 s->status &= ~value;
617 strongarm_gpio_irq_update(s);
618 break;
619
620 default:
621 printf("%s: Bad offset 0x" TARGET_FMT_plx "\n", __func__, offset);
622 }
623 }
624
625 static const MemoryRegionOps strongarm_gpio_ops = {
626 .read = strongarm_gpio_read,
627 .write = strongarm_gpio_write,
628 .endianness = DEVICE_NATIVE_ENDIAN,
629 };
630
631 static DeviceState *strongarm_gpio_init(hwaddr base,
632 DeviceState *pic)
633 {
634 DeviceState *dev;
635 int i;
636
637 dev = qdev_create(NULL, TYPE_STRONGARM_GPIO);
638 qdev_init_nofail(dev);
639
640 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
641 for (i = 0; i < 12; i++)
642 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
643 qdev_get_gpio_in(pic, SA_PIC_GPIO0_EDGE + i));
644
645 return dev;
646 }
647
648 static int strongarm_gpio_initfn(SysBusDevice *sbd)
649 {
650 DeviceState *dev = DEVICE(sbd);
651 StrongARMGPIOInfo *s = STRONGARM_GPIO(dev);
652 int i;
653
654 qdev_init_gpio_in(dev, strongarm_gpio_set, 28);
655 qdev_init_gpio_out(dev, s->handler, 28);
656
657 memory_region_init_io(&s->iomem, OBJECT(s), &strongarm_gpio_ops, s,
658 "gpio", 0x1000);
659
660 sysbus_init_mmio(sbd, &s->iomem);
661 for (i = 0; i < 11; i++) {
662 sysbus_init_irq(sbd, &s->irqs[i]);
663 }
664 sysbus_init_irq(sbd, &s->irqX);
665
666 return 0;
667 }
668
669 static const VMStateDescription vmstate_strongarm_gpio_regs = {
670 .name = "strongarm-gpio",
671 .version_id = 0,
672 .minimum_version_id = 0,
673 .minimum_version_id_old = 0,
674 .fields = (VMStateField[]) {
675 VMSTATE_UINT32(ilevel, StrongARMGPIOInfo),
676 VMSTATE_UINT32(olevel, StrongARMGPIOInfo),
677 VMSTATE_UINT32(dir, StrongARMGPIOInfo),
678 VMSTATE_UINT32(rising, StrongARMGPIOInfo),
679 VMSTATE_UINT32(falling, StrongARMGPIOInfo),
680 VMSTATE_UINT32(status, StrongARMGPIOInfo),
681 VMSTATE_UINT32(gafr, StrongARMGPIOInfo),
682 VMSTATE_END_OF_LIST(),
683 },
684 };
685
686 static void strongarm_gpio_class_init(ObjectClass *klass, void *data)
687 {
688 DeviceClass *dc = DEVICE_CLASS(klass);
689 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
690
691 k->init = strongarm_gpio_initfn;
692 dc->desc = "StrongARM GPIO controller";
693 }
694
695 static const TypeInfo strongarm_gpio_info = {
696 .name = TYPE_STRONGARM_GPIO,
697 .parent = TYPE_SYS_BUS_DEVICE,
698 .instance_size = sizeof(StrongARMGPIOInfo),
699 .class_init = strongarm_gpio_class_init,
700 };
701
702 /* Peripheral Pin Controller */
703 #define PPDR 0x00
704 #define PPSR 0x04
705 #define PPAR 0x08
706 #define PSDR 0x0c
707 #define PPFR 0x10
708
709 #define TYPE_STRONGARM_PPC "strongarm-ppc"
710 #define STRONGARM_PPC(obj) \
711 OBJECT_CHECK(StrongARMPPCInfo, (obj), TYPE_STRONGARM_PPC)
712
713 typedef struct StrongARMPPCInfo StrongARMPPCInfo;
714 struct StrongARMPPCInfo {
715 SysBusDevice parent_obj;
716
717 MemoryRegion iomem;
718 qemu_irq handler[28];
719
720 uint32_t ilevel;
721 uint32_t olevel;
722 uint32_t dir;
723 uint32_t ppar;
724 uint32_t psdr;
725 uint32_t ppfr;
726
727 uint32_t prev_level;
728 };
729
730 static void strongarm_ppc_set(void *opaque, int line, int level)
731 {
732 StrongARMPPCInfo *s = opaque;
733
734 if (level) {
735 s->ilevel |= 1 << line;
736 } else {
737 s->ilevel &= ~(1 << line);
738 }
739 }
740
741 static void strongarm_ppc_handler_update(StrongARMPPCInfo *s)
742 {
743 uint32_t level, diff;
744 int bit;
745
746 level = s->olevel & s->dir;
747
748 for (diff = s->prev_level ^ level; diff; diff ^= 1 << bit) {
749 bit = ffs(diff) - 1;
750 qemu_set_irq(s->handler[bit], (level >> bit) & 1);
751 }
752
753 s->prev_level = level;
754 }
755
756 static uint64_t strongarm_ppc_read(void *opaque, hwaddr offset,
757 unsigned size)
758 {
759 StrongARMPPCInfo *s = opaque;
760
761 switch (offset) {
762 case PPDR: /* PPC Pin Direction registers */
763 return s->dir | ~0x3fffff;
764
765 case PPSR: /* PPC Pin State registers */
766 return (s->olevel & s->dir) |
767 (s->ilevel & ~s->dir) |
768 ~0x3fffff;
769
770 case PPAR:
771 return s->ppar | ~0x41000;
772
773 case PSDR:
774 return s->psdr;
775
776 case PPFR:
777 return s->ppfr | ~0x7f001;
778
779 default:
780 printf("%s: Bad offset 0x" TARGET_FMT_plx "\n", __func__, offset);
781 }
782
783 return 0;
784 }
785
786 static void strongarm_ppc_write(void *opaque, hwaddr offset,
787 uint64_t value, unsigned size)
788 {
789 StrongARMPPCInfo *s = opaque;
790
791 switch (offset) {
792 case PPDR: /* PPC Pin Direction registers */
793 s->dir = value & 0x3fffff;
794 strongarm_ppc_handler_update(s);
795 break;
796
797 case PPSR: /* PPC Pin State registers */
798 s->olevel = value & s->dir & 0x3fffff;
799 strongarm_ppc_handler_update(s);
800 break;
801
802 case PPAR:
803 s->ppar = value & 0x41000;
804 break;
805
806 case PSDR:
807 s->psdr = value & 0x3fffff;
808 break;
809
810 case PPFR:
811 s->ppfr = value & 0x7f001;
812 break;
813
814 default:
815 printf("%s: Bad offset 0x" TARGET_FMT_plx "\n", __func__, offset);
816 }
817 }
818
819 static const MemoryRegionOps strongarm_ppc_ops = {
820 .read = strongarm_ppc_read,
821 .write = strongarm_ppc_write,
822 .endianness = DEVICE_NATIVE_ENDIAN,
823 };
824
825 static int strongarm_ppc_init(SysBusDevice *sbd)
826 {
827 DeviceState *dev = DEVICE(sbd);
828 StrongARMPPCInfo *s = STRONGARM_PPC(dev);
829
830 qdev_init_gpio_in(dev, strongarm_ppc_set, 22);
831 qdev_init_gpio_out(dev, s->handler, 22);
832
833 memory_region_init_io(&s->iomem, OBJECT(s), &strongarm_ppc_ops, s,
834 "ppc", 0x1000);
835
836 sysbus_init_mmio(sbd, &s->iomem);
837
838 return 0;
839 }
840
841 static const VMStateDescription vmstate_strongarm_ppc_regs = {
842 .name = "strongarm-ppc",
843 .version_id = 0,
844 .minimum_version_id = 0,
845 .minimum_version_id_old = 0,
846 .fields = (VMStateField[]) {
847 VMSTATE_UINT32(ilevel, StrongARMPPCInfo),
848 VMSTATE_UINT32(olevel, StrongARMPPCInfo),
849 VMSTATE_UINT32(dir, StrongARMPPCInfo),
850 VMSTATE_UINT32(ppar, StrongARMPPCInfo),
851 VMSTATE_UINT32(psdr, StrongARMPPCInfo),
852 VMSTATE_UINT32(ppfr, StrongARMPPCInfo),
853 VMSTATE_END_OF_LIST(),
854 },
855 };
856
857 static void strongarm_ppc_class_init(ObjectClass *klass, void *data)
858 {
859 DeviceClass *dc = DEVICE_CLASS(klass);
860 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
861
862 k->init = strongarm_ppc_init;
863 dc->desc = "StrongARM PPC controller";
864 }
865
866 static const TypeInfo strongarm_ppc_info = {
867 .name = TYPE_STRONGARM_PPC,
868 .parent = TYPE_SYS_BUS_DEVICE,
869 .instance_size = sizeof(StrongARMPPCInfo),
870 .class_init = strongarm_ppc_class_init,
871 };
872
873 /* UART Ports */
874 #define UTCR0 0x00
875 #define UTCR1 0x04
876 #define UTCR2 0x08
877 #define UTCR3 0x0c
878 #define UTDR 0x14
879 #define UTSR0 0x1c
880 #define UTSR1 0x20
881
882 #define UTCR0_PE (1 << 0) /* Parity enable */
883 #define UTCR0_OES (1 << 1) /* Even parity */
884 #define UTCR0_SBS (1 << 2) /* 2 stop bits */
885 #define UTCR0_DSS (1 << 3) /* 8-bit data */
886
887 #define UTCR3_RXE (1 << 0) /* Rx enable */
888 #define UTCR3_TXE (1 << 1) /* Tx enable */
889 #define UTCR3_BRK (1 << 2) /* Force Break */
890 #define UTCR3_RIE (1 << 3) /* Rx int enable */
891 #define UTCR3_TIE (1 << 4) /* Tx int enable */
892 #define UTCR3_LBM (1 << 5) /* Loopback */
893
894 #define UTSR0_TFS (1 << 0) /* Tx FIFO nearly empty */
895 #define UTSR0_RFS (1 << 1) /* Rx FIFO nearly full */
896 #define UTSR0_RID (1 << 2) /* Receiver Idle */
897 #define UTSR0_RBB (1 << 3) /* Receiver begin break */
898 #define UTSR0_REB (1 << 4) /* Receiver end break */
899 #define UTSR0_EIF (1 << 5) /* Error in FIFO */
900
901 #define UTSR1_RNE (1 << 1) /* Receive FIFO not empty */
902 #define UTSR1_TNF (1 << 2) /* Transmit FIFO not full */
903 #define UTSR1_PRE (1 << 3) /* Parity error */
904 #define UTSR1_FRE (1 << 4) /* Frame error */
905 #define UTSR1_ROR (1 << 5) /* Receive Over Run */
906
907 #define RX_FIFO_PRE (1 << 8)
908 #define RX_FIFO_FRE (1 << 9)
909 #define RX_FIFO_ROR (1 << 10)
910
911 #define TYPE_STRONGARM_UART "strongarm-uart"
912 #define STRONGARM_UART(obj) \
913 OBJECT_CHECK(StrongARMUARTState, (obj), TYPE_STRONGARM_UART)
914
915 typedef struct StrongARMUARTState {
916 SysBusDevice parent_obj;
917
918 MemoryRegion iomem;
919 CharDriverState *chr;
920 qemu_irq irq;
921
922 uint8_t utcr0;
923 uint16_t brd;
924 uint8_t utcr3;
925 uint8_t utsr0;
926 uint8_t utsr1;
927
928 uint8_t tx_fifo[8];
929 uint8_t tx_start;
930 uint8_t tx_len;
931 uint16_t rx_fifo[12]; /* value + error flags in high bits */
932 uint8_t rx_start;
933 uint8_t rx_len;
934
935 uint64_t char_transmit_time; /* time to transmit a char in ticks*/
936 bool wait_break_end;
937 QEMUTimer *rx_timeout_timer;
938 QEMUTimer *tx_timer;
939 } StrongARMUARTState;
940
941 static void strongarm_uart_update_status(StrongARMUARTState *s)
942 {
943 uint16_t utsr1 = 0;
944
945 if (s->tx_len != 8) {
946 utsr1 |= UTSR1_TNF;
947 }
948
949 if (s->rx_len != 0) {
950 uint16_t ent = s->rx_fifo[s->rx_start];
951
952 utsr1 |= UTSR1_RNE;
953 if (ent & RX_FIFO_PRE) {
954 s->utsr1 |= UTSR1_PRE;
955 }
956 if (ent & RX_FIFO_FRE) {
957 s->utsr1 |= UTSR1_FRE;
958 }
959 if (ent & RX_FIFO_ROR) {
960 s->utsr1 |= UTSR1_ROR;
961 }
962 }
963
964 s->utsr1 = utsr1;
965 }
966
967 static void strongarm_uart_update_int_status(StrongARMUARTState *s)
968 {
969 uint16_t utsr0 = s->utsr0 &
970 (UTSR0_REB | UTSR0_RBB | UTSR0_RID);
971 int i;
972
973 if ((s->utcr3 & UTCR3_TXE) &&
974 (s->utcr3 & UTCR3_TIE) &&
975 s->tx_len <= 4) {
976 utsr0 |= UTSR0_TFS;
977 }
978
979 if ((s->utcr3 & UTCR3_RXE) &&
980 (s->utcr3 & UTCR3_RIE) &&
981 s->rx_len > 4) {
982 utsr0 |= UTSR0_RFS;
983 }
984
985 for (i = 0; i < s->rx_len && i < 4; i++)
986 if (s->rx_fifo[(s->rx_start + i) % 12] & ~0xff) {
987 utsr0 |= UTSR0_EIF;
988 break;
989 }
990
991 s->utsr0 = utsr0;
992 qemu_set_irq(s->irq, utsr0);
993 }
994
995 static void strongarm_uart_update_parameters(StrongARMUARTState *s)
996 {
997 int speed, parity, data_bits, stop_bits, frame_size;
998 QEMUSerialSetParams ssp;
999
1000 /* Start bit. */
1001 frame_size = 1;
1002 if (s->utcr0 & UTCR0_PE) {
1003 /* Parity bit. */
1004 frame_size++;
1005 if (s->utcr0 & UTCR0_OES) {
1006 parity = 'E';
1007 } else {
1008 parity = 'O';
1009 }
1010 } else {
1011 parity = 'N';
1012 }
1013 if (s->utcr0 & UTCR0_SBS) {
1014 stop_bits = 2;
1015 } else {
1016 stop_bits = 1;
1017 }
1018
1019 data_bits = (s->utcr0 & UTCR0_DSS) ? 8 : 7;
1020 frame_size += data_bits + stop_bits;
1021 speed = 3686400 / 16 / (s->brd + 1);
1022 ssp.speed = speed;
1023 ssp.parity = parity;
1024 ssp.data_bits = data_bits;
1025 ssp.stop_bits = stop_bits;
1026 s->char_transmit_time = (get_ticks_per_sec() / speed) * frame_size;
1027 if (s->chr) {
1028 qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
1029 }
1030
1031 DPRINTF(stderr, "%s speed=%d parity=%c data=%d stop=%d\n", s->chr->label,
1032 speed, parity, data_bits, stop_bits);
1033 }
1034
1035 static void strongarm_uart_rx_to(void *opaque)
1036 {
1037 StrongARMUARTState *s = opaque;
1038
1039 if (s->rx_len) {
1040 s->utsr0 |= UTSR0_RID;
1041 strongarm_uart_update_int_status(s);
1042 }
1043 }
1044
1045 static void strongarm_uart_rx_push(StrongARMUARTState *s, uint16_t c)
1046 {
1047 if ((s->utcr3 & UTCR3_RXE) == 0) {
1048 /* rx disabled */
1049 return;
1050 }
1051
1052 if (s->wait_break_end) {
1053 s->utsr0 |= UTSR0_REB;
1054 s->wait_break_end = false;
1055 }
1056
1057 if (s->rx_len < 12) {
1058 s->rx_fifo[(s->rx_start + s->rx_len) % 12] = c;
1059 s->rx_len++;
1060 } else
1061 s->rx_fifo[(s->rx_start + 11) % 12] |= RX_FIFO_ROR;
1062 }
1063
1064 static int strongarm_uart_can_receive(void *opaque)
1065 {
1066 StrongARMUARTState *s = opaque;
1067
1068 if (s->rx_len == 12) {
1069 return 0;
1070 }
1071 /* It's best not to get more than 2/3 of RX FIFO, so advertise that much */
1072 if (s->rx_len < 8) {
1073 return 8 - s->rx_len;
1074 }
1075 return 1;
1076 }
1077
1078 static void strongarm_uart_receive(void *opaque, const uint8_t *buf, int size)
1079 {
1080 StrongARMUARTState *s = opaque;
1081 int i;
1082
1083 for (i = 0; i < size; i++) {
1084 strongarm_uart_rx_push(s, buf[i]);
1085 }
1086
1087 /* call the timeout receive callback in 3 char transmit time */
1088 qemu_mod_timer(s->rx_timeout_timer,
1089 qemu_get_clock_ns(vm_clock) + s->char_transmit_time * 3);
1090
1091 strongarm_uart_update_status(s);
1092 strongarm_uart_update_int_status(s);
1093 }
1094
1095 static void strongarm_uart_event(void *opaque, int event)
1096 {
1097 StrongARMUARTState *s = opaque;
1098 if (event == CHR_EVENT_BREAK) {
1099 s->utsr0 |= UTSR0_RBB;
1100 strongarm_uart_rx_push(s, RX_FIFO_FRE);
1101 s->wait_break_end = true;
1102 strongarm_uart_update_status(s);
1103 strongarm_uart_update_int_status(s);
1104 }
1105 }
1106
1107 static void strongarm_uart_tx(void *opaque)
1108 {
1109 StrongARMUARTState *s = opaque;
1110 uint64_t new_xmit_ts = qemu_get_clock_ns(vm_clock);
1111
1112 if (s->utcr3 & UTCR3_LBM) /* loopback */ {
1113 strongarm_uart_receive(s, &s->tx_fifo[s->tx_start], 1);
1114 } else if (s->chr) {
1115 qemu_chr_fe_write(s->chr, &s->tx_fifo[s->tx_start], 1);
1116 }
1117
1118 s->tx_start = (s->tx_start + 1) % 8;
1119 s->tx_len--;
1120 if (s->tx_len) {
1121 qemu_mod_timer(s->tx_timer, new_xmit_ts + s->char_transmit_time);
1122 }
1123 strongarm_uart_update_status(s);
1124 strongarm_uart_update_int_status(s);
1125 }
1126
1127 static uint64_t strongarm_uart_read(void *opaque, hwaddr addr,
1128 unsigned size)
1129 {
1130 StrongARMUARTState *s = opaque;
1131 uint16_t ret;
1132
1133 switch (addr) {
1134 case UTCR0:
1135 return s->utcr0;
1136
1137 case UTCR1:
1138 return s->brd >> 8;
1139
1140 case UTCR2:
1141 return s->brd & 0xff;
1142
1143 case UTCR3:
1144 return s->utcr3;
1145
1146 case UTDR:
1147 if (s->rx_len != 0) {
1148 ret = s->rx_fifo[s->rx_start];
1149 s->rx_start = (s->rx_start + 1) % 12;
1150 s->rx_len--;
1151 strongarm_uart_update_status(s);
1152 strongarm_uart_update_int_status(s);
1153 return ret;
1154 }
1155 return 0;
1156
1157 case UTSR0:
1158 return s->utsr0;
1159
1160 case UTSR1:
1161 return s->utsr1;
1162
1163 default:
1164 printf("%s: Bad register 0x" TARGET_FMT_plx "\n", __func__, addr);
1165 return 0;
1166 }
1167 }
1168
1169 static void strongarm_uart_write(void *opaque, hwaddr addr,
1170 uint64_t value, unsigned size)
1171 {
1172 StrongARMUARTState *s = opaque;
1173
1174 switch (addr) {
1175 case UTCR0:
1176 s->utcr0 = value & 0x7f;
1177 strongarm_uart_update_parameters(s);
1178 break;
1179
1180 case UTCR1:
1181 s->brd = (s->brd & 0xff) | ((value & 0xf) << 8);
1182 strongarm_uart_update_parameters(s);
1183 break;
1184
1185 case UTCR2:
1186 s->brd = (s->brd & 0xf00) | (value & 0xff);
1187 strongarm_uart_update_parameters(s);
1188 break;
1189
1190 case UTCR3:
1191 s->utcr3 = value & 0x3f;
1192 if ((s->utcr3 & UTCR3_RXE) == 0) {
1193 s->rx_len = 0;
1194 }
1195 if ((s->utcr3 & UTCR3_TXE) == 0) {
1196 s->tx_len = 0;
1197 }
1198 strongarm_uart_update_status(s);
1199 strongarm_uart_update_int_status(s);
1200 break;
1201
1202 case UTDR:
1203 if ((s->utcr3 & UTCR3_TXE) && s->tx_len != 8) {
1204 s->tx_fifo[(s->tx_start + s->tx_len) % 8] = value;
1205 s->tx_len++;
1206 strongarm_uart_update_status(s);
1207 strongarm_uart_update_int_status(s);
1208 if (s->tx_len == 1) {
1209 strongarm_uart_tx(s);
1210 }
1211 }
1212 break;
1213
1214 case UTSR0:
1215 s->utsr0 = s->utsr0 & ~(value &
1216 (UTSR0_REB | UTSR0_RBB | UTSR0_RID));
1217 strongarm_uart_update_int_status(s);
1218 break;
1219
1220 default:
1221 printf("%s: Bad register 0x" TARGET_FMT_plx "\n", __func__, addr);
1222 }
1223 }
1224
1225 static const MemoryRegionOps strongarm_uart_ops = {
1226 .read = strongarm_uart_read,
1227 .write = strongarm_uart_write,
1228 .endianness = DEVICE_NATIVE_ENDIAN,
1229 };
1230
1231 static int strongarm_uart_init(SysBusDevice *dev)
1232 {
1233 StrongARMUARTState *s = STRONGARM_UART(dev);
1234
1235 memory_region_init_io(&s->iomem, OBJECT(s), &strongarm_uart_ops, s,
1236 "uart", 0x10000);
1237 sysbus_init_mmio(dev, &s->iomem);
1238 sysbus_init_irq(dev, &s->irq);
1239
1240 s->rx_timeout_timer = qemu_new_timer_ns(vm_clock, strongarm_uart_rx_to, s);
1241 s->tx_timer = qemu_new_timer_ns(vm_clock, strongarm_uart_tx, s);
1242
1243 if (s->chr) {
1244 qemu_chr_add_handlers(s->chr,
1245 strongarm_uart_can_receive,
1246 strongarm_uart_receive,
1247 strongarm_uart_event,
1248 s);
1249 }
1250
1251 return 0;
1252 }
1253
1254 static void strongarm_uart_reset(DeviceState *dev)
1255 {
1256 StrongARMUARTState *s = STRONGARM_UART(dev);
1257
1258 s->utcr0 = UTCR0_DSS; /* 8 data, no parity */
1259 s->brd = 23; /* 9600 */
1260 /* enable send & recv - this actually violates spec */
1261 s->utcr3 = UTCR3_TXE | UTCR3_RXE;
1262
1263 s->rx_len = s->tx_len = 0;
1264
1265 strongarm_uart_update_parameters(s);
1266 strongarm_uart_update_status(s);
1267 strongarm_uart_update_int_status(s);
1268 }
1269
1270 static int strongarm_uart_post_load(void *opaque, int version_id)
1271 {
1272 StrongARMUARTState *s = opaque;
1273
1274 strongarm_uart_update_parameters(s);
1275 strongarm_uart_update_status(s);
1276 strongarm_uart_update_int_status(s);
1277
1278 /* tx and restart timer */
1279 if (s->tx_len) {
1280 strongarm_uart_tx(s);
1281 }
1282
1283 /* restart rx timeout timer */
1284 if (s->rx_len) {
1285 qemu_mod_timer(s->rx_timeout_timer,
1286 qemu_get_clock_ns(vm_clock) + s->char_transmit_time * 3);
1287 }
1288
1289 return 0;
1290 }
1291
1292 static const VMStateDescription vmstate_strongarm_uart_regs = {
1293 .name = "strongarm-uart",
1294 .version_id = 0,
1295 .minimum_version_id = 0,
1296 .minimum_version_id_old = 0,
1297 .post_load = strongarm_uart_post_load,
1298 .fields = (VMStateField[]) {
1299 VMSTATE_UINT8(utcr0, StrongARMUARTState),
1300 VMSTATE_UINT16(brd, StrongARMUARTState),
1301 VMSTATE_UINT8(utcr3, StrongARMUARTState),
1302 VMSTATE_UINT8(utsr0, StrongARMUARTState),
1303 VMSTATE_UINT8_ARRAY(tx_fifo, StrongARMUARTState, 8),
1304 VMSTATE_UINT8(tx_start, StrongARMUARTState),
1305 VMSTATE_UINT8(tx_len, StrongARMUARTState),
1306 VMSTATE_UINT16_ARRAY(rx_fifo, StrongARMUARTState, 12),
1307 VMSTATE_UINT8(rx_start, StrongARMUARTState),
1308 VMSTATE_UINT8(rx_len, StrongARMUARTState),
1309 VMSTATE_BOOL(wait_break_end, StrongARMUARTState),
1310 VMSTATE_END_OF_LIST(),
1311 },
1312 };
1313
1314 static Property strongarm_uart_properties[] = {
1315 DEFINE_PROP_CHR("chardev", StrongARMUARTState, chr),
1316 DEFINE_PROP_END_OF_LIST(),
1317 };
1318
1319 static void strongarm_uart_class_init(ObjectClass *klass, void *data)
1320 {
1321 DeviceClass *dc = DEVICE_CLASS(klass);
1322 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
1323
1324 k->init = strongarm_uart_init;
1325 dc->desc = "StrongARM UART controller";
1326 dc->reset = strongarm_uart_reset;
1327 dc->vmsd = &vmstate_strongarm_uart_regs;
1328 dc->props = strongarm_uart_properties;
1329 }
1330
1331 static const TypeInfo strongarm_uart_info = {
1332 .name = TYPE_STRONGARM_UART,
1333 .parent = TYPE_SYS_BUS_DEVICE,
1334 .instance_size = sizeof(StrongARMUARTState),
1335 .class_init = strongarm_uart_class_init,
1336 };
1337
1338 /* Synchronous Serial Ports */
1339
1340 #define TYPE_STRONGARM_SSP "strongarm-ssp"
1341 #define STRONGARM_SSP(obj) \
1342 OBJECT_CHECK(StrongARMSSPState, (obj), TYPE_STRONGARM_SSP)
1343
1344 typedef struct StrongARMSSPState {
1345 SysBusDevice parent_obj;
1346
1347 MemoryRegion iomem;
1348 qemu_irq irq;
1349 SSIBus *bus;
1350
1351 uint16_t sscr[2];
1352 uint16_t sssr;
1353
1354 uint16_t rx_fifo[8];
1355 uint8_t rx_level;
1356 uint8_t rx_start;
1357 } StrongARMSSPState;
1358
1359 #define SSCR0 0x60 /* SSP Control register 0 */
1360 #define SSCR1 0x64 /* SSP Control register 1 */
1361 #define SSDR 0x6c /* SSP Data register */
1362 #define SSSR 0x74 /* SSP Status register */
1363
1364 /* Bitfields for above registers */
1365 #define SSCR0_SPI(x) (((x) & 0x30) == 0x00)
1366 #define SSCR0_SSP(x) (((x) & 0x30) == 0x10)
1367 #define SSCR0_UWIRE(x) (((x) & 0x30) == 0x20)
1368 #define SSCR0_PSP(x) (((x) & 0x30) == 0x30)
1369 #define SSCR0_SSE (1 << 7)
1370 #define SSCR0_DSS(x) (((x) & 0xf) + 1)
1371 #define SSCR1_RIE (1 << 0)
1372 #define SSCR1_TIE (1 << 1)
1373 #define SSCR1_LBM (1 << 2)
1374 #define SSSR_TNF (1 << 2)
1375 #define SSSR_RNE (1 << 3)
1376 #define SSSR_TFS (1 << 5)
1377 #define SSSR_RFS (1 << 6)
1378 #define SSSR_ROR (1 << 7)
1379 #define SSSR_RW 0x0080
1380
1381 static void strongarm_ssp_int_update(StrongARMSSPState *s)
1382 {
1383 int level = 0;
1384
1385 level |= (s->sssr & SSSR_ROR);
1386 level |= (s->sssr & SSSR_RFS) && (s->sscr[1] & SSCR1_RIE);
1387 level |= (s->sssr & SSSR_TFS) && (s->sscr[1] & SSCR1_TIE);
1388 qemu_set_irq(s->irq, level);
1389 }
1390
1391 static void strongarm_ssp_fifo_update(StrongARMSSPState *s)
1392 {
1393 s->sssr &= ~SSSR_TFS;
1394 s->sssr &= ~SSSR_TNF;
1395 if (s->sscr[0] & SSCR0_SSE) {
1396 if (s->rx_level >= 4) {
1397 s->sssr |= SSSR_RFS;
1398 } else {
1399 s->sssr &= ~SSSR_RFS;
1400 }
1401 if (s->rx_level) {
1402 s->sssr |= SSSR_RNE;
1403 } else {
1404 s->sssr &= ~SSSR_RNE;
1405 }
1406 /* TX FIFO is never filled, so it is always in underrun
1407 condition if SSP is enabled */
1408 s->sssr |= SSSR_TFS;
1409 s->sssr |= SSSR_TNF;
1410 }
1411
1412 strongarm_ssp_int_update(s);
1413 }
1414
1415 static uint64_t strongarm_ssp_read(void *opaque, hwaddr addr,
1416 unsigned size)
1417 {
1418 StrongARMSSPState *s = opaque;
1419 uint32_t retval;
1420
1421 switch (addr) {
1422 case SSCR0:
1423 return s->sscr[0];
1424 case SSCR1:
1425 return s->sscr[1];
1426 case SSSR:
1427 return s->sssr;
1428 case SSDR:
1429 if (~s->sscr[0] & SSCR0_SSE) {
1430 return 0xffffffff;
1431 }
1432 if (s->rx_level < 1) {
1433 printf("%s: SSP Rx Underrun\n", __func__);
1434 return 0xffffffff;
1435 }
1436 s->rx_level--;
1437 retval = s->rx_fifo[s->rx_start++];
1438 s->rx_start &= 0x7;
1439 strongarm_ssp_fifo_update(s);
1440 return retval;
1441 default:
1442 printf("%s: Bad register 0x" TARGET_FMT_plx "\n", __func__, addr);
1443 break;
1444 }
1445 return 0;
1446 }
1447
1448 static void strongarm_ssp_write(void *opaque, hwaddr addr,
1449 uint64_t value, unsigned size)
1450 {
1451 StrongARMSSPState *s = opaque;
1452
1453 switch (addr) {
1454 case SSCR0:
1455 s->sscr[0] = value & 0xffbf;
1456 if ((s->sscr[0] & SSCR0_SSE) && SSCR0_DSS(value) < 4) {
1457 printf("%s: Wrong data size: %i bits\n", __func__,
1458 (int)SSCR0_DSS(value));
1459 }
1460 if (!(value & SSCR0_SSE)) {
1461 s->sssr = 0;
1462 s->rx_level = 0;
1463 }
1464 strongarm_ssp_fifo_update(s);
1465 break;
1466
1467 case SSCR1:
1468 s->sscr[1] = value & 0x2f;
1469 if (value & SSCR1_LBM) {
1470 printf("%s: Attempt to use SSP LBM mode\n", __func__);
1471 }
1472 strongarm_ssp_fifo_update(s);
1473 break;
1474
1475 case SSSR:
1476 s->sssr &= ~(value & SSSR_RW);
1477 strongarm_ssp_int_update(s);
1478 break;
1479
1480 case SSDR:
1481 if (SSCR0_UWIRE(s->sscr[0])) {
1482 value &= 0xff;
1483 } else
1484 /* Note how 32bits overflow does no harm here */
1485 value &= (1 << SSCR0_DSS(s->sscr[0])) - 1;
1486
1487 /* Data goes from here to the Tx FIFO and is shifted out from
1488 * there directly to the slave, no need to buffer it.
1489 */
1490 if (s->sscr[0] & SSCR0_SSE) {
1491 uint32_t readval;
1492 if (s->sscr[1] & SSCR1_LBM) {
1493 readval = value;
1494 } else {
1495 readval = ssi_transfer(s->bus, value);
1496 }
1497
1498 if (s->rx_level < 0x08) {
1499 s->rx_fifo[(s->rx_start + s->rx_level++) & 0x7] = readval;
1500 } else {
1501 s->sssr |= SSSR_ROR;
1502 }
1503 }
1504 strongarm_ssp_fifo_update(s);
1505 break;
1506
1507 default:
1508 printf("%s: Bad register 0x" TARGET_FMT_plx "\n", __func__, addr);
1509 break;
1510 }
1511 }
1512
1513 static const MemoryRegionOps strongarm_ssp_ops = {
1514 .read = strongarm_ssp_read,
1515 .write = strongarm_ssp_write,
1516 .endianness = DEVICE_NATIVE_ENDIAN,
1517 };
1518
1519 static int strongarm_ssp_post_load(void *opaque, int version_id)
1520 {
1521 StrongARMSSPState *s = opaque;
1522
1523 strongarm_ssp_fifo_update(s);
1524
1525 return 0;
1526 }
1527
1528 static int strongarm_ssp_init(SysBusDevice *sbd)
1529 {
1530 DeviceState *dev = DEVICE(sbd);
1531 StrongARMSSPState *s = STRONGARM_SSP(dev);
1532
1533 sysbus_init_irq(sbd, &s->irq);
1534
1535 memory_region_init_io(&s->iomem, OBJECT(s), &strongarm_ssp_ops, s,
1536 "ssp", 0x1000);
1537 sysbus_init_mmio(sbd, &s->iomem);
1538
1539 s->bus = ssi_create_bus(dev, "ssi");
1540 return 0;
1541 }
1542
1543 static void strongarm_ssp_reset(DeviceState *dev)
1544 {
1545 StrongARMSSPState *s = STRONGARM_SSP(dev);
1546
1547 s->sssr = 0x03; /* 3 bit data, SPI, disabled */
1548 s->rx_start = 0;
1549 s->rx_level = 0;
1550 }
1551
1552 static const VMStateDescription vmstate_strongarm_ssp_regs = {
1553 .name = "strongarm-ssp",
1554 .version_id = 0,
1555 .minimum_version_id = 0,
1556 .minimum_version_id_old = 0,
1557 .post_load = strongarm_ssp_post_load,
1558 .fields = (VMStateField[]) {
1559 VMSTATE_UINT16_ARRAY(sscr, StrongARMSSPState, 2),
1560 VMSTATE_UINT16(sssr, StrongARMSSPState),
1561 VMSTATE_UINT16_ARRAY(rx_fifo, StrongARMSSPState, 8),
1562 VMSTATE_UINT8(rx_start, StrongARMSSPState),
1563 VMSTATE_UINT8(rx_level, StrongARMSSPState),
1564 VMSTATE_END_OF_LIST(),
1565 },
1566 };
1567
1568 static void strongarm_ssp_class_init(ObjectClass *klass, void *data)
1569 {
1570 DeviceClass *dc = DEVICE_CLASS(klass);
1571 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
1572
1573 k->init = strongarm_ssp_init;
1574 dc->desc = "StrongARM SSP controller";
1575 dc->reset = strongarm_ssp_reset;
1576 dc->vmsd = &vmstate_strongarm_ssp_regs;
1577 }
1578
1579 static const TypeInfo strongarm_ssp_info = {
1580 .name = TYPE_STRONGARM_SSP,
1581 .parent = TYPE_SYS_BUS_DEVICE,
1582 .instance_size = sizeof(StrongARMSSPState),
1583 .class_init = strongarm_ssp_class_init,
1584 };
1585
1586 /* Main CPU functions */
1587 StrongARMState *sa1110_init(MemoryRegion *sysmem,
1588 unsigned int sdram_size, const char *rev)
1589 {
1590 StrongARMState *s;
1591 int i;
1592
1593 s = g_malloc0(sizeof(StrongARMState));
1594
1595 if (!rev) {
1596 rev = "sa1110-b5";
1597 }
1598
1599 if (strncmp(rev, "sa1110", 6)) {
1600 error_report("Machine requires a SA1110 processor.");
1601 exit(1);
1602 }
1603
1604 s->cpu = cpu_arm_init(rev);
1605
1606 if (!s->cpu) {
1607 error_report("Unable to find CPU definition");
1608 exit(1);
1609 }
1610
1611 memory_region_init_ram(&s->sdram, NULL, "strongarm.sdram", sdram_size);
1612 vmstate_register_ram_global(&s->sdram);
1613 memory_region_add_subregion(sysmem, SA_SDCS0, &s->sdram);
1614
1615 s->pic = sysbus_create_varargs("strongarm_pic", 0x90050000,
1616 qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_IRQ),
1617 qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_FIQ),
1618 NULL);
1619
1620 sysbus_create_varargs("pxa25x-timer", 0x90000000,
1621 qdev_get_gpio_in(s->pic, SA_PIC_OSTC0),
1622 qdev_get_gpio_in(s->pic, SA_PIC_OSTC1),
1623 qdev_get_gpio_in(s->pic, SA_PIC_OSTC2),
1624 qdev_get_gpio_in(s->pic, SA_PIC_OSTC3),
1625 NULL);
1626
1627 sysbus_create_simple(TYPE_STRONGARM_RTC, 0x90010000,
1628 qdev_get_gpio_in(s->pic, SA_PIC_RTC_ALARM));
1629
1630 s->gpio = strongarm_gpio_init(0x90040000, s->pic);
1631
1632 s->ppc = sysbus_create_varargs(TYPE_STRONGARM_PPC, 0x90060000, NULL);
1633
1634 for (i = 0; sa_serial[i].io_base; i++) {
1635 DeviceState *dev = qdev_create(NULL, TYPE_STRONGARM_UART);
1636 qdev_prop_set_chr(dev, "chardev", serial_hds[i]);
1637 qdev_init_nofail(dev);
1638 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0,
1639 sa_serial[i].io_base);
1640 sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0,
1641 qdev_get_gpio_in(s->pic, sa_serial[i].irq));
1642 }
1643
1644 s->ssp = sysbus_create_varargs(TYPE_STRONGARM_SSP, 0x80070000,
1645 qdev_get_gpio_in(s->pic, SA_PIC_SSP), NULL);
1646 s->ssp_bus = (SSIBus *)qdev_get_child_bus(s->ssp, "ssi");
1647
1648 return s;
1649 }
1650
1651 static void strongarm_register_types(void)
1652 {
1653 type_register_static(&strongarm_pic_info);
1654 type_register_static(&strongarm_rtc_sysbus_info);
1655 type_register_static(&strongarm_gpio_info);
1656 type_register_static(&strongarm_ppc_info);
1657 type_register_static(&strongarm_uart_info);
1658 type_register_static(&strongarm_ssp_info);
1659 }
1660
1661 type_init(strongarm_register_types)