]> git.proxmox.com Git - mirror_qemu.git/blob - hw/arm/virt.c
Merge tag 'pull-maintainer-may24-160524-2' of https://gitlab.com/stsquad/qemu into...
[mirror_qemu.git] / hw / arm / virt.c
1 /*
2 * ARM mach-virt emulation
3 *
4 * Copyright (c) 2013 Linaro Limited
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
17 *
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
29 */
30
31 #include "qemu/osdep.h"
32 #include "qemu/datadir.h"
33 #include "qemu/units.h"
34 #include "qemu/option.h"
35 #include "monitor/qdev.h"
36 #include "hw/sysbus.h"
37 #include "hw/arm/boot.h"
38 #include "hw/arm/primecell.h"
39 #include "hw/arm/virt.h"
40 #include "hw/block/flash.h"
41 #include "hw/vfio/vfio-calxeda-xgmac.h"
42 #include "hw/vfio/vfio-amd-xgbe.h"
43 #include "hw/display/ramfb.h"
44 #include "net/net.h"
45 #include "sysemu/device_tree.h"
46 #include "sysemu/numa.h"
47 #include "sysemu/runstate.h"
48 #include "sysemu/tpm.h"
49 #include "sysemu/tcg.h"
50 #include "sysemu/kvm.h"
51 #include "sysemu/hvf.h"
52 #include "sysemu/qtest.h"
53 #include "hw/loader.h"
54 #include "qapi/error.h"
55 #include "qemu/bitops.h"
56 #include "qemu/error-report.h"
57 #include "qemu/module.h"
58 #include "hw/pci-host/gpex.h"
59 #include "hw/virtio/virtio-pci.h"
60 #include "hw/core/sysbus-fdt.h"
61 #include "hw/platform-bus.h"
62 #include "hw/qdev-properties.h"
63 #include "hw/arm/fdt.h"
64 #include "hw/intc/arm_gic.h"
65 #include "hw/intc/arm_gicv3_common.h"
66 #include "hw/intc/arm_gicv3_its_common.h"
67 #include "hw/irq.h"
68 #include "kvm_arm.h"
69 #include "hw/firmware/smbios.h"
70 #include "qapi/visitor.h"
71 #include "qapi/qapi-visit-common.h"
72 #include "qapi/qmp/qlist.h"
73 #include "standard-headers/linux/input.h"
74 #include "hw/arm/smmuv3.h"
75 #include "hw/acpi/acpi.h"
76 #include "target/arm/cpu-qom.h"
77 #include "target/arm/internals.h"
78 #include "target/arm/multiprocessing.h"
79 #include "target/arm/gtimer.h"
80 #include "hw/mem/pc-dimm.h"
81 #include "hw/mem/nvdimm.h"
82 #include "hw/acpi/generic_event_device.h"
83 #include "hw/virtio/virtio-md-pci.h"
84 #include "hw/virtio/virtio-iommu.h"
85 #include "hw/char/pl011.h"
86 #include "qemu/guest-random.h"
87
88 static GlobalProperty arm_virt_compat[] = {
89 { TYPE_VIRTIO_IOMMU_PCI, "aw-bits", "48" },
90 };
91 static const size_t arm_virt_compat_len = G_N_ELEMENTS(arm_virt_compat);
92
93 /*
94 * This cannot be called from the virt_machine_class_init() because
95 * TYPE_VIRT_MACHINE is abstract and mc->compat_props g_ptr_array_new()
96 * only is called on virt non abstract class init.
97 */
98 static void arm_virt_compat_set(MachineClass *mc)
99 {
100 compat_props_add(mc->compat_props, arm_virt_compat,
101 arm_virt_compat_len);
102 }
103
104 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
105 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
106 void *data) \
107 { \
108 MachineClass *mc = MACHINE_CLASS(oc); \
109 arm_virt_compat_set(mc); \
110 virt_machine_##major##_##minor##_options(mc); \
111 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
112 if (latest) { \
113 mc->alias = "virt"; \
114 } \
115 } \
116 static const TypeInfo machvirt_##major##_##minor##_info = { \
117 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
118 .parent = TYPE_VIRT_MACHINE, \
119 .class_init = virt_##major##_##minor##_class_init, \
120 }; \
121 static void machvirt_machine_##major##_##minor##_init(void) \
122 { \
123 type_register_static(&machvirt_##major##_##minor##_info); \
124 } \
125 type_init(machvirt_machine_##major##_##minor##_init);
126
127 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
128 DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
129 #define DEFINE_VIRT_MACHINE(major, minor) \
130 DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
131
132
133 /* Number of external interrupt lines to configure the GIC with */
134 #define NUM_IRQS 256
135
136 #define PLATFORM_BUS_NUM_IRQS 64
137
138 /* Legacy RAM limit in GB (< version 4.0) */
139 #define LEGACY_RAMLIMIT_GB 255
140 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB)
141
142 /* Addresses and sizes of our components.
143 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
144 * 128MB..256MB is used for miscellaneous device I/O.
145 * 256MB..1GB is reserved for possible future PCI support (ie where the
146 * PCI memory window will go if we add a PCI host controller).
147 * 1GB and up is RAM (which may happily spill over into the
148 * high memory region beyond 4GB).
149 * This represents a compromise between how much RAM can be given to
150 * a 32 bit VM and leaving space for expansion and in particular for PCI.
151 * Note that devices should generally be placed at multiples of 0x10000,
152 * to accommodate guests using 64K pages.
153 */
154 static const MemMapEntry base_memmap[] = {
155 /* Space up to 0x8000000 is reserved for a boot ROM */
156 [VIRT_FLASH] = { 0, 0x08000000 },
157 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
158 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
159 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
160 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
161 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 },
162 [VIRT_GIC_HYP] = { 0x08030000, 0x00010000 },
163 [VIRT_GIC_VCPU] = { 0x08040000, 0x00010000 },
164 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
165 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 },
166 /* This redistributor space allows up to 2*64kB*123 CPUs */
167 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 },
168 [VIRT_UART] = { 0x09000000, 0x00001000 },
169 [VIRT_RTC] = { 0x09010000, 0x00001000 },
170 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 },
171 [VIRT_GPIO] = { 0x09030000, 0x00001000 },
172 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 },
173 [VIRT_SMMU] = { 0x09050000, 0x00020000 },
174 [VIRT_PCDIMM_ACPI] = { 0x09070000, MEMORY_HOTPLUG_IO_LEN },
175 [VIRT_ACPI_GED] = { 0x09080000, ACPI_GED_EVT_SEL_LEN },
176 [VIRT_NVDIMM_ACPI] = { 0x09090000, NVDIMM_ACPI_IO_LEN},
177 [VIRT_PVTIME] = { 0x090a0000, 0x00010000 },
178 [VIRT_SECURE_GPIO] = { 0x090b0000, 0x00001000 },
179 [VIRT_MMIO] = { 0x0a000000, 0x00000200 },
180 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
181 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 },
182 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 },
183 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 },
184 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 },
185 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 },
186 /* Actual RAM size depends on initial RAM and device memory settings */
187 [VIRT_MEM] = { GiB, LEGACY_RAMLIMIT_BYTES },
188 };
189
190 /*
191 * Highmem IO Regions: This memory map is floating, located after the RAM.
192 * Each MemMapEntry base (GPA) will be dynamically computed, depending on the
193 * top of the RAM, so that its base get the same alignment as the size,
194 * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is
195 * less than 256GiB of RAM, the floating area starts at the 256GiB mark.
196 * Note the extended_memmap is sized so that it eventually also includes the
197 * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last
198 * index of base_memmap).
199 *
200 * The memory map for these Highmem IO Regions can be in legacy or compact
201 * layout, depending on 'compact-highmem' property. With legacy layout, the
202 * PA space for one specific region is always reserved, even if the region
203 * has been disabled or doesn't fit into the PA space. However, the PA space
204 * for the region won't be reserved in these circumstances with compact layout.
205 */
206 static MemMapEntry extended_memmap[] = {
207 /* Additional 64 MB redist region (can contain up to 512 redistributors) */
208 [VIRT_HIGH_GIC_REDIST2] = { 0x0, 64 * MiB },
209 [VIRT_HIGH_PCIE_ECAM] = { 0x0, 256 * MiB },
210 /* Second PCIe window */
211 [VIRT_HIGH_PCIE_MMIO] = { 0x0, 512 * GiB },
212 };
213
214 static const int a15irqmap[] = {
215 [VIRT_UART] = 1,
216 [VIRT_RTC] = 2,
217 [VIRT_PCIE] = 3, /* ... to 6 */
218 [VIRT_GPIO] = 7,
219 [VIRT_SECURE_UART] = 8,
220 [VIRT_ACPI_GED] = 9,
221 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
222 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
223 [VIRT_SMMU] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */
224 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
225 };
226
227 static void create_randomness(MachineState *ms, const char *node)
228 {
229 struct {
230 uint64_t kaslr;
231 uint8_t rng[32];
232 } seed;
233
234 if (qemu_guest_getrandom(&seed, sizeof(seed), NULL)) {
235 return;
236 }
237 qemu_fdt_setprop_u64(ms->fdt, node, "kaslr-seed", seed.kaslr);
238 qemu_fdt_setprop(ms->fdt, node, "rng-seed", seed.rng, sizeof(seed.rng));
239 }
240
241 /*
242 * The CPU object always exposes the NS EL2 virt timer IRQ line,
243 * but we don't want to advertise it to the guest in the dtb or ACPI
244 * table unless it's really going to do something.
245 */
246 static bool ns_el2_virt_timer_present(void)
247 {
248 ARMCPU *cpu = ARM_CPU(qemu_get_cpu(0));
249 CPUARMState *env = &cpu->env;
250
251 return arm_feature(env, ARM_FEATURE_AARCH64) &&
252 arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu);
253 }
254
255 static void create_fdt(VirtMachineState *vms)
256 {
257 MachineState *ms = MACHINE(vms);
258 int nb_numa_nodes = ms->numa_state->num_nodes;
259 void *fdt = create_device_tree(&vms->fdt_size);
260
261 if (!fdt) {
262 error_report("create_device_tree() failed");
263 exit(1);
264 }
265
266 ms->fdt = fdt;
267
268 /* Header */
269 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
270 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
271 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
272 qemu_fdt_setprop_string(fdt, "/", "model", "linux,dummy-virt");
273
274 /* /chosen must exist for load_dtb to fill in necessary properties later */
275 qemu_fdt_add_subnode(fdt, "/chosen");
276 if (vms->dtb_randomness) {
277 create_randomness(ms, "/chosen");
278 }
279
280 if (vms->secure) {
281 qemu_fdt_add_subnode(fdt, "/secure-chosen");
282 if (vms->dtb_randomness) {
283 create_randomness(ms, "/secure-chosen");
284 }
285 }
286
287 /* Clock node, for the benefit of the UART. The kernel device tree
288 * binding documentation claims the PL011 node clock properties are
289 * optional but in practice if you omit them the kernel refuses to
290 * probe for the device.
291 */
292 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
293 qemu_fdt_add_subnode(fdt, "/apb-pclk");
294 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
295 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
296 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
297 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
298 "clk24mhz");
299 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
300
301 if (nb_numa_nodes > 0 && ms->numa_state->have_numa_distance) {
302 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
303 uint32_t *matrix = g_malloc0(size);
304 int idx, i, j;
305
306 for (i = 0; i < nb_numa_nodes; i++) {
307 for (j = 0; j < nb_numa_nodes; j++) {
308 idx = (i * nb_numa_nodes + j) * 3;
309 matrix[idx + 0] = cpu_to_be32(i);
310 matrix[idx + 1] = cpu_to_be32(j);
311 matrix[idx + 2] =
312 cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
313 }
314 }
315
316 qemu_fdt_add_subnode(fdt, "/distance-map");
317 qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
318 "numa-distance-map-v1");
319 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
320 matrix, size);
321 g_free(matrix);
322 }
323 }
324
325 static void fdt_add_timer_nodes(const VirtMachineState *vms)
326 {
327 /* On real hardware these interrupts are level-triggered.
328 * On KVM they were edge-triggered before host kernel version 4.4,
329 * and level-triggered afterwards.
330 * On emulated QEMU they are level-triggered.
331 *
332 * Getting the DTB info about them wrong is awkward for some
333 * guest kernels:
334 * pre-4.8 ignore the DT and leave the interrupt configured
335 * with whatever the GIC reset value (or the bootloader) left it at
336 * 4.8 before rc6 honour the incorrect data by programming it back
337 * into the GIC, causing problems
338 * 4.8rc6 and later ignore the DT and always write "level triggered"
339 * into the GIC
340 *
341 * For backwards-compatibility, virt-2.8 and earlier will continue
342 * to say these are edge-triggered, but later machines will report
343 * the correct information.
344 */
345 ARMCPU *armcpu;
346 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
347 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
348 MachineState *ms = MACHINE(vms);
349
350 if (vmc->claim_edge_triggered_timers) {
351 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
352 }
353
354 if (vms->gic_version == VIRT_GIC_VERSION_2) {
355 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
356 GIC_FDT_IRQ_PPI_CPU_WIDTH,
357 (1 << MACHINE(vms)->smp.cpus) - 1);
358 }
359
360 qemu_fdt_add_subnode(ms->fdt, "/timer");
361
362 armcpu = ARM_CPU(qemu_get_cpu(0));
363 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
364 const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
365 qemu_fdt_setprop(ms->fdt, "/timer", "compatible",
366 compat, sizeof(compat));
367 } else {
368 qemu_fdt_setprop_string(ms->fdt, "/timer", "compatible",
369 "arm,armv7-timer");
370 }
371 qemu_fdt_setprop(ms->fdt, "/timer", "always-on", NULL, 0);
372 if (vms->ns_el2_virt_timer_irq) {
373 qemu_fdt_setprop_cells(ms->fdt, "/timer", "interrupts",
374 GIC_FDT_IRQ_TYPE_PPI,
375 INTID_TO_PPI(ARCH_TIMER_S_EL1_IRQ), irqflags,
376 GIC_FDT_IRQ_TYPE_PPI,
377 INTID_TO_PPI(ARCH_TIMER_NS_EL1_IRQ), irqflags,
378 GIC_FDT_IRQ_TYPE_PPI,
379 INTID_TO_PPI(ARCH_TIMER_VIRT_IRQ), irqflags,
380 GIC_FDT_IRQ_TYPE_PPI,
381 INTID_TO_PPI(ARCH_TIMER_NS_EL2_IRQ), irqflags,
382 GIC_FDT_IRQ_TYPE_PPI,
383 INTID_TO_PPI(ARCH_TIMER_NS_EL2_VIRT_IRQ), irqflags);
384 } else {
385 qemu_fdt_setprop_cells(ms->fdt, "/timer", "interrupts",
386 GIC_FDT_IRQ_TYPE_PPI,
387 INTID_TO_PPI(ARCH_TIMER_S_EL1_IRQ), irqflags,
388 GIC_FDT_IRQ_TYPE_PPI,
389 INTID_TO_PPI(ARCH_TIMER_NS_EL1_IRQ), irqflags,
390 GIC_FDT_IRQ_TYPE_PPI,
391 INTID_TO_PPI(ARCH_TIMER_VIRT_IRQ), irqflags,
392 GIC_FDT_IRQ_TYPE_PPI,
393 INTID_TO_PPI(ARCH_TIMER_NS_EL2_IRQ), irqflags);
394 }
395 }
396
397 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
398 {
399 int cpu;
400 int addr_cells = 1;
401 const MachineState *ms = MACHINE(vms);
402 const VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
403 int smp_cpus = ms->smp.cpus;
404
405 /*
406 * See Linux Documentation/devicetree/bindings/arm/cpus.yaml
407 * On ARM v8 64-bit systems value should be set to 2,
408 * that corresponds to the MPIDR_EL1 register size.
409 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
410 * in the system, #address-cells can be set to 1, since
411 * MPIDR_EL1[63:32] bits are not used for CPUs
412 * identification.
413 *
414 * Here we actually don't know whether our system is 32- or 64-bit one.
415 * The simplest way to go is to examine affinity IDs of all our CPUs. If
416 * at least one of them has Aff3 populated, we set #address-cells to 2.
417 */
418 for (cpu = 0; cpu < smp_cpus; cpu++) {
419 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
420
421 if (arm_cpu_mp_affinity(armcpu) & ARM_AFF3_MASK) {
422 addr_cells = 2;
423 break;
424 }
425 }
426
427 qemu_fdt_add_subnode(ms->fdt, "/cpus");
428 qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#address-cells", addr_cells);
429 qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#size-cells", 0x0);
430
431 for (cpu = smp_cpus - 1; cpu >= 0; cpu--) {
432 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
433 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
434 CPUState *cs = CPU(armcpu);
435
436 qemu_fdt_add_subnode(ms->fdt, nodename);
437 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "cpu");
438 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
439 armcpu->dtb_compatible);
440
441 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED && smp_cpus > 1) {
442 qemu_fdt_setprop_string(ms->fdt, nodename,
443 "enable-method", "psci");
444 }
445
446 if (addr_cells == 2) {
447 qemu_fdt_setprop_u64(ms->fdt, nodename, "reg",
448 arm_cpu_mp_affinity(armcpu));
449 } else {
450 qemu_fdt_setprop_cell(ms->fdt, nodename, "reg",
451 arm_cpu_mp_affinity(armcpu));
452 }
453
454 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
455 qemu_fdt_setprop_cell(ms->fdt, nodename, "numa-node-id",
456 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
457 }
458
459 if (!vmc->no_cpu_topology) {
460 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle",
461 qemu_fdt_alloc_phandle(ms->fdt));
462 }
463
464 g_free(nodename);
465 }
466
467 if (!vmc->no_cpu_topology) {
468 /*
469 * Add vCPU topology description through fdt node cpu-map.
470 *
471 * See Linux Documentation/devicetree/bindings/cpu/cpu-topology.txt
472 * In a SMP system, the hierarchy of CPUs can be defined through
473 * four entities that are used to describe the layout of CPUs in
474 * the system: socket/cluster/core/thread.
475 *
476 * A socket node represents the boundary of system physical package
477 * and its child nodes must be one or more cluster nodes. A system
478 * can contain several layers of clustering within a single physical
479 * package and cluster nodes can be contained in parent cluster nodes.
480 *
481 * Note: currently we only support one layer of clustering within
482 * each physical package.
483 */
484 qemu_fdt_add_subnode(ms->fdt, "/cpus/cpu-map");
485
486 for (cpu = smp_cpus - 1; cpu >= 0; cpu--) {
487 char *cpu_path = g_strdup_printf("/cpus/cpu@%d", cpu);
488 char *map_path;
489
490 if (ms->smp.threads > 1) {
491 map_path = g_strdup_printf(
492 "/cpus/cpu-map/socket%d/cluster%d/core%d/thread%d",
493 cpu / (ms->smp.clusters * ms->smp.cores * ms->smp.threads),
494 (cpu / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters,
495 (cpu / ms->smp.threads) % ms->smp.cores,
496 cpu % ms->smp.threads);
497 } else {
498 map_path = g_strdup_printf(
499 "/cpus/cpu-map/socket%d/cluster%d/core%d",
500 cpu / (ms->smp.clusters * ms->smp.cores),
501 (cpu / ms->smp.cores) % ms->smp.clusters,
502 cpu % ms->smp.cores);
503 }
504 qemu_fdt_add_path(ms->fdt, map_path);
505 qemu_fdt_setprop_phandle(ms->fdt, map_path, "cpu", cpu_path);
506
507 g_free(map_path);
508 g_free(cpu_path);
509 }
510 }
511 }
512
513 static void fdt_add_its_gic_node(VirtMachineState *vms)
514 {
515 char *nodename;
516 MachineState *ms = MACHINE(vms);
517
518 vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
519 nodename = g_strdup_printf("/intc/its@%" PRIx64,
520 vms->memmap[VIRT_GIC_ITS].base);
521 qemu_fdt_add_subnode(ms->fdt, nodename);
522 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
523 "arm,gic-v3-its");
524 qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
525 qemu_fdt_setprop_cell(ms->fdt, nodename, "#msi-cells", 1);
526 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
527 2, vms->memmap[VIRT_GIC_ITS].base,
528 2, vms->memmap[VIRT_GIC_ITS].size);
529 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
530 g_free(nodename);
531 }
532
533 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
534 {
535 MachineState *ms = MACHINE(vms);
536 char *nodename;
537
538 nodename = g_strdup_printf("/intc/v2m@%" PRIx64,
539 vms->memmap[VIRT_GIC_V2M].base);
540 vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
541 qemu_fdt_add_subnode(ms->fdt, nodename);
542 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
543 "arm,gic-v2m-frame");
544 qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
545 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
546 2, vms->memmap[VIRT_GIC_V2M].base,
547 2, vms->memmap[VIRT_GIC_V2M].size);
548 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
549 g_free(nodename);
550 }
551
552 static void fdt_add_gic_node(VirtMachineState *vms)
553 {
554 MachineState *ms = MACHINE(vms);
555 char *nodename;
556
557 vms->gic_phandle = qemu_fdt_alloc_phandle(ms->fdt);
558 qemu_fdt_setprop_cell(ms->fdt, "/", "interrupt-parent", vms->gic_phandle);
559
560 nodename = g_strdup_printf("/intc@%" PRIx64,
561 vms->memmap[VIRT_GIC_DIST].base);
562 qemu_fdt_add_subnode(ms->fdt, nodename);
563 qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 3);
564 qemu_fdt_setprop(ms->fdt, nodename, "interrupt-controller", NULL, 0);
565 qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 0x2);
566 qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 0x2);
567 qemu_fdt_setprop(ms->fdt, nodename, "ranges", NULL, 0);
568 if (vms->gic_version != VIRT_GIC_VERSION_2) {
569 int nb_redist_regions = virt_gicv3_redist_region_count(vms);
570
571 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
572 "arm,gic-v3");
573
574 qemu_fdt_setprop_cell(ms->fdt, nodename,
575 "#redistributor-regions", nb_redist_regions);
576
577 if (nb_redist_regions == 1) {
578 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
579 2, vms->memmap[VIRT_GIC_DIST].base,
580 2, vms->memmap[VIRT_GIC_DIST].size,
581 2, vms->memmap[VIRT_GIC_REDIST].base,
582 2, vms->memmap[VIRT_GIC_REDIST].size);
583 } else {
584 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
585 2, vms->memmap[VIRT_GIC_DIST].base,
586 2, vms->memmap[VIRT_GIC_DIST].size,
587 2, vms->memmap[VIRT_GIC_REDIST].base,
588 2, vms->memmap[VIRT_GIC_REDIST].size,
589 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base,
590 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size);
591 }
592
593 if (vms->virt) {
594 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
595 GIC_FDT_IRQ_TYPE_PPI,
596 INTID_TO_PPI(ARCH_GIC_MAINT_IRQ),
597 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
598 }
599 } else {
600 /* 'cortex-a15-gic' means 'GIC v2' */
601 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
602 "arm,cortex-a15-gic");
603 if (!vms->virt) {
604 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
605 2, vms->memmap[VIRT_GIC_DIST].base,
606 2, vms->memmap[VIRT_GIC_DIST].size,
607 2, vms->memmap[VIRT_GIC_CPU].base,
608 2, vms->memmap[VIRT_GIC_CPU].size);
609 } else {
610 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
611 2, vms->memmap[VIRT_GIC_DIST].base,
612 2, vms->memmap[VIRT_GIC_DIST].size,
613 2, vms->memmap[VIRT_GIC_CPU].base,
614 2, vms->memmap[VIRT_GIC_CPU].size,
615 2, vms->memmap[VIRT_GIC_HYP].base,
616 2, vms->memmap[VIRT_GIC_HYP].size,
617 2, vms->memmap[VIRT_GIC_VCPU].base,
618 2, vms->memmap[VIRT_GIC_VCPU].size);
619 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
620 GIC_FDT_IRQ_TYPE_PPI,
621 INTID_TO_PPI(ARCH_GIC_MAINT_IRQ),
622 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
623 }
624 }
625
626 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->gic_phandle);
627 g_free(nodename);
628 }
629
630 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
631 {
632 ARMCPU *armcpu = ARM_CPU(first_cpu);
633 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
634 MachineState *ms = MACHINE(vms);
635
636 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
637 assert(!object_property_get_bool(OBJECT(armcpu), "pmu", NULL));
638 return;
639 }
640
641 if (vms->gic_version == VIRT_GIC_VERSION_2) {
642 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
643 GIC_FDT_IRQ_PPI_CPU_WIDTH,
644 (1 << MACHINE(vms)->smp.cpus) - 1);
645 }
646
647 qemu_fdt_add_subnode(ms->fdt, "/pmu");
648 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
649 const char compat[] = "arm,armv8-pmuv3";
650 qemu_fdt_setprop(ms->fdt, "/pmu", "compatible",
651 compat, sizeof(compat));
652 qemu_fdt_setprop_cells(ms->fdt, "/pmu", "interrupts",
653 GIC_FDT_IRQ_TYPE_PPI,
654 INTID_TO_PPI(VIRTUAL_PMU_IRQ), irqflags);
655 }
656 }
657
658 static inline DeviceState *create_acpi_ged(VirtMachineState *vms)
659 {
660 DeviceState *dev;
661 MachineState *ms = MACHINE(vms);
662 int irq = vms->irqmap[VIRT_ACPI_GED];
663 uint32_t event = ACPI_GED_PWR_DOWN_EVT;
664
665 if (ms->ram_slots) {
666 event |= ACPI_GED_MEM_HOTPLUG_EVT;
667 }
668
669 if (ms->nvdimms_state->is_enabled) {
670 event |= ACPI_GED_NVDIMM_HOTPLUG_EVT;
671 }
672
673 dev = qdev_new(TYPE_ACPI_GED);
674 qdev_prop_set_uint32(dev, "ged-event", event);
675 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
676
677 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_ACPI_GED].base);
678 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, vms->memmap[VIRT_PCDIMM_ACPI].base);
679 sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(vms->gic, irq));
680
681 return dev;
682 }
683
684 static void create_its(VirtMachineState *vms)
685 {
686 const char *itsclass = its_class_name();
687 DeviceState *dev;
688
689 if (!strcmp(itsclass, "arm-gicv3-its")) {
690 if (!vms->tcg_its) {
691 itsclass = NULL;
692 }
693 }
694
695 if (!itsclass) {
696 /* Do nothing if not supported */
697 return;
698 }
699
700 dev = qdev_new(itsclass);
701
702 object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(vms->gic),
703 &error_abort);
704 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
705 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
706
707 fdt_add_its_gic_node(vms);
708 vms->msi_controller = VIRT_MSI_CTRL_ITS;
709 }
710
711 static void create_v2m(VirtMachineState *vms)
712 {
713 int i;
714 int irq = vms->irqmap[VIRT_GIC_V2M];
715 DeviceState *dev;
716
717 dev = qdev_new("arm-gicv2m");
718 qdev_prop_set_uint32(dev, "base-spi", irq);
719 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
720 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
721 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
722
723 for (i = 0; i < NUM_GICV2M_SPIS; i++) {
724 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
725 qdev_get_gpio_in(vms->gic, irq + i));
726 }
727
728 fdt_add_v2m_gic_node(vms);
729 vms->msi_controller = VIRT_MSI_CTRL_GICV2M;
730 }
731
732 /*
733 * If the CPU has FEAT_NMI, then turn on the NMI support in the GICv3 too.
734 * It's permitted to have a configuration with NMI in the CPU (and thus the
735 * GICv3 CPU interface) but not in the distributor/redistributors, but it's
736 * not very useful.
737 */
738 static bool gicv3_nmi_present(VirtMachineState *vms)
739 {
740 ARMCPU *cpu = ARM_CPU(qemu_get_cpu(0));
741
742 return tcg_enabled() && cpu_isar_feature(aa64_nmi, cpu) &&
743 (vms->gic_version != VIRT_GIC_VERSION_2);
744 }
745
746 static void create_gic(VirtMachineState *vms, MemoryRegion *mem)
747 {
748 MachineState *ms = MACHINE(vms);
749 /* We create a standalone GIC */
750 SysBusDevice *gicbusdev;
751 const char *gictype;
752 int i;
753 unsigned int smp_cpus = ms->smp.cpus;
754 uint32_t nb_redist_regions = 0;
755 int revision;
756
757 if (vms->gic_version == VIRT_GIC_VERSION_2) {
758 gictype = gic_class_name();
759 } else {
760 gictype = gicv3_class_name();
761 }
762
763 switch (vms->gic_version) {
764 case VIRT_GIC_VERSION_2:
765 revision = 2;
766 break;
767 case VIRT_GIC_VERSION_3:
768 revision = 3;
769 break;
770 case VIRT_GIC_VERSION_4:
771 revision = 4;
772 break;
773 default:
774 g_assert_not_reached();
775 }
776 vms->gic = qdev_new(gictype);
777 qdev_prop_set_uint32(vms->gic, "revision", revision);
778 qdev_prop_set_uint32(vms->gic, "num-cpu", smp_cpus);
779 /* Note that the num-irq property counts both internal and external
780 * interrupts; there are always 32 of the former (mandated by GIC spec).
781 */
782 qdev_prop_set_uint32(vms->gic, "num-irq", NUM_IRQS + 32);
783 if (!kvm_irqchip_in_kernel()) {
784 qdev_prop_set_bit(vms->gic, "has-security-extensions", vms->secure);
785 }
786
787 if (vms->gic_version != VIRT_GIC_VERSION_2) {
788 QList *redist_region_count;
789 uint32_t redist0_capacity = virt_redist_capacity(vms, VIRT_GIC_REDIST);
790 uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
791
792 nb_redist_regions = virt_gicv3_redist_region_count(vms);
793
794 redist_region_count = qlist_new();
795 qlist_append_int(redist_region_count, redist0_count);
796 if (nb_redist_regions == 2) {
797 uint32_t redist1_capacity =
798 virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2);
799
800 qlist_append_int(redist_region_count,
801 MIN(smp_cpus - redist0_count, redist1_capacity));
802 }
803 qdev_prop_set_array(vms->gic, "redist-region-count",
804 redist_region_count);
805
806 if (!kvm_irqchip_in_kernel()) {
807 if (vms->tcg_its) {
808 object_property_set_link(OBJECT(vms->gic), "sysmem",
809 OBJECT(mem), &error_fatal);
810 qdev_prop_set_bit(vms->gic, "has-lpi", true);
811 }
812 }
813 } else {
814 if (!kvm_irqchip_in_kernel()) {
815 qdev_prop_set_bit(vms->gic, "has-virtualization-extensions",
816 vms->virt);
817 }
818 }
819
820 if (gicv3_nmi_present(vms)) {
821 qdev_prop_set_bit(vms->gic, "has-nmi", true);
822 }
823
824 gicbusdev = SYS_BUS_DEVICE(vms->gic);
825 sysbus_realize_and_unref(gicbusdev, &error_fatal);
826 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
827 if (vms->gic_version != VIRT_GIC_VERSION_2) {
828 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
829 if (nb_redist_regions == 2) {
830 sysbus_mmio_map(gicbusdev, 2,
831 vms->memmap[VIRT_HIGH_GIC_REDIST2].base);
832 }
833 } else {
834 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
835 if (vms->virt) {
836 sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base);
837 sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base);
838 }
839 }
840
841 /* Wire the outputs from each CPU's generic timer and the GICv3
842 * maintenance interrupt signal to the appropriate GIC PPI inputs,
843 * and the GIC's IRQ/FIQ/VIRQ/VFIQ/NMI/VINMI interrupt outputs to the
844 * CPU's inputs.
845 */
846 for (i = 0; i < smp_cpus; i++) {
847 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
848 int intidbase = NUM_IRQS + i * GIC_INTERNAL;
849 /* Mapping from the output timer irq lines from the CPU to the
850 * GIC PPI inputs we use for the virt board.
851 */
852 const int timer_irq[] = {
853 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
854 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
855 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
856 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
857 [GTIMER_HYPVIRT] = ARCH_TIMER_NS_EL2_VIRT_IRQ,
858 };
859
860 for (unsigned irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
861 qdev_connect_gpio_out(cpudev, irq,
862 qdev_get_gpio_in(vms->gic,
863 intidbase + timer_irq[irq]));
864 }
865
866 if (vms->gic_version != VIRT_GIC_VERSION_2) {
867 qemu_irq irq = qdev_get_gpio_in(vms->gic,
868 intidbase + ARCH_GIC_MAINT_IRQ);
869 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt",
870 0, irq);
871 } else if (vms->virt) {
872 qemu_irq irq = qdev_get_gpio_in(vms->gic,
873 intidbase + ARCH_GIC_MAINT_IRQ);
874 sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq);
875 }
876
877 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
878 qdev_get_gpio_in(vms->gic, intidbase
879 + VIRTUAL_PMU_IRQ));
880
881 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
882 sysbus_connect_irq(gicbusdev, i + smp_cpus,
883 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
884 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
885 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
886 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
887 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
888
889 if (vms->gic_version != VIRT_GIC_VERSION_2) {
890 sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus,
891 qdev_get_gpio_in(cpudev, ARM_CPU_NMI));
892 sysbus_connect_irq(gicbusdev, i + 5 * smp_cpus,
893 qdev_get_gpio_in(cpudev, ARM_CPU_VINMI));
894 }
895 }
896
897 fdt_add_gic_node(vms);
898
899 if (vms->gic_version != VIRT_GIC_VERSION_2 && vms->its) {
900 create_its(vms);
901 } else if (vms->gic_version == VIRT_GIC_VERSION_2) {
902 create_v2m(vms);
903 }
904 }
905
906 static void create_uart(const VirtMachineState *vms, int uart,
907 MemoryRegion *mem, Chardev *chr)
908 {
909 char *nodename;
910 hwaddr base = vms->memmap[uart].base;
911 hwaddr size = vms->memmap[uart].size;
912 int irq = vms->irqmap[uart];
913 const char compat[] = "arm,pl011\0arm,primecell";
914 const char clocknames[] = "uartclk\0apb_pclk";
915 DeviceState *dev = qdev_new(TYPE_PL011);
916 SysBusDevice *s = SYS_BUS_DEVICE(dev);
917 MachineState *ms = MACHINE(vms);
918
919 qdev_prop_set_chr(dev, "chardev", chr);
920 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
921 memory_region_add_subregion(mem, base,
922 sysbus_mmio_get_region(s, 0));
923 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
924
925 nodename = g_strdup_printf("/pl011@%" PRIx64, base);
926 qemu_fdt_add_subnode(ms->fdt, nodename);
927 /* Note that we can't use setprop_string because of the embedded NUL */
928 qemu_fdt_setprop(ms->fdt, nodename, "compatible",
929 compat, sizeof(compat));
930 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
931 2, base, 2, size);
932 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
933 GIC_FDT_IRQ_TYPE_SPI, irq,
934 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
935 qemu_fdt_setprop_cells(ms->fdt, nodename, "clocks",
936 vms->clock_phandle, vms->clock_phandle);
937 qemu_fdt_setprop(ms->fdt, nodename, "clock-names",
938 clocknames, sizeof(clocknames));
939
940 if (uart == VIRT_UART) {
941 qemu_fdt_setprop_string(ms->fdt, "/chosen", "stdout-path", nodename);
942 } else {
943 /* Mark as not usable by the normal world */
944 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
945 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
946
947 qemu_fdt_setprop_string(ms->fdt, "/secure-chosen", "stdout-path",
948 nodename);
949 }
950
951 g_free(nodename);
952 }
953
954 static void create_rtc(const VirtMachineState *vms)
955 {
956 char *nodename;
957 hwaddr base = vms->memmap[VIRT_RTC].base;
958 hwaddr size = vms->memmap[VIRT_RTC].size;
959 int irq = vms->irqmap[VIRT_RTC];
960 const char compat[] = "arm,pl031\0arm,primecell";
961 MachineState *ms = MACHINE(vms);
962
963 sysbus_create_simple("pl031", base, qdev_get_gpio_in(vms->gic, irq));
964
965 nodename = g_strdup_printf("/pl031@%" PRIx64, base);
966 qemu_fdt_add_subnode(ms->fdt, nodename);
967 qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
968 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
969 2, base, 2, size);
970 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
971 GIC_FDT_IRQ_TYPE_SPI, irq,
972 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
973 qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
974 qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
975 g_free(nodename);
976 }
977
978 static DeviceState *gpio_key_dev;
979 static void virt_powerdown_req(Notifier *n, void *opaque)
980 {
981 VirtMachineState *s = container_of(n, VirtMachineState, powerdown_notifier);
982
983 if (s->acpi_dev) {
984 acpi_send_event(s->acpi_dev, ACPI_POWER_DOWN_STATUS);
985 } else {
986 /* use gpio Pin 3 for power button event */
987 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
988 }
989 }
990
991 static void create_gpio_keys(char *fdt, DeviceState *pl061_dev,
992 uint32_t phandle)
993 {
994 gpio_key_dev = sysbus_create_simple("gpio-key", -1,
995 qdev_get_gpio_in(pl061_dev, 3));
996
997 qemu_fdt_add_subnode(fdt, "/gpio-keys");
998 qemu_fdt_setprop_string(fdt, "/gpio-keys", "compatible", "gpio-keys");
999
1000 qemu_fdt_add_subnode(fdt, "/gpio-keys/poweroff");
1001 qemu_fdt_setprop_string(fdt, "/gpio-keys/poweroff",
1002 "label", "GPIO Key Poweroff");
1003 qemu_fdt_setprop_cell(fdt, "/gpio-keys/poweroff", "linux,code",
1004 KEY_POWER);
1005 qemu_fdt_setprop_cells(fdt, "/gpio-keys/poweroff",
1006 "gpios", phandle, 3, 0);
1007 }
1008
1009 #define SECURE_GPIO_POWEROFF 0
1010 #define SECURE_GPIO_RESET 1
1011
1012 static void create_secure_gpio_pwr(char *fdt, DeviceState *pl061_dev,
1013 uint32_t phandle)
1014 {
1015 DeviceState *gpio_pwr_dev;
1016
1017 /* gpio-pwr */
1018 gpio_pwr_dev = sysbus_create_simple("gpio-pwr", -1, NULL);
1019
1020 /* connect secure pl061 to gpio-pwr */
1021 qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_RESET,
1022 qdev_get_gpio_in_named(gpio_pwr_dev, "reset", 0));
1023 qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_POWEROFF,
1024 qdev_get_gpio_in_named(gpio_pwr_dev, "shutdown", 0));
1025
1026 qemu_fdt_add_subnode(fdt, "/gpio-poweroff");
1027 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "compatible",
1028 "gpio-poweroff");
1029 qemu_fdt_setprop_cells(fdt, "/gpio-poweroff",
1030 "gpios", phandle, SECURE_GPIO_POWEROFF, 0);
1031 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "status", "disabled");
1032 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "secure-status",
1033 "okay");
1034
1035 qemu_fdt_add_subnode(fdt, "/gpio-restart");
1036 qemu_fdt_setprop_string(fdt, "/gpio-restart", "compatible",
1037 "gpio-restart");
1038 qemu_fdt_setprop_cells(fdt, "/gpio-restart",
1039 "gpios", phandle, SECURE_GPIO_RESET, 0);
1040 qemu_fdt_setprop_string(fdt, "/gpio-restart", "status", "disabled");
1041 qemu_fdt_setprop_string(fdt, "/gpio-restart", "secure-status",
1042 "okay");
1043 }
1044
1045 static void create_gpio_devices(const VirtMachineState *vms, int gpio,
1046 MemoryRegion *mem)
1047 {
1048 char *nodename;
1049 DeviceState *pl061_dev;
1050 hwaddr base = vms->memmap[gpio].base;
1051 hwaddr size = vms->memmap[gpio].size;
1052 int irq = vms->irqmap[gpio];
1053 const char compat[] = "arm,pl061\0arm,primecell";
1054 SysBusDevice *s;
1055 MachineState *ms = MACHINE(vms);
1056
1057 pl061_dev = qdev_new("pl061");
1058 /* Pull lines down to 0 if not driven by the PL061 */
1059 qdev_prop_set_uint32(pl061_dev, "pullups", 0);
1060 qdev_prop_set_uint32(pl061_dev, "pulldowns", 0xff);
1061 s = SYS_BUS_DEVICE(pl061_dev);
1062 sysbus_realize_and_unref(s, &error_fatal);
1063 memory_region_add_subregion(mem, base, sysbus_mmio_get_region(s, 0));
1064 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
1065
1066 uint32_t phandle = qemu_fdt_alloc_phandle(ms->fdt);
1067 nodename = g_strdup_printf("/pl061@%" PRIx64, base);
1068 qemu_fdt_add_subnode(ms->fdt, nodename);
1069 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1070 2, base, 2, size);
1071 qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
1072 qemu_fdt_setprop_cell(ms->fdt, nodename, "#gpio-cells", 2);
1073 qemu_fdt_setprop(ms->fdt, nodename, "gpio-controller", NULL, 0);
1074 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
1075 GIC_FDT_IRQ_TYPE_SPI, irq,
1076 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
1077 qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
1078 qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
1079 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", phandle);
1080
1081 if (gpio != VIRT_GPIO) {
1082 /* Mark as not usable by the normal world */
1083 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1084 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1085 }
1086 g_free(nodename);
1087
1088 /* Child gpio devices */
1089 if (gpio == VIRT_GPIO) {
1090 create_gpio_keys(ms->fdt, pl061_dev, phandle);
1091 } else {
1092 create_secure_gpio_pwr(ms->fdt, pl061_dev, phandle);
1093 }
1094 }
1095
1096 static void create_virtio_devices(const VirtMachineState *vms)
1097 {
1098 int i;
1099 hwaddr size = vms->memmap[VIRT_MMIO].size;
1100 MachineState *ms = MACHINE(vms);
1101
1102 /* We create the transports in forwards order. Since qbus_realize()
1103 * prepends (not appends) new child buses, the incrementing loop below will
1104 * create a list of virtio-mmio buses with decreasing base addresses.
1105 *
1106 * When a -device option is processed from the command line,
1107 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
1108 * order. The upshot is that -device options in increasing command line
1109 * order are mapped to virtio-mmio buses with decreasing base addresses.
1110 *
1111 * When this code was originally written, that arrangement ensured that the
1112 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
1113 * the first -device on the command line. (The end-to-end order is a
1114 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
1115 * guest kernel's name-to-address assignment strategy.)
1116 *
1117 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
1118 * the message, if not necessarily the code, of commit 70161ff336.
1119 * Therefore the loop now establishes the inverse of the original intent.
1120 *
1121 * Unfortunately, we can't counteract the kernel change by reversing the
1122 * loop; it would break existing command lines.
1123 *
1124 * In any case, the kernel makes no guarantee about the stability of
1125 * enumeration order of virtio devices (as demonstrated by it changing
1126 * between kernel versions). For reliable and stable identification
1127 * of disks users must use UUIDs or similar mechanisms.
1128 */
1129 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
1130 int irq = vms->irqmap[VIRT_MMIO] + i;
1131 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
1132
1133 sysbus_create_simple("virtio-mmio", base,
1134 qdev_get_gpio_in(vms->gic, irq));
1135 }
1136
1137 /* We add dtb nodes in reverse order so that they appear in the finished
1138 * device tree lowest address first.
1139 *
1140 * Note that this mapping is independent of the loop above. The previous
1141 * loop influences virtio device to virtio transport assignment, whereas
1142 * this loop controls how virtio transports are laid out in the dtb.
1143 */
1144 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
1145 char *nodename;
1146 int irq = vms->irqmap[VIRT_MMIO] + i;
1147 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
1148
1149 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
1150 qemu_fdt_add_subnode(ms->fdt, nodename);
1151 qemu_fdt_setprop_string(ms->fdt, nodename,
1152 "compatible", "virtio,mmio");
1153 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1154 2, base, 2, size);
1155 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
1156 GIC_FDT_IRQ_TYPE_SPI, irq,
1157 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1158 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1159 g_free(nodename);
1160 }
1161 }
1162
1163 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
1164
1165 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms,
1166 const char *name,
1167 const char *alias_prop_name)
1168 {
1169 /*
1170 * Create a single flash device. We use the same parameters as
1171 * the flash devices on the Versatile Express board.
1172 */
1173 DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
1174
1175 qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
1176 qdev_prop_set_uint8(dev, "width", 4);
1177 qdev_prop_set_uint8(dev, "device-width", 2);
1178 qdev_prop_set_bit(dev, "big-endian", false);
1179 qdev_prop_set_uint16(dev, "id0", 0x89);
1180 qdev_prop_set_uint16(dev, "id1", 0x18);
1181 qdev_prop_set_uint16(dev, "id2", 0x00);
1182 qdev_prop_set_uint16(dev, "id3", 0x00);
1183 qdev_prop_set_string(dev, "name", name);
1184 object_property_add_child(OBJECT(vms), name, OBJECT(dev));
1185 object_property_add_alias(OBJECT(vms), alias_prop_name,
1186 OBJECT(dev), "drive");
1187 return PFLASH_CFI01(dev);
1188 }
1189
1190 static void virt_flash_create(VirtMachineState *vms)
1191 {
1192 vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0");
1193 vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1");
1194 }
1195
1196 static void virt_flash_map1(PFlashCFI01 *flash,
1197 hwaddr base, hwaddr size,
1198 MemoryRegion *sysmem)
1199 {
1200 DeviceState *dev = DEVICE(flash);
1201
1202 assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE));
1203 assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
1204 qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
1205 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1206
1207 memory_region_add_subregion(sysmem, base,
1208 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
1209 0));
1210 }
1211
1212 static void virt_flash_map(VirtMachineState *vms,
1213 MemoryRegion *sysmem,
1214 MemoryRegion *secure_sysmem)
1215 {
1216 /*
1217 * Map two flash devices to fill the VIRT_FLASH space in the memmap.
1218 * sysmem is the system memory space. secure_sysmem is the secure view
1219 * of the system, and the first flash device should be made visible only
1220 * there. The second flash device is visible to both secure and nonsecure.
1221 * If sysmem == secure_sysmem this means there is no separate Secure
1222 * address space and both flash devices are generally visible.
1223 */
1224 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1225 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1226
1227 virt_flash_map1(vms->flash[0], flashbase, flashsize,
1228 secure_sysmem);
1229 virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize,
1230 sysmem);
1231 }
1232
1233 static void virt_flash_fdt(VirtMachineState *vms,
1234 MemoryRegion *sysmem,
1235 MemoryRegion *secure_sysmem)
1236 {
1237 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1238 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1239 MachineState *ms = MACHINE(vms);
1240 char *nodename;
1241
1242 if (sysmem == secure_sysmem) {
1243 /* Report both flash devices as a single node in the DT */
1244 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
1245 qemu_fdt_add_subnode(ms->fdt, nodename);
1246 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1247 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1248 2, flashbase, 2, flashsize,
1249 2, flashbase + flashsize, 2, flashsize);
1250 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1251 g_free(nodename);
1252 } else {
1253 /*
1254 * Report the devices as separate nodes so we can mark one as
1255 * only visible to the secure world.
1256 */
1257 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
1258 qemu_fdt_add_subnode(ms->fdt, nodename);
1259 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1260 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1261 2, flashbase, 2, flashsize);
1262 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1263 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1264 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1265 g_free(nodename);
1266
1267 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase + flashsize);
1268 qemu_fdt_add_subnode(ms->fdt, nodename);
1269 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1270 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1271 2, flashbase + flashsize, 2, flashsize);
1272 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1273 g_free(nodename);
1274 }
1275 }
1276
1277 static bool virt_firmware_init(VirtMachineState *vms,
1278 MemoryRegion *sysmem,
1279 MemoryRegion *secure_sysmem)
1280 {
1281 int i;
1282 const char *bios_name;
1283 BlockBackend *pflash_blk0;
1284
1285 /* Map legacy -drive if=pflash to machine properties */
1286 for (i = 0; i < ARRAY_SIZE(vms->flash); i++) {
1287 pflash_cfi01_legacy_drive(vms->flash[i],
1288 drive_get(IF_PFLASH, 0, i));
1289 }
1290
1291 virt_flash_map(vms, sysmem, secure_sysmem);
1292
1293 pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]);
1294
1295 bios_name = MACHINE(vms)->firmware;
1296 if (bios_name) {
1297 char *fname;
1298 MemoryRegion *mr;
1299 int image_size;
1300
1301 if (pflash_blk0) {
1302 error_report("The contents of the first flash device may be "
1303 "specified with -bios or with -drive if=pflash... "
1304 "but you cannot use both options at once");
1305 exit(1);
1306 }
1307
1308 /* Fall back to -bios */
1309
1310 fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1311 if (!fname) {
1312 error_report("Could not find ROM image '%s'", bios_name);
1313 exit(1);
1314 }
1315 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0);
1316 image_size = load_image_mr(fname, mr);
1317 g_free(fname);
1318 if (image_size < 0) {
1319 error_report("Could not load ROM image '%s'", bios_name);
1320 exit(1);
1321 }
1322 }
1323
1324 return pflash_blk0 || bios_name;
1325 }
1326
1327 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
1328 {
1329 MachineState *ms = MACHINE(vms);
1330 hwaddr base = vms->memmap[VIRT_FW_CFG].base;
1331 hwaddr size = vms->memmap[VIRT_FW_CFG].size;
1332 FWCfgState *fw_cfg;
1333 char *nodename;
1334
1335 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
1336 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus);
1337
1338 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
1339 qemu_fdt_add_subnode(ms->fdt, nodename);
1340 qemu_fdt_setprop_string(ms->fdt, nodename,
1341 "compatible", "qemu,fw-cfg-mmio");
1342 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1343 2, base, 2, size);
1344 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1345 g_free(nodename);
1346 return fw_cfg;
1347 }
1348
1349 static void create_pcie_irq_map(const MachineState *ms,
1350 uint32_t gic_phandle,
1351 int first_irq, const char *nodename)
1352 {
1353 int devfn, pin;
1354 uint32_t full_irq_map[4 * 4 * 10] = { 0 };
1355 uint32_t *irq_map = full_irq_map;
1356
1357 for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
1358 for (pin = 0; pin < 4; pin++) {
1359 int irq_type = GIC_FDT_IRQ_TYPE_SPI;
1360 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
1361 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
1362 int i;
1363
1364 uint32_t map[] = {
1365 devfn << 8, 0, 0, /* devfn */
1366 pin + 1, /* PCI pin */
1367 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
1368
1369 /* Convert map to big endian */
1370 for (i = 0; i < 10; i++) {
1371 irq_map[i] = cpu_to_be32(map[i]);
1372 }
1373 irq_map += 10;
1374 }
1375 }
1376
1377 qemu_fdt_setprop(ms->fdt, nodename, "interrupt-map",
1378 full_irq_map, sizeof(full_irq_map));
1379
1380 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupt-map-mask",
1381 cpu_to_be16(PCI_DEVFN(3, 0)), /* Slot 3 */
1382 0, 0,
1383 0x7 /* PCI irq */);
1384 }
1385
1386 static void create_smmu(const VirtMachineState *vms,
1387 PCIBus *bus)
1388 {
1389 char *node;
1390 const char compat[] = "arm,smmu-v3";
1391 int irq = vms->irqmap[VIRT_SMMU];
1392 int i;
1393 hwaddr base = vms->memmap[VIRT_SMMU].base;
1394 hwaddr size = vms->memmap[VIRT_SMMU].size;
1395 const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
1396 DeviceState *dev;
1397 MachineState *ms = MACHINE(vms);
1398
1399 if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
1400 return;
1401 }
1402
1403 dev = qdev_new(TYPE_ARM_SMMUV3);
1404
1405 object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus),
1406 &error_abort);
1407 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1408 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
1409 for (i = 0; i < NUM_SMMU_IRQS; i++) {
1410 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1411 qdev_get_gpio_in(vms->gic, irq + i));
1412 }
1413
1414 node = g_strdup_printf("/smmuv3@%" PRIx64, base);
1415 qemu_fdt_add_subnode(ms->fdt, node);
1416 qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
1417 qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg", 2, base, 2, size);
1418
1419 qemu_fdt_setprop_cells(ms->fdt, node, "interrupts",
1420 GIC_FDT_IRQ_TYPE_SPI, irq , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1421 GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1422 GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1423 GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1424
1425 qemu_fdt_setprop(ms->fdt, node, "interrupt-names", irq_names,
1426 sizeof(irq_names));
1427
1428 qemu_fdt_setprop(ms->fdt, node, "dma-coherent", NULL, 0);
1429
1430 qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
1431
1432 qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
1433 g_free(node);
1434 }
1435
1436 static void create_virtio_iommu_dt_bindings(VirtMachineState *vms)
1437 {
1438 const char compat[] = "virtio,pci-iommu\0pci1af4,1057";
1439 uint16_t bdf = vms->virtio_iommu_bdf;
1440 MachineState *ms = MACHINE(vms);
1441 char *node;
1442
1443 vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
1444
1445 node = g_strdup_printf("%s/virtio_iommu@%x,%x", vms->pciehb_nodename,
1446 PCI_SLOT(bdf), PCI_FUNC(bdf));
1447 qemu_fdt_add_subnode(ms->fdt, node);
1448 qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
1449 qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg",
1450 1, bdf << 8, 1, 0, 1, 0,
1451 1, 0, 1, 0);
1452
1453 qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
1454 qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
1455 g_free(node);
1456
1457 qemu_fdt_setprop_cells(ms->fdt, vms->pciehb_nodename, "iommu-map",
1458 0x0, vms->iommu_phandle, 0x0, bdf,
1459 bdf + 1, vms->iommu_phandle, bdf + 1, 0xffff - bdf);
1460 }
1461
1462 static void create_pcie(VirtMachineState *vms)
1463 {
1464 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1465 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
1466 hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base;
1467 hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size;
1468 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1469 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
1470 hwaddr base_ecam, size_ecam;
1471 hwaddr base = base_mmio;
1472 int nr_pcie_buses;
1473 int irq = vms->irqmap[VIRT_PCIE];
1474 MemoryRegion *mmio_alias;
1475 MemoryRegion *mmio_reg;
1476 MemoryRegion *ecam_alias;
1477 MemoryRegion *ecam_reg;
1478 DeviceState *dev;
1479 char *nodename;
1480 int i, ecam_id;
1481 PCIHostState *pci;
1482 MachineState *ms = MACHINE(vms);
1483 MachineClass *mc = MACHINE_GET_CLASS(ms);
1484
1485 dev = qdev_new(TYPE_GPEX_HOST);
1486 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1487
1488 ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
1489 base_ecam = vms->memmap[ecam_id].base;
1490 size_ecam = vms->memmap[ecam_id].size;
1491 nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
1492 /* Map only the first size_ecam bytes of ECAM space */
1493 ecam_alias = g_new0(MemoryRegion, 1);
1494 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1495 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1496 ecam_reg, 0, size_ecam);
1497 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1498
1499 /* Map the MMIO window into system address space so as to expose
1500 * the section of PCI MMIO space which starts at the same base address
1501 * (ie 1:1 mapping for that part of PCI MMIO space visible through
1502 * the window).
1503 */
1504 mmio_alias = g_new0(MemoryRegion, 1);
1505 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1506 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1507 mmio_reg, base_mmio, size_mmio);
1508 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1509
1510 if (vms->highmem_mmio) {
1511 /* Map high MMIO space */
1512 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1513
1514 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1515 mmio_reg, base_mmio_high, size_mmio_high);
1516 memory_region_add_subregion(get_system_memory(), base_mmio_high,
1517 high_mmio_alias);
1518 }
1519
1520 /* Map IO port space */
1521 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1522
1523 for (i = 0; i < GPEX_NUM_IRQS; i++) {
1524 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1525 qdev_get_gpio_in(vms->gic, irq + i));
1526 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
1527 }
1528
1529 pci = PCI_HOST_BRIDGE(dev);
1530 pci->bypass_iommu = vms->default_bus_bypass_iommu;
1531 vms->bus = pci->bus;
1532 if (vms->bus) {
1533 pci_init_nic_devices(pci->bus, mc->default_nic);
1534 }
1535
1536 nodename = vms->pciehb_nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1537 qemu_fdt_add_subnode(ms->fdt, nodename);
1538 qemu_fdt_setprop_string(ms->fdt, nodename,
1539 "compatible", "pci-host-ecam-generic");
1540 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "pci");
1541 qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 3);
1542 qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 2);
1543 qemu_fdt_setprop_cell(ms->fdt, nodename, "linux,pci-domain", 0);
1544 qemu_fdt_setprop_cells(ms->fdt, nodename, "bus-range", 0,
1545 nr_pcie_buses - 1);
1546 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1547
1548 if (vms->msi_phandle) {
1549 qemu_fdt_setprop_cells(ms->fdt, nodename, "msi-map",
1550 0, vms->msi_phandle, 0, 0x10000);
1551 }
1552
1553 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1554 2, base_ecam, 2, size_ecam);
1555
1556 if (vms->highmem_mmio) {
1557 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
1558 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1559 2, base_pio, 2, size_pio,
1560 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1561 2, base_mmio, 2, size_mmio,
1562 1, FDT_PCI_RANGE_MMIO_64BIT,
1563 2, base_mmio_high,
1564 2, base_mmio_high, 2, size_mmio_high);
1565 } else {
1566 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
1567 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1568 2, base_pio, 2, size_pio,
1569 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1570 2, base_mmio, 2, size_mmio);
1571 }
1572
1573 qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 1);
1574 create_pcie_irq_map(ms, vms->gic_phandle, irq, nodename);
1575
1576 if (vms->iommu) {
1577 vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
1578
1579 switch (vms->iommu) {
1580 case VIRT_IOMMU_SMMUV3:
1581 create_smmu(vms, vms->bus);
1582 qemu_fdt_setprop_cells(ms->fdt, nodename, "iommu-map",
1583 0x0, vms->iommu_phandle, 0x0, 0x10000);
1584 break;
1585 default:
1586 g_assert_not_reached();
1587 }
1588 }
1589 }
1590
1591 static void create_platform_bus(VirtMachineState *vms)
1592 {
1593 DeviceState *dev;
1594 SysBusDevice *s;
1595 int i;
1596 MemoryRegion *sysmem = get_system_memory();
1597
1598 dev = qdev_new(TYPE_PLATFORM_BUS_DEVICE);
1599 dev->id = g_strdup(TYPE_PLATFORM_BUS_DEVICE);
1600 qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
1601 qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
1602 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1603 vms->platform_bus_dev = dev;
1604
1605 s = SYS_BUS_DEVICE(dev);
1606 for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
1607 int irq = vms->irqmap[VIRT_PLATFORM_BUS] + i;
1608 sysbus_connect_irq(s, i, qdev_get_gpio_in(vms->gic, irq));
1609 }
1610
1611 memory_region_add_subregion(sysmem,
1612 vms->memmap[VIRT_PLATFORM_BUS].base,
1613 sysbus_mmio_get_region(s, 0));
1614 }
1615
1616 static void create_tag_ram(MemoryRegion *tag_sysmem,
1617 hwaddr base, hwaddr size,
1618 const char *name)
1619 {
1620 MemoryRegion *tagram = g_new(MemoryRegion, 1);
1621
1622 memory_region_init_ram(tagram, NULL, name, size / 32, &error_fatal);
1623 memory_region_add_subregion(tag_sysmem, base / 32, tagram);
1624 }
1625
1626 static void create_secure_ram(VirtMachineState *vms,
1627 MemoryRegion *secure_sysmem,
1628 MemoryRegion *secure_tag_sysmem)
1629 {
1630 MemoryRegion *secram = g_new(MemoryRegion, 1);
1631 char *nodename;
1632 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1633 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1634 MachineState *ms = MACHINE(vms);
1635
1636 memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1637 &error_fatal);
1638 memory_region_add_subregion(secure_sysmem, base, secram);
1639
1640 nodename = g_strdup_printf("/secram@%" PRIx64, base);
1641 qemu_fdt_add_subnode(ms->fdt, nodename);
1642 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "memory");
1643 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 2, base, 2, size);
1644 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1645 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1646
1647 if (secure_tag_sysmem) {
1648 create_tag_ram(secure_tag_sysmem, base, size, "mach-virt.secure-tag");
1649 }
1650
1651 g_free(nodename);
1652 }
1653
1654 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1655 {
1656 const VirtMachineState *board = container_of(binfo, VirtMachineState,
1657 bootinfo);
1658 MachineState *ms = MACHINE(board);
1659
1660
1661 *fdt_size = board->fdt_size;
1662 return ms->fdt;
1663 }
1664
1665 static void virt_build_smbios(VirtMachineState *vms)
1666 {
1667 MachineClass *mc = MACHINE_GET_CLASS(vms);
1668 MachineState *ms = MACHINE(vms);
1669 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1670 uint8_t *smbios_tables, *smbios_anchor;
1671 size_t smbios_tables_len, smbios_anchor_len;
1672 struct smbios_phys_mem_area mem_array;
1673 const char *product = "QEMU Virtual Machine";
1674
1675 if (kvm_enabled()) {
1676 product = "KVM Virtual Machine";
1677 }
1678
1679 smbios_set_defaults("QEMU", product,
1680 vmc->smbios_old_sys_ver ? "1.0" : mc->name,
1681 true);
1682
1683 /* build the array of physical mem area from base_memmap */
1684 mem_array.address = vms->memmap[VIRT_MEM].base;
1685 mem_array.length = ms->ram_size;
1686
1687 smbios_get_tables(ms, SMBIOS_ENTRY_POINT_TYPE_64, &mem_array, 1,
1688 &smbios_tables, &smbios_tables_len,
1689 &smbios_anchor, &smbios_anchor_len,
1690 &error_fatal);
1691
1692 if (smbios_anchor) {
1693 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1694 smbios_tables, smbios_tables_len);
1695 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1696 smbios_anchor, smbios_anchor_len);
1697 }
1698 }
1699
1700 static
1701 void virt_machine_done(Notifier *notifier, void *data)
1702 {
1703 VirtMachineState *vms = container_of(notifier, VirtMachineState,
1704 machine_done);
1705 MachineState *ms = MACHINE(vms);
1706 ARMCPU *cpu = ARM_CPU(first_cpu);
1707 struct arm_boot_info *info = &vms->bootinfo;
1708 AddressSpace *as = arm_boot_address_space(cpu, info);
1709
1710 /*
1711 * If the user provided a dtb, we assume the dynamic sysbus nodes
1712 * already are integrated there. This corresponds to a use case where
1713 * the dynamic sysbus nodes are complex and their generation is not yet
1714 * supported. In that case the user can take charge of the guest dt
1715 * while qemu takes charge of the qom stuff.
1716 */
1717 if (info->dtb_filename == NULL) {
1718 platform_bus_add_all_fdt_nodes(ms->fdt, "/intc",
1719 vms->memmap[VIRT_PLATFORM_BUS].base,
1720 vms->memmap[VIRT_PLATFORM_BUS].size,
1721 vms->irqmap[VIRT_PLATFORM_BUS]);
1722 }
1723 if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) {
1724 exit(1);
1725 }
1726
1727 fw_cfg_add_extra_pci_roots(vms->bus, vms->fw_cfg);
1728
1729 virt_acpi_setup(vms);
1730 virt_build_smbios(vms);
1731 }
1732
1733 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1734 {
1735 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1736 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1737
1738 if (!vmc->disallow_affinity_adjustment) {
1739 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1740 * GIC's target-list limitations. 32-bit KVM hosts currently
1741 * always create clusters of 4 CPUs, but that is expected to
1742 * change when they gain support for gicv3. When KVM is enabled
1743 * it will override the changes we make here, therefore our
1744 * purposes are to make TCG consistent (with 64-bit KVM hosts)
1745 * and to improve SGI efficiency.
1746 */
1747 if (vms->gic_version == VIRT_GIC_VERSION_2) {
1748 clustersz = GIC_TARGETLIST_BITS;
1749 } else {
1750 clustersz = GICV3_TARGETLIST_BITS;
1751 }
1752 }
1753 return arm_build_mp_affinity(idx, clustersz);
1754 }
1755
1756 static inline bool *virt_get_high_memmap_enabled(VirtMachineState *vms,
1757 int index)
1758 {
1759 bool *enabled_array[] = {
1760 &vms->highmem_redists,
1761 &vms->highmem_ecam,
1762 &vms->highmem_mmio,
1763 };
1764
1765 assert(ARRAY_SIZE(extended_memmap) - VIRT_LOWMEMMAP_LAST ==
1766 ARRAY_SIZE(enabled_array));
1767 assert(index - VIRT_LOWMEMMAP_LAST < ARRAY_SIZE(enabled_array));
1768
1769 return enabled_array[index - VIRT_LOWMEMMAP_LAST];
1770 }
1771
1772 static void virt_set_high_memmap(VirtMachineState *vms,
1773 hwaddr base, int pa_bits)
1774 {
1775 hwaddr region_base, region_size;
1776 bool *region_enabled, fits;
1777 int i;
1778
1779 for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) {
1780 region_enabled = virt_get_high_memmap_enabled(vms, i);
1781 region_base = ROUND_UP(base, extended_memmap[i].size);
1782 region_size = extended_memmap[i].size;
1783
1784 vms->memmap[i].base = region_base;
1785 vms->memmap[i].size = region_size;
1786
1787 /*
1788 * Check each device to see if it fits in the PA space,
1789 * moving highest_gpa as we go. For compatibility, move
1790 * highest_gpa for disabled fitting devices as well, if
1791 * the compact layout has been disabled.
1792 *
1793 * For each device that doesn't fit, disable it.
1794 */
1795 fits = (region_base + region_size) <= BIT_ULL(pa_bits);
1796 *region_enabled &= fits;
1797 if (vms->highmem_compact && !*region_enabled) {
1798 continue;
1799 }
1800
1801 base = region_base + region_size;
1802 if (fits) {
1803 vms->highest_gpa = base - 1;
1804 }
1805 }
1806 }
1807
1808 static void virt_set_memmap(VirtMachineState *vms, int pa_bits)
1809 {
1810 MachineState *ms = MACHINE(vms);
1811 hwaddr base, device_memory_base, device_memory_size, memtop;
1812 int i;
1813
1814 vms->memmap = extended_memmap;
1815
1816 for (i = 0; i < ARRAY_SIZE(base_memmap); i++) {
1817 vms->memmap[i] = base_memmap[i];
1818 }
1819
1820 if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) {
1821 error_report("unsupported number of memory slots: %"PRIu64,
1822 ms->ram_slots);
1823 exit(EXIT_FAILURE);
1824 }
1825
1826 /*
1827 * !highmem is exactly the same as limiting the PA space to 32bit,
1828 * irrespective of the underlying capabilities of the HW.
1829 */
1830 if (!vms->highmem) {
1831 pa_bits = 32;
1832 }
1833
1834 /*
1835 * We compute the base of the high IO region depending on the
1836 * amount of initial and device memory. The device memory start/size
1837 * is aligned on 1GiB. We never put the high IO region below 256GiB
1838 * so that if maxram_size is < 255GiB we keep the legacy memory map.
1839 * The device region size assumes 1GiB page max alignment per slot.
1840 */
1841 device_memory_base =
1842 ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB);
1843 device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB;
1844
1845 /* Base address of the high IO region */
1846 memtop = base = device_memory_base + ROUND_UP(device_memory_size, GiB);
1847 if (memtop > BIT_ULL(pa_bits)) {
1848 error_report("Addressing limited to %d bits, but memory exceeds it by %llu bytes",
1849 pa_bits, memtop - BIT_ULL(pa_bits));
1850 exit(EXIT_FAILURE);
1851 }
1852 if (base < device_memory_base) {
1853 error_report("maxmem/slots too huge");
1854 exit(EXIT_FAILURE);
1855 }
1856 if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) {
1857 base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES;
1858 }
1859
1860 /* We know for sure that at least the memory fits in the PA space */
1861 vms->highest_gpa = memtop - 1;
1862
1863 virt_set_high_memmap(vms, base, pa_bits);
1864
1865 if (device_memory_size > 0) {
1866 machine_memory_devices_init(ms, device_memory_base, device_memory_size);
1867 }
1868 }
1869
1870 static VirtGICType finalize_gic_version_do(const char *accel_name,
1871 VirtGICType gic_version,
1872 int gics_supported,
1873 unsigned int max_cpus)
1874 {
1875 /* Convert host/max/nosel to GIC version number */
1876 switch (gic_version) {
1877 case VIRT_GIC_VERSION_HOST:
1878 if (!kvm_enabled()) {
1879 error_report("gic-version=host requires KVM");
1880 exit(1);
1881 }
1882
1883 /* For KVM, gic-version=host means gic-version=max */
1884 return finalize_gic_version_do(accel_name, VIRT_GIC_VERSION_MAX,
1885 gics_supported, max_cpus);
1886 case VIRT_GIC_VERSION_MAX:
1887 if (gics_supported & VIRT_GIC_VERSION_4_MASK) {
1888 gic_version = VIRT_GIC_VERSION_4;
1889 } else if (gics_supported & VIRT_GIC_VERSION_3_MASK) {
1890 gic_version = VIRT_GIC_VERSION_3;
1891 } else {
1892 gic_version = VIRT_GIC_VERSION_2;
1893 }
1894 break;
1895 case VIRT_GIC_VERSION_NOSEL:
1896 if ((gics_supported & VIRT_GIC_VERSION_2_MASK) &&
1897 max_cpus <= GIC_NCPU) {
1898 gic_version = VIRT_GIC_VERSION_2;
1899 } else if (gics_supported & VIRT_GIC_VERSION_3_MASK) {
1900 /*
1901 * in case the host does not support v2 emulation or
1902 * the end-user requested more than 8 VCPUs we now default
1903 * to v3. In any case defaulting to v2 would be broken.
1904 */
1905 gic_version = VIRT_GIC_VERSION_3;
1906 } else if (max_cpus > GIC_NCPU) {
1907 error_report("%s only supports GICv2 emulation but more than 8 "
1908 "vcpus are requested", accel_name);
1909 exit(1);
1910 }
1911 break;
1912 case VIRT_GIC_VERSION_2:
1913 case VIRT_GIC_VERSION_3:
1914 case VIRT_GIC_VERSION_4:
1915 break;
1916 }
1917
1918 /* Check chosen version is effectively supported */
1919 switch (gic_version) {
1920 case VIRT_GIC_VERSION_2:
1921 if (!(gics_supported & VIRT_GIC_VERSION_2_MASK)) {
1922 error_report("%s does not support GICv2 emulation", accel_name);
1923 exit(1);
1924 }
1925 break;
1926 case VIRT_GIC_VERSION_3:
1927 if (!(gics_supported & VIRT_GIC_VERSION_3_MASK)) {
1928 error_report("%s does not support GICv3 emulation", accel_name);
1929 exit(1);
1930 }
1931 break;
1932 case VIRT_GIC_VERSION_4:
1933 if (!(gics_supported & VIRT_GIC_VERSION_4_MASK)) {
1934 error_report("%s does not support GICv4 emulation, is virtualization=on?",
1935 accel_name);
1936 exit(1);
1937 }
1938 break;
1939 default:
1940 error_report("logic error in finalize_gic_version");
1941 exit(1);
1942 break;
1943 }
1944
1945 return gic_version;
1946 }
1947
1948 /*
1949 * finalize_gic_version - Determines the final gic_version
1950 * according to the gic-version property
1951 *
1952 * Default GIC type is v2
1953 */
1954 static void finalize_gic_version(VirtMachineState *vms)
1955 {
1956 const char *accel_name = current_accel_name();
1957 unsigned int max_cpus = MACHINE(vms)->smp.max_cpus;
1958 int gics_supported = 0;
1959
1960 /* Determine which GIC versions the current environment supports */
1961 if (kvm_enabled() && kvm_irqchip_in_kernel()) {
1962 int probe_bitmap = kvm_arm_vgic_probe();
1963
1964 if (!probe_bitmap) {
1965 error_report("Unable to determine GIC version supported by host");
1966 exit(1);
1967 }
1968
1969 if (probe_bitmap & KVM_ARM_VGIC_V2) {
1970 gics_supported |= VIRT_GIC_VERSION_2_MASK;
1971 }
1972 if (probe_bitmap & KVM_ARM_VGIC_V3) {
1973 gics_supported |= VIRT_GIC_VERSION_3_MASK;
1974 }
1975 } else if (kvm_enabled() && !kvm_irqchip_in_kernel()) {
1976 /* KVM w/o kernel irqchip can only deal with GICv2 */
1977 gics_supported |= VIRT_GIC_VERSION_2_MASK;
1978 accel_name = "KVM with kernel-irqchip=off";
1979 } else if (tcg_enabled() || hvf_enabled() || qtest_enabled()) {
1980 gics_supported |= VIRT_GIC_VERSION_2_MASK;
1981 if (module_object_class_by_name("arm-gicv3")) {
1982 gics_supported |= VIRT_GIC_VERSION_3_MASK;
1983 if (vms->virt) {
1984 /* GICv4 only makes sense if CPU has EL2 */
1985 gics_supported |= VIRT_GIC_VERSION_4_MASK;
1986 }
1987 }
1988 } else {
1989 error_report("Unsupported accelerator, can not determine GIC support");
1990 exit(1);
1991 }
1992
1993 /*
1994 * Then convert helpers like host/max to concrete GIC versions and ensure
1995 * the desired version is supported
1996 */
1997 vms->gic_version = finalize_gic_version_do(accel_name, vms->gic_version,
1998 gics_supported, max_cpus);
1999 }
2000
2001 /*
2002 * virt_cpu_post_init() must be called after the CPUs have
2003 * been realized and the GIC has been created.
2004 */
2005 static void virt_cpu_post_init(VirtMachineState *vms, MemoryRegion *sysmem)
2006 {
2007 int max_cpus = MACHINE(vms)->smp.max_cpus;
2008 bool aarch64, pmu, steal_time;
2009 CPUState *cpu;
2010
2011 aarch64 = object_property_get_bool(OBJECT(first_cpu), "aarch64", NULL);
2012 pmu = object_property_get_bool(OBJECT(first_cpu), "pmu", NULL);
2013 steal_time = object_property_get_bool(OBJECT(first_cpu),
2014 "kvm-steal-time", NULL);
2015
2016 if (kvm_enabled()) {
2017 hwaddr pvtime_reg_base = vms->memmap[VIRT_PVTIME].base;
2018 hwaddr pvtime_reg_size = vms->memmap[VIRT_PVTIME].size;
2019
2020 if (steal_time) {
2021 MemoryRegion *pvtime = g_new(MemoryRegion, 1);
2022 hwaddr pvtime_size = max_cpus * PVTIME_SIZE_PER_CPU;
2023
2024 /* The memory region size must be a multiple of host page size. */
2025 pvtime_size = REAL_HOST_PAGE_ALIGN(pvtime_size);
2026
2027 if (pvtime_size > pvtime_reg_size) {
2028 error_report("pvtime requires a %" HWADDR_PRId
2029 " byte memory region for %d CPUs,"
2030 " but only %" HWADDR_PRId " has been reserved",
2031 pvtime_size, max_cpus, pvtime_reg_size);
2032 exit(1);
2033 }
2034
2035 memory_region_init_ram(pvtime, NULL, "pvtime", pvtime_size, NULL);
2036 memory_region_add_subregion(sysmem, pvtime_reg_base, pvtime);
2037 }
2038
2039 CPU_FOREACH(cpu) {
2040 if (pmu) {
2041 assert(arm_feature(&ARM_CPU(cpu)->env, ARM_FEATURE_PMU));
2042 if (kvm_irqchip_in_kernel()) {
2043 kvm_arm_pmu_set_irq(ARM_CPU(cpu), VIRTUAL_PMU_IRQ);
2044 }
2045 kvm_arm_pmu_init(ARM_CPU(cpu));
2046 }
2047 if (steal_time) {
2048 kvm_arm_pvtime_init(ARM_CPU(cpu), pvtime_reg_base
2049 + cpu->cpu_index
2050 * PVTIME_SIZE_PER_CPU);
2051 }
2052 }
2053 } else {
2054 if (aarch64 && vms->highmem) {
2055 int requested_pa_size = 64 - clz64(vms->highest_gpa);
2056 int pamax = arm_pamax(ARM_CPU(first_cpu));
2057
2058 if (pamax < requested_pa_size) {
2059 error_report("VCPU supports less PA bits (%d) than "
2060 "requested by the memory map (%d)",
2061 pamax, requested_pa_size);
2062 exit(1);
2063 }
2064 }
2065 }
2066 }
2067
2068 static void machvirt_init(MachineState *machine)
2069 {
2070 VirtMachineState *vms = VIRT_MACHINE(machine);
2071 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
2072 MachineClass *mc = MACHINE_GET_CLASS(machine);
2073 const CPUArchIdList *possible_cpus;
2074 MemoryRegion *sysmem = get_system_memory();
2075 MemoryRegion *secure_sysmem = NULL;
2076 MemoryRegion *tag_sysmem = NULL;
2077 MemoryRegion *secure_tag_sysmem = NULL;
2078 int n, virt_max_cpus;
2079 bool firmware_loaded;
2080 bool aarch64 = true;
2081 bool has_ged = !vmc->no_ged;
2082 unsigned int smp_cpus = machine->smp.cpus;
2083 unsigned int max_cpus = machine->smp.max_cpus;
2084
2085 possible_cpus = mc->possible_cpu_arch_ids(machine);
2086
2087 /*
2088 * In accelerated mode, the memory map is computed earlier in kvm_type()
2089 * to create a VM with the right number of IPA bits.
2090 */
2091 if (!vms->memmap) {
2092 Object *cpuobj;
2093 ARMCPU *armcpu;
2094 int pa_bits;
2095
2096 /*
2097 * Instantiate a temporary CPU object to find out about what
2098 * we are about to deal with. Once this is done, get rid of
2099 * the object.
2100 */
2101 cpuobj = object_new(possible_cpus->cpus[0].type);
2102 armcpu = ARM_CPU(cpuobj);
2103
2104 pa_bits = arm_pamax(armcpu);
2105
2106 object_unref(cpuobj);
2107
2108 virt_set_memmap(vms, pa_bits);
2109 }
2110
2111 /* We can probe only here because during property set
2112 * KVM is not available yet
2113 */
2114 finalize_gic_version(vms);
2115
2116 if (vms->secure) {
2117 /*
2118 * The Secure view of the world is the same as the NonSecure,
2119 * but with a few extra devices. Create it as a container region
2120 * containing the system memory at low priority; any secure-only
2121 * devices go in at higher priority and take precedence.
2122 */
2123 secure_sysmem = g_new(MemoryRegion, 1);
2124 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
2125 UINT64_MAX);
2126 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
2127 }
2128
2129 firmware_loaded = virt_firmware_init(vms, sysmem,
2130 secure_sysmem ?: sysmem);
2131
2132 /* If we have an EL3 boot ROM then the assumption is that it will
2133 * implement PSCI itself, so disable QEMU's internal implementation
2134 * so it doesn't get in the way. Instead of starting secondary
2135 * CPUs in PSCI powerdown state we will start them all running and
2136 * let the boot ROM sort them out.
2137 * The usual case is that we do use QEMU's PSCI implementation;
2138 * if the guest has EL2 then we will use SMC as the conduit,
2139 * and otherwise we will use HVC (for backwards compatibility and
2140 * because if we're using KVM then we must use HVC).
2141 */
2142 if (vms->secure && firmware_loaded) {
2143 vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
2144 } else if (vms->virt) {
2145 vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
2146 } else {
2147 vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
2148 }
2149
2150 /*
2151 * The maximum number of CPUs depends on the GIC version, or on how
2152 * many redistributors we can fit into the memory map (which in turn
2153 * depends on whether this is a GICv3 or v4).
2154 */
2155 if (vms->gic_version == VIRT_GIC_VERSION_2) {
2156 virt_max_cpus = GIC_NCPU;
2157 } else {
2158 virt_max_cpus = virt_redist_capacity(vms, VIRT_GIC_REDIST);
2159 if (vms->highmem_redists) {
2160 virt_max_cpus += virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2);
2161 }
2162 }
2163
2164 if (max_cpus > virt_max_cpus) {
2165 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
2166 "supported by machine 'mach-virt' (%d)",
2167 max_cpus, virt_max_cpus);
2168 if (vms->gic_version != VIRT_GIC_VERSION_2 && !vms->highmem_redists) {
2169 error_printf("Try 'highmem-redists=on' for more CPUs\n");
2170 }
2171
2172 exit(1);
2173 }
2174
2175 if (vms->secure && (kvm_enabled() || hvf_enabled())) {
2176 error_report("mach-virt: %s does not support providing "
2177 "Security extensions (TrustZone) to the guest CPU",
2178 current_accel_name());
2179 exit(1);
2180 }
2181
2182 if (vms->virt && (kvm_enabled() || hvf_enabled())) {
2183 error_report("mach-virt: %s does not support providing "
2184 "Virtualization extensions to the guest CPU",
2185 current_accel_name());
2186 exit(1);
2187 }
2188
2189 if (vms->mte && (kvm_enabled() || hvf_enabled())) {
2190 error_report("mach-virt: %s does not support providing "
2191 "MTE to the guest CPU",
2192 current_accel_name());
2193 exit(1);
2194 }
2195
2196 create_fdt(vms);
2197
2198 assert(possible_cpus->len == max_cpus);
2199 for (n = 0; n < possible_cpus->len; n++) {
2200 Object *cpuobj;
2201 CPUState *cs;
2202
2203 if (n >= smp_cpus) {
2204 break;
2205 }
2206
2207 cpuobj = object_new(possible_cpus->cpus[n].type);
2208 object_property_set_int(cpuobj, "mp-affinity",
2209 possible_cpus->cpus[n].arch_id, NULL);
2210
2211 cs = CPU(cpuobj);
2212 cs->cpu_index = n;
2213
2214 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
2215 &error_fatal);
2216
2217 aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
2218
2219 if (!vms->secure) {
2220 object_property_set_bool(cpuobj, "has_el3", false, NULL);
2221 }
2222
2223 if (!vms->virt && object_property_find(cpuobj, "has_el2")) {
2224 object_property_set_bool(cpuobj, "has_el2", false, NULL);
2225 }
2226
2227 if (vmc->kvm_no_adjvtime &&
2228 object_property_find(cpuobj, "kvm-no-adjvtime")) {
2229 object_property_set_bool(cpuobj, "kvm-no-adjvtime", true, NULL);
2230 }
2231
2232 if (vmc->no_kvm_steal_time &&
2233 object_property_find(cpuobj, "kvm-steal-time")) {
2234 object_property_set_bool(cpuobj, "kvm-steal-time", false, NULL);
2235 }
2236
2237 if (vmc->no_pmu && object_property_find(cpuobj, "pmu")) {
2238 object_property_set_bool(cpuobj, "pmu", false, NULL);
2239 }
2240
2241 if (vmc->no_tcg_lpa2 && object_property_find(cpuobj, "lpa2")) {
2242 object_property_set_bool(cpuobj, "lpa2", false, NULL);
2243 }
2244
2245 if (object_property_find(cpuobj, "reset-cbar")) {
2246 object_property_set_int(cpuobj, "reset-cbar",
2247 vms->memmap[VIRT_CPUPERIPHS].base,
2248 &error_abort);
2249 }
2250
2251 object_property_set_link(cpuobj, "memory", OBJECT(sysmem),
2252 &error_abort);
2253 if (vms->secure) {
2254 object_property_set_link(cpuobj, "secure-memory",
2255 OBJECT(secure_sysmem), &error_abort);
2256 }
2257
2258 if (vms->mte) {
2259 /* Create the memory region only once, but link to all cpus. */
2260 if (!tag_sysmem) {
2261 /*
2262 * The property exists only if MemTag is supported.
2263 * If it is, we must allocate the ram to back that up.
2264 */
2265 if (!object_property_find(cpuobj, "tag-memory")) {
2266 error_report("MTE requested, but not supported "
2267 "by the guest CPU");
2268 exit(1);
2269 }
2270
2271 tag_sysmem = g_new(MemoryRegion, 1);
2272 memory_region_init(tag_sysmem, OBJECT(machine),
2273 "tag-memory", UINT64_MAX / 32);
2274
2275 if (vms->secure) {
2276 secure_tag_sysmem = g_new(MemoryRegion, 1);
2277 memory_region_init(secure_tag_sysmem, OBJECT(machine),
2278 "secure-tag-memory", UINT64_MAX / 32);
2279
2280 /* As with ram, secure-tag takes precedence over tag. */
2281 memory_region_add_subregion_overlap(secure_tag_sysmem, 0,
2282 tag_sysmem, -1);
2283 }
2284 }
2285
2286 object_property_set_link(cpuobj, "tag-memory", OBJECT(tag_sysmem),
2287 &error_abort);
2288 if (vms->secure) {
2289 object_property_set_link(cpuobj, "secure-tag-memory",
2290 OBJECT(secure_tag_sysmem),
2291 &error_abort);
2292 }
2293 }
2294
2295 qdev_realize(DEVICE(cpuobj), NULL, &error_fatal);
2296 object_unref(cpuobj);
2297 }
2298
2299 /* Now we've created the CPUs we can see if they have the hypvirt timer */
2300 vms->ns_el2_virt_timer_irq = ns_el2_virt_timer_present() &&
2301 !vmc->no_ns_el2_virt_timer_irq;
2302
2303 fdt_add_timer_nodes(vms);
2304 fdt_add_cpu_nodes(vms);
2305
2306 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base,
2307 machine->ram);
2308
2309 virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem);
2310
2311 create_gic(vms, sysmem);
2312
2313 virt_cpu_post_init(vms, sysmem);
2314
2315 fdt_add_pmu_nodes(vms);
2316
2317 create_uart(vms, VIRT_UART, sysmem, serial_hd(0));
2318
2319 if (vms->secure) {
2320 create_secure_ram(vms, secure_sysmem, secure_tag_sysmem);
2321 create_uart(vms, VIRT_SECURE_UART, secure_sysmem, serial_hd(1));
2322 }
2323
2324 if (tag_sysmem) {
2325 create_tag_ram(tag_sysmem, vms->memmap[VIRT_MEM].base,
2326 machine->ram_size, "mach-virt.tag");
2327 }
2328
2329 vms->highmem_ecam &= (!firmware_loaded || aarch64);
2330
2331 create_rtc(vms);
2332
2333 create_pcie(vms);
2334
2335 if (has_ged && aarch64 && firmware_loaded && virt_is_acpi_enabled(vms)) {
2336 vms->acpi_dev = create_acpi_ged(vms);
2337 } else {
2338 create_gpio_devices(vms, VIRT_GPIO, sysmem);
2339 }
2340
2341 if (vms->secure && !vmc->no_secure_gpio) {
2342 create_gpio_devices(vms, VIRT_SECURE_GPIO, secure_sysmem);
2343 }
2344
2345 /* connect powerdown request */
2346 vms->powerdown_notifier.notify = virt_powerdown_req;
2347 qemu_register_powerdown_notifier(&vms->powerdown_notifier);
2348
2349 /* Create mmio transports, so the user can create virtio backends
2350 * (which will be automatically plugged in to the transports). If
2351 * no backend is created the transport will just sit harmlessly idle.
2352 */
2353 create_virtio_devices(vms);
2354
2355 vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
2356 rom_set_fw(vms->fw_cfg);
2357
2358 create_platform_bus(vms);
2359
2360 if (machine->nvdimms_state->is_enabled) {
2361 const struct AcpiGenericAddress arm_virt_nvdimm_acpi_dsmio = {
2362 .space_id = AML_AS_SYSTEM_MEMORY,
2363 .address = vms->memmap[VIRT_NVDIMM_ACPI].base,
2364 .bit_width = NVDIMM_ACPI_IO_LEN << 3
2365 };
2366
2367 nvdimm_init_acpi_state(machine->nvdimms_state, sysmem,
2368 arm_virt_nvdimm_acpi_dsmio,
2369 vms->fw_cfg, OBJECT(vms));
2370 }
2371
2372 vms->bootinfo.ram_size = machine->ram_size;
2373 vms->bootinfo.board_id = -1;
2374 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
2375 vms->bootinfo.get_dtb = machvirt_dtb;
2376 vms->bootinfo.skip_dtb_autoload = true;
2377 vms->bootinfo.firmware_loaded = firmware_loaded;
2378 vms->bootinfo.psci_conduit = vms->psci_conduit;
2379 arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo);
2380
2381 vms->machine_done.notify = virt_machine_done;
2382 qemu_add_machine_init_done_notifier(&vms->machine_done);
2383 }
2384
2385 static bool virt_get_secure(Object *obj, Error **errp)
2386 {
2387 VirtMachineState *vms = VIRT_MACHINE(obj);
2388
2389 return vms->secure;
2390 }
2391
2392 static void virt_set_secure(Object *obj, bool value, Error **errp)
2393 {
2394 VirtMachineState *vms = VIRT_MACHINE(obj);
2395
2396 vms->secure = value;
2397 }
2398
2399 static bool virt_get_virt(Object *obj, Error **errp)
2400 {
2401 VirtMachineState *vms = VIRT_MACHINE(obj);
2402
2403 return vms->virt;
2404 }
2405
2406 static void virt_set_virt(Object *obj, bool value, Error **errp)
2407 {
2408 VirtMachineState *vms = VIRT_MACHINE(obj);
2409
2410 vms->virt = value;
2411 }
2412
2413 static bool virt_get_highmem(Object *obj, Error **errp)
2414 {
2415 VirtMachineState *vms = VIRT_MACHINE(obj);
2416
2417 return vms->highmem;
2418 }
2419
2420 static void virt_set_highmem(Object *obj, bool value, Error **errp)
2421 {
2422 VirtMachineState *vms = VIRT_MACHINE(obj);
2423
2424 vms->highmem = value;
2425 }
2426
2427 static bool virt_get_compact_highmem(Object *obj, Error **errp)
2428 {
2429 VirtMachineState *vms = VIRT_MACHINE(obj);
2430
2431 return vms->highmem_compact;
2432 }
2433
2434 static void virt_set_compact_highmem(Object *obj, bool value, Error **errp)
2435 {
2436 VirtMachineState *vms = VIRT_MACHINE(obj);
2437
2438 vms->highmem_compact = value;
2439 }
2440
2441 static bool virt_get_highmem_redists(Object *obj, Error **errp)
2442 {
2443 VirtMachineState *vms = VIRT_MACHINE(obj);
2444
2445 return vms->highmem_redists;
2446 }
2447
2448 static void virt_set_highmem_redists(Object *obj, bool value, Error **errp)
2449 {
2450 VirtMachineState *vms = VIRT_MACHINE(obj);
2451
2452 vms->highmem_redists = value;
2453 }
2454
2455 static bool virt_get_highmem_ecam(Object *obj, Error **errp)
2456 {
2457 VirtMachineState *vms = VIRT_MACHINE(obj);
2458
2459 return vms->highmem_ecam;
2460 }
2461
2462 static void virt_set_highmem_ecam(Object *obj, bool value, Error **errp)
2463 {
2464 VirtMachineState *vms = VIRT_MACHINE(obj);
2465
2466 vms->highmem_ecam = value;
2467 }
2468
2469 static bool virt_get_highmem_mmio(Object *obj, Error **errp)
2470 {
2471 VirtMachineState *vms = VIRT_MACHINE(obj);
2472
2473 return vms->highmem_mmio;
2474 }
2475
2476 static void virt_set_highmem_mmio(Object *obj, bool value, Error **errp)
2477 {
2478 VirtMachineState *vms = VIRT_MACHINE(obj);
2479
2480 vms->highmem_mmio = value;
2481 }
2482
2483
2484 static bool virt_get_its(Object *obj, Error **errp)
2485 {
2486 VirtMachineState *vms = VIRT_MACHINE(obj);
2487
2488 return vms->its;
2489 }
2490
2491 static void virt_set_its(Object *obj, bool value, Error **errp)
2492 {
2493 VirtMachineState *vms = VIRT_MACHINE(obj);
2494
2495 vms->its = value;
2496 }
2497
2498 static bool virt_get_dtb_randomness(Object *obj, Error **errp)
2499 {
2500 VirtMachineState *vms = VIRT_MACHINE(obj);
2501
2502 return vms->dtb_randomness;
2503 }
2504
2505 static void virt_set_dtb_randomness(Object *obj, bool value, Error **errp)
2506 {
2507 VirtMachineState *vms = VIRT_MACHINE(obj);
2508
2509 vms->dtb_randomness = value;
2510 }
2511
2512 static char *virt_get_oem_id(Object *obj, Error **errp)
2513 {
2514 VirtMachineState *vms = VIRT_MACHINE(obj);
2515
2516 return g_strdup(vms->oem_id);
2517 }
2518
2519 static void virt_set_oem_id(Object *obj, const char *value, Error **errp)
2520 {
2521 VirtMachineState *vms = VIRT_MACHINE(obj);
2522 size_t len = strlen(value);
2523
2524 if (len > 6) {
2525 error_setg(errp,
2526 "User specified oem-id value is bigger than 6 bytes in size");
2527 return;
2528 }
2529
2530 strncpy(vms->oem_id, value, 6);
2531 }
2532
2533 static char *virt_get_oem_table_id(Object *obj, Error **errp)
2534 {
2535 VirtMachineState *vms = VIRT_MACHINE(obj);
2536
2537 return g_strdup(vms->oem_table_id);
2538 }
2539
2540 static void virt_set_oem_table_id(Object *obj, const char *value,
2541 Error **errp)
2542 {
2543 VirtMachineState *vms = VIRT_MACHINE(obj);
2544 size_t len = strlen(value);
2545
2546 if (len > 8) {
2547 error_setg(errp,
2548 "User specified oem-table-id value is bigger than 8 bytes in size");
2549 return;
2550 }
2551 strncpy(vms->oem_table_id, value, 8);
2552 }
2553
2554
2555 bool virt_is_acpi_enabled(VirtMachineState *vms)
2556 {
2557 if (vms->acpi == ON_OFF_AUTO_OFF) {
2558 return false;
2559 }
2560 return true;
2561 }
2562
2563 static void virt_get_acpi(Object *obj, Visitor *v, const char *name,
2564 void *opaque, Error **errp)
2565 {
2566 VirtMachineState *vms = VIRT_MACHINE(obj);
2567 OnOffAuto acpi = vms->acpi;
2568
2569 visit_type_OnOffAuto(v, name, &acpi, errp);
2570 }
2571
2572 static void virt_set_acpi(Object *obj, Visitor *v, const char *name,
2573 void *opaque, Error **errp)
2574 {
2575 VirtMachineState *vms = VIRT_MACHINE(obj);
2576
2577 visit_type_OnOffAuto(v, name, &vms->acpi, errp);
2578 }
2579
2580 static bool virt_get_ras(Object *obj, Error **errp)
2581 {
2582 VirtMachineState *vms = VIRT_MACHINE(obj);
2583
2584 return vms->ras;
2585 }
2586
2587 static void virt_set_ras(Object *obj, bool value, Error **errp)
2588 {
2589 VirtMachineState *vms = VIRT_MACHINE(obj);
2590
2591 vms->ras = value;
2592 }
2593
2594 static bool virt_get_mte(Object *obj, Error **errp)
2595 {
2596 VirtMachineState *vms = VIRT_MACHINE(obj);
2597
2598 return vms->mte;
2599 }
2600
2601 static void virt_set_mte(Object *obj, bool value, Error **errp)
2602 {
2603 VirtMachineState *vms = VIRT_MACHINE(obj);
2604
2605 vms->mte = value;
2606 }
2607
2608 static char *virt_get_gic_version(Object *obj, Error **errp)
2609 {
2610 VirtMachineState *vms = VIRT_MACHINE(obj);
2611 const char *val;
2612
2613 switch (vms->gic_version) {
2614 case VIRT_GIC_VERSION_4:
2615 val = "4";
2616 break;
2617 case VIRT_GIC_VERSION_3:
2618 val = "3";
2619 break;
2620 default:
2621 val = "2";
2622 break;
2623 }
2624 return g_strdup(val);
2625 }
2626
2627 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
2628 {
2629 VirtMachineState *vms = VIRT_MACHINE(obj);
2630
2631 if (!strcmp(value, "4")) {
2632 vms->gic_version = VIRT_GIC_VERSION_4;
2633 } else if (!strcmp(value, "3")) {
2634 vms->gic_version = VIRT_GIC_VERSION_3;
2635 } else if (!strcmp(value, "2")) {
2636 vms->gic_version = VIRT_GIC_VERSION_2;
2637 } else if (!strcmp(value, "host")) {
2638 vms->gic_version = VIRT_GIC_VERSION_HOST; /* Will probe later */
2639 } else if (!strcmp(value, "max")) {
2640 vms->gic_version = VIRT_GIC_VERSION_MAX; /* Will probe later */
2641 } else {
2642 error_setg(errp, "Invalid gic-version value");
2643 error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
2644 }
2645 }
2646
2647 static char *virt_get_iommu(Object *obj, Error **errp)
2648 {
2649 VirtMachineState *vms = VIRT_MACHINE(obj);
2650
2651 switch (vms->iommu) {
2652 case VIRT_IOMMU_NONE:
2653 return g_strdup("none");
2654 case VIRT_IOMMU_SMMUV3:
2655 return g_strdup("smmuv3");
2656 default:
2657 g_assert_not_reached();
2658 }
2659 }
2660
2661 static void virt_set_iommu(Object *obj, const char *value, Error **errp)
2662 {
2663 VirtMachineState *vms = VIRT_MACHINE(obj);
2664
2665 if (!strcmp(value, "smmuv3")) {
2666 vms->iommu = VIRT_IOMMU_SMMUV3;
2667 } else if (!strcmp(value, "none")) {
2668 vms->iommu = VIRT_IOMMU_NONE;
2669 } else {
2670 error_setg(errp, "Invalid iommu value");
2671 error_append_hint(errp, "Valid values are none, smmuv3.\n");
2672 }
2673 }
2674
2675 static bool virt_get_default_bus_bypass_iommu(Object *obj, Error **errp)
2676 {
2677 VirtMachineState *vms = VIRT_MACHINE(obj);
2678
2679 return vms->default_bus_bypass_iommu;
2680 }
2681
2682 static void virt_set_default_bus_bypass_iommu(Object *obj, bool value,
2683 Error **errp)
2684 {
2685 VirtMachineState *vms = VIRT_MACHINE(obj);
2686
2687 vms->default_bus_bypass_iommu = value;
2688 }
2689
2690 static CpuInstanceProperties
2691 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2692 {
2693 MachineClass *mc = MACHINE_GET_CLASS(ms);
2694 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2695
2696 assert(cpu_index < possible_cpus->len);
2697 return possible_cpus->cpus[cpu_index].props;
2698 }
2699
2700 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
2701 {
2702 int64_t socket_id = ms->possible_cpus->cpus[idx].props.socket_id;
2703
2704 return socket_id % ms->numa_state->num_nodes;
2705 }
2706
2707 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
2708 {
2709 int n;
2710 unsigned int max_cpus = ms->smp.max_cpus;
2711 VirtMachineState *vms = VIRT_MACHINE(ms);
2712 MachineClass *mc = MACHINE_GET_CLASS(vms);
2713
2714 if (ms->possible_cpus) {
2715 assert(ms->possible_cpus->len == max_cpus);
2716 return ms->possible_cpus;
2717 }
2718
2719 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2720 sizeof(CPUArchId) * max_cpus);
2721 ms->possible_cpus->len = max_cpus;
2722 for (n = 0; n < ms->possible_cpus->len; n++) {
2723 ms->possible_cpus->cpus[n].type = ms->cpu_type;
2724 ms->possible_cpus->cpus[n].arch_id =
2725 virt_cpu_mp_affinity(vms, n);
2726
2727 assert(!mc->smp_props.dies_supported);
2728 ms->possible_cpus->cpus[n].props.has_socket_id = true;
2729 ms->possible_cpus->cpus[n].props.socket_id =
2730 n / (ms->smp.clusters * ms->smp.cores * ms->smp.threads);
2731 ms->possible_cpus->cpus[n].props.has_cluster_id = true;
2732 ms->possible_cpus->cpus[n].props.cluster_id =
2733 (n / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters;
2734 ms->possible_cpus->cpus[n].props.has_core_id = true;
2735 ms->possible_cpus->cpus[n].props.core_id =
2736 (n / ms->smp.threads) % ms->smp.cores;
2737 ms->possible_cpus->cpus[n].props.has_thread_id = true;
2738 ms->possible_cpus->cpus[n].props.thread_id =
2739 n % ms->smp.threads;
2740 }
2741 return ms->possible_cpus;
2742 }
2743
2744 static void virt_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2745 Error **errp)
2746 {
2747 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2748 const MachineState *ms = MACHINE(hotplug_dev);
2749 const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2750
2751 if (!vms->acpi_dev) {
2752 error_setg(errp,
2753 "memory hotplug is not enabled: missing acpi-ged device");
2754 return;
2755 }
2756
2757 if (vms->mte) {
2758 error_setg(errp, "memory hotplug is not enabled: MTE is enabled");
2759 return;
2760 }
2761
2762 if (is_nvdimm && !ms->nvdimms_state->is_enabled) {
2763 error_setg(errp, "nvdimm is not enabled: add 'nvdimm=on' to '-M'");
2764 return;
2765 }
2766
2767 pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), NULL, errp);
2768 }
2769
2770 static void virt_memory_plug(HotplugHandler *hotplug_dev,
2771 DeviceState *dev, Error **errp)
2772 {
2773 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2774 MachineState *ms = MACHINE(hotplug_dev);
2775 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2776
2777 pc_dimm_plug(PC_DIMM(dev), MACHINE(vms));
2778
2779 if (is_nvdimm) {
2780 nvdimm_plug(ms->nvdimms_state);
2781 }
2782
2783 hotplug_handler_plug(HOTPLUG_HANDLER(vms->acpi_dev),
2784 dev, &error_abort);
2785 }
2786
2787 static void virt_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2788 DeviceState *dev, Error **errp)
2789 {
2790 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2791
2792 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2793 virt_memory_pre_plug(hotplug_dev, dev, errp);
2794 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
2795 virtio_md_pci_pre_plug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp);
2796 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2797 hwaddr db_start = 0, db_end = 0;
2798 QList *reserved_regions;
2799 char *resv_prop_str;
2800
2801 if (vms->iommu != VIRT_IOMMU_NONE) {
2802 error_setg(errp, "virt machine does not support multiple IOMMUs");
2803 return;
2804 }
2805
2806 switch (vms->msi_controller) {
2807 case VIRT_MSI_CTRL_NONE:
2808 return;
2809 case VIRT_MSI_CTRL_ITS:
2810 /* GITS_TRANSLATER page */
2811 db_start = base_memmap[VIRT_GIC_ITS].base + 0x10000;
2812 db_end = base_memmap[VIRT_GIC_ITS].base +
2813 base_memmap[VIRT_GIC_ITS].size - 1;
2814 break;
2815 case VIRT_MSI_CTRL_GICV2M:
2816 /* MSI_SETSPI_NS page */
2817 db_start = base_memmap[VIRT_GIC_V2M].base;
2818 db_end = db_start + base_memmap[VIRT_GIC_V2M].size - 1;
2819 break;
2820 }
2821 resv_prop_str = g_strdup_printf("0x%"PRIx64":0x%"PRIx64":%u",
2822 db_start, db_end,
2823 VIRTIO_IOMMU_RESV_MEM_T_MSI);
2824
2825 reserved_regions = qlist_new();
2826 qlist_append_str(reserved_regions, resv_prop_str);
2827 qdev_prop_set_array(dev, "reserved-regions", reserved_regions);
2828 g_free(resv_prop_str);
2829 }
2830 }
2831
2832 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2833 DeviceState *dev, Error **errp)
2834 {
2835 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2836
2837 if (vms->platform_bus_dev) {
2838 MachineClass *mc = MACHINE_GET_CLASS(vms);
2839
2840 if (device_is_dynamic_sysbus(mc, dev)) {
2841 platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
2842 SYS_BUS_DEVICE(dev));
2843 }
2844 }
2845
2846 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2847 virt_memory_plug(hotplug_dev, dev, errp);
2848 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
2849 virtio_md_pci_plug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp);
2850 }
2851
2852 if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2853 PCIDevice *pdev = PCI_DEVICE(dev);
2854
2855 vms->iommu = VIRT_IOMMU_VIRTIO;
2856 vms->virtio_iommu_bdf = pci_get_bdf(pdev);
2857 create_virtio_iommu_dt_bindings(vms);
2858 }
2859 }
2860
2861 static void virt_dimm_unplug_request(HotplugHandler *hotplug_dev,
2862 DeviceState *dev, Error **errp)
2863 {
2864 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2865
2866 if (!vms->acpi_dev) {
2867 error_setg(errp,
2868 "memory hotplug is not enabled: missing acpi-ged device");
2869 return;
2870 }
2871
2872 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
2873 error_setg(errp, "nvdimm device hot unplug is not supported yet.");
2874 return;
2875 }
2876
2877 hotplug_handler_unplug_request(HOTPLUG_HANDLER(vms->acpi_dev), dev,
2878 errp);
2879 }
2880
2881 static void virt_dimm_unplug(HotplugHandler *hotplug_dev,
2882 DeviceState *dev, Error **errp)
2883 {
2884 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2885 Error *local_err = NULL;
2886
2887 hotplug_handler_unplug(HOTPLUG_HANDLER(vms->acpi_dev), dev, &local_err);
2888 if (local_err) {
2889 goto out;
2890 }
2891
2892 pc_dimm_unplug(PC_DIMM(dev), MACHINE(vms));
2893 qdev_unrealize(dev);
2894
2895 out:
2896 error_propagate(errp, local_err);
2897 }
2898
2899 static void virt_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2900 DeviceState *dev, Error **errp)
2901 {
2902 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2903 virt_dimm_unplug_request(hotplug_dev, dev, errp);
2904 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
2905 virtio_md_pci_unplug_request(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev),
2906 errp);
2907 } else {
2908 error_setg(errp, "device unplug request for unsupported device"
2909 " type: %s", object_get_typename(OBJECT(dev)));
2910 }
2911 }
2912
2913 static void virt_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2914 DeviceState *dev, Error **errp)
2915 {
2916 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2917 virt_dimm_unplug(hotplug_dev, dev, errp);
2918 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
2919 virtio_md_pci_unplug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp);
2920 } else {
2921 error_setg(errp, "virt: device unplug for unsupported device"
2922 " type: %s", object_get_typename(OBJECT(dev)));
2923 }
2924 }
2925
2926 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
2927 DeviceState *dev)
2928 {
2929 MachineClass *mc = MACHINE_GET_CLASS(machine);
2930
2931 if (device_is_dynamic_sysbus(mc, dev) ||
2932 object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2933 object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI) ||
2934 object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2935 return HOTPLUG_HANDLER(machine);
2936 }
2937 return NULL;
2938 }
2939
2940 /*
2941 * for arm64 kvm_type [7-0] encodes the requested number of bits
2942 * in the IPA address space
2943 */
2944 static int virt_kvm_type(MachineState *ms, const char *type_str)
2945 {
2946 VirtMachineState *vms = VIRT_MACHINE(ms);
2947 int max_vm_pa_size, requested_pa_size;
2948 bool fixed_ipa;
2949
2950 max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa);
2951
2952 /* we freeze the memory map to compute the highest gpa */
2953 virt_set_memmap(vms, max_vm_pa_size);
2954
2955 requested_pa_size = 64 - clz64(vms->highest_gpa);
2956
2957 /*
2958 * KVM requires the IPA size to be at least 32 bits.
2959 */
2960 if (requested_pa_size < 32) {
2961 requested_pa_size = 32;
2962 }
2963
2964 if (requested_pa_size > max_vm_pa_size) {
2965 error_report("-m and ,maxmem option values "
2966 "require an IPA range (%d bits) larger than "
2967 "the one supported by the host (%d bits)",
2968 requested_pa_size, max_vm_pa_size);
2969 return -1;
2970 }
2971 /*
2972 * We return the requested PA log size, unless KVM only supports
2973 * the implicit legacy 40b IPA setting, in which case the kvm_type
2974 * must be 0.
2975 */
2976 return fixed_ipa ? 0 : requested_pa_size;
2977 }
2978
2979 static void virt_machine_class_init(ObjectClass *oc, void *data)
2980 {
2981 MachineClass *mc = MACHINE_CLASS(oc);
2982 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2983 static const char * const valid_cpu_types[] = {
2984 #ifdef CONFIG_TCG
2985 ARM_CPU_TYPE_NAME("cortex-a7"),
2986 ARM_CPU_TYPE_NAME("cortex-a15"),
2987 #ifdef TARGET_AARCH64
2988 ARM_CPU_TYPE_NAME("cortex-a35"),
2989 ARM_CPU_TYPE_NAME("cortex-a55"),
2990 ARM_CPU_TYPE_NAME("cortex-a72"),
2991 ARM_CPU_TYPE_NAME("cortex-a76"),
2992 ARM_CPU_TYPE_NAME("cortex-a710"),
2993 ARM_CPU_TYPE_NAME("a64fx"),
2994 ARM_CPU_TYPE_NAME("neoverse-n1"),
2995 ARM_CPU_TYPE_NAME("neoverse-v1"),
2996 ARM_CPU_TYPE_NAME("neoverse-n2"),
2997 #endif /* TARGET_AARCH64 */
2998 #endif /* CONFIG_TCG */
2999 #ifdef TARGET_AARCH64
3000 ARM_CPU_TYPE_NAME("cortex-a53"),
3001 ARM_CPU_TYPE_NAME("cortex-a57"),
3002 #if defined(CONFIG_KVM) || defined(CONFIG_HVF)
3003 ARM_CPU_TYPE_NAME("host"),
3004 #endif /* CONFIG_KVM || CONFIG_HVF */
3005 #endif /* TARGET_AARCH64 */
3006 ARM_CPU_TYPE_NAME("max"),
3007 NULL
3008 };
3009
3010 mc->init = machvirt_init;
3011 /* Start with max_cpus set to 512, which is the maximum supported by KVM.
3012 * The value may be reduced later when we have more information about the
3013 * configuration of the particular instance.
3014 */
3015 mc->max_cpus = 512;
3016 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
3017 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
3018 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
3019 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM);
3020 #ifdef CONFIG_TPM
3021 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_TPM_TIS_SYSBUS);
3022 #endif
3023 mc->block_default_type = IF_VIRTIO;
3024 mc->no_cdrom = 1;
3025 mc->pci_allow_0_address = true;
3026 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
3027 mc->minimum_page_bits = 12;
3028 mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
3029 mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
3030 #ifdef CONFIG_TCG
3031 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
3032 #else
3033 mc->default_cpu_type = ARM_CPU_TYPE_NAME("max");
3034 #endif
3035 mc->valid_cpu_types = valid_cpu_types;
3036 mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
3037 mc->kvm_type = virt_kvm_type;
3038 assert(!mc->get_hotplug_handler);
3039 mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
3040 hc->pre_plug = virt_machine_device_pre_plug_cb;
3041 hc->plug = virt_machine_device_plug_cb;
3042 hc->unplug_request = virt_machine_device_unplug_request_cb;
3043 hc->unplug = virt_machine_device_unplug_cb;
3044 mc->nvdimm_supported = true;
3045 mc->smp_props.clusters_supported = true;
3046 mc->auto_enable_numa_with_memhp = true;
3047 mc->auto_enable_numa_with_memdev = true;
3048 /* platform instead of architectural choice */
3049 mc->cpu_cluster_has_numa_boundary = true;
3050 mc->default_ram_id = "mach-virt.ram";
3051 mc->default_nic = "virtio-net-pci";
3052
3053 object_class_property_add(oc, "acpi", "OnOffAuto",
3054 virt_get_acpi, virt_set_acpi,
3055 NULL, NULL);
3056 object_class_property_set_description(oc, "acpi",
3057 "Enable ACPI");
3058 object_class_property_add_bool(oc, "secure", virt_get_secure,
3059 virt_set_secure);
3060 object_class_property_set_description(oc, "secure",
3061 "Set on/off to enable/disable the ARM "
3062 "Security Extensions (TrustZone)");
3063
3064 object_class_property_add_bool(oc, "virtualization", virt_get_virt,
3065 virt_set_virt);
3066 object_class_property_set_description(oc, "virtualization",
3067 "Set on/off to enable/disable emulating a "
3068 "guest CPU which implements the ARM "
3069 "Virtualization Extensions");
3070
3071 object_class_property_add_bool(oc, "highmem", virt_get_highmem,
3072 virt_set_highmem);
3073 object_class_property_set_description(oc, "highmem",
3074 "Set on/off to enable/disable using "
3075 "physical address space above 32 bits");
3076
3077 object_class_property_add_bool(oc, "compact-highmem",
3078 virt_get_compact_highmem,
3079 virt_set_compact_highmem);
3080 object_class_property_set_description(oc, "compact-highmem",
3081 "Set on/off to enable/disable compact "
3082 "layout for high memory regions");
3083
3084 object_class_property_add_bool(oc, "highmem-redists",
3085 virt_get_highmem_redists,
3086 virt_set_highmem_redists);
3087 object_class_property_set_description(oc, "highmem-redists",
3088 "Set on/off to enable/disable high "
3089 "memory region for GICv3 or GICv4 "
3090 "redistributor");
3091
3092 object_class_property_add_bool(oc, "highmem-ecam",
3093 virt_get_highmem_ecam,
3094 virt_set_highmem_ecam);
3095 object_class_property_set_description(oc, "highmem-ecam",
3096 "Set on/off to enable/disable high "
3097 "memory region for PCI ECAM");
3098
3099 object_class_property_add_bool(oc, "highmem-mmio",
3100 virt_get_highmem_mmio,
3101 virt_set_highmem_mmio);
3102 object_class_property_set_description(oc, "highmem-mmio",
3103 "Set on/off to enable/disable high "
3104 "memory region for PCI MMIO");
3105
3106 object_class_property_add_str(oc, "gic-version", virt_get_gic_version,
3107 virt_set_gic_version);
3108 object_class_property_set_description(oc, "gic-version",
3109 "Set GIC version. "
3110 "Valid values are 2, 3, 4, host and max");
3111
3112 object_class_property_add_str(oc, "iommu", virt_get_iommu, virt_set_iommu);
3113 object_class_property_set_description(oc, "iommu",
3114 "Set the IOMMU type. "
3115 "Valid values are none and smmuv3");
3116
3117 object_class_property_add_bool(oc, "default-bus-bypass-iommu",
3118 virt_get_default_bus_bypass_iommu,
3119 virt_set_default_bus_bypass_iommu);
3120 object_class_property_set_description(oc, "default-bus-bypass-iommu",
3121 "Set on/off to enable/disable "
3122 "bypass_iommu for default root bus");
3123
3124 object_class_property_add_bool(oc, "ras", virt_get_ras,
3125 virt_set_ras);
3126 object_class_property_set_description(oc, "ras",
3127 "Set on/off to enable/disable reporting host memory errors "
3128 "to a KVM guest using ACPI and guest external abort exceptions");
3129
3130 object_class_property_add_bool(oc, "mte", virt_get_mte, virt_set_mte);
3131 object_class_property_set_description(oc, "mte",
3132 "Set on/off to enable/disable emulating a "
3133 "guest CPU which implements the ARM "
3134 "Memory Tagging Extension");
3135
3136 object_class_property_add_bool(oc, "its", virt_get_its,
3137 virt_set_its);
3138 object_class_property_set_description(oc, "its",
3139 "Set on/off to enable/disable "
3140 "ITS instantiation");
3141
3142 object_class_property_add_bool(oc, "dtb-randomness",
3143 virt_get_dtb_randomness,
3144 virt_set_dtb_randomness);
3145 object_class_property_set_description(oc, "dtb-randomness",
3146 "Set off to disable passing random or "
3147 "non-deterministic dtb nodes to guest");
3148
3149 object_class_property_add_bool(oc, "dtb-kaslr-seed",
3150 virt_get_dtb_randomness,
3151 virt_set_dtb_randomness);
3152 object_class_property_set_description(oc, "dtb-kaslr-seed",
3153 "Deprecated synonym of dtb-randomness");
3154
3155 object_class_property_add_str(oc, "x-oem-id",
3156 virt_get_oem_id,
3157 virt_set_oem_id);
3158 object_class_property_set_description(oc, "x-oem-id",
3159 "Override the default value of field OEMID "
3160 "in ACPI table header."
3161 "The string may be up to 6 bytes in size");
3162
3163
3164 object_class_property_add_str(oc, "x-oem-table-id",
3165 virt_get_oem_table_id,
3166 virt_set_oem_table_id);
3167 object_class_property_set_description(oc, "x-oem-table-id",
3168 "Override the default value of field OEM Table ID "
3169 "in ACPI table header."
3170 "The string may be up to 8 bytes in size");
3171
3172 }
3173
3174 static void virt_instance_init(Object *obj)
3175 {
3176 VirtMachineState *vms = VIRT_MACHINE(obj);
3177 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
3178
3179 /* EL3 is disabled by default on virt: this makes us consistent
3180 * between KVM and TCG for this board, and it also allows us to
3181 * boot UEFI blobs which assume no TrustZone support.
3182 */
3183 vms->secure = false;
3184
3185 /* EL2 is also disabled by default, for similar reasons */
3186 vms->virt = false;
3187
3188 /* High memory is enabled by default */
3189 vms->highmem = true;
3190 vms->highmem_compact = !vmc->no_highmem_compact;
3191 vms->gic_version = VIRT_GIC_VERSION_NOSEL;
3192
3193 vms->highmem_ecam = !vmc->no_highmem_ecam;
3194 vms->highmem_mmio = true;
3195 vms->highmem_redists = true;
3196
3197 if (vmc->no_its) {
3198 vms->its = false;
3199 } else {
3200 /* Default allows ITS instantiation */
3201 vms->its = true;
3202
3203 if (vmc->no_tcg_its) {
3204 vms->tcg_its = false;
3205 } else {
3206 vms->tcg_its = true;
3207 }
3208 }
3209
3210 /* Default disallows iommu instantiation */
3211 vms->iommu = VIRT_IOMMU_NONE;
3212
3213 /* The default root bus is attached to iommu by default */
3214 vms->default_bus_bypass_iommu = false;
3215
3216 /* Default disallows RAS instantiation */
3217 vms->ras = false;
3218
3219 /* MTE is disabled by default. */
3220 vms->mte = false;
3221
3222 /* Supply kaslr-seed and rng-seed by default */
3223 vms->dtb_randomness = true;
3224
3225 vms->irqmap = a15irqmap;
3226
3227 virt_flash_create(vms);
3228
3229 vms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6);
3230 vms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8);
3231 }
3232
3233 static const TypeInfo virt_machine_info = {
3234 .name = TYPE_VIRT_MACHINE,
3235 .parent = TYPE_MACHINE,
3236 .abstract = true,
3237 .instance_size = sizeof(VirtMachineState),
3238 .class_size = sizeof(VirtMachineClass),
3239 .class_init = virt_machine_class_init,
3240 .instance_init = virt_instance_init,
3241 .interfaces = (InterfaceInfo[]) {
3242 { TYPE_HOTPLUG_HANDLER },
3243 { }
3244 },
3245 };
3246
3247 static void machvirt_machine_init(void)
3248 {
3249 type_register_static(&virt_machine_info);
3250 }
3251 type_init(machvirt_machine_init);
3252
3253 static void virt_machine_9_1_options(MachineClass *mc)
3254 {
3255 }
3256 DEFINE_VIRT_MACHINE_AS_LATEST(9, 1)
3257
3258 static void virt_machine_9_0_options(MachineClass *mc)
3259 {
3260 virt_machine_9_1_options(mc);
3261 compat_props_add(mc->compat_props, hw_compat_9_0, hw_compat_9_0_len);
3262 }
3263 DEFINE_VIRT_MACHINE(9, 0)
3264
3265 static void virt_machine_8_2_options(MachineClass *mc)
3266 {
3267 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3268
3269 virt_machine_9_0_options(mc);
3270 compat_props_add(mc->compat_props, hw_compat_8_2, hw_compat_8_2_len);
3271 /*
3272 * Don't expose NS_EL2_VIRT timer IRQ in DTB on ACPI on 8.2 and
3273 * earlier machines. (Exposing it tickles a bug in older EDK2
3274 * guest BIOS binaries.)
3275 */
3276 vmc->no_ns_el2_virt_timer_irq = true;
3277 }
3278 DEFINE_VIRT_MACHINE(8, 2)
3279
3280 static void virt_machine_8_1_options(MachineClass *mc)
3281 {
3282 virt_machine_8_2_options(mc);
3283 compat_props_add(mc->compat_props, hw_compat_8_1, hw_compat_8_1_len);
3284 }
3285 DEFINE_VIRT_MACHINE(8, 1)
3286
3287 static void virt_machine_8_0_options(MachineClass *mc)
3288 {
3289 virt_machine_8_1_options(mc);
3290 compat_props_add(mc->compat_props, hw_compat_8_0, hw_compat_8_0_len);
3291 }
3292 DEFINE_VIRT_MACHINE(8, 0)
3293
3294 static void virt_machine_7_2_options(MachineClass *mc)
3295 {
3296 virt_machine_8_0_options(mc);
3297 compat_props_add(mc->compat_props, hw_compat_7_2, hw_compat_7_2_len);
3298 }
3299 DEFINE_VIRT_MACHINE(7, 2)
3300
3301 static void virt_machine_7_1_options(MachineClass *mc)
3302 {
3303 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3304
3305 virt_machine_7_2_options(mc);
3306 compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len);
3307 /* Compact layout for high memory regions was introduced with 7.2 */
3308 vmc->no_highmem_compact = true;
3309 }
3310 DEFINE_VIRT_MACHINE(7, 1)
3311
3312 static void virt_machine_7_0_options(MachineClass *mc)
3313 {
3314 virt_machine_7_1_options(mc);
3315 compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len);
3316 }
3317 DEFINE_VIRT_MACHINE(7, 0)
3318
3319 static void virt_machine_6_2_options(MachineClass *mc)
3320 {
3321 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3322
3323 virt_machine_7_0_options(mc);
3324 compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len);
3325 vmc->no_tcg_lpa2 = true;
3326 }
3327 DEFINE_VIRT_MACHINE(6, 2)
3328
3329 static void virt_machine_6_1_options(MachineClass *mc)
3330 {
3331 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3332
3333 virt_machine_6_2_options(mc);
3334 compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len);
3335 mc->smp_props.prefer_sockets = true;
3336 vmc->no_cpu_topology = true;
3337
3338 /* qemu ITS was introduced with 6.2 */
3339 vmc->no_tcg_its = true;
3340 }
3341 DEFINE_VIRT_MACHINE(6, 1)
3342
3343 static void virt_machine_6_0_options(MachineClass *mc)
3344 {
3345 virt_machine_6_1_options(mc);
3346 compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len);
3347 }
3348 DEFINE_VIRT_MACHINE(6, 0)
3349
3350 static void virt_machine_5_2_options(MachineClass *mc)
3351 {
3352 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3353
3354 virt_machine_6_0_options(mc);
3355 compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
3356 vmc->no_secure_gpio = true;
3357 }
3358 DEFINE_VIRT_MACHINE(5, 2)
3359
3360 static void virt_machine_5_1_options(MachineClass *mc)
3361 {
3362 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3363
3364 virt_machine_5_2_options(mc);
3365 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
3366 vmc->no_kvm_steal_time = true;
3367 }
3368 DEFINE_VIRT_MACHINE(5, 1)
3369
3370 static void virt_machine_5_0_options(MachineClass *mc)
3371 {
3372 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3373
3374 virt_machine_5_1_options(mc);
3375 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
3376 mc->numa_mem_supported = true;
3377 vmc->acpi_expose_flash = true;
3378 mc->auto_enable_numa_with_memdev = false;
3379 }
3380 DEFINE_VIRT_MACHINE(5, 0)
3381
3382 static void virt_machine_4_2_options(MachineClass *mc)
3383 {
3384 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3385
3386 virt_machine_5_0_options(mc);
3387 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
3388 vmc->kvm_no_adjvtime = true;
3389 }
3390 DEFINE_VIRT_MACHINE(4, 2)
3391
3392 static void virt_machine_4_1_options(MachineClass *mc)
3393 {
3394 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3395
3396 virt_machine_4_2_options(mc);
3397 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
3398 vmc->no_ged = true;
3399 mc->auto_enable_numa_with_memhp = false;
3400 }
3401 DEFINE_VIRT_MACHINE(4, 1)
3402
3403 static void virt_machine_4_0_options(MachineClass *mc)
3404 {
3405 virt_machine_4_1_options(mc);
3406 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
3407 }
3408 DEFINE_VIRT_MACHINE(4, 0)
3409
3410 static void virt_machine_3_1_options(MachineClass *mc)
3411 {
3412 virt_machine_4_0_options(mc);
3413 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
3414 }
3415 DEFINE_VIRT_MACHINE(3, 1)
3416
3417 static void virt_machine_3_0_options(MachineClass *mc)
3418 {
3419 virt_machine_3_1_options(mc);
3420 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
3421 }
3422 DEFINE_VIRT_MACHINE(3, 0)
3423
3424 static void virt_machine_2_12_options(MachineClass *mc)
3425 {
3426 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3427
3428 virt_machine_3_0_options(mc);
3429 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
3430 vmc->no_highmem_ecam = true;
3431 mc->max_cpus = 255;
3432 }
3433 DEFINE_VIRT_MACHINE(2, 12)
3434
3435 static void virt_machine_2_11_options(MachineClass *mc)
3436 {
3437 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3438
3439 virt_machine_2_12_options(mc);
3440 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
3441 vmc->smbios_old_sys_ver = true;
3442 }
3443 DEFINE_VIRT_MACHINE(2, 11)
3444
3445 static void virt_machine_2_10_options(MachineClass *mc)
3446 {
3447 virt_machine_2_11_options(mc);
3448 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
3449 /* before 2.11 we never faulted accesses to bad addresses */
3450 mc->ignore_memory_transaction_failures = true;
3451 }
3452 DEFINE_VIRT_MACHINE(2, 10)
3453
3454 static void virt_machine_2_9_options(MachineClass *mc)
3455 {
3456 virt_machine_2_10_options(mc);
3457 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
3458 }
3459 DEFINE_VIRT_MACHINE(2, 9)
3460
3461 static void virt_machine_2_8_options(MachineClass *mc)
3462 {
3463 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3464
3465 virt_machine_2_9_options(mc);
3466 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
3467 /* For 2.8 and earlier we falsely claimed in the DT that
3468 * our timers were edge-triggered, not level-triggered.
3469 */
3470 vmc->claim_edge_triggered_timers = true;
3471 }
3472 DEFINE_VIRT_MACHINE(2, 8)
3473
3474 static void virt_machine_2_7_options(MachineClass *mc)
3475 {
3476 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3477
3478 virt_machine_2_8_options(mc);
3479 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
3480 /* ITS was introduced with 2.8 */
3481 vmc->no_its = true;
3482 /* Stick with 1K pages for migration compatibility */
3483 mc->minimum_page_bits = 0;
3484 }
3485 DEFINE_VIRT_MACHINE(2, 7)
3486
3487 static void virt_machine_2_6_options(MachineClass *mc)
3488 {
3489 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3490
3491 virt_machine_2_7_options(mc);
3492 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
3493 vmc->disallow_affinity_adjustment = true;
3494 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
3495 vmc->no_pmu = true;
3496 }
3497 DEFINE_VIRT_MACHINE(2, 6)