2 * ARM mach-virt emulation
4 * Copyright (c) 2013 Linaro Limited
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
31 #include "hw/sysbus.h"
32 #include "hw/arm/arm.h"
33 #include "hw/arm/primecell.h"
34 #include "hw/devices.h"
36 #include "sysemu/block-backend.h"
37 #include "sysemu/device_tree.h"
38 #include "sysemu/sysemu.h"
39 #include "sysemu/kvm.h"
40 #include "hw/boards.h"
41 #include "hw/loader.h"
42 #include "exec/address-spaces.h"
43 #include "qemu/bitops.h"
44 #include "qemu/error-report.h"
45 #include "hw/pci-host/gpex.h"
47 #define NUM_VIRTIO_TRANSPORTS 32
49 /* Number of external interrupt lines to configure the GIC with */
52 #define GIC_FDT_IRQ_TYPE_SPI 0
53 #define GIC_FDT_IRQ_TYPE_PPI 1
55 #define GIC_FDT_IRQ_FLAGS_EDGE_LO_HI 1
56 #define GIC_FDT_IRQ_FLAGS_EDGE_HI_LO 2
57 #define GIC_FDT_IRQ_FLAGS_LEVEL_HI 4
58 #define GIC_FDT_IRQ_FLAGS_LEVEL_LO 8
60 #define GIC_FDT_IRQ_PPI_CPU_START 8
61 #define GIC_FDT_IRQ_PPI_CPU_WIDTH 8
76 typedef struct MemMapEntry
{
81 typedef struct VirtBoardInfo
{
82 struct arm_boot_info bootinfo
;
83 const char *cpu_model
;
84 const MemMapEntry
*memmap
;
89 uint32_t clock_phandle
;
94 VirtBoardInfo
*daughterboard
;
102 #define TYPE_VIRT_MACHINE "virt"
103 #define VIRT_MACHINE(obj) \
104 OBJECT_CHECK(VirtMachineState, (obj), TYPE_VIRT_MACHINE)
105 #define VIRT_MACHINE_GET_CLASS(obj) \
106 OBJECT_GET_CLASS(VirtMachineClass, obj, TYPE_VIRT_MACHINE)
107 #define VIRT_MACHINE_CLASS(klass) \
108 OBJECT_CLASS_CHECK(VirtMachineClass, klass, TYPE_VIRT_MACHINE)
110 /* Addresses and sizes of our components.
111 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
112 * 128MB..256MB is used for miscellaneous device I/O.
113 * 256MB..1GB is reserved for possible future PCI support (ie where the
114 * PCI memory window will go if we add a PCI host controller).
115 * 1GB and up is RAM (which may happily spill over into the
116 * high memory region beyond 4GB).
117 * This represents a compromise between how much RAM can be given to
118 * a 32 bit VM and leaving space for expansion and in particular for PCI.
119 * Note that devices should generally be placed at multiples of 0x10000,
120 * to accommodate guests using 64K pages.
122 static const MemMapEntry a15memmap
[] = {
123 /* Space up to 0x8000000 is reserved for a boot ROM */
124 [VIRT_FLASH
] = { 0, 0x08000000 },
125 [VIRT_CPUPERIPHS
] = { 0x08000000, 0x00020000 },
126 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
127 [VIRT_GIC_DIST
] = { 0x08000000, 0x00010000 },
128 [VIRT_GIC_CPU
] = { 0x08010000, 0x00010000 },
129 [VIRT_UART
] = { 0x09000000, 0x00001000 },
130 [VIRT_RTC
] = { 0x09010000, 0x00001000 },
131 [VIRT_FW_CFG
] = { 0x09020000, 0x0000000a },
132 [VIRT_MMIO
] = { 0x0a000000, 0x00000200 },
133 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
137 * MMIO window { 0x10000000, 0x2eff0000 },
138 * PIO window { 0x3eff0000, 0x00010000 },
139 * ECAM { 0x3f000000, 0x01000000 },
141 [VIRT_PCIE
] = { 0x10000000, 0x30000000 },
142 [VIRT_MEM
] = { 0x40000000, 30ULL * 1024 * 1024 * 1024 },
145 static const int a15irqmap
[] = {
148 [VIRT_PCIE
] = 3, /* ... to 6 */
149 [VIRT_MMIO
] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
152 static VirtBoardInfo machines
[] = {
154 .cpu_model
= "cortex-a15",
159 .cpu_model
= "cortex-a57",
170 static VirtBoardInfo
*find_machine_info(const char *cpu
)
174 for (i
= 0; i
< ARRAY_SIZE(machines
); i
++) {
175 if (strcmp(cpu
, machines
[i
].cpu_model
) == 0) {
182 static void create_fdt(VirtBoardInfo
*vbi
)
184 void *fdt
= create_device_tree(&vbi
->fdt_size
);
187 error_report("create_device_tree() failed");
194 qemu_fdt_setprop_string(fdt
, "/", "compatible", "linux,dummy-virt");
195 qemu_fdt_setprop_cell(fdt
, "/", "#address-cells", 0x2);
196 qemu_fdt_setprop_cell(fdt
, "/", "#size-cells", 0x2);
199 * /chosen and /memory nodes must exist for load_dtb
200 * to fill in necessary properties later
202 qemu_fdt_add_subnode(fdt
, "/chosen");
203 qemu_fdt_add_subnode(fdt
, "/memory");
204 qemu_fdt_setprop_string(fdt
, "/memory", "device_type", "memory");
206 /* Clock node, for the benefit of the UART. The kernel device tree
207 * binding documentation claims the PL011 node clock properties are
208 * optional but in practice if you omit them the kernel refuses to
209 * probe for the device.
211 vbi
->clock_phandle
= qemu_fdt_alloc_phandle(fdt
);
212 qemu_fdt_add_subnode(fdt
, "/apb-pclk");
213 qemu_fdt_setprop_string(fdt
, "/apb-pclk", "compatible", "fixed-clock");
214 qemu_fdt_setprop_cell(fdt
, "/apb-pclk", "#clock-cells", 0x0);
215 qemu_fdt_setprop_cell(fdt
, "/apb-pclk", "clock-frequency", 24000000);
216 qemu_fdt_setprop_string(fdt
, "/apb-pclk", "clock-output-names",
218 qemu_fdt_setprop_cell(fdt
, "/apb-pclk", "phandle", vbi
->clock_phandle
);
222 static void fdt_add_psci_node(const VirtBoardInfo
*vbi
)
224 uint32_t cpu_suspend_fn
;
228 void *fdt
= vbi
->fdt
;
229 ARMCPU
*armcpu
= ARM_CPU(qemu_get_cpu(0));
231 qemu_fdt_add_subnode(fdt
, "/psci");
232 if (armcpu
->psci_version
== 2) {
233 const char comp
[] = "arm,psci-0.2\0arm,psci";
234 qemu_fdt_setprop(fdt
, "/psci", "compatible", comp
, sizeof(comp
));
236 cpu_off_fn
= QEMU_PSCI_0_2_FN_CPU_OFF
;
237 if (arm_feature(&armcpu
->env
, ARM_FEATURE_AARCH64
)) {
238 cpu_suspend_fn
= QEMU_PSCI_0_2_FN64_CPU_SUSPEND
;
239 cpu_on_fn
= QEMU_PSCI_0_2_FN64_CPU_ON
;
240 migrate_fn
= QEMU_PSCI_0_2_FN64_MIGRATE
;
242 cpu_suspend_fn
= QEMU_PSCI_0_2_FN_CPU_SUSPEND
;
243 cpu_on_fn
= QEMU_PSCI_0_2_FN_CPU_ON
;
244 migrate_fn
= QEMU_PSCI_0_2_FN_MIGRATE
;
247 qemu_fdt_setprop_string(fdt
, "/psci", "compatible", "arm,psci");
249 cpu_suspend_fn
= QEMU_PSCI_0_1_FN_CPU_SUSPEND
;
250 cpu_off_fn
= QEMU_PSCI_0_1_FN_CPU_OFF
;
251 cpu_on_fn
= QEMU_PSCI_0_1_FN_CPU_ON
;
252 migrate_fn
= QEMU_PSCI_0_1_FN_MIGRATE
;
255 /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
256 * to the instruction that should be used to invoke PSCI functions.
257 * However, the device tree binding uses 'method' instead, so that is
258 * what we should use here.
260 qemu_fdt_setprop_string(fdt
, "/psci", "method", "hvc");
262 qemu_fdt_setprop_cell(fdt
, "/psci", "cpu_suspend", cpu_suspend_fn
);
263 qemu_fdt_setprop_cell(fdt
, "/psci", "cpu_off", cpu_off_fn
);
264 qemu_fdt_setprop_cell(fdt
, "/psci", "cpu_on", cpu_on_fn
);
265 qemu_fdt_setprop_cell(fdt
, "/psci", "migrate", migrate_fn
);
268 static void fdt_add_timer_nodes(const VirtBoardInfo
*vbi
)
270 /* Note that on A15 h/w these interrupts are level-triggered,
271 * but for the GIC implementation provided by both QEMU and KVM
272 * they are edge-triggered.
275 uint32_t irqflags
= GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
;
277 irqflags
= deposit32(irqflags
, GIC_FDT_IRQ_PPI_CPU_START
,
278 GIC_FDT_IRQ_PPI_CPU_WIDTH
, (1 << vbi
->smp_cpus
) - 1);
280 qemu_fdt_add_subnode(vbi
->fdt
, "/timer");
282 armcpu
= ARM_CPU(qemu_get_cpu(0));
283 if (arm_feature(&armcpu
->env
, ARM_FEATURE_V8
)) {
284 const char compat
[] = "arm,armv8-timer\0arm,armv7-timer";
285 qemu_fdt_setprop(vbi
->fdt
, "/timer", "compatible",
286 compat
, sizeof(compat
));
288 qemu_fdt_setprop_string(vbi
->fdt
, "/timer", "compatible",
291 qemu_fdt_setprop_cells(vbi
->fdt
, "/timer", "interrupts",
292 GIC_FDT_IRQ_TYPE_PPI
, 13, irqflags
,
293 GIC_FDT_IRQ_TYPE_PPI
, 14, irqflags
,
294 GIC_FDT_IRQ_TYPE_PPI
, 11, irqflags
,
295 GIC_FDT_IRQ_TYPE_PPI
, 10, irqflags
);
298 static void fdt_add_cpu_nodes(const VirtBoardInfo
*vbi
)
302 qemu_fdt_add_subnode(vbi
->fdt
, "/cpus");
303 qemu_fdt_setprop_cell(vbi
->fdt
, "/cpus", "#address-cells", 0x1);
304 qemu_fdt_setprop_cell(vbi
->fdt
, "/cpus", "#size-cells", 0x0);
306 for (cpu
= vbi
->smp_cpus
- 1; cpu
>= 0; cpu
--) {
307 char *nodename
= g_strdup_printf("/cpus/cpu@%d", cpu
);
308 ARMCPU
*armcpu
= ARM_CPU(qemu_get_cpu(cpu
));
310 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
311 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "device_type", "cpu");
312 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "compatible",
313 armcpu
->dtb_compatible
);
315 if (vbi
->smp_cpus
> 1) {
316 qemu_fdt_setprop_string(vbi
->fdt
, nodename
,
317 "enable-method", "psci");
320 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "reg", cpu
);
325 static uint32_t fdt_add_gic_node(const VirtBoardInfo
*vbi
)
327 uint32_t gic_phandle
;
329 gic_phandle
= qemu_fdt_alloc_phandle(vbi
->fdt
);
330 qemu_fdt_setprop_cell(vbi
->fdt
, "/", "interrupt-parent", gic_phandle
);
332 qemu_fdt_add_subnode(vbi
->fdt
, "/intc");
333 /* 'cortex-a15-gic' means 'GIC v2' */
334 qemu_fdt_setprop_string(vbi
->fdt
, "/intc", "compatible",
335 "arm,cortex-a15-gic");
336 qemu_fdt_setprop_cell(vbi
->fdt
, "/intc", "#interrupt-cells", 3);
337 qemu_fdt_setprop(vbi
->fdt
, "/intc", "interrupt-controller", NULL
, 0);
338 qemu_fdt_setprop_sized_cells(vbi
->fdt
, "/intc", "reg",
339 2, vbi
->memmap
[VIRT_GIC_DIST
].base
,
340 2, vbi
->memmap
[VIRT_GIC_DIST
].size
,
341 2, vbi
->memmap
[VIRT_GIC_CPU
].base
,
342 2, vbi
->memmap
[VIRT_GIC_CPU
].size
);
343 qemu_fdt_setprop_cell(vbi
->fdt
, "/intc", "phandle", gic_phandle
);
348 static uint32_t create_gic(const VirtBoardInfo
*vbi
, qemu_irq
*pic
)
350 /* We create a standalone GIC v2 */
352 SysBusDevice
*gicbusdev
;
353 const char *gictype
= "arm_gic";
356 if (kvm_irqchip_in_kernel()) {
357 gictype
= "kvm-arm-gic";
360 gicdev
= qdev_create(NULL
, gictype
);
361 qdev_prop_set_uint32(gicdev
, "revision", 2);
362 qdev_prop_set_uint32(gicdev
, "num-cpu", smp_cpus
);
363 /* Note that the num-irq property counts both internal and external
364 * interrupts; there are always 32 of the former (mandated by GIC spec).
366 qdev_prop_set_uint32(gicdev
, "num-irq", NUM_IRQS
+ 32);
367 qdev_init_nofail(gicdev
);
368 gicbusdev
= SYS_BUS_DEVICE(gicdev
);
369 sysbus_mmio_map(gicbusdev
, 0, vbi
->memmap
[VIRT_GIC_DIST
].base
);
370 sysbus_mmio_map(gicbusdev
, 1, vbi
->memmap
[VIRT_GIC_CPU
].base
);
372 /* Wire the outputs from each CPU's generic timer to the
373 * appropriate GIC PPI inputs, and the GIC's IRQ output to
374 * the CPU's IRQ input.
376 for (i
= 0; i
< smp_cpus
; i
++) {
377 DeviceState
*cpudev
= DEVICE(qemu_get_cpu(i
));
378 int ppibase
= NUM_IRQS
+ i
* 32;
379 /* physical timer; we wire it up to the non-secure timer's ID,
380 * since a real A15 always has TrustZone but QEMU doesn't.
382 qdev_connect_gpio_out(cpudev
, 0,
383 qdev_get_gpio_in(gicdev
, ppibase
+ 30));
385 qdev_connect_gpio_out(cpudev
, 1,
386 qdev_get_gpio_in(gicdev
, ppibase
+ 27));
388 sysbus_connect_irq(gicbusdev
, i
, qdev_get_gpio_in(cpudev
, ARM_CPU_IRQ
));
391 for (i
= 0; i
< NUM_IRQS
; i
++) {
392 pic
[i
] = qdev_get_gpio_in(gicdev
, i
);
395 return fdt_add_gic_node(vbi
);
398 static void create_uart(const VirtBoardInfo
*vbi
, qemu_irq
*pic
)
401 hwaddr base
= vbi
->memmap
[VIRT_UART
].base
;
402 hwaddr size
= vbi
->memmap
[VIRT_UART
].size
;
403 int irq
= vbi
->irqmap
[VIRT_UART
];
404 const char compat
[] = "arm,pl011\0arm,primecell";
405 const char clocknames
[] = "uartclk\0apb_pclk";
407 sysbus_create_simple("pl011", base
, pic
[irq
]);
409 nodename
= g_strdup_printf("/pl011@%" PRIx64
, base
);
410 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
411 /* Note that we can't use setprop_string because of the embedded NUL */
412 qemu_fdt_setprop(vbi
->fdt
, nodename
, "compatible",
413 compat
, sizeof(compat
));
414 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
416 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "interrupts",
417 GIC_FDT_IRQ_TYPE_SPI
, irq
,
418 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
419 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "clocks",
420 vbi
->clock_phandle
, vbi
->clock_phandle
);
421 qemu_fdt_setprop(vbi
->fdt
, nodename
, "clock-names",
422 clocknames
, sizeof(clocknames
));
424 qemu_fdt_setprop_string(vbi
->fdt
, "/chosen", "stdout-path", nodename
);
428 static void create_rtc(const VirtBoardInfo
*vbi
, qemu_irq
*pic
)
431 hwaddr base
= vbi
->memmap
[VIRT_RTC
].base
;
432 hwaddr size
= vbi
->memmap
[VIRT_RTC
].size
;
433 int irq
= vbi
->irqmap
[VIRT_RTC
];
434 const char compat
[] = "arm,pl031\0arm,primecell";
436 sysbus_create_simple("pl031", base
, pic
[irq
]);
438 nodename
= g_strdup_printf("/pl031@%" PRIx64
, base
);
439 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
440 qemu_fdt_setprop(vbi
->fdt
, nodename
, "compatible", compat
, sizeof(compat
));
441 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
443 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "interrupts",
444 GIC_FDT_IRQ_TYPE_SPI
, irq
,
445 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
446 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "clocks", vbi
->clock_phandle
);
447 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "clock-names", "apb_pclk");
451 static void create_virtio_devices(const VirtBoardInfo
*vbi
, qemu_irq
*pic
)
454 hwaddr size
= vbi
->memmap
[VIRT_MMIO
].size
;
456 /* We create the transports in forwards order. Since qbus_realize()
457 * prepends (not appends) new child buses, the incrementing loop below will
458 * create a list of virtio-mmio buses with decreasing base addresses.
460 * When a -device option is processed from the command line,
461 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
462 * order. The upshot is that -device options in increasing command line
463 * order are mapped to virtio-mmio buses with decreasing base addresses.
465 * When this code was originally written, that arrangement ensured that the
466 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
467 * the first -device on the command line. (The end-to-end order is a
468 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
469 * guest kernel's name-to-address assignment strategy.)
471 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
472 * the message, if not necessarily the code, of commit 70161ff336.
473 * Therefore the loop now establishes the inverse of the original intent.
475 * Unfortunately, we can't counteract the kernel change by reversing the
476 * loop; it would break existing command lines.
478 * In any case, the kernel makes no guarantee about the stability of
479 * enumeration order of virtio devices (as demonstrated by it changing
480 * between kernel versions). For reliable and stable identification
481 * of disks users must use UUIDs or similar mechanisms.
483 for (i
= 0; i
< NUM_VIRTIO_TRANSPORTS
; i
++) {
484 int irq
= vbi
->irqmap
[VIRT_MMIO
] + i
;
485 hwaddr base
= vbi
->memmap
[VIRT_MMIO
].base
+ i
* size
;
487 sysbus_create_simple("virtio-mmio", base
, pic
[irq
]);
490 /* We add dtb nodes in reverse order so that they appear in the finished
491 * device tree lowest address first.
493 * Note that this mapping is independent of the loop above. The previous
494 * loop influences virtio device to virtio transport assignment, whereas
495 * this loop controls how virtio transports are laid out in the dtb.
497 for (i
= NUM_VIRTIO_TRANSPORTS
- 1; i
>= 0; i
--) {
499 int irq
= vbi
->irqmap
[VIRT_MMIO
] + i
;
500 hwaddr base
= vbi
->memmap
[VIRT_MMIO
].base
+ i
* size
;
502 nodename
= g_strdup_printf("/virtio_mmio@%" PRIx64
, base
);
503 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
504 qemu_fdt_setprop_string(vbi
->fdt
, nodename
,
505 "compatible", "virtio,mmio");
506 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
508 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "interrupts",
509 GIC_FDT_IRQ_TYPE_SPI
, irq
,
510 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
);
515 static void create_one_flash(const char *name
, hwaddr flashbase
,
518 /* Create and map a single flash device. We use the same
519 * parameters as the flash devices on the Versatile Express board.
521 DriveInfo
*dinfo
= drive_get_next(IF_PFLASH
);
522 DeviceState
*dev
= qdev_create(NULL
, "cfi.pflash01");
523 const uint64_t sectorlength
= 256 * 1024;
526 qdev_prop_set_drive(dev
, "drive", blk_by_legacy_dinfo(dinfo
),
530 qdev_prop_set_uint32(dev
, "num-blocks", flashsize
/ sectorlength
);
531 qdev_prop_set_uint64(dev
, "sector-length", sectorlength
);
532 qdev_prop_set_uint8(dev
, "width", 4);
533 qdev_prop_set_uint8(dev
, "device-width", 2);
534 qdev_prop_set_uint8(dev
, "big-endian", 0);
535 qdev_prop_set_uint16(dev
, "id0", 0x89);
536 qdev_prop_set_uint16(dev
, "id1", 0x18);
537 qdev_prop_set_uint16(dev
, "id2", 0x00);
538 qdev_prop_set_uint16(dev
, "id3", 0x00);
539 qdev_prop_set_string(dev
, "name", name
);
540 qdev_init_nofail(dev
);
542 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 0, flashbase
);
545 static void create_flash(const VirtBoardInfo
*vbi
)
547 /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
548 * Any file passed via -bios goes in the first of these.
550 hwaddr flashsize
= vbi
->memmap
[VIRT_FLASH
].size
/ 2;
551 hwaddr flashbase
= vbi
->memmap
[VIRT_FLASH
].base
;
558 if (drive_get(IF_PFLASH
, 0, 0)) {
559 error_report("The contents of the first flash device may be "
560 "specified with -bios or with -drive if=pflash... "
561 "but you cannot use both options at once");
564 fn
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, bios_name
);
566 error_report("Could not find ROM image '%s'", bios_name
);
569 image_size
= load_image_targphys(fn
, flashbase
, flashsize
);
571 if (image_size
< 0) {
572 error_report("Could not load ROM image '%s'", bios_name
);
577 create_one_flash("virt.flash0", flashbase
, flashsize
);
578 create_one_flash("virt.flash1", flashbase
+ flashsize
, flashsize
);
580 nodename
= g_strdup_printf("/flash@%" PRIx64
, flashbase
);
581 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
582 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "compatible", "cfi-flash");
583 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
584 2, flashbase
, 2, flashsize
,
585 2, flashbase
+ flashsize
, 2, flashsize
);
586 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "bank-width", 4);
590 static void create_fw_cfg(const VirtBoardInfo
*vbi
)
592 hwaddr base
= vbi
->memmap
[VIRT_FW_CFG
].base
;
593 hwaddr size
= vbi
->memmap
[VIRT_FW_CFG
].size
;
596 fw_cfg_init_mem_wide(base
+ 8, base
, 8);
598 nodename
= g_strdup_printf("/fw-cfg@%" PRIx64
, base
);
599 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
600 qemu_fdt_setprop_string(vbi
->fdt
, nodename
,
601 "compatible", "qemu,fw-cfg-mmio");
602 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
607 static void create_pcie_irq_map(const VirtBoardInfo
*vbi
, uint32_t gic_phandle
,
608 int first_irq
, const char *nodename
)
611 uint32_t full_irq_map
[4 * 4 * 8] = { 0 };
612 uint32_t *irq_map
= full_irq_map
;
614 for (devfn
= 0; devfn
<= 0x18; devfn
+= 0x8) {
615 for (pin
= 0; pin
< 4; pin
++) {
616 int irq_type
= GIC_FDT_IRQ_TYPE_SPI
;
617 int irq_nr
= first_irq
+ ((pin
+ PCI_SLOT(devfn
)) % PCI_NUM_PINS
);
618 int irq_level
= GIC_FDT_IRQ_FLAGS_LEVEL_HI
;
622 devfn
<< 8, 0, 0, /* devfn */
623 pin
+ 1, /* PCI pin */
624 gic_phandle
, irq_type
, irq_nr
, irq_level
}; /* GIC irq */
626 /* Convert map to big endian */
627 for (i
= 0; i
< 8; i
++) {
628 irq_map
[i
] = cpu_to_be32(map
[i
]);
634 qemu_fdt_setprop(vbi
->fdt
, nodename
, "interrupt-map",
635 full_irq_map
, sizeof(full_irq_map
));
637 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "interrupt-map-mask",
638 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
642 static void create_pcie(const VirtBoardInfo
*vbi
, qemu_irq
*pic
,
643 uint32_t gic_phandle
)
645 hwaddr base
= vbi
->memmap
[VIRT_PCIE
].base
;
646 hwaddr size
= vbi
->memmap
[VIRT_PCIE
].size
;
647 hwaddr end
= base
+ size
;
649 hwaddr size_ioport
= 64 * 1024;
650 int nr_pcie_buses
= 16;
651 hwaddr size_ecam
= PCIE_MMCFG_SIZE_MIN
* nr_pcie_buses
;
652 hwaddr base_mmio
= base
;
655 int irq
= vbi
->irqmap
[VIRT_PCIE
];
656 MemoryRegion
*mmio_alias
;
657 MemoryRegion
*mmio_reg
;
658 MemoryRegion
*ecam_alias
;
659 MemoryRegion
*ecam_reg
;
664 base_ecam
= QEMU_ALIGN_DOWN(end
- size_ecam
, size_ecam
);
665 base_ioport
= QEMU_ALIGN_DOWN(base_ecam
- size_ioport
, size_ioport
);
666 size_mmio
= base_ioport
- base
;
668 dev
= qdev_create(NULL
, TYPE_GPEX_HOST
);
669 qdev_init_nofail(dev
);
671 /* Map only the first size_ecam bytes of ECAM space */
672 ecam_alias
= g_new0(MemoryRegion
, 1);
673 ecam_reg
= sysbus_mmio_get_region(SYS_BUS_DEVICE(dev
), 0);
674 memory_region_init_alias(ecam_alias
, OBJECT(dev
), "pcie-ecam",
675 ecam_reg
, 0, size_ecam
);
676 memory_region_add_subregion(get_system_memory(), base_ecam
, ecam_alias
);
678 /* Map the MMIO window into system address space so as to expose
679 * the section of PCI MMIO space which starts at the same base address
680 * (ie 1:1 mapping for that part of PCI MMIO space visible through
683 mmio_alias
= g_new0(MemoryRegion
, 1);
684 mmio_reg
= sysbus_mmio_get_region(SYS_BUS_DEVICE(dev
), 1);
685 memory_region_init_alias(mmio_alias
, OBJECT(dev
), "pcie-mmio",
686 mmio_reg
, base_mmio
, size_mmio
);
687 memory_region_add_subregion(get_system_memory(), base_mmio
, mmio_alias
);
689 /* Map IO port space */
690 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 2, base_ioport
);
692 for (i
= 0; i
< GPEX_NUM_IRQS
; i
++) {
693 sysbus_connect_irq(SYS_BUS_DEVICE(dev
), i
, pic
[irq
+ i
]);
696 nodename
= g_strdup_printf("/pcie@%" PRIx64
, base
);
697 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
698 qemu_fdt_setprop_string(vbi
->fdt
, nodename
,
699 "compatible", "pci-host-ecam-generic");
700 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "device_type", "pci");
701 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "#address-cells", 3);
702 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "#size-cells", 2);
703 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "bus-range", 0,
706 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
707 2, base_ecam
, 2, size_ecam
);
708 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "ranges",
709 1, FDT_PCI_RANGE_IOPORT
, 2, 0,
710 2, base_ioport
, 2, size_ioport
,
711 1, FDT_PCI_RANGE_MMIO
, 2, base_mmio
,
712 2, base_mmio
, 2, size_mmio
);
714 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "#interrupt-cells", 1);
715 create_pcie_irq_map(vbi
, gic_phandle
, irq
, nodename
);
720 static void *machvirt_dtb(const struct arm_boot_info
*binfo
, int *fdt_size
)
722 const VirtBoardInfo
*board
= (const VirtBoardInfo
*)binfo
;
724 *fdt_size
= board
->fdt_size
;
728 static void machvirt_init(MachineState
*machine
)
730 VirtMachineState
*vms
= VIRT_MACHINE(machine
);
731 qemu_irq pic
[NUM_IRQS
];
732 MemoryRegion
*sysmem
= get_system_memory();
734 MemoryRegion
*ram
= g_new(MemoryRegion
, 1);
735 const char *cpu_model
= machine
->cpu_model
;
737 uint32_t gic_phandle
;
741 cpu_model
= "cortex-a15";
744 /* Separate the actual CPU model name from any appended features */
745 cpustr
= g_strsplit(cpu_model
, ",", 2);
747 vbi
= find_machine_info(cpustr
[0]);
750 error_report("mach-virt: CPU %s not supported", cpustr
[0]);
754 vbi
->smp_cpus
= smp_cpus
;
756 if (machine
->ram_size
> vbi
->memmap
[VIRT_MEM
].size
) {
757 error_report("mach-virt: cannot model more than 30GB RAM");
763 for (n
= 0; n
< smp_cpus
; n
++) {
764 ObjectClass
*oc
= cpu_class_by_name(TYPE_ARM_CPU
, cpustr
[0]);
765 CPUClass
*cc
= CPU_CLASS(oc
);
768 char *cpuopts
= g_strdup(cpustr
[1]);
771 fprintf(stderr
, "Unable to find CPU definition\n");
774 cpuobj
= object_new(object_class_get_name(oc
));
776 /* Handle any CPU options specified by the user */
777 cc
->parse_features(CPU(cpuobj
), cpuopts
, &err
);
780 error_report_err(err
);
785 object_property_set_bool(cpuobj
, false, "has_el3", NULL
);
788 object_property_set_int(cpuobj
, QEMU_PSCI_CONDUIT_HVC
, "psci-conduit",
791 /* Secondary CPUs start in PSCI powered-down state */
793 object_property_set_bool(cpuobj
, true, "start-powered-off", NULL
);
796 if (object_property_find(cpuobj
, "reset-cbar", NULL
)) {
797 object_property_set_int(cpuobj
, vbi
->memmap
[VIRT_CPUPERIPHS
].base
,
798 "reset-cbar", &error_abort
);
801 object_property_set_bool(cpuobj
, true, "realized", NULL
);
804 fdt_add_timer_nodes(vbi
);
805 fdt_add_cpu_nodes(vbi
);
806 fdt_add_psci_node(vbi
);
808 memory_region_allocate_system_memory(ram
, NULL
, "mach-virt.ram",
810 memory_region_add_subregion(sysmem
, vbi
->memmap
[VIRT_MEM
].base
, ram
);
814 gic_phandle
= create_gic(vbi
, pic
);
816 create_uart(vbi
, pic
);
818 create_rtc(vbi
, pic
);
820 create_pcie(vbi
, pic
, gic_phandle
);
822 /* Create mmio transports, so the user can create virtio backends
823 * (which will be automatically plugged in to the transports). If
824 * no backend is created the transport will just sit harmlessly idle.
826 create_virtio_devices(vbi
, pic
);
830 vbi
->bootinfo
.ram_size
= machine
->ram_size
;
831 vbi
->bootinfo
.kernel_filename
= machine
->kernel_filename
;
832 vbi
->bootinfo
.kernel_cmdline
= machine
->kernel_cmdline
;
833 vbi
->bootinfo
.initrd_filename
= machine
->initrd_filename
;
834 vbi
->bootinfo
.nb_cpus
= smp_cpus
;
835 vbi
->bootinfo
.board_id
= -1;
836 vbi
->bootinfo
.loader_start
= vbi
->memmap
[VIRT_MEM
].base
;
837 vbi
->bootinfo
.get_dtb
= machvirt_dtb
;
838 vbi
->bootinfo
.firmware_loaded
= bios_name
|| drive_get(IF_PFLASH
, 0, 0);
839 arm_load_kernel(ARM_CPU(first_cpu
), &vbi
->bootinfo
);
842 static bool virt_get_secure(Object
*obj
, Error
**errp
)
844 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
849 static void virt_set_secure(Object
*obj
, bool value
, Error
**errp
)
851 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
856 static void virt_instance_init(Object
*obj
)
858 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
860 /* EL3 is enabled by default on virt */
862 object_property_add_bool(obj
, "secure", virt_get_secure
,
863 virt_set_secure
, NULL
);
864 object_property_set_description(obj
, "secure",
865 "Set on/off to enable/disable the ARM "
866 "Security Extensions (TrustZone)",
870 static void virt_class_init(ObjectClass
*oc
, void *data
)
872 MachineClass
*mc
= MACHINE_CLASS(oc
);
874 mc
->name
= TYPE_VIRT_MACHINE
;
875 mc
->desc
= "ARM Virtual Machine",
876 mc
->init
= machvirt_init
;
880 static const TypeInfo machvirt_info
= {
881 .name
= TYPE_VIRT_MACHINE
,
882 .parent
= TYPE_MACHINE
,
883 .instance_size
= sizeof(VirtMachineState
),
884 .instance_init
= virt_instance_init
,
885 .class_size
= sizeof(VirtMachineClass
),
886 .class_init
= virt_class_init
,
889 static void machvirt_machine_init(void)
891 type_register_static(&machvirt_info
);
894 machine_init(machvirt_machine_init
);