]> git.proxmox.com Git - mirror_qemu.git/blob - hw/arm/virt.c
acpi: fadt: support revision 6.0 of the ACPI specification
[mirror_qemu.git] / hw / arm / virt.c
1 /*
2 * ARM mach-virt emulation
3 *
4 * Copyright (c) 2013 Linaro Limited
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
17 *
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
29 */
30
31 #include "qemu/osdep.h"
32 #include "qemu/datadir.h"
33 #include "qemu/units.h"
34 #include "qemu/option.h"
35 #include "monitor/qdev.h"
36 #include "qapi/error.h"
37 #include "hw/sysbus.h"
38 #include "hw/arm/boot.h"
39 #include "hw/arm/primecell.h"
40 #include "hw/arm/virt.h"
41 #include "hw/block/flash.h"
42 #include "hw/vfio/vfio-calxeda-xgmac.h"
43 #include "hw/vfio/vfio-amd-xgbe.h"
44 #include "hw/display/ramfb.h"
45 #include "net/net.h"
46 #include "sysemu/device_tree.h"
47 #include "sysemu/numa.h"
48 #include "sysemu/runstate.h"
49 #include "sysemu/tpm.h"
50 #include "sysemu/kvm.h"
51 #include "sysemu/hvf.h"
52 #include "hw/loader.h"
53 #include "qapi/error.h"
54 #include "qemu/bitops.h"
55 #include "qemu/error-report.h"
56 #include "qemu/module.h"
57 #include "hw/pci-host/gpex.h"
58 #include "hw/virtio/virtio-pci.h"
59 #include "hw/core/sysbus-fdt.h"
60 #include "hw/platform-bus.h"
61 #include "hw/qdev-properties.h"
62 #include "hw/arm/fdt.h"
63 #include "hw/intc/arm_gic.h"
64 #include "hw/intc/arm_gicv3_common.h"
65 #include "hw/irq.h"
66 #include "kvm_arm.h"
67 #include "hw/firmware/smbios.h"
68 #include "qapi/visitor.h"
69 #include "qapi/qapi-visit-common.h"
70 #include "standard-headers/linux/input.h"
71 #include "hw/arm/smmuv3.h"
72 #include "hw/acpi/acpi.h"
73 #include "target/arm/internals.h"
74 #include "hw/mem/memory-device.h"
75 #include "hw/mem/pc-dimm.h"
76 #include "hw/mem/nvdimm.h"
77 #include "hw/acpi/generic_event_device.h"
78 #include "hw/virtio/virtio-mem-pci.h"
79 #include "hw/virtio/virtio-iommu.h"
80 #include "hw/char/pl011.h"
81 #include "qemu/guest-random.h"
82
83 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
84 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
85 void *data) \
86 { \
87 MachineClass *mc = MACHINE_CLASS(oc); \
88 virt_machine_##major##_##minor##_options(mc); \
89 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
90 if (latest) { \
91 mc->alias = "virt"; \
92 } \
93 } \
94 static const TypeInfo machvirt_##major##_##minor##_info = { \
95 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
96 .parent = TYPE_VIRT_MACHINE, \
97 .class_init = virt_##major##_##minor##_class_init, \
98 }; \
99 static void machvirt_machine_##major##_##minor##_init(void) \
100 { \
101 type_register_static(&machvirt_##major##_##minor##_info); \
102 } \
103 type_init(machvirt_machine_##major##_##minor##_init);
104
105 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
106 DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
107 #define DEFINE_VIRT_MACHINE(major, minor) \
108 DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
109
110
111 /* Number of external interrupt lines to configure the GIC with */
112 #define NUM_IRQS 256
113
114 #define PLATFORM_BUS_NUM_IRQS 64
115
116 /* Legacy RAM limit in GB (< version 4.0) */
117 #define LEGACY_RAMLIMIT_GB 255
118 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB)
119
120 /* Addresses and sizes of our components.
121 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
122 * 128MB..256MB is used for miscellaneous device I/O.
123 * 256MB..1GB is reserved for possible future PCI support (ie where the
124 * PCI memory window will go if we add a PCI host controller).
125 * 1GB and up is RAM (which may happily spill over into the
126 * high memory region beyond 4GB).
127 * This represents a compromise between how much RAM can be given to
128 * a 32 bit VM and leaving space for expansion and in particular for PCI.
129 * Note that devices should generally be placed at multiples of 0x10000,
130 * to accommodate guests using 64K pages.
131 */
132 static const MemMapEntry base_memmap[] = {
133 /* Space up to 0x8000000 is reserved for a boot ROM */
134 [VIRT_FLASH] = { 0, 0x08000000 },
135 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
136 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
137 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
138 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
139 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 },
140 [VIRT_GIC_HYP] = { 0x08030000, 0x00010000 },
141 [VIRT_GIC_VCPU] = { 0x08040000, 0x00010000 },
142 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
143 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 },
144 /* This redistributor space allows up to 2*64kB*123 CPUs */
145 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 },
146 [VIRT_UART] = { 0x09000000, 0x00001000 },
147 [VIRT_RTC] = { 0x09010000, 0x00001000 },
148 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 },
149 [VIRT_GPIO] = { 0x09030000, 0x00001000 },
150 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 },
151 [VIRT_SMMU] = { 0x09050000, 0x00020000 },
152 [VIRT_PCDIMM_ACPI] = { 0x09070000, MEMORY_HOTPLUG_IO_LEN },
153 [VIRT_ACPI_GED] = { 0x09080000, ACPI_GED_EVT_SEL_LEN },
154 [VIRT_NVDIMM_ACPI] = { 0x09090000, NVDIMM_ACPI_IO_LEN},
155 [VIRT_PVTIME] = { 0x090a0000, 0x00010000 },
156 [VIRT_SECURE_GPIO] = { 0x090b0000, 0x00001000 },
157 [VIRT_MMIO] = { 0x0a000000, 0x00000200 },
158 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
159 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 },
160 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 },
161 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 },
162 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 },
163 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 },
164 /* Actual RAM size depends on initial RAM and device memory settings */
165 [VIRT_MEM] = { GiB, LEGACY_RAMLIMIT_BYTES },
166 };
167
168 /*
169 * Highmem IO Regions: This memory map is floating, located after the RAM.
170 * Each MemMapEntry base (GPA) will be dynamically computed, depending on the
171 * top of the RAM, so that its base get the same alignment as the size,
172 * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is
173 * less than 256GiB of RAM, the floating area starts at the 256GiB mark.
174 * Note the extended_memmap is sized so that it eventually also includes the
175 * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last
176 * index of base_memmap).
177 */
178 static MemMapEntry extended_memmap[] = {
179 /* Additional 64 MB redist region (can contain up to 512 redistributors) */
180 [VIRT_HIGH_GIC_REDIST2] = { 0x0, 64 * MiB },
181 [VIRT_HIGH_PCIE_ECAM] = { 0x0, 256 * MiB },
182 /* Second PCIe window */
183 [VIRT_HIGH_PCIE_MMIO] = { 0x0, 512 * GiB },
184 };
185
186 static const int a15irqmap[] = {
187 [VIRT_UART] = 1,
188 [VIRT_RTC] = 2,
189 [VIRT_PCIE] = 3, /* ... to 6 */
190 [VIRT_GPIO] = 7,
191 [VIRT_SECURE_UART] = 8,
192 [VIRT_ACPI_GED] = 9,
193 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
194 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
195 [VIRT_SMMU] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */
196 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
197 };
198
199 static const char *valid_cpus[] = {
200 ARM_CPU_TYPE_NAME("cortex-a7"),
201 ARM_CPU_TYPE_NAME("cortex-a15"),
202 ARM_CPU_TYPE_NAME("cortex-a35"),
203 ARM_CPU_TYPE_NAME("cortex-a53"),
204 ARM_CPU_TYPE_NAME("cortex-a57"),
205 ARM_CPU_TYPE_NAME("cortex-a72"),
206 ARM_CPU_TYPE_NAME("cortex-a76"),
207 ARM_CPU_TYPE_NAME("a64fx"),
208 ARM_CPU_TYPE_NAME("neoverse-n1"),
209 ARM_CPU_TYPE_NAME("host"),
210 ARM_CPU_TYPE_NAME("max"),
211 };
212
213 static bool cpu_type_valid(const char *cpu)
214 {
215 int i;
216
217 for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
218 if (strcmp(cpu, valid_cpus[i]) == 0) {
219 return true;
220 }
221 }
222 return false;
223 }
224
225 static void create_randomness(MachineState *ms, const char *node)
226 {
227 struct {
228 uint64_t kaslr;
229 uint8_t rng[32];
230 } seed;
231
232 if (qemu_guest_getrandom(&seed, sizeof(seed), NULL)) {
233 return;
234 }
235 qemu_fdt_setprop_u64(ms->fdt, node, "kaslr-seed", seed.kaslr);
236 qemu_fdt_setprop(ms->fdt, node, "rng-seed", seed.rng, sizeof(seed.rng));
237 }
238
239 static void create_fdt(VirtMachineState *vms)
240 {
241 MachineState *ms = MACHINE(vms);
242 int nb_numa_nodes = ms->numa_state->num_nodes;
243 void *fdt = create_device_tree(&vms->fdt_size);
244
245 if (!fdt) {
246 error_report("create_device_tree() failed");
247 exit(1);
248 }
249
250 ms->fdt = fdt;
251
252 /* Header */
253 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
254 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
255 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
256 qemu_fdt_setprop_string(fdt, "/", "model", "linux,dummy-virt");
257
258 /* /chosen must exist for load_dtb to fill in necessary properties later */
259 qemu_fdt_add_subnode(fdt, "/chosen");
260 if (vms->dtb_randomness) {
261 create_randomness(ms, "/chosen");
262 }
263
264 if (vms->secure) {
265 qemu_fdt_add_subnode(fdt, "/secure-chosen");
266 if (vms->dtb_randomness) {
267 create_randomness(ms, "/secure-chosen");
268 }
269 }
270
271 /* Clock node, for the benefit of the UART. The kernel device tree
272 * binding documentation claims the PL011 node clock properties are
273 * optional but in practice if you omit them the kernel refuses to
274 * probe for the device.
275 */
276 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
277 qemu_fdt_add_subnode(fdt, "/apb-pclk");
278 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
279 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
280 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
281 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
282 "clk24mhz");
283 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
284
285 if (nb_numa_nodes > 0 && ms->numa_state->have_numa_distance) {
286 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
287 uint32_t *matrix = g_malloc0(size);
288 int idx, i, j;
289
290 for (i = 0; i < nb_numa_nodes; i++) {
291 for (j = 0; j < nb_numa_nodes; j++) {
292 idx = (i * nb_numa_nodes + j) * 3;
293 matrix[idx + 0] = cpu_to_be32(i);
294 matrix[idx + 1] = cpu_to_be32(j);
295 matrix[idx + 2] =
296 cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
297 }
298 }
299
300 qemu_fdt_add_subnode(fdt, "/distance-map");
301 qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
302 "numa-distance-map-v1");
303 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
304 matrix, size);
305 g_free(matrix);
306 }
307 }
308
309 static void fdt_add_timer_nodes(const VirtMachineState *vms)
310 {
311 /* On real hardware these interrupts are level-triggered.
312 * On KVM they were edge-triggered before host kernel version 4.4,
313 * and level-triggered afterwards.
314 * On emulated QEMU they are level-triggered.
315 *
316 * Getting the DTB info about them wrong is awkward for some
317 * guest kernels:
318 * pre-4.8 ignore the DT and leave the interrupt configured
319 * with whatever the GIC reset value (or the bootloader) left it at
320 * 4.8 before rc6 honour the incorrect data by programming it back
321 * into the GIC, causing problems
322 * 4.8rc6 and later ignore the DT and always write "level triggered"
323 * into the GIC
324 *
325 * For backwards-compatibility, virt-2.8 and earlier will continue
326 * to say these are edge-triggered, but later machines will report
327 * the correct information.
328 */
329 ARMCPU *armcpu;
330 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
331 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
332 MachineState *ms = MACHINE(vms);
333
334 if (vmc->claim_edge_triggered_timers) {
335 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
336 }
337
338 if (vms->gic_version == VIRT_GIC_VERSION_2) {
339 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
340 GIC_FDT_IRQ_PPI_CPU_WIDTH,
341 (1 << MACHINE(vms)->smp.cpus) - 1);
342 }
343
344 qemu_fdt_add_subnode(ms->fdt, "/timer");
345
346 armcpu = ARM_CPU(qemu_get_cpu(0));
347 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
348 const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
349 qemu_fdt_setprop(ms->fdt, "/timer", "compatible",
350 compat, sizeof(compat));
351 } else {
352 qemu_fdt_setprop_string(ms->fdt, "/timer", "compatible",
353 "arm,armv7-timer");
354 }
355 qemu_fdt_setprop(ms->fdt, "/timer", "always-on", NULL, 0);
356 qemu_fdt_setprop_cells(ms->fdt, "/timer", "interrupts",
357 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
358 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
359 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
360 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
361 }
362
363 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
364 {
365 int cpu;
366 int addr_cells = 1;
367 const MachineState *ms = MACHINE(vms);
368 const VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
369 int smp_cpus = ms->smp.cpus;
370
371 /*
372 * See Linux Documentation/devicetree/bindings/arm/cpus.yaml
373 * On ARM v8 64-bit systems value should be set to 2,
374 * that corresponds to the MPIDR_EL1 register size.
375 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
376 * in the system, #address-cells can be set to 1, since
377 * MPIDR_EL1[63:32] bits are not used for CPUs
378 * identification.
379 *
380 * Here we actually don't know whether our system is 32- or 64-bit one.
381 * The simplest way to go is to examine affinity IDs of all our CPUs. If
382 * at least one of them has Aff3 populated, we set #address-cells to 2.
383 */
384 for (cpu = 0; cpu < smp_cpus; cpu++) {
385 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
386
387 if (armcpu->mp_affinity & ARM_AFF3_MASK) {
388 addr_cells = 2;
389 break;
390 }
391 }
392
393 qemu_fdt_add_subnode(ms->fdt, "/cpus");
394 qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#address-cells", addr_cells);
395 qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#size-cells", 0x0);
396
397 for (cpu = smp_cpus - 1; cpu >= 0; cpu--) {
398 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
399 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
400 CPUState *cs = CPU(armcpu);
401
402 qemu_fdt_add_subnode(ms->fdt, nodename);
403 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "cpu");
404 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
405 armcpu->dtb_compatible);
406
407 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED && smp_cpus > 1) {
408 qemu_fdt_setprop_string(ms->fdt, nodename,
409 "enable-method", "psci");
410 }
411
412 if (addr_cells == 2) {
413 qemu_fdt_setprop_u64(ms->fdt, nodename, "reg",
414 armcpu->mp_affinity);
415 } else {
416 qemu_fdt_setprop_cell(ms->fdt, nodename, "reg",
417 armcpu->mp_affinity);
418 }
419
420 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
421 qemu_fdt_setprop_cell(ms->fdt, nodename, "numa-node-id",
422 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
423 }
424
425 if (!vmc->no_cpu_topology) {
426 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle",
427 qemu_fdt_alloc_phandle(ms->fdt));
428 }
429
430 g_free(nodename);
431 }
432
433 if (!vmc->no_cpu_topology) {
434 /*
435 * Add vCPU topology description through fdt node cpu-map.
436 *
437 * See Linux Documentation/devicetree/bindings/cpu/cpu-topology.txt
438 * In a SMP system, the hierarchy of CPUs can be defined through
439 * four entities that are used to describe the layout of CPUs in
440 * the system: socket/cluster/core/thread.
441 *
442 * A socket node represents the boundary of system physical package
443 * and its child nodes must be one or more cluster nodes. A system
444 * can contain several layers of clustering within a single physical
445 * package and cluster nodes can be contained in parent cluster nodes.
446 *
447 * Note: currently we only support one layer of clustering within
448 * each physical package.
449 */
450 qemu_fdt_add_subnode(ms->fdt, "/cpus/cpu-map");
451
452 for (cpu = smp_cpus - 1; cpu >= 0; cpu--) {
453 char *cpu_path = g_strdup_printf("/cpus/cpu@%d", cpu);
454 char *map_path;
455
456 if (ms->smp.threads > 1) {
457 map_path = g_strdup_printf(
458 "/cpus/cpu-map/socket%d/cluster%d/core%d/thread%d",
459 cpu / (ms->smp.clusters * ms->smp.cores * ms->smp.threads),
460 (cpu / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters,
461 (cpu / ms->smp.threads) % ms->smp.cores,
462 cpu % ms->smp.threads);
463 } else {
464 map_path = g_strdup_printf(
465 "/cpus/cpu-map/socket%d/cluster%d/core%d",
466 cpu / (ms->smp.clusters * ms->smp.cores),
467 (cpu / ms->smp.cores) % ms->smp.clusters,
468 cpu % ms->smp.cores);
469 }
470 qemu_fdt_add_path(ms->fdt, map_path);
471 qemu_fdt_setprop_phandle(ms->fdt, map_path, "cpu", cpu_path);
472
473 g_free(map_path);
474 g_free(cpu_path);
475 }
476 }
477 }
478
479 static void fdt_add_its_gic_node(VirtMachineState *vms)
480 {
481 char *nodename;
482 MachineState *ms = MACHINE(vms);
483
484 vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
485 nodename = g_strdup_printf("/intc/its@%" PRIx64,
486 vms->memmap[VIRT_GIC_ITS].base);
487 qemu_fdt_add_subnode(ms->fdt, nodename);
488 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
489 "arm,gic-v3-its");
490 qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
491 qemu_fdt_setprop_cell(ms->fdt, nodename, "#msi-cells", 1);
492 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
493 2, vms->memmap[VIRT_GIC_ITS].base,
494 2, vms->memmap[VIRT_GIC_ITS].size);
495 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
496 g_free(nodename);
497 }
498
499 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
500 {
501 MachineState *ms = MACHINE(vms);
502 char *nodename;
503
504 nodename = g_strdup_printf("/intc/v2m@%" PRIx64,
505 vms->memmap[VIRT_GIC_V2M].base);
506 vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
507 qemu_fdt_add_subnode(ms->fdt, nodename);
508 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
509 "arm,gic-v2m-frame");
510 qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
511 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
512 2, vms->memmap[VIRT_GIC_V2M].base,
513 2, vms->memmap[VIRT_GIC_V2M].size);
514 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
515 g_free(nodename);
516 }
517
518 static void fdt_add_gic_node(VirtMachineState *vms)
519 {
520 MachineState *ms = MACHINE(vms);
521 char *nodename;
522
523 vms->gic_phandle = qemu_fdt_alloc_phandle(ms->fdt);
524 qemu_fdt_setprop_cell(ms->fdt, "/", "interrupt-parent", vms->gic_phandle);
525
526 nodename = g_strdup_printf("/intc@%" PRIx64,
527 vms->memmap[VIRT_GIC_DIST].base);
528 qemu_fdt_add_subnode(ms->fdt, nodename);
529 qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 3);
530 qemu_fdt_setprop(ms->fdt, nodename, "interrupt-controller", NULL, 0);
531 qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 0x2);
532 qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 0x2);
533 qemu_fdt_setprop(ms->fdt, nodename, "ranges", NULL, 0);
534 if (vms->gic_version != VIRT_GIC_VERSION_2) {
535 int nb_redist_regions = virt_gicv3_redist_region_count(vms);
536
537 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
538 "arm,gic-v3");
539
540 qemu_fdt_setprop_cell(ms->fdt, nodename,
541 "#redistributor-regions", nb_redist_regions);
542
543 if (nb_redist_regions == 1) {
544 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
545 2, vms->memmap[VIRT_GIC_DIST].base,
546 2, vms->memmap[VIRT_GIC_DIST].size,
547 2, vms->memmap[VIRT_GIC_REDIST].base,
548 2, vms->memmap[VIRT_GIC_REDIST].size);
549 } else {
550 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
551 2, vms->memmap[VIRT_GIC_DIST].base,
552 2, vms->memmap[VIRT_GIC_DIST].size,
553 2, vms->memmap[VIRT_GIC_REDIST].base,
554 2, vms->memmap[VIRT_GIC_REDIST].size,
555 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base,
556 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size);
557 }
558
559 if (vms->virt) {
560 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
561 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
562 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
563 }
564 } else {
565 /* 'cortex-a15-gic' means 'GIC v2' */
566 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
567 "arm,cortex-a15-gic");
568 if (!vms->virt) {
569 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
570 2, vms->memmap[VIRT_GIC_DIST].base,
571 2, vms->memmap[VIRT_GIC_DIST].size,
572 2, vms->memmap[VIRT_GIC_CPU].base,
573 2, vms->memmap[VIRT_GIC_CPU].size);
574 } else {
575 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
576 2, vms->memmap[VIRT_GIC_DIST].base,
577 2, vms->memmap[VIRT_GIC_DIST].size,
578 2, vms->memmap[VIRT_GIC_CPU].base,
579 2, vms->memmap[VIRT_GIC_CPU].size,
580 2, vms->memmap[VIRT_GIC_HYP].base,
581 2, vms->memmap[VIRT_GIC_HYP].size,
582 2, vms->memmap[VIRT_GIC_VCPU].base,
583 2, vms->memmap[VIRT_GIC_VCPU].size);
584 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
585 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
586 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
587 }
588 }
589
590 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->gic_phandle);
591 g_free(nodename);
592 }
593
594 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
595 {
596 ARMCPU *armcpu = ARM_CPU(first_cpu);
597 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
598 MachineState *ms = MACHINE(vms);
599
600 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
601 assert(!object_property_get_bool(OBJECT(armcpu), "pmu", NULL));
602 return;
603 }
604
605 if (vms->gic_version == VIRT_GIC_VERSION_2) {
606 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
607 GIC_FDT_IRQ_PPI_CPU_WIDTH,
608 (1 << MACHINE(vms)->smp.cpus) - 1);
609 }
610
611 qemu_fdt_add_subnode(ms->fdt, "/pmu");
612 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
613 const char compat[] = "arm,armv8-pmuv3";
614 qemu_fdt_setprop(ms->fdt, "/pmu", "compatible",
615 compat, sizeof(compat));
616 qemu_fdt_setprop_cells(ms->fdt, "/pmu", "interrupts",
617 GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
618 }
619 }
620
621 static inline DeviceState *create_acpi_ged(VirtMachineState *vms)
622 {
623 DeviceState *dev;
624 MachineState *ms = MACHINE(vms);
625 int irq = vms->irqmap[VIRT_ACPI_GED];
626 uint32_t event = ACPI_GED_PWR_DOWN_EVT;
627
628 if (ms->ram_slots) {
629 event |= ACPI_GED_MEM_HOTPLUG_EVT;
630 }
631
632 if (ms->nvdimms_state->is_enabled) {
633 event |= ACPI_GED_NVDIMM_HOTPLUG_EVT;
634 }
635
636 dev = qdev_new(TYPE_ACPI_GED);
637 qdev_prop_set_uint32(dev, "ged-event", event);
638
639 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_ACPI_GED].base);
640 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, vms->memmap[VIRT_PCDIMM_ACPI].base);
641 sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(vms->gic, irq));
642
643 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
644
645 return dev;
646 }
647
648 static void create_its(VirtMachineState *vms)
649 {
650 const char *itsclass = its_class_name();
651 DeviceState *dev;
652
653 if (!strcmp(itsclass, "arm-gicv3-its")) {
654 if (!vms->tcg_its) {
655 itsclass = NULL;
656 }
657 }
658
659 if (!itsclass) {
660 /* Do nothing if not supported */
661 return;
662 }
663
664 dev = qdev_new(itsclass);
665
666 object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(vms->gic),
667 &error_abort);
668 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
669 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
670
671 fdt_add_its_gic_node(vms);
672 vms->msi_controller = VIRT_MSI_CTRL_ITS;
673 }
674
675 static void create_v2m(VirtMachineState *vms)
676 {
677 int i;
678 int irq = vms->irqmap[VIRT_GIC_V2M];
679 DeviceState *dev;
680
681 dev = qdev_new("arm-gicv2m");
682 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
683 qdev_prop_set_uint32(dev, "base-spi", irq);
684 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
685 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
686
687 for (i = 0; i < NUM_GICV2M_SPIS; i++) {
688 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
689 qdev_get_gpio_in(vms->gic, irq + i));
690 }
691
692 fdt_add_v2m_gic_node(vms);
693 vms->msi_controller = VIRT_MSI_CTRL_GICV2M;
694 }
695
696 static void create_gic(VirtMachineState *vms, MemoryRegion *mem)
697 {
698 MachineState *ms = MACHINE(vms);
699 /* We create a standalone GIC */
700 SysBusDevice *gicbusdev;
701 const char *gictype;
702 int i;
703 unsigned int smp_cpus = ms->smp.cpus;
704 uint32_t nb_redist_regions = 0;
705 int revision;
706
707 if (vms->gic_version == VIRT_GIC_VERSION_2) {
708 gictype = gic_class_name();
709 } else {
710 gictype = gicv3_class_name();
711 }
712
713 switch (vms->gic_version) {
714 case VIRT_GIC_VERSION_2:
715 revision = 2;
716 break;
717 case VIRT_GIC_VERSION_3:
718 revision = 3;
719 break;
720 case VIRT_GIC_VERSION_4:
721 revision = 4;
722 break;
723 default:
724 g_assert_not_reached();
725 }
726 vms->gic = qdev_new(gictype);
727 qdev_prop_set_uint32(vms->gic, "revision", revision);
728 qdev_prop_set_uint32(vms->gic, "num-cpu", smp_cpus);
729 /* Note that the num-irq property counts both internal and external
730 * interrupts; there are always 32 of the former (mandated by GIC spec).
731 */
732 qdev_prop_set_uint32(vms->gic, "num-irq", NUM_IRQS + 32);
733 if (!kvm_irqchip_in_kernel()) {
734 qdev_prop_set_bit(vms->gic, "has-security-extensions", vms->secure);
735 }
736
737 if (vms->gic_version != VIRT_GIC_VERSION_2) {
738 uint32_t redist0_capacity = virt_redist_capacity(vms, VIRT_GIC_REDIST);
739 uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
740
741 nb_redist_regions = virt_gicv3_redist_region_count(vms);
742
743 qdev_prop_set_uint32(vms->gic, "len-redist-region-count",
744 nb_redist_regions);
745 qdev_prop_set_uint32(vms->gic, "redist-region-count[0]", redist0_count);
746
747 if (!kvm_irqchip_in_kernel()) {
748 if (vms->tcg_its) {
749 object_property_set_link(OBJECT(vms->gic), "sysmem",
750 OBJECT(mem), &error_fatal);
751 qdev_prop_set_bit(vms->gic, "has-lpi", true);
752 }
753 }
754
755 if (nb_redist_regions == 2) {
756 uint32_t redist1_capacity =
757 virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2);
758
759 qdev_prop_set_uint32(vms->gic, "redist-region-count[1]",
760 MIN(smp_cpus - redist0_count, redist1_capacity));
761 }
762 } else {
763 if (!kvm_irqchip_in_kernel()) {
764 qdev_prop_set_bit(vms->gic, "has-virtualization-extensions",
765 vms->virt);
766 }
767 }
768 gicbusdev = SYS_BUS_DEVICE(vms->gic);
769 sysbus_realize_and_unref(gicbusdev, &error_fatal);
770 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
771 if (vms->gic_version != VIRT_GIC_VERSION_2) {
772 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
773 if (nb_redist_regions == 2) {
774 sysbus_mmio_map(gicbusdev, 2,
775 vms->memmap[VIRT_HIGH_GIC_REDIST2].base);
776 }
777 } else {
778 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
779 if (vms->virt) {
780 sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base);
781 sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base);
782 }
783 }
784
785 /* Wire the outputs from each CPU's generic timer and the GICv3
786 * maintenance interrupt signal to the appropriate GIC PPI inputs,
787 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
788 */
789 for (i = 0; i < smp_cpus; i++) {
790 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
791 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
792 int irq;
793 /* Mapping from the output timer irq lines from the CPU to the
794 * GIC PPI inputs we use for the virt board.
795 */
796 const int timer_irq[] = {
797 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
798 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
799 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
800 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
801 };
802
803 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
804 qdev_connect_gpio_out(cpudev, irq,
805 qdev_get_gpio_in(vms->gic,
806 ppibase + timer_irq[irq]));
807 }
808
809 if (vms->gic_version != VIRT_GIC_VERSION_2) {
810 qemu_irq irq = qdev_get_gpio_in(vms->gic,
811 ppibase + ARCH_GIC_MAINT_IRQ);
812 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt",
813 0, irq);
814 } else if (vms->virt) {
815 qemu_irq irq = qdev_get_gpio_in(vms->gic,
816 ppibase + ARCH_GIC_MAINT_IRQ);
817 sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq);
818 }
819
820 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
821 qdev_get_gpio_in(vms->gic, ppibase
822 + VIRTUAL_PMU_IRQ));
823
824 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
825 sysbus_connect_irq(gicbusdev, i + smp_cpus,
826 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
827 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
828 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
829 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
830 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
831 }
832
833 fdt_add_gic_node(vms);
834
835 if (vms->gic_version != VIRT_GIC_VERSION_2 && vms->its) {
836 create_its(vms);
837 } else if (vms->gic_version == VIRT_GIC_VERSION_2) {
838 create_v2m(vms);
839 }
840 }
841
842 static void create_uart(const VirtMachineState *vms, int uart,
843 MemoryRegion *mem, Chardev *chr)
844 {
845 char *nodename;
846 hwaddr base = vms->memmap[uart].base;
847 hwaddr size = vms->memmap[uart].size;
848 int irq = vms->irqmap[uart];
849 const char compat[] = "arm,pl011\0arm,primecell";
850 const char clocknames[] = "uartclk\0apb_pclk";
851 DeviceState *dev = qdev_new(TYPE_PL011);
852 SysBusDevice *s = SYS_BUS_DEVICE(dev);
853 MachineState *ms = MACHINE(vms);
854
855 qdev_prop_set_chr(dev, "chardev", chr);
856 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
857 memory_region_add_subregion(mem, base,
858 sysbus_mmio_get_region(s, 0));
859 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
860
861 nodename = g_strdup_printf("/pl011@%" PRIx64, base);
862 qemu_fdt_add_subnode(ms->fdt, nodename);
863 /* Note that we can't use setprop_string because of the embedded NUL */
864 qemu_fdt_setprop(ms->fdt, nodename, "compatible",
865 compat, sizeof(compat));
866 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
867 2, base, 2, size);
868 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
869 GIC_FDT_IRQ_TYPE_SPI, irq,
870 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
871 qemu_fdt_setprop_cells(ms->fdt, nodename, "clocks",
872 vms->clock_phandle, vms->clock_phandle);
873 qemu_fdt_setprop(ms->fdt, nodename, "clock-names",
874 clocknames, sizeof(clocknames));
875
876 if (uart == VIRT_UART) {
877 qemu_fdt_setprop_string(ms->fdt, "/chosen", "stdout-path", nodename);
878 } else {
879 /* Mark as not usable by the normal world */
880 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
881 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
882
883 qemu_fdt_setprop_string(ms->fdt, "/secure-chosen", "stdout-path",
884 nodename);
885 }
886
887 g_free(nodename);
888 }
889
890 static void create_rtc(const VirtMachineState *vms)
891 {
892 char *nodename;
893 hwaddr base = vms->memmap[VIRT_RTC].base;
894 hwaddr size = vms->memmap[VIRT_RTC].size;
895 int irq = vms->irqmap[VIRT_RTC];
896 const char compat[] = "arm,pl031\0arm,primecell";
897 MachineState *ms = MACHINE(vms);
898
899 sysbus_create_simple("pl031", base, qdev_get_gpio_in(vms->gic, irq));
900
901 nodename = g_strdup_printf("/pl031@%" PRIx64, base);
902 qemu_fdt_add_subnode(ms->fdt, nodename);
903 qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
904 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
905 2, base, 2, size);
906 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
907 GIC_FDT_IRQ_TYPE_SPI, irq,
908 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
909 qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
910 qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
911 g_free(nodename);
912 }
913
914 static DeviceState *gpio_key_dev;
915 static void virt_powerdown_req(Notifier *n, void *opaque)
916 {
917 VirtMachineState *s = container_of(n, VirtMachineState, powerdown_notifier);
918
919 if (s->acpi_dev) {
920 acpi_send_event(s->acpi_dev, ACPI_POWER_DOWN_STATUS);
921 } else {
922 /* use gpio Pin 3 for power button event */
923 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
924 }
925 }
926
927 static void create_gpio_keys(char *fdt, DeviceState *pl061_dev,
928 uint32_t phandle)
929 {
930 gpio_key_dev = sysbus_create_simple("gpio-key", -1,
931 qdev_get_gpio_in(pl061_dev, 3));
932
933 qemu_fdt_add_subnode(fdt, "/gpio-keys");
934 qemu_fdt_setprop_string(fdt, "/gpio-keys", "compatible", "gpio-keys");
935
936 qemu_fdt_add_subnode(fdt, "/gpio-keys/poweroff");
937 qemu_fdt_setprop_string(fdt, "/gpio-keys/poweroff",
938 "label", "GPIO Key Poweroff");
939 qemu_fdt_setprop_cell(fdt, "/gpio-keys/poweroff", "linux,code",
940 KEY_POWER);
941 qemu_fdt_setprop_cells(fdt, "/gpio-keys/poweroff",
942 "gpios", phandle, 3, 0);
943 }
944
945 #define SECURE_GPIO_POWEROFF 0
946 #define SECURE_GPIO_RESET 1
947
948 static void create_secure_gpio_pwr(char *fdt, DeviceState *pl061_dev,
949 uint32_t phandle)
950 {
951 DeviceState *gpio_pwr_dev;
952
953 /* gpio-pwr */
954 gpio_pwr_dev = sysbus_create_simple("gpio-pwr", -1, NULL);
955
956 /* connect secure pl061 to gpio-pwr */
957 qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_RESET,
958 qdev_get_gpio_in_named(gpio_pwr_dev, "reset", 0));
959 qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_POWEROFF,
960 qdev_get_gpio_in_named(gpio_pwr_dev, "shutdown", 0));
961
962 qemu_fdt_add_subnode(fdt, "/gpio-poweroff");
963 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "compatible",
964 "gpio-poweroff");
965 qemu_fdt_setprop_cells(fdt, "/gpio-poweroff",
966 "gpios", phandle, SECURE_GPIO_POWEROFF, 0);
967 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "status", "disabled");
968 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "secure-status",
969 "okay");
970
971 qemu_fdt_add_subnode(fdt, "/gpio-restart");
972 qemu_fdt_setprop_string(fdt, "/gpio-restart", "compatible",
973 "gpio-restart");
974 qemu_fdt_setprop_cells(fdt, "/gpio-restart",
975 "gpios", phandle, SECURE_GPIO_RESET, 0);
976 qemu_fdt_setprop_string(fdt, "/gpio-restart", "status", "disabled");
977 qemu_fdt_setprop_string(fdt, "/gpio-restart", "secure-status",
978 "okay");
979 }
980
981 static void create_gpio_devices(const VirtMachineState *vms, int gpio,
982 MemoryRegion *mem)
983 {
984 char *nodename;
985 DeviceState *pl061_dev;
986 hwaddr base = vms->memmap[gpio].base;
987 hwaddr size = vms->memmap[gpio].size;
988 int irq = vms->irqmap[gpio];
989 const char compat[] = "arm,pl061\0arm,primecell";
990 SysBusDevice *s;
991 MachineState *ms = MACHINE(vms);
992
993 pl061_dev = qdev_new("pl061");
994 /* Pull lines down to 0 if not driven by the PL061 */
995 qdev_prop_set_uint32(pl061_dev, "pullups", 0);
996 qdev_prop_set_uint32(pl061_dev, "pulldowns", 0xff);
997 s = SYS_BUS_DEVICE(pl061_dev);
998 sysbus_realize_and_unref(s, &error_fatal);
999 memory_region_add_subregion(mem, base, sysbus_mmio_get_region(s, 0));
1000 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
1001
1002 uint32_t phandle = qemu_fdt_alloc_phandle(ms->fdt);
1003 nodename = g_strdup_printf("/pl061@%" PRIx64, base);
1004 qemu_fdt_add_subnode(ms->fdt, nodename);
1005 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1006 2, base, 2, size);
1007 qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
1008 qemu_fdt_setprop_cell(ms->fdt, nodename, "#gpio-cells", 2);
1009 qemu_fdt_setprop(ms->fdt, nodename, "gpio-controller", NULL, 0);
1010 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
1011 GIC_FDT_IRQ_TYPE_SPI, irq,
1012 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
1013 qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
1014 qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
1015 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", phandle);
1016
1017 if (gpio != VIRT_GPIO) {
1018 /* Mark as not usable by the normal world */
1019 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1020 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1021 }
1022 g_free(nodename);
1023
1024 /* Child gpio devices */
1025 if (gpio == VIRT_GPIO) {
1026 create_gpio_keys(ms->fdt, pl061_dev, phandle);
1027 } else {
1028 create_secure_gpio_pwr(ms->fdt, pl061_dev, phandle);
1029 }
1030 }
1031
1032 static void create_virtio_devices(const VirtMachineState *vms)
1033 {
1034 int i;
1035 hwaddr size = vms->memmap[VIRT_MMIO].size;
1036 MachineState *ms = MACHINE(vms);
1037
1038 /* We create the transports in forwards order. Since qbus_realize()
1039 * prepends (not appends) new child buses, the incrementing loop below will
1040 * create a list of virtio-mmio buses with decreasing base addresses.
1041 *
1042 * When a -device option is processed from the command line,
1043 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
1044 * order. The upshot is that -device options in increasing command line
1045 * order are mapped to virtio-mmio buses with decreasing base addresses.
1046 *
1047 * When this code was originally written, that arrangement ensured that the
1048 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
1049 * the first -device on the command line. (The end-to-end order is a
1050 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
1051 * guest kernel's name-to-address assignment strategy.)
1052 *
1053 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
1054 * the message, if not necessarily the code, of commit 70161ff336.
1055 * Therefore the loop now establishes the inverse of the original intent.
1056 *
1057 * Unfortunately, we can't counteract the kernel change by reversing the
1058 * loop; it would break existing command lines.
1059 *
1060 * In any case, the kernel makes no guarantee about the stability of
1061 * enumeration order of virtio devices (as demonstrated by it changing
1062 * between kernel versions). For reliable and stable identification
1063 * of disks users must use UUIDs or similar mechanisms.
1064 */
1065 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
1066 int irq = vms->irqmap[VIRT_MMIO] + i;
1067 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
1068
1069 sysbus_create_simple("virtio-mmio", base,
1070 qdev_get_gpio_in(vms->gic, irq));
1071 }
1072
1073 /* We add dtb nodes in reverse order so that they appear in the finished
1074 * device tree lowest address first.
1075 *
1076 * Note that this mapping is independent of the loop above. The previous
1077 * loop influences virtio device to virtio transport assignment, whereas
1078 * this loop controls how virtio transports are laid out in the dtb.
1079 */
1080 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
1081 char *nodename;
1082 int irq = vms->irqmap[VIRT_MMIO] + i;
1083 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
1084
1085 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
1086 qemu_fdt_add_subnode(ms->fdt, nodename);
1087 qemu_fdt_setprop_string(ms->fdt, nodename,
1088 "compatible", "virtio,mmio");
1089 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1090 2, base, 2, size);
1091 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
1092 GIC_FDT_IRQ_TYPE_SPI, irq,
1093 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1094 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1095 g_free(nodename);
1096 }
1097 }
1098
1099 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
1100
1101 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms,
1102 const char *name,
1103 const char *alias_prop_name)
1104 {
1105 /*
1106 * Create a single flash device. We use the same parameters as
1107 * the flash devices on the Versatile Express board.
1108 */
1109 DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
1110
1111 qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
1112 qdev_prop_set_uint8(dev, "width", 4);
1113 qdev_prop_set_uint8(dev, "device-width", 2);
1114 qdev_prop_set_bit(dev, "big-endian", false);
1115 qdev_prop_set_uint16(dev, "id0", 0x89);
1116 qdev_prop_set_uint16(dev, "id1", 0x18);
1117 qdev_prop_set_uint16(dev, "id2", 0x00);
1118 qdev_prop_set_uint16(dev, "id3", 0x00);
1119 qdev_prop_set_string(dev, "name", name);
1120 object_property_add_child(OBJECT(vms), name, OBJECT(dev));
1121 object_property_add_alias(OBJECT(vms), alias_prop_name,
1122 OBJECT(dev), "drive");
1123 return PFLASH_CFI01(dev);
1124 }
1125
1126 static void virt_flash_create(VirtMachineState *vms)
1127 {
1128 vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0");
1129 vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1");
1130 }
1131
1132 static void virt_flash_map1(PFlashCFI01 *flash,
1133 hwaddr base, hwaddr size,
1134 MemoryRegion *sysmem)
1135 {
1136 DeviceState *dev = DEVICE(flash);
1137
1138 assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE));
1139 assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
1140 qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
1141 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1142
1143 memory_region_add_subregion(sysmem, base,
1144 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
1145 0));
1146 }
1147
1148 static void virt_flash_map(VirtMachineState *vms,
1149 MemoryRegion *sysmem,
1150 MemoryRegion *secure_sysmem)
1151 {
1152 /*
1153 * Map two flash devices to fill the VIRT_FLASH space in the memmap.
1154 * sysmem is the system memory space. secure_sysmem is the secure view
1155 * of the system, and the first flash device should be made visible only
1156 * there. The second flash device is visible to both secure and nonsecure.
1157 * If sysmem == secure_sysmem this means there is no separate Secure
1158 * address space and both flash devices are generally visible.
1159 */
1160 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1161 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1162
1163 virt_flash_map1(vms->flash[0], flashbase, flashsize,
1164 secure_sysmem);
1165 virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize,
1166 sysmem);
1167 }
1168
1169 static void virt_flash_fdt(VirtMachineState *vms,
1170 MemoryRegion *sysmem,
1171 MemoryRegion *secure_sysmem)
1172 {
1173 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1174 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1175 MachineState *ms = MACHINE(vms);
1176 char *nodename;
1177
1178 if (sysmem == secure_sysmem) {
1179 /* Report both flash devices as a single node in the DT */
1180 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
1181 qemu_fdt_add_subnode(ms->fdt, nodename);
1182 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1183 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1184 2, flashbase, 2, flashsize,
1185 2, flashbase + flashsize, 2, flashsize);
1186 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1187 g_free(nodename);
1188 } else {
1189 /*
1190 * Report the devices as separate nodes so we can mark one as
1191 * only visible to the secure world.
1192 */
1193 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
1194 qemu_fdt_add_subnode(ms->fdt, nodename);
1195 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1196 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1197 2, flashbase, 2, flashsize);
1198 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1199 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1200 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1201 g_free(nodename);
1202
1203 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase + flashsize);
1204 qemu_fdt_add_subnode(ms->fdt, nodename);
1205 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1206 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1207 2, flashbase + flashsize, 2, flashsize);
1208 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1209 g_free(nodename);
1210 }
1211 }
1212
1213 static bool virt_firmware_init(VirtMachineState *vms,
1214 MemoryRegion *sysmem,
1215 MemoryRegion *secure_sysmem)
1216 {
1217 int i;
1218 const char *bios_name;
1219 BlockBackend *pflash_blk0;
1220
1221 /* Map legacy -drive if=pflash to machine properties */
1222 for (i = 0; i < ARRAY_SIZE(vms->flash); i++) {
1223 pflash_cfi01_legacy_drive(vms->flash[i],
1224 drive_get(IF_PFLASH, 0, i));
1225 }
1226
1227 virt_flash_map(vms, sysmem, secure_sysmem);
1228
1229 pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]);
1230
1231 bios_name = MACHINE(vms)->firmware;
1232 if (bios_name) {
1233 char *fname;
1234 MemoryRegion *mr;
1235 int image_size;
1236
1237 if (pflash_blk0) {
1238 error_report("The contents of the first flash device may be "
1239 "specified with -bios or with -drive if=pflash... "
1240 "but you cannot use both options at once");
1241 exit(1);
1242 }
1243
1244 /* Fall back to -bios */
1245
1246 fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1247 if (!fname) {
1248 error_report("Could not find ROM image '%s'", bios_name);
1249 exit(1);
1250 }
1251 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0);
1252 image_size = load_image_mr(fname, mr);
1253 g_free(fname);
1254 if (image_size < 0) {
1255 error_report("Could not load ROM image '%s'", bios_name);
1256 exit(1);
1257 }
1258 }
1259
1260 return pflash_blk0 || bios_name;
1261 }
1262
1263 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
1264 {
1265 MachineState *ms = MACHINE(vms);
1266 hwaddr base = vms->memmap[VIRT_FW_CFG].base;
1267 hwaddr size = vms->memmap[VIRT_FW_CFG].size;
1268 FWCfgState *fw_cfg;
1269 char *nodename;
1270
1271 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
1272 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus);
1273
1274 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
1275 qemu_fdt_add_subnode(ms->fdt, nodename);
1276 qemu_fdt_setprop_string(ms->fdt, nodename,
1277 "compatible", "qemu,fw-cfg-mmio");
1278 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1279 2, base, 2, size);
1280 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1281 g_free(nodename);
1282 return fw_cfg;
1283 }
1284
1285 static void create_pcie_irq_map(const MachineState *ms,
1286 uint32_t gic_phandle,
1287 int first_irq, const char *nodename)
1288 {
1289 int devfn, pin;
1290 uint32_t full_irq_map[4 * 4 * 10] = { 0 };
1291 uint32_t *irq_map = full_irq_map;
1292
1293 for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
1294 for (pin = 0; pin < 4; pin++) {
1295 int irq_type = GIC_FDT_IRQ_TYPE_SPI;
1296 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
1297 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
1298 int i;
1299
1300 uint32_t map[] = {
1301 devfn << 8, 0, 0, /* devfn */
1302 pin + 1, /* PCI pin */
1303 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
1304
1305 /* Convert map to big endian */
1306 for (i = 0; i < 10; i++) {
1307 irq_map[i] = cpu_to_be32(map[i]);
1308 }
1309 irq_map += 10;
1310 }
1311 }
1312
1313 qemu_fdt_setprop(ms->fdt, nodename, "interrupt-map",
1314 full_irq_map, sizeof(full_irq_map));
1315
1316 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupt-map-mask",
1317 cpu_to_be16(PCI_DEVFN(3, 0)), /* Slot 3 */
1318 0, 0,
1319 0x7 /* PCI irq */);
1320 }
1321
1322 static void create_smmu(const VirtMachineState *vms,
1323 PCIBus *bus)
1324 {
1325 char *node;
1326 const char compat[] = "arm,smmu-v3";
1327 int irq = vms->irqmap[VIRT_SMMU];
1328 int i;
1329 hwaddr base = vms->memmap[VIRT_SMMU].base;
1330 hwaddr size = vms->memmap[VIRT_SMMU].size;
1331 const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
1332 DeviceState *dev;
1333 MachineState *ms = MACHINE(vms);
1334
1335 if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
1336 return;
1337 }
1338
1339 dev = qdev_new("arm-smmuv3");
1340
1341 object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus),
1342 &error_abort);
1343 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1344 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
1345 for (i = 0; i < NUM_SMMU_IRQS; i++) {
1346 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1347 qdev_get_gpio_in(vms->gic, irq + i));
1348 }
1349
1350 node = g_strdup_printf("/smmuv3@%" PRIx64, base);
1351 qemu_fdt_add_subnode(ms->fdt, node);
1352 qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
1353 qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg", 2, base, 2, size);
1354
1355 qemu_fdt_setprop_cells(ms->fdt, node, "interrupts",
1356 GIC_FDT_IRQ_TYPE_SPI, irq , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1357 GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1358 GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1359 GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1360
1361 qemu_fdt_setprop(ms->fdt, node, "interrupt-names", irq_names,
1362 sizeof(irq_names));
1363
1364 qemu_fdt_setprop(ms->fdt, node, "dma-coherent", NULL, 0);
1365
1366 qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
1367
1368 qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
1369 g_free(node);
1370 }
1371
1372 static void create_virtio_iommu_dt_bindings(VirtMachineState *vms)
1373 {
1374 const char compat[] = "virtio,pci-iommu\0pci1af4,1057";
1375 uint16_t bdf = vms->virtio_iommu_bdf;
1376 MachineState *ms = MACHINE(vms);
1377 char *node;
1378
1379 vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
1380
1381 node = g_strdup_printf("%s/virtio_iommu@%x,%x", vms->pciehb_nodename,
1382 PCI_SLOT(bdf), PCI_FUNC(bdf));
1383 qemu_fdt_add_subnode(ms->fdt, node);
1384 qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
1385 qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg",
1386 1, bdf << 8, 1, 0, 1, 0,
1387 1, 0, 1, 0);
1388
1389 qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
1390 qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
1391 g_free(node);
1392
1393 qemu_fdt_setprop_cells(ms->fdt, vms->pciehb_nodename, "iommu-map",
1394 0x0, vms->iommu_phandle, 0x0, bdf,
1395 bdf + 1, vms->iommu_phandle, bdf + 1, 0xffff - bdf);
1396 }
1397
1398 static void create_pcie(VirtMachineState *vms)
1399 {
1400 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1401 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
1402 hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base;
1403 hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size;
1404 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1405 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
1406 hwaddr base_ecam, size_ecam;
1407 hwaddr base = base_mmio;
1408 int nr_pcie_buses;
1409 int irq = vms->irqmap[VIRT_PCIE];
1410 MemoryRegion *mmio_alias;
1411 MemoryRegion *mmio_reg;
1412 MemoryRegion *ecam_alias;
1413 MemoryRegion *ecam_reg;
1414 DeviceState *dev;
1415 char *nodename;
1416 int i, ecam_id;
1417 PCIHostState *pci;
1418 MachineState *ms = MACHINE(vms);
1419
1420 dev = qdev_new(TYPE_GPEX_HOST);
1421 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1422
1423 ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
1424 base_ecam = vms->memmap[ecam_id].base;
1425 size_ecam = vms->memmap[ecam_id].size;
1426 nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
1427 /* Map only the first size_ecam bytes of ECAM space */
1428 ecam_alias = g_new0(MemoryRegion, 1);
1429 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1430 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1431 ecam_reg, 0, size_ecam);
1432 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1433
1434 /* Map the MMIO window into system address space so as to expose
1435 * the section of PCI MMIO space which starts at the same base address
1436 * (ie 1:1 mapping for that part of PCI MMIO space visible through
1437 * the window).
1438 */
1439 mmio_alias = g_new0(MemoryRegion, 1);
1440 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1441 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1442 mmio_reg, base_mmio, size_mmio);
1443 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1444
1445 if (vms->highmem_mmio) {
1446 /* Map high MMIO space */
1447 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1448
1449 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1450 mmio_reg, base_mmio_high, size_mmio_high);
1451 memory_region_add_subregion(get_system_memory(), base_mmio_high,
1452 high_mmio_alias);
1453 }
1454
1455 /* Map IO port space */
1456 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1457
1458 for (i = 0; i < GPEX_NUM_IRQS; i++) {
1459 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1460 qdev_get_gpio_in(vms->gic, irq + i));
1461 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
1462 }
1463
1464 pci = PCI_HOST_BRIDGE(dev);
1465 pci->bypass_iommu = vms->default_bus_bypass_iommu;
1466 vms->bus = pci->bus;
1467 if (vms->bus) {
1468 for (i = 0; i < nb_nics; i++) {
1469 NICInfo *nd = &nd_table[i];
1470
1471 if (!nd->model) {
1472 nd->model = g_strdup("virtio");
1473 }
1474
1475 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1476 }
1477 }
1478
1479 nodename = vms->pciehb_nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1480 qemu_fdt_add_subnode(ms->fdt, nodename);
1481 qemu_fdt_setprop_string(ms->fdt, nodename,
1482 "compatible", "pci-host-ecam-generic");
1483 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "pci");
1484 qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 3);
1485 qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 2);
1486 qemu_fdt_setprop_cell(ms->fdt, nodename, "linux,pci-domain", 0);
1487 qemu_fdt_setprop_cells(ms->fdt, nodename, "bus-range", 0,
1488 nr_pcie_buses - 1);
1489 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1490
1491 if (vms->msi_phandle) {
1492 qemu_fdt_setprop_cells(ms->fdt, nodename, "msi-map",
1493 0, vms->msi_phandle, 0, 0x10000);
1494 }
1495
1496 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1497 2, base_ecam, 2, size_ecam);
1498
1499 if (vms->highmem_mmio) {
1500 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
1501 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1502 2, base_pio, 2, size_pio,
1503 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1504 2, base_mmio, 2, size_mmio,
1505 1, FDT_PCI_RANGE_MMIO_64BIT,
1506 2, base_mmio_high,
1507 2, base_mmio_high, 2, size_mmio_high);
1508 } else {
1509 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
1510 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1511 2, base_pio, 2, size_pio,
1512 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1513 2, base_mmio, 2, size_mmio);
1514 }
1515
1516 qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 1);
1517 create_pcie_irq_map(ms, vms->gic_phandle, irq, nodename);
1518
1519 if (vms->iommu) {
1520 vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
1521
1522 switch (vms->iommu) {
1523 case VIRT_IOMMU_SMMUV3:
1524 create_smmu(vms, vms->bus);
1525 qemu_fdt_setprop_cells(ms->fdt, nodename, "iommu-map",
1526 0x0, vms->iommu_phandle, 0x0, 0x10000);
1527 break;
1528 default:
1529 g_assert_not_reached();
1530 }
1531 }
1532 }
1533
1534 static void create_platform_bus(VirtMachineState *vms)
1535 {
1536 DeviceState *dev;
1537 SysBusDevice *s;
1538 int i;
1539 MemoryRegion *sysmem = get_system_memory();
1540
1541 dev = qdev_new(TYPE_PLATFORM_BUS_DEVICE);
1542 dev->id = g_strdup(TYPE_PLATFORM_BUS_DEVICE);
1543 qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
1544 qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
1545 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1546 vms->platform_bus_dev = dev;
1547
1548 s = SYS_BUS_DEVICE(dev);
1549 for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
1550 int irq = vms->irqmap[VIRT_PLATFORM_BUS] + i;
1551 sysbus_connect_irq(s, i, qdev_get_gpio_in(vms->gic, irq));
1552 }
1553
1554 memory_region_add_subregion(sysmem,
1555 vms->memmap[VIRT_PLATFORM_BUS].base,
1556 sysbus_mmio_get_region(s, 0));
1557 }
1558
1559 static void create_tag_ram(MemoryRegion *tag_sysmem,
1560 hwaddr base, hwaddr size,
1561 const char *name)
1562 {
1563 MemoryRegion *tagram = g_new(MemoryRegion, 1);
1564
1565 memory_region_init_ram(tagram, NULL, name, size / 32, &error_fatal);
1566 memory_region_add_subregion(tag_sysmem, base / 32, tagram);
1567 }
1568
1569 static void create_secure_ram(VirtMachineState *vms,
1570 MemoryRegion *secure_sysmem,
1571 MemoryRegion *secure_tag_sysmem)
1572 {
1573 MemoryRegion *secram = g_new(MemoryRegion, 1);
1574 char *nodename;
1575 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1576 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1577 MachineState *ms = MACHINE(vms);
1578
1579 memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1580 &error_fatal);
1581 memory_region_add_subregion(secure_sysmem, base, secram);
1582
1583 nodename = g_strdup_printf("/secram@%" PRIx64, base);
1584 qemu_fdt_add_subnode(ms->fdt, nodename);
1585 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "memory");
1586 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 2, base, 2, size);
1587 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1588 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1589
1590 if (secure_tag_sysmem) {
1591 create_tag_ram(secure_tag_sysmem, base, size, "mach-virt.secure-tag");
1592 }
1593
1594 g_free(nodename);
1595 }
1596
1597 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1598 {
1599 const VirtMachineState *board = container_of(binfo, VirtMachineState,
1600 bootinfo);
1601 MachineState *ms = MACHINE(board);
1602
1603
1604 *fdt_size = board->fdt_size;
1605 return ms->fdt;
1606 }
1607
1608 static void virt_build_smbios(VirtMachineState *vms)
1609 {
1610 MachineClass *mc = MACHINE_GET_CLASS(vms);
1611 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1612 uint8_t *smbios_tables, *smbios_anchor;
1613 size_t smbios_tables_len, smbios_anchor_len;
1614 const char *product = "QEMU Virtual Machine";
1615
1616 if (kvm_enabled()) {
1617 product = "KVM Virtual Machine";
1618 }
1619
1620 smbios_set_defaults("QEMU", product,
1621 vmc->smbios_old_sys_ver ? "1.0" : mc->name, false,
1622 true, SMBIOS_ENTRY_POINT_TYPE_64);
1623
1624 smbios_get_tables(MACHINE(vms), NULL, 0,
1625 &smbios_tables, &smbios_tables_len,
1626 &smbios_anchor, &smbios_anchor_len,
1627 &error_fatal);
1628
1629 if (smbios_anchor) {
1630 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1631 smbios_tables, smbios_tables_len);
1632 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1633 smbios_anchor, smbios_anchor_len);
1634 }
1635 }
1636
1637 static
1638 void virt_machine_done(Notifier *notifier, void *data)
1639 {
1640 VirtMachineState *vms = container_of(notifier, VirtMachineState,
1641 machine_done);
1642 MachineState *ms = MACHINE(vms);
1643 ARMCPU *cpu = ARM_CPU(first_cpu);
1644 struct arm_boot_info *info = &vms->bootinfo;
1645 AddressSpace *as = arm_boot_address_space(cpu, info);
1646
1647 /*
1648 * If the user provided a dtb, we assume the dynamic sysbus nodes
1649 * already are integrated there. This corresponds to a use case where
1650 * the dynamic sysbus nodes are complex and their generation is not yet
1651 * supported. In that case the user can take charge of the guest dt
1652 * while qemu takes charge of the qom stuff.
1653 */
1654 if (info->dtb_filename == NULL) {
1655 platform_bus_add_all_fdt_nodes(ms->fdt, "/intc",
1656 vms->memmap[VIRT_PLATFORM_BUS].base,
1657 vms->memmap[VIRT_PLATFORM_BUS].size,
1658 vms->irqmap[VIRT_PLATFORM_BUS]);
1659 }
1660 if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) {
1661 exit(1);
1662 }
1663
1664 fw_cfg_add_extra_pci_roots(vms->bus, vms->fw_cfg);
1665
1666 virt_acpi_setup(vms);
1667 virt_build_smbios(vms);
1668 }
1669
1670 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1671 {
1672 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1673 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1674
1675 if (!vmc->disallow_affinity_adjustment) {
1676 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1677 * GIC's target-list limitations. 32-bit KVM hosts currently
1678 * always create clusters of 4 CPUs, but that is expected to
1679 * change when they gain support for gicv3. When KVM is enabled
1680 * it will override the changes we make here, therefore our
1681 * purposes are to make TCG consistent (with 64-bit KVM hosts)
1682 * and to improve SGI efficiency.
1683 */
1684 if (vms->gic_version == VIRT_GIC_VERSION_2) {
1685 clustersz = GIC_TARGETLIST_BITS;
1686 } else {
1687 clustersz = GICV3_TARGETLIST_BITS;
1688 }
1689 }
1690 return arm_cpu_mp_affinity(idx, clustersz);
1691 }
1692
1693 static void virt_set_memmap(VirtMachineState *vms, int pa_bits)
1694 {
1695 MachineState *ms = MACHINE(vms);
1696 hwaddr base, device_memory_base, device_memory_size, memtop;
1697 int i;
1698
1699 vms->memmap = extended_memmap;
1700
1701 for (i = 0; i < ARRAY_SIZE(base_memmap); i++) {
1702 vms->memmap[i] = base_memmap[i];
1703 }
1704
1705 if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) {
1706 error_report("unsupported number of memory slots: %"PRIu64,
1707 ms->ram_slots);
1708 exit(EXIT_FAILURE);
1709 }
1710
1711 /*
1712 * !highmem is exactly the same as limiting the PA space to 32bit,
1713 * irrespective of the underlying capabilities of the HW.
1714 */
1715 if (!vms->highmem) {
1716 pa_bits = 32;
1717 }
1718
1719 /*
1720 * We compute the base of the high IO region depending on the
1721 * amount of initial and device memory. The device memory start/size
1722 * is aligned on 1GiB. We never put the high IO region below 256GiB
1723 * so that if maxram_size is < 255GiB we keep the legacy memory map.
1724 * The device region size assumes 1GiB page max alignment per slot.
1725 */
1726 device_memory_base =
1727 ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB);
1728 device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB;
1729
1730 /* Base address of the high IO region */
1731 memtop = base = device_memory_base + ROUND_UP(device_memory_size, GiB);
1732 if (memtop > BIT_ULL(pa_bits)) {
1733 error_report("Addressing limited to %d bits, but memory exceeds it by %llu bytes\n",
1734 pa_bits, memtop - BIT_ULL(pa_bits));
1735 exit(EXIT_FAILURE);
1736 }
1737 if (base < device_memory_base) {
1738 error_report("maxmem/slots too huge");
1739 exit(EXIT_FAILURE);
1740 }
1741 if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) {
1742 base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES;
1743 }
1744
1745 /* We know for sure that at least the memory fits in the PA space */
1746 vms->highest_gpa = memtop - 1;
1747
1748 for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) {
1749 hwaddr size = extended_memmap[i].size;
1750 bool fits;
1751
1752 base = ROUND_UP(base, size);
1753 vms->memmap[i].base = base;
1754 vms->memmap[i].size = size;
1755
1756 /*
1757 * Check each device to see if they fit in the PA space,
1758 * moving highest_gpa as we go.
1759 *
1760 * For each device that doesn't fit, disable it.
1761 */
1762 fits = (base + size) <= BIT_ULL(pa_bits);
1763 if (fits) {
1764 vms->highest_gpa = base + size - 1;
1765 }
1766
1767 switch (i) {
1768 case VIRT_HIGH_GIC_REDIST2:
1769 vms->highmem_redists &= fits;
1770 break;
1771 case VIRT_HIGH_PCIE_ECAM:
1772 vms->highmem_ecam &= fits;
1773 break;
1774 case VIRT_HIGH_PCIE_MMIO:
1775 vms->highmem_mmio &= fits;
1776 break;
1777 }
1778
1779 base += size;
1780 }
1781
1782 if (device_memory_size > 0) {
1783 ms->device_memory = g_malloc0(sizeof(*ms->device_memory));
1784 ms->device_memory->base = device_memory_base;
1785 memory_region_init(&ms->device_memory->mr, OBJECT(vms),
1786 "device-memory", device_memory_size);
1787 }
1788 }
1789
1790 /*
1791 * finalize_gic_version - Determines the final gic_version
1792 * according to the gic-version property
1793 *
1794 * Default GIC type is v2
1795 */
1796 static void finalize_gic_version(VirtMachineState *vms)
1797 {
1798 unsigned int max_cpus = MACHINE(vms)->smp.max_cpus;
1799
1800 if (kvm_enabled()) {
1801 int probe_bitmap;
1802
1803 if (!kvm_irqchip_in_kernel()) {
1804 switch (vms->gic_version) {
1805 case VIRT_GIC_VERSION_HOST:
1806 warn_report(
1807 "gic-version=host not relevant with kernel-irqchip=off "
1808 "as only userspace GICv2 is supported. Using v2 ...");
1809 return;
1810 case VIRT_GIC_VERSION_MAX:
1811 case VIRT_GIC_VERSION_NOSEL:
1812 vms->gic_version = VIRT_GIC_VERSION_2;
1813 return;
1814 case VIRT_GIC_VERSION_2:
1815 return;
1816 case VIRT_GIC_VERSION_3:
1817 error_report(
1818 "gic-version=3 is not supported with kernel-irqchip=off");
1819 exit(1);
1820 case VIRT_GIC_VERSION_4:
1821 error_report(
1822 "gic-version=4 is not supported with kernel-irqchip=off");
1823 exit(1);
1824 }
1825 }
1826
1827 probe_bitmap = kvm_arm_vgic_probe();
1828 if (!probe_bitmap) {
1829 error_report("Unable to determine GIC version supported by host");
1830 exit(1);
1831 }
1832
1833 switch (vms->gic_version) {
1834 case VIRT_GIC_VERSION_HOST:
1835 case VIRT_GIC_VERSION_MAX:
1836 if (probe_bitmap & KVM_ARM_VGIC_V3) {
1837 vms->gic_version = VIRT_GIC_VERSION_3;
1838 } else {
1839 vms->gic_version = VIRT_GIC_VERSION_2;
1840 }
1841 return;
1842 case VIRT_GIC_VERSION_NOSEL:
1843 if ((probe_bitmap & KVM_ARM_VGIC_V2) && max_cpus <= GIC_NCPU) {
1844 vms->gic_version = VIRT_GIC_VERSION_2;
1845 } else if (probe_bitmap & KVM_ARM_VGIC_V3) {
1846 /*
1847 * in case the host does not support v2 in-kernel emulation or
1848 * the end-user requested more than 8 VCPUs we now default
1849 * to v3. In any case defaulting to v2 would be broken.
1850 */
1851 vms->gic_version = VIRT_GIC_VERSION_3;
1852 } else if (max_cpus > GIC_NCPU) {
1853 error_report("host only supports in-kernel GICv2 emulation "
1854 "but more than 8 vcpus are requested");
1855 exit(1);
1856 }
1857 break;
1858 case VIRT_GIC_VERSION_2:
1859 case VIRT_GIC_VERSION_3:
1860 break;
1861 case VIRT_GIC_VERSION_4:
1862 error_report("gic-version=4 is not supported with KVM");
1863 exit(1);
1864 }
1865
1866 /* Check chosen version is effectively supported by the host */
1867 if (vms->gic_version == VIRT_GIC_VERSION_2 &&
1868 !(probe_bitmap & KVM_ARM_VGIC_V2)) {
1869 error_report("host does not support in-kernel GICv2 emulation");
1870 exit(1);
1871 } else if (vms->gic_version == VIRT_GIC_VERSION_3 &&
1872 !(probe_bitmap & KVM_ARM_VGIC_V3)) {
1873 error_report("host does not support in-kernel GICv3 emulation");
1874 exit(1);
1875 }
1876 return;
1877 }
1878
1879 /* TCG mode */
1880 switch (vms->gic_version) {
1881 case VIRT_GIC_VERSION_NOSEL:
1882 vms->gic_version = VIRT_GIC_VERSION_2;
1883 break;
1884 case VIRT_GIC_VERSION_MAX:
1885 if (module_object_class_by_name("arm-gicv3")) {
1886 /* CONFIG_ARM_GICV3_TCG was set */
1887 if (vms->virt) {
1888 /* GICv4 only makes sense if CPU has EL2 */
1889 vms->gic_version = VIRT_GIC_VERSION_4;
1890 } else {
1891 vms->gic_version = VIRT_GIC_VERSION_3;
1892 }
1893 } else {
1894 vms->gic_version = VIRT_GIC_VERSION_2;
1895 }
1896 break;
1897 case VIRT_GIC_VERSION_HOST:
1898 error_report("gic-version=host requires KVM");
1899 exit(1);
1900 case VIRT_GIC_VERSION_4:
1901 if (!vms->virt) {
1902 error_report("gic-version=4 requires virtualization enabled");
1903 exit(1);
1904 }
1905 break;
1906 case VIRT_GIC_VERSION_2:
1907 case VIRT_GIC_VERSION_3:
1908 break;
1909 }
1910 }
1911
1912 /*
1913 * virt_cpu_post_init() must be called after the CPUs have
1914 * been realized and the GIC has been created.
1915 */
1916 static void virt_cpu_post_init(VirtMachineState *vms, MemoryRegion *sysmem)
1917 {
1918 int max_cpus = MACHINE(vms)->smp.max_cpus;
1919 bool aarch64, pmu, steal_time;
1920 CPUState *cpu;
1921
1922 aarch64 = object_property_get_bool(OBJECT(first_cpu), "aarch64", NULL);
1923 pmu = object_property_get_bool(OBJECT(first_cpu), "pmu", NULL);
1924 steal_time = object_property_get_bool(OBJECT(first_cpu),
1925 "kvm-steal-time", NULL);
1926
1927 if (kvm_enabled()) {
1928 hwaddr pvtime_reg_base = vms->memmap[VIRT_PVTIME].base;
1929 hwaddr pvtime_reg_size = vms->memmap[VIRT_PVTIME].size;
1930
1931 if (steal_time) {
1932 MemoryRegion *pvtime = g_new(MemoryRegion, 1);
1933 hwaddr pvtime_size = max_cpus * PVTIME_SIZE_PER_CPU;
1934
1935 /* The memory region size must be a multiple of host page size. */
1936 pvtime_size = REAL_HOST_PAGE_ALIGN(pvtime_size);
1937
1938 if (pvtime_size > pvtime_reg_size) {
1939 error_report("pvtime requires a %" HWADDR_PRId
1940 " byte memory region for %d CPUs,"
1941 " but only %" HWADDR_PRId " has been reserved",
1942 pvtime_size, max_cpus, pvtime_reg_size);
1943 exit(1);
1944 }
1945
1946 memory_region_init_ram(pvtime, NULL, "pvtime", pvtime_size, NULL);
1947 memory_region_add_subregion(sysmem, pvtime_reg_base, pvtime);
1948 }
1949
1950 CPU_FOREACH(cpu) {
1951 if (pmu) {
1952 assert(arm_feature(&ARM_CPU(cpu)->env, ARM_FEATURE_PMU));
1953 if (kvm_irqchip_in_kernel()) {
1954 kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ));
1955 }
1956 kvm_arm_pmu_init(cpu);
1957 }
1958 if (steal_time) {
1959 kvm_arm_pvtime_init(cpu, pvtime_reg_base +
1960 cpu->cpu_index * PVTIME_SIZE_PER_CPU);
1961 }
1962 }
1963 } else {
1964 if (aarch64 && vms->highmem) {
1965 int requested_pa_size = 64 - clz64(vms->highest_gpa);
1966 int pamax = arm_pamax(ARM_CPU(first_cpu));
1967
1968 if (pamax < requested_pa_size) {
1969 error_report("VCPU supports less PA bits (%d) than "
1970 "requested by the memory map (%d)",
1971 pamax, requested_pa_size);
1972 exit(1);
1973 }
1974 }
1975 }
1976 }
1977
1978 static void machvirt_init(MachineState *machine)
1979 {
1980 VirtMachineState *vms = VIRT_MACHINE(machine);
1981 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
1982 MachineClass *mc = MACHINE_GET_CLASS(machine);
1983 const CPUArchIdList *possible_cpus;
1984 MemoryRegion *sysmem = get_system_memory();
1985 MemoryRegion *secure_sysmem = NULL;
1986 MemoryRegion *tag_sysmem = NULL;
1987 MemoryRegion *secure_tag_sysmem = NULL;
1988 int n, virt_max_cpus;
1989 bool firmware_loaded;
1990 bool aarch64 = true;
1991 bool has_ged = !vmc->no_ged;
1992 unsigned int smp_cpus = machine->smp.cpus;
1993 unsigned int max_cpus = machine->smp.max_cpus;
1994
1995 if (!cpu_type_valid(machine->cpu_type)) {
1996 error_report("mach-virt: CPU type %s not supported", machine->cpu_type);
1997 exit(1);
1998 }
1999
2000 possible_cpus = mc->possible_cpu_arch_ids(machine);
2001
2002 /*
2003 * In accelerated mode, the memory map is computed earlier in kvm_type()
2004 * to create a VM with the right number of IPA bits.
2005 */
2006 if (!vms->memmap) {
2007 Object *cpuobj;
2008 ARMCPU *armcpu;
2009 int pa_bits;
2010
2011 /*
2012 * Instanciate a temporary CPU object to find out about what
2013 * we are about to deal with. Once this is done, get rid of
2014 * the object.
2015 */
2016 cpuobj = object_new(possible_cpus->cpus[0].type);
2017 armcpu = ARM_CPU(cpuobj);
2018
2019 pa_bits = arm_pamax(armcpu);
2020
2021 object_unref(cpuobj);
2022
2023 virt_set_memmap(vms, pa_bits);
2024 }
2025
2026 /* We can probe only here because during property set
2027 * KVM is not available yet
2028 */
2029 finalize_gic_version(vms);
2030
2031 if (vms->secure) {
2032 /*
2033 * The Secure view of the world is the same as the NonSecure,
2034 * but with a few extra devices. Create it as a container region
2035 * containing the system memory at low priority; any secure-only
2036 * devices go in at higher priority and take precedence.
2037 */
2038 secure_sysmem = g_new(MemoryRegion, 1);
2039 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
2040 UINT64_MAX);
2041 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
2042 }
2043
2044 firmware_loaded = virt_firmware_init(vms, sysmem,
2045 secure_sysmem ?: sysmem);
2046
2047 /* If we have an EL3 boot ROM then the assumption is that it will
2048 * implement PSCI itself, so disable QEMU's internal implementation
2049 * so it doesn't get in the way. Instead of starting secondary
2050 * CPUs in PSCI powerdown state we will start them all running and
2051 * let the boot ROM sort them out.
2052 * The usual case is that we do use QEMU's PSCI implementation;
2053 * if the guest has EL2 then we will use SMC as the conduit,
2054 * and otherwise we will use HVC (for backwards compatibility and
2055 * because if we're using KVM then we must use HVC).
2056 */
2057 if (vms->secure && firmware_loaded) {
2058 vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
2059 } else if (vms->virt) {
2060 vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
2061 } else {
2062 vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
2063 }
2064
2065 /*
2066 * The maximum number of CPUs depends on the GIC version, or on how
2067 * many redistributors we can fit into the memory map (which in turn
2068 * depends on whether this is a GICv3 or v4).
2069 */
2070 if (vms->gic_version == VIRT_GIC_VERSION_2) {
2071 virt_max_cpus = GIC_NCPU;
2072 } else {
2073 virt_max_cpus = virt_redist_capacity(vms, VIRT_GIC_REDIST) +
2074 virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2);
2075 }
2076
2077 if (max_cpus > virt_max_cpus) {
2078 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
2079 "supported by machine 'mach-virt' (%d)",
2080 max_cpus, virt_max_cpus);
2081 exit(1);
2082 }
2083
2084 if (vms->secure && (kvm_enabled() || hvf_enabled())) {
2085 error_report("mach-virt: %s does not support providing "
2086 "Security extensions (TrustZone) to the guest CPU",
2087 kvm_enabled() ? "KVM" : "HVF");
2088 exit(1);
2089 }
2090
2091 if (vms->virt && (kvm_enabled() || hvf_enabled())) {
2092 error_report("mach-virt: %s does not support providing "
2093 "Virtualization extensions to the guest CPU",
2094 kvm_enabled() ? "KVM" : "HVF");
2095 exit(1);
2096 }
2097
2098 if (vms->mte && (kvm_enabled() || hvf_enabled())) {
2099 error_report("mach-virt: %s does not support providing "
2100 "MTE to the guest CPU",
2101 kvm_enabled() ? "KVM" : "HVF");
2102 exit(1);
2103 }
2104
2105 create_fdt(vms);
2106
2107 assert(possible_cpus->len == max_cpus);
2108 for (n = 0; n < possible_cpus->len; n++) {
2109 Object *cpuobj;
2110 CPUState *cs;
2111
2112 if (n >= smp_cpus) {
2113 break;
2114 }
2115
2116 cpuobj = object_new(possible_cpus->cpus[n].type);
2117 object_property_set_int(cpuobj, "mp-affinity",
2118 possible_cpus->cpus[n].arch_id, NULL);
2119
2120 cs = CPU(cpuobj);
2121 cs->cpu_index = n;
2122
2123 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
2124 &error_fatal);
2125
2126 aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
2127
2128 if (!vms->secure) {
2129 object_property_set_bool(cpuobj, "has_el3", false, NULL);
2130 }
2131
2132 if (!vms->virt && object_property_find(cpuobj, "has_el2")) {
2133 object_property_set_bool(cpuobj, "has_el2", false, NULL);
2134 }
2135
2136 if (vmc->kvm_no_adjvtime &&
2137 object_property_find(cpuobj, "kvm-no-adjvtime")) {
2138 object_property_set_bool(cpuobj, "kvm-no-adjvtime", true, NULL);
2139 }
2140
2141 if (vmc->no_kvm_steal_time &&
2142 object_property_find(cpuobj, "kvm-steal-time")) {
2143 object_property_set_bool(cpuobj, "kvm-steal-time", false, NULL);
2144 }
2145
2146 if (vmc->no_pmu && object_property_find(cpuobj, "pmu")) {
2147 object_property_set_bool(cpuobj, "pmu", false, NULL);
2148 }
2149
2150 if (vmc->no_tcg_lpa2 && object_property_find(cpuobj, "lpa2")) {
2151 object_property_set_bool(cpuobj, "lpa2", false, NULL);
2152 }
2153
2154 if (object_property_find(cpuobj, "reset-cbar")) {
2155 object_property_set_int(cpuobj, "reset-cbar",
2156 vms->memmap[VIRT_CPUPERIPHS].base,
2157 &error_abort);
2158 }
2159
2160 object_property_set_link(cpuobj, "memory", OBJECT(sysmem),
2161 &error_abort);
2162 if (vms->secure) {
2163 object_property_set_link(cpuobj, "secure-memory",
2164 OBJECT(secure_sysmem), &error_abort);
2165 }
2166
2167 if (vms->mte) {
2168 /* Create the memory region only once, but link to all cpus. */
2169 if (!tag_sysmem) {
2170 /*
2171 * The property exists only if MemTag is supported.
2172 * If it is, we must allocate the ram to back that up.
2173 */
2174 if (!object_property_find(cpuobj, "tag-memory")) {
2175 error_report("MTE requested, but not supported "
2176 "by the guest CPU");
2177 exit(1);
2178 }
2179
2180 tag_sysmem = g_new(MemoryRegion, 1);
2181 memory_region_init(tag_sysmem, OBJECT(machine),
2182 "tag-memory", UINT64_MAX / 32);
2183
2184 if (vms->secure) {
2185 secure_tag_sysmem = g_new(MemoryRegion, 1);
2186 memory_region_init(secure_tag_sysmem, OBJECT(machine),
2187 "secure-tag-memory", UINT64_MAX / 32);
2188
2189 /* As with ram, secure-tag takes precedence over tag. */
2190 memory_region_add_subregion_overlap(secure_tag_sysmem, 0,
2191 tag_sysmem, -1);
2192 }
2193 }
2194
2195 object_property_set_link(cpuobj, "tag-memory", OBJECT(tag_sysmem),
2196 &error_abort);
2197 if (vms->secure) {
2198 object_property_set_link(cpuobj, "secure-tag-memory",
2199 OBJECT(secure_tag_sysmem),
2200 &error_abort);
2201 }
2202 }
2203
2204 qdev_realize(DEVICE(cpuobj), NULL, &error_fatal);
2205 object_unref(cpuobj);
2206 }
2207 fdt_add_timer_nodes(vms);
2208 fdt_add_cpu_nodes(vms);
2209
2210 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base,
2211 machine->ram);
2212 if (machine->device_memory) {
2213 memory_region_add_subregion(sysmem, machine->device_memory->base,
2214 &machine->device_memory->mr);
2215 }
2216
2217 virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem);
2218
2219 create_gic(vms, sysmem);
2220
2221 virt_cpu_post_init(vms, sysmem);
2222
2223 fdt_add_pmu_nodes(vms);
2224
2225 create_uart(vms, VIRT_UART, sysmem, serial_hd(0));
2226
2227 if (vms->secure) {
2228 create_secure_ram(vms, secure_sysmem, secure_tag_sysmem);
2229 create_uart(vms, VIRT_SECURE_UART, secure_sysmem, serial_hd(1));
2230 }
2231
2232 if (tag_sysmem) {
2233 create_tag_ram(tag_sysmem, vms->memmap[VIRT_MEM].base,
2234 machine->ram_size, "mach-virt.tag");
2235 }
2236
2237 vms->highmem_ecam &= (!firmware_loaded || aarch64);
2238
2239 create_rtc(vms);
2240
2241 create_pcie(vms);
2242
2243 if (has_ged && aarch64 && firmware_loaded && virt_is_acpi_enabled(vms)) {
2244 vms->acpi_dev = create_acpi_ged(vms);
2245 } else {
2246 create_gpio_devices(vms, VIRT_GPIO, sysmem);
2247 }
2248
2249 if (vms->secure && !vmc->no_secure_gpio) {
2250 create_gpio_devices(vms, VIRT_SECURE_GPIO, secure_sysmem);
2251 }
2252
2253 /* connect powerdown request */
2254 vms->powerdown_notifier.notify = virt_powerdown_req;
2255 qemu_register_powerdown_notifier(&vms->powerdown_notifier);
2256
2257 /* Create mmio transports, so the user can create virtio backends
2258 * (which will be automatically plugged in to the transports). If
2259 * no backend is created the transport will just sit harmlessly idle.
2260 */
2261 create_virtio_devices(vms);
2262
2263 vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
2264 rom_set_fw(vms->fw_cfg);
2265
2266 create_platform_bus(vms);
2267
2268 if (machine->nvdimms_state->is_enabled) {
2269 const struct AcpiGenericAddress arm_virt_nvdimm_acpi_dsmio = {
2270 .space_id = AML_AS_SYSTEM_MEMORY,
2271 .address = vms->memmap[VIRT_NVDIMM_ACPI].base,
2272 .bit_width = NVDIMM_ACPI_IO_LEN << 3
2273 };
2274
2275 nvdimm_init_acpi_state(machine->nvdimms_state, sysmem,
2276 arm_virt_nvdimm_acpi_dsmio,
2277 vms->fw_cfg, OBJECT(vms));
2278 }
2279
2280 vms->bootinfo.ram_size = machine->ram_size;
2281 vms->bootinfo.board_id = -1;
2282 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
2283 vms->bootinfo.get_dtb = machvirt_dtb;
2284 vms->bootinfo.skip_dtb_autoload = true;
2285 vms->bootinfo.firmware_loaded = firmware_loaded;
2286 vms->bootinfo.psci_conduit = vms->psci_conduit;
2287 arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo);
2288
2289 vms->machine_done.notify = virt_machine_done;
2290 qemu_add_machine_init_done_notifier(&vms->machine_done);
2291 }
2292
2293 static bool virt_get_secure(Object *obj, Error **errp)
2294 {
2295 VirtMachineState *vms = VIRT_MACHINE(obj);
2296
2297 return vms->secure;
2298 }
2299
2300 static void virt_set_secure(Object *obj, bool value, Error **errp)
2301 {
2302 VirtMachineState *vms = VIRT_MACHINE(obj);
2303
2304 vms->secure = value;
2305 }
2306
2307 static bool virt_get_virt(Object *obj, Error **errp)
2308 {
2309 VirtMachineState *vms = VIRT_MACHINE(obj);
2310
2311 return vms->virt;
2312 }
2313
2314 static void virt_set_virt(Object *obj, bool value, Error **errp)
2315 {
2316 VirtMachineState *vms = VIRT_MACHINE(obj);
2317
2318 vms->virt = value;
2319 }
2320
2321 static bool virt_get_highmem(Object *obj, Error **errp)
2322 {
2323 VirtMachineState *vms = VIRT_MACHINE(obj);
2324
2325 return vms->highmem;
2326 }
2327
2328 static void virt_set_highmem(Object *obj, bool value, Error **errp)
2329 {
2330 VirtMachineState *vms = VIRT_MACHINE(obj);
2331
2332 vms->highmem = value;
2333 }
2334
2335 static bool virt_get_its(Object *obj, Error **errp)
2336 {
2337 VirtMachineState *vms = VIRT_MACHINE(obj);
2338
2339 return vms->its;
2340 }
2341
2342 static void virt_set_its(Object *obj, bool value, Error **errp)
2343 {
2344 VirtMachineState *vms = VIRT_MACHINE(obj);
2345
2346 vms->its = value;
2347 }
2348
2349 static bool virt_get_dtb_randomness(Object *obj, Error **errp)
2350 {
2351 VirtMachineState *vms = VIRT_MACHINE(obj);
2352
2353 return vms->dtb_randomness;
2354 }
2355
2356 static void virt_set_dtb_randomness(Object *obj, bool value, Error **errp)
2357 {
2358 VirtMachineState *vms = VIRT_MACHINE(obj);
2359
2360 vms->dtb_randomness = value;
2361 }
2362
2363 static char *virt_get_oem_id(Object *obj, Error **errp)
2364 {
2365 VirtMachineState *vms = VIRT_MACHINE(obj);
2366
2367 return g_strdup(vms->oem_id);
2368 }
2369
2370 static void virt_set_oem_id(Object *obj, const char *value, Error **errp)
2371 {
2372 VirtMachineState *vms = VIRT_MACHINE(obj);
2373 size_t len = strlen(value);
2374
2375 if (len > 6) {
2376 error_setg(errp,
2377 "User specified oem-id value is bigger than 6 bytes in size");
2378 return;
2379 }
2380
2381 strncpy(vms->oem_id, value, 6);
2382 }
2383
2384 static char *virt_get_oem_table_id(Object *obj, Error **errp)
2385 {
2386 VirtMachineState *vms = VIRT_MACHINE(obj);
2387
2388 return g_strdup(vms->oem_table_id);
2389 }
2390
2391 static void virt_set_oem_table_id(Object *obj, const char *value,
2392 Error **errp)
2393 {
2394 VirtMachineState *vms = VIRT_MACHINE(obj);
2395 size_t len = strlen(value);
2396
2397 if (len > 8) {
2398 error_setg(errp,
2399 "User specified oem-table-id value is bigger than 8 bytes in size");
2400 return;
2401 }
2402 strncpy(vms->oem_table_id, value, 8);
2403 }
2404
2405
2406 bool virt_is_acpi_enabled(VirtMachineState *vms)
2407 {
2408 if (vms->acpi == ON_OFF_AUTO_OFF) {
2409 return false;
2410 }
2411 return true;
2412 }
2413
2414 static void virt_get_acpi(Object *obj, Visitor *v, const char *name,
2415 void *opaque, Error **errp)
2416 {
2417 VirtMachineState *vms = VIRT_MACHINE(obj);
2418 OnOffAuto acpi = vms->acpi;
2419
2420 visit_type_OnOffAuto(v, name, &acpi, errp);
2421 }
2422
2423 static void virt_set_acpi(Object *obj, Visitor *v, const char *name,
2424 void *opaque, Error **errp)
2425 {
2426 VirtMachineState *vms = VIRT_MACHINE(obj);
2427
2428 visit_type_OnOffAuto(v, name, &vms->acpi, errp);
2429 }
2430
2431 static bool virt_get_ras(Object *obj, Error **errp)
2432 {
2433 VirtMachineState *vms = VIRT_MACHINE(obj);
2434
2435 return vms->ras;
2436 }
2437
2438 static void virt_set_ras(Object *obj, bool value, Error **errp)
2439 {
2440 VirtMachineState *vms = VIRT_MACHINE(obj);
2441
2442 vms->ras = value;
2443 }
2444
2445 static bool virt_get_mte(Object *obj, Error **errp)
2446 {
2447 VirtMachineState *vms = VIRT_MACHINE(obj);
2448
2449 return vms->mte;
2450 }
2451
2452 static void virt_set_mte(Object *obj, bool value, Error **errp)
2453 {
2454 VirtMachineState *vms = VIRT_MACHINE(obj);
2455
2456 vms->mte = value;
2457 }
2458
2459 static char *virt_get_gic_version(Object *obj, Error **errp)
2460 {
2461 VirtMachineState *vms = VIRT_MACHINE(obj);
2462 const char *val;
2463
2464 switch (vms->gic_version) {
2465 case VIRT_GIC_VERSION_4:
2466 val = "4";
2467 break;
2468 case VIRT_GIC_VERSION_3:
2469 val = "3";
2470 break;
2471 default:
2472 val = "2";
2473 break;
2474 }
2475 return g_strdup(val);
2476 }
2477
2478 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
2479 {
2480 VirtMachineState *vms = VIRT_MACHINE(obj);
2481
2482 if (!strcmp(value, "4")) {
2483 vms->gic_version = VIRT_GIC_VERSION_4;
2484 } else if (!strcmp(value, "3")) {
2485 vms->gic_version = VIRT_GIC_VERSION_3;
2486 } else if (!strcmp(value, "2")) {
2487 vms->gic_version = VIRT_GIC_VERSION_2;
2488 } else if (!strcmp(value, "host")) {
2489 vms->gic_version = VIRT_GIC_VERSION_HOST; /* Will probe later */
2490 } else if (!strcmp(value, "max")) {
2491 vms->gic_version = VIRT_GIC_VERSION_MAX; /* Will probe later */
2492 } else {
2493 error_setg(errp, "Invalid gic-version value");
2494 error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
2495 }
2496 }
2497
2498 static char *virt_get_iommu(Object *obj, Error **errp)
2499 {
2500 VirtMachineState *vms = VIRT_MACHINE(obj);
2501
2502 switch (vms->iommu) {
2503 case VIRT_IOMMU_NONE:
2504 return g_strdup("none");
2505 case VIRT_IOMMU_SMMUV3:
2506 return g_strdup("smmuv3");
2507 default:
2508 g_assert_not_reached();
2509 }
2510 }
2511
2512 static void virt_set_iommu(Object *obj, const char *value, Error **errp)
2513 {
2514 VirtMachineState *vms = VIRT_MACHINE(obj);
2515
2516 if (!strcmp(value, "smmuv3")) {
2517 vms->iommu = VIRT_IOMMU_SMMUV3;
2518 } else if (!strcmp(value, "none")) {
2519 vms->iommu = VIRT_IOMMU_NONE;
2520 } else {
2521 error_setg(errp, "Invalid iommu value");
2522 error_append_hint(errp, "Valid values are none, smmuv3.\n");
2523 }
2524 }
2525
2526 static bool virt_get_default_bus_bypass_iommu(Object *obj, Error **errp)
2527 {
2528 VirtMachineState *vms = VIRT_MACHINE(obj);
2529
2530 return vms->default_bus_bypass_iommu;
2531 }
2532
2533 static void virt_set_default_bus_bypass_iommu(Object *obj, bool value,
2534 Error **errp)
2535 {
2536 VirtMachineState *vms = VIRT_MACHINE(obj);
2537
2538 vms->default_bus_bypass_iommu = value;
2539 }
2540
2541 static CpuInstanceProperties
2542 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2543 {
2544 MachineClass *mc = MACHINE_GET_CLASS(ms);
2545 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2546
2547 assert(cpu_index < possible_cpus->len);
2548 return possible_cpus->cpus[cpu_index].props;
2549 }
2550
2551 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
2552 {
2553 int64_t socket_id = ms->possible_cpus->cpus[idx].props.socket_id;
2554
2555 return socket_id % ms->numa_state->num_nodes;
2556 }
2557
2558 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
2559 {
2560 int n;
2561 unsigned int max_cpus = ms->smp.max_cpus;
2562 VirtMachineState *vms = VIRT_MACHINE(ms);
2563 MachineClass *mc = MACHINE_GET_CLASS(vms);
2564
2565 if (ms->possible_cpus) {
2566 assert(ms->possible_cpus->len == max_cpus);
2567 return ms->possible_cpus;
2568 }
2569
2570 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2571 sizeof(CPUArchId) * max_cpus);
2572 ms->possible_cpus->len = max_cpus;
2573 for (n = 0; n < ms->possible_cpus->len; n++) {
2574 ms->possible_cpus->cpus[n].type = ms->cpu_type;
2575 ms->possible_cpus->cpus[n].arch_id =
2576 virt_cpu_mp_affinity(vms, n);
2577
2578 assert(!mc->smp_props.dies_supported);
2579 ms->possible_cpus->cpus[n].props.has_socket_id = true;
2580 ms->possible_cpus->cpus[n].props.socket_id =
2581 n / (ms->smp.clusters * ms->smp.cores * ms->smp.threads);
2582 ms->possible_cpus->cpus[n].props.has_cluster_id = true;
2583 ms->possible_cpus->cpus[n].props.cluster_id =
2584 (n / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters;
2585 ms->possible_cpus->cpus[n].props.has_core_id = true;
2586 ms->possible_cpus->cpus[n].props.core_id =
2587 (n / ms->smp.threads) % ms->smp.cores;
2588 ms->possible_cpus->cpus[n].props.has_thread_id = true;
2589 ms->possible_cpus->cpus[n].props.thread_id =
2590 n % ms->smp.threads;
2591 }
2592 return ms->possible_cpus;
2593 }
2594
2595 static void virt_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2596 Error **errp)
2597 {
2598 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2599 const MachineState *ms = MACHINE(hotplug_dev);
2600 const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2601
2602 if (!vms->acpi_dev) {
2603 error_setg(errp,
2604 "memory hotplug is not enabled: missing acpi-ged device");
2605 return;
2606 }
2607
2608 if (vms->mte) {
2609 error_setg(errp, "memory hotplug is not enabled: MTE is enabled");
2610 return;
2611 }
2612
2613 if (is_nvdimm && !ms->nvdimms_state->is_enabled) {
2614 error_setg(errp, "nvdimm is not enabled: add 'nvdimm=on' to '-M'");
2615 return;
2616 }
2617
2618 pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), NULL, errp);
2619 }
2620
2621 static void virt_memory_plug(HotplugHandler *hotplug_dev,
2622 DeviceState *dev, Error **errp)
2623 {
2624 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2625 MachineState *ms = MACHINE(hotplug_dev);
2626 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2627
2628 pc_dimm_plug(PC_DIMM(dev), MACHINE(vms));
2629
2630 if (is_nvdimm) {
2631 nvdimm_plug(ms->nvdimms_state);
2632 }
2633
2634 hotplug_handler_plug(HOTPLUG_HANDLER(vms->acpi_dev),
2635 dev, &error_abort);
2636 }
2637
2638 static void virt_virtio_md_pci_pre_plug(HotplugHandler *hotplug_dev,
2639 DeviceState *dev, Error **errp)
2640 {
2641 HotplugHandler *hotplug_dev2 = qdev_get_bus_hotplug_handler(dev);
2642 Error *local_err = NULL;
2643
2644 if (!hotplug_dev2 && dev->hotplugged) {
2645 /*
2646 * Without a bus hotplug handler, we cannot control the plug/unplug
2647 * order. We should never reach this point when hotplugging on ARM.
2648 * However, it's nice to add a safety net, similar to what we have
2649 * on x86.
2650 */
2651 error_setg(errp, "hotplug of virtio based memory devices not supported"
2652 " on this bus.");
2653 return;
2654 }
2655 /*
2656 * First, see if we can plug this memory device at all. If that
2657 * succeeds, branch of to the actual hotplug handler.
2658 */
2659 memory_device_pre_plug(MEMORY_DEVICE(dev), MACHINE(hotplug_dev), NULL,
2660 &local_err);
2661 if (!local_err && hotplug_dev2) {
2662 hotplug_handler_pre_plug(hotplug_dev2, dev, &local_err);
2663 }
2664 error_propagate(errp, local_err);
2665 }
2666
2667 static void virt_virtio_md_pci_plug(HotplugHandler *hotplug_dev,
2668 DeviceState *dev, Error **errp)
2669 {
2670 HotplugHandler *hotplug_dev2 = qdev_get_bus_hotplug_handler(dev);
2671 Error *local_err = NULL;
2672
2673 /*
2674 * Plug the memory device first and then branch off to the actual
2675 * hotplug handler. If that one fails, we can easily undo the memory
2676 * device bits.
2677 */
2678 memory_device_plug(MEMORY_DEVICE(dev), MACHINE(hotplug_dev));
2679 if (hotplug_dev2) {
2680 hotplug_handler_plug(hotplug_dev2, dev, &local_err);
2681 if (local_err) {
2682 memory_device_unplug(MEMORY_DEVICE(dev), MACHINE(hotplug_dev));
2683 }
2684 }
2685 error_propagate(errp, local_err);
2686 }
2687
2688 static void virt_virtio_md_pci_unplug_request(HotplugHandler *hotplug_dev,
2689 DeviceState *dev, Error **errp)
2690 {
2691 /* We don't support hot unplug of virtio based memory devices */
2692 error_setg(errp, "virtio based memory devices cannot be unplugged.");
2693 }
2694
2695
2696 static void virt_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2697 DeviceState *dev, Error **errp)
2698 {
2699 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2700
2701 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2702 virt_memory_pre_plug(hotplug_dev, dev, errp);
2703 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MEM_PCI)) {
2704 virt_virtio_md_pci_pre_plug(hotplug_dev, dev, errp);
2705 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2706 hwaddr db_start = 0, db_end = 0;
2707 char *resv_prop_str;
2708
2709 if (vms->iommu != VIRT_IOMMU_NONE) {
2710 error_setg(errp, "virt machine does not support multiple IOMMUs");
2711 return;
2712 }
2713
2714 switch (vms->msi_controller) {
2715 case VIRT_MSI_CTRL_NONE:
2716 return;
2717 case VIRT_MSI_CTRL_ITS:
2718 /* GITS_TRANSLATER page */
2719 db_start = base_memmap[VIRT_GIC_ITS].base + 0x10000;
2720 db_end = base_memmap[VIRT_GIC_ITS].base +
2721 base_memmap[VIRT_GIC_ITS].size - 1;
2722 break;
2723 case VIRT_MSI_CTRL_GICV2M:
2724 /* MSI_SETSPI_NS page */
2725 db_start = base_memmap[VIRT_GIC_V2M].base;
2726 db_end = db_start + base_memmap[VIRT_GIC_V2M].size - 1;
2727 break;
2728 }
2729 resv_prop_str = g_strdup_printf("0x%"PRIx64":0x%"PRIx64":%u",
2730 db_start, db_end,
2731 VIRTIO_IOMMU_RESV_MEM_T_MSI);
2732
2733 object_property_set_uint(OBJECT(dev), "len-reserved-regions", 1, errp);
2734 object_property_set_str(OBJECT(dev), "reserved-regions[0]",
2735 resv_prop_str, errp);
2736 g_free(resv_prop_str);
2737 }
2738 }
2739
2740 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2741 DeviceState *dev, Error **errp)
2742 {
2743 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2744
2745 if (vms->platform_bus_dev) {
2746 MachineClass *mc = MACHINE_GET_CLASS(vms);
2747
2748 if (device_is_dynamic_sysbus(mc, dev)) {
2749 platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
2750 SYS_BUS_DEVICE(dev));
2751 }
2752 }
2753 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2754 virt_memory_plug(hotplug_dev, dev, errp);
2755 }
2756
2757 if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MEM_PCI)) {
2758 virt_virtio_md_pci_plug(hotplug_dev, dev, errp);
2759 }
2760
2761 if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2762 PCIDevice *pdev = PCI_DEVICE(dev);
2763
2764 vms->iommu = VIRT_IOMMU_VIRTIO;
2765 vms->virtio_iommu_bdf = pci_get_bdf(pdev);
2766 create_virtio_iommu_dt_bindings(vms);
2767 }
2768 }
2769
2770 static void virt_dimm_unplug_request(HotplugHandler *hotplug_dev,
2771 DeviceState *dev, Error **errp)
2772 {
2773 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2774 Error *local_err = NULL;
2775
2776 if (!vms->acpi_dev) {
2777 error_setg(&local_err,
2778 "memory hotplug is not enabled: missing acpi-ged device");
2779 goto out;
2780 }
2781
2782 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
2783 error_setg(&local_err,
2784 "nvdimm device hot unplug is not supported yet.");
2785 goto out;
2786 }
2787
2788 hotplug_handler_unplug_request(HOTPLUG_HANDLER(vms->acpi_dev), dev,
2789 &local_err);
2790 out:
2791 error_propagate(errp, local_err);
2792 }
2793
2794 static void virt_dimm_unplug(HotplugHandler *hotplug_dev,
2795 DeviceState *dev, Error **errp)
2796 {
2797 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2798 Error *local_err = NULL;
2799
2800 hotplug_handler_unplug(HOTPLUG_HANDLER(vms->acpi_dev), dev, &local_err);
2801 if (local_err) {
2802 goto out;
2803 }
2804
2805 pc_dimm_unplug(PC_DIMM(dev), MACHINE(vms));
2806 qdev_unrealize(dev);
2807
2808 out:
2809 error_propagate(errp, local_err);
2810 }
2811
2812 static void virt_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2813 DeviceState *dev, Error **errp)
2814 {
2815 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2816 virt_dimm_unplug_request(hotplug_dev, dev, errp);
2817 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MEM_PCI)) {
2818 virt_virtio_md_pci_unplug_request(hotplug_dev, dev, errp);
2819 } else {
2820 error_setg(errp, "device unplug request for unsupported device"
2821 " type: %s", object_get_typename(OBJECT(dev)));
2822 }
2823 }
2824
2825 static void virt_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2826 DeviceState *dev, Error **errp)
2827 {
2828 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2829 virt_dimm_unplug(hotplug_dev, dev, errp);
2830 } else {
2831 error_setg(errp, "virt: device unplug for unsupported device"
2832 " type: %s", object_get_typename(OBJECT(dev)));
2833 }
2834 }
2835
2836 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
2837 DeviceState *dev)
2838 {
2839 MachineClass *mc = MACHINE_GET_CLASS(machine);
2840
2841 if (device_is_dynamic_sysbus(mc, dev) ||
2842 object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2843 object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MEM_PCI) ||
2844 object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2845 return HOTPLUG_HANDLER(machine);
2846 }
2847 return NULL;
2848 }
2849
2850 /*
2851 * for arm64 kvm_type [7-0] encodes the requested number of bits
2852 * in the IPA address space
2853 */
2854 static int virt_kvm_type(MachineState *ms, const char *type_str)
2855 {
2856 VirtMachineState *vms = VIRT_MACHINE(ms);
2857 int max_vm_pa_size, requested_pa_size;
2858 bool fixed_ipa;
2859
2860 max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa);
2861
2862 /* we freeze the memory map to compute the highest gpa */
2863 virt_set_memmap(vms, max_vm_pa_size);
2864
2865 requested_pa_size = 64 - clz64(vms->highest_gpa);
2866
2867 /*
2868 * KVM requires the IPA size to be at least 32 bits.
2869 */
2870 if (requested_pa_size < 32) {
2871 requested_pa_size = 32;
2872 }
2873
2874 if (requested_pa_size > max_vm_pa_size) {
2875 error_report("-m and ,maxmem option values "
2876 "require an IPA range (%d bits) larger than "
2877 "the one supported by the host (%d bits)",
2878 requested_pa_size, max_vm_pa_size);
2879 exit(1);
2880 }
2881 /*
2882 * We return the requested PA log size, unless KVM only supports
2883 * the implicit legacy 40b IPA setting, in which case the kvm_type
2884 * must be 0.
2885 */
2886 return fixed_ipa ? 0 : requested_pa_size;
2887 }
2888
2889 static void virt_machine_class_init(ObjectClass *oc, void *data)
2890 {
2891 MachineClass *mc = MACHINE_CLASS(oc);
2892 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2893
2894 mc->init = machvirt_init;
2895 /* Start with max_cpus set to 512, which is the maximum supported by KVM.
2896 * The value may be reduced later when we have more information about the
2897 * configuration of the particular instance.
2898 */
2899 mc->max_cpus = 512;
2900 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
2901 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
2902 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
2903 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM);
2904 #ifdef CONFIG_TPM
2905 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_TPM_TIS_SYSBUS);
2906 #endif
2907 mc->block_default_type = IF_VIRTIO;
2908 mc->no_cdrom = 1;
2909 mc->pci_allow_0_address = true;
2910 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
2911 mc->minimum_page_bits = 12;
2912 mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
2913 mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
2914 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
2915 mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
2916 mc->kvm_type = virt_kvm_type;
2917 assert(!mc->get_hotplug_handler);
2918 mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
2919 hc->pre_plug = virt_machine_device_pre_plug_cb;
2920 hc->plug = virt_machine_device_plug_cb;
2921 hc->unplug_request = virt_machine_device_unplug_request_cb;
2922 hc->unplug = virt_machine_device_unplug_cb;
2923 mc->nvdimm_supported = true;
2924 mc->smp_props.clusters_supported = true;
2925 mc->auto_enable_numa_with_memhp = true;
2926 mc->auto_enable_numa_with_memdev = true;
2927 mc->default_ram_id = "mach-virt.ram";
2928
2929 object_class_property_add(oc, "acpi", "OnOffAuto",
2930 virt_get_acpi, virt_set_acpi,
2931 NULL, NULL);
2932 object_class_property_set_description(oc, "acpi",
2933 "Enable ACPI");
2934 object_class_property_add_bool(oc, "secure", virt_get_secure,
2935 virt_set_secure);
2936 object_class_property_set_description(oc, "secure",
2937 "Set on/off to enable/disable the ARM "
2938 "Security Extensions (TrustZone)");
2939
2940 object_class_property_add_bool(oc, "virtualization", virt_get_virt,
2941 virt_set_virt);
2942 object_class_property_set_description(oc, "virtualization",
2943 "Set on/off to enable/disable emulating a "
2944 "guest CPU which implements the ARM "
2945 "Virtualization Extensions");
2946
2947 object_class_property_add_bool(oc, "highmem", virt_get_highmem,
2948 virt_set_highmem);
2949 object_class_property_set_description(oc, "highmem",
2950 "Set on/off to enable/disable using "
2951 "physical address space above 32 bits");
2952
2953 object_class_property_add_str(oc, "gic-version", virt_get_gic_version,
2954 virt_set_gic_version);
2955 object_class_property_set_description(oc, "gic-version",
2956 "Set GIC version. "
2957 "Valid values are 2, 3, 4, host and max");
2958
2959 object_class_property_add_str(oc, "iommu", virt_get_iommu, virt_set_iommu);
2960 object_class_property_set_description(oc, "iommu",
2961 "Set the IOMMU type. "
2962 "Valid values are none and smmuv3");
2963
2964 object_class_property_add_bool(oc, "default-bus-bypass-iommu",
2965 virt_get_default_bus_bypass_iommu,
2966 virt_set_default_bus_bypass_iommu);
2967 object_class_property_set_description(oc, "default-bus-bypass-iommu",
2968 "Set on/off to enable/disable "
2969 "bypass_iommu for default root bus");
2970
2971 object_class_property_add_bool(oc, "ras", virt_get_ras,
2972 virt_set_ras);
2973 object_class_property_set_description(oc, "ras",
2974 "Set on/off to enable/disable reporting host memory errors "
2975 "to a KVM guest using ACPI and guest external abort exceptions");
2976
2977 object_class_property_add_bool(oc, "mte", virt_get_mte, virt_set_mte);
2978 object_class_property_set_description(oc, "mte",
2979 "Set on/off to enable/disable emulating a "
2980 "guest CPU which implements the ARM "
2981 "Memory Tagging Extension");
2982
2983 object_class_property_add_bool(oc, "its", virt_get_its,
2984 virt_set_its);
2985 object_class_property_set_description(oc, "its",
2986 "Set on/off to enable/disable "
2987 "ITS instantiation");
2988
2989 object_class_property_add_bool(oc, "dtb-randomness",
2990 virt_get_dtb_randomness,
2991 virt_set_dtb_randomness);
2992 object_class_property_set_description(oc, "dtb-randomness",
2993 "Set off to disable passing random or "
2994 "non-deterministic dtb nodes to guest");
2995
2996 object_class_property_add_bool(oc, "dtb-kaslr-seed",
2997 virt_get_dtb_randomness,
2998 virt_set_dtb_randomness);
2999 object_class_property_set_description(oc, "dtb-kaslr-seed",
3000 "Deprecated synonym of dtb-randomness");
3001
3002 object_class_property_add_str(oc, "x-oem-id",
3003 virt_get_oem_id,
3004 virt_set_oem_id);
3005 object_class_property_set_description(oc, "x-oem-id",
3006 "Override the default value of field OEMID "
3007 "in ACPI table header."
3008 "The string may be up to 6 bytes in size");
3009
3010
3011 object_class_property_add_str(oc, "x-oem-table-id",
3012 virt_get_oem_table_id,
3013 virt_set_oem_table_id);
3014 object_class_property_set_description(oc, "x-oem-table-id",
3015 "Override the default value of field OEM Table ID "
3016 "in ACPI table header."
3017 "The string may be up to 8 bytes in size");
3018
3019 }
3020
3021 static void virt_instance_init(Object *obj)
3022 {
3023 VirtMachineState *vms = VIRT_MACHINE(obj);
3024 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
3025
3026 /* EL3 is disabled by default on virt: this makes us consistent
3027 * between KVM and TCG for this board, and it also allows us to
3028 * boot UEFI blobs which assume no TrustZone support.
3029 */
3030 vms->secure = false;
3031
3032 /* EL2 is also disabled by default, for similar reasons */
3033 vms->virt = false;
3034
3035 /* High memory is enabled by default */
3036 vms->highmem = true;
3037 vms->gic_version = VIRT_GIC_VERSION_NOSEL;
3038
3039 vms->highmem_ecam = !vmc->no_highmem_ecam;
3040 vms->highmem_mmio = true;
3041 vms->highmem_redists = true;
3042
3043 if (vmc->no_its) {
3044 vms->its = false;
3045 } else {
3046 /* Default allows ITS instantiation */
3047 vms->its = true;
3048
3049 if (vmc->no_tcg_its) {
3050 vms->tcg_its = false;
3051 } else {
3052 vms->tcg_its = true;
3053 }
3054 }
3055
3056 /* Default disallows iommu instantiation */
3057 vms->iommu = VIRT_IOMMU_NONE;
3058
3059 /* The default root bus is attached to iommu by default */
3060 vms->default_bus_bypass_iommu = false;
3061
3062 /* Default disallows RAS instantiation */
3063 vms->ras = false;
3064
3065 /* MTE is disabled by default. */
3066 vms->mte = false;
3067
3068 /* Supply kaslr-seed and rng-seed by default */
3069 vms->dtb_randomness = true;
3070
3071 vms->irqmap = a15irqmap;
3072
3073 virt_flash_create(vms);
3074
3075 vms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6);
3076 vms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8);
3077 }
3078
3079 static const TypeInfo virt_machine_info = {
3080 .name = TYPE_VIRT_MACHINE,
3081 .parent = TYPE_MACHINE,
3082 .abstract = true,
3083 .instance_size = sizeof(VirtMachineState),
3084 .class_size = sizeof(VirtMachineClass),
3085 .class_init = virt_machine_class_init,
3086 .instance_init = virt_instance_init,
3087 .interfaces = (InterfaceInfo[]) {
3088 { TYPE_HOTPLUG_HANDLER },
3089 { }
3090 },
3091 };
3092
3093 static void machvirt_machine_init(void)
3094 {
3095 type_register_static(&virt_machine_info);
3096 }
3097 type_init(machvirt_machine_init);
3098
3099 static void virt_machine_7_2_options(MachineClass *mc)
3100 {
3101 }
3102 DEFINE_VIRT_MACHINE_AS_LATEST(7, 2)
3103
3104 static void virt_machine_7_1_options(MachineClass *mc)
3105 {
3106 virt_machine_7_2_options(mc);
3107 compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len);
3108 }
3109 DEFINE_VIRT_MACHINE(7, 1)
3110
3111 static void virt_machine_7_0_options(MachineClass *mc)
3112 {
3113 virt_machine_7_1_options(mc);
3114 compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len);
3115 }
3116 DEFINE_VIRT_MACHINE(7, 0)
3117
3118 static void virt_machine_6_2_options(MachineClass *mc)
3119 {
3120 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3121
3122 virt_machine_7_0_options(mc);
3123 compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len);
3124 vmc->no_tcg_lpa2 = true;
3125 }
3126 DEFINE_VIRT_MACHINE(6, 2)
3127
3128 static void virt_machine_6_1_options(MachineClass *mc)
3129 {
3130 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3131
3132 virt_machine_6_2_options(mc);
3133 compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len);
3134 mc->smp_props.prefer_sockets = true;
3135 vmc->no_cpu_topology = true;
3136
3137 /* qemu ITS was introduced with 6.2 */
3138 vmc->no_tcg_its = true;
3139 }
3140 DEFINE_VIRT_MACHINE(6, 1)
3141
3142 static void virt_machine_6_0_options(MachineClass *mc)
3143 {
3144 virt_machine_6_1_options(mc);
3145 compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len);
3146 }
3147 DEFINE_VIRT_MACHINE(6, 0)
3148
3149 static void virt_machine_5_2_options(MachineClass *mc)
3150 {
3151 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3152
3153 virt_machine_6_0_options(mc);
3154 compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
3155 vmc->no_secure_gpio = true;
3156 }
3157 DEFINE_VIRT_MACHINE(5, 2)
3158
3159 static void virt_machine_5_1_options(MachineClass *mc)
3160 {
3161 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3162
3163 virt_machine_5_2_options(mc);
3164 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
3165 vmc->no_kvm_steal_time = true;
3166 }
3167 DEFINE_VIRT_MACHINE(5, 1)
3168
3169 static void virt_machine_5_0_options(MachineClass *mc)
3170 {
3171 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3172
3173 virt_machine_5_1_options(mc);
3174 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
3175 mc->numa_mem_supported = true;
3176 vmc->acpi_expose_flash = true;
3177 mc->auto_enable_numa_with_memdev = false;
3178 }
3179 DEFINE_VIRT_MACHINE(5, 0)
3180
3181 static void virt_machine_4_2_options(MachineClass *mc)
3182 {
3183 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3184
3185 virt_machine_5_0_options(mc);
3186 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
3187 vmc->kvm_no_adjvtime = true;
3188 }
3189 DEFINE_VIRT_MACHINE(4, 2)
3190
3191 static void virt_machine_4_1_options(MachineClass *mc)
3192 {
3193 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3194
3195 virt_machine_4_2_options(mc);
3196 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
3197 vmc->no_ged = true;
3198 mc->auto_enable_numa_with_memhp = false;
3199 }
3200 DEFINE_VIRT_MACHINE(4, 1)
3201
3202 static void virt_machine_4_0_options(MachineClass *mc)
3203 {
3204 virt_machine_4_1_options(mc);
3205 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
3206 }
3207 DEFINE_VIRT_MACHINE(4, 0)
3208
3209 static void virt_machine_3_1_options(MachineClass *mc)
3210 {
3211 virt_machine_4_0_options(mc);
3212 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
3213 }
3214 DEFINE_VIRT_MACHINE(3, 1)
3215
3216 static void virt_machine_3_0_options(MachineClass *mc)
3217 {
3218 virt_machine_3_1_options(mc);
3219 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
3220 }
3221 DEFINE_VIRT_MACHINE(3, 0)
3222
3223 static void virt_machine_2_12_options(MachineClass *mc)
3224 {
3225 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3226
3227 virt_machine_3_0_options(mc);
3228 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
3229 vmc->no_highmem_ecam = true;
3230 mc->max_cpus = 255;
3231 }
3232 DEFINE_VIRT_MACHINE(2, 12)
3233
3234 static void virt_machine_2_11_options(MachineClass *mc)
3235 {
3236 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3237
3238 virt_machine_2_12_options(mc);
3239 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
3240 vmc->smbios_old_sys_ver = true;
3241 }
3242 DEFINE_VIRT_MACHINE(2, 11)
3243
3244 static void virt_machine_2_10_options(MachineClass *mc)
3245 {
3246 virt_machine_2_11_options(mc);
3247 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
3248 /* before 2.11 we never faulted accesses to bad addresses */
3249 mc->ignore_memory_transaction_failures = true;
3250 }
3251 DEFINE_VIRT_MACHINE(2, 10)
3252
3253 static void virt_machine_2_9_options(MachineClass *mc)
3254 {
3255 virt_machine_2_10_options(mc);
3256 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
3257 }
3258 DEFINE_VIRT_MACHINE(2, 9)
3259
3260 static void virt_machine_2_8_options(MachineClass *mc)
3261 {
3262 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3263
3264 virt_machine_2_9_options(mc);
3265 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
3266 /* For 2.8 and earlier we falsely claimed in the DT that
3267 * our timers were edge-triggered, not level-triggered.
3268 */
3269 vmc->claim_edge_triggered_timers = true;
3270 }
3271 DEFINE_VIRT_MACHINE(2, 8)
3272
3273 static void virt_machine_2_7_options(MachineClass *mc)
3274 {
3275 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3276
3277 virt_machine_2_8_options(mc);
3278 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
3279 /* ITS was introduced with 2.8 */
3280 vmc->no_its = true;
3281 /* Stick with 1K pages for migration compatibility */
3282 mc->minimum_page_bits = 0;
3283 }
3284 DEFINE_VIRT_MACHINE(2, 7)
3285
3286 static void virt_machine_2_6_options(MachineClass *mc)
3287 {
3288 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3289
3290 virt_machine_2_7_options(mc);
3291 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
3292 vmc->disallow_affinity_adjustment = true;
3293 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
3294 vmc->no_pmu = true;
3295 }
3296 DEFINE_VIRT_MACHINE(2, 6)