]> git.proxmox.com Git - mirror_qemu.git/blob - hw/arm/virt.c
Include hw/qdev-properties.h less
[mirror_qemu.git] / hw / arm / virt.c
1 /*
2 * ARM mach-virt emulation
3 *
4 * Copyright (c) 2013 Linaro Limited
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
17 *
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
29 */
30
31 #include "qemu/osdep.h"
32 #include "qemu-common.h"
33 #include "qemu/units.h"
34 #include "qemu/option.h"
35 #include "qapi/error.h"
36 #include "hw/sysbus.h"
37 #include "hw/arm/boot.h"
38 #include "hw/arm/primecell.h"
39 #include "hw/arm/virt.h"
40 #include "hw/block/flash.h"
41 #include "hw/vfio/vfio-calxeda-xgmac.h"
42 #include "hw/vfio/vfio-amd-xgbe.h"
43 #include "hw/display/ramfb.h"
44 #include "net/net.h"
45 #include "sysemu/device_tree.h"
46 #include "sysemu/numa.h"
47 #include "sysemu/sysemu.h"
48 #include "sysemu/kvm.h"
49 #include "hw/loader.h"
50 #include "exec/address-spaces.h"
51 #include "qemu/bitops.h"
52 #include "qemu/error-report.h"
53 #include "qemu/module.h"
54 #include "hw/pci-host/gpex.h"
55 #include "hw/arm/sysbus-fdt.h"
56 #include "hw/platform-bus.h"
57 #include "hw/qdev-properties.h"
58 #include "hw/arm/fdt.h"
59 #include "hw/intc/arm_gic.h"
60 #include "hw/intc/arm_gicv3_common.h"
61 #include "hw/irq.h"
62 #include "kvm_arm.h"
63 #include "hw/firmware/smbios.h"
64 #include "qapi/visitor.h"
65 #include "standard-headers/linux/input.h"
66 #include "hw/arm/smmuv3.h"
67 #include "hw/acpi/acpi.h"
68 #include "target/arm/internals.h"
69
70 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
71 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
72 void *data) \
73 { \
74 MachineClass *mc = MACHINE_CLASS(oc); \
75 virt_machine_##major##_##minor##_options(mc); \
76 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
77 if (latest) { \
78 mc->alias = "virt"; \
79 } \
80 } \
81 static const TypeInfo machvirt_##major##_##minor##_info = { \
82 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
83 .parent = TYPE_VIRT_MACHINE, \
84 .class_init = virt_##major##_##minor##_class_init, \
85 }; \
86 static void machvirt_machine_##major##_##minor##_init(void) \
87 { \
88 type_register_static(&machvirt_##major##_##minor##_info); \
89 } \
90 type_init(machvirt_machine_##major##_##minor##_init);
91
92 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
93 DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
94 #define DEFINE_VIRT_MACHINE(major, minor) \
95 DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
96
97
98 /* Number of external interrupt lines to configure the GIC with */
99 #define NUM_IRQS 256
100
101 #define PLATFORM_BUS_NUM_IRQS 64
102
103 /* Legacy RAM limit in GB (< version 4.0) */
104 #define LEGACY_RAMLIMIT_GB 255
105 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB)
106
107 /* Addresses and sizes of our components.
108 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
109 * 128MB..256MB is used for miscellaneous device I/O.
110 * 256MB..1GB is reserved for possible future PCI support (ie where the
111 * PCI memory window will go if we add a PCI host controller).
112 * 1GB and up is RAM (which may happily spill over into the
113 * high memory region beyond 4GB).
114 * This represents a compromise between how much RAM can be given to
115 * a 32 bit VM and leaving space for expansion and in particular for PCI.
116 * Note that devices should generally be placed at multiples of 0x10000,
117 * to accommodate guests using 64K pages.
118 */
119 static const MemMapEntry base_memmap[] = {
120 /* Space up to 0x8000000 is reserved for a boot ROM */
121 [VIRT_FLASH] = { 0, 0x08000000 },
122 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
123 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
124 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
125 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
126 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 },
127 [VIRT_GIC_HYP] = { 0x08030000, 0x00010000 },
128 [VIRT_GIC_VCPU] = { 0x08040000, 0x00010000 },
129 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
130 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 },
131 /* This redistributor space allows up to 2*64kB*123 CPUs */
132 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 },
133 [VIRT_UART] = { 0x09000000, 0x00001000 },
134 [VIRT_RTC] = { 0x09010000, 0x00001000 },
135 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 },
136 [VIRT_GPIO] = { 0x09030000, 0x00001000 },
137 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 },
138 [VIRT_SMMU] = { 0x09050000, 0x00020000 },
139 [VIRT_MMIO] = { 0x0a000000, 0x00000200 },
140 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
141 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 },
142 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 },
143 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 },
144 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 },
145 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 },
146 /* Actual RAM size depends on initial RAM and device memory settings */
147 [VIRT_MEM] = { GiB, LEGACY_RAMLIMIT_BYTES },
148 };
149
150 /*
151 * Highmem IO Regions: This memory map is floating, located after the RAM.
152 * Each MemMapEntry base (GPA) will be dynamically computed, depending on the
153 * top of the RAM, so that its base get the same alignment as the size,
154 * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is
155 * less than 256GiB of RAM, the floating area starts at the 256GiB mark.
156 * Note the extended_memmap is sized so that it eventually also includes the
157 * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last
158 * index of base_memmap).
159 */
160 static MemMapEntry extended_memmap[] = {
161 /* Additional 64 MB redist region (can contain up to 512 redistributors) */
162 [VIRT_HIGH_GIC_REDIST2] = { 0x0, 64 * MiB },
163 [VIRT_HIGH_PCIE_ECAM] = { 0x0, 256 * MiB },
164 /* Second PCIe window */
165 [VIRT_HIGH_PCIE_MMIO] = { 0x0, 512 * GiB },
166 };
167
168 static const int a15irqmap[] = {
169 [VIRT_UART] = 1,
170 [VIRT_RTC] = 2,
171 [VIRT_PCIE] = 3, /* ... to 6 */
172 [VIRT_GPIO] = 7,
173 [VIRT_SECURE_UART] = 8,
174 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
175 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
176 [VIRT_SMMU] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */
177 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
178 };
179
180 static const char *valid_cpus[] = {
181 ARM_CPU_TYPE_NAME("cortex-a7"),
182 ARM_CPU_TYPE_NAME("cortex-a15"),
183 ARM_CPU_TYPE_NAME("cortex-a53"),
184 ARM_CPU_TYPE_NAME("cortex-a57"),
185 ARM_CPU_TYPE_NAME("cortex-a72"),
186 ARM_CPU_TYPE_NAME("host"),
187 ARM_CPU_TYPE_NAME("max"),
188 };
189
190 static bool cpu_type_valid(const char *cpu)
191 {
192 int i;
193
194 for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
195 if (strcmp(cpu, valid_cpus[i]) == 0) {
196 return true;
197 }
198 }
199 return false;
200 }
201
202 static void create_fdt(VirtMachineState *vms)
203 {
204 void *fdt = create_device_tree(&vms->fdt_size);
205
206 if (!fdt) {
207 error_report("create_device_tree() failed");
208 exit(1);
209 }
210
211 vms->fdt = fdt;
212
213 /* Header */
214 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
215 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
216 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
217
218 /* /chosen must exist for load_dtb to fill in necessary properties later */
219 qemu_fdt_add_subnode(fdt, "/chosen");
220
221 /* Clock node, for the benefit of the UART. The kernel device tree
222 * binding documentation claims the PL011 node clock properties are
223 * optional but in practice if you omit them the kernel refuses to
224 * probe for the device.
225 */
226 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
227 qemu_fdt_add_subnode(fdt, "/apb-pclk");
228 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
229 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
230 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
231 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
232 "clk24mhz");
233 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
234
235 if (have_numa_distance) {
236 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
237 uint32_t *matrix = g_malloc0(size);
238 int idx, i, j;
239
240 for (i = 0; i < nb_numa_nodes; i++) {
241 for (j = 0; j < nb_numa_nodes; j++) {
242 idx = (i * nb_numa_nodes + j) * 3;
243 matrix[idx + 0] = cpu_to_be32(i);
244 matrix[idx + 1] = cpu_to_be32(j);
245 matrix[idx + 2] = cpu_to_be32(numa_info[i].distance[j]);
246 }
247 }
248
249 qemu_fdt_add_subnode(fdt, "/distance-map");
250 qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
251 "numa-distance-map-v1");
252 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
253 matrix, size);
254 g_free(matrix);
255 }
256 }
257
258 static void fdt_add_timer_nodes(const VirtMachineState *vms)
259 {
260 /* On real hardware these interrupts are level-triggered.
261 * On KVM they were edge-triggered before host kernel version 4.4,
262 * and level-triggered afterwards.
263 * On emulated QEMU they are level-triggered.
264 *
265 * Getting the DTB info about them wrong is awkward for some
266 * guest kernels:
267 * pre-4.8 ignore the DT and leave the interrupt configured
268 * with whatever the GIC reset value (or the bootloader) left it at
269 * 4.8 before rc6 honour the incorrect data by programming it back
270 * into the GIC, causing problems
271 * 4.8rc6 and later ignore the DT and always write "level triggered"
272 * into the GIC
273 *
274 * For backwards-compatibility, virt-2.8 and earlier will continue
275 * to say these are edge-triggered, but later machines will report
276 * the correct information.
277 */
278 ARMCPU *armcpu;
279 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
280 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
281
282 if (vmc->claim_edge_triggered_timers) {
283 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
284 }
285
286 if (vms->gic_version == 2) {
287 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
288 GIC_FDT_IRQ_PPI_CPU_WIDTH,
289 (1 << vms->smp_cpus) - 1);
290 }
291
292 qemu_fdt_add_subnode(vms->fdt, "/timer");
293
294 armcpu = ARM_CPU(qemu_get_cpu(0));
295 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
296 const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
297 qemu_fdt_setprop(vms->fdt, "/timer", "compatible",
298 compat, sizeof(compat));
299 } else {
300 qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible",
301 "arm,armv7-timer");
302 }
303 qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0);
304 qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts",
305 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
306 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
307 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
308 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
309 }
310
311 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
312 {
313 int cpu;
314 int addr_cells = 1;
315 const MachineState *ms = MACHINE(vms);
316
317 /*
318 * From Documentation/devicetree/bindings/arm/cpus.txt
319 * On ARM v8 64-bit systems value should be set to 2,
320 * that corresponds to the MPIDR_EL1 register size.
321 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
322 * in the system, #address-cells can be set to 1, since
323 * MPIDR_EL1[63:32] bits are not used for CPUs
324 * identification.
325 *
326 * Here we actually don't know whether our system is 32- or 64-bit one.
327 * The simplest way to go is to examine affinity IDs of all our CPUs. If
328 * at least one of them has Aff3 populated, we set #address-cells to 2.
329 */
330 for (cpu = 0; cpu < vms->smp_cpus; cpu++) {
331 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
332
333 if (armcpu->mp_affinity & ARM_AFF3_MASK) {
334 addr_cells = 2;
335 break;
336 }
337 }
338
339 qemu_fdt_add_subnode(vms->fdt, "/cpus");
340 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells);
341 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0);
342
343 for (cpu = vms->smp_cpus - 1; cpu >= 0; cpu--) {
344 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
345 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
346 CPUState *cs = CPU(armcpu);
347
348 qemu_fdt_add_subnode(vms->fdt, nodename);
349 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu");
350 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
351 armcpu->dtb_compatible);
352
353 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED
354 && vms->smp_cpus > 1) {
355 qemu_fdt_setprop_string(vms->fdt, nodename,
356 "enable-method", "psci");
357 }
358
359 if (addr_cells == 2) {
360 qemu_fdt_setprop_u64(vms->fdt, nodename, "reg",
361 armcpu->mp_affinity);
362 } else {
363 qemu_fdt_setprop_cell(vms->fdt, nodename, "reg",
364 armcpu->mp_affinity);
365 }
366
367 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
368 qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id",
369 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
370 }
371
372 g_free(nodename);
373 }
374 }
375
376 static void fdt_add_its_gic_node(VirtMachineState *vms)
377 {
378 char *nodename;
379
380 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
381 nodename = g_strdup_printf("/intc/its@%" PRIx64,
382 vms->memmap[VIRT_GIC_ITS].base);
383 qemu_fdt_add_subnode(vms->fdt, nodename);
384 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
385 "arm,gic-v3-its");
386 qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0);
387 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
388 2, vms->memmap[VIRT_GIC_ITS].base,
389 2, vms->memmap[VIRT_GIC_ITS].size);
390 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle);
391 g_free(nodename);
392 }
393
394 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
395 {
396 char *nodename;
397
398 nodename = g_strdup_printf("/intc/v2m@%" PRIx64,
399 vms->memmap[VIRT_GIC_V2M].base);
400 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
401 qemu_fdt_add_subnode(vms->fdt, nodename);
402 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
403 "arm,gic-v2m-frame");
404 qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0);
405 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
406 2, vms->memmap[VIRT_GIC_V2M].base,
407 2, vms->memmap[VIRT_GIC_V2M].size);
408 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle);
409 g_free(nodename);
410 }
411
412 static void fdt_add_gic_node(VirtMachineState *vms)
413 {
414 char *nodename;
415
416 vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt);
417 qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle);
418
419 nodename = g_strdup_printf("/intc@%" PRIx64,
420 vms->memmap[VIRT_GIC_DIST].base);
421 qemu_fdt_add_subnode(vms->fdt, nodename);
422 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 3);
423 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-controller", NULL, 0);
424 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 0x2);
425 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 0x2);
426 qemu_fdt_setprop(vms->fdt, nodename, "ranges", NULL, 0);
427 if (vms->gic_version == 3) {
428 int nb_redist_regions = virt_gicv3_redist_region_count(vms);
429
430 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
431 "arm,gic-v3");
432
433 qemu_fdt_setprop_cell(vms->fdt, nodename,
434 "#redistributor-regions", nb_redist_regions);
435
436 if (nb_redist_regions == 1) {
437 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
438 2, vms->memmap[VIRT_GIC_DIST].base,
439 2, vms->memmap[VIRT_GIC_DIST].size,
440 2, vms->memmap[VIRT_GIC_REDIST].base,
441 2, vms->memmap[VIRT_GIC_REDIST].size);
442 } else {
443 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
444 2, vms->memmap[VIRT_GIC_DIST].base,
445 2, vms->memmap[VIRT_GIC_DIST].size,
446 2, vms->memmap[VIRT_GIC_REDIST].base,
447 2, vms->memmap[VIRT_GIC_REDIST].size,
448 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base,
449 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size);
450 }
451
452 if (vms->virt) {
453 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
454 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
455 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
456 }
457 } else {
458 /* 'cortex-a15-gic' means 'GIC v2' */
459 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
460 "arm,cortex-a15-gic");
461 if (!vms->virt) {
462 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
463 2, vms->memmap[VIRT_GIC_DIST].base,
464 2, vms->memmap[VIRT_GIC_DIST].size,
465 2, vms->memmap[VIRT_GIC_CPU].base,
466 2, vms->memmap[VIRT_GIC_CPU].size);
467 } else {
468 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
469 2, vms->memmap[VIRT_GIC_DIST].base,
470 2, vms->memmap[VIRT_GIC_DIST].size,
471 2, vms->memmap[VIRT_GIC_CPU].base,
472 2, vms->memmap[VIRT_GIC_CPU].size,
473 2, vms->memmap[VIRT_GIC_HYP].base,
474 2, vms->memmap[VIRT_GIC_HYP].size,
475 2, vms->memmap[VIRT_GIC_VCPU].base,
476 2, vms->memmap[VIRT_GIC_VCPU].size);
477 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
478 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
479 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
480 }
481 }
482
483 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->gic_phandle);
484 g_free(nodename);
485 }
486
487 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
488 {
489 CPUState *cpu;
490 ARMCPU *armcpu;
491 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
492
493 CPU_FOREACH(cpu) {
494 armcpu = ARM_CPU(cpu);
495 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
496 return;
497 }
498 if (kvm_enabled()) {
499 if (kvm_irqchip_in_kernel()) {
500 kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ));
501 }
502 kvm_arm_pmu_init(cpu);
503 }
504 }
505
506 if (vms->gic_version == 2) {
507 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
508 GIC_FDT_IRQ_PPI_CPU_WIDTH,
509 (1 << vms->smp_cpus) - 1);
510 }
511
512 armcpu = ARM_CPU(qemu_get_cpu(0));
513 qemu_fdt_add_subnode(vms->fdt, "/pmu");
514 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
515 const char compat[] = "arm,armv8-pmuv3";
516 qemu_fdt_setprop(vms->fdt, "/pmu", "compatible",
517 compat, sizeof(compat));
518 qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts",
519 GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
520 }
521 }
522
523 static void create_its(VirtMachineState *vms, DeviceState *gicdev)
524 {
525 const char *itsclass = its_class_name();
526 DeviceState *dev;
527
528 if (!itsclass) {
529 /* Do nothing if not supported */
530 return;
531 }
532
533 dev = qdev_create(NULL, itsclass);
534
535 object_property_set_link(OBJECT(dev), OBJECT(gicdev), "parent-gicv3",
536 &error_abort);
537 qdev_init_nofail(dev);
538 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
539
540 fdt_add_its_gic_node(vms);
541 }
542
543 static void create_v2m(VirtMachineState *vms, qemu_irq *pic)
544 {
545 int i;
546 int irq = vms->irqmap[VIRT_GIC_V2M];
547 DeviceState *dev;
548
549 dev = qdev_create(NULL, "arm-gicv2m");
550 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
551 qdev_prop_set_uint32(dev, "base-spi", irq);
552 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
553 qdev_init_nofail(dev);
554
555 for (i = 0; i < NUM_GICV2M_SPIS; i++) {
556 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
557 }
558
559 fdt_add_v2m_gic_node(vms);
560 }
561
562 static void create_gic(VirtMachineState *vms, qemu_irq *pic)
563 {
564 MachineState *ms = MACHINE(vms);
565 /* We create a standalone GIC */
566 DeviceState *gicdev;
567 SysBusDevice *gicbusdev;
568 const char *gictype;
569 int type = vms->gic_version, i;
570 unsigned int smp_cpus = ms->smp.cpus;
571 uint32_t nb_redist_regions = 0;
572
573 gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
574
575 gicdev = qdev_create(NULL, gictype);
576 qdev_prop_set_uint32(gicdev, "revision", type);
577 qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
578 /* Note that the num-irq property counts both internal and external
579 * interrupts; there are always 32 of the former (mandated by GIC spec).
580 */
581 qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
582 if (!kvm_irqchip_in_kernel()) {
583 qdev_prop_set_bit(gicdev, "has-security-extensions", vms->secure);
584 }
585
586 if (type == 3) {
587 uint32_t redist0_capacity =
588 vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
589 uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
590
591 nb_redist_regions = virt_gicv3_redist_region_count(vms);
592
593 qdev_prop_set_uint32(gicdev, "len-redist-region-count",
594 nb_redist_regions);
595 qdev_prop_set_uint32(gicdev, "redist-region-count[0]", redist0_count);
596
597 if (nb_redist_regions == 2) {
598 uint32_t redist1_capacity =
599 vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE;
600
601 qdev_prop_set_uint32(gicdev, "redist-region-count[1]",
602 MIN(smp_cpus - redist0_count, redist1_capacity));
603 }
604 } else {
605 if (!kvm_irqchip_in_kernel()) {
606 qdev_prop_set_bit(gicdev, "has-virtualization-extensions",
607 vms->virt);
608 }
609 }
610 qdev_init_nofail(gicdev);
611 gicbusdev = SYS_BUS_DEVICE(gicdev);
612 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
613 if (type == 3) {
614 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
615 if (nb_redist_regions == 2) {
616 sysbus_mmio_map(gicbusdev, 2,
617 vms->memmap[VIRT_HIGH_GIC_REDIST2].base);
618 }
619 } else {
620 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
621 if (vms->virt) {
622 sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base);
623 sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base);
624 }
625 }
626
627 /* Wire the outputs from each CPU's generic timer and the GICv3
628 * maintenance interrupt signal to the appropriate GIC PPI inputs,
629 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
630 */
631 for (i = 0; i < smp_cpus; i++) {
632 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
633 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
634 int irq;
635 /* Mapping from the output timer irq lines from the CPU to the
636 * GIC PPI inputs we use for the virt board.
637 */
638 const int timer_irq[] = {
639 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
640 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
641 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
642 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
643 };
644
645 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
646 qdev_connect_gpio_out(cpudev, irq,
647 qdev_get_gpio_in(gicdev,
648 ppibase + timer_irq[irq]));
649 }
650
651 if (type == 3) {
652 qemu_irq irq = qdev_get_gpio_in(gicdev,
653 ppibase + ARCH_GIC_MAINT_IRQ);
654 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt",
655 0, irq);
656 } else if (vms->virt) {
657 qemu_irq irq = qdev_get_gpio_in(gicdev,
658 ppibase + ARCH_GIC_MAINT_IRQ);
659 sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq);
660 }
661
662 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
663 qdev_get_gpio_in(gicdev, ppibase
664 + VIRTUAL_PMU_IRQ));
665
666 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
667 sysbus_connect_irq(gicbusdev, i + smp_cpus,
668 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
669 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
670 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
671 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
672 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
673 }
674
675 for (i = 0; i < NUM_IRQS; i++) {
676 pic[i] = qdev_get_gpio_in(gicdev, i);
677 }
678
679 fdt_add_gic_node(vms);
680
681 if (type == 3 && vms->its) {
682 create_its(vms, gicdev);
683 } else if (type == 2) {
684 create_v2m(vms, pic);
685 }
686 }
687
688 static void create_uart(const VirtMachineState *vms, qemu_irq *pic, int uart,
689 MemoryRegion *mem, Chardev *chr)
690 {
691 char *nodename;
692 hwaddr base = vms->memmap[uart].base;
693 hwaddr size = vms->memmap[uart].size;
694 int irq = vms->irqmap[uart];
695 const char compat[] = "arm,pl011\0arm,primecell";
696 const char clocknames[] = "uartclk\0apb_pclk";
697 DeviceState *dev = qdev_create(NULL, "pl011");
698 SysBusDevice *s = SYS_BUS_DEVICE(dev);
699
700 qdev_prop_set_chr(dev, "chardev", chr);
701 qdev_init_nofail(dev);
702 memory_region_add_subregion(mem, base,
703 sysbus_mmio_get_region(s, 0));
704 sysbus_connect_irq(s, 0, pic[irq]);
705
706 nodename = g_strdup_printf("/pl011@%" PRIx64, base);
707 qemu_fdt_add_subnode(vms->fdt, nodename);
708 /* Note that we can't use setprop_string because of the embedded NUL */
709 qemu_fdt_setprop(vms->fdt, nodename, "compatible",
710 compat, sizeof(compat));
711 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
712 2, base, 2, size);
713 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
714 GIC_FDT_IRQ_TYPE_SPI, irq,
715 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
716 qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks",
717 vms->clock_phandle, vms->clock_phandle);
718 qemu_fdt_setprop(vms->fdt, nodename, "clock-names",
719 clocknames, sizeof(clocknames));
720
721 if (uart == VIRT_UART) {
722 qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename);
723 } else {
724 /* Mark as not usable by the normal world */
725 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
726 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
727
728 qemu_fdt_add_subnode(vms->fdt, "/secure-chosen");
729 qemu_fdt_setprop_string(vms->fdt, "/secure-chosen", "stdout-path",
730 nodename);
731 }
732
733 g_free(nodename);
734 }
735
736 static void create_rtc(const VirtMachineState *vms, qemu_irq *pic)
737 {
738 char *nodename;
739 hwaddr base = vms->memmap[VIRT_RTC].base;
740 hwaddr size = vms->memmap[VIRT_RTC].size;
741 int irq = vms->irqmap[VIRT_RTC];
742 const char compat[] = "arm,pl031\0arm,primecell";
743
744 sysbus_create_simple("pl031", base, pic[irq]);
745
746 nodename = g_strdup_printf("/pl031@%" PRIx64, base);
747 qemu_fdt_add_subnode(vms->fdt, nodename);
748 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
749 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
750 2, base, 2, size);
751 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
752 GIC_FDT_IRQ_TYPE_SPI, irq,
753 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
754 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
755 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
756 g_free(nodename);
757 }
758
759 static DeviceState *gpio_key_dev;
760 static void virt_powerdown_req(Notifier *n, void *opaque)
761 {
762 /* use gpio Pin 3 for power button event */
763 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
764 }
765
766 static Notifier virt_system_powerdown_notifier = {
767 .notify = virt_powerdown_req
768 };
769
770 static void create_gpio(const VirtMachineState *vms, qemu_irq *pic)
771 {
772 char *nodename;
773 DeviceState *pl061_dev;
774 hwaddr base = vms->memmap[VIRT_GPIO].base;
775 hwaddr size = vms->memmap[VIRT_GPIO].size;
776 int irq = vms->irqmap[VIRT_GPIO];
777 const char compat[] = "arm,pl061\0arm,primecell";
778
779 pl061_dev = sysbus_create_simple("pl061", base, pic[irq]);
780
781 uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt);
782 nodename = g_strdup_printf("/pl061@%" PRIx64, base);
783 qemu_fdt_add_subnode(vms->fdt, nodename);
784 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
785 2, base, 2, size);
786 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
787 qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2);
788 qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0);
789 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
790 GIC_FDT_IRQ_TYPE_SPI, irq,
791 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
792 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
793 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
794 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle);
795
796 gpio_key_dev = sysbus_create_simple("gpio-key", -1,
797 qdev_get_gpio_in(pl061_dev, 3));
798 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys");
799 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys");
800 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0);
801 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1);
802
803 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff");
804 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff",
805 "label", "GPIO Key Poweroff");
806 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code",
807 KEY_POWER);
808 qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff",
809 "gpios", phandle, 3, 0);
810
811 /* connect powerdown request */
812 qemu_register_powerdown_notifier(&virt_system_powerdown_notifier);
813
814 g_free(nodename);
815 }
816
817 static void create_virtio_devices(const VirtMachineState *vms, qemu_irq *pic)
818 {
819 int i;
820 hwaddr size = vms->memmap[VIRT_MMIO].size;
821
822 /* We create the transports in forwards order. Since qbus_realize()
823 * prepends (not appends) new child buses, the incrementing loop below will
824 * create a list of virtio-mmio buses with decreasing base addresses.
825 *
826 * When a -device option is processed from the command line,
827 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
828 * order. The upshot is that -device options in increasing command line
829 * order are mapped to virtio-mmio buses with decreasing base addresses.
830 *
831 * When this code was originally written, that arrangement ensured that the
832 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
833 * the first -device on the command line. (The end-to-end order is a
834 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
835 * guest kernel's name-to-address assignment strategy.)
836 *
837 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
838 * the message, if not necessarily the code, of commit 70161ff336.
839 * Therefore the loop now establishes the inverse of the original intent.
840 *
841 * Unfortunately, we can't counteract the kernel change by reversing the
842 * loop; it would break existing command lines.
843 *
844 * In any case, the kernel makes no guarantee about the stability of
845 * enumeration order of virtio devices (as demonstrated by it changing
846 * between kernel versions). For reliable and stable identification
847 * of disks users must use UUIDs or similar mechanisms.
848 */
849 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
850 int irq = vms->irqmap[VIRT_MMIO] + i;
851 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
852
853 sysbus_create_simple("virtio-mmio", base, pic[irq]);
854 }
855
856 /* We add dtb nodes in reverse order so that they appear in the finished
857 * device tree lowest address first.
858 *
859 * Note that this mapping is independent of the loop above. The previous
860 * loop influences virtio device to virtio transport assignment, whereas
861 * this loop controls how virtio transports are laid out in the dtb.
862 */
863 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
864 char *nodename;
865 int irq = vms->irqmap[VIRT_MMIO] + i;
866 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
867
868 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
869 qemu_fdt_add_subnode(vms->fdt, nodename);
870 qemu_fdt_setprop_string(vms->fdt, nodename,
871 "compatible", "virtio,mmio");
872 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
873 2, base, 2, size);
874 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
875 GIC_FDT_IRQ_TYPE_SPI, irq,
876 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
877 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
878 g_free(nodename);
879 }
880 }
881
882 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
883
884 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms,
885 const char *name,
886 const char *alias_prop_name)
887 {
888 /*
889 * Create a single flash device. We use the same parameters as
890 * the flash devices on the Versatile Express board.
891 */
892 DeviceState *dev = qdev_create(NULL, TYPE_PFLASH_CFI01);
893
894 qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
895 qdev_prop_set_uint8(dev, "width", 4);
896 qdev_prop_set_uint8(dev, "device-width", 2);
897 qdev_prop_set_bit(dev, "big-endian", false);
898 qdev_prop_set_uint16(dev, "id0", 0x89);
899 qdev_prop_set_uint16(dev, "id1", 0x18);
900 qdev_prop_set_uint16(dev, "id2", 0x00);
901 qdev_prop_set_uint16(dev, "id3", 0x00);
902 qdev_prop_set_string(dev, "name", name);
903 object_property_add_child(OBJECT(vms), name, OBJECT(dev),
904 &error_abort);
905 object_property_add_alias(OBJECT(vms), alias_prop_name,
906 OBJECT(dev), "drive", &error_abort);
907 return PFLASH_CFI01(dev);
908 }
909
910 static void virt_flash_create(VirtMachineState *vms)
911 {
912 vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0");
913 vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1");
914 }
915
916 static void virt_flash_map1(PFlashCFI01 *flash,
917 hwaddr base, hwaddr size,
918 MemoryRegion *sysmem)
919 {
920 DeviceState *dev = DEVICE(flash);
921
922 assert(size % VIRT_FLASH_SECTOR_SIZE == 0);
923 assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
924 qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
925 qdev_init_nofail(dev);
926
927 memory_region_add_subregion(sysmem, base,
928 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
929 0));
930 }
931
932 static void virt_flash_map(VirtMachineState *vms,
933 MemoryRegion *sysmem,
934 MemoryRegion *secure_sysmem)
935 {
936 /*
937 * Map two flash devices to fill the VIRT_FLASH space in the memmap.
938 * sysmem is the system memory space. secure_sysmem is the secure view
939 * of the system, and the first flash device should be made visible only
940 * there. The second flash device is visible to both secure and nonsecure.
941 * If sysmem == secure_sysmem this means there is no separate Secure
942 * address space and both flash devices are generally visible.
943 */
944 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
945 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
946
947 virt_flash_map1(vms->flash[0], flashbase, flashsize,
948 secure_sysmem);
949 virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize,
950 sysmem);
951 }
952
953 static void virt_flash_fdt(VirtMachineState *vms,
954 MemoryRegion *sysmem,
955 MemoryRegion *secure_sysmem)
956 {
957 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
958 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
959 char *nodename;
960
961 if (sysmem == secure_sysmem) {
962 /* Report both flash devices as a single node in the DT */
963 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
964 qemu_fdt_add_subnode(vms->fdt, nodename);
965 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
966 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
967 2, flashbase, 2, flashsize,
968 2, flashbase + flashsize, 2, flashsize);
969 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
970 g_free(nodename);
971 } else {
972 /*
973 * Report the devices as separate nodes so we can mark one as
974 * only visible to the secure world.
975 */
976 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
977 qemu_fdt_add_subnode(vms->fdt, nodename);
978 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
979 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
980 2, flashbase, 2, flashsize);
981 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
982 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
983 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
984 g_free(nodename);
985
986 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
987 qemu_fdt_add_subnode(vms->fdt, nodename);
988 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
989 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
990 2, flashbase + flashsize, 2, flashsize);
991 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
992 g_free(nodename);
993 }
994 }
995
996 static bool virt_firmware_init(VirtMachineState *vms,
997 MemoryRegion *sysmem,
998 MemoryRegion *secure_sysmem)
999 {
1000 int i;
1001 BlockBackend *pflash_blk0;
1002
1003 /* Map legacy -drive if=pflash to machine properties */
1004 for (i = 0; i < ARRAY_SIZE(vms->flash); i++) {
1005 pflash_cfi01_legacy_drive(vms->flash[i],
1006 drive_get(IF_PFLASH, 0, i));
1007 }
1008
1009 virt_flash_map(vms, sysmem, secure_sysmem);
1010
1011 pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]);
1012
1013 if (bios_name) {
1014 char *fname;
1015 MemoryRegion *mr;
1016 int image_size;
1017
1018 if (pflash_blk0) {
1019 error_report("The contents of the first flash device may be "
1020 "specified with -bios or with -drive if=pflash... "
1021 "but you cannot use both options at once");
1022 exit(1);
1023 }
1024
1025 /* Fall back to -bios */
1026
1027 fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1028 if (!fname) {
1029 error_report("Could not find ROM image '%s'", bios_name);
1030 exit(1);
1031 }
1032 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0);
1033 image_size = load_image_mr(fname, mr);
1034 g_free(fname);
1035 if (image_size < 0) {
1036 error_report("Could not load ROM image '%s'", bios_name);
1037 exit(1);
1038 }
1039 }
1040
1041 return pflash_blk0 || bios_name;
1042 }
1043
1044 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
1045 {
1046 MachineState *ms = MACHINE(vms);
1047 hwaddr base = vms->memmap[VIRT_FW_CFG].base;
1048 hwaddr size = vms->memmap[VIRT_FW_CFG].size;
1049 FWCfgState *fw_cfg;
1050 char *nodename;
1051
1052 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
1053 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus);
1054
1055 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
1056 qemu_fdt_add_subnode(vms->fdt, nodename);
1057 qemu_fdt_setprop_string(vms->fdt, nodename,
1058 "compatible", "qemu,fw-cfg-mmio");
1059 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1060 2, base, 2, size);
1061 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1062 g_free(nodename);
1063 return fw_cfg;
1064 }
1065
1066 static void create_pcie_irq_map(const VirtMachineState *vms,
1067 uint32_t gic_phandle,
1068 int first_irq, const char *nodename)
1069 {
1070 int devfn, pin;
1071 uint32_t full_irq_map[4 * 4 * 10] = { 0 };
1072 uint32_t *irq_map = full_irq_map;
1073
1074 for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
1075 for (pin = 0; pin < 4; pin++) {
1076 int irq_type = GIC_FDT_IRQ_TYPE_SPI;
1077 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
1078 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
1079 int i;
1080
1081 uint32_t map[] = {
1082 devfn << 8, 0, 0, /* devfn */
1083 pin + 1, /* PCI pin */
1084 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
1085
1086 /* Convert map to big endian */
1087 for (i = 0; i < 10; i++) {
1088 irq_map[i] = cpu_to_be32(map[i]);
1089 }
1090 irq_map += 10;
1091 }
1092 }
1093
1094 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map",
1095 full_irq_map, sizeof(full_irq_map));
1096
1097 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask",
1098 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
1099 0x7 /* PCI irq */);
1100 }
1101
1102 static void create_smmu(const VirtMachineState *vms, qemu_irq *pic,
1103 PCIBus *bus)
1104 {
1105 char *node;
1106 const char compat[] = "arm,smmu-v3";
1107 int irq = vms->irqmap[VIRT_SMMU];
1108 int i;
1109 hwaddr base = vms->memmap[VIRT_SMMU].base;
1110 hwaddr size = vms->memmap[VIRT_SMMU].size;
1111 const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
1112 DeviceState *dev;
1113
1114 if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
1115 return;
1116 }
1117
1118 dev = qdev_create(NULL, "arm-smmuv3");
1119
1120 object_property_set_link(OBJECT(dev), OBJECT(bus), "primary-bus",
1121 &error_abort);
1122 qdev_init_nofail(dev);
1123 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
1124 for (i = 0; i < NUM_SMMU_IRQS; i++) {
1125 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1126 }
1127
1128 node = g_strdup_printf("/smmuv3@%" PRIx64, base);
1129 qemu_fdt_add_subnode(vms->fdt, node);
1130 qemu_fdt_setprop(vms->fdt, node, "compatible", compat, sizeof(compat));
1131 qemu_fdt_setprop_sized_cells(vms->fdt, node, "reg", 2, base, 2, size);
1132
1133 qemu_fdt_setprop_cells(vms->fdt, node, "interrupts",
1134 GIC_FDT_IRQ_TYPE_SPI, irq , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1135 GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1136 GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1137 GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1138
1139 qemu_fdt_setprop(vms->fdt, node, "interrupt-names", irq_names,
1140 sizeof(irq_names));
1141
1142 qemu_fdt_setprop_cell(vms->fdt, node, "clocks", vms->clock_phandle);
1143 qemu_fdt_setprop_string(vms->fdt, node, "clock-names", "apb_pclk");
1144 qemu_fdt_setprop(vms->fdt, node, "dma-coherent", NULL, 0);
1145
1146 qemu_fdt_setprop_cell(vms->fdt, node, "#iommu-cells", 1);
1147
1148 qemu_fdt_setprop_cell(vms->fdt, node, "phandle", vms->iommu_phandle);
1149 g_free(node);
1150 }
1151
1152 static void create_pcie(VirtMachineState *vms, qemu_irq *pic)
1153 {
1154 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1155 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
1156 hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base;
1157 hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size;
1158 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1159 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
1160 hwaddr base_ecam, size_ecam;
1161 hwaddr base = base_mmio;
1162 int nr_pcie_buses;
1163 int irq = vms->irqmap[VIRT_PCIE];
1164 MemoryRegion *mmio_alias;
1165 MemoryRegion *mmio_reg;
1166 MemoryRegion *ecam_alias;
1167 MemoryRegion *ecam_reg;
1168 DeviceState *dev;
1169 char *nodename;
1170 int i, ecam_id;
1171 PCIHostState *pci;
1172
1173 dev = qdev_create(NULL, TYPE_GPEX_HOST);
1174 qdev_init_nofail(dev);
1175
1176 ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
1177 base_ecam = vms->memmap[ecam_id].base;
1178 size_ecam = vms->memmap[ecam_id].size;
1179 nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
1180 /* Map only the first size_ecam bytes of ECAM space */
1181 ecam_alias = g_new0(MemoryRegion, 1);
1182 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1183 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1184 ecam_reg, 0, size_ecam);
1185 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1186
1187 /* Map the MMIO window into system address space so as to expose
1188 * the section of PCI MMIO space which starts at the same base address
1189 * (ie 1:1 mapping for that part of PCI MMIO space visible through
1190 * the window).
1191 */
1192 mmio_alias = g_new0(MemoryRegion, 1);
1193 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1194 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1195 mmio_reg, base_mmio, size_mmio);
1196 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1197
1198 if (vms->highmem) {
1199 /* Map high MMIO space */
1200 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1201
1202 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1203 mmio_reg, base_mmio_high, size_mmio_high);
1204 memory_region_add_subregion(get_system_memory(), base_mmio_high,
1205 high_mmio_alias);
1206 }
1207
1208 /* Map IO port space */
1209 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1210
1211 for (i = 0; i < GPEX_NUM_IRQS; i++) {
1212 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1213 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
1214 }
1215
1216 pci = PCI_HOST_BRIDGE(dev);
1217 if (pci->bus) {
1218 for (i = 0; i < nb_nics; i++) {
1219 NICInfo *nd = &nd_table[i];
1220
1221 if (!nd->model) {
1222 nd->model = g_strdup("virtio");
1223 }
1224
1225 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1226 }
1227 }
1228
1229 nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1230 qemu_fdt_add_subnode(vms->fdt, nodename);
1231 qemu_fdt_setprop_string(vms->fdt, nodename,
1232 "compatible", "pci-host-ecam-generic");
1233 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci");
1234 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3);
1235 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2);
1236 qemu_fdt_setprop_cell(vms->fdt, nodename, "linux,pci-domain", 0);
1237 qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0,
1238 nr_pcie_buses - 1);
1239 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1240
1241 if (vms->msi_phandle) {
1242 qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent",
1243 vms->msi_phandle);
1244 }
1245
1246 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1247 2, base_ecam, 2, size_ecam);
1248
1249 if (vms->highmem) {
1250 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1251 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1252 2, base_pio, 2, size_pio,
1253 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1254 2, base_mmio, 2, size_mmio,
1255 1, FDT_PCI_RANGE_MMIO_64BIT,
1256 2, base_mmio_high,
1257 2, base_mmio_high, 2, size_mmio_high);
1258 } else {
1259 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1260 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1261 2, base_pio, 2, size_pio,
1262 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1263 2, base_mmio, 2, size_mmio);
1264 }
1265
1266 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1);
1267 create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename);
1268
1269 if (vms->iommu) {
1270 vms->iommu_phandle = qemu_fdt_alloc_phandle(vms->fdt);
1271
1272 create_smmu(vms, pic, pci->bus);
1273
1274 qemu_fdt_setprop_cells(vms->fdt, nodename, "iommu-map",
1275 0x0, vms->iommu_phandle, 0x0, 0x10000);
1276 }
1277
1278 g_free(nodename);
1279 }
1280
1281 static void create_platform_bus(VirtMachineState *vms, qemu_irq *pic)
1282 {
1283 DeviceState *dev;
1284 SysBusDevice *s;
1285 int i;
1286 MemoryRegion *sysmem = get_system_memory();
1287
1288 dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
1289 dev->id = TYPE_PLATFORM_BUS_DEVICE;
1290 qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
1291 qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
1292 qdev_init_nofail(dev);
1293 vms->platform_bus_dev = dev;
1294
1295 s = SYS_BUS_DEVICE(dev);
1296 for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
1297 int irqn = vms->irqmap[VIRT_PLATFORM_BUS] + i;
1298 sysbus_connect_irq(s, i, pic[irqn]);
1299 }
1300
1301 memory_region_add_subregion(sysmem,
1302 vms->memmap[VIRT_PLATFORM_BUS].base,
1303 sysbus_mmio_get_region(s, 0));
1304 }
1305
1306 static void create_secure_ram(VirtMachineState *vms,
1307 MemoryRegion *secure_sysmem)
1308 {
1309 MemoryRegion *secram = g_new(MemoryRegion, 1);
1310 char *nodename;
1311 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1312 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1313
1314 memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1315 &error_fatal);
1316 memory_region_add_subregion(secure_sysmem, base, secram);
1317
1318 nodename = g_strdup_printf("/secram@%" PRIx64, base);
1319 qemu_fdt_add_subnode(vms->fdt, nodename);
1320 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory");
1321 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size);
1322 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
1323 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
1324
1325 g_free(nodename);
1326 }
1327
1328 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1329 {
1330 const VirtMachineState *board = container_of(binfo, VirtMachineState,
1331 bootinfo);
1332
1333 *fdt_size = board->fdt_size;
1334 return board->fdt;
1335 }
1336
1337 static void virt_build_smbios(VirtMachineState *vms)
1338 {
1339 MachineClass *mc = MACHINE_GET_CLASS(vms);
1340 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1341 uint8_t *smbios_tables, *smbios_anchor;
1342 size_t smbios_tables_len, smbios_anchor_len;
1343 const char *product = "QEMU Virtual Machine";
1344
1345 if (kvm_enabled()) {
1346 product = "KVM Virtual Machine";
1347 }
1348
1349 smbios_set_defaults("QEMU", product,
1350 vmc->smbios_old_sys_ver ? "1.0" : mc->name, false,
1351 true, SMBIOS_ENTRY_POINT_30);
1352
1353 smbios_get_tables(MACHINE(vms), NULL, 0, &smbios_tables, &smbios_tables_len,
1354 &smbios_anchor, &smbios_anchor_len);
1355
1356 if (smbios_anchor) {
1357 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1358 smbios_tables, smbios_tables_len);
1359 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1360 smbios_anchor, smbios_anchor_len);
1361 }
1362 }
1363
1364 static
1365 void virt_machine_done(Notifier *notifier, void *data)
1366 {
1367 VirtMachineState *vms = container_of(notifier, VirtMachineState,
1368 machine_done);
1369 ARMCPU *cpu = ARM_CPU(first_cpu);
1370 struct arm_boot_info *info = &vms->bootinfo;
1371 AddressSpace *as = arm_boot_address_space(cpu, info);
1372
1373 /*
1374 * If the user provided a dtb, we assume the dynamic sysbus nodes
1375 * already are integrated there. This corresponds to a use case where
1376 * the dynamic sysbus nodes are complex and their generation is not yet
1377 * supported. In that case the user can take charge of the guest dt
1378 * while qemu takes charge of the qom stuff.
1379 */
1380 if (info->dtb_filename == NULL) {
1381 platform_bus_add_all_fdt_nodes(vms->fdt, "/intc",
1382 vms->memmap[VIRT_PLATFORM_BUS].base,
1383 vms->memmap[VIRT_PLATFORM_BUS].size,
1384 vms->irqmap[VIRT_PLATFORM_BUS]);
1385 }
1386 if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as) < 0) {
1387 exit(1);
1388 }
1389
1390 virt_acpi_setup(vms);
1391 virt_build_smbios(vms);
1392 }
1393
1394 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1395 {
1396 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1397 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1398
1399 if (!vmc->disallow_affinity_adjustment) {
1400 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1401 * GIC's target-list limitations. 32-bit KVM hosts currently
1402 * always create clusters of 4 CPUs, but that is expected to
1403 * change when they gain support for gicv3. When KVM is enabled
1404 * it will override the changes we make here, therefore our
1405 * purposes are to make TCG consistent (with 64-bit KVM hosts)
1406 * and to improve SGI efficiency.
1407 */
1408 if (vms->gic_version == 3) {
1409 clustersz = GICV3_TARGETLIST_BITS;
1410 } else {
1411 clustersz = GIC_TARGETLIST_BITS;
1412 }
1413 }
1414 return arm_cpu_mp_affinity(idx, clustersz);
1415 }
1416
1417 static void virt_set_memmap(VirtMachineState *vms)
1418 {
1419 MachineState *ms = MACHINE(vms);
1420 hwaddr base, device_memory_base, device_memory_size;
1421 int i;
1422
1423 vms->memmap = extended_memmap;
1424
1425 for (i = 0; i < ARRAY_SIZE(base_memmap); i++) {
1426 vms->memmap[i] = base_memmap[i];
1427 }
1428
1429 if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) {
1430 error_report("unsupported number of memory slots: %"PRIu64,
1431 ms->ram_slots);
1432 exit(EXIT_FAILURE);
1433 }
1434
1435 /*
1436 * We compute the base of the high IO region depending on the
1437 * amount of initial and device memory. The device memory start/size
1438 * is aligned on 1GiB. We never put the high IO region below 256GiB
1439 * so that if maxram_size is < 255GiB we keep the legacy memory map.
1440 * The device region size assumes 1GiB page max alignment per slot.
1441 */
1442 device_memory_base =
1443 ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB);
1444 device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB;
1445
1446 /* Base address of the high IO region */
1447 base = device_memory_base + ROUND_UP(device_memory_size, GiB);
1448 if (base < device_memory_base) {
1449 error_report("maxmem/slots too huge");
1450 exit(EXIT_FAILURE);
1451 }
1452 if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) {
1453 base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES;
1454 }
1455
1456 for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) {
1457 hwaddr size = extended_memmap[i].size;
1458
1459 base = ROUND_UP(base, size);
1460 vms->memmap[i].base = base;
1461 vms->memmap[i].size = size;
1462 base += size;
1463 }
1464 vms->highest_gpa = base - 1;
1465 if (device_memory_size > 0) {
1466 ms->device_memory = g_malloc0(sizeof(*ms->device_memory));
1467 ms->device_memory->base = device_memory_base;
1468 memory_region_init(&ms->device_memory->mr, OBJECT(vms),
1469 "device-memory", device_memory_size);
1470 }
1471 }
1472
1473 static void machvirt_init(MachineState *machine)
1474 {
1475 VirtMachineState *vms = VIRT_MACHINE(machine);
1476 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
1477 MachineClass *mc = MACHINE_GET_CLASS(machine);
1478 const CPUArchIdList *possible_cpus;
1479 qemu_irq pic[NUM_IRQS];
1480 MemoryRegion *sysmem = get_system_memory();
1481 MemoryRegion *secure_sysmem = NULL;
1482 int n, virt_max_cpus;
1483 MemoryRegion *ram = g_new(MemoryRegion, 1);
1484 bool firmware_loaded;
1485 bool aarch64 = true;
1486 unsigned int smp_cpus = machine->smp.cpus;
1487 unsigned int max_cpus = machine->smp.max_cpus;
1488
1489 /*
1490 * In accelerated mode, the memory map is computed earlier in kvm_type()
1491 * to create a VM with the right number of IPA bits.
1492 */
1493 if (!vms->memmap) {
1494 virt_set_memmap(vms);
1495 }
1496
1497 /* We can probe only here because during property set
1498 * KVM is not available yet
1499 */
1500 if (vms->gic_version <= 0) {
1501 /* "host" or "max" */
1502 if (!kvm_enabled()) {
1503 if (vms->gic_version == 0) {
1504 error_report("gic-version=host requires KVM");
1505 exit(1);
1506 } else {
1507 /* "max": currently means 3 for TCG */
1508 vms->gic_version = 3;
1509 }
1510 } else {
1511 vms->gic_version = kvm_arm_vgic_probe();
1512 if (!vms->gic_version) {
1513 error_report(
1514 "Unable to determine GIC version supported by host");
1515 exit(1);
1516 }
1517 }
1518 }
1519
1520 if (!cpu_type_valid(machine->cpu_type)) {
1521 error_report("mach-virt: CPU type %s not supported", machine->cpu_type);
1522 exit(1);
1523 }
1524
1525 if (vms->secure) {
1526 if (kvm_enabled()) {
1527 error_report("mach-virt: KVM does not support Security extensions");
1528 exit(1);
1529 }
1530
1531 /*
1532 * The Secure view of the world is the same as the NonSecure,
1533 * but with a few extra devices. Create it as a container region
1534 * containing the system memory at low priority; any secure-only
1535 * devices go in at higher priority and take precedence.
1536 */
1537 secure_sysmem = g_new(MemoryRegion, 1);
1538 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1539 UINT64_MAX);
1540 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1541 }
1542
1543 firmware_loaded = virt_firmware_init(vms, sysmem,
1544 secure_sysmem ?: sysmem);
1545
1546 /* If we have an EL3 boot ROM then the assumption is that it will
1547 * implement PSCI itself, so disable QEMU's internal implementation
1548 * so it doesn't get in the way. Instead of starting secondary
1549 * CPUs in PSCI powerdown state we will start them all running and
1550 * let the boot ROM sort them out.
1551 * The usual case is that we do use QEMU's PSCI implementation;
1552 * if the guest has EL2 then we will use SMC as the conduit,
1553 * and otherwise we will use HVC (for backwards compatibility and
1554 * because if we're using KVM then we must use HVC).
1555 */
1556 if (vms->secure && firmware_loaded) {
1557 vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
1558 } else if (vms->virt) {
1559 vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
1560 } else {
1561 vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
1562 }
1563
1564 /* The maximum number of CPUs depends on the GIC version, or on how
1565 * many redistributors we can fit into the memory map.
1566 */
1567 if (vms->gic_version == 3) {
1568 virt_max_cpus =
1569 vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
1570 virt_max_cpus +=
1571 vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE;
1572 } else {
1573 virt_max_cpus = GIC_NCPU;
1574 }
1575
1576 if (max_cpus > virt_max_cpus) {
1577 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1578 "supported by machine 'mach-virt' (%d)",
1579 max_cpus, virt_max_cpus);
1580 exit(1);
1581 }
1582
1583 vms->smp_cpus = smp_cpus;
1584
1585 if (vms->virt && kvm_enabled()) {
1586 error_report("mach-virt: KVM does not support providing "
1587 "Virtualization extensions to the guest CPU");
1588 exit(1);
1589 }
1590
1591 create_fdt(vms);
1592
1593 possible_cpus = mc->possible_cpu_arch_ids(machine);
1594 for (n = 0; n < possible_cpus->len; n++) {
1595 Object *cpuobj;
1596 CPUState *cs;
1597
1598 if (n >= smp_cpus) {
1599 break;
1600 }
1601
1602 cpuobj = object_new(possible_cpus->cpus[n].type);
1603 object_property_set_int(cpuobj, possible_cpus->cpus[n].arch_id,
1604 "mp-affinity", NULL);
1605
1606 cs = CPU(cpuobj);
1607 cs->cpu_index = n;
1608
1609 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
1610 &error_fatal);
1611
1612 aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
1613
1614 if (!vms->secure) {
1615 object_property_set_bool(cpuobj, false, "has_el3", NULL);
1616 }
1617
1618 if (!vms->virt && object_property_find(cpuobj, "has_el2", NULL)) {
1619 object_property_set_bool(cpuobj, false, "has_el2", NULL);
1620 }
1621
1622 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
1623 object_property_set_int(cpuobj, vms->psci_conduit,
1624 "psci-conduit", NULL);
1625
1626 /* Secondary CPUs start in PSCI powered-down state */
1627 if (n > 0) {
1628 object_property_set_bool(cpuobj, true,
1629 "start-powered-off", NULL);
1630 }
1631 }
1632
1633 if (vmc->no_pmu && object_property_find(cpuobj, "pmu", NULL)) {
1634 object_property_set_bool(cpuobj, false, "pmu", NULL);
1635 }
1636
1637 if (object_property_find(cpuobj, "reset-cbar", NULL)) {
1638 object_property_set_int(cpuobj, vms->memmap[VIRT_CPUPERIPHS].base,
1639 "reset-cbar", &error_abort);
1640 }
1641
1642 object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
1643 &error_abort);
1644 if (vms->secure) {
1645 object_property_set_link(cpuobj, OBJECT(secure_sysmem),
1646 "secure-memory", &error_abort);
1647 }
1648
1649 object_property_set_bool(cpuobj, true, "realized", &error_fatal);
1650 object_unref(cpuobj);
1651 }
1652 fdt_add_timer_nodes(vms);
1653 fdt_add_cpu_nodes(vms);
1654
1655 if (!kvm_enabled()) {
1656 ARMCPU *cpu = ARM_CPU(first_cpu);
1657 bool aarch64 = object_property_get_bool(OBJECT(cpu), "aarch64", NULL);
1658
1659 if (aarch64 && vms->highmem) {
1660 int requested_pa_size, pamax = arm_pamax(cpu);
1661
1662 requested_pa_size = 64 - clz64(vms->highest_gpa);
1663 if (pamax < requested_pa_size) {
1664 error_report("VCPU supports less PA bits (%d) than requested "
1665 "by the memory map (%d)", pamax, requested_pa_size);
1666 exit(1);
1667 }
1668 }
1669 }
1670
1671 memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
1672 machine->ram_size);
1673 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, ram);
1674 if (machine->device_memory) {
1675 memory_region_add_subregion(sysmem, machine->device_memory->base,
1676 &machine->device_memory->mr);
1677 }
1678
1679 virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem);
1680
1681 create_gic(vms, pic);
1682
1683 fdt_add_pmu_nodes(vms);
1684
1685 create_uart(vms, pic, VIRT_UART, sysmem, serial_hd(0));
1686
1687 if (vms->secure) {
1688 create_secure_ram(vms, secure_sysmem);
1689 create_uart(vms, pic, VIRT_SECURE_UART, secure_sysmem, serial_hd(1));
1690 }
1691
1692 vms->highmem_ecam &= vms->highmem && (!firmware_loaded || aarch64);
1693
1694 create_rtc(vms, pic);
1695
1696 create_pcie(vms, pic);
1697
1698 create_gpio(vms, pic);
1699
1700 /* Create mmio transports, so the user can create virtio backends
1701 * (which will be automatically plugged in to the transports). If
1702 * no backend is created the transport will just sit harmlessly idle.
1703 */
1704 create_virtio_devices(vms, pic);
1705
1706 vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
1707 rom_set_fw(vms->fw_cfg);
1708
1709 create_platform_bus(vms, pic);
1710
1711 vms->bootinfo.ram_size = machine->ram_size;
1712 vms->bootinfo.kernel_filename = machine->kernel_filename;
1713 vms->bootinfo.kernel_cmdline = machine->kernel_cmdline;
1714 vms->bootinfo.initrd_filename = machine->initrd_filename;
1715 vms->bootinfo.nb_cpus = smp_cpus;
1716 vms->bootinfo.board_id = -1;
1717 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
1718 vms->bootinfo.get_dtb = machvirt_dtb;
1719 vms->bootinfo.skip_dtb_autoload = true;
1720 vms->bootinfo.firmware_loaded = firmware_loaded;
1721 arm_load_kernel(ARM_CPU(first_cpu), &vms->bootinfo);
1722
1723 vms->machine_done.notify = virt_machine_done;
1724 qemu_add_machine_init_done_notifier(&vms->machine_done);
1725 }
1726
1727 static bool virt_get_secure(Object *obj, Error **errp)
1728 {
1729 VirtMachineState *vms = VIRT_MACHINE(obj);
1730
1731 return vms->secure;
1732 }
1733
1734 static void virt_set_secure(Object *obj, bool value, Error **errp)
1735 {
1736 VirtMachineState *vms = VIRT_MACHINE(obj);
1737
1738 vms->secure = value;
1739 }
1740
1741 static bool virt_get_virt(Object *obj, Error **errp)
1742 {
1743 VirtMachineState *vms = VIRT_MACHINE(obj);
1744
1745 return vms->virt;
1746 }
1747
1748 static void virt_set_virt(Object *obj, bool value, Error **errp)
1749 {
1750 VirtMachineState *vms = VIRT_MACHINE(obj);
1751
1752 vms->virt = value;
1753 }
1754
1755 static bool virt_get_highmem(Object *obj, Error **errp)
1756 {
1757 VirtMachineState *vms = VIRT_MACHINE(obj);
1758
1759 return vms->highmem;
1760 }
1761
1762 static void virt_set_highmem(Object *obj, bool value, Error **errp)
1763 {
1764 VirtMachineState *vms = VIRT_MACHINE(obj);
1765
1766 vms->highmem = value;
1767 }
1768
1769 static bool virt_get_its(Object *obj, Error **errp)
1770 {
1771 VirtMachineState *vms = VIRT_MACHINE(obj);
1772
1773 return vms->its;
1774 }
1775
1776 static void virt_set_its(Object *obj, bool value, Error **errp)
1777 {
1778 VirtMachineState *vms = VIRT_MACHINE(obj);
1779
1780 vms->its = value;
1781 }
1782
1783 static char *virt_get_gic_version(Object *obj, Error **errp)
1784 {
1785 VirtMachineState *vms = VIRT_MACHINE(obj);
1786 const char *val = vms->gic_version == 3 ? "3" : "2";
1787
1788 return g_strdup(val);
1789 }
1790
1791 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
1792 {
1793 VirtMachineState *vms = VIRT_MACHINE(obj);
1794
1795 if (!strcmp(value, "3")) {
1796 vms->gic_version = 3;
1797 } else if (!strcmp(value, "2")) {
1798 vms->gic_version = 2;
1799 } else if (!strcmp(value, "host")) {
1800 vms->gic_version = 0; /* Will probe later */
1801 } else if (!strcmp(value, "max")) {
1802 vms->gic_version = -1; /* Will probe later */
1803 } else {
1804 error_setg(errp, "Invalid gic-version value");
1805 error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
1806 }
1807 }
1808
1809 static char *virt_get_iommu(Object *obj, Error **errp)
1810 {
1811 VirtMachineState *vms = VIRT_MACHINE(obj);
1812
1813 switch (vms->iommu) {
1814 case VIRT_IOMMU_NONE:
1815 return g_strdup("none");
1816 case VIRT_IOMMU_SMMUV3:
1817 return g_strdup("smmuv3");
1818 default:
1819 g_assert_not_reached();
1820 }
1821 }
1822
1823 static void virt_set_iommu(Object *obj, const char *value, Error **errp)
1824 {
1825 VirtMachineState *vms = VIRT_MACHINE(obj);
1826
1827 if (!strcmp(value, "smmuv3")) {
1828 vms->iommu = VIRT_IOMMU_SMMUV3;
1829 } else if (!strcmp(value, "none")) {
1830 vms->iommu = VIRT_IOMMU_NONE;
1831 } else {
1832 error_setg(errp, "Invalid iommu value");
1833 error_append_hint(errp, "Valid values are none, smmuv3.\n");
1834 }
1835 }
1836
1837 static CpuInstanceProperties
1838 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
1839 {
1840 MachineClass *mc = MACHINE_GET_CLASS(ms);
1841 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
1842
1843 assert(cpu_index < possible_cpus->len);
1844 return possible_cpus->cpus[cpu_index].props;
1845 }
1846
1847 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
1848 {
1849 return idx % nb_numa_nodes;
1850 }
1851
1852 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
1853 {
1854 int n;
1855 unsigned int max_cpus = ms->smp.max_cpus;
1856 VirtMachineState *vms = VIRT_MACHINE(ms);
1857
1858 if (ms->possible_cpus) {
1859 assert(ms->possible_cpus->len == max_cpus);
1860 return ms->possible_cpus;
1861 }
1862
1863 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
1864 sizeof(CPUArchId) * max_cpus);
1865 ms->possible_cpus->len = max_cpus;
1866 for (n = 0; n < ms->possible_cpus->len; n++) {
1867 ms->possible_cpus->cpus[n].type = ms->cpu_type;
1868 ms->possible_cpus->cpus[n].arch_id =
1869 virt_cpu_mp_affinity(vms, n);
1870 ms->possible_cpus->cpus[n].props.has_thread_id = true;
1871 ms->possible_cpus->cpus[n].props.thread_id = n;
1872 }
1873 return ms->possible_cpus;
1874 }
1875
1876 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
1877 DeviceState *dev, Error **errp)
1878 {
1879 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
1880
1881 if (vms->platform_bus_dev) {
1882 if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) {
1883 platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
1884 SYS_BUS_DEVICE(dev));
1885 }
1886 }
1887 }
1888
1889 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
1890 DeviceState *dev)
1891 {
1892 if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) {
1893 return HOTPLUG_HANDLER(machine);
1894 }
1895
1896 return NULL;
1897 }
1898
1899 /*
1900 * for arm64 kvm_type [7-0] encodes the requested number of bits
1901 * in the IPA address space
1902 */
1903 static int virt_kvm_type(MachineState *ms, const char *type_str)
1904 {
1905 VirtMachineState *vms = VIRT_MACHINE(ms);
1906 int max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms);
1907 int requested_pa_size;
1908
1909 /* we freeze the memory map to compute the highest gpa */
1910 virt_set_memmap(vms);
1911
1912 requested_pa_size = 64 - clz64(vms->highest_gpa);
1913
1914 if (requested_pa_size > max_vm_pa_size) {
1915 error_report("-m and ,maxmem option values "
1916 "require an IPA range (%d bits) larger than "
1917 "the one supported by the host (%d bits)",
1918 requested_pa_size, max_vm_pa_size);
1919 exit(1);
1920 }
1921 /*
1922 * By default we return 0 which corresponds to an implicit legacy
1923 * 40b IPA setting. Otherwise we return the actual requested PA
1924 * logsize
1925 */
1926 return requested_pa_size > 40 ? requested_pa_size : 0;
1927 }
1928
1929 static void virt_machine_class_init(ObjectClass *oc, void *data)
1930 {
1931 MachineClass *mc = MACHINE_CLASS(oc);
1932 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
1933
1934 mc->init = machvirt_init;
1935 /* Start with max_cpus set to 512, which is the maximum supported by KVM.
1936 * The value may be reduced later when we have more information about the
1937 * configuration of the particular instance.
1938 */
1939 mc->max_cpus = 512;
1940 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
1941 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
1942 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
1943 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM);
1944 mc->block_default_type = IF_VIRTIO;
1945 mc->no_cdrom = 1;
1946 mc->pci_allow_0_address = true;
1947 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
1948 mc->minimum_page_bits = 12;
1949 mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
1950 mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
1951 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
1952 mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
1953 mc->kvm_type = virt_kvm_type;
1954 assert(!mc->get_hotplug_handler);
1955 mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
1956 hc->plug = virt_machine_device_plug_cb;
1957 mc->numa_mem_supported = true;
1958 }
1959
1960 static void virt_instance_init(Object *obj)
1961 {
1962 VirtMachineState *vms = VIRT_MACHINE(obj);
1963 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1964
1965 /* EL3 is disabled by default on virt: this makes us consistent
1966 * between KVM and TCG for this board, and it also allows us to
1967 * boot UEFI blobs which assume no TrustZone support.
1968 */
1969 vms->secure = false;
1970 object_property_add_bool(obj, "secure", virt_get_secure,
1971 virt_set_secure, NULL);
1972 object_property_set_description(obj, "secure",
1973 "Set on/off to enable/disable the ARM "
1974 "Security Extensions (TrustZone)",
1975 NULL);
1976
1977 /* EL2 is also disabled by default, for similar reasons */
1978 vms->virt = false;
1979 object_property_add_bool(obj, "virtualization", virt_get_virt,
1980 virt_set_virt, NULL);
1981 object_property_set_description(obj, "virtualization",
1982 "Set on/off to enable/disable emulating a "
1983 "guest CPU which implements the ARM "
1984 "Virtualization Extensions",
1985 NULL);
1986
1987 /* High memory is enabled by default */
1988 vms->highmem = true;
1989 object_property_add_bool(obj, "highmem", virt_get_highmem,
1990 virt_set_highmem, NULL);
1991 object_property_set_description(obj, "highmem",
1992 "Set on/off to enable/disable using "
1993 "physical address space above 32 bits",
1994 NULL);
1995 /* Default GIC type is v2 */
1996 vms->gic_version = 2;
1997 object_property_add_str(obj, "gic-version", virt_get_gic_version,
1998 virt_set_gic_version, NULL);
1999 object_property_set_description(obj, "gic-version",
2000 "Set GIC version. "
2001 "Valid values are 2, 3 and host", NULL);
2002
2003 vms->highmem_ecam = !vmc->no_highmem_ecam;
2004
2005 if (vmc->no_its) {
2006 vms->its = false;
2007 } else {
2008 /* Default allows ITS instantiation */
2009 vms->its = true;
2010 object_property_add_bool(obj, "its", virt_get_its,
2011 virt_set_its, NULL);
2012 object_property_set_description(obj, "its",
2013 "Set on/off to enable/disable "
2014 "ITS instantiation",
2015 NULL);
2016 }
2017
2018 /* Default disallows iommu instantiation */
2019 vms->iommu = VIRT_IOMMU_NONE;
2020 object_property_add_str(obj, "iommu", virt_get_iommu, virt_set_iommu, NULL);
2021 object_property_set_description(obj, "iommu",
2022 "Set the IOMMU type. "
2023 "Valid values are none and smmuv3",
2024 NULL);
2025
2026 vms->irqmap = a15irqmap;
2027
2028 virt_flash_create(vms);
2029 }
2030
2031 static const TypeInfo virt_machine_info = {
2032 .name = TYPE_VIRT_MACHINE,
2033 .parent = TYPE_MACHINE,
2034 .abstract = true,
2035 .instance_size = sizeof(VirtMachineState),
2036 .class_size = sizeof(VirtMachineClass),
2037 .class_init = virt_machine_class_init,
2038 .instance_init = virt_instance_init,
2039 .interfaces = (InterfaceInfo[]) {
2040 { TYPE_HOTPLUG_HANDLER },
2041 { }
2042 },
2043 };
2044
2045 static void machvirt_machine_init(void)
2046 {
2047 type_register_static(&virt_machine_info);
2048 }
2049 type_init(machvirt_machine_init);
2050
2051 static void virt_machine_4_1_options(MachineClass *mc)
2052 {
2053 }
2054 DEFINE_VIRT_MACHINE_AS_LATEST(4, 1)
2055
2056 static void virt_machine_4_0_options(MachineClass *mc)
2057 {
2058 virt_machine_4_1_options(mc);
2059 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
2060 }
2061 DEFINE_VIRT_MACHINE(4, 0)
2062
2063 static void virt_machine_3_1_options(MachineClass *mc)
2064 {
2065 virt_machine_4_0_options(mc);
2066 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
2067 }
2068 DEFINE_VIRT_MACHINE(3, 1)
2069
2070 static void virt_machine_3_0_options(MachineClass *mc)
2071 {
2072 virt_machine_3_1_options(mc);
2073 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
2074 }
2075 DEFINE_VIRT_MACHINE(3, 0)
2076
2077 static void virt_machine_2_12_options(MachineClass *mc)
2078 {
2079 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2080
2081 virt_machine_3_0_options(mc);
2082 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
2083 vmc->no_highmem_ecam = true;
2084 mc->max_cpus = 255;
2085 }
2086 DEFINE_VIRT_MACHINE(2, 12)
2087
2088 static void virt_machine_2_11_options(MachineClass *mc)
2089 {
2090 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2091
2092 virt_machine_2_12_options(mc);
2093 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
2094 vmc->smbios_old_sys_ver = true;
2095 }
2096 DEFINE_VIRT_MACHINE(2, 11)
2097
2098 static void virt_machine_2_10_options(MachineClass *mc)
2099 {
2100 virt_machine_2_11_options(mc);
2101 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
2102 /* before 2.11 we never faulted accesses to bad addresses */
2103 mc->ignore_memory_transaction_failures = true;
2104 }
2105 DEFINE_VIRT_MACHINE(2, 10)
2106
2107 static void virt_machine_2_9_options(MachineClass *mc)
2108 {
2109 virt_machine_2_10_options(mc);
2110 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
2111 }
2112 DEFINE_VIRT_MACHINE(2, 9)
2113
2114 static void virt_machine_2_8_options(MachineClass *mc)
2115 {
2116 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2117
2118 virt_machine_2_9_options(mc);
2119 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
2120 /* For 2.8 and earlier we falsely claimed in the DT that
2121 * our timers were edge-triggered, not level-triggered.
2122 */
2123 vmc->claim_edge_triggered_timers = true;
2124 }
2125 DEFINE_VIRT_MACHINE(2, 8)
2126
2127 static void virt_machine_2_7_options(MachineClass *mc)
2128 {
2129 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2130
2131 virt_machine_2_8_options(mc);
2132 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
2133 /* ITS was introduced with 2.8 */
2134 vmc->no_its = true;
2135 /* Stick with 1K pages for migration compatibility */
2136 mc->minimum_page_bits = 0;
2137 }
2138 DEFINE_VIRT_MACHINE(2, 7)
2139
2140 static void virt_machine_2_6_options(MachineClass *mc)
2141 {
2142 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2143
2144 virt_machine_2_7_options(mc);
2145 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
2146 vmc->disallow_affinity_adjustment = true;
2147 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
2148 vmc->no_pmu = true;
2149 }
2150 DEFINE_VIRT_MACHINE(2, 6)