]> git.proxmox.com Git - mirror_qemu.git/blob - hw/arm/virt.c
machine: move compat properties out of globals
[mirror_qemu.git] / hw / arm / virt.c
1 /*
2 * ARM mach-virt emulation
3 *
4 * Copyright (c) 2013 Linaro Limited
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
17 *
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
29 */
30
31 #include "qemu/osdep.h"
32 #include "qapi/error.h"
33 #include "hw/sysbus.h"
34 #include "hw/arm/arm.h"
35 #include "hw/arm/primecell.h"
36 #include "hw/arm/virt.h"
37 #include "hw/vfio/vfio-calxeda-xgmac.h"
38 #include "hw/vfio/vfio-amd-xgbe.h"
39 #include "hw/display/ramfb.h"
40 #include "hw/devices.h"
41 #include "net/net.h"
42 #include "sysemu/device_tree.h"
43 #include "sysemu/numa.h"
44 #include "sysemu/sysemu.h"
45 #include "sysemu/kvm.h"
46 #include "hw/compat.h"
47 #include "hw/loader.h"
48 #include "exec/address-spaces.h"
49 #include "qemu/bitops.h"
50 #include "qemu/error-report.h"
51 #include "hw/pci-host/gpex.h"
52 #include "hw/arm/sysbus-fdt.h"
53 #include "hw/platform-bus.h"
54 #include "hw/arm/fdt.h"
55 #include "hw/intc/arm_gic.h"
56 #include "hw/intc/arm_gicv3_common.h"
57 #include "kvm_arm.h"
58 #include "hw/firmware/smbios.h"
59 #include "qapi/visitor.h"
60 #include "standard-headers/linux/input.h"
61 #include "hw/arm/smmuv3.h"
62
63 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
64 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
65 void *data) \
66 { \
67 MachineClass *mc = MACHINE_CLASS(oc); \
68 virt_machine_##major##_##minor##_options(mc); \
69 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
70 if (latest) { \
71 mc->alias = "virt"; \
72 } \
73 } \
74 static const TypeInfo machvirt_##major##_##minor##_info = { \
75 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
76 .parent = TYPE_VIRT_MACHINE, \
77 .class_init = virt_##major##_##minor##_class_init, \
78 }; \
79 static void machvirt_machine_##major##_##minor##_init(void) \
80 { \
81 type_register_static(&machvirt_##major##_##minor##_info); \
82 } \
83 type_init(machvirt_machine_##major##_##minor##_init);
84
85 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
86 DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
87 #define DEFINE_VIRT_MACHINE(major, minor) \
88 DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
89
90
91 /* Number of external interrupt lines to configure the GIC with */
92 #define NUM_IRQS 256
93
94 #define PLATFORM_BUS_NUM_IRQS 64
95
96 /* RAM limit in GB. Since VIRT_MEM starts at the 1GB mark, this means
97 * RAM can go up to the 256GB mark, leaving 256GB of the physical
98 * address space unallocated and free for future use between 256G and 512G.
99 * If we need to provide more RAM to VMs in the future then we need to:
100 * * allocate a second bank of RAM starting at 2TB and working up
101 * * fix the DT and ACPI table generation code in QEMU to correctly
102 * report two split lumps of RAM to the guest
103 * * fix KVM in the host kernel to allow guests with >40 bit address spaces
104 * (We don't want to fill all the way up to 512GB with RAM because
105 * we might want it for non-RAM purposes later. Conversely it seems
106 * reasonable to assume that anybody configuring a VM with a quarter
107 * of a terabyte of RAM will be doing it on a host with more than a
108 * terabyte of physical address space.)
109 */
110 #define RAMLIMIT_GB 255
111 #define RAMLIMIT_BYTES (RAMLIMIT_GB * 1024ULL * 1024 * 1024)
112
113 /* Addresses and sizes of our components.
114 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
115 * 128MB..256MB is used for miscellaneous device I/O.
116 * 256MB..1GB is reserved for possible future PCI support (ie where the
117 * PCI memory window will go if we add a PCI host controller).
118 * 1GB and up is RAM (which may happily spill over into the
119 * high memory region beyond 4GB).
120 * This represents a compromise between how much RAM can be given to
121 * a 32 bit VM and leaving space for expansion and in particular for PCI.
122 * Note that devices should generally be placed at multiples of 0x10000,
123 * to accommodate guests using 64K pages.
124 */
125 static const MemMapEntry a15memmap[] = {
126 /* Space up to 0x8000000 is reserved for a boot ROM */
127 [VIRT_FLASH] = { 0, 0x08000000 },
128 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
129 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
130 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
131 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
132 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 },
133 [VIRT_GIC_HYP] = { 0x08030000, 0x00010000 },
134 [VIRT_GIC_VCPU] = { 0x08040000, 0x00010000 },
135 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
136 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 },
137 /* This redistributor space allows up to 2*64kB*123 CPUs */
138 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 },
139 [VIRT_UART] = { 0x09000000, 0x00001000 },
140 [VIRT_RTC] = { 0x09010000, 0x00001000 },
141 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 },
142 [VIRT_GPIO] = { 0x09030000, 0x00001000 },
143 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 },
144 [VIRT_SMMU] = { 0x09050000, 0x00020000 },
145 [VIRT_MMIO] = { 0x0a000000, 0x00000200 },
146 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
147 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 },
148 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 },
149 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 },
150 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 },
151 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 },
152 [VIRT_MEM] = { 0x40000000, RAMLIMIT_BYTES },
153 /* Additional 64 MB redist region (can contain up to 512 redistributors) */
154 [VIRT_GIC_REDIST2] = { 0x4000000000ULL, 0x4000000 },
155 [VIRT_PCIE_ECAM_HIGH] = { 0x4010000000ULL, 0x10000000 },
156 /* Second PCIe window, 512GB wide at the 512GB boundary */
157 [VIRT_PCIE_MMIO_HIGH] = { 0x8000000000ULL, 0x8000000000ULL },
158 };
159
160 static const int a15irqmap[] = {
161 [VIRT_UART] = 1,
162 [VIRT_RTC] = 2,
163 [VIRT_PCIE] = 3, /* ... to 6 */
164 [VIRT_GPIO] = 7,
165 [VIRT_SECURE_UART] = 8,
166 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
167 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
168 [VIRT_SMMU] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */
169 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
170 };
171
172 static const char *valid_cpus[] = {
173 ARM_CPU_TYPE_NAME("cortex-a15"),
174 ARM_CPU_TYPE_NAME("cortex-a53"),
175 ARM_CPU_TYPE_NAME("cortex-a57"),
176 ARM_CPU_TYPE_NAME("cortex-a72"),
177 ARM_CPU_TYPE_NAME("host"),
178 ARM_CPU_TYPE_NAME("max"),
179 };
180
181 static bool cpu_type_valid(const char *cpu)
182 {
183 int i;
184
185 for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
186 if (strcmp(cpu, valid_cpus[i]) == 0) {
187 return true;
188 }
189 }
190 return false;
191 }
192
193 static void create_fdt(VirtMachineState *vms)
194 {
195 void *fdt = create_device_tree(&vms->fdt_size);
196
197 if (!fdt) {
198 error_report("create_device_tree() failed");
199 exit(1);
200 }
201
202 vms->fdt = fdt;
203
204 /* Header */
205 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
206 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
207 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
208
209 /* /chosen must exist for load_dtb to fill in necessary properties later */
210 qemu_fdt_add_subnode(fdt, "/chosen");
211
212 /* Clock node, for the benefit of the UART. The kernel device tree
213 * binding documentation claims the PL011 node clock properties are
214 * optional but in practice if you omit them the kernel refuses to
215 * probe for the device.
216 */
217 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
218 qemu_fdt_add_subnode(fdt, "/apb-pclk");
219 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
220 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
221 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
222 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
223 "clk24mhz");
224 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
225
226 if (have_numa_distance) {
227 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
228 uint32_t *matrix = g_malloc0(size);
229 int idx, i, j;
230
231 for (i = 0; i < nb_numa_nodes; i++) {
232 for (j = 0; j < nb_numa_nodes; j++) {
233 idx = (i * nb_numa_nodes + j) * 3;
234 matrix[idx + 0] = cpu_to_be32(i);
235 matrix[idx + 1] = cpu_to_be32(j);
236 matrix[idx + 2] = cpu_to_be32(numa_info[i].distance[j]);
237 }
238 }
239
240 qemu_fdt_add_subnode(fdt, "/distance-map");
241 qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
242 "numa-distance-map-v1");
243 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
244 matrix, size);
245 g_free(matrix);
246 }
247 }
248
249 static void fdt_add_timer_nodes(const VirtMachineState *vms)
250 {
251 /* On real hardware these interrupts are level-triggered.
252 * On KVM they were edge-triggered before host kernel version 4.4,
253 * and level-triggered afterwards.
254 * On emulated QEMU they are level-triggered.
255 *
256 * Getting the DTB info about them wrong is awkward for some
257 * guest kernels:
258 * pre-4.8 ignore the DT and leave the interrupt configured
259 * with whatever the GIC reset value (or the bootloader) left it at
260 * 4.8 before rc6 honour the incorrect data by programming it back
261 * into the GIC, causing problems
262 * 4.8rc6 and later ignore the DT and always write "level triggered"
263 * into the GIC
264 *
265 * For backwards-compatibility, virt-2.8 and earlier will continue
266 * to say these are edge-triggered, but later machines will report
267 * the correct information.
268 */
269 ARMCPU *armcpu;
270 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
271 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
272
273 if (vmc->claim_edge_triggered_timers) {
274 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
275 }
276
277 if (vms->gic_version == 2) {
278 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
279 GIC_FDT_IRQ_PPI_CPU_WIDTH,
280 (1 << vms->smp_cpus) - 1);
281 }
282
283 qemu_fdt_add_subnode(vms->fdt, "/timer");
284
285 armcpu = ARM_CPU(qemu_get_cpu(0));
286 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
287 const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
288 qemu_fdt_setprop(vms->fdt, "/timer", "compatible",
289 compat, sizeof(compat));
290 } else {
291 qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible",
292 "arm,armv7-timer");
293 }
294 qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0);
295 qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts",
296 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
297 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
298 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
299 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
300 }
301
302 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
303 {
304 int cpu;
305 int addr_cells = 1;
306 const MachineState *ms = MACHINE(vms);
307
308 /*
309 * From Documentation/devicetree/bindings/arm/cpus.txt
310 * On ARM v8 64-bit systems value should be set to 2,
311 * that corresponds to the MPIDR_EL1 register size.
312 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
313 * in the system, #address-cells can be set to 1, since
314 * MPIDR_EL1[63:32] bits are not used for CPUs
315 * identification.
316 *
317 * Here we actually don't know whether our system is 32- or 64-bit one.
318 * The simplest way to go is to examine affinity IDs of all our CPUs. If
319 * at least one of them has Aff3 populated, we set #address-cells to 2.
320 */
321 for (cpu = 0; cpu < vms->smp_cpus; cpu++) {
322 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
323
324 if (armcpu->mp_affinity & ARM_AFF3_MASK) {
325 addr_cells = 2;
326 break;
327 }
328 }
329
330 qemu_fdt_add_subnode(vms->fdt, "/cpus");
331 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells);
332 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0);
333
334 for (cpu = vms->smp_cpus - 1; cpu >= 0; cpu--) {
335 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
336 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
337 CPUState *cs = CPU(armcpu);
338
339 qemu_fdt_add_subnode(vms->fdt, nodename);
340 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu");
341 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
342 armcpu->dtb_compatible);
343
344 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED
345 && vms->smp_cpus > 1) {
346 qemu_fdt_setprop_string(vms->fdt, nodename,
347 "enable-method", "psci");
348 }
349
350 if (addr_cells == 2) {
351 qemu_fdt_setprop_u64(vms->fdt, nodename, "reg",
352 armcpu->mp_affinity);
353 } else {
354 qemu_fdt_setprop_cell(vms->fdt, nodename, "reg",
355 armcpu->mp_affinity);
356 }
357
358 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
359 qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id",
360 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
361 }
362
363 g_free(nodename);
364 }
365 }
366
367 static void fdt_add_its_gic_node(VirtMachineState *vms)
368 {
369 char *nodename;
370
371 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
372 nodename = g_strdup_printf("/intc/its@%" PRIx64,
373 vms->memmap[VIRT_GIC_ITS].base);
374 qemu_fdt_add_subnode(vms->fdt, nodename);
375 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
376 "arm,gic-v3-its");
377 qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0);
378 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
379 2, vms->memmap[VIRT_GIC_ITS].base,
380 2, vms->memmap[VIRT_GIC_ITS].size);
381 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle);
382 g_free(nodename);
383 }
384
385 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
386 {
387 char *nodename;
388
389 nodename = g_strdup_printf("/intc/v2m@%" PRIx64,
390 vms->memmap[VIRT_GIC_V2M].base);
391 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
392 qemu_fdt_add_subnode(vms->fdt, nodename);
393 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
394 "arm,gic-v2m-frame");
395 qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0);
396 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
397 2, vms->memmap[VIRT_GIC_V2M].base,
398 2, vms->memmap[VIRT_GIC_V2M].size);
399 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle);
400 g_free(nodename);
401 }
402
403 static void fdt_add_gic_node(VirtMachineState *vms)
404 {
405 char *nodename;
406
407 vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt);
408 qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle);
409
410 nodename = g_strdup_printf("/intc@%" PRIx64,
411 vms->memmap[VIRT_GIC_DIST].base);
412 qemu_fdt_add_subnode(vms->fdt, nodename);
413 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 3);
414 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-controller", NULL, 0);
415 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 0x2);
416 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 0x2);
417 qemu_fdt_setprop(vms->fdt, nodename, "ranges", NULL, 0);
418 if (vms->gic_version == 3) {
419 int nb_redist_regions = virt_gicv3_redist_region_count(vms);
420
421 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
422 "arm,gic-v3");
423
424 qemu_fdt_setprop_cell(vms->fdt, nodename,
425 "#redistributor-regions", nb_redist_regions);
426
427 if (nb_redist_regions == 1) {
428 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
429 2, vms->memmap[VIRT_GIC_DIST].base,
430 2, vms->memmap[VIRT_GIC_DIST].size,
431 2, vms->memmap[VIRT_GIC_REDIST].base,
432 2, vms->memmap[VIRT_GIC_REDIST].size);
433 } else {
434 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
435 2, vms->memmap[VIRT_GIC_DIST].base,
436 2, vms->memmap[VIRT_GIC_DIST].size,
437 2, vms->memmap[VIRT_GIC_REDIST].base,
438 2, vms->memmap[VIRT_GIC_REDIST].size,
439 2, vms->memmap[VIRT_GIC_REDIST2].base,
440 2, vms->memmap[VIRT_GIC_REDIST2].size);
441 }
442
443 if (vms->virt) {
444 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
445 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
446 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
447 }
448 } else {
449 /* 'cortex-a15-gic' means 'GIC v2' */
450 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
451 "arm,cortex-a15-gic");
452 if (!vms->virt) {
453 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
454 2, vms->memmap[VIRT_GIC_DIST].base,
455 2, vms->memmap[VIRT_GIC_DIST].size,
456 2, vms->memmap[VIRT_GIC_CPU].base,
457 2, vms->memmap[VIRT_GIC_CPU].size);
458 } else {
459 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
460 2, vms->memmap[VIRT_GIC_DIST].base,
461 2, vms->memmap[VIRT_GIC_DIST].size,
462 2, vms->memmap[VIRT_GIC_CPU].base,
463 2, vms->memmap[VIRT_GIC_CPU].size,
464 2, vms->memmap[VIRT_GIC_HYP].base,
465 2, vms->memmap[VIRT_GIC_HYP].size,
466 2, vms->memmap[VIRT_GIC_VCPU].base,
467 2, vms->memmap[VIRT_GIC_VCPU].size);
468 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
469 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
470 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
471 }
472 }
473
474 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->gic_phandle);
475 g_free(nodename);
476 }
477
478 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
479 {
480 CPUState *cpu;
481 ARMCPU *armcpu;
482 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
483
484 CPU_FOREACH(cpu) {
485 armcpu = ARM_CPU(cpu);
486 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
487 return;
488 }
489 if (kvm_enabled()) {
490 if (kvm_irqchip_in_kernel()) {
491 kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ));
492 }
493 kvm_arm_pmu_init(cpu);
494 }
495 }
496
497 if (vms->gic_version == 2) {
498 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
499 GIC_FDT_IRQ_PPI_CPU_WIDTH,
500 (1 << vms->smp_cpus) - 1);
501 }
502
503 armcpu = ARM_CPU(qemu_get_cpu(0));
504 qemu_fdt_add_subnode(vms->fdt, "/pmu");
505 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
506 const char compat[] = "arm,armv8-pmuv3";
507 qemu_fdt_setprop(vms->fdt, "/pmu", "compatible",
508 compat, sizeof(compat));
509 qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts",
510 GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
511 }
512 }
513
514 static void create_its(VirtMachineState *vms, DeviceState *gicdev)
515 {
516 const char *itsclass = its_class_name();
517 DeviceState *dev;
518
519 if (!itsclass) {
520 /* Do nothing if not supported */
521 return;
522 }
523
524 dev = qdev_create(NULL, itsclass);
525
526 object_property_set_link(OBJECT(dev), OBJECT(gicdev), "parent-gicv3",
527 &error_abort);
528 qdev_init_nofail(dev);
529 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
530
531 fdt_add_its_gic_node(vms);
532 }
533
534 static void create_v2m(VirtMachineState *vms, qemu_irq *pic)
535 {
536 int i;
537 int irq = vms->irqmap[VIRT_GIC_V2M];
538 DeviceState *dev;
539
540 dev = qdev_create(NULL, "arm-gicv2m");
541 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
542 qdev_prop_set_uint32(dev, "base-spi", irq);
543 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
544 qdev_init_nofail(dev);
545
546 for (i = 0; i < NUM_GICV2M_SPIS; i++) {
547 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
548 }
549
550 fdt_add_v2m_gic_node(vms);
551 }
552
553 static void create_gic(VirtMachineState *vms, qemu_irq *pic)
554 {
555 /* We create a standalone GIC */
556 DeviceState *gicdev;
557 SysBusDevice *gicbusdev;
558 const char *gictype;
559 int type = vms->gic_version, i;
560 uint32_t nb_redist_regions = 0;
561
562 gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
563
564 gicdev = qdev_create(NULL, gictype);
565 qdev_prop_set_uint32(gicdev, "revision", type);
566 qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
567 /* Note that the num-irq property counts both internal and external
568 * interrupts; there are always 32 of the former (mandated by GIC spec).
569 */
570 qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
571 if (!kvm_irqchip_in_kernel()) {
572 qdev_prop_set_bit(gicdev, "has-security-extensions", vms->secure);
573 }
574
575 if (type == 3) {
576 uint32_t redist0_capacity =
577 vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
578 uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
579
580 nb_redist_regions = virt_gicv3_redist_region_count(vms);
581
582 qdev_prop_set_uint32(gicdev, "len-redist-region-count",
583 nb_redist_regions);
584 qdev_prop_set_uint32(gicdev, "redist-region-count[0]", redist0_count);
585
586 if (nb_redist_regions == 2) {
587 uint32_t redist1_capacity =
588 vms->memmap[VIRT_GIC_REDIST2].size / GICV3_REDIST_SIZE;
589
590 qdev_prop_set_uint32(gicdev, "redist-region-count[1]",
591 MIN(smp_cpus - redist0_count, redist1_capacity));
592 }
593 } else {
594 if (!kvm_irqchip_in_kernel()) {
595 qdev_prop_set_bit(gicdev, "has-virtualization-extensions",
596 vms->virt);
597 }
598 }
599 qdev_init_nofail(gicdev);
600 gicbusdev = SYS_BUS_DEVICE(gicdev);
601 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
602 if (type == 3) {
603 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
604 if (nb_redist_regions == 2) {
605 sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_REDIST2].base);
606 }
607 } else {
608 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
609 if (vms->virt) {
610 sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base);
611 sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base);
612 }
613 }
614
615 /* Wire the outputs from each CPU's generic timer and the GICv3
616 * maintenance interrupt signal to the appropriate GIC PPI inputs,
617 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
618 */
619 for (i = 0; i < smp_cpus; i++) {
620 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
621 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
622 int irq;
623 /* Mapping from the output timer irq lines from the CPU to the
624 * GIC PPI inputs we use for the virt board.
625 */
626 const int timer_irq[] = {
627 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
628 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
629 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
630 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
631 };
632
633 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
634 qdev_connect_gpio_out(cpudev, irq,
635 qdev_get_gpio_in(gicdev,
636 ppibase + timer_irq[irq]));
637 }
638
639 if (type == 3) {
640 qemu_irq irq = qdev_get_gpio_in(gicdev,
641 ppibase + ARCH_GIC_MAINT_IRQ);
642 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt",
643 0, irq);
644 } else if (vms->virt) {
645 qemu_irq irq = qdev_get_gpio_in(gicdev,
646 ppibase + ARCH_GIC_MAINT_IRQ);
647 sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq);
648 }
649
650 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
651 qdev_get_gpio_in(gicdev, ppibase
652 + VIRTUAL_PMU_IRQ));
653
654 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
655 sysbus_connect_irq(gicbusdev, i + smp_cpus,
656 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
657 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
658 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
659 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
660 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
661 }
662
663 for (i = 0; i < NUM_IRQS; i++) {
664 pic[i] = qdev_get_gpio_in(gicdev, i);
665 }
666
667 fdt_add_gic_node(vms);
668
669 if (type == 3 && vms->its) {
670 create_its(vms, gicdev);
671 } else if (type == 2) {
672 create_v2m(vms, pic);
673 }
674 }
675
676 static void create_uart(const VirtMachineState *vms, qemu_irq *pic, int uart,
677 MemoryRegion *mem, Chardev *chr)
678 {
679 char *nodename;
680 hwaddr base = vms->memmap[uart].base;
681 hwaddr size = vms->memmap[uart].size;
682 int irq = vms->irqmap[uart];
683 const char compat[] = "arm,pl011\0arm,primecell";
684 const char clocknames[] = "uartclk\0apb_pclk";
685 DeviceState *dev = qdev_create(NULL, "pl011");
686 SysBusDevice *s = SYS_BUS_DEVICE(dev);
687
688 qdev_prop_set_chr(dev, "chardev", chr);
689 qdev_init_nofail(dev);
690 memory_region_add_subregion(mem, base,
691 sysbus_mmio_get_region(s, 0));
692 sysbus_connect_irq(s, 0, pic[irq]);
693
694 nodename = g_strdup_printf("/pl011@%" PRIx64, base);
695 qemu_fdt_add_subnode(vms->fdt, nodename);
696 /* Note that we can't use setprop_string because of the embedded NUL */
697 qemu_fdt_setprop(vms->fdt, nodename, "compatible",
698 compat, sizeof(compat));
699 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
700 2, base, 2, size);
701 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
702 GIC_FDT_IRQ_TYPE_SPI, irq,
703 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
704 qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks",
705 vms->clock_phandle, vms->clock_phandle);
706 qemu_fdt_setprop(vms->fdt, nodename, "clock-names",
707 clocknames, sizeof(clocknames));
708
709 if (uart == VIRT_UART) {
710 qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename);
711 } else {
712 /* Mark as not usable by the normal world */
713 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
714 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
715
716 qemu_fdt_add_subnode(vms->fdt, "/secure-chosen");
717 qemu_fdt_setprop_string(vms->fdt, "/secure-chosen", "stdout-path",
718 nodename);
719 }
720
721 g_free(nodename);
722 }
723
724 static void create_rtc(const VirtMachineState *vms, qemu_irq *pic)
725 {
726 char *nodename;
727 hwaddr base = vms->memmap[VIRT_RTC].base;
728 hwaddr size = vms->memmap[VIRT_RTC].size;
729 int irq = vms->irqmap[VIRT_RTC];
730 const char compat[] = "arm,pl031\0arm,primecell";
731
732 sysbus_create_simple("pl031", base, pic[irq]);
733
734 nodename = g_strdup_printf("/pl031@%" PRIx64, base);
735 qemu_fdt_add_subnode(vms->fdt, nodename);
736 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
737 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
738 2, base, 2, size);
739 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
740 GIC_FDT_IRQ_TYPE_SPI, irq,
741 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
742 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
743 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
744 g_free(nodename);
745 }
746
747 static DeviceState *gpio_key_dev;
748 static void virt_powerdown_req(Notifier *n, void *opaque)
749 {
750 /* use gpio Pin 3 for power button event */
751 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
752 }
753
754 static Notifier virt_system_powerdown_notifier = {
755 .notify = virt_powerdown_req
756 };
757
758 static void create_gpio(const VirtMachineState *vms, qemu_irq *pic)
759 {
760 char *nodename;
761 DeviceState *pl061_dev;
762 hwaddr base = vms->memmap[VIRT_GPIO].base;
763 hwaddr size = vms->memmap[VIRT_GPIO].size;
764 int irq = vms->irqmap[VIRT_GPIO];
765 const char compat[] = "arm,pl061\0arm,primecell";
766
767 pl061_dev = sysbus_create_simple("pl061", base, pic[irq]);
768
769 uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt);
770 nodename = g_strdup_printf("/pl061@%" PRIx64, base);
771 qemu_fdt_add_subnode(vms->fdt, nodename);
772 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
773 2, base, 2, size);
774 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
775 qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2);
776 qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0);
777 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
778 GIC_FDT_IRQ_TYPE_SPI, irq,
779 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
780 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
781 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
782 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle);
783
784 gpio_key_dev = sysbus_create_simple("gpio-key", -1,
785 qdev_get_gpio_in(pl061_dev, 3));
786 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys");
787 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys");
788 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0);
789 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1);
790
791 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff");
792 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff",
793 "label", "GPIO Key Poweroff");
794 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code",
795 KEY_POWER);
796 qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff",
797 "gpios", phandle, 3, 0);
798
799 /* connect powerdown request */
800 qemu_register_powerdown_notifier(&virt_system_powerdown_notifier);
801
802 g_free(nodename);
803 }
804
805 static void create_virtio_devices(const VirtMachineState *vms, qemu_irq *pic)
806 {
807 int i;
808 hwaddr size = vms->memmap[VIRT_MMIO].size;
809
810 /* We create the transports in forwards order. Since qbus_realize()
811 * prepends (not appends) new child buses, the incrementing loop below will
812 * create a list of virtio-mmio buses with decreasing base addresses.
813 *
814 * When a -device option is processed from the command line,
815 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
816 * order. The upshot is that -device options in increasing command line
817 * order are mapped to virtio-mmio buses with decreasing base addresses.
818 *
819 * When this code was originally written, that arrangement ensured that the
820 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
821 * the first -device on the command line. (The end-to-end order is a
822 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
823 * guest kernel's name-to-address assignment strategy.)
824 *
825 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
826 * the message, if not necessarily the code, of commit 70161ff336.
827 * Therefore the loop now establishes the inverse of the original intent.
828 *
829 * Unfortunately, we can't counteract the kernel change by reversing the
830 * loop; it would break existing command lines.
831 *
832 * In any case, the kernel makes no guarantee about the stability of
833 * enumeration order of virtio devices (as demonstrated by it changing
834 * between kernel versions). For reliable and stable identification
835 * of disks users must use UUIDs or similar mechanisms.
836 */
837 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
838 int irq = vms->irqmap[VIRT_MMIO] + i;
839 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
840
841 sysbus_create_simple("virtio-mmio", base, pic[irq]);
842 }
843
844 /* We add dtb nodes in reverse order so that they appear in the finished
845 * device tree lowest address first.
846 *
847 * Note that this mapping is independent of the loop above. The previous
848 * loop influences virtio device to virtio transport assignment, whereas
849 * this loop controls how virtio transports are laid out in the dtb.
850 */
851 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
852 char *nodename;
853 int irq = vms->irqmap[VIRT_MMIO] + i;
854 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
855
856 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
857 qemu_fdt_add_subnode(vms->fdt, nodename);
858 qemu_fdt_setprop_string(vms->fdt, nodename,
859 "compatible", "virtio,mmio");
860 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
861 2, base, 2, size);
862 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
863 GIC_FDT_IRQ_TYPE_SPI, irq,
864 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
865 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
866 g_free(nodename);
867 }
868 }
869
870 static void create_one_flash(const char *name, hwaddr flashbase,
871 hwaddr flashsize, const char *file,
872 MemoryRegion *sysmem)
873 {
874 /* Create and map a single flash device. We use the same
875 * parameters as the flash devices on the Versatile Express board.
876 */
877 DriveInfo *dinfo = drive_get_next(IF_PFLASH);
878 DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
879 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
880 const uint64_t sectorlength = 256 * 1024;
881
882 if (dinfo) {
883 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
884 &error_abort);
885 }
886
887 qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
888 qdev_prop_set_uint64(dev, "sector-length", sectorlength);
889 qdev_prop_set_uint8(dev, "width", 4);
890 qdev_prop_set_uint8(dev, "device-width", 2);
891 qdev_prop_set_bit(dev, "big-endian", false);
892 qdev_prop_set_uint16(dev, "id0", 0x89);
893 qdev_prop_set_uint16(dev, "id1", 0x18);
894 qdev_prop_set_uint16(dev, "id2", 0x00);
895 qdev_prop_set_uint16(dev, "id3", 0x00);
896 qdev_prop_set_string(dev, "name", name);
897 qdev_init_nofail(dev);
898
899 memory_region_add_subregion(sysmem, flashbase,
900 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0));
901
902 if (file) {
903 char *fn;
904 int image_size;
905
906 if (drive_get(IF_PFLASH, 0, 0)) {
907 error_report("The contents of the first flash device may be "
908 "specified with -bios or with -drive if=pflash... "
909 "but you cannot use both options at once");
910 exit(1);
911 }
912 fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, file);
913 if (!fn) {
914 error_report("Could not find ROM image '%s'", file);
915 exit(1);
916 }
917 image_size = load_image_mr(fn, sysbus_mmio_get_region(sbd, 0));
918 g_free(fn);
919 if (image_size < 0) {
920 error_report("Could not load ROM image '%s'", file);
921 exit(1);
922 }
923 }
924 }
925
926 static void create_flash(const VirtMachineState *vms,
927 MemoryRegion *sysmem,
928 MemoryRegion *secure_sysmem)
929 {
930 /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
931 * Any file passed via -bios goes in the first of these.
932 * sysmem is the system memory space. secure_sysmem is the secure view
933 * of the system, and the first flash device should be made visible only
934 * there. The second flash device is visible to both secure and nonsecure.
935 * If sysmem == secure_sysmem this means there is no separate Secure
936 * address space and both flash devices are generally visible.
937 */
938 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
939 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
940 char *nodename;
941
942 create_one_flash("virt.flash0", flashbase, flashsize,
943 bios_name, secure_sysmem);
944 create_one_flash("virt.flash1", flashbase + flashsize, flashsize,
945 NULL, sysmem);
946
947 if (sysmem == secure_sysmem) {
948 /* Report both flash devices as a single node in the DT */
949 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
950 qemu_fdt_add_subnode(vms->fdt, nodename);
951 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
952 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
953 2, flashbase, 2, flashsize,
954 2, flashbase + flashsize, 2, flashsize);
955 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
956 g_free(nodename);
957 } else {
958 /* Report the devices as separate nodes so we can mark one as
959 * only visible to the secure world.
960 */
961 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
962 qemu_fdt_add_subnode(vms->fdt, nodename);
963 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
964 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
965 2, flashbase, 2, flashsize);
966 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
967 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
968 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
969 g_free(nodename);
970
971 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
972 qemu_fdt_add_subnode(vms->fdt, nodename);
973 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
974 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
975 2, flashbase + flashsize, 2, flashsize);
976 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
977 g_free(nodename);
978 }
979 }
980
981 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
982 {
983 hwaddr base = vms->memmap[VIRT_FW_CFG].base;
984 hwaddr size = vms->memmap[VIRT_FW_CFG].size;
985 FWCfgState *fw_cfg;
986 char *nodename;
987
988 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
989 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus);
990
991 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
992 qemu_fdt_add_subnode(vms->fdt, nodename);
993 qemu_fdt_setprop_string(vms->fdt, nodename,
994 "compatible", "qemu,fw-cfg-mmio");
995 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
996 2, base, 2, size);
997 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
998 g_free(nodename);
999 return fw_cfg;
1000 }
1001
1002 static void create_pcie_irq_map(const VirtMachineState *vms,
1003 uint32_t gic_phandle,
1004 int first_irq, const char *nodename)
1005 {
1006 int devfn, pin;
1007 uint32_t full_irq_map[4 * 4 * 10] = { 0 };
1008 uint32_t *irq_map = full_irq_map;
1009
1010 for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
1011 for (pin = 0; pin < 4; pin++) {
1012 int irq_type = GIC_FDT_IRQ_TYPE_SPI;
1013 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
1014 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
1015 int i;
1016
1017 uint32_t map[] = {
1018 devfn << 8, 0, 0, /* devfn */
1019 pin + 1, /* PCI pin */
1020 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
1021
1022 /* Convert map to big endian */
1023 for (i = 0; i < 10; i++) {
1024 irq_map[i] = cpu_to_be32(map[i]);
1025 }
1026 irq_map += 10;
1027 }
1028 }
1029
1030 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map",
1031 full_irq_map, sizeof(full_irq_map));
1032
1033 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask",
1034 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
1035 0x7 /* PCI irq */);
1036 }
1037
1038 static void create_smmu(const VirtMachineState *vms, qemu_irq *pic,
1039 PCIBus *bus)
1040 {
1041 char *node;
1042 const char compat[] = "arm,smmu-v3";
1043 int irq = vms->irqmap[VIRT_SMMU];
1044 int i;
1045 hwaddr base = vms->memmap[VIRT_SMMU].base;
1046 hwaddr size = vms->memmap[VIRT_SMMU].size;
1047 const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
1048 DeviceState *dev;
1049
1050 if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
1051 return;
1052 }
1053
1054 dev = qdev_create(NULL, "arm-smmuv3");
1055
1056 object_property_set_link(OBJECT(dev), OBJECT(bus), "primary-bus",
1057 &error_abort);
1058 qdev_init_nofail(dev);
1059 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
1060 for (i = 0; i < NUM_SMMU_IRQS; i++) {
1061 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1062 }
1063
1064 node = g_strdup_printf("/smmuv3@%" PRIx64, base);
1065 qemu_fdt_add_subnode(vms->fdt, node);
1066 qemu_fdt_setprop(vms->fdt, node, "compatible", compat, sizeof(compat));
1067 qemu_fdt_setprop_sized_cells(vms->fdt, node, "reg", 2, base, 2, size);
1068
1069 qemu_fdt_setprop_cells(vms->fdt, node, "interrupts",
1070 GIC_FDT_IRQ_TYPE_SPI, irq , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1071 GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1072 GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1073 GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1074
1075 qemu_fdt_setprop(vms->fdt, node, "interrupt-names", irq_names,
1076 sizeof(irq_names));
1077
1078 qemu_fdt_setprop_cell(vms->fdt, node, "clocks", vms->clock_phandle);
1079 qemu_fdt_setprop_string(vms->fdt, node, "clock-names", "apb_pclk");
1080 qemu_fdt_setprop(vms->fdt, node, "dma-coherent", NULL, 0);
1081
1082 qemu_fdt_setprop_cell(vms->fdt, node, "#iommu-cells", 1);
1083
1084 qemu_fdt_setprop_cell(vms->fdt, node, "phandle", vms->iommu_phandle);
1085 g_free(node);
1086 }
1087
1088 static void create_pcie(VirtMachineState *vms, qemu_irq *pic)
1089 {
1090 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1091 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
1092 hwaddr base_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].base;
1093 hwaddr size_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].size;
1094 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1095 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
1096 hwaddr base_ecam, size_ecam;
1097 hwaddr base = base_mmio;
1098 int nr_pcie_buses;
1099 int irq = vms->irqmap[VIRT_PCIE];
1100 MemoryRegion *mmio_alias;
1101 MemoryRegion *mmio_reg;
1102 MemoryRegion *ecam_alias;
1103 MemoryRegion *ecam_reg;
1104 DeviceState *dev;
1105 char *nodename;
1106 int i, ecam_id;
1107 PCIHostState *pci;
1108
1109 dev = qdev_create(NULL, TYPE_GPEX_HOST);
1110 qdev_init_nofail(dev);
1111
1112 ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
1113 base_ecam = vms->memmap[ecam_id].base;
1114 size_ecam = vms->memmap[ecam_id].size;
1115 nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
1116 /* Map only the first size_ecam bytes of ECAM space */
1117 ecam_alias = g_new0(MemoryRegion, 1);
1118 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1119 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1120 ecam_reg, 0, size_ecam);
1121 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1122
1123 /* Map the MMIO window into system address space so as to expose
1124 * the section of PCI MMIO space which starts at the same base address
1125 * (ie 1:1 mapping for that part of PCI MMIO space visible through
1126 * the window).
1127 */
1128 mmio_alias = g_new0(MemoryRegion, 1);
1129 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1130 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1131 mmio_reg, base_mmio, size_mmio);
1132 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1133
1134 if (vms->highmem) {
1135 /* Map high MMIO space */
1136 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1137
1138 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1139 mmio_reg, base_mmio_high, size_mmio_high);
1140 memory_region_add_subregion(get_system_memory(), base_mmio_high,
1141 high_mmio_alias);
1142 }
1143
1144 /* Map IO port space */
1145 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1146
1147 for (i = 0; i < GPEX_NUM_IRQS; i++) {
1148 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1149 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
1150 }
1151
1152 pci = PCI_HOST_BRIDGE(dev);
1153 if (pci->bus) {
1154 for (i = 0; i < nb_nics; i++) {
1155 NICInfo *nd = &nd_table[i];
1156
1157 if (!nd->model) {
1158 nd->model = g_strdup("virtio");
1159 }
1160
1161 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1162 }
1163 }
1164
1165 nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1166 qemu_fdt_add_subnode(vms->fdt, nodename);
1167 qemu_fdt_setprop_string(vms->fdt, nodename,
1168 "compatible", "pci-host-ecam-generic");
1169 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci");
1170 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3);
1171 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2);
1172 qemu_fdt_setprop_cell(vms->fdt, nodename, "linux,pci-domain", 0);
1173 qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0,
1174 nr_pcie_buses - 1);
1175 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1176
1177 if (vms->msi_phandle) {
1178 qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent",
1179 vms->msi_phandle);
1180 }
1181
1182 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1183 2, base_ecam, 2, size_ecam);
1184
1185 if (vms->highmem) {
1186 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1187 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1188 2, base_pio, 2, size_pio,
1189 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1190 2, base_mmio, 2, size_mmio,
1191 1, FDT_PCI_RANGE_MMIO_64BIT,
1192 2, base_mmio_high,
1193 2, base_mmio_high, 2, size_mmio_high);
1194 } else {
1195 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1196 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1197 2, base_pio, 2, size_pio,
1198 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1199 2, base_mmio, 2, size_mmio);
1200 }
1201
1202 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1);
1203 create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename);
1204
1205 if (vms->iommu) {
1206 vms->iommu_phandle = qemu_fdt_alloc_phandle(vms->fdt);
1207
1208 create_smmu(vms, pic, pci->bus);
1209
1210 qemu_fdt_setprop_cells(vms->fdt, nodename, "iommu-map",
1211 0x0, vms->iommu_phandle, 0x0, 0x10000);
1212 }
1213
1214 g_free(nodename);
1215 }
1216
1217 static void create_platform_bus(VirtMachineState *vms, qemu_irq *pic)
1218 {
1219 DeviceState *dev;
1220 SysBusDevice *s;
1221 int i;
1222 MemoryRegion *sysmem = get_system_memory();
1223
1224 dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
1225 dev->id = TYPE_PLATFORM_BUS_DEVICE;
1226 qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
1227 qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
1228 qdev_init_nofail(dev);
1229 vms->platform_bus_dev = dev;
1230
1231 s = SYS_BUS_DEVICE(dev);
1232 for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
1233 int irqn = vms->irqmap[VIRT_PLATFORM_BUS] + i;
1234 sysbus_connect_irq(s, i, pic[irqn]);
1235 }
1236
1237 memory_region_add_subregion(sysmem,
1238 vms->memmap[VIRT_PLATFORM_BUS].base,
1239 sysbus_mmio_get_region(s, 0));
1240 }
1241
1242 static void create_secure_ram(VirtMachineState *vms,
1243 MemoryRegion *secure_sysmem)
1244 {
1245 MemoryRegion *secram = g_new(MemoryRegion, 1);
1246 char *nodename;
1247 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1248 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1249
1250 memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1251 &error_fatal);
1252 memory_region_add_subregion(secure_sysmem, base, secram);
1253
1254 nodename = g_strdup_printf("/secram@%" PRIx64, base);
1255 qemu_fdt_add_subnode(vms->fdt, nodename);
1256 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory");
1257 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size);
1258 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
1259 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
1260
1261 g_free(nodename);
1262 }
1263
1264 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1265 {
1266 const VirtMachineState *board = container_of(binfo, VirtMachineState,
1267 bootinfo);
1268
1269 *fdt_size = board->fdt_size;
1270 return board->fdt;
1271 }
1272
1273 static void virt_build_smbios(VirtMachineState *vms)
1274 {
1275 MachineClass *mc = MACHINE_GET_CLASS(vms);
1276 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1277 uint8_t *smbios_tables, *smbios_anchor;
1278 size_t smbios_tables_len, smbios_anchor_len;
1279 const char *product = "QEMU Virtual Machine";
1280
1281 if (!vms->fw_cfg) {
1282 return;
1283 }
1284
1285 if (kvm_enabled()) {
1286 product = "KVM Virtual Machine";
1287 }
1288
1289 smbios_set_defaults("QEMU", product,
1290 vmc->smbios_old_sys_ver ? "1.0" : mc->name, false,
1291 true, SMBIOS_ENTRY_POINT_30);
1292
1293 smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len,
1294 &smbios_anchor, &smbios_anchor_len);
1295
1296 if (smbios_anchor) {
1297 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1298 smbios_tables, smbios_tables_len);
1299 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1300 smbios_anchor, smbios_anchor_len);
1301 }
1302 }
1303
1304 static
1305 void virt_machine_done(Notifier *notifier, void *data)
1306 {
1307 VirtMachineState *vms = container_of(notifier, VirtMachineState,
1308 machine_done);
1309 ARMCPU *cpu = ARM_CPU(first_cpu);
1310 struct arm_boot_info *info = &vms->bootinfo;
1311 AddressSpace *as = arm_boot_address_space(cpu, info);
1312
1313 /*
1314 * If the user provided a dtb, we assume the dynamic sysbus nodes
1315 * already are integrated there. This corresponds to a use case where
1316 * the dynamic sysbus nodes are complex and their generation is not yet
1317 * supported. In that case the user can take charge of the guest dt
1318 * while qemu takes charge of the qom stuff.
1319 */
1320 if (info->dtb_filename == NULL) {
1321 platform_bus_add_all_fdt_nodes(vms->fdt, "/intc",
1322 vms->memmap[VIRT_PLATFORM_BUS].base,
1323 vms->memmap[VIRT_PLATFORM_BUS].size,
1324 vms->irqmap[VIRT_PLATFORM_BUS]);
1325 }
1326 if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as) < 0) {
1327 exit(1);
1328 }
1329
1330 virt_acpi_setup(vms);
1331 virt_build_smbios(vms);
1332 }
1333
1334 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1335 {
1336 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1337 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1338
1339 if (!vmc->disallow_affinity_adjustment) {
1340 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1341 * GIC's target-list limitations. 32-bit KVM hosts currently
1342 * always create clusters of 4 CPUs, but that is expected to
1343 * change when they gain support for gicv3. When KVM is enabled
1344 * it will override the changes we make here, therefore our
1345 * purposes are to make TCG consistent (with 64-bit KVM hosts)
1346 * and to improve SGI efficiency.
1347 */
1348 if (vms->gic_version == 3) {
1349 clustersz = GICV3_TARGETLIST_BITS;
1350 } else {
1351 clustersz = GIC_TARGETLIST_BITS;
1352 }
1353 }
1354 return arm_cpu_mp_affinity(idx, clustersz);
1355 }
1356
1357 static void machvirt_init(MachineState *machine)
1358 {
1359 VirtMachineState *vms = VIRT_MACHINE(machine);
1360 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
1361 MachineClass *mc = MACHINE_GET_CLASS(machine);
1362 const CPUArchIdList *possible_cpus;
1363 qemu_irq pic[NUM_IRQS];
1364 MemoryRegion *sysmem = get_system_memory();
1365 MemoryRegion *secure_sysmem = NULL;
1366 int n, virt_max_cpus;
1367 MemoryRegion *ram = g_new(MemoryRegion, 1);
1368 bool firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0);
1369 bool aarch64 = true;
1370
1371 /* We can probe only here because during property set
1372 * KVM is not available yet
1373 */
1374 if (vms->gic_version <= 0) {
1375 /* "host" or "max" */
1376 if (!kvm_enabled()) {
1377 if (vms->gic_version == 0) {
1378 error_report("gic-version=host requires KVM");
1379 exit(1);
1380 } else {
1381 /* "max": currently means 3 for TCG */
1382 vms->gic_version = 3;
1383 }
1384 } else {
1385 vms->gic_version = kvm_arm_vgic_probe();
1386 if (!vms->gic_version) {
1387 error_report(
1388 "Unable to determine GIC version supported by host");
1389 exit(1);
1390 }
1391 }
1392 }
1393
1394 if (!cpu_type_valid(machine->cpu_type)) {
1395 error_report("mach-virt: CPU type %s not supported", machine->cpu_type);
1396 exit(1);
1397 }
1398
1399 /* If we have an EL3 boot ROM then the assumption is that it will
1400 * implement PSCI itself, so disable QEMU's internal implementation
1401 * so it doesn't get in the way. Instead of starting secondary
1402 * CPUs in PSCI powerdown state we will start them all running and
1403 * let the boot ROM sort them out.
1404 * The usual case is that we do use QEMU's PSCI implementation;
1405 * if the guest has EL2 then we will use SMC as the conduit,
1406 * and otherwise we will use HVC (for backwards compatibility and
1407 * because if we're using KVM then we must use HVC).
1408 */
1409 if (vms->secure && firmware_loaded) {
1410 vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
1411 } else if (vms->virt) {
1412 vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
1413 } else {
1414 vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
1415 }
1416
1417 /* The maximum number of CPUs depends on the GIC version, or on how
1418 * many redistributors we can fit into the memory map.
1419 */
1420 if (vms->gic_version == 3) {
1421 virt_max_cpus = vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
1422 virt_max_cpus += vms->memmap[VIRT_GIC_REDIST2].size / GICV3_REDIST_SIZE;
1423 } else {
1424 virt_max_cpus = GIC_NCPU;
1425 }
1426
1427 if (max_cpus > virt_max_cpus) {
1428 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1429 "supported by machine 'mach-virt' (%d)",
1430 max_cpus, virt_max_cpus);
1431 exit(1);
1432 }
1433
1434 vms->smp_cpus = smp_cpus;
1435
1436 if (machine->ram_size > vms->memmap[VIRT_MEM].size) {
1437 error_report("mach-virt: cannot model more than %dGB RAM", RAMLIMIT_GB);
1438 exit(1);
1439 }
1440
1441 if (vms->virt && kvm_enabled()) {
1442 error_report("mach-virt: KVM does not support providing "
1443 "Virtualization extensions to the guest CPU");
1444 exit(1);
1445 }
1446
1447 if (vms->secure) {
1448 if (kvm_enabled()) {
1449 error_report("mach-virt: KVM does not support Security extensions");
1450 exit(1);
1451 }
1452
1453 /* The Secure view of the world is the same as the NonSecure,
1454 * but with a few extra devices. Create it as a container region
1455 * containing the system memory at low priority; any secure-only
1456 * devices go in at higher priority and take precedence.
1457 */
1458 secure_sysmem = g_new(MemoryRegion, 1);
1459 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1460 UINT64_MAX);
1461 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1462 }
1463
1464 create_fdt(vms);
1465
1466 possible_cpus = mc->possible_cpu_arch_ids(machine);
1467 for (n = 0; n < possible_cpus->len; n++) {
1468 Object *cpuobj;
1469 CPUState *cs;
1470
1471 if (n >= smp_cpus) {
1472 break;
1473 }
1474
1475 cpuobj = object_new(possible_cpus->cpus[n].type);
1476 object_property_set_int(cpuobj, possible_cpus->cpus[n].arch_id,
1477 "mp-affinity", NULL);
1478
1479 cs = CPU(cpuobj);
1480 cs->cpu_index = n;
1481
1482 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
1483 &error_fatal);
1484
1485 aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
1486
1487 if (!vms->secure) {
1488 object_property_set_bool(cpuobj, false, "has_el3", NULL);
1489 }
1490
1491 if (!vms->virt && object_property_find(cpuobj, "has_el2", NULL)) {
1492 object_property_set_bool(cpuobj, false, "has_el2", NULL);
1493 }
1494
1495 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
1496 object_property_set_int(cpuobj, vms->psci_conduit,
1497 "psci-conduit", NULL);
1498
1499 /* Secondary CPUs start in PSCI powered-down state */
1500 if (n > 0) {
1501 object_property_set_bool(cpuobj, true,
1502 "start-powered-off", NULL);
1503 }
1504 }
1505
1506 if (vmc->no_pmu && object_property_find(cpuobj, "pmu", NULL)) {
1507 object_property_set_bool(cpuobj, false, "pmu", NULL);
1508 }
1509
1510 if (object_property_find(cpuobj, "reset-cbar", NULL)) {
1511 object_property_set_int(cpuobj, vms->memmap[VIRT_CPUPERIPHS].base,
1512 "reset-cbar", &error_abort);
1513 }
1514
1515 object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
1516 &error_abort);
1517 if (vms->secure) {
1518 object_property_set_link(cpuobj, OBJECT(secure_sysmem),
1519 "secure-memory", &error_abort);
1520 }
1521
1522 object_property_set_bool(cpuobj, true, "realized", &error_fatal);
1523 object_unref(cpuobj);
1524 }
1525 fdt_add_timer_nodes(vms);
1526 fdt_add_cpu_nodes(vms);
1527
1528 memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
1529 machine->ram_size);
1530 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, ram);
1531
1532 create_flash(vms, sysmem, secure_sysmem ? secure_sysmem : sysmem);
1533
1534 create_gic(vms, pic);
1535
1536 fdt_add_pmu_nodes(vms);
1537
1538 create_uart(vms, pic, VIRT_UART, sysmem, serial_hd(0));
1539
1540 if (vms->secure) {
1541 create_secure_ram(vms, secure_sysmem);
1542 create_uart(vms, pic, VIRT_SECURE_UART, secure_sysmem, serial_hd(1));
1543 }
1544
1545 vms->highmem_ecam &= vms->highmem && (!firmware_loaded || aarch64);
1546
1547 create_rtc(vms, pic);
1548
1549 create_pcie(vms, pic);
1550
1551 create_gpio(vms, pic);
1552
1553 /* Create mmio transports, so the user can create virtio backends
1554 * (which will be automatically plugged in to the transports). If
1555 * no backend is created the transport will just sit harmlessly idle.
1556 */
1557 create_virtio_devices(vms, pic);
1558
1559 vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
1560 rom_set_fw(vms->fw_cfg);
1561
1562 create_platform_bus(vms, pic);
1563
1564 vms->bootinfo.ram_size = machine->ram_size;
1565 vms->bootinfo.kernel_filename = machine->kernel_filename;
1566 vms->bootinfo.kernel_cmdline = machine->kernel_cmdline;
1567 vms->bootinfo.initrd_filename = machine->initrd_filename;
1568 vms->bootinfo.nb_cpus = smp_cpus;
1569 vms->bootinfo.board_id = -1;
1570 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
1571 vms->bootinfo.get_dtb = machvirt_dtb;
1572 vms->bootinfo.skip_dtb_autoload = true;
1573 vms->bootinfo.firmware_loaded = firmware_loaded;
1574 arm_load_kernel(ARM_CPU(first_cpu), &vms->bootinfo);
1575
1576 vms->machine_done.notify = virt_machine_done;
1577 qemu_add_machine_init_done_notifier(&vms->machine_done);
1578 }
1579
1580 static bool virt_get_secure(Object *obj, Error **errp)
1581 {
1582 VirtMachineState *vms = VIRT_MACHINE(obj);
1583
1584 return vms->secure;
1585 }
1586
1587 static void virt_set_secure(Object *obj, bool value, Error **errp)
1588 {
1589 VirtMachineState *vms = VIRT_MACHINE(obj);
1590
1591 vms->secure = value;
1592 }
1593
1594 static bool virt_get_virt(Object *obj, Error **errp)
1595 {
1596 VirtMachineState *vms = VIRT_MACHINE(obj);
1597
1598 return vms->virt;
1599 }
1600
1601 static void virt_set_virt(Object *obj, bool value, Error **errp)
1602 {
1603 VirtMachineState *vms = VIRT_MACHINE(obj);
1604
1605 vms->virt = value;
1606 }
1607
1608 static bool virt_get_highmem(Object *obj, Error **errp)
1609 {
1610 VirtMachineState *vms = VIRT_MACHINE(obj);
1611
1612 return vms->highmem;
1613 }
1614
1615 static void virt_set_highmem(Object *obj, bool value, Error **errp)
1616 {
1617 VirtMachineState *vms = VIRT_MACHINE(obj);
1618
1619 vms->highmem = value;
1620 }
1621
1622 static bool virt_get_its(Object *obj, Error **errp)
1623 {
1624 VirtMachineState *vms = VIRT_MACHINE(obj);
1625
1626 return vms->its;
1627 }
1628
1629 static void virt_set_its(Object *obj, bool value, Error **errp)
1630 {
1631 VirtMachineState *vms = VIRT_MACHINE(obj);
1632
1633 vms->its = value;
1634 }
1635
1636 static char *virt_get_gic_version(Object *obj, Error **errp)
1637 {
1638 VirtMachineState *vms = VIRT_MACHINE(obj);
1639 const char *val = vms->gic_version == 3 ? "3" : "2";
1640
1641 return g_strdup(val);
1642 }
1643
1644 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
1645 {
1646 VirtMachineState *vms = VIRT_MACHINE(obj);
1647
1648 if (!strcmp(value, "3")) {
1649 vms->gic_version = 3;
1650 } else if (!strcmp(value, "2")) {
1651 vms->gic_version = 2;
1652 } else if (!strcmp(value, "host")) {
1653 vms->gic_version = 0; /* Will probe later */
1654 } else if (!strcmp(value, "max")) {
1655 vms->gic_version = -1; /* Will probe later */
1656 } else {
1657 error_setg(errp, "Invalid gic-version value");
1658 error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
1659 }
1660 }
1661
1662 static char *virt_get_iommu(Object *obj, Error **errp)
1663 {
1664 VirtMachineState *vms = VIRT_MACHINE(obj);
1665
1666 switch (vms->iommu) {
1667 case VIRT_IOMMU_NONE:
1668 return g_strdup("none");
1669 case VIRT_IOMMU_SMMUV3:
1670 return g_strdup("smmuv3");
1671 default:
1672 g_assert_not_reached();
1673 }
1674 }
1675
1676 static void virt_set_iommu(Object *obj, const char *value, Error **errp)
1677 {
1678 VirtMachineState *vms = VIRT_MACHINE(obj);
1679
1680 if (!strcmp(value, "smmuv3")) {
1681 vms->iommu = VIRT_IOMMU_SMMUV3;
1682 } else if (!strcmp(value, "none")) {
1683 vms->iommu = VIRT_IOMMU_NONE;
1684 } else {
1685 error_setg(errp, "Invalid iommu value");
1686 error_append_hint(errp, "Valid values are none, smmuv3.\n");
1687 }
1688 }
1689
1690 static CpuInstanceProperties
1691 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
1692 {
1693 MachineClass *mc = MACHINE_GET_CLASS(ms);
1694 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
1695
1696 assert(cpu_index < possible_cpus->len);
1697 return possible_cpus->cpus[cpu_index].props;
1698 }
1699
1700 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
1701 {
1702 return idx % nb_numa_nodes;
1703 }
1704
1705 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
1706 {
1707 int n;
1708 VirtMachineState *vms = VIRT_MACHINE(ms);
1709
1710 if (ms->possible_cpus) {
1711 assert(ms->possible_cpus->len == max_cpus);
1712 return ms->possible_cpus;
1713 }
1714
1715 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
1716 sizeof(CPUArchId) * max_cpus);
1717 ms->possible_cpus->len = max_cpus;
1718 for (n = 0; n < ms->possible_cpus->len; n++) {
1719 ms->possible_cpus->cpus[n].type = ms->cpu_type;
1720 ms->possible_cpus->cpus[n].arch_id =
1721 virt_cpu_mp_affinity(vms, n);
1722 ms->possible_cpus->cpus[n].props.has_thread_id = true;
1723 ms->possible_cpus->cpus[n].props.thread_id = n;
1724 }
1725 return ms->possible_cpus;
1726 }
1727
1728 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
1729 DeviceState *dev, Error **errp)
1730 {
1731 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
1732
1733 if (vms->platform_bus_dev) {
1734 if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) {
1735 platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
1736 SYS_BUS_DEVICE(dev));
1737 }
1738 }
1739 }
1740
1741 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
1742 DeviceState *dev)
1743 {
1744 if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) {
1745 return HOTPLUG_HANDLER(machine);
1746 }
1747
1748 return NULL;
1749 }
1750
1751 static void virt_machine_class_init(ObjectClass *oc, void *data)
1752 {
1753 MachineClass *mc = MACHINE_CLASS(oc);
1754 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
1755
1756 mc->init = machvirt_init;
1757 /* Start with max_cpus set to 512, which is the maximum supported by KVM.
1758 * The value may be reduced later when we have more information about the
1759 * configuration of the particular instance.
1760 */
1761 mc->max_cpus = 512;
1762 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
1763 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
1764 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
1765 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM);
1766 mc->block_default_type = IF_VIRTIO;
1767 mc->no_cdrom = 1;
1768 mc->pci_allow_0_address = true;
1769 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
1770 mc->minimum_page_bits = 12;
1771 mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
1772 mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
1773 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
1774 mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
1775 assert(!mc->get_hotplug_handler);
1776 mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
1777 hc->plug = virt_machine_device_plug_cb;
1778 }
1779
1780 static void virt_instance_init(Object *obj)
1781 {
1782 VirtMachineState *vms = VIRT_MACHINE(obj);
1783 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1784
1785 /* EL3 is disabled by default on virt: this makes us consistent
1786 * between KVM and TCG for this board, and it also allows us to
1787 * boot UEFI blobs which assume no TrustZone support.
1788 */
1789 vms->secure = false;
1790 object_property_add_bool(obj, "secure", virt_get_secure,
1791 virt_set_secure, NULL);
1792 object_property_set_description(obj, "secure",
1793 "Set on/off to enable/disable the ARM "
1794 "Security Extensions (TrustZone)",
1795 NULL);
1796
1797 /* EL2 is also disabled by default, for similar reasons */
1798 vms->virt = false;
1799 object_property_add_bool(obj, "virtualization", virt_get_virt,
1800 virt_set_virt, NULL);
1801 object_property_set_description(obj, "virtualization",
1802 "Set on/off to enable/disable emulating a "
1803 "guest CPU which implements the ARM "
1804 "Virtualization Extensions",
1805 NULL);
1806
1807 /* High memory is enabled by default */
1808 vms->highmem = true;
1809 object_property_add_bool(obj, "highmem", virt_get_highmem,
1810 virt_set_highmem, NULL);
1811 object_property_set_description(obj, "highmem",
1812 "Set on/off to enable/disable using "
1813 "physical address space above 32 bits",
1814 NULL);
1815 /* Default GIC type is v2 */
1816 vms->gic_version = 2;
1817 object_property_add_str(obj, "gic-version", virt_get_gic_version,
1818 virt_set_gic_version, NULL);
1819 object_property_set_description(obj, "gic-version",
1820 "Set GIC version. "
1821 "Valid values are 2, 3 and host", NULL);
1822
1823 vms->highmem_ecam = !vmc->no_highmem_ecam;
1824
1825 if (vmc->no_its) {
1826 vms->its = false;
1827 } else {
1828 /* Default allows ITS instantiation */
1829 vms->its = true;
1830 object_property_add_bool(obj, "its", virt_get_its,
1831 virt_set_its, NULL);
1832 object_property_set_description(obj, "its",
1833 "Set on/off to enable/disable "
1834 "ITS instantiation",
1835 NULL);
1836 }
1837
1838 /* Default disallows iommu instantiation */
1839 vms->iommu = VIRT_IOMMU_NONE;
1840 object_property_add_str(obj, "iommu", virt_get_iommu, virt_set_iommu, NULL);
1841 object_property_set_description(obj, "iommu",
1842 "Set the IOMMU type. "
1843 "Valid values are none and smmuv3",
1844 NULL);
1845
1846 vms->memmap = a15memmap;
1847 vms->irqmap = a15irqmap;
1848 }
1849
1850 static const TypeInfo virt_machine_info = {
1851 .name = TYPE_VIRT_MACHINE,
1852 .parent = TYPE_MACHINE,
1853 .abstract = true,
1854 .instance_size = sizeof(VirtMachineState),
1855 .class_size = sizeof(VirtMachineClass),
1856 .class_init = virt_machine_class_init,
1857 .instance_init = virt_instance_init,
1858 .interfaces = (InterfaceInfo[]) {
1859 { TYPE_HOTPLUG_HANDLER },
1860 { }
1861 },
1862 };
1863
1864 static void machvirt_machine_init(void)
1865 {
1866 type_register_static(&virt_machine_info);
1867 }
1868 type_init(machvirt_machine_init);
1869
1870 static void virt_machine_4_0_options(MachineClass *mc)
1871 {
1872 }
1873 DEFINE_VIRT_MACHINE_AS_LATEST(4, 0)
1874
1875 static void virt_machine_3_1_options(MachineClass *mc)
1876 {
1877 static GlobalProperty compat[] = {
1878 HW_COMPAT_3_1
1879 };
1880
1881 virt_machine_4_0_options(mc);
1882 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
1883 }
1884 DEFINE_VIRT_MACHINE(3, 1)
1885
1886 static void virt_machine_3_0_options(MachineClass *mc)
1887 {
1888 static GlobalProperty compat[] = {
1889 HW_COMPAT_3_0
1890 };
1891
1892 virt_machine_3_1_options(mc);
1893 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
1894 }
1895 DEFINE_VIRT_MACHINE(3, 0)
1896
1897 static void virt_machine_2_12_options(MachineClass *mc)
1898 {
1899 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1900 static GlobalProperty compat[] = {
1901 HW_COMPAT_2_12
1902 };
1903
1904 virt_machine_3_0_options(mc);
1905 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
1906 vmc->no_highmem_ecam = true;
1907 mc->max_cpus = 255;
1908 }
1909 DEFINE_VIRT_MACHINE(2, 12)
1910
1911 static void virt_machine_2_11_options(MachineClass *mc)
1912 {
1913 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1914 static GlobalProperty compat[] = {
1915 HW_COMPAT_2_11
1916 };
1917
1918 virt_machine_2_12_options(mc);
1919 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
1920 vmc->smbios_old_sys_ver = true;
1921 }
1922 DEFINE_VIRT_MACHINE(2, 11)
1923
1924 static void virt_machine_2_10_options(MachineClass *mc)
1925 {
1926 static GlobalProperty compat[] = {
1927 HW_COMPAT_2_10
1928 };
1929
1930 virt_machine_2_11_options(mc);
1931 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
1932 /* before 2.11 we never faulted accesses to bad addresses */
1933 mc->ignore_memory_transaction_failures = true;
1934 }
1935 DEFINE_VIRT_MACHINE(2, 10)
1936
1937 static void virt_machine_2_9_options(MachineClass *mc)
1938 {
1939 static GlobalProperty compat[] = {
1940 HW_COMPAT_2_9
1941 };
1942
1943 virt_machine_2_10_options(mc);
1944 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
1945 }
1946 DEFINE_VIRT_MACHINE(2, 9)
1947
1948 static void virt_machine_2_8_options(MachineClass *mc)
1949 {
1950 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1951 static GlobalProperty compat[] = {
1952 HW_COMPAT_2_8
1953 };
1954
1955 virt_machine_2_9_options(mc);
1956 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
1957 /* For 2.8 and earlier we falsely claimed in the DT that
1958 * our timers were edge-triggered, not level-triggered.
1959 */
1960 vmc->claim_edge_triggered_timers = true;
1961 }
1962 DEFINE_VIRT_MACHINE(2, 8)
1963
1964 static void virt_machine_2_7_options(MachineClass *mc)
1965 {
1966 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1967 static GlobalProperty compat[] = {
1968 HW_COMPAT_2_7
1969 };
1970
1971 virt_machine_2_8_options(mc);
1972 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
1973 /* ITS was introduced with 2.8 */
1974 vmc->no_its = true;
1975 /* Stick with 1K pages for migration compatibility */
1976 mc->minimum_page_bits = 0;
1977 }
1978 DEFINE_VIRT_MACHINE(2, 7)
1979
1980 static void virt_machine_2_6_options(MachineClass *mc)
1981 {
1982 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1983 static GlobalProperty compat[] = {
1984 HW_COMPAT_2_6
1985 };
1986
1987 virt_machine_2_7_options(mc);
1988 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
1989 vmc->disallow_affinity_adjustment = true;
1990 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
1991 vmc->no_pmu = true;
1992 }
1993 DEFINE_VIRT_MACHINE(2, 6)