]> git.proxmox.com Git - mirror_qemu.git/blob - hw/arm/virt.c
ipxe: update to commit 0600d3ae94
[mirror_qemu.git] / hw / arm / virt.c
1 /*
2 * ARM mach-virt emulation
3 *
4 * Copyright (c) 2013 Linaro Limited
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
17 *
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
29 */
30
31 #include "qemu/osdep.h"
32 #include "qapi/error.h"
33 #include "hw/sysbus.h"
34 #include "hw/arm/arm.h"
35 #include "hw/arm/primecell.h"
36 #include "hw/arm/virt.h"
37 #include "hw/devices.h"
38 #include "net/net.h"
39 #include "sysemu/block-backend.h"
40 #include "sysemu/device_tree.h"
41 #include "sysemu/numa.h"
42 #include "sysemu/sysemu.h"
43 #include "sysemu/kvm.h"
44 #include "hw/compat.h"
45 #include "hw/loader.h"
46 #include "exec/address-spaces.h"
47 #include "qemu/bitops.h"
48 #include "qemu/error-report.h"
49 #include "hw/pci-host/gpex.h"
50 #include "hw/arm/sysbus-fdt.h"
51 #include "hw/platform-bus.h"
52 #include "hw/arm/fdt.h"
53 #include "hw/intc/arm_gic.h"
54 #include "hw/intc/arm_gicv3_common.h"
55 #include "kvm_arm.h"
56 #include "hw/smbios/smbios.h"
57 #include "qapi/visitor.h"
58 #include "standard-headers/linux/input.h"
59
60 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
61 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
62 void *data) \
63 { \
64 MachineClass *mc = MACHINE_CLASS(oc); \
65 virt_machine_##major##_##minor##_options(mc); \
66 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
67 if (latest) { \
68 mc->alias = "virt"; \
69 } \
70 } \
71 static const TypeInfo machvirt_##major##_##minor##_info = { \
72 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
73 .parent = TYPE_VIRT_MACHINE, \
74 .instance_init = virt_##major##_##minor##_instance_init, \
75 .class_init = virt_##major##_##minor##_class_init, \
76 }; \
77 static void machvirt_machine_##major##_##minor##_init(void) \
78 { \
79 type_register_static(&machvirt_##major##_##minor##_info); \
80 } \
81 type_init(machvirt_machine_##major##_##minor##_init);
82
83 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
84 DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
85 #define DEFINE_VIRT_MACHINE(major, minor) \
86 DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
87
88
89 /* Number of external interrupt lines to configure the GIC with */
90 #define NUM_IRQS 256
91
92 #define PLATFORM_BUS_NUM_IRQS 64
93
94 static ARMPlatformBusSystemParams platform_bus_params;
95
96 /* RAM limit in GB. Since VIRT_MEM starts at the 1GB mark, this means
97 * RAM can go up to the 256GB mark, leaving 256GB of the physical
98 * address space unallocated and free for future use between 256G and 512G.
99 * If we need to provide more RAM to VMs in the future then we need to:
100 * * allocate a second bank of RAM starting at 2TB and working up
101 * * fix the DT and ACPI table generation code in QEMU to correctly
102 * report two split lumps of RAM to the guest
103 * * fix KVM in the host kernel to allow guests with >40 bit address spaces
104 * (We don't want to fill all the way up to 512GB with RAM because
105 * we might want it for non-RAM purposes later. Conversely it seems
106 * reasonable to assume that anybody configuring a VM with a quarter
107 * of a terabyte of RAM will be doing it on a host with more than a
108 * terabyte of physical address space.)
109 */
110 #define RAMLIMIT_GB 255
111 #define RAMLIMIT_BYTES (RAMLIMIT_GB * 1024ULL * 1024 * 1024)
112
113 /* Addresses and sizes of our components.
114 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
115 * 128MB..256MB is used for miscellaneous device I/O.
116 * 256MB..1GB is reserved for possible future PCI support (ie where the
117 * PCI memory window will go if we add a PCI host controller).
118 * 1GB and up is RAM (which may happily spill over into the
119 * high memory region beyond 4GB).
120 * This represents a compromise between how much RAM can be given to
121 * a 32 bit VM and leaving space for expansion and in particular for PCI.
122 * Note that devices should generally be placed at multiples of 0x10000,
123 * to accommodate guests using 64K pages.
124 */
125 static const MemMapEntry a15memmap[] = {
126 /* Space up to 0x8000000 is reserved for a boot ROM */
127 [VIRT_FLASH] = { 0, 0x08000000 },
128 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
129 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
130 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
131 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
132 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 },
133 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
134 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 },
135 /* This redistributor space allows up to 2*64kB*123 CPUs */
136 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 },
137 [VIRT_UART] = { 0x09000000, 0x00001000 },
138 [VIRT_RTC] = { 0x09010000, 0x00001000 },
139 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 },
140 [VIRT_GPIO] = { 0x09030000, 0x00001000 },
141 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 },
142 [VIRT_MMIO] = { 0x0a000000, 0x00000200 },
143 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
144 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 },
145 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 },
146 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 },
147 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 },
148 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 },
149 [VIRT_MEM] = { 0x40000000, RAMLIMIT_BYTES },
150 /* Second PCIe window, 512GB wide at the 512GB boundary */
151 [VIRT_PCIE_MMIO_HIGH] = { 0x8000000000ULL, 0x8000000000ULL },
152 };
153
154 static const int a15irqmap[] = {
155 [VIRT_UART] = 1,
156 [VIRT_RTC] = 2,
157 [VIRT_PCIE] = 3, /* ... to 6 */
158 [VIRT_GPIO] = 7,
159 [VIRT_SECURE_UART] = 8,
160 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
161 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
162 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
163 };
164
165 static const char *valid_cpus[] = {
166 "cortex-a15",
167 "cortex-a53",
168 "cortex-a57",
169 "host",
170 };
171
172 static bool cpuname_valid(const char *cpu)
173 {
174 int i;
175
176 for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
177 if (strcmp(cpu, valid_cpus[i]) == 0) {
178 return true;
179 }
180 }
181 return false;
182 }
183
184 static void create_fdt(VirtMachineState *vms)
185 {
186 void *fdt = create_device_tree(&vms->fdt_size);
187
188 if (!fdt) {
189 error_report("create_device_tree() failed");
190 exit(1);
191 }
192
193 vms->fdt = fdt;
194
195 /* Header */
196 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
197 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
198 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
199
200 /*
201 * /chosen and /memory nodes must exist for load_dtb
202 * to fill in necessary properties later
203 */
204 qemu_fdt_add_subnode(fdt, "/chosen");
205 qemu_fdt_add_subnode(fdt, "/memory");
206 qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
207
208 /* Clock node, for the benefit of the UART. The kernel device tree
209 * binding documentation claims the PL011 node clock properties are
210 * optional but in practice if you omit them the kernel refuses to
211 * probe for the device.
212 */
213 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
214 qemu_fdt_add_subnode(fdt, "/apb-pclk");
215 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
216 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
217 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
218 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
219 "clk24mhz");
220 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
221
222 if (have_numa_distance) {
223 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
224 uint32_t *matrix = g_malloc0(size);
225 int idx, i, j;
226
227 for (i = 0; i < nb_numa_nodes; i++) {
228 for (j = 0; j < nb_numa_nodes; j++) {
229 idx = (i * nb_numa_nodes + j) * 3;
230 matrix[idx + 0] = cpu_to_be32(i);
231 matrix[idx + 1] = cpu_to_be32(j);
232 matrix[idx + 2] = cpu_to_be32(numa_info[i].distance[j]);
233 }
234 }
235
236 qemu_fdt_add_subnode(fdt, "/distance-map");
237 qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
238 "numa-distance-map-v1");
239 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
240 matrix, size);
241 g_free(matrix);
242 }
243 }
244
245 static void fdt_add_psci_node(const VirtMachineState *vms)
246 {
247 uint32_t cpu_suspend_fn;
248 uint32_t cpu_off_fn;
249 uint32_t cpu_on_fn;
250 uint32_t migrate_fn;
251 void *fdt = vms->fdt;
252 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
253 const char *psci_method;
254
255 switch (vms->psci_conduit) {
256 case QEMU_PSCI_CONDUIT_DISABLED:
257 return;
258 case QEMU_PSCI_CONDUIT_HVC:
259 psci_method = "hvc";
260 break;
261 case QEMU_PSCI_CONDUIT_SMC:
262 psci_method = "smc";
263 break;
264 default:
265 g_assert_not_reached();
266 }
267
268 qemu_fdt_add_subnode(fdt, "/psci");
269 if (armcpu->psci_version == 2) {
270 const char comp[] = "arm,psci-0.2\0arm,psci";
271 qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
272
273 cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
274 if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
275 cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
276 cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
277 migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
278 } else {
279 cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
280 cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
281 migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
282 }
283 } else {
284 qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
285
286 cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
287 cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
288 cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
289 migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
290 }
291
292 /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
293 * to the instruction that should be used to invoke PSCI functions.
294 * However, the device tree binding uses 'method' instead, so that is
295 * what we should use here.
296 */
297 qemu_fdt_setprop_string(fdt, "/psci", "method", psci_method);
298
299 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
300 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
301 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
302 qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
303 }
304
305 static void fdt_add_timer_nodes(const VirtMachineState *vms)
306 {
307 /* On real hardware these interrupts are level-triggered.
308 * On KVM they were edge-triggered before host kernel version 4.4,
309 * and level-triggered afterwards.
310 * On emulated QEMU they are level-triggered.
311 *
312 * Getting the DTB info about them wrong is awkward for some
313 * guest kernels:
314 * pre-4.8 ignore the DT and leave the interrupt configured
315 * with whatever the GIC reset value (or the bootloader) left it at
316 * 4.8 before rc6 honour the incorrect data by programming it back
317 * into the GIC, causing problems
318 * 4.8rc6 and later ignore the DT and always write "level triggered"
319 * into the GIC
320 *
321 * For backwards-compatibility, virt-2.8 and earlier will continue
322 * to say these are edge-triggered, but later machines will report
323 * the correct information.
324 */
325 ARMCPU *armcpu;
326 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
327 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
328
329 if (vmc->claim_edge_triggered_timers) {
330 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
331 }
332
333 if (vms->gic_version == 2) {
334 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
335 GIC_FDT_IRQ_PPI_CPU_WIDTH,
336 (1 << vms->smp_cpus) - 1);
337 }
338
339 qemu_fdt_add_subnode(vms->fdt, "/timer");
340
341 armcpu = ARM_CPU(qemu_get_cpu(0));
342 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
343 const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
344 qemu_fdt_setprop(vms->fdt, "/timer", "compatible",
345 compat, sizeof(compat));
346 } else {
347 qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible",
348 "arm,armv7-timer");
349 }
350 qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0);
351 qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts",
352 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
353 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
354 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
355 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
356 }
357
358 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
359 {
360 int cpu;
361 int addr_cells = 1;
362 const MachineState *ms = MACHINE(vms);
363
364 /*
365 * From Documentation/devicetree/bindings/arm/cpus.txt
366 * On ARM v8 64-bit systems value should be set to 2,
367 * that corresponds to the MPIDR_EL1 register size.
368 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
369 * in the system, #address-cells can be set to 1, since
370 * MPIDR_EL1[63:32] bits are not used for CPUs
371 * identification.
372 *
373 * Here we actually don't know whether our system is 32- or 64-bit one.
374 * The simplest way to go is to examine affinity IDs of all our CPUs. If
375 * at least one of them has Aff3 populated, we set #address-cells to 2.
376 */
377 for (cpu = 0; cpu < vms->smp_cpus; cpu++) {
378 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
379
380 if (armcpu->mp_affinity & ARM_AFF3_MASK) {
381 addr_cells = 2;
382 break;
383 }
384 }
385
386 qemu_fdt_add_subnode(vms->fdt, "/cpus");
387 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells);
388 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0);
389
390 for (cpu = vms->smp_cpus - 1; cpu >= 0; cpu--) {
391 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
392 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
393 CPUState *cs = CPU(armcpu);
394
395 qemu_fdt_add_subnode(vms->fdt, nodename);
396 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu");
397 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
398 armcpu->dtb_compatible);
399
400 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED
401 && vms->smp_cpus > 1) {
402 qemu_fdt_setprop_string(vms->fdt, nodename,
403 "enable-method", "psci");
404 }
405
406 if (addr_cells == 2) {
407 qemu_fdt_setprop_u64(vms->fdt, nodename, "reg",
408 armcpu->mp_affinity);
409 } else {
410 qemu_fdt_setprop_cell(vms->fdt, nodename, "reg",
411 armcpu->mp_affinity);
412 }
413
414 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
415 qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id",
416 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
417 }
418
419 g_free(nodename);
420 }
421 }
422
423 static void fdt_add_its_gic_node(VirtMachineState *vms)
424 {
425 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
426 qemu_fdt_add_subnode(vms->fdt, "/intc/its");
427 qemu_fdt_setprop_string(vms->fdt, "/intc/its", "compatible",
428 "arm,gic-v3-its");
429 qemu_fdt_setprop(vms->fdt, "/intc/its", "msi-controller", NULL, 0);
430 qemu_fdt_setprop_sized_cells(vms->fdt, "/intc/its", "reg",
431 2, vms->memmap[VIRT_GIC_ITS].base,
432 2, vms->memmap[VIRT_GIC_ITS].size);
433 qemu_fdt_setprop_cell(vms->fdt, "/intc/its", "phandle", vms->msi_phandle);
434 }
435
436 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
437 {
438 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
439 qemu_fdt_add_subnode(vms->fdt, "/intc/v2m");
440 qemu_fdt_setprop_string(vms->fdt, "/intc/v2m", "compatible",
441 "arm,gic-v2m-frame");
442 qemu_fdt_setprop(vms->fdt, "/intc/v2m", "msi-controller", NULL, 0);
443 qemu_fdt_setprop_sized_cells(vms->fdt, "/intc/v2m", "reg",
444 2, vms->memmap[VIRT_GIC_V2M].base,
445 2, vms->memmap[VIRT_GIC_V2M].size);
446 qemu_fdt_setprop_cell(vms->fdt, "/intc/v2m", "phandle", vms->msi_phandle);
447 }
448
449 static void fdt_add_gic_node(VirtMachineState *vms)
450 {
451 vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt);
452 qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle);
453
454 qemu_fdt_add_subnode(vms->fdt, "/intc");
455 qemu_fdt_setprop_cell(vms->fdt, "/intc", "#interrupt-cells", 3);
456 qemu_fdt_setprop(vms->fdt, "/intc", "interrupt-controller", NULL, 0);
457 qemu_fdt_setprop_cell(vms->fdt, "/intc", "#address-cells", 0x2);
458 qemu_fdt_setprop_cell(vms->fdt, "/intc", "#size-cells", 0x2);
459 qemu_fdt_setprop(vms->fdt, "/intc", "ranges", NULL, 0);
460 if (vms->gic_version == 3) {
461 qemu_fdt_setprop_string(vms->fdt, "/intc", "compatible",
462 "arm,gic-v3");
463 qemu_fdt_setprop_sized_cells(vms->fdt, "/intc", "reg",
464 2, vms->memmap[VIRT_GIC_DIST].base,
465 2, vms->memmap[VIRT_GIC_DIST].size,
466 2, vms->memmap[VIRT_GIC_REDIST].base,
467 2, vms->memmap[VIRT_GIC_REDIST].size);
468 if (vms->virt) {
469 qemu_fdt_setprop_cells(vms->fdt, "/intc", "interrupts",
470 GIC_FDT_IRQ_TYPE_PPI, ARCH_GICV3_MAINT_IRQ,
471 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
472 }
473 } else {
474 /* 'cortex-a15-gic' means 'GIC v2' */
475 qemu_fdt_setprop_string(vms->fdt, "/intc", "compatible",
476 "arm,cortex-a15-gic");
477 qemu_fdt_setprop_sized_cells(vms->fdt, "/intc", "reg",
478 2, vms->memmap[VIRT_GIC_DIST].base,
479 2, vms->memmap[VIRT_GIC_DIST].size,
480 2, vms->memmap[VIRT_GIC_CPU].base,
481 2, vms->memmap[VIRT_GIC_CPU].size);
482 }
483
484 qemu_fdt_setprop_cell(vms->fdt, "/intc", "phandle", vms->gic_phandle);
485 }
486
487 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
488 {
489 CPUState *cpu;
490 ARMCPU *armcpu;
491 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
492
493 CPU_FOREACH(cpu) {
494 armcpu = ARM_CPU(cpu);
495 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU) ||
496 (kvm_enabled() && !kvm_arm_pmu_create(cpu, PPI(VIRTUAL_PMU_IRQ)))) {
497 return;
498 }
499 }
500
501 if (vms->gic_version == 2) {
502 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
503 GIC_FDT_IRQ_PPI_CPU_WIDTH,
504 (1 << vms->smp_cpus) - 1);
505 }
506
507 armcpu = ARM_CPU(qemu_get_cpu(0));
508 qemu_fdt_add_subnode(vms->fdt, "/pmu");
509 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
510 const char compat[] = "arm,armv8-pmuv3";
511 qemu_fdt_setprop(vms->fdt, "/pmu", "compatible",
512 compat, sizeof(compat));
513 qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts",
514 GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
515 }
516 }
517
518 static void create_its(VirtMachineState *vms, DeviceState *gicdev)
519 {
520 const char *itsclass = its_class_name();
521 DeviceState *dev;
522
523 if (!itsclass) {
524 /* Do nothing if not supported */
525 return;
526 }
527
528 dev = qdev_create(NULL, itsclass);
529
530 object_property_set_link(OBJECT(dev), OBJECT(gicdev), "parent-gicv3",
531 &error_abort);
532 qdev_init_nofail(dev);
533 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
534
535 fdt_add_its_gic_node(vms);
536 }
537
538 static void create_v2m(VirtMachineState *vms, qemu_irq *pic)
539 {
540 int i;
541 int irq = vms->irqmap[VIRT_GIC_V2M];
542 DeviceState *dev;
543
544 dev = qdev_create(NULL, "arm-gicv2m");
545 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
546 qdev_prop_set_uint32(dev, "base-spi", irq);
547 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
548 qdev_init_nofail(dev);
549
550 for (i = 0; i < NUM_GICV2M_SPIS; i++) {
551 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
552 }
553
554 fdt_add_v2m_gic_node(vms);
555 }
556
557 static void create_gic(VirtMachineState *vms, qemu_irq *pic)
558 {
559 /* We create a standalone GIC */
560 DeviceState *gicdev;
561 SysBusDevice *gicbusdev;
562 const char *gictype;
563 int type = vms->gic_version, i;
564
565 gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
566
567 gicdev = qdev_create(NULL, gictype);
568 qdev_prop_set_uint32(gicdev, "revision", type);
569 qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
570 /* Note that the num-irq property counts both internal and external
571 * interrupts; there are always 32 of the former (mandated by GIC spec).
572 */
573 qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
574 if (!kvm_irqchip_in_kernel()) {
575 qdev_prop_set_bit(gicdev, "has-security-extensions", vms->secure);
576 }
577 qdev_init_nofail(gicdev);
578 gicbusdev = SYS_BUS_DEVICE(gicdev);
579 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
580 if (type == 3) {
581 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
582 } else {
583 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
584 }
585
586 /* Wire the outputs from each CPU's generic timer and the GICv3
587 * maintenance interrupt signal to the appropriate GIC PPI inputs,
588 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
589 */
590 for (i = 0; i < smp_cpus; i++) {
591 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
592 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
593 int irq;
594 /* Mapping from the output timer irq lines from the CPU to the
595 * GIC PPI inputs we use for the virt board.
596 */
597 const int timer_irq[] = {
598 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
599 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
600 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
601 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
602 };
603
604 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
605 qdev_connect_gpio_out(cpudev, irq,
606 qdev_get_gpio_in(gicdev,
607 ppibase + timer_irq[irq]));
608 }
609
610 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 0,
611 qdev_get_gpio_in(gicdev, ppibase
612 + ARCH_GICV3_MAINT_IRQ));
613
614 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
615 sysbus_connect_irq(gicbusdev, i + smp_cpus,
616 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
617 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
618 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
619 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
620 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
621 }
622
623 for (i = 0; i < NUM_IRQS; i++) {
624 pic[i] = qdev_get_gpio_in(gicdev, i);
625 }
626
627 fdt_add_gic_node(vms);
628
629 if (type == 3 && vms->its) {
630 create_its(vms, gicdev);
631 } else if (type == 2) {
632 create_v2m(vms, pic);
633 }
634 }
635
636 static void create_uart(const VirtMachineState *vms, qemu_irq *pic, int uart,
637 MemoryRegion *mem, Chardev *chr)
638 {
639 char *nodename;
640 hwaddr base = vms->memmap[uart].base;
641 hwaddr size = vms->memmap[uart].size;
642 int irq = vms->irqmap[uart];
643 const char compat[] = "arm,pl011\0arm,primecell";
644 const char clocknames[] = "uartclk\0apb_pclk";
645 DeviceState *dev = qdev_create(NULL, "pl011");
646 SysBusDevice *s = SYS_BUS_DEVICE(dev);
647
648 qdev_prop_set_chr(dev, "chardev", chr);
649 qdev_init_nofail(dev);
650 memory_region_add_subregion(mem, base,
651 sysbus_mmio_get_region(s, 0));
652 sysbus_connect_irq(s, 0, pic[irq]);
653
654 nodename = g_strdup_printf("/pl011@%" PRIx64, base);
655 qemu_fdt_add_subnode(vms->fdt, nodename);
656 /* Note that we can't use setprop_string because of the embedded NUL */
657 qemu_fdt_setprop(vms->fdt, nodename, "compatible",
658 compat, sizeof(compat));
659 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
660 2, base, 2, size);
661 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
662 GIC_FDT_IRQ_TYPE_SPI, irq,
663 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
664 qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks",
665 vms->clock_phandle, vms->clock_phandle);
666 qemu_fdt_setprop(vms->fdt, nodename, "clock-names",
667 clocknames, sizeof(clocknames));
668
669 if (uart == VIRT_UART) {
670 qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename);
671 } else {
672 /* Mark as not usable by the normal world */
673 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
674 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
675 }
676
677 g_free(nodename);
678 }
679
680 static void create_rtc(const VirtMachineState *vms, qemu_irq *pic)
681 {
682 char *nodename;
683 hwaddr base = vms->memmap[VIRT_RTC].base;
684 hwaddr size = vms->memmap[VIRT_RTC].size;
685 int irq = vms->irqmap[VIRT_RTC];
686 const char compat[] = "arm,pl031\0arm,primecell";
687
688 sysbus_create_simple("pl031", base, pic[irq]);
689
690 nodename = g_strdup_printf("/pl031@%" PRIx64, base);
691 qemu_fdt_add_subnode(vms->fdt, nodename);
692 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
693 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
694 2, base, 2, size);
695 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
696 GIC_FDT_IRQ_TYPE_SPI, irq,
697 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
698 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
699 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
700 g_free(nodename);
701 }
702
703 static DeviceState *gpio_key_dev;
704 static void virt_powerdown_req(Notifier *n, void *opaque)
705 {
706 /* use gpio Pin 3 for power button event */
707 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
708 }
709
710 static Notifier virt_system_powerdown_notifier = {
711 .notify = virt_powerdown_req
712 };
713
714 static void create_gpio(const VirtMachineState *vms, qemu_irq *pic)
715 {
716 char *nodename;
717 DeviceState *pl061_dev;
718 hwaddr base = vms->memmap[VIRT_GPIO].base;
719 hwaddr size = vms->memmap[VIRT_GPIO].size;
720 int irq = vms->irqmap[VIRT_GPIO];
721 const char compat[] = "arm,pl061\0arm,primecell";
722
723 pl061_dev = sysbus_create_simple("pl061", base, pic[irq]);
724
725 uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt);
726 nodename = g_strdup_printf("/pl061@%" PRIx64, base);
727 qemu_fdt_add_subnode(vms->fdt, nodename);
728 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
729 2, base, 2, size);
730 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
731 qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2);
732 qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0);
733 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
734 GIC_FDT_IRQ_TYPE_SPI, irq,
735 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
736 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
737 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
738 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle);
739
740 gpio_key_dev = sysbus_create_simple("gpio-key", -1,
741 qdev_get_gpio_in(pl061_dev, 3));
742 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys");
743 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys");
744 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0);
745 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1);
746
747 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff");
748 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff",
749 "label", "GPIO Key Poweroff");
750 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code",
751 KEY_POWER);
752 qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff",
753 "gpios", phandle, 3, 0);
754
755 /* connect powerdown request */
756 qemu_register_powerdown_notifier(&virt_system_powerdown_notifier);
757
758 g_free(nodename);
759 }
760
761 static void create_virtio_devices(const VirtMachineState *vms, qemu_irq *pic)
762 {
763 int i;
764 hwaddr size = vms->memmap[VIRT_MMIO].size;
765
766 /* We create the transports in forwards order. Since qbus_realize()
767 * prepends (not appends) new child buses, the incrementing loop below will
768 * create a list of virtio-mmio buses with decreasing base addresses.
769 *
770 * When a -device option is processed from the command line,
771 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
772 * order. The upshot is that -device options in increasing command line
773 * order are mapped to virtio-mmio buses with decreasing base addresses.
774 *
775 * When this code was originally written, that arrangement ensured that the
776 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
777 * the first -device on the command line. (The end-to-end order is a
778 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
779 * guest kernel's name-to-address assignment strategy.)
780 *
781 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
782 * the message, if not necessarily the code, of commit 70161ff336.
783 * Therefore the loop now establishes the inverse of the original intent.
784 *
785 * Unfortunately, we can't counteract the kernel change by reversing the
786 * loop; it would break existing command lines.
787 *
788 * In any case, the kernel makes no guarantee about the stability of
789 * enumeration order of virtio devices (as demonstrated by it changing
790 * between kernel versions). For reliable and stable identification
791 * of disks users must use UUIDs or similar mechanisms.
792 */
793 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
794 int irq = vms->irqmap[VIRT_MMIO] + i;
795 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
796
797 sysbus_create_simple("virtio-mmio", base, pic[irq]);
798 }
799
800 /* We add dtb nodes in reverse order so that they appear in the finished
801 * device tree lowest address first.
802 *
803 * Note that this mapping is independent of the loop above. The previous
804 * loop influences virtio device to virtio transport assignment, whereas
805 * this loop controls how virtio transports are laid out in the dtb.
806 */
807 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
808 char *nodename;
809 int irq = vms->irqmap[VIRT_MMIO] + i;
810 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
811
812 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
813 qemu_fdt_add_subnode(vms->fdt, nodename);
814 qemu_fdt_setprop_string(vms->fdt, nodename,
815 "compatible", "virtio,mmio");
816 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
817 2, base, 2, size);
818 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
819 GIC_FDT_IRQ_TYPE_SPI, irq,
820 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
821 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
822 g_free(nodename);
823 }
824 }
825
826 static void create_one_flash(const char *name, hwaddr flashbase,
827 hwaddr flashsize, const char *file,
828 MemoryRegion *sysmem)
829 {
830 /* Create and map a single flash device. We use the same
831 * parameters as the flash devices on the Versatile Express board.
832 */
833 DriveInfo *dinfo = drive_get_next(IF_PFLASH);
834 DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
835 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
836 const uint64_t sectorlength = 256 * 1024;
837
838 if (dinfo) {
839 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
840 &error_abort);
841 }
842
843 qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
844 qdev_prop_set_uint64(dev, "sector-length", sectorlength);
845 qdev_prop_set_uint8(dev, "width", 4);
846 qdev_prop_set_uint8(dev, "device-width", 2);
847 qdev_prop_set_bit(dev, "big-endian", false);
848 qdev_prop_set_uint16(dev, "id0", 0x89);
849 qdev_prop_set_uint16(dev, "id1", 0x18);
850 qdev_prop_set_uint16(dev, "id2", 0x00);
851 qdev_prop_set_uint16(dev, "id3", 0x00);
852 qdev_prop_set_string(dev, "name", name);
853 qdev_init_nofail(dev);
854
855 memory_region_add_subregion(sysmem, flashbase,
856 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0));
857
858 if (file) {
859 char *fn;
860 int image_size;
861
862 if (drive_get(IF_PFLASH, 0, 0)) {
863 error_report("The contents of the first flash device may be "
864 "specified with -bios or with -drive if=pflash... "
865 "but you cannot use both options at once");
866 exit(1);
867 }
868 fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, file);
869 if (!fn) {
870 error_report("Could not find ROM image '%s'", file);
871 exit(1);
872 }
873 image_size = load_image_mr(fn, sysbus_mmio_get_region(sbd, 0));
874 g_free(fn);
875 if (image_size < 0) {
876 error_report("Could not load ROM image '%s'", file);
877 exit(1);
878 }
879 }
880 }
881
882 static void create_flash(const VirtMachineState *vms,
883 MemoryRegion *sysmem,
884 MemoryRegion *secure_sysmem)
885 {
886 /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
887 * Any file passed via -bios goes in the first of these.
888 * sysmem is the system memory space. secure_sysmem is the secure view
889 * of the system, and the first flash device should be made visible only
890 * there. The second flash device is visible to both secure and nonsecure.
891 * If sysmem == secure_sysmem this means there is no separate Secure
892 * address space and both flash devices are generally visible.
893 */
894 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
895 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
896 char *nodename;
897
898 create_one_flash("virt.flash0", flashbase, flashsize,
899 bios_name, secure_sysmem);
900 create_one_flash("virt.flash1", flashbase + flashsize, flashsize,
901 NULL, sysmem);
902
903 if (sysmem == secure_sysmem) {
904 /* Report both flash devices as a single node in the DT */
905 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
906 qemu_fdt_add_subnode(vms->fdt, nodename);
907 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
908 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
909 2, flashbase, 2, flashsize,
910 2, flashbase + flashsize, 2, flashsize);
911 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
912 g_free(nodename);
913 } else {
914 /* Report the devices as separate nodes so we can mark one as
915 * only visible to the secure world.
916 */
917 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
918 qemu_fdt_add_subnode(vms->fdt, nodename);
919 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
920 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
921 2, flashbase, 2, flashsize);
922 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
923 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
924 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
925 g_free(nodename);
926
927 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
928 qemu_fdt_add_subnode(vms->fdt, nodename);
929 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
930 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
931 2, flashbase + flashsize, 2, flashsize);
932 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
933 g_free(nodename);
934 }
935 }
936
937 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
938 {
939 hwaddr base = vms->memmap[VIRT_FW_CFG].base;
940 hwaddr size = vms->memmap[VIRT_FW_CFG].size;
941 FWCfgState *fw_cfg;
942 char *nodename;
943
944 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
945 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus);
946
947 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
948 qemu_fdt_add_subnode(vms->fdt, nodename);
949 qemu_fdt_setprop_string(vms->fdt, nodename,
950 "compatible", "qemu,fw-cfg-mmio");
951 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
952 2, base, 2, size);
953 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
954 g_free(nodename);
955 return fw_cfg;
956 }
957
958 static void create_pcie_irq_map(const VirtMachineState *vms,
959 uint32_t gic_phandle,
960 int first_irq, const char *nodename)
961 {
962 int devfn, pin;
963 uint32_t full_irq_map[4 * 4 * 10] = { 0 };
964 uint32_t *irq_map = full_irq_map;
965
966 for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
967 for (pin = 0; pin < 4; pin++) {
968 int irq_type = GIC_FDT_IRQ_TYPE_SPI;
969 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
970 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
971 int i;
972
973 uint32_t map[] = {
974 devfn << 8, 0, 0, /* devfn */
975 pin + 1, /* PCI pin */
976 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
977
978 /* Convert map to big endian */
979 for (i = 0; i < 10; i++) {
980 irq_map[i] = cpu_to_be32(map[i]);
981 }
982 irq_map += 10;
983 }
984 }
985
986 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map",
987 full_irq_map, sizeof(full_irq_map));
988
989 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask",
990 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
991 0x7 /* PCI irq */);
992 }
993
994 static void create_pcie(const VirtMachineState *vms, qemu_irq *pic)
995 {
996 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
997 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
998 hwaddr base_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].base;
999 hwaddr size_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].size;
1000 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1001 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
1002 hwaddr base_ecam = vms->memmap[VIRT_PCIE_ECAM].base;
1003 hwaddr size_ecam = vms->memmap[VIRT_PCIE_ECAM].size;
1004 hwaddr base = base_mmio;
1005 int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
1006 int irq = vms->irqmap[VIRT_PCIE];
1007 MemoryRegion *mmio_alias;
1008 MemoryRegion *mmio_reg;
1009 MemoryRegion *ecam_alias;
1010 MemoryRegion *ecam_reg;
1011 DeviceState *dev;
1012 char *nodename;
1013 int i;
1014 PCIHostState *pci;
1015
1016 dev = qdev_create(NULL, TYPE_GPEX_HOST);
1017 qdev_init_nofail(dev);
1018
1019 /* Map only the first size_ecam bytes of ECAM space */
1020 ecam_alias = g_new0(MemoryRegion, 1);
1021 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1022 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1023 ecam_reg, 0, size_ecam);
1024 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1025
1026 /* Map the MMIO window into system address space so as to expose
1027 * the section of PCI MMIO space which starts at the same base address
1028 * (ie 1:1 mapping for that part of PCI MMIO space visible through
1029 * the window).
1030 */
1031 mmio_alias = g_new0(MemoryRegion, 1);
1032 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1033 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1034 mmio_reg, base_mmio, size_mmio);
1035 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1036
1037 if (vms->highmem) {
1038 /* Map high MMIO space */
1039 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1040
1041 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1042 mmio_reg, base_mmio_high, size_mmio_high);
1043 memory_region_add_subregion(get_system_memory(), base_mmio_high,
1044 high_mmio_alias);
1045 }
1046
1047 /* Map IO port space */
1048 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1049
1050 for (i = 0; i < GPEX_NUM_IRQS; i++) {
1051 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1052 }
1053
1054 pci = PCI_HOST_BRIDGE(dev);
1055 if (pci->bus) {
1056 for (i = 0; i < nb_nics; i++) {
1057 NICInfo *nd = &nd_table[i];
1058
1059 if (!nd->model) {
1060 nd->model = g_strdup("virtio");
1061 }
1062
1063 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1064 }
1065 }
1066
1067 nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1068 qemu_fdt_add_subnode(vms->fdt, nodename);
1069 qemu_fdt_setprop_string(vms->fdt, nodename,
1070 "compatible", "pci-host-ecam-generic");
1071 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci");
1072 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3);
1073 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2);
1074 qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0,
1075 nr_pcie_buses - 1);
1076 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1077
1078 if (vms->msi_phandle) {
1079 qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent",
1080 vms->msi_phandle);
1081 }
1082
1083 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1084 2, base_ecam, 2, size_ecam);
1085
1086 if (vms->highmem) {
1087 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1088 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1089 2, base_pio, 2, size_pio,
1090 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1091 2, base_mmio, 2, size_mmio,
1092 1, FDT_PCI_RANGE_MMIO_64BIT,
1093 2, base_mmio_high,
1094 2, base_mmio_high, 2, size_mmio_high);
1095 } else {
1096 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1097 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1098 2, base_pio, 2, size_pio,
1099 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1100 2, base_mmio, 2, size_mmio);
1101 }
1102
1103 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1);
1104 create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename);
1105
1106 g_free(nodename);
1107 }
1108
1109 static void create_platform_bus(VirtMachineState *vms, qemu_irq *pic)
1110 {
1111 DeviceState *dev;
1112 SysBusDevice *s;
1113 int i;
1114 ARMPlatformBusFDTParams *fdt_params = g_new(ARMPlatformBusFDTParams, 1);
1115 MemoryRegion *sysmem = get_system_memory();
1116
1117 platform_bus_params.platform_bus_base = vms->memmap[VIRT_PLATFORM_BUS].base;
1118 platform_bus_params.platform_bus_size = vms->memmap[VIRT_PLATFORM_BUS].size;
1119 platform_bus_params.platform_bus_first_irq = vms->irqmap[VIRT_PLATFORM_BUS];
1120 platform_bus_params.platform_bus_num_irqs = PLATFORM_BUS_NUM_IRQS;
1121
1122 fdt_params->system_params = &platform_bus_params;
1123 fdt_params->binfo = &vms->bootinfo;
1124 fdt_params->intc = "/intc";
1125 /*
1126 * register a machine init done notifier that creates the device tree
1127 * nodes of the platform bus and its children dynamic sysbus devices
1128 */
1129 arm_register_platform_bus_fdt_creator(fdt_params);
1130
1131 dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
1132 dev->id = TYPE_PLATFORM_BUS_DEVICE;
1133 qdev_prop_set_uint32(dev, "num_irqs",
1134 platform_bus_params.platform_bus_num_irqs);
1135 qdev_prop_set_uint32(dev, "mmio_size",
1136 platform_bus_params.platform_bus_size);
1137 qdev_init_nofail(dev);
1138 s = SYS_BUS_DEVICE(dev);
1139
1140 for (i = 0; i < platform_bus_params.platform_bus_num_irqs; i++) {
1141 int irqn = platform_bus_params.platform_bus_first_irq + i;
1142 sysbus_connect_irq(s, i, pic[irqn]);
1143 }
1144
1145 memory_region_add_subregion(sysmem,
1146 platform_bus_params.platform_bus_base,
1147 sysbus_mmio_get_region(s, 0));
1148 }
1149
1150 static void create_secure_ram(VirtMachineState *vms,
1151 MemoryRegion *secure_sysmem)
1152 {
1153 MemoryRegion *secram = g_new(MemoryRegion, 1);
1154 char *nodename;
1155 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1156 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1157
1158 memory_region_init_ram(secram, NULL, "virt.secure-ram", size, &error_fatal);
1159 vmstate_register_ram_global(secram);
1160 memory_region_add_subregion(secure_sysmem, base, secram);
1161
1162 nodename = g_strdup_printf("/secram@%" PRIx64, base);
1163 qemu_fdt_add_subnode(vms->fdt, nodename);
1164 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory");
1165 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size);
1166 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
1167 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
1168
1169 g_free(nodename);
1170 }
1171
1172 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1173 {
1174 const VirtMachineState *board = container_of(binfo, VirtMachineState,
1175 bootinfo);
1176
1177 *fdt_size = board->fdt_size;
1178 return board->fdt;
1179 }
1180
1181 static void virt_build_smbios(VirtMachineState *vms)
1182 {
1183 uint8_t *smbios_tables, *smbios_anchor;
1184 size_t smbios_tables_len, smbios_anchor_len;
1185 const char *product = "QEMU Virtual Machine";
1186
1187 if (!vms->fw_cfg) {
1188 return;
1189 }
1190
1191 if (kvm_enabled()) {
1192 product = "KVM Virtual Machine";
1193 }
1194
1195 smbios_set_defaults("QEMU", product,
1196 "1.0", false, true, SMBIOS_ENTRY_POINT_30);
1197
1198 smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len,
1199 &smbios_anchor, &smbios_anchor_len);
1200
1201 if (smbios_anchor) {
1202 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1203 smbios_tables, smbios_tables_len);
1204 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1205 smbios_anchor, smbios_anchor_len);
1206 }
1207 }
1208
1209 static
1210 void virt_machine_done(Notifier *notifier, void *data)
1211 {
1212 VirtMachineState *vms = container_of(notifier, VirtMachineState,
1213 machine_done);
1214
1215 virt_acpi_setup(vms);
1216 virt_build_smbios(vms);
1217 }
1218
1219 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1220 {
1221 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1222 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1223
1224 if (!vmc->disallow_affinity_adjustment) {
1225 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1226 * GIC's target-list limitations. 32-bit KVM hosts currently
1227 * always create clusters of 4 CPUs, but that is expected to
1228 * change when they gain support for gicv3. When KVM is enabled
1229 * it will override the changes we make here, therefore our
1230 * purposes are to make TCG consistent (with 64-bit KVM hosts)
1231 * and to improve SGI efficiency.
1232 */
1233 if (vms->gic_version == 3) {
1234 clustersz = GICV3_TARGETLIST_BITS;
1235 } else {
1236 clustersz = GIC_TARGETLIST_BITS;
1237 }
1238 }
1239 return arm_cpu_mp_affinity(idx, clustersz);
1240 }
1241
1242 static void machvirt_init(MachineState *machine)
1243 {
1244 VirtMachineState *vms = VIRT_MACHINE(machine);
1245 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
1246 MachineClass *mc = MACHINE_GET_CLASS(machine);
1247 const CPUArchIdList *possible_cpus;
1248 qemu_irq pic[NUM_IRQS];
1249 MemoryRegion *sysmem = get_system_memory();
1250 MemoryRegion *secure_sysmem = NULL;
1251 int n, virt_max_cpus;
1252 MemoryRegion *ram = g_new(MemoryRegion, 1);
1253 const char *cpu_model = machine->cpu_model;
1254 char **cpustr;
1255 ObjectClass *oc;
1256 const char *typename;
1257 CPUClass *cc;
1258 Error *err = NULL;
1259 bool firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0);
1260
1261 if (!cpu_model) {
1262 cpu_model = "cortex-a15";
1263 }
1264
1265 /* We can probe only here because during property set
1266 * KVM is not available yet
1267 */
1268 if (!vms->gic_version) {
1269 if (!kvm_enabled()) {
1270 error_report("gic-version=host requires KVM");
1271 exit(1);
1272 }
1273
1274 vms->gic_version = kvm_arm_vgic_probe();
1275 if (!vms->gic_version) {
1276 error_report("Unable to determine GIC version supported by host");
1277 exit(1);
1278 }
1279 }
1280
1281 /* Separate the actual CPU model name from any appended features */
1282 cpustr = g_strsplit(cpu_model, ",", 2);
1283
1284 if (!cpuname_valid(cpustr[0])) {
1285 error_report("mach-virt: CPU %s not supported", cpustr[0]);
1286 exit(1);
1287 }
1288
1289 /* If we have an EL3 boot ROM then the assumption is that it will
1290 * implement PSCI itself, so disable QEMU's internal implementation
1291 * so it doesn't get in the way. Instead of starting secondary
1292 * CPUs in PSCI powerdown state we will start them all running and
1293 * let the boot ROM sort them out.
1294 * The usual case is that we do use QEMU's PSCI implementation;
1295 * if the guest has EL2 then we will use SMC as the conduit,
1296 * and otherwise we will use HVC (for backwards compatibility and
1297 * because if we're using KVM then we must use HVC).
1298 */
1299 if (vms->secure && firmware_loaded) {
1300 vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
1301 } else if (vms->virt) {
1302 vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
1303 } else {
1304 vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
1305 }
1306
1307 /* The maximum number of CPUs depends on the GIC version, or on how
1308 * many redistributors we can fit into the memory map.
1309 */
1310 if (vms->gic_version == 3) {
1311 virt_max_cpus = vms->memmap[VIRT_GIC_REDIST].size / 0x20000;
1312 } else {
1313 virt_max_cpus = GIC_NCPU;
1314 }
1315
1316 if (max_cpus > virt_max_cpus) {
1317 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1318 "supported by machine 'mach-virt' (%d)",
1319 max_cpus, virt_max_cpus);
1320 exit(1);
1321 }
1322
1323 vms->smp_cpus = smp_cpus;
1324
1325 if (machine->ram_size > vms->memmap[VIRT_MEM].size) {
1326 error_report("mach-virt: cannot model more than %dGB RAM", RAMLIMIT_GB);
1327 exit(1);
1328 }
1329
1330 if (vms->virt && kvm_enabled()) {
1331 error_report("mach-virt: KVM does not support providing "
1332 "Virtualization extensions to the guest CPU");
1333 exit(1);
1334 }
1335
1336 if (vms->secure) {
1337 if (kvm_enabled()) {
1338 error_report("mach-virt: KVM does not support Security extensions");
1339 exit(1);
1340 }
1341
1342 /* The Secure view of the world is the same as the NonSecure,
1343 * but with a few extra devices. Create it as a container region
1344 * containing the system memory at low priority; any secure-only
1345 * devices go in at higher priority and take precedence.
1346 */
1347 secure_sysmem = g_new(MemoryRegion, 1);
1348 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1349 UINT64_MAX);
1350 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1351 }
1352
1353 create_fdt(vms);
1354
1355 oc = cpu_class_by_name(TYPE_ARM_CPU, cpustr[0]);
1356 if (!oc) {
1357 error_report("Unable to find CPU definition");
1358 exit(1);
1359 }
1360 typename = object_class_get_name(oc);
1361
1362 /* convert -smp CPU options specified by the user into global props */
1363 cc = CPU_CLASS(oc);
1364 cc->parse_features(typename, cpustr[1], &err);
1365 g_strfreev(cpustr);
1366 if (err) {
1367 error_report_err(err);
1368 exit(1);
1369 }
1370
1371 possible_cpus = mc->possible_cpu_arch_ids(machine);
1372 for (n = 0; n < possible_cpus->len; n++) {
1373 Object *cpuobj;
1374 CPUState *cs;
1375
1376 if (n >= smp_cpus) {
1377 break;
1378 }
1379
1380 cpuobj = object_new(typename);
1381 object_property_set_int(cpuobj, possible_cpus->cpus[n].arch_id,
1382 "mp-affinity", NULL);
1383
1384 cs = CPU(cpuobj);
1385 cs->cpu_index = n;
1386
1387 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
1388 &error_fatal);
1389
1390 if (!vms->secure) {
1391 object_property_set_bool(cpuobj, false, "has_el3", NULL);
1392 }
1393
1394 if (!vms->virt && object_property_find(cpuobj, "has_el2", NULL)) {
1395 object_property_set_bool(cpuobj, false, "has_el2", NULL);
1396 }
1397
1398 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
1399 object_property_set_int(cpuobj, vms->psci_conduit,
1400 "psci-conduit", NULL);
1401
1402 /* Secondary CPUs start in PSCI powered-down state */
1403 if (n > 0) {
1404 object_property_set_bool(cpuobj, true,
1405 "start-powered-off", NULL);
1406 }
1407 }
1408
1409 if (vmc->no_pmu && object_property_find(cpuobj, "pmu", NULL)) {
1410 object_property_set_bool(cpuobj, false, "pmu", NULL);
1411 }
1412
1413 if (object_property_find(cpuobj, "reset-cbar", NULL)) {
1414 object_property_set_int(cpuobj, vms->memmap[VIRT_CPUPERIPHS].base,
1415 "reset-cbar", &error_abort);
1416 }
1417
1418 object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
1419 &error_abort);
1420 if (vms->secure) {
1421 object_property_set_link(cpuobj, OBJECT(secure_sysmem),
1422 "secure-memory", &error_abort);
1423 }
1424
1425 object_property_set_bool(cpuobj, true, "realized", NULL);
1426 object_unref(cpuobj);
1427 }
1428 fdt_add_timer_nodes(vms);
1429 fdt_add_cpu_nodes(vms);
1430 fdt_add_psci_node(vms);
1431
1432 memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
1433 machine->ram_size);
1434 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, ram);
1435
1436 create_flash(vms, sysmem, secure_sysmem ? secure_sysmem : sysmem);
1437
1438 create_gic(vms, pic);
1439
1440 fdt_add_pmu_nodes(vms);
1441
1442 create_uart(vms, pic, VIRT_UART, sysmem, serial_hds[0]);
1443
1444 if (vms->secure) {
1445 create_secure_ram(vms, secure_sysmem);
1446 create_uart(vms, pic, VIRT_SECURE_UART, secure_sysmem, serial_hds[1]);
1447 }
1448
1449 create_rtc(vms, pic);
1450
1451 create_pcie(vms, pic);
1452
1453 create_gpio(vms, pic);
1454
1455 /* Create mmio transports, so the user can create virtio backends
1456 * (which will be automatically plugged in to the transports). If
1457 * no backend is created the transport will just sit harmlessly idle.
1458 */
1459 create_virtio_devices(vms, pic);
1460
1461 vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
1462 rom_set_fw(vms->fw_cfg);
1463
1464 vms->machine_done.notify = virt_machine_done;
1465 qemu_add_machine_init_done_notifier(&vms->machine_done);
1466
1467 vms->bootinfo.ram_size = machine->ram_size;
1468 vms->bootinfo.kernel_filename = machine->kernel_filename;
1469 vms->bootinfo.kernel_cmdline = machine->kernel_cmdline;
1470 vms->bootinfo.initrd_filename = machine->initrd_filename;
1471 vms->bootinfo.nb_cpus = smp_cpus;
1472 vms->bootinfo.board_id = -1;
1473 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
1474 vms->bootinfo.get_dtb = machvirt_dtb;
1475 vms->bootinfo.firmware_loaded = firmware_loaded;
1476 arm_load_kernel(ARM_CPU(first_cpu), &vms->bootinfo);
1477
1478 /*
1479 * arm_load_kernel machine init done notifier registration must
1480 * happen before the platform_bus_create call. In this latter,
1481 * another notifier is registered which adds platform bus nodes.
1482 * Notifiers are executed in registration reverse order.
1483 */
1484 create_platform_bus(vms, pic);
1485 }
1486
1487 static bool virt_get_secure(Object *obj, Error **errp)
1488 {
1489 VirtMachineState *vms = VIRT_MACHINE(obj);
1490
1491 return vms->secure;
1492 }
1493
1494 static void virt_set_secure(Object *obj, bool value, Error **errp)
1495 {
1496 VirtMachineState *vms = VIRT_MACHINE(obj);
1497
1498 vms->secure = value;
1499 }
1500
1501 static bool virt_get_virt(Object *obj, Error **errp)
1502 {
1503 VirtMachineState *vms = VIRT_MACHINE(obj);
1504
1505 return vms->virt;
1506 }
1507
1508 static void virt_set_virt(Object *obj, bool value, Error **errp)
1509 {
1510 VirtMachineState *vms = VIRT_MACHINE(obj);
1511
1512 vms->virt = value;
1513 }
1514
1515 static bool virt_get_highmem(Object *obj, Error **errp)
1516 {
1517 VirtMachineState *vms = VIRT_MACHINE(obj);
1518
1519 return vms->highmem;
1520 }
1521
1522 static void virt_set_highmem(Object *obj, bool value, Error **errp)
1523 {
1524 VirtMachineState *vms = VIRT_MACHINE(obj);
1525
1526 vms->highmem = value;
1527 }
1528
1529 static bool virt_get_its(Object *obj, Error **errp)
1530 {
1531 VirtMachineState *vms = VIRT_MACHINE(obj);
1532
1533 return vms->its;
1534 }
1535
1536 static void virt_set_its(Object *obj, bool value, Error **errp)
1537 {
1538 VirtMachineState *vms = VIRT_MACHINE(obj);
1539
1540 vms->its = value;
1541 }
1542
1543 static char *virt_get_gic_version(Object *obj, Error **errp)
1544 {
1545 VirtMachineState *vms = VIRT_MACHINE(obj);
1546 const char *val = vms->gic_version == 3 ? "3" : "2";
1547
1548 return g_strdup(val);
1549 }
1550
1551 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
1552 {
1553 VirtMachineState *vms = VIRT_MACHINE(obj);
1554
1555 if (!strcmp(value, "3")) {
1556 vms->gic_version = 3;
1557 } else if (!strcmp(value, "2")) {
1558 vms->gic_version = 2;
1559 } else if (!strcmp(value, "host")) {
1560 vms->gic_version = 0; /* Will probe later */
1561 } else {
1562 error_setg(errp, "Invalid gic-version value");
1563 error_append_hint(errp, "Valid values are 3, 2, host.\n");
1564 }
1565 }
1566
1567 static CpuInstanceProperties
1568 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
1569 {
1570 MachineClass *mc = MACHINE_GET_CLASS(ms);
1571 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
1572
1573 assert(cpu_index < possible_cpus->len);
1574 return possible_cpus->cpus[cpu_index].props;
1575 }
1576
1577 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
1578 {
1579 int n;
1580 VirtMachineState *vms = VIRT_MACHINE(ms);
1581
1582 if (ms->possible_cpus) {
1583 assert(ms->possible_cpus->len == max_cpus);
1584 return ms->possible_cpus;
1585 }
1586
1587 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
1588 sizeof(CPUArchId) * max_cpus);
1589 ms->possible_cpus->len = max_cpus;
1590 for (n = 0; n < ms->possible_cpus->len; n++) {
1591 ms->possible_cpus->cpus[n].arch_id =
1592 virt_cpu_mp_affinity(vms, n);
1593 ms->possible_cpus->cpus[n].props.has_thread_id = true;
1594 ms->possible_cpus->cpus[n].props.thread_id = n;
1595
1596 /* default distribution of CPUs over NUMA nodes */
1597 if (nb_numa_nodes) {
1598 /* preset values but do not enable them i.e. 'has_node_id = false',
1599 * numa init code will enable them later if manual mapping wasn't
1600 * present on CLI */
1601 ms->possible_cpus->cpus[n].props.node_id = n % nb_numa_nodes;
1602 }
1603 }
1604 return ms->possible_cpus;
1605 }
1606
1607 static void virt_machine_class_init(ObjectClass *oc, void *data)
1608 {
1609 MachineClass *mc = MACHINE_CLASS(oc);
1610
1611 mc->init = machvirt_init;
1612 /* Start max_cpus at the maximum QEMU supports. We'll further restrict
1613 * it later in machvirt_init, where we have more information about the
1614 * configuration of the particular instance.
1615 */
1616 mc->max_cpus = 255;
1617 mc->has_dynamic_sysbus = true;
1618 mc->block_default_type = IF_VIRTIO;
1619 mc->no_cdrom = 1;
1620 mc->pci_allow_0_address = true;
1621 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
1622 mc->minimum_page_bits = 12;
1623 mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
1624 mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
1625 }
1626
1627 static const TypeInfo virt_machine_info = {
1628 .name = TYPE_VIRT_MACHINE,
1629 .parent = TYPE_MACHINE,
1630 .abstract = true,
1631 .instance_size = sizeof(VirtMachineState),
1632 .class_size = sizeof(VirtMachineClass),
1633 .class_init = virt_machine_class_init,
1634 };
1635
1636 static void machvirt_machine_init(void)
1637 {
1638 type_register_static(&virt_machine_info);
1639 }
1640 type_init(machvirt_machine_init);
1641
1642 static void virt_2_9_instance_init(Object *obj)
1643 {
1644 VirtMachineState *vms = VIRT_MACHINE(obj);
1645 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1646
1647 /* EL3 is disabled by default on virt: this makes us consistent
1648 * between KVM and TCG for this board, and it also allows us to
1649 * boot UEFI blobs which assume no TrustZone support.
1650 */
1651 vms->secure = false;
1652 object_property_add_bool(obj, "secure", virt_get_secure,
1653 virt_set_secure, NULL);
1654 object_property_set_description(obj, "secure",
1655 "Set on/off to enable/disable the ARM "
1656 "Security Extensions (TrustZone)",
1657 NULL);
1658
1659 /* EL2 is also disabled by default, for similar reasons */
1660 vms->virt = false;
1661 object_property_add_bool(obj, "virtualization", virt_get_virt,
1662 virt_set_virt, NULL);
1663 object_property_set_description(obj, "virtualization",
1664 "Set on/off to enable/disable emulating a "
1665 "guest CPU which implements the ARM "
1666 "Virtualization Extensions",
1667 NULL);
1668
1669 /* High memory is enabled by default */
1670 vms->highmem = true;
1671 object_property_add_bool(obj, "highmem", virt_get_highmem,
1672 virt_set_highmem, NULL);
1673 object_property_set_description(obj, "highmem",
1674 "Set on/off to enable/disable using "
1675 "physical address space above 32 bits",
1676 NULL);
1677 /* Default GIC type is v2 */
1678 vms->gic_version = 2;
1679 object_property_add_str(obj, "gic-version", virt_get_gic_version,
1680 virt_set_gic_version, NULL);
1681 object_property_set_description(obj, "gic-version",
1682 "Set GIC version. "
1683 "Valid values are 2, 3 and host", NULL);
1684
1685 if (vmc->no_its) {
1686 vms->its = false;
1687 } else {
1688 /* Default allows ITS instantiation */
1689 vms->its = true;
1690 object_property_add_bool(obj, "its", virt_get_its,
1691 virt_set_its, NULL);
1692 object_property_set_description(obj, "its",
1693 "Set on/off to enable/disable "
1694 "ITS instantiation",
1695 NULL);
1696 }
1697
1698 vms->memmap = a15memmap;
1699 vms->irqmap = a15irqmap;
1700 }
1701
1702 static void virt_machine_2_9_options(MachineClass *mc)
1703 {
1704 }
1705 DEFINE_VIRT_MACHINE_AS_LATEST(2, 9)
1706
1707 #define VIRT_COMPAT_2_8 \
1708 HW_COMPAT_2_8
1709
1710 static void virt_2_8_instance_init(Object *obj)
1711 {
1712 virt_2_9_instance_init(obj);
1713 }
1714
1715 static void virt_machine_2_8_options(MachineClass *mc)
1716 {
1717 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1718
1719 virt_machine_2_9_options(mc);
1720 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_8);
1721 /* For 2.8 and earlier we falsely claimed in the DT that
1722 * our timers were edge-triggered, not level-triggered.
1723 */
1724 vmc->claim_edge_triggered_timers = true;
1725 }
1726 DEFINE_VIRT_MACHINE(2, 8)
1727
1728 #define VIRT_COMPAT_2_7 \
1729 HW_COMPAT_2_7
1730
1731 static void virt_2_7_instance_init(Object *obj)
1732 {
1733 virt_2_8_instance_init(obj);
1734 }
1735
1736 static void virt_machine_2_7_options(MachineClass *mc)
1737 {
1738 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1739
1740 virt_machine_2_8_options(mc);
1741 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_7);
1742 /* ITS was introduced with 2.8 */
1743 vmc->no_its = true;
1744 /* Stick with 1K pages for migration compatibility */
1745 mc->minimum_page_bits = 0;
1746 }
1747 DEFINE_VIRT_MACHINE(2, 7)
1748
1749 #define VIRT_COMPAT_2_6 \
1750 HW_COMPAT_2_6
1751
1752 static void virt_2_6_instance_init(Object *obj)
1753 {
1754 virt_2_7_instance_init(obj);
1755 }
1756
1757 static void virt_machine_2_6_options(MachineClass *mc)
1758 {
1759 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1760
1761 virt_machine_2_7_options(mc);
1762 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_6);
1763 vmc->disallow_affinity_adjustment = true;
1764 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
1765 vmc->no_pmu = true;
1766 }
1767 DEFINE_VIRT_MACHINE(2, 6)