]> git.proxmox.com Git - mirror_qemu.git/blob - hw/arm/virt.c
Fix build with 64 bits time_t
[mirror_qemu.git] / hw / arm / virt.c
1 /*
2 * ARM mach-virt emulation
3 *
4 * Copyright (c) 2013 Linaro Limited
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
17 *
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
29 */
30
31 #include "qemu/osdep.h"
32 #include "qemu-common.h"
33 #include "qemu/datadir.h"
34 #include "qemu/units.h"
35 #include "qemu/option.h"
36 #include "monitor/qdev.h"
37 #include "qapi/error.h"
38 #include "hw/sysbus.h"
39 #include "hw/boards.h"
40 #include "hw/arm/boot.h"
41 #include "hw/arm/primecell.h"
42 #include "hw/arm/virt.h"
43 #include "hw/block/flash.h"
44 #include "hw/vfio/vfio-calxeda-xgmac.h"
45 #include "hw/vfio/vfio-amd-xgbe.h"
46 #include "hw/display/ramfb.h"
47 #include "net/net.h"
48 #include "sysemu/device_tree.h"
49 #include "sysemu/numa.h"
50 #include "sysemu/runstate.h"
51 #include "sysemu/sysemu.h"
52 #include "sysemu/tpm.h"
53 #include "sysemu/kvm.h"
54 #include "hw/loader.h"
55 #include "exec/address-spaces.h"
56 #include "qapi/error.h"
57 #include "qemu/bitops.h"
58 #include "qemu/error-report.h"
59 #include "qemu/module.h"
60 #include "hw/pci-host/gpex.h"
61 #include "hw/virtio/virtio-pci.h"
62 #include "hw/arm/sysbus-fdt.h"
63 #include "hw/platform-bus.h"
64 #include "hw/qdev-properties.h"
65 #include "hw/arm/fdt.h"
66 #include "hw/intc/arm_gic.h"
67 #include "hw/intc/arm_gicv3_common.h"
68 #include "hw/irq.h"
69 #include "kvm_arm.h"
70 #include "hw/firmware/smbios.h"
71 #include "qapi/visitor.h"
72 #include "qapi/qapi-visit-common.h"
73 #include "standard-headers/linux/input.h"
74 #include "hw/arm/smmuv3.h"
75 #include "hw/acpi/acpi.h"
76 #include "target/arm/internals.h"
77 #include "hw/mem/pc-dimm.h"
78 #include "hw/mem/nvdimm.h"
79 #include "hw/acpi/generic_event_device.h"
80 #include "hw/virtio/virtio-iommu.h"
81 #include "hw/char/pl011.h"
82 #include "qemu/guest-random.h"
83
84 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
85 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
86 void *data) \
87 { \
88 MachineClass *mc = MACHINE_CLASS(oc); \
89 virt_machine_##major##_##minor##_options(mc); \
90 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
91 if (latest) { \
92 mc->alias = "virt"; \
93 } \
94 } \
95 static const TypeInfo machvirt_##major##_##minor##_info = { \
96 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
97 .parent = TYPE_VIRT_MACHINE, \
98 .class_init = virt_##major##_##minor##_class_init, \
99 }; \
100 static void machvirt_machine_##major##_##minor##_init(void) \
101 { \
102 type_register_static(&machvirt_##major##_##minor##_info); \
103 } \
104 type_init(machvirt_machine_##major##_##minor##_init);
105
106 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
107 DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
108 #define DEFINE_VIRT_MACHINE(major, minor) \
109 DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
110
111
112 /* Number of external interrupt lines to configure the GIC with */
113 #define NUM_IRQS 256
114
115 #define PLATFORM_BUS_NUM_IRQS 64
116
117 /* Legacy RAM limit in GB (< version 4.0) */
118 #define LEGACY_RAMLIMIT_GB 255
119 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB)
120
121 /* Addresses and sizes of our components.
122 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
123 * 128MB..256MB is used for miscellaneous device I/O.
124 * 256MB..1GB is reserved for possible future PCI support (ie where the
125 * PCI memory window will go if we add a PCI host controller).
126 * 1GB and up is RAM (which may happily spill over into the
127 * high memory region beyond 4GB).
128 * This represents a compromise between how much RAM can be given to
129 * a 32 bit VM and leaving space for expansion and in particular for PCI.
130 * Note that devices should generally be placed at multiples of 0x10000,
131 * to accommodate guests using 64K pages.
132 */
133 static const MemMapEntry base_memmap[] = {
134 /* Space up to 0x8000000 is reserved for a boot ROM */
135 [VIRT_FLASH] = { 0, 0x08000000 },
136 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
137 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
138 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
139 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
140 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 },
141 [VIRT_GIC_HYP] = { 0x08030000, 0x00010000 },
142 [VIRT_GIC_VCPU] = { 0x08040000, 0x00010000 },
143 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
144 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 },
145 /* This redistributor space allows up to 2*64kB*123 CPUs */
146 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 },
147 [VIRT_UART] = { 0x09000000, 0x00001000 },
148 [VIRT_RTC] = { 0x09010000, 0x00001000 },
149 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 },
150 [VIRT_GPIO] = { 0x09030000, 0x00001000 },
151 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 },
152 [VIRT_SMMU] = { 0x09050000, 0x00020000 },
153 [VIRT_PCDIMM_ACPI] = { 0x09070000, MEMORY_HOTPLUG_IO_LEN },
154 [VIRT_ACPI_GED] = { 0x09080000, ACPI_GED_EVT_SEL_LEN },
155 [VIRT_NVDIMM_ACPI] = { 0x09090000, NVDIMM_ACPI_IO_LEN},
156 [VIRT_PVTIME] = { 0x090a0000, 0x00010000 },
157 [VIRT_SECURE_GPIO] = { 0x090b0000, 0x00001000 },
158 [VIRT_MMIO] = { 0x0a000000, 0x00000200 },
159 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
160 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 },
161 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 },
162 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 },
163 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 },
164 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 },
165 /* Actual RAM size depends on initial RAM and device memory settings */
166 [VIRT_MEM] = { GiB, LEGACY_RAMLIMIT_BYTES },
167 };
168
169 /*
170 * Highmem IO Regions: This memory map is floating, located after the RAM.
171 * Each MemMapEntry base (GPA) will be dynamically computed, depending on the
172 * top of the RAM, so that its base get the same alignment as the size,
173 * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is
174 * less than 256GiB of RAM, the floating area starts at the 256GiB mark.
175 * Note the extended_memmap is sized so that it eventually also includes the
176 * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last
177 * index of base_memmap).
178 */
179 static MemMapEntry extended_memmap[] = {
180 /* Additional 64 MB redist region (can contain up to 512 redistributors) */
181 [VIRT_HIGH_GIC_REDIST2] = { 0x0, 64 * MiB },
182 [VIRT_HIGH_PCIE_ECAM] = { 0x0, 256 * MiB },
183 /* Second PCIe window */
184 [VIRT_HIGH_PCIE_MMIO] = { 0x0, 512 * GiB },
185 };
186
187 static const int a15irqmap[] = {
188 [VIRT_UART] = 1,
189 [VIRT_RTC] = 2,
190 [VIRT_PCIE] = 3, /* ... to 6 */
191 [VIRT_GPIO] = 7,
192 [VIRT_SECURE_UART] = 8,
193 [VIRT_ACPI_GED] = 9,
194 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
195 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
196 [VIRT_SMMU] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */
197 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
198 };
199
200 static const char *valid_cpus[] = {
201 ARM_CPU_TYPE_NAME("cortex-a7"),
202 ARM_CPU_TYPE_NAME("cortex-a15"),
203 ARM_CPU_TYPE_NAME("cortex-a53"),
204 ARM_CPU_TYPE_NAME("cortex-a57"),
205 ARM_CPU_TYPE_NAME("cortex-a72"),
206 ARM_CPU_TYPE_NAME("host"),
207 ARM_CPU_TYPE_NAME("max"),
208 };
209
210 static bool cpu_type_valid(const char *cpu)
211 {
212 int i;
213
214 for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
215 if (strcmp(cpu, valid_cpus[i]) == 0) {
216 return true;
217 }
218 }
219 return false;
220 }
221
222 static void create_kaslr_seed(MachineState *ms, const char *node)
223 {
224 uint64_t seed;
225
226 if (qemu_guest_getrandom(&seed, sizeof(seed), NULL)) {
227 return;
228 }
229 qemu_fdt_setprop_u64(ms->fdt, node, "kaslr-seed", seed);
230 }
231
232 static void create_fdt(VirtMachineState *vms)
233 {
234 MachineState *ms = MACHINE(vms);
235 int nb_numa_nodes = ms->numa_state->num_nodes;
236 void *fdt = create_device_tree(&vms->fdt_size);
237
238 if (!fdt) {
239 error_report("create_device_tree() failed");
240 exit(1);
241 }
242
243 ms->fdt = fdt;
244
245 /* Header */
246 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
247 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
248 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
249
250 /* /chosen must exist for load_dtb to fill in necessary properties later */
251 qemu_fdt_add_subnode(fdt, "/chosen");
252 create_kaslr_seed(ms, "/chosen");
253
254 if (vms->secure) {
255 qemu_fdt_add_subnode(fdt, "/secure-chosen");
256 create_kaslr_seed(ms, "/secure-chosen");
257 }
258
259 /* Clock node, for the benefit of the UART. The kernel device tree
260 * binding documentation claims the PL011 node clock properties are
261 * optional but in practice if you omit them the kernel refuses to
262 * probe for the device.
263 */
264 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
265 qemu_fdt_add_subnode(fdt, "/apb-pclk");
266 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
267 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
268 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
269 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
270 "clk24mhz");
271 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
272
273 if (nb_numa_nodes > 0 && ms->numa_state->have_numa_distance) {
274 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
275 uint32_t *matrix = g_malloc0(size);
276 int idx, i, j;
277
278 for (i = 0; i < nb_numa_nodes; i++) {
279 for (j = 0; j < nb_numa_nodes; j++) {
280 idx = (i * nb_numa_nodes + j) * 3;
281 matrix[idx + 0] = cpu_to_be32(i);
282 matrix[idx + 1] = cpu_to_be32(j);
283 matrix[idx + 2] =
284 cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
285 }
286 }
287
288 qemu_fdt_add_subnode(fdt, "/distance-map");
289 qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
290 "numa-distance-map-v1");
291 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
292 matrix, size);
293 g_free(matrix);
294 }
295 }
296
297 static void fdt_add_timer_nodes(const VirtMachineState *vms)
298 {
299 /* On real hardware these interrupts are level-triggered.
300 * On KVM they were edge-triggered before host kernel version 4.4,
301 * and level-triggered afterwards.
302 * On emulated QEMU they are level-triggered.
303 *
304 * Getting the DTB info about them wrong is awkward for some
305 * guest kernels:
306 * pre-4.8 ignore the DT and leave the interrupt configured
307 * with whatever the GIC reset value (or the bootloader) left it at
308 * 4.8 before rc6 honour the incorrect data by programming it back
309 * into the GIC, causing problems
310 * 4.8rc6 and later ignore the DT and always write "level triggered"
311 * into the GIC
312 *
313 * For backwards-compatibility, virt-2.8 and earlier will continue
314 * to say these are edge-triggered, but later machines will report
315 * the correct information.
316 */
317 ARMCPU *armcpu;
318 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
319 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
320 MachineState *ms = MACHINE(vms);
321
322 if (vmc->claim_edge_triggered_timers) {
323 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
324 }
325
326 if (vms->gic_version == VIRT_GIC_VERSION_2) {
327 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
328 GIC_FDT_IRQ_PPI_CPU_WIDTH,
329 (1 << MACHINE(vms)->smp.cpus) - 1);
330 }
331
332 qemu_fdt_add_subnode(ms->fdt, "/timer");
333
334 armcpu = ARM_CPU(qemu_get_cpu(0));
335 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
336 const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
337 qemu_fdt_setprop(ms->fdt, "/timer", "compatible",
338 compat, sizeof(compat));
339 } else {
340 qemu_fdt_setprop_string(ms->fdt, "/timer", "compatible",
341 "arm,armv7-timer");
342 }
343 qemu_fdt_setprop(ms->fdt, "/timer", "always-on", NULL, 0);
344 qemu_fdt_setprop_cells(ms->fdt, "/timer", "interrupts",
345 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
346 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
347 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
348 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
349 }
350
351 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
352 {
353 int cpu;
354 int addr_cells = 1;
355 const MachineState *ms = MACHINE(vms);
356 int smp_cpus = ms->smp.cpus;
357
358 /*
359 * From Documentation/devicetree/bindings/arm/cpus.txt
360 * On ARM v8 64-bit systems value should be set to 2,
361 * that corresponds to the MPIDR_EL1 register size.
362 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
363 * in the system, #address-cells can be set to 1, since
364 * MPIDR_EL1[63:32] bits are not used for CPUs
365 * identification.
366 *
367 * Here we actually don't know whether our system is 32- or 64-bit one.
368 * The simplest way to go is to examine affinity IDs of all our CPUs. If
369 * at least one of them has Aff3 populated, we set #address-cells to 2.
370 */
371 for (cpu = 0; cpu < smp_cpus; cpu++) {
372 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
373
374 if (armcpu->mp_affinity & ARM_AFF3_MASK) {
375 addr_cells = 2;
376 break;
377 }
378 }
379
380 qemu_fdt_add_subnode(ms->fdt, "/cpus");
381 qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#address-cells", addr_cells);
382 qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#size-cells", 0x0);
383
384 for (cpu = smp_cpus - 1; cpu >= 0; cpu--) {
385 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
386 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
387 CPUState *cs = CPU(armcpu);
388
389 qemu_fdt_add_subnode(ms->fdt, nodename);
390 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "cpu");
391 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
392 armcpu->dtb_compatible);
393
394 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED && smp_cpus > 1) {
395 qemu_fdt_setprop_string(ms->fdt, nodename,
396 "enable-method", "psci");
397 }
398
399 if (addr_cells == 2) {
400 qemu_fdt_setprop_u64(ms->fdt, nodename, "reg",
401 armcpu->mp_affinity);
402 } else {
403 qemu_fdt_setprop_cell(ms->fdt, nodename, "reg",
404 armcpu->mp_affinity);
405 }
406
407 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
408 qemu_fdt_setprop_cell(ms->fdt, nodename, "numa-node-id",
409 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
410 }
411
412 g_free(nodename);
413 }
414 }
415
416 static void fdt_add_its_gic_node(VirtMachineState *vms)
417 {
418 char *nodename;
419 MachineState *ms = MACHINE(vms);
420
421 vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
422 nodename = g_strdup_printf("/intc/its@%" PRIx64,
423 vms->memmap[VIRT_GIC_ITS].base);
424 qemu_fdt_add_subnode(ms->fdt, nodename);
425 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
426 "arm,gic-v3-its");
427 qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
428 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
429 2, vms->memmap[VIRT_GIC_ITS].base,
430 2, vms->memmap[VIRT_GIC_ITS].size);
431 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
432 g_free(nodename);
433 }
434
435 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
436 {
437 MachineState *ms = MACHINE(vms);
438 char *nodename;
439
440 nodename = g_strdup_printf("/intc/v2m@%" PRIx64,
441 vms->memmap[VIRT_GIC_V2M].base);
442 vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
443 qemu_fdt_add_subnode(ms->fdt, nodename);
444 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
445 "arm,gic-v2m-frame");
446 qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
447 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
448 2, vms->memmap[VIRT_GIC_V2M].base,
449 2, vms->memmap[VIRT_GIC_V2M].size);
450 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
451 g_free(nodename);
452 }
453
454 static void fdt_add_gic_node(VirtMachineState *vms)
455 {
456 MachineState *ms = MACHINE(vms);
457 char *nodename;
458
459 vms->gic_phandle = qemu_fdt_alloc_phandle(ms->fdt);
460 qemu_fdt_setprop_cell(ms->fdt, "/", "interrupt-parent", vms->gic_phandle);
461
462 nodename = g_strdup_printf("/intc@%" PRIx64,
463 vms->memmap[VIRT_GIC_DIST].base);
464 qemu_fdt_add_subnode(ms->fdt, nodename);
465 qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 3);
466 qemu_fdt_setprop(ms->fdt, nodename, "interrupt-controller", NULL, 0);
467 qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 0x2);
468 qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 0x2);
469 qemu_fdt_setprop(ms->fdt, nodename, "ranges", NULL, 0);
470 if (vms->gic_version == VIRT_GIC_VERSION_3) {
471 int nb_redist_regions = virt_gicv3_redist_region_count(vms);
472
473 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
474 "arm,gic-v3");
475
476 qemu_fdt_setprop_cell(ms->fdt, nodename,
477 "#redistributor-regions", nb_redist_regions);
478
479 if (nb_redist_regions == 1) {
480 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
481 2, vms->memmap[VIRT_GIC_DIST].base,
482 2, vms->memmap[VIRT_GIC_DIST].size,
483 2, vms->memmap[VIRT_GIC_REDIST].base,
484 2, vms->memmap[VIRT_GIC_REDIST].size);
485 } else {
486 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
487 2, vms->memmap[VIRT_GIC_DIST].base,
488 2, vms->memmap[VIRT_GIC_DIST].size,
489 2, vms->memmap[VIRT_GIC_REDIST].base,
490 2, vms->memmap[VIRT_GIC_REDIST].size,
491 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base,
492 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size);
493 }
494
495 if (vms->virt) {
496 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
497 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
498 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
499 }
500 } else {
501 /* 'cortex-a15-gic' means 'GIC v2' */
502 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
503 "arm,cortex-a15-gic");
504 if (!vms->virt) {
505 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
506 2, vms->memmap[VIRT_GIC_DIST].base,
507 2, vms->memmap[VIRT_GIC_DIST].size,
508 2, vms->memmap[VIRT_GIC_CPU].base,
509 2, vms->memmap[VIRT_GIC_CPU].size);
510 } else {
511 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
512 2, vms->memmap[VIRT_GIC_DIST].base,
513 2, vms->memmap[VIRT_GIC_DIST].size,
514 2, vms->memmap[VIRT_GIC_CPU].base,
515 2, vms->memmap[VIRT_GIC_CPU].size,
516 2, vms->memmap[VIRT_GIC_HYP].base,
517 2, vms->memmap[VIRT_GIC_HYP].size,
518 2, vms->memmap[VIRT_GIC_VCPU].base,
519 2, vms->memmap[VIRT_GIC_VCPU].size);
520 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
521 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
522 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
523 }
524 }
525
526 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->gic_phandle);
527 g_free(nodename);
528 }
529
530 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
531 {
532 ARMCPU *armcpu = ARM_CPU(first_cpu);
533 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
534 MachineState *ms = MACHINE(vms);
535
536 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
537 assert(!object_property_get_bool(OBJECT(armcpu), "pmu", NULL));
538 return;
539 }
540
541 if (vms->gic_version == VIRT_GIC_VERSION_2) {
542 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
543 GIC_FDT_IRQ_PPI_CPU_WIDTH,
544 (1 << MACHINE(vms)->smp.cpus) - 1);
545 }
546
547 qemu_fdt_add_subnode(ms->fdt, "/pmu");
548 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
549 const char compat[] = "arm,armv8-pmuv3";
550 qemu_fdt_setprop(ms->fdt, "/pmu", "compatible",
551 compat, sizeof(compat));
552 qemu_fdt_setprop_cells(ms->fdt, "/pmu", "interrupts",
553 GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
554 }
555 }
556
557 static inline DeviceState *create_acpi_ged(VirtMachineState *vms)
558 {
559 DeviceState *dev;
560 MachineState *ms = MACHINE(vms);
561 int irq = vms->irqmap[VIRT_ACPI_GED];
562 uint32_t event = ACPI_GED_PWR_DOWN_EVT;
563
564 if (ms->ram_slots) {
565 event |= ACPI_GED_MEM_HOTPLUG_EVT;
566 }
567
568 if (ms->nvdimms_state->is_enabled) {
569 event |= ACPI_GED_NVDIMM_HOTPLUG_EVT;
570 }
571
572 dev = qdev_new(TYPE_ACPI_GED);
573 qdev_prop_set_uint32(dev, "ged-event", event);
574
575 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_ACPI_GED].base);
576 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, vms->memmap[VIRT_PCDIMM_ACPI].base);
577 sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(vms->gic, irq));
578
579 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
580
581 return dev;
582 }
583
584 static void create_its(VirtMachineState *vms)
585 {
586 const char *itsclass = its_class_name();
587 DeviceState *dev;
588
589 if (!itsclass) {
590 /* Do nothing if not supported */
591 return;
592 }
593
594 dev = qdev_new(itsclass);
595
596 object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(vms->gic),
597 &error_abort);
598 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
599 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
600
601 fdt_add_its_gic_node(vms);
602 vms->msi_controller = VIRT_MSI_CTRL_ITS;
603 }
604
605 static void create_v2m(VirtMachineState *vms)
606 {
607 int i;
608 int irq = vms->irqmap[VIRT_GIC_V2M];
609 DeviceState *dev;
610
611 dev = qdev_new("arm-gicv2m");
612 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
613 qdev_prop_set_uint32(dev, "base-spi", irq);
614 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
615 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
616
617 for (i = 0; i < NUM_GICV2M_SPIS; i++) {
618 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
619 qdev_get_gpio_in(vms->gic, irq + i));
620 }
621
622 fdt_add_v2m_gic_node(vms);
623 vms->msi_controller = VIRT_MSI_CTRL_GICV2M;
624 }
625
626 static void create_gic(VirtMachineState *vms)
627 {
628 MachineState *ms = MACHINE(vms);
629 /* We create a standalone GIC */
630 SysBusDevice *gicbusdev;
631 const char *gictype;
632 int type = vms->gic_version, i;
633 unsigned int smp_cpus = ms->smp.cpus;
634 uint32_t nb_redist_regions = 0;
635
636 gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
637
638 vms->gic = qdev_new(gictype);
639 qdev_prop_set_uint32(vms->gic, "revision", type);
640 qdev_prop_set_uint32(vms->gic, "num-cpu", smp_cpus);
641 /* Note that the num-irq property counts both internal and external
642 * interrupts; there are always 32 of the former (mandated by GIC spec).
643 */
644 qdev_prop_set_uint32(vms->gic, "num-irq", NUM_IRQS + 32);
645 if (!kvm_irqchip_in_kernel()) {
646 qdev_prop_set_bit(vms->gic, "has-security-extensions", vms->secure);
647 }
648
649 if (type == 3) {
650 uint32_t redist0_capacity =
651 vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
652 uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
653
654 nb_redist_regions = virt_gicv3_redist_region_count(vms);
655
656 qdev_prop_set_uint32(vms->gic, "len-redist-region-count",
657 nb_redist_regions);
658 qdev_prop_set_uint32(vms->gic, "redist-region-count[0]", redist0_count);
659
660 if (nb_redist_regions == 2) {
661 uint32_t redist1_capacity =
662 vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE;
663
664 qdev_prop_set_uint32(vms->gic, "redist-region-count[1]",
665 MIN(smp_cpus - redist0_count, redist1_capacity));
666 }
667 } else {
668 if (!kvm_irqchip_in_kernel()) {
669 qdev_prop_set_bit(vms->gic, "has-virtualization-extensions",
670 vms->virt);
671 }
672 }
673 gicbusdev = SYS_BUS_DEVICE(vms->gic);
674 sysbus_realize_and_unref(gicbusdev, &error_fatal);
675 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
676 if (type == 3) {
677 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
678 if (nb_redist_regions == 2) {
679 sysbus_mmio_map(gicbusdev, 2,
680 vms->memmap[VIRT_HIGH_GIC_REDIST2].base);
681 }
682 } else {
683 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
684 if (vms->virt) {
685 sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base);
686 sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base);
687 }
688 }
689
690 /* Wire the outputs from each CPU's generic timer and the GICv3
691 * maintenance interrupt signal to the appropriate GIC PPI inputs,
692 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
693 */
694 for (i = 0; i < smp_cpus; i++) {
695 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
696 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
697 int irq;
698 /* Mapping from the output timer irq lines from the CPU to the
699 * GIC PPI inputs we use for the virt board.
700 */
701 const int timer_irq[] = {
702 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
703 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
704 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
705 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
706 };
707
708 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
709 qdev_connect_gpio_out(cpudev, irq,
710 qdev_get_gpio_in(vms->gic,
711 ppibase + timer_irq[irq]));
712 }
713
714 if (type == 3) {
715 qemu_irq irq = qdev_get_gpio_in(vms->gic,
716 ppibase + ARCH_GIC_MAINT_IRQ);
717 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt",
718 0, irq);
719 } else if (vms->virt) {
720 qemu_irq irq = qdev_get_gpio_in(vms->gic,
721 ppibase + ARCH_GIC_MAINT_IRQ);
722 sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq);
723 }
724
725 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
726 qdev_get_gpio_in(vms->gic, ppibase
727 + VIRTUAL_PMU_IRQ));
728
729 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
730 sysbus_connect_irq(gicbusdev, i + smp_cpus,
731 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
732 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
733 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
734 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
735 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
736 }
737
738 fdt_add_gic_node(vms);
739
740 if (type == 3 && vms->its) {
741 create_its(vms);
742 } else if (type == 2) {
743 create_v2m(vms);
744 }
745 }
746
747 static void create_uart(const VirtMachineState *vms, int uart,
748 MemoryRegion *mem, Chardev *chr)
749 {
750 char *nodename;
751 hwaddr base = vms->memmap[uart].base;
752 hwaddr size = vms->memmap[uart].size;
753 int irq = vms->irqmap[uart];
754 const char compat[] = "arm,pl011\0arm,primecell";
755 const char clocknames[] = "uartclk\0apb_pclk";
756 DeviceState *dev = qdev_new(TYPE_PL011);
757 SysBusDevice *s = SYS_BUS_DEVICE(dev);
758 MachineState *ms = MACHINE(vms);
759
760 qdev_prop_set_chr(dev, "chardev", chr);
761 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
762 memory_region_add_subregion(mem, base,
763 sysbus_mmio_get_region(s, 0));
764 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
765
766 nodename = g_strdup_printf("/pl011@%" PRIx64, base);
767 qemu_fdt_add_subnode(ms->fdt, nodename);
768 /* Note that we can't use setprop_string because of the embedded NUL */
769 qemu_fdt_setprop(ms->fdt, nodename, "compatible",
770 compat, sizeof(compat));
771 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
772 2, base, 2, size);
773 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
774 GIC_FDT_IRQ_TYPE_SPI, irq,
775 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
776 qemu_fdt_setprop_cells(ms->fdt, nodename, "clocks",
777 vms->clock_phandle, vms->clock_phandle);
778 qemu_fdt_setprop(ms->fdt, nodename, "clock-names",
779 clocknames, sizeof(clocknames));
780
781 if (uart == VIRT_UART) {
782 qemu_fdt_setprop_string(ms->fdt, "/chosen", "stdout-path", nodename);
783 } else {
784 /* Mark as not usable by the normal world */
785 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
786 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
787
788 qemu_fdt_setprop_string(ms->fdt, "/secure-chosen", "stdout-path",
789 nodename);
790 }
791
792 g_free(nodename);
793 }
794
795 static void create_rtc(const VirtMachineState *vms)
796 {
797 char *nodename;
798 hwaddr base = vms->memmap[VIRT_RTC].base;
799 hwaddr size = vms->memmap[VIRT_RTC].size;
800 int irq = vms->irqmap[VIRT_RTC];
801 const char compat[] = "arm,pl031\0arm,primecell";
802 MachineState *ms = MACHINE(vms);
803
804 sysbus_create_simple("pl031", base, qdev_get_gpio_in(vms->gic, irq));
805
806 nodename = g_strdup_printf("/pl031@%" PRIx64, base);
807 qemu_fdt_add_subnode(ms->fdt, nodename);
808 qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
809 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
810 2, base, 2, size);
811 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
812 GIC_FDT_IRQ_TYPE_SPI, irq,
813 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
814 qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
815 qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
816 g_free(nodename);
817 }
818
819 static DeviceState *gpio_key_dev;
820 static void virt_powerdown_req(Notifier *n, void *opaque)
821 {
822 VirtMachineState *s = container_of(n, VirtMachineState, powerdown_notifier);
823
824 if (s->acpi_dev) {
825 acpi_send_event(s->acpi_dev, ACPI_POWER_DOWN_STATUS);
826 } else {
827 /* use gpio Pin 3 for power button event */
828 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
829 }
830 }
831
832 static void create_gpio_keys(char *fdt, DeviceState *pl061_dev,
833 uint32_t phandle)
834 {
835 gpio_key_dev = sysbus_create_simple("gpio-key", -1,
836 qdev_get_gpio_in(pl061_dev, 3));
837
838 qemu_fdt_add_subnode(fdt, "/gpio-keys");
839 qemu_fdt_setprop_string(fdt, "/gpio-keys", "compatible", "gpio-keys");
840 qemu_fdt_setprop_cell(fdt, "/gpio-keys", "#size-cells", 0);
841 qemu_fdt_setprop_cell(fdt, "/gpio-keys", "#address-cells", 1);
842
843 qemu_fdt_add_subnode(fdt, "/gpio-keys/poweroff");
844 qemu_fdt_setprop_string(fdt, "/gpio-keys/poweroff",
845 "label", "GPIO Key Poweroff");
846 qemu_fdt_setprop_cell(fdt, "/gpio-keys/poweroff", "linux,code",
847 KEY_POWER);
848 qemu_fdt_setprop_cells(fdt, "/gpio-keys/poweroff",
849 "gpios", phandle, 3, 0);
850 }
851
852 #define SECURE_GPIO_POWEROFF 0
853 #define SECURE_GPIO_RESET 1
854
855 static void create_secure_gpio_pwr(char *fdt, DeviceState *pl061_dev,
856 uint32_t phandle)
857 {
858 DeviceState *gpio_pwr_dev;
859
860 /* gpio-pwr */
861 gpio_pwr_dev = sysbus_create_simple("gpio-pwr", -1, NULL);
862
863 /* connect secure pl061 to gpio-pwr */
864 qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_RESET,
865 qdev_get_gpio_in_named(gpio_pwr_dev, "reset", 0));
866 qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_POWEROFF,
867 qdev_get_gpio_in_named(gpio_pwr_dev, "shutdown", 0));
868
869 qemu_fdt_add_subnode(fdt, "/gpio-poweroff");
870 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "compatible",
871 "gpio-poweroff");
872 qemu_fdt_setprop_cells(fdt, "/gpio-poweroff",
873 "gpios", phandle, SECURE_GPIO_POWEROFF, 0);
874 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "status", "disabled");
875 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "secure-status",
876 "okay");
877
878 qemu_fdt_add_subnode(fdt, "/gpio-restart");
879 qemu_fdt_setprop_string(fdt, "/gpio-restart", "compatible",
880 "gpio-restart");
881 qemu_fdt_setprop_cells(fdt, "/gpio-restart",
882 "gpios", phandle, SECURE_GPIO_RESET, 0);
883 qemu_fdt_setprop_string(fdt, "/gpio-restart", "status", "disabled");
884 qemu_fdt_setprop_string(fdt, "/gpio-restart", "secure-status",
885 "okay");
886 }
887
888 static void create_gpio_devices(const VirtMachineState *vms, int gpio,
889 MemoryRegion *mem)
890 {
891 char *nodename;
892 DeviceState *pl061_dev;
893 hwaddr base = vms->memmap[gpio].base;
894 hwaddr size = vms->memmap[gpio].size;
895 int irq = vms->irqmap[gpio];
896 const char compat[] = "arm,pl061\0arm,primecell";
897 SysBusDevice *s;
898 MachineState *ms = MACHINE(vms);
899
900 pl061_dev = qdev_new("pl061");
901 s = SYS_BUS_DEVICE(pl061_dev);
902 sysbus_realize_and_unref(s, &error_fatal);
903 memory_region_add_subregion(mem, base, sysbus_mmio_get_region(s, 0));
904 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
905
906 uint32_t phandle = qemu_fdt_alloc_phandle(ms->fdt);
907 nodename = g_strdup_printf("/pl061@%" PRIx64, base);
908 qemu_fdt_add_subnode(ms->fdt, nodename);
909 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
910 2, base, 2, size);
911 qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
912 qemu_fdt_setprop_cell(ms->fdt, nodename, "#gpio-cells", 2);
913 qemu_fdt_setprop(ms->fdt, nodename, "gpio-controller", NULL, 0);
914 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
915 GIC_FDT_IRQ_TYPE_SPI, irq,
916 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
917 qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
918 qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
919 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", phandle);
920
921 if (gpio != VIRT_GPIO) {
922 /* Mark as not usable by the normal world */
923 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
924 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
925 }
926 g_free(nodename);
927
928 /* Child gpio devices */
929 if (gpio == VIRT_GPIO) {
930 create_gpio_keys(ms->fdt, pl061_dev, phandle);
931 } else {
932 create_secure_gpio_pwr(ms->fdt, pl061_dev, phandle);
933 }
934 }
935
936 static void create_virtio_devices(const VirtMachineState *vms)
937 {
938 int i;
939 hwaddr size = vms->memmap[VIRT_MMIO].size;
940 MachineState *ms = MACHINE(vms);
941
942 /* We create the transports in forwards order. Since qbus_realize()
943 * prepends (not appends) new child buses, the incrementing loop below will
944 * create a list of virtio-mmio buses with decreasing base addresses.
945 *
946 * When a -device option is processed from the command line,
947 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
948 * order. The upshot is that -device options in increasing command line
949 * order are mapped to virtio-mmio buses with decreasing base addresses.
950 *
951 * When this code was originally written, that arrangement ensured that the
952 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
953 * the first -device on the command line. (The end-to-end order is a
954 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
955 * guest kernel's name-to-address assignment strategy.)
956 *
957 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
958 * the message, if not necessarily the code, of commit 70161ff336.
959 * Therefore the loop now establishes the inverse of the original intent.
960 *
961 * Unfortunately, we can't counteract the kernel change by reversing the
962 * loop; it would break existing command lines.
963 *
964 * In any case, the kernel makes no guarantee about the stability of
965 * enumeration order of virtio devices (as demonstrated by it changing
966 * between kernel versions). For reliable and stable identification
967 * of disks users must use UUIDs or similar mechanisms.
968 */
969 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
970 int irq = vms->irqmap[VIRT_MMIO] + i;
971 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
972
973 sysbus_create_simple("virtio-mmio", base,
974 qdev_get_gpio_in(vms->gic, irq));
975 }
976
977 /* We add dtb nodes in reverse order so that they appear in the finished
978 * device tree lowest address first.
979 *
980 * Note that this mapping is independent of the loop above. The previous
981 * loop influences virtio device to virtio transport assignment, whereas
982 * this loop controls how virtio transports are laid out in the dtb.
983 */
984 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
985 char *nodename;
986 int irq = vms->irqmap[VIRT_MMIO] + i;
987 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
988
989 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
990 qemu_fdt_add_subnode(ms->fdt, nodename);
991 qemu_fdt_setprop_string(ms->fdt, nodename,
992 "compatible", "virtio,mmio");
993 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
994 2, base, 2, size);
995 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
996 GIC_FDT_IRQ_TYPE_SPI, irq,
997 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
998 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
999 g_free(nodename);
1000 }
1001 }
1002
1003 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
1004
1005 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms,
1006 const char *name,
1007 const char *alias_prop_name)
1008 {
1009 /*
1010 * Create a single flash device. We use the same parameters as
1011 * the flash devices on the Versatile Express board.
1012 */
1013 DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
1014
1015 qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
1016 qdev_prop_set_uint8(dev, "width", 4);
1017 qdev_prop_set_uint8(dev, "device-width", 2);
1018 qdev_prop_set_bit(dev, "big-endian", false);
1019 qdev_prop_set_uint16(dev, "id0", 0x89);
1020 qdev_prop_set_uint16(dev, "id1", 0x18);
1021 qdev_prop_set_uint16(dev, "id2", 0x00);
1022 qdev_prop_set_uint16(dev, "id3", 0x00);
1023 qdev_prop_set_string(dev, "name", name);
1024 object_property_add_child(OBJECT(vms), name, OBJECT(dev));
1025 object_property_add_alias(OBJECT(vms), alias_prop_name,
1026 OBJECT(dev), "drive");
1027 return PFLASH_CFI01(dev);
1028 }
1029
1030 static void virt_flash_create(VirtMachineState *vms)
1031 {
1032 vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0");
1033 vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1");
1034 }
1035
1036 static void virt_flash_map1(PFlashCFI01 *flash,
1037 hwaddr base, hwaddr size,
1038 MemoryRegion *sysmem)
1039 {
1040 DeviceState *dev = DEVICE(flash);
1041
1042 assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE));
1043 assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
1044 qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
1045 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1046
1047 memory_region_add_subregion(sysmem, base,
1048 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
1049 0));
1050 }
1051
1052 static void virt_flash_map(VirtMachineState *vms,
1053 MemoryRegion *sysmem,
1054 MemoryRegion *secure_sysmem)
1055 {
1056 /*
1057 * Map two flash devices to fill the VIRT_FLASH space in the memmap.
1058 * sysmem is the system memory space. secure_sysmem is the secure view
1059 * of the system, and the first flash device should be made visible only
1060 * there. The second flash device is visible to both secure and nonsecure.
1061 * If sysmem == secure_sysmem this means there is no separate Secure
1062 * address space and both flash devices are generally visible.
1063 */
1064 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1065 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1066
1067 virt_flash_map1(vms->flash[0], flashbase, flashsize,
1068 secure_sysmem);
1069 virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize,
1070 sysmem);
1071 }
1072
1073 static void virt_flash_fdt(VirtMachineState *vms,
1074 MemoryRegion *sysmem,
1075 MemoryRegion *secure_sysmem)
1076 {
1077 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1078 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1079 MachineState *ms = MACHINE(vms);
1080 char *nodename;
1081
1082 if (sysmem == secure_sysmem) {
1083 /* Report both flash devices as a single node in the DT */
1084 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
1085 qemu_fdt_add_subnode(ms->fdt, nodename);
1086 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1087 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1088 2, flashbase, 2, flashsize,
1089 2, flashbase + flashsize, 2, flashsize);
1090 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1091 g_free(nodename);
1092 } else {
1093 /*
1094 * Report the devices as separate nodes so we can mark one as
1095 * only visible to the secure world.
1096 */
1097 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
1098 qemu_fdt_add_subnode(ms->fdt, nodename);
1099 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1100 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1101 2, flashbase, 2, flashsize);
1102 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1103 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1104 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1105 g_free(nodename);
1106
1107 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
1108 qemu_fdt_add_subnode(ms->fdt, nodename);
1109 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1110 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1111 2, flashbase + flashsize, 2, flashsize);
1112 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1113 g_free(nodename);
1114 }
1115 }
1116
1117 static bool virt_firmware_init(VirtMachineState *vms,
1118 MemoryRegion *sysmem,
1119 MemoryRegion *secure_sysmem)
1120 {
1121 int i;
1122 const char *bios_name;
1123 BlockBackend *pflash_blk0;
1124
1125 /* Map legacy -drive if=pflash to machine properties */
1126 for (i = 0; i < ARRAY_SIZE(vms->flash); i++) {
1127 pflash_cfi01_legacy_drive(vms->flash[i],
1128 drive_get(IF_PFLASH, 0, i));
1129 }
1130
1131 virt_flash_map(vms, sysmem, secure_sysmem);
1132
1133 pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]);
1134
1135 bios_name = MACHINE(vms)->firmware;
1136 if (bios_name) {
1137 char *fname;
1138 MemoryRegion *mr;
1139 int image_size;
1140
1141 if (pflash_blk0) {
1142 error_report("The contents of the first flash device may be "
1143 "specified with -bios or with -drive if=pflash... "
1144 "but you cannot use both options at once");
1145 exit(1);
1146 }
1147
1148 /* Fall back to -bios */
1149
1150 fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1151 if (!fname) {
1152 error_report("Could not find ROM image '%s'", bios_name);
1153 exit(1);
1154 }
1155 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0);
1156 image_size = load_image_mr(fname, mr);
1157 g_free(fname);
1158 if (image_size < 0) {
1159 error_report("Could not load ROM image '%s'", bios_name);
1160 exit(1);
1161 }
1162 }
1163
1164 return pflash_blk0 || bios_name;
1165 }
1166
1167 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
1168 {
1169 MachineState *ms = MACHINE(vms);
1170 hwaddr base = vms->memmap[VIRT_FW_CFG].base;
1171 hwaddr size = vms->memmap[VIRT_FW_CFG].size;
1172 FWCfgState *fw_cfg;
1173 char *nodename;
1174
1175 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
1176 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus);
1177
1178 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
1179 qemu_fdt_add_subnode(ms->fdt, nodename);
1180 qemu_fdt_setprop_string(ms->fdt, nodename,
1181 "compatible", "qemu,fw-cfg-mmio");
1182 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1183 2, base, 2, size);
1184 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1185 g_free(nodename);
1186 return fw_cfg;
1187 }
1188
1189 static void create_pcie_irq_map(const MachineState *ms,
1190 uint32_t gic_phandle,
1191 int first_irq, const char *nodename)
1192 {
1193 int devfn, pin;
1194 uint32_t full_irq_map[4 * 4 * 10] = { 0 };
1195 uint32_t *irq_map = full_irq_map;
1196
1197 for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
1198 for (pin = 0; pin < 4; pin++) {
1199 int irq_type = GIC_FDT_IRQ_TYPE_SPI;
1200 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
1201 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
1202 int i;
1203
1204 uint32_t map[] = {
1205 devfn << 8, 0, 0, /* devfn */
1206 pin + 1, /* PCI pin */
1207 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
1208
1209 /* Convert map to big endian */
1210 for (i = 0; i < 10; i++) {
1211 irq_map[i] = cpu_to_be32(map[i]);
1212 }
1213 irq_map += 10;
1214 }
1215 }
1216
1217 qemu_fdt_setprop(ms->fdt, nodename, "interrupt-map",
1218 full_irq_map, sizeof(full_irq_map));
1219
1220 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupt-map-mask",
1221 cpu_to_be16(PCI_DEVFN(3, 0)), /* Slot 3 */
1222 0, 0,
1223 0x7 /* PCI irq */);
1224 }
1225
1226 static void create_smmu(const VirtMachineState *vms,
1227 PCIBus *bus)
1228 {
1229 char *node;
1230 const char compat[] = "arm,smmu-v3";
1231 int irq = vms->irqmap[VIRT_SMMU];
1232 int i;
1233 hwaddr base = vms->memmap[VIRT_SMMU].base;
1234 hwaddr size = vms->memmap[VIRT_SMMU].size;
1235 const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
1236 DeviceState *dev;
1237 MachineState *ms = MACHINE(vms);
1238
1239 if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
1240 return;
1241 }
1242
1243 dev = qdev_new("arm-smmuv3");
1244
1245 object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus),
1246 &error_abort);
1247 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1248 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
1249 for (i = 0; i < NUM_SMMU_IRQS; i++) {
1250 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1251 qdev_get_gpio_in(vms->gic, irq + i));
1252 }
1253
1254 node = g_strdup_printf("/smmuv3@%" PRIx64, base);
1255 qemu_fdt_add_subnode(ms->fdt, node);
1256 qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
1257 qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg", 2, base, 2, size);
1258
1259 qemu_fdt_setprop_cells(ms->fdt, node, "interrupts",
1260 GIC_FDT_IRQ_TYPE_SPI, irq , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1261 GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1262 GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1263 GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1264
1265 qemu_fdt_setprop(ms->fdt, node, "interrupt-names", irq_names,
1266 sizeof(irq_names));
1267
1268 qemu_fdt_setprop_cell(ms->fdt, node, "clocks", vms->clock_phandle);
1269 qemu_fdt_setprop_string(ms->fdt, node, "clock-names", "apb_pclk");
1270 qemu_fdt_setprop(ms->fdt, node, "dma-coherent", NULL, 0);
1271
1272 qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
1273
1274 qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
1275 g_free(node);
1276 }
1277
1278 static void create_virtio_iommu_dt_bindings(VirtMachineState *vms)
1279 {
1280 const char compat[] = "virtio,pci-iommu";
1281 uint16_t bdf = vms->virtio_iommu_bdf;
1282 MachineState *ms = MACHINE(vms);
1283 char *node;
1284
1285 vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
1286
1287 node = g_strdup_printf("%s/virtio_iommu@%d", vms->pciehb_nodename, bdf);
1288 qemu_fdt_add_subnode(ms->fdt, node);
1289 qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
1290 qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg",
1291 1, bdf << 8, 1, 0, 1, 0,
1292 1, 0, 1, 0);
1293
1294 qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
1295 qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
1296 g_free(node);
1297
1298 qemu_fdt_setprop_cells(ms->fdt, vms->pciehb_nodename, "iommu-map",
1299 0x0, vms->iommu_phandle, 0x0, bdf,
1300 bdf + 1, vms->iommu_phandle, bdf + 1, 0xffff - bdf);
1301 }
1302
1303 static void create_pcie(VirtMachineState *vms)
1304 {
1305 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1306 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
1307 hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base;
1308 hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size;
1309 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1310 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
1311 hwaddr base_ecam, size_ecam;
1312 hwaddr base = base_mmio;
1313 int nr_pcie_buses;
1314 int irq = vms->irqmap[VIRT_PCIE];
1315 MemoryRegion *mmio_alias;
1316 MemoryRegion *mmio_reg;
1317 MemoryRegion *ecam_alias;
1318 MemoryRegion *ecam_reg;
1319 DeviceState *dev;
1320 char *nodename;
1321 int i, ecam_id;
1322 PCIHostState *pci;
1323 MachineState *ms = MACHINE(vms);
1324
1325 dev = qdev_new(TYPE_GPEX_HOST);
1326 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1327
1328 ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
1329 base_ecam = vms->memmap[ecam_id].base;
1330 size_ecam = vms->memmap[ecam_id].size;
1331 nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
1332 /* Map only the first size_ecam bytes of ECAM space */
1333 ecam_alias = g_new0(MemoryRegion, 1);
1334 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1335 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1336 ecam_reg, 0, size_ecam);
1337 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1338
1339 /* Map the MMIO window into system address space so as to expose
1340 * the section of PCI MMIO space which starts at the same base address
1341 * (ie 1:1 mapping for that part of PCI MMIO space visible through
1342 * the window).
1343 */
1344 mmio_alias = g_new0(MemoryRegion, 1);
1345 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1346 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1347 mmio_reg, base_mmio, size_mmio);
1348 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1349
1350 if (vms->highmem) {
1351 /* Map high MMIO space */
1352 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1353
1354 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1355 mmio_reg, base_mmio_high, size_mmio_high);
1356 memory_region_add_subregion(get_system_memory(), base_mmio_high,
1357 high_mmio_alias);
1358 }
1359
1360 /* Map IO port space */
1361 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1362
1363 for (i = 0; i < GPEX_NUM_IRQS; i++) {
1364 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1365 qdev_get_gpio_in(vms->gic, irq + i));
1366 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
1367 }
1368
1369 pci = PCI_HOST_BRIDGE(dev);
1370 vms->bus = pci->bus;
1371 if (vms->bus) {
1372 for (i = 0; i < nb_nics; i++) {
1373 NICInfo *nd = &nd_table[i];
1374
1375 if (!nd->model) {
1376 nd->model = g_strdup("virtio");
1377 }
1378
1379 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1380 }
1381 }
1382
1383 nodename = vms->pciehb_nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1384 qemu_fdt_add_subnode(ms->fdt, nodename);
1385 qemu_fdt_setprop_string(ms->fdt, nodename,
1386 "compatible", "pci-host-ecam-generic");
1387 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "pci");
1388 qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 3);
1389 qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 2);
1390 qemu_fdt_setprop_cell(ms->fdt, nodename, "linux,pci-domain", 0);
1391 qemu_fdt_setprop_cells(ms->fdt, nodename, "bus-range", 0,
1392 nr_pcie_buses - 1);
1393 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1394
1395 if (vms->msi_phandle) {
1396 qemu_fdt_setprop_cells(ms->fdt, nodename, "msi-parent",
1397 vms->msi_phandle);
1398 }
1399
1400 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1401 2, base_ecam, 2, size_ecam);
1402
1403 if (vms->highmem) {
1404 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
1405 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1406 2, base_pio, 2, size_pio,
1407 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1408 2, base_mmio, 2, size_mmio,
1409 1, FDT_PCI_RANGE_MMIO_64BIT,
1410 2, base_mmio_high,
1411 2, base_mmio_high, 2, size_mmio_high);
1412 } else {
1413 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
1414 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1415 2, base_pio, 2, size_pio,
1416 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1417 2, base_mmio, 2, size_mmio);
1418 }
1419
1420 qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 1);
1421 create_pcie_irq_map(ms, vms->gic_phandle, irq, nodename);
1422
1423 if (vms->iommu) {
1424 vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
1425
1426 switch (vms->iommu) {
1427 case VIRT_IOMMU_SMMUV3:
1428 create_smmu(vms, vms->bus);
1429 qemu_fdt_setprop_cells(ms->fdt, nodename, "iommu-map",
1430 0x0, vms->iommu_phandle, 0x0, 0x10000);
1431 break;
1432 default:
1433 g_assert_not_reached();
1434 }
1435 }
1436 }
1437
1438 static void create_platform_bus(VirtMachineState *vms)
1439 {
1440 DeviceState *dev;
1441 SysBusDevice *s;
1442 int i;
1443 MemoryRegion *sysmem = get_system_memory();
1444
1445 dev = qdev_new(TYPE_PLATFORM_BUS_DEVICE);
1446 dev->id = TYPE_PLATFORM_BUS_DEVICE;
1447 qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
1448 qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
1449 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1450 vms->platform_bus_dev = dev;
1451
1452 s = SYS_BUS_DEVICE(dev);
1453 for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
1454 int irq = vms->irqmap[VIRT_PLATFORM_BUS] + i;
1455 sysbus_connect_irq(s, i, qdev_get_gpio_in(vms->gic, irq));
1456 }
1457
1458 memory_region_add_subregion(sysmem,
1459 vms->memmap[VIRT_PLATFORM_BUS].base,
1460 sysbus_mmio_get_region(s, 0));
1461 }
1462
1463 static void create_tag_ram(MemoryRegion *tag_sysmem,
1464 hwaddr base, hwaddr size,
1465 const char *name)
1466 {
1467 MemoryRegion *tagram = g_new(MemoryRegion, 1);
1468
1469 memory_region_init_ram(tagram, NULL, name, size / 32, &error_fatal);
1470 memory_region_add_subregion(tag_sysmem, base / 32, tagram);
1471 }
1472
1473 static void create_secure_ram(VirtMachineState *vms,
1474 MemoryRegion *secure_sysmem,
1475 MemoryRegion *secure_tag_sysmem)
1476 {
1477 MemoryRegion *secram = g_new(MemoryRegion, 1);
1478 char *nodename;
1479 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1480 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1481 MachineState *ms = MACHINE(vms);
1482
1483 memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1484 &error_fatal);
1485 memory_region_add_subregion(secure_sysmem, base, secram);
1486
1487 nodename = g_strdup_printf("/secram@%" PRIx64, base);
1488 qemu_fdt_add_subnode(ms->fdt, nodename);
1489 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "memory");
1490 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 2, base, 2, size);
1491 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1492 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1493
1494 if (secure_tag_sysmem) {
1495 create_tag_ram(secure_tag_sysmem, base, size, "mach-virt.secure-tag");
1496 }
1497
1498 g_free(nodename);
1499 }
1500
1501 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1502 {
1503 const VirtMachineState *board = container_of(binfo, VirtMachineState,
1504 bootinfo);
1505 MachineState *ms = MACHINE(board);
1506
1507
1508 *fdt_size = board->fdt_size;
1509 return ms->fdt;
1510 }
1511
1512 static void virt_build_smbios(VirtMachineState *vms)
1513 {
1514 MachineClass *mc = MACHINE_GET_CLASS(vms);
1515 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1516 uint8_t *smbios_tables, *smbios_anchor;
1517 size_t smbios_tables_len, smbios_anchor_len;
1518 const char *product = "QEMU Virtual Machine";
1519
1520 if (kvm_enabled()) {
1521 product = "KVM Virtual Machine";
1522 }
1523
1524 smbios_set_defaults("QEMU", product,
1525 vmc->smbios_old_sys_ver ? "1.0" : mc->name, false,
1526 true, SMBIOS_ENTRY_POINT_30);
1527
1528 smbios_get_tables(MACHINE(vms), NULL, 0,
1529 &smbios_tables, &smbios_tables_len,
1530 &smbios_anchor, &smbios_anchor_len,
1531 &error_fatal);
1532
1533 if (smbios_anchor) {
1534 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1535 smbios_tables, smbios_tables_len);
1536 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1537 smbios_anchor, smbios_anchor_len);
1538 }
1539 }
1540
1541 static
1542 void virt_machine_done(Notifier *notifier, void *data)
1543 {
1544 VirtMachineState *vms = container_of(notifier, VirtMachineState,
1545 machine_done);
1546 MachineState *ms = MACHINE(vms);
1547 ARMCPU *cpu = ARM_CPU(first_cpu);
1548 struct arm_boot_info *info = &vms->bootinfo;
1549 AddressSpace *as = arm_boot_address_space(cpu, info);
1550
1551 /*
1552 * If the user provided a dtb, we assume the dynamic sysbus nodes
1553 * already are integrated there. This corresponds to a use case where
1554 * the dynamic sysbus nodes are complex and their generation is not yet
1555 * supported. In that case the user can take charge of the guest dt
1556 * while qemu takes charge of the qom stuff.
1557 */
1558 if (info->dtb_filename == NULL) {
1559 platform_bus_add_all_fdt_nodes(ms->fdt, "/intc",
1560 vms->memmap[VIRT_PLATFORM_BUS].base,
1561 vms->memmap[VIRT_PLATFORM_BUS].size,
1562 vms->irqmap[VIRT_PLATFORM_BUS]);
1563 }
1564 if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) {
1565 exit(1);
1566 }
1567
1568 fw_cfg_add_extra_pci_roots(vms->bus, vms->fw_cfg);
1569
1570 virt_acpi_setup(vms);
1571 virt_build_smbios(vms);
1572 }
1573
1574 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1575 {
1576 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1577 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1578
1579 if (!vmc->disallow_affinity_adjustment) {
1580 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1581 * GIC's target-list limitations. 32-bit KVM hosts currently
1582 * always create clusters of 4 CPUs, but that is expected to
1583 * change when they gain support for gicv3. When KVM is enabled
1584 * it will override the changes we make here, therefore our
1585 * purposes are to make TCG consistent (with 64-bit KVM hosts)
1586 * and to improve SGI efficiency.
1587 */
1588 if (vms->gic_version == VIRT_GIC_VERSION_3) {
1589 clustersz = GICV3_TARGETLIST_BITS;
1590 } else {
1591 clustersz = GIC_TARGETLIST_BITS;
1592 }
1593 }
1594 return arm_cpu_mp_affinity(idx, clustersz);
1595 }
1596
1597 static void virt_set_memmap(VirtMachineState *vms)
1598 {
1599 MachineState *ms = MACHINE(vms);
1600 hwaddr base, device_memory_base, device_memory_size;
1601 int i;
1602
1603 vms->memmap = extended_memmap;
1604
1605 for (i = 0; i < ARRAY_SIZE(base_memmap); i++) {
1606 vms->memmap[i] = base_memmap[i];
1607 }
1608
1609 if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) {
1610 error_report("unsupported number of memory slots: %"PRIu64,
1611 ms->ram_slots);
1612 exit(EXIT_FAILURE);
1613 }
1614
1615 /*
1616 * We compute the base of the high IO region depending on the
1617 * amount of initial and device memory. The device memory start/size
1618 * is aligned on 1GiB. We never put the high IO region below 256GiB
1619 * so that if maxram_size is < 255GiB we keep the legacy memory map.
1620 * The device region size assumes 1GiB page max alignment per slot.
1621 */
1622 device_memory_base =
1623 ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB);
1624 device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB;
1625
1626 /* Base address of the high IO region */
1627 base = device_memory_base + ROUND_UP(device_memory_size, GiB);
1628 if (base < device_memory_base) {
1629 error_report("maxmem/slots too huge");
1630 exit(EXIT_FAILURE);
1631 }
1632 if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) {
1633 base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES;
1634 }
1635
1636 for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) {
1637 hwaddr size = extended_memmap[i].size;
1638
1639 base = ROUND_UP(base, size);
1640 vms->memmap[i].base = base;
1641 vms->memmap[i].size = size;
1642 base += size;
1643 }
1644 vms->highest_gpa = base - 1;
1645 if (device_memory_size > 0) {
1646 ms->device_memory = g_malloc0(sizeof(*ms->device_memory));
1647 ms->device_memory->base = device_memory_base;
1648 memory_region_init(&ms->device_memory->mr, OBJECT(vms),
1649 "device-memory", device_memory_size);
1650 }
1651 }
1652
1653 /*
1654 * finalize_gic_version - Determines the final gic_version
1655 * according to the gic-version property
1656 *
1657 * Default GIC type is v2
1658 */
1659 static void finalize_gic_version(VirtMachineState *vms)
1660 {
1661 unsigned int max_cpus = MACHINE(vms)->smp.max_cpus;
1662
1663 if (kvm_enabled()) {
1664 int probe_bitmap;
1665
1666 if (!kvm_irqchip_in_kernel()) {
1667 switch (vms->gic_version) {
1668 case VIRT_GIC_VERSION_HOST:
1669 warn_report(
1670 "gic-version=host not relevant with kernel-irqchip=off "
1671 "as only userspace GICv2 is supported. Using v2 ...");
1672 return;
1673 case VIRT_GIC_VERSION_MAX:
1674 case VIRT_GIC_VERSION_NOSEL:
1675 vms->gic_version = VIRT_GIC_VERSION_2;
1676 return;
1677 case VIRT_GIC_VERSION_2:
1678 return;
1679 case VIRT_GIC_VERSION_3:
1680 error_report(
1681 "gic-version=3 is not supported with kernel-irqchip=off");
1682 exit(1);
1683 }
1684 }
1685
1686 probe_bitmap = kvm_arm_vgic_probe();
1687 if (!probe_bitmap) {
1688 error_report("Unable to determine GIC version supported by host");
1689 exit(1);
1690 }
1691
1692 switch (vms->gic_version) {
1693 case VIRT_GIC_VERSION_HOST:
1694 case VIRT_GIC_VERSION_MAX:
1695 if (probe_bitmap & KVM_ARM_VGIC_V3) {
1696 vms->gic_version = VIRT_GIC_VERSION_3;
1697 } else {
1698 vms->gic_version = VIRT_GIC_VERSION_2;
1699 }
1700 return;
1701 case VIRT_GIC_VERSION_NOSEL:
1702 if ((probe_bitmap & KVM_ARM_VGIC_V2) && max_cpus <= GIC_NCPU) {
1703 vms->gic_version = VIRT_GIC_VERSION_2;
1704 } else if (probe_bitmap & KVM_ARM_VGIC_V3) {
1705 /*
1706 * in case the host does not support v2 in-kernel emulation or
1707 * the end-user requested more than 8 VCPUs we now default
1708 * to v3. In any case defaulting to v2 would be broken.
1709 */
1710 vms->gic_version = VIRT_GIC_VERSION_3;
1711 } else if (max_cpus > GIC_NCPU) {
1712 error_report("host only supports in-kernel GICv2 emulation "
1713 "but more than 8 vcpus are requested");
1714 exit(1);
1715 }
1716 break;
1717 case VIRT_GIC_VERSION_2:
1718 case VIRT_GIC_VERSION_3:
1719 break;
1720 }
1721
1722 /* Check chosen version is effectively supported by the host */
1723 if (vms->gic_version == VIRT_GIC_VERSION_2 &&
1724 !(probe_bitmap & KVM_ARM_VGIC_V2)) {
1725 error_report("host does not support in-kernel GICv2 emulation");
1726 exit(1);
1727 } else if (vms->gic_version == VIRT_GIC_VERSION_3 &&
1728 !(probe_bitmap & KVM_ARM_VGIC_V3)) {
1729 error_report("host does not support in-kernel GICv3 emulation");
1730 exit(1);
1731 }
1732 return;
1733 }
1734
1735 /* TCG mode */
1736 switch (vms->gic_version) {
1737 case VIRT_GIC_VERSION_NOSEL:
1738 vms->gic_version = VIRT_GIC_VERSION_2;
1739 break;
1740 case VIRT_GIC_VERSION_MAX:
1741 vms->gic_version = VIRT_GIC_VERSION_3;
1742 break;
1743 case VIRT_GIC_VERSION_HOST:
1744 error_report("gic-version=host requires KVM");
1745 exit(1);
1746 case VIRT_GIC_VERSION_2:
1747 case VIRT_GIC_VERSION_3:
1748 break;
1749 }
1750 }
1751
1752 /*
1753 * virt_cpu_post_init() must be called after the CPUs have
1754 * been realized and the GIC has been created.
1755 */
1756 static void virt_cpu_post_init(VirtMachineState *vms, MemoryRegion *sysmem)
1757 {
1758 int max_cpus = MACHINE(vms)->smp.max_cpus;
1759 bool aarch64, pmu, steal_time;
1760 CPUState *cpu;
1761
1762 aarch64 = object_property_get_bool(OBJECT(first_cpu), "aarch64", NULL);
1763 pmu = object_property_get_bool(OBJECT(first_cpu), "pmu", NULL);
1764 steal_time = object_property_get_bool(OBJECT(first_cpu),
1765 "kvm-steal-time", NULL);
1766
1767 if (kvm_enabled()) {
1768 hwaddr pvtime_reg_base = vms->memmap[VIRT_PVTIME].base;
1769 hwaddr pvtime_reg_size = vms->memmap[VIRT_PVTIME].size;
1770
1771 if (steal_time) {
1772 MemoryRegion *pvtime = g_new(MemoryRegion, 1);
1773 hwaddr pvtime_size = max_cpus * PVTIME_SIZE_PER_CPU;
1774
1775 /* The memory region size must be a multiple of host page size. */
1776 pvtime_size = REAL_HOST_PAGE_ALIGN(pvtime_size);
1777
1778 if (pvtime_size > pvtime_reg_size) {
1779 error_report("pvtime requires a %" HWADDR_PRId
1780 " byte memory region for %d CPUs,"
1781 " but only %" HWADDR_PRId " has been reserved",
1782 pvtime_size, max_cpus, pvtime_reg_size);
1783 exit(1);
1784 }
1785
1786 memory_region_init_ram(pvtime, NULL, "pvtime", pvtime_size, NULL);
1787 memory_region_add_subregion(sysmem, pvtime_reg_base, pvtime);
1788 }
1789
1790 CPU_FOREACH(cpu) {
1791 if (pmu) {
1792 assert(arm_feature(&ARM_CPU(cpu)->env, ARM_FEATURE_PMU));
1793 if (kvm_irqchip_in_kernel()) {
1794 kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ));
1795 }
1796 kvm_arm_pmu_init(cpu);
1797 }
1798 if (steal_time) {
1799 kvm_arm_pvtime_init(cpu, pvtime_reg_base +
1800 cpu->cpu_index * PVTIME_SIZE_PER_CPU);
1801 }
1802 }
1803 } else {
1804 if (aarch64 && vms->highmem) {
1805 int requested_pa_size = 64 - clz64(vms->highest_gpa);
1806 int pamax = arm_pamax(ARM_CPU(first_cpu));
1807
1808 if (pamax < requested_pa_size) {
1809 error_report("VCPU supports less PA bits (%d) than "
1810 "requested by the memory map (%d)",
1811 pamax, requested_pa_size);
1812 exit(1);
1813 }
1814 }
1815 }
1816 }
1817
1818 static void machvirt_init(MachineState *machine)
1819 {
1820 VirtMachineState *vms = VIRT_MACHINE(machine);
1821 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
1822 MachineClass *mc = MACHINE_GET_CLASS(machine);
1823 const CPUArchIdList *possible_cpus;
1824 MemoryRegion *sysmem = get_system_memory();
1825 MemoryRegion *secure_sysmem = NULL;
1826 MemoryRegion *tag_sysmem = NULL;
1827 MemoryRegion *secure_tag_sysmem = NULL;
1828 int n, virt_max_cpus;
1829 bool firmware_loaded;
1830 bool aarch64 = true;
1831 bool has_ged = !vmc->no_ged;
1832 unsigned int smp_cpus = machine->smp.cpus;
1833 unsigned int max_cpus = machine->smp.max_cpus;
1834
1835 /*
1836 * In accelerated mode, the memory map is computed earlier in kvm_type()
1837 * to create a VM with the right number of IPA bits.
1838 */
1839 if (!vms->memmap) {
1840 virt_set_memmap(vms);
1841 }
1842
1843 /* We can probe only here because during property set
1844 * KVM is not available yet
1845 */
1846 finalize_gic_version(vms);
1847
1848 if (!cpu_type_valid(machine->cpu_type)) {
1849 error_report("mach-virt: CPU type %s not supported", machine->cpu_type);
1850 exit(1);
1851 }
1852
1853 if (vms->secure) {
1854 if (kvm_enabled()) {
1855 error_report("mach-virt: KVM does not support Security extensions");
1856 exit(1);
1857 }
1858
1859 /*
1860 * The Secure view of the world is the same as the NonSecure,
1861 * but with a few extra devices. Create it as a container region
1862 * containing the system memory at low priority; any secure-only
1863 * devices go in at higher priority and take precedence.
1864 */
1865 secure_sysmem = g_new(MemoryRegion, 1);
1866 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1867 UINT64_MAX);
1868 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1869 }
1870
1871 firmware_loaded = virt_firmware_init(vms, sysmem,
1872 secure_sysmem ?: sysmem);
1873
1874 /* If we have an EL3 boot ROM then the assumption is that it will
1875 * implement PSCI itself, so disable QEMU's internal implementation
1876 * so it doesn't get in the way. Instead of starting secondary
1877 * CPUs in PSCI powerdown state we will start them all running and
1878 * let the boot ROM sort them out.
1879 * The usual case is that we do use QEMU's PSCI implementation;
1880 * if the guest has EL2 then we will use SMC as the conduit,
1881 * and otherwise we will use HVC (for backwards compatibility and
1882 * because if we're using KVM then we must use HVC).
1883 */
1884 if (vms->secure && firmware_loaded) {
1885 vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
1886 } else if (vms->virt) {
1887 vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
1888 } else {
1889 vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
1890 }
1891
1892 /* The maximum number of CPUs depends on the GIC version, or on how
1893 * many redistributors we can fit into the memory map.
1894 */
1895 if (vms->gic_version == VIRT_GIC_VERSION_3) {
1896 virt_max_cpus =
1897 vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
1898 virt_max_cpus +=
1899 vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE;
1900 } else {
1901 virt_max_cpus = GIC_NCPU;
1902 }
1903
1904 if (max_cpus > virt_max_cpus) {
1905 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1906 "supported by machine 'mach-virt' (%d)",
1907 max_cpus, virt_max_cpus);
1908 exit(1);
1909 }
1910
1911 if (vms->virt && kvm_enabled()) {
1912 error_report("mach-virt: KVM does not support providing "
1913 "Virtualization extensions to the guest CPU");
1914 exit(1);
1915 }
1916
1917 if (vms->mte && kvm_enabled()) {
1918 error_report("mach-virt: KVM does not support providing "
1919 "MTE to the guest CPU");
1920 exit(1);
1921 }
1922
1923 create_fdt(vms);
1924
1925 possible_cpus = mc->possible_cpu_arch_ids(machine);
1926 assert(possible_cpus->len == max_cpus);
1927 for (n = 0; n < possible_cpus->len; n++) {
1928 Object *cpuobj;
1929 CPUState *cs;
1930
1931 if (n >= smp_cpus) {
1932 break;
1933 }
1934
1935 cpuobj = object_new(possible_cpus->cpus[n].type);
1936 object_property_set_int(cpuobj, "mp-affinity",
1937 possible_cpus->cpus[n].arch_id, NULL);
1938
1939 cs = CPU(cpuobj);
1940 cs->cpu_index = n;
1941
1942 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
1943 &error_fatal);
1944
1945 aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
1946
1947 if (!vms->secure) {
1948 object_property_set_bool(cpuobj, "has_el3", false, NULL);
1949 }
1950
1951 if (!vms->virt && object_property_find(cpuobj, "has_el2")) {
1952 object_property_set_bool(cpuobj, "has_el2", false, NULL);
1953 }
1954
1955 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
1956 object_property_set_int(cpuobj, "psci-conduit", vms->psci_conduit,
1957 NULL);
1958
1959 /* Secondary CPUs start in PSCI powered-down state */
1960 if (n > 0) {
1961 object_property_set_bool(cpuobj, "start-powered-off", true,
1962 NULL);
1963 }
1964 }
1965
1966 if (vmc->kvm_no_adjvtime &&
1967 object_property_find(cpuobj, "kvm-no-adjvtime")) {
1968 object_property_set_bool(cpuobj, "kvm-no-adjvtime", true, NULL);
1969 }
1970
1971 if (vmc->no_kvm_steal_time &&
1972 object_property_find(cpuobj, "kvm-steal-time")) {
1973 object_property_set_bool(cpuobj, "kvm-steal-time", false, NULL);
1974 }
1975
1976 if (vmc->no_pmu && object_property_find(cpuobj, "pmu")) {
1977 object_property_set_bool(cpuobj, "pmu", false, NULL);
1978 }
1979
1980 if (object_property_find(cpuobj, "reset-cbar")) {
1981 object_property_set_int(cpuobj, "reset-cbar",
1982 vms->memmap[VIRT_CPUPERIPHS].base,
1983 &error_abort);
1984 }
1985
1986 object_property_set_link(cpuobj, "memory", OBJECT(sysmem),
1987 &error_abort);
1988 if (vms->secure) {
1989 object_property_set_link(cpuobj, "secure-memory",
1990 OBJECT(secure_sysmem), &error_abort);
1991 }
1992
1993 if (vms->mte) {
1994 /* Create the memory region only once, but link to all cpus. */
1995 if (!tag_sysmem) {
1996 /*
1997 * The property exists only if MemTag is supported.
1998 * If it is, we must allocate the ram to back that up.
1999 */
2000 if (!object_property_find(cpuobj, "tag-memory")) {
2001 error_report("MTE requested, but not supported "
2002 "by the guest CPU");
2003 exit(1);
2004 }
2005
2006 tag_sysmem = g_new(MemoryRegion, 1);
2007 memory_region_init(tag_sysmem, OBJECT(machine),
2008 "tag-memory", UINT64_MAX / 32);
2009
2010 if (vms->secure) {
2011 secure_tag_sysmem = g_new(MemoryRegion, 1);
2012 memory_region_init(secure_tag_sysmem, OBJECT(machine),
2013 "secure-tag-memory", UINT64_MAX / 32);
2014
2015 /* As with ram, secure-tag takes precedence over tag. */
2016 memory_region_add_subregion_overlap(secure_tag_sysmem, 0,
2017 tag_sysmem, -1);
2018 }
2019 }
2020
2021 object_property_set_link(cpuobj, "tag-memory", OBJECT(tag_sysmem),
2022 &error_abort);
2023 if (vms->secure) {
2024 object_property_set_link(cpuobj, "secure-tag-memory",
2025 OBJECT(secure_tag_sysmem),
2026 &error_abort);
2027 }
2028 }
2029
2030 qdev_realize(DEVICE(cpuobj), NULL, &error_fatal);
2031 object_unref(cpuobj);
2032 }
2033 fdt_add_timer_nodes(vms);
2034 fdt_add_cpu_nodes(vms);
2035
2036 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base,
2037 machine->ram);
2038 if (machine->device_memory) {
2039 memory_region_add_subregion(sysmem, machine->device_memory->base,
2040 &machine->device_memory->mr);
2041 }
2042
2043 virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem);
2044
2045 create_gic(vms);
2046
2047 virt_cpu_post_init(vms, sysmem);
2048
2049 fdt_add_pmu_nodes(vms);
2050
2051 create_uart(vms, VIRT_UART, sysmem, serial_hd(0));
2052
2053 if (vms->secure) {
2054 create_secure_ram(vms, secure_sysmem, secure_tag_sysmem);
2055 create_uart(vms, VIRT_SECURE_UART, secure_sysmem, serial_hd(1));
2056 }
2057
2058 if (tag_sysmem) {
2059 create_tag_ram(tag_sysmem, vms->memmap[VIRT_MEM].base,
2060 machine->ram_size, "mach-virt.tag");
2061 }
2062
2063 vms->highmem_ecam &= vms->highmem && (!firmware_loaded || aarch64);
2064
2065 create_rtc(vms);
2066
2067 create_pcie(vms);
2068
2069 if (has_ged && aarch64 && firmware_loaded && virt_is_acpi_enabled(vms)) {
2070 vms->acpi_dev = create_acpi_ged(vms);
2071 } else {
2072 create_gpio_devices(vms, VIRT_GPIO, sysmem);
2073 }
2074
2075 if (vms->secure && !vmc->no_secure_gpio) {
2076 create_gpio_devices(vms, VIRT_SECURE_GPIO, secure_sysmem);
2077 }
2078
2079 /* connect powerdown request */
2080 vms->powerdown_notifier.notify = virt_powerdown_req;
2081 qemu_register_powerdown_notifier(&vms->powerdown_notifier);
2082
2083 /* Create mmio transports, so the user can create virtio backends
2084 * (which will be automatically plugged in to the transports). If
2085 * no backend is created the transport will just sit harmlessly idle.
2086 */
2087 create_virtio_devices(vms);
2088
2089 vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
2090 rom_set_fw(vms->fw_cfg);
2091
2092 create_platform_bus(vms);
2093
2094 if (machine->nvdimms_state->is_enabled) {
2095 const struct AcpiGenericAddress arm_virt_nvdimm_acpi_dsmio = {
2096 .space_id = AML_AS_SYSTEM_MEMORY,
2097 .address = vms->memmap[VIRT_NVDIMM_ACPI].base,
2098 .bit_width = NVDIMM_ACPI_IO_LEN << 3
2099 };
2100
2101 nvdimm_init_acpi_state(machine->nvdimms_state, sysmem,
2102 arm_virt_nvdimm_acpi_dsmio,
2103 vms->fw_cfg, OBJECT(vms));
2104 }
2105
2106 vms->bootinfo.ram_size = machine->ram_size;
2107 vms->bootinfo.nb_cpus = smp_cpus;
2108 vms->bootinfo.board_id = -1;
2109 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
2110 vms->bootinfo.get_dtb = machvirt_dtb;
2111 vms->bootinfo.skip_dtb_autoload = true;
2112 vms->bootinfo.firmware_loaded = firmware_loaded;
2113 arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo);
2114
2115 vms->machine_done.notify = virt_machine_done;
2116 qemu_add_machine_init_done_notifier(&vms->machine_done);
2117 }
2118
2119 static bool virt_get_secure(Object *obj, Error **errp)
2120 {
2121 VirtMachineState *vms = VIRT_MACHINE(obj);
2122
2123 return vms->secure;
2124 }
2125
2126 static void virt_set_secure(Object *obj, bool value, Error **errp)
2127 {
2128 VirtMachineState *vms = VIRT_MACHINE(obj);
2129
2130 vms->secure = value;
2131 }
2132
2133 static bool virt_get_virt(Object *obj, Error **errp)
2134 {
2135 VirtMachineState *vms = VIRT_MACHINE(obj);
2136
2137 return vms->virt;
2138 }
2139
2140 static void virt_set_virt(Object *obj, bool value, Error **errp)
2141 {
2142 VirtMachineState *vms = VIRT_MACHINE(obj);
2143
2144 vms->virt = value;
2145 }
2146
2147 static bool virt_get_highmem(Object *obj, Error **errp)
2148 {
2149 VirtMachineState *vms = VIRT_MACHINE(obj);
2150
2151 return vms->highmem;
2152 }
2153
2154 static void virt_set_highmem(Object *obj, bool value, Error **errp)
2155 {
2156 VirtMachineState *vms = VIRT_MACHINE(obj);
2157
2158 vms->highmem = value;
2159 }
2160
2161 static bool virt_get_its(Object *obj, Error **errp)
2162 {
2163 VirtMachineState *vms = VIRT_MACHINE(obj);
2164
2165 return vms->its;
2166 }
2167
2168 static void virt_set_its(Object *obj, bool value, Error **errp)
2169 {
2170 VirtMachineState *vms = VIRT_MACHINE(obj);
2171
2172 vms->its = value;
2173 }
2174
2175 static char *virt_get_oem_id(Object *obj, Error **errp)
2176 {
2177 VirtMachineState *vms = VIRT_MACHINE(obj);
2178
2179 return g_strdup(vms->oem_id);
2180 }
2181
2182 static void virt_set_oem_id(Object *obj, const char *value, Error **errp)
2183 {
2184 VirtMachineState *vms = VIRT_MACHINE(obj);
2185 size_t len = strlen(value);
2186
2187 if (len > 6) {
2188 error_setg(errp,
2189 "User specified oem-id value is bigger than 6 bytes in size");
2190 return;
2191 }
2192
2193 strncpy(vms->oem_id, value, 6);
2194 }
2195
2196 static char *virt_get_oem_table_id(Object *obj, Error **errp)
2197 {
2198 VirtMachineState *vms = VIRT_MACHINE(obj);
2199
2200 return g_strdup(vms->oem_table_id);
2201 }
2202
2203 static void virt_set_oem_table_id(Object *obj, const char *value,
2204 Error **errp)
2205 {
2206 VirtMachineState *vms = VIRT_MACHINE(obj);
2207 size_t len = strlen(value);
2208
2209 if (len > 8) {
2210 error_setg(errp,
2211 "User specified oem-table-id value is bigger than 8 bytes in size");
2212 return;
2213 }
2214 strncpy(vms->oem_table_id, value, 8);
2215 }
2216
2217
2218 bool virt_is_acpi_enabled(VirtMachineState *vms)
2219 {
2220 if (vms->acpi == ON_OFF_AUTO_OFF) {
2221 return false;
2222 }
2223 return true;
2224 }
2225
2226 static void virt_get_acpi(Object *obj, Visitor *v, const char *name,
2227 void *opaque, Error **errp)
2228 {
2229 VirtMachineState *vms = VIRT_MACHINE(obj);
2230 OnOffAuto acpi = vms->acpi;
2231
2232 visit_type_OnOffAuto(v, name, &acpi, errp);
2233 }
2234
2235 static void virt_set_acpi(Object *obj, Visitor *v, const char *name,
2236 void *opaque, Error **errp)
2237 {
2238 VirtMachineState *vms = VIRT_MACHINE(obj);
2239
2240 visit_type_OnOffAuto(v, name, &vms->acpi, errp);
2241 }
2242
2243 static bool virt_get_ras(Object *obj, Error **errp)
2244 {
2245 VirtMachineState *vms = VIRT_MACHINE(obj);
2246
2247 return vms->ras;
2248 }
2249
2250 static void virt_set_ras(Object *obj, bool value, Error **errp)
2251 {
2252 VirtMachineState *vms = VIRT_MACHINE(obj);
2253
2254 vms->ras = value;
2255 }
2256
2257 static bool virt_get_mte(Object *obj, Error **errp)
2258 {
2259 VirtMachineState *vms = VIRT_MACHINE(obj);
2260
2261 return vms->mte;
2262 }
2263
2264 static void virt_set_mte(Object *obj, bool value, Error **errp)
2265 {
2266 VirtMachineState *vms = VIRT_MACHINE(obj);
2267
2268 vms->mte = value;
2269 }
2270
2271 static char *virt_get_gic_version(Object *obj, Error **errp)
2272 {
2273 VirtMachineState *vms = VIRT_MACHINE(obj);
2274 const char *val = vms->gic_version == VIRT_GIC_VERSION_3 ? "3" : "2";
2275
2276 return g_strdup(val);
2277 }
2278
2279 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
2280 {
2281 VirtMachineState *vms = VIRT_MACHINE(obj);
2282
2283 if (!strcmp(value, "3")) {
2284 vms->gic_version = VIRT_GIC_VERSION_3;
2285 } else if (!strcmp(value, "2")) {
2286 vms->gic_version = VIRT_GIC_VERSION_2;
2287 } else if (!strcmp(value, "host")) {
2288 vms->gic_version = VIRT_GIC_VERSION_HOST; /* Will probe later */
2289 } else if (!strcmp(value, "max")) {
2290 vms->gic_version = VIRT_GIC_VERSION_MAX; /* Will probe later */
2291 } else {
2292 error_setg(errp, "Invalid gic-version value");
2293 error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
2294 }
2295 }
2296
2297 static char *virt_get_iommu(Object *obj, Error **errp)
2298 {
2299 VirtMachineState *vms = VIRT_MACHINE(obj);
2300
2301 switch (vms->iommu) {
2302 case VIRT_IOMMU_NONE:
2303 return g_strdup("none");
2304 case VIRT_IOMMU_SMMUV3:
2305 return g_strdup("smmuv3");
2306 default:
2307 g_assert_not_reached();
2308 }
2309 }
2310
2311 static void virt_set_iommu(Object *obj, const char *value, Error **errp)
2312 {
2313 VirtMachineState *vms = VIRT_MACHINE(obj);
2314
2315 if (!strcmp(value, "smmuv3")) {
2316 vms->iommu = VIRT_IOMMU_SMMUV3;
2317 } else if (!strcmp(value, "none")) {
2318 vms->iommu = VIRT_IOMMU_NONE;
2319 } else {
2320 error_setg(errp, "Invalid iommu value");
2321 error_append_hint(errp, "Valid values are none, smmuv3.\n");
2322 }
2323 }
2324
2325 static CpuInstanceProperties
2326 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2327 {
2328 MachineClass *mc = MACHINE_GET_CLASS(ms);
2329 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2330
2331 assert(cpu_index < possible_cpus->len);
2332 return possible_cpus->cpus[cpu_index].props;
2333 }
2334
2335 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
2336 {
2337 return idx % ms->numa_state->num_nodes;
2338 }
2339
2340 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
2341 {
2342 int n;
2343 unsigned int max_cpus = ms->smp.max_cpus;
2344 VirtMachineState *vms = VIRT_MACHINE(ms);
2345
2346 if (ms->possible_cpus) {
2347 assert(ms->possible_cpus->len == max_cpus);
2348 return ms->possible_cpus;
2349 }
2350
2351 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2352 sizeof(CPUArchId) * max_cpus);
2353 ms->possible_cpus->len = max_cpus;
2354 for (n = 0; n < ms->possible_cpus->len; n++) {
2355 ms->possible_cpus->cpus[n].type = ms->cpu_type;
2356 ms->possible_cpus->cpus[n].arch_id =
2357 virt_cpu_mp_affinity(vms, n);
2358 ms->possible_cpus->cpus[n].props.has_thread_id = true;
2359 ms->possible_cpus->cpus[n].props.thread_id = n;
2360 }
2361 return ms->possible_cpus;
2362 }
2363
2364 static void virt_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2365 Error **errp)
2366 {
2367 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2368 const MachineState *ms = MACHINE(hotplug_dev);
2369 const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2370
2371 if (!vms->acpi_dev) {
2372 error_setg(errp,
2373 "memory hotplug is not enabled: missing acpi-ged device");
2374 return;
2375 }
2376
2377 if (vms->mte) {
2378 error_setg(errp, "memory hotplug is not enabled: MTE is enabled");
2379 return;
2380 }
2381
2382 if (is_nvdimm && !ms->nvdimms_state->is_enabled) {
2383 error_setg(errp, "nvdimm is not enabled: add 'nvdimm=on' to '-M'");
2384 return;
2385 }
2386
2387 pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), NULL, errp);
2388 }
2389
2390 static void virt_memory_plug(HotplugHandler *hotplug_dev,
2391 DeviceState *dev, Error **errp)
2392 {
2393 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2394 MachineState *ms = MACHINE(hotplug_dev);
2395 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2396
2397 pc_dimm_plug(PC_DIMM(dev), MACHINE(vms));
2398
2399 if (is_nvdimm) {
2400 nvdimm_plug(ms->nvdimms_state);
2401 }
2402
2403 hotplug_handler_plug(HOTPLUG_HANDLER(vms->acpi_dev),
2404 dev, &error_abort);
2405 }
2406
2407 static void virt_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2408 DeviceState *dev, Error **errp)
2409 {
2410 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2411
2412 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2413 virt_memory_pre_plug(hotplug_dev, dev, errp);
2414 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2415 hwaddr db_start = 0, db_end = 0;
2416 char *resv_prop_str;
2417
2418 switch (vms->msi_controller) {
2419 case VIRT_MSI_CTRL_NONE:
2420 return;
2421 case VIRT_MSI_CTRL_ITS:
2422 /* GITS_TRANSLATER page */
2423 db_start = base_memmap[VIRT_GIC_ITS].base + 0x10000;
2424 db_end = base_memmap[VIRT_GIC_ITS].base +
2425 base_memmap[VIRT_GIC_ITS].size - 1;
2426 break;
2427 case VIRT_MSI_CTRL_GICV2M:
2428 /* MSI_SETSPI_NS page */
2429 db_start = base_memmap[VIRT_GIC_V2M].base;
2430 db_end = db_start + base_memmap[VIRT_GIC_V2M].size - 1;
2431 break;
2432 }
2433 resv_prop_str = g_strdup_printf("0x%"PRIx64":0x%"PRIx64":%u",
2434 db_start, db_end,
2435 VIRTIO_IOMMU_RESV_MEM_T_MSI);
2436
2437 qdev_prop_set_uint32(dev, "len-reserved-regions", 1);
2438 qdev_prop_set_string(dev, "reserved-regions[0]", resv_prop_str);
2439 g_free(resv_prop_str);
2440 }
2441 }
2442
2443 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2444 DeviceState *dev, Error **errp)
2445 {
2446 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2447
2448 if (vms->platform_bus_dev) {
2449 MachineClass *mc = MACHINE_GET_CLASS(vms);
2450
2451 if (device_is_dynamic_sysbus(mc, dev)) {
2452 platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
2453 SYS_BUS_DEVICE(dev));
2454 }
2455 }
2456 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2457 virt_memory_plug(hotplug_dev, dev, errp);
2458 }
2459 if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2460 PCIDevice *pdev = PCI_DEVICE(dev);
2461
2462 vms->iommu = VIRT_IOMMU_VIRTIO;
2463 vms->virtio_iommu_bdf = pci_get_bdf(pdev);
2464 create_virtio_iommu_dt_bindings(vms);
2465 }
2466 }
2467
2468 static void virt_dimm_unplug_request(HotplugHandler *hotplug_dev,
2469 DeviceState *dev, Error **errp)
2470 {
2471 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2472 Error *local_err = NULL;
2473
2474 if (!vms->acpi_dev) {
2475 error_setg(&local_err,
2476 "memory hotplug is not enabled: missing acpi-ged device");
2477 goto out;
2478 }
2479
2480 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
2481 error_setg(&local_err,
2482 "nvdimm device hot unplug is not supported yet.");
2483 goto out;
2484 }
2485
2486 hotplug_handler_unplug_request(HOTPLUG_HANDLER(vms->acpi_dev), dev,
2487 &local_err);
2488 out:
2489 error_propagate(errp, local_err);
2490 }
2491
2492 static void virt_dimm_unplug(HotplugHandler *hotplug_dev,
2493 DeviceState *dev, Error **errp)
2494 {
2495 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2496 Error *local_err = NULL;
2497
2498 hotplug_handler_unplug(HOTPLUG_HANDLER(vms->acpi_dev), dev, &local_err);
2499 if (local_err) {
2500 goto out;
2501 }
2502
2503 pc_dimm_unplug(PC_DIMM(dev), MACHINE(vms));
2504 qdev_unrealize(dev);
2505
2506 out:
2507 error_propagate(errp, local_err);
2508 }
2509
2510 static void virt_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2511 DeviceState *dev, Error **errp)
2512 {
2513 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2514 virt_dimm_unplug_request(hotplug_dev, dev, errp);
2515 } else {
2516 error_setg(errp, "device unplug request for unsupported device"
2517 " type: %s", object_get_typename(OBJECT(dev)));
2518 }
2519 }
2520
2521 static void virt_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2522 DeviceState *dev, Error **errp)
2523 {
2524 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2525 virt_dimm_unplug(hotplug_dev, dev, errp);
2526 } else {
2527 error_setg(errp, "virt: device unplug for unsupported device"
2528 " type: %s", object_get_typename(OBJECT(dev)));
2529 }
2530 }
2531
2532 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
2533 DeviceState *dev)
2534 {
2535 MachineClass *mc = MACHINE_GET_CLASS(machine);
2536
2537 if (device_is_dynamic_sysbus(mc, dev) ||
2538 (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM))) {
2539 return HOTPLUG_HANDLER(machine);
2540 }
2541 if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2542 VirtMachineState *vms = VIRT_MACHINE(machine);
2543
2544 if (!vms->bootinfo.firmware_loaded || !virt_is_acpi_enabled(vms)) {
2545 return HOTPLUG_HANDLER(machine);
2546 }
2547 }
2548 return NULL;
2549 }
2550
2551 /*
2552 * for arm64 kvm_type [7-0] encodes the requested number of bits
2553 * in the IPA address space
2554 */
2555 static int virt_kvm_type(MachineState *ms, const char *type_str)
2556 {
2557 VirtMachineState *vms = VIRT_MACHINE(ms);
2558 int max_vm_pa_size, requested_pa_size;
2559 bool fixed_ipa;
2560
2561 max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa);
2562
2563 /* we freeze the memory map to compute the highest gpa */
2564 virt_set_memmap(vms);
2565
2566 requested_pa_size = 64 - clz64(vms->highest_gpa);
2567
2568 /*
2569 * KVM requires the IPA size to be at least 32 bits.
2570 */
2571 if (requested_pa_size < 32) {
2572 requested_pa_size = 32;
2573 }
2574
2575 if (requested_pa_size > max_vm_pa_size) {
2576 error_report("-m and ,maxmem option values "
2577 "require an IPA range (%d bits) larger than "
2578 "the one supported by the host (%d bits)",
2579 requested_pa_size, max_vm_pa_size);
2580 exit(1);
2581 }
2582 /*
2583 * We return the requested PA log size, unless KVM only supports
2584 * the implicit legacy 40b IPA setting, in which case the kvm_type
2585 * must be 0.
2586 */
2587 return fixed_ipa ? 0 : requested_pa_size;
2588 }
2589
2590 static void virt_machine_class_init(ObjectClass *oc, void *data)
2591 {
2592 MachineClass *mc = MACHINE_CLASS(oc);
2593 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2594
2595 mc->init = machvirt_init;
2596 /* Start with max_cpus set to 512, which is the maximum supported by KVM.
2597 * The value may be reduced later when we have more information about the
2598 * configuration of the particular instance.
2599 */
2600 mc->max_cpus = 512;
2601 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
2602 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
2603 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
2604 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM);
2605 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_TPM_TIS_SYSBUS);
2606 mc->block_default_type = IF_VIRTIO;
2607 mc->no_cdrom = 1;
2608 mc->pci_allow_0_address = true;
2609 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
2610 mc->minimum_page_bits = 12;
2611 mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
2612 mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
2613 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
2614 mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
2615 mc->kvm_type = virt_kvm_type;
2616 assert(!mc->get_hotplug_handler);
2617 mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
2618 hc->pre_plug = virt_machine_device_pre_plug_cb;
2619 hc->plug = virt_machine_device_plug_cb;
2620 hc->unplug_request = virt_machine_device_unplug_request_cb;
2621 hc->unplug = virt_machine_device_unplug_cb;
2622 mc->nvdimm_supported = true;
2623 mc->auto_enable_numa_with_memhp = true;
2624 mc->auto_enable_numa_with_memdev = true;
2625 mc->default_ram_id = "mach-virt.ram";
2626
2627 object_class_property_add(oc, "acpi", "OnOffAuto",
2628 virt_get_acpi, virt_set_acpi,
2629 NULL, NULL);
2630 object_class_property_set_description(oc, "acpi",
2631 "Enable ACPI");
2632 object_class_property_add_bool(oc, "secure", virt_get_secure,
2633 virt_set_secure);
2634 object_class_property_set_description(oc, "secure",
2635 "Set on/off to enable/disable the ARM "
2636 "Security Extensions (TrustZone)");
2637
2638 object_class_property_add_bool(oc, "virtualization", virt_get_virt,
2639 virt_set_virt);
2640 object_class_property_set_description(oc, "virtualization",
2641 "Set on/off to enable/disable emulating a "
2642 "guest CPU which implements the ARM "
2643 "Virtualization Extensions");
2644
2645 object_class_property_add_bool(oc, "highmem", virt_get_highmem,
2646 virt_set_highmem);
2647 object_class_property_set_description(oc, "highmem",
2648 "Set on/off to enable/disable using "
2649 "physical address space above 32 bits");
2650
2651 object_class_property_add_str(oc, "gic-version", virt_get_gic_version,
2652 virt_set_gic_version);
2653 object_class_property_set_description(oc, "gic-version",
2654 "Set GIC version. "
2655 "Valid values are 2, 3, host and max");
2656
2657 object_class_property_add_str(oc, "iommu", virt_get_iommu, virt_set_iommu);
2658 object_class_property_set_description(oc, "iommu",
2659 "Set the IOMMU type. "
2660 "Valid values are none and smmuv3");
2661
2662 object_class_property_add_bool(oc, "ras", virt_get_ras,
2663 virt_set_ras);
2664 object_class_property_set_description(oc, "ras",
2665 "Set on/off to enable/disable reporting host memory errors "
2666 "to a KVM guest using ACPI and guest external abort exceptions");
2667
2668 object_class_property_add_bool(oc, "mte", virt_get_mte, virt_set_mte);
2669 object_class_property_set_description(oc, "mte",
2670 "Set on/off to enable/disable emulating a "
2671 "guest CPU which implements the ARM "
2672 "Memory Tagging Extension");
2673
2674 object_class_property_add_bool(oc, "its", virt_get_its,
2675 virt_set_its);
2676 object_class_property_set_description(oc, "its",
2677 "Set on/off to enable/disable "
2678 "ITS instantiation");
2679
2680 object_class_property_add_str(oc, "x-oem-id",
2681 virt_get_oem_id,
2682 virt_set_oem_id);
2683 object_class_property_set_description(oc, "x-oem-id",
2684 "Override the default value of field OEMID "
2685 "in ACPI table header."
2686 "The string may be up to 6 bytes in size");
2687
2688
2689 object_class_property_add_str(oc, "x-oem-table-id",
2690 virt_get_oem_table_id,
2691 virt_set_oem_table_id);
2692 object_class_property_set_description(oc, "x-oem-table-id",
2693 "Override the default value of field OEM Table ID "
2694 "in ACPI table header."
2695 "The string may be up to 8 bytes in size");
2696
2697 }
2698
2699 static void virt_instance_init(Object *obj)
2700 {
2701 VirtMachineState *vms = VIRT_MACHINE(obj);
2702 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
2703
2704 /* EL3 is disabled by default on virt: this makes us consistent
2705 * between KVM and TCG for this board, and it also allows us to
2706 * boot UEFI blobs which assume no TrustZone support.
2707 */
2708 vms->secure = false;
2709
2710 /* EL2 is also disabled by default, for similar reasons */
2711 vms->virt = false;
2712
2713 /* High memory is enabled by default */
2714 vms->highmem = true;
2715 vms->gic_version = VIRT_GIC_VERSION_NOSEL;
2716
2717 vms->highmem_ecam = !vmc->no_highmem_ecam;
2718
2719 if (vmc->no_its) {
2720 vms->its = false;
2721 } else {
2722 /* Default allows ITS instantiation */
2723 vms->its = true;
2724 }
2725
2726 /* Default disallows iommu instantiation */
2727 vms->iommu = VIRT_IOMMU_NONE;
2728
2729 /* Default disallows RAS instantiation */
2730 vms->ras = false;
2731
2732 /* MTE is disabled by default. */
2733 vms->mte = false;
2734
2735 vms->irqmap = a15irqmap;
2736
2737 virt_flash_create(vms);
2738
2739 vms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6);
2740 vms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8);
2741 }
2742
2743 static const TypeInfo virt_machine_info = {
2744 .name = TYPE_VIRT_MACHINE,
2745 .parent = TYPE_MACHINE,
2746 .abstract = true,
2747 .instance_size = sizeof(VirtMachineState),
2748 .class_size = sizeof(VirtMachineClass),
2749 .class_init = virt_machine_class_init,
2750 .instance_init = virt_instance_init,
2751 .interfaces = (InterfaceInfo[]) {
2752 { TYPE_HOTPLUG_HANDLER },
2753 { }
2754 },
2755 };
2756
2757 static void machvirt_machine_init(void)
2758 {
2759 type_register_static(&virt_machine_info);
2760 }
2761 type_init(machvirt_machine_init);
2762
2763 static void virt_machine_6_0_options(MachineClass *mc)
2764 {
2765 }
2766 DEFINE_VIRT_MACHINE_AS_LATEST(6, 0)
2767
2768 static void virt_machine_5_2_options(MachineClass *mc)
2769 {
2770 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2771
2772 virt_machine_6_0_options(mc);
2773 compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
2774 vmc->no_secure_gpio = true;
2775 }
2776 DEFINE_VIRT_MACHINE(5, 2)
2777
2778 static void virt_machine_5_1_options(MachineClass *mc)
2779 {
2780 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2781
2782 virt_machine_5_2_options(mc);
2783 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
2784 vmc->no_kvm_steal_time = true;
2785 }
2786 DEFINE_VIRT_MACHINE(5, 1)
2787
2788 static void virt_machine_5_0_options(MachineClass *mc)
2789 {
2790 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2791
2792 virt_machine_5_1_options(mc);
2793 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
2794 mc->numa_mem_supported = true;
2795 vmc->acpi_expose_flash = true;
2796 mc->auto_enable_numa_with_memdev = false;
2797 }
2798 DEFINE_VIRT_MACHINE(5, 0)
2799
2800 static void virt_machine_4_2_options(MachineClass *mc)
2801 {
2802 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2803
2804 virt_machine_5_0_options(mc);
2805 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
2806 vmc->kvm_no_adjvtime = true;
2807 }
2808 DEFINE_VIRT_MACHINE(4, 2)
2809
2810 static void virt_machine_4_1_options(MachineClass *mc)
2811 {
2812 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2813
2814 virt_machine_4_2_options(mc);
2815 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
2816 vmc->no_ged = true;
2817 mc->auto_enable_numa_with_memhp = false;
2818 }
2819 DEFINE_VIRT_MACHINE(4, 1)
2820
2821 static void virt_machine_4_0_options(MachineClass *mc)
2822 {
2823 virt_machine_4_1_options(mc);
2824 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
2825 }
2826 DEFINE_VIRT_MACHINE(4, 0)
2827
2828 static void virt_machine_3_1_options(MachineClass *mc)
2829 {
2830 virt_machine_4_0_options(mc);
2831 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
2832 }
2833 DEFINE_VIRT_MACHINE(3, 1)
2834
2835 static void virt_machine_3_0_options(MachineClass *mc)
2836 {
2837 virt_machine_3_1_options(mc);
2838 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
2839 }
2840 DEFINE_VIRT_MACHINE(3, 0)
2841
2842 static void virt_machine_2_12_options(MachineClass *mc)
2843 {
2844 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2845
2846 virt_machine_3_0_options(mc);
2847 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
2848 vmc->no_highmem_ecam = true;
2849 mc->max_cpus = 255;
2850 }
2851 DEFINE_VIRT_MACHINE(2, 12)
2852
2853 static void virt_machine_2_11_options(MachineClass *mc)
2854 {
2855 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2856
2857 virt_machine_2_12_options(mc);
2858 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
2859 vmc->smbios_old_sys_ver = true;
2860 }
2861 DEFINE_VIRT_MACHINE(2, 11)
2862
2863 static void virt_machine_2_10_options(MachineClass *mc)
2864 {
2865 virt_machine_2_11_options(mc);
2866 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
2867 /* before 2.11 we never faulted accesses to bad addresses */
2868 mc->ignore_memory_transaction_failures = true;
2869 }
2870 DEFINE_VIRT_MACHINE(2, 10)
2871
2872 static void virt_machine_2_9_options(MachineClass *mc)
2873 {
2874 virt_machine_2_10_options(mc);
2875 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
2876 }
2877 DEFINE_VIRT_MACHINE(2, 9)
2878
2879 static void virt_machine_2_8_options(MachineClass *mc)
2880 {
2881 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2882
2883 virt_machine_2_9_options(mc);
2884 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
2885 /* For 2.8 and earlier we falsely claimed in the DT that
2886 * our timers were edge-triggered, not level-triggered.
2887 */
2888 vmc->claim_edge_triggered_timers = true;
2889 }
2890 DEFINE_VIRT_MACHINE(2, 8)
2891
2892 static void virt_machine_2_7_options(MachineClass *mc)
2893 {
2894 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2895
2896 virt_machine_2_8_options(mc);
2897 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
2898 /* ITS was introduced with 2.8 */
2899 vmc->no_its = true;
2900 /* Stick with 1K pages for migration compatibility */
2901 mc->minimum_page_bits = 0;
2902 }
2903 DEFINE_VIRT_MACHINE(2, 7)
2904
2905 static void virt_machine_2_6_options(MachineClass *mc)
2906 {
2907 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2908
2909 virt_machine_2_7_options(mc);
2910 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
2911 vmc->disallow_affinity_adjustment = true;
2912 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
2913 vmc->no_pmu = true;
2914 }
2915 DEFINE_VIRT_MACHINE(2, 6)