]> git.proxmox.com Git - mirror_qemu.git/blob - hw/arm/virt.c
Merge tag 'for_upstream' of https://git.kernel.org/pub/scm/virt/kvm/mst/qemu into...
[mirror_qemu.git] / hw / arm / virt.c
1 /*
2 * ARM mach-virt emulation
3 *
4 * Copyright (c) 2013 Linaro Limited
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
17 *
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
29 */
30
31 #include "qemu/osdep.h"
32 #include "qemu/datadir.h"
33 #include "qemu/units.h"
34 #include "qemu/option.h"
35 #include "monitor/qdev.h"
36 #include "qapi/error.h"
37 #include "hw/sysbus.h"
38 #include "hw/arm/boot.h"
39 #include "hw/arm/primecell.h"
40 #include "hw/arm/virt.h"
41 #include "hw/block/flash.h"
42 #include "hw/vfio/vfio-calxeda-xgmac.h"
43 #include "hw/vfio/vfio-amd-xgbe.h"
44 #include "hw/display/ramfb.h"
45 #include "net/net.h"
46 #include "sysemu/device_tree.h"
47 #include "sysemu/numa.h"
48 #include "sysemu/runstate.h"
49 #include "sysemu/tpm.h"
50 #include "sysemu/kvm.h"
51 #include "sysemu/hvf.h"
52 #include "hw/loader.h"
53 #include "qapi/error.h"
54 #include "qemu/bitops.h"
55 #include "qemu/error-report.h"
56 #include "qemu/module.h"
57 #include "hw/pci-host/gpex.h"
58 #include "hw/virtio/virtio-pci.h"
59 #include "hw/core/sysbus-fdt.h"
60 #include "hw/platform-bus.h"
61 #include "hw/qdev-properties.h"
62 #include "hw/arm/fdt.h"
63 #include "hw/intc/arm_gic.h"
64 #include "hw/intc/arm_gicv3_common.h"
65 #include "hw/irq.h"
66 #include "kvm_arm.h"
67 #include "hw/firmware/smbios.h"
68 #include "qapi/visitor.h"
69 #include "qapi/qapi-visit-common.h"
70 #include "standard-headers/linux/input.h"
71 #include "hw/arm/smmuv3.h"
72 #include "hw/acpi/acpi.h"
73 #include "target/arm/internals.h"
74 #include "hw/mem/memory-device.h"
75 #include "hw/mem/pc-dimm.h"
76 #include "hw/mem/nvdimm.h"
77 #include "hw/acpi/generic_event_device.h"
78 #include "hw/virtio/virtio-mem-pci.h"
79 #include "hw/virtio/virtio-iommu.h"
80 #include "hw/char/pl011.h"
81 #include "qemu/guest-random.h"
82
83 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
84 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
85 void *data) \
86 { \
87 MachineClass *mc = MACHINE_CLASS(oc); \
88 virt_machine_##major##_##minor##_options(mc); \
89 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
90 if (latest) { \
91 mc->alias = "virt"; \
92 } \
93 } \
94 static const TypeInfo machvirt_##major##_##minor##_info = { \
95 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
96 .parent = TYPE_VIRT_MACHINE, \
97 .class_init = virt_##major##_##minor##_class_init, \
98 }; \
99 static void machvirt_machine_##major##_##minor##_init(void) \
100 { \
101 type_register_static(&machvirt_##major##_##minor##_info); \
102 } \
103 type_init(machvirt_machine_##major##_##minor##_init);
104
105 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
106 DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
107 #define DEFINE_VIRT_MACHINE(major, minor) \
108 DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
109
110
111 /* Number of external interrupt lines to configure the GIC with */
112 #define NUM_IRQS 256
113
114 #define PLATFORM_BUS_NUM_IRQS 64
115
116 /* Legacy RAM limit in GB (< version 4.0) */
117 #define LEGACY_RAMLIMIT_GB 255
118 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB)
119
120 /* Addresses and sizes of our components.
121 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
122 * 128MB..256MB is used for miscellaneous device I/O.
123 * 256MB..1GB is reserved for possible future PCI support (ie where the
124 * PCI memory window will go if we add a PCI host controller).
125 * 1GB and up is RAM (which may happily spill over into the
126 * high memory region beyond 4GB).
127 * This represents a compromise between how much RAM can be given to
128 * a 32 bit VM and leaving space for expansion and in particular for PCI.
129 * Note that devices should generally be placed at multiples of 0x10000,
130 * to accommodate guests using 64K pages.
131 */
132 static const MemMapEntry base_memmap[] = {
133 /* Space up to 0x8000000 is reserved for a boot ROM */
134 [VIRT_FLASH] = { 0, 0x08000000 },
135 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
136 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
137 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
138 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
139 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 },
140 [VIRT_GIC_HYP] = { 0x08030000, 0x00010000 },
141 [VIRT_GIC_VCPU] = { 0x08040000, 0x00010000 },
142 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
143 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 },
144 /* This redistributor space allows up to 2*64kB*123 CPUs */
145 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 },
146 [VIRT_UART] = { 0x09000000, 0x00001000 },
147 [VIRT_RTC] = { 0x09010000, 0x00001000 },
148 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 },
149 [VIRT_GPIO] = { 0x09030000, 0x00001000 },
150 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 },
151 [VIRT_SMMU] = { 0x09050000, 0x00020000 },
152 [VIRT_PCDIMM_ACPI] = { 0x09070000, MEMORY_HOTPLUG_IO_LEN },
153 [VIRT_ACPI_GED] = { 0x09080000, ACPI_GED_EVT_SEL_LEN },
154 [VIRT_NVDIMM_ACPI] = { 0x09090000, NVDIMM_ACPI_IO_LEN},
155 [VIRT_PVTIME] = { 0x090a0000, 0x00010000 },
156 [VIRT_SECURE_GPIO] = { 0x090b0000, 0x00001000 },
157 [VIRT_MMIO] = { 0x0a000000, 0x00000200 },
158 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
159 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 },
160 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 },
161 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 },
162 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 },
163 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 },
164 /* Actual RAM size depends on initial RAM and device memory settings */
165 [VIRT_MEM] = { GiB, LEGACY_RAMLIMIT_BYTES },
166 };
167
168 /*
169 * Highmem IO Regions: This memory map is floating, located after the RAM.
170 * Each MemMapEntry base (GPA) will be dynamically computed, depending on the
171 * top of the RAM, so that its base get the same alignment as the size,
172 * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is
173 * less than 256GiB of RAM, the floating area starts at the 256GiB mark.
174 * Note the extended_memmap is sized so that it eventually also includes the
175 * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last
176 * index of base_memmap).
177 *
178 * The memory map for these Highmem IO Regions can be in legacy or compact
179 * layout, depending on 'compact-highmem' property. With legacy layout, the
180 * PA space for one specific region is always reserved, even if the region
181 * has been disabled or doesn't fit into the PA space. However, the PA space
182 * for the region won't be reserved in these circumstances with compact layout.
183 */
184 static MemMapEntry extended_memmap[] = {
185 /* Additional 64 MB redist region (can contain up to 512 redistributors) */
186 [VIRT_HIGH_GIC_REDIST2] = { 0x0, 64 * MiB },
187 [VIRT_HIGH_PCIE_ECAM] = { 0x0, 256 * MiB },
188 /* Second PCIe window */
189 [VIRT_HIGH_PCIE_MMIO] = { 0x0, 512 * GiB },
190 };
191
192 static const int a15irqmap[] = {
193 [VIRT_UART] = 1,
194 [VIRT_RTC] = 2,
195 [VIRT_PCIE] = 3, /* ... to 6 */
196 [VIRT_GPIO] = 7,
197 [VIRT_SECURE_UART] = 8,
198 [VIRT_ACPI_GED] = 9,
199 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
200 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
201 [VIRT_SMMU] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */
202 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
203 };
204
205 static const char *valid_cpus[] = {
206 ARM_CPU_TYPE_NAME("cortex-a7"),
207 ARM_CPU_TYPE_NAME("cortex-a15"),
208 ARM_CPU_TYPE_NAME("cortex-a35"),
209 ARM_CPU_TYPE_NAME("cortex-a53"),
210 ARM_CPU_TYPE_NAME("cortex-a55"),
211 ARM_CPU_TYPE_NAME("cortex-a57"),
212 ARM_CPU_TYPE_NAME("cortex-a72"),
213 ARM_CPU_TYPE_NAME("cortex-a76"),
214 ARM_CPU_TYPE_NAME("a64fx"),
215 ARM_CPU_TYPE_NAME("neoverse-n1"),
216 ARM_CPU_TYPE_NAME("host"),
217 ARM_CPU_TYPE_NAME("max"),
218 };
219
220 static bool cpu_type_valid(const char *cpu)
221 {
222 int i;
223
224 for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
225 if (strcmp(cpu, valid_cpus[i]) == 0) {
226 return true;
227 }
228 }
229 return false;
230 }
231
232 static void create_randomness(MachineState *ms, const char *node)
233 {
234 struct {
235 uint64_t kaslr;
236 uint8_t rng[32];
237 } seed;
238
239 if (qemu_guest_getrandom(&seed, sizeof(seed), NULL)) {
240 return;
241 }
242 qemu_fdt_setprop_u64(ms->fdt, node, "kaslr-seed", seed.kaslr);
243 qemu_fdt_setprop(ms->fdt, node, "rng-seed", seed.rng, sizeof(seed.rng));
244 }
245
246 static void create_fdt(VirtMachineState *vms)
247 {
248 MachineState *ms = MACHINE(vms);
249 int nb_numa_nodes = ms->numa_state->num_nodes;
250 void *fdt = create_device_tree(&vms->fdt_size);
251
252 if (!fdt) {
253 error_report("create_device_tree() failed");
254 exit(1);
255 }
256
257 ms->fdt = fdt;
258
259 /* Header */
260 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
261 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
262 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
263 qemu_fdt_setprop_string(fdt, "/", "model", "linux,dummy-virt");
264
265 /* /chosen must exist for load_dtb to fill in necessary properties later */
266 qemu_fdt_add_subnode(fdt, "/chosen");
267 if (vms->dtb_randomness) {
268 create_randomness(ms, "/chosen");
269 }
270
271 if (vms->secure) {
272 qemu_fdt_add_subnode(fdt, "/secure-chosen");
273 if (vms->dtb_randomness) {
274 create_randomness(ms, "/secure-chosen");
275 }
276 }
277
278 /* Clock node, for the benefit of the UART. The kernel device tree
279 * binding documentation claims the PL011 node clock properties are
280 * optional but in practice if you omit them the kernel refuses to
281 * probe for the device.
282 */
283 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
284 qemu_fdt_add_subnode(fdt, "/apb-pclk");
285 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
286 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
287 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
288 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
289 "clk24mhz");
290 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
291
292 if (nb_numa_nodes > 0 && ms->numa_state->have_numa_distance) {
293 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
294 uint32_t *matrix = g_malloc0(size);
295 int idx, i, j;
296
297 for (i = 0; i < nb_numa_nodes; i++) {
298 for (j = 0; j < nb_numa_nodes; j++) {
299 idx = (i * nb_numa_nodes + j) * 3;
300 matrix[idx + 0] = cpu_to_be32(i);
301 matrix[idx + 1] = cpu_to_be32(j);
302 matrix[idx + 2] =
303 cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
304 }
305 }
306
307 qemu_fdt_add_subnode(fdt, "/distance-map");
308 qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
309 "numa-distance-map-v1");
310 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
311 matrix, size);
312 g_free(matrix);
313 }
314 }
315
316 static void fdt_add_timer_nodes(const VirtMachineState *vms)
317 {
318 /* On real hardware these interrupts are level-triggered.
319 * On KVM they were edge-triggered before host kernel version 4.4,
320 * and level-triggered afterwards.
321 * On emulated QEMU they are level-triggered.
322 *
323 * Getting the DTB info about them wrong is awkward for some
324 * guest kernels:
325 * pre-4.8 ignore the DT and leave the interrupt configured
326 * with whatever the GIC reset value (or the bootloader) left it at
327 * 4.8 before rc6 honour the incorrect data by programming it back
328 * into the GIC, causing problems
329 * 4.8rc6 and later ignore the DT and always write "level triggered"
330 * into the GIC
331 *
332 * For backwards-compatibility, virt-2.8 and earlier will continue
333 * to say these are edge-triggered, but later machines will report
334 * the correct information.
335 */
336 ARMCPU *armcpu;
337 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
338 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
339 MachineState *ms = MACHINE(vms);
340
341 if (vmc->claim_edge_triggered_timers) {
342 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
343 }
344
345 if (vms->gic_version == VIRT_GIC_VERSION_2) {
346 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
347 GIC_FDT_IRQ_PPI_CPU_WIDTH,
348 (1 << MACHINE(vms)->smp.cpus) - 1);
349 }
350
351 qemu_fdt_add_subnode(ms->fdt, "/timer");
352
353 armcpu = ARM_CPU(qemu_get_cpu(0));
354 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
355 const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
356 qemu_fdt_setprop(ms->fdt, "/timer", "compatible",
357 compat, sizeof(compat));
358 } else {
359 qemu_fdt_setprop_string(ms->fdt, "/timer", "compatible",
360 "arm,armv7-timer");
361 }
362 qemu_fdt_setprop(ms->fdt, "/timer", "always-on", NULL, 0);
363 qemu_fdt_setprop_cells(ms->fdt, "/timer", "interrupts",
364 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
365 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
366 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
367 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
368 }
369
370 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
371 {
372 int cpu;
373 int addr_cells = 1;
374 const MachineState *ms = MACHINE(vms);
375 const VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
376 int smp_cpus = ms->smp.cpus;
377
378 /*
379 * See Linux Documentation/devicetree/bindings/arm/cpus.yaml
380 * On ARM v8 64-bit systems value should be set to 2,
381 * that corresponds to the MPIDR_EL1 register size.
382 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
383 * in the system, #address-cells can be set to 1, since
384 * MPIDR_EL1[63:32] bits are not used for CPUs
385 * identification.
386 *
387 * Here we actually don't know whether our system is 32- or 64-bit one.
388 * The simplest way to go is to examine affinity IDs of all our CPUs. If
389 * at least one of them has Aff3 populated, we set #address-cells to 2.
390 */
391 for (cpu = 0; cpu < smp_cpus; cpu++) {
392 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
393
394 if (armcpu->mp_affinity & ARM_AFF3_MASK) {
395 addr_cells = 2;
396 break;
397 }
398 }
399
400 qemu_fdt_add_subnode(ms->fdt, "/cpus");
401 qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#address-cells", addr_cells);
402 qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#size-cells", 0x0);
403
404 for (cpu = smp_cpus - 1; cpu >= 0; cpu--) {
405 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
406 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
407 CPUState *cs = CPU(armcpu);
408
409 qemu_fdt_add_subnode(ms->fdt, nodename);
410 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "cpu");
411 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
412 armcpu->dtb_compatible);
413
414 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED && smp_cpus > 1) {
415 qemu_fdt_setprop_string(ms->fdt, nodename,
416 "enable-method", "psci");
417 }
418
419 if (addr_cells == 2) {
420 qemu_fdt_setprop_u64(ms->fdt, nodename, "reg",
421 armcpu->mp_affinity);
422 } else {
423 qemu_fdt_setprop_cell(ms->fdt, nodename, "reg",
424 armcpu->mp_affinity);
425 }
426
427 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
428 qemu_fdt_setprop_cell(ms->fdt, nodename, "numa-node-id",
429 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
430 }
431
432 if (!vmc->no_cpu_topology) {
433 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle",
434 qemu_fdt_alloc_phandle(ms->fdt));
435 }
436
437 g_free(nodename);
438 }
439
440 if (!vmc->no_cpu_topology) {
441 /*
442 * Add vCPU topology description through fdt node cpu-map.
443 *
444 * See Linux Documentation/devicetree/bindings/cpu/cpu-topology.txt
445 * In a SMP system, the hierarchy of CPUs can be defined through
446 * four entities that are used to describe the layout of CPUs in
447 * the system: socket/cluster/core/thread.
448 *
449 * A socket node represents the boundary of system physical package
450 * and its child nodes must be one or more cluster nodes. A system
451 * can contain several layers of clustering within a single physical
452 * package and cluster nodes can be contained in parent cluster nodes.
453 *
454 * Note: currently we only support one layer of clustering within
455 * each physical package.
456 */
457 qemu_fdt_add_subnode(ms->fdt, "/cpus/cpu-map");
458
459 for (cpu = smp_cpus - 1; cpu >= 0; cpu--) {
460 char *cpu_path = g_strdup_printf("/cpus/cpu@%d", cpu);
461 char *map_path;
462
463 if (ms->smp.threads > 1) {
464 map_path = g_strdup_printf(
465 "/cpus/cpu-map/socket%d/cluster%d/core%d/thread%d",
466 cpu / (ms->smp.clusters * ms->smp.cores * ms->smp.threads),
467 (cpu / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters,
468 (cpu / ms->smp.threads) % ms->smp.cores,
469 cpu % ms->smp.threads);
470 } else {
471 map_path = g_strdup_printf(
472 "/cpus/cpu-map/socket%d/cluster%d/core%d",
473 cpu / (ms->smp.clusters * ms->smp.cores),
474 (cpu / ms->smp.cores) % ms->smp.clusters,
475 cpu % ms->smp.cores);
476 }
477 qemu_fdt_add_path(ms->fdt, map_path);
478 qemu_fdt_setprop_phandle(ms->fdt, map_path, "cpu", cpu_path);
479
480 g_free(map_path);
481 g_free(cpu_path);
482 }
483 }
484 }
485
486 static void fdt_add_its_gic_node(VirtMachineState *vms)
487 {
488 char *nodename;
489 MachineState *ms = MACHINE(vms);
490
491 vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
492 nodename = g_strdup_printf("/intc/its@%" PRIx64,
493 vms->memmap[VIRT_GIC_ITS].base);
494 qemu_fdt_add_subnode(ms->fdt, nodename);
495 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
496 "arm,gic-v3-its");
497 qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
498 qemu_fdt_setprop_cell(ms->fdt, nodename, "#msi-cells", 1);
499 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
500 2, vms->memmap[VIRT_GIC_ITS].base,
501 2, vms->memmap[VIRT_GIC_ITS].size);
502 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
503 g_free(nodename);
504 }
505
506 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
507 {
508 MachineState *ms = MACHINE(vms);
509 char *nodename;
510
511 nodename = g_strdup_printf("/intc/v2m@%" PRIx64,
512 vms->memmap[VIRT_GIC_V2M].base);
513 vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
514 qemu_fdt_add_subnode(ms->fdt, nodename);
515 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
516 "arm,gic-v2m-frame");
517 qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
518 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
519 2, vms->memmap[VIRT_GIC_V2M].base,
520 2, vms->memmap[VIRT_GIC_V2M].size);
521 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
522 g_free(nodename);
523 }
524
525 static void fdt_add_gic_node(VirtMachineState *vms)
526 {
527 MachineState *ms = MACHINE(vms);
528 char *nodename;
529
530 vms->gic_phandle = qemu_fdt_alloc_phandle(ms->fdt);
531 qemu_fdt_setprop_cell(ms->fdt, "/", "interrupt-parent", vms->gic_phandle);
532
533 nodename = g_strdup_printf("/intc@%" PRIx64,
534 vms->memmap[VIRT_GIC_DIST].base);
535 qemu_fdt_add_subnode(ms->fdt, nodename);
536 qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 3);
537 qemu_fdt_setprop(ms->fdt, nodename, "interrupt-controller", NULL, 0);
538 qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 0x2);
539 qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 0x2);
540 qemu_fdt_setprop(ms->fdt, nodename, "ranges", NULL, 0);
541 if (vms->gic_version != VIRT_GIC_VERSION_2) {
542 int nb_redist_regions = virt_gicv3_redist_region_count(vms);
543
544 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
545 "arm,gic-v3");
546
547 qemu_fdt_setprop_cell(ms->fdt, nodename,
548 "#redistributor-regions", nb_redist_regions);
549
550 if (nb_redist_regions == 1) {
551 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
552 2, vms->memmap[VIRT_GIC_DIST].base,
553 2, vms->memmap[VIRT_GIC_DIST].size,
554 2, vms->memmap[VIRT_GIC_REDIST].base,
555 2, vms->memmap[VIRT_GIC_REDIST].size);
556 } else {
557 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
558 2, vms->memmap[VIRT_GIC_DIST].base,
559 2, vms->memmap[VIRT_GIC_DIST].size,
560 2, vms->memmap[VIRT_GIC_REDIST].base,
561 2, vms->memmap[VIRT_GIC_REDIST].size,
562 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base,
563 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size);
564 }
565
566 if (vms->virt) {
567 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
568 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
569 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
570 }
571 } else {
572 /* 'cortex-a15-gic' means 'GIC v2' */
573 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
574 "arm,cortex-a15-gic");
575 if (!vms->virt) {
576 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
577 2, vms->memmap[VIRT_GIC_DIST].base,
578 2, vms->memmap[VIRT_GIC_DIST].size,
579 2, vms->memmap[VIRT_GIC_CPU].base,
580 2, vms->memmap[VIRT_GIC_CPU].size);
581 } else {
582 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
583 2, vms->memmap[VIRT_GIC_DIST].base,
584 2, vms->memmap[VIRT_GIC_DIST].size,
585 2, vms->memmap[VIRT_GIC_CPU].base,
586 2, vms->memmap[VIRT_GIC_CPU].size,
587 2, vms->memmap[VIRT_GIC_HYP].base,
588 2, vms->memmap[VIRT_GIC_HYP].size,
589 2, vms->memmap[VIRT_GIC_VCPU].base,
590 2, vms->memmap[VIRT_GIC_VCPU].size);
591 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
592 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
593 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
594 }
595 }
596
597 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->gic_phandle);
598 g_free(nodename);
599 }
600
601 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
602 {
603 ARMCPU *armcpu = ARM_CPU(first_cpu);
604 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
605 MachineState *ms = MACHINE(vms);
606
607 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
608 assert(!object_property_get_bool(OBJECT(armcpu), "pmu", NULL));
609 return;
610 }
611
612 if (vms->gic_version == VIRT_GIC_VERSION_2) {
613 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
614 GIC_FDT_IRQ_PPI_CPU_WIDTH,
615 (1 << MACHINE(vms)->smp.cpus) - 1);
616 }
617
618 qemu_fdt_add_subnode(ms->fdt, "/pmu");
619 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
620 const char compat[] = "arm,armv8-pmuv3";
621 qemu_fdt_setprop(ms->fdt, "/pmu", "compatible",
622 compat, sizeof(compat));
623 qemu_fdt_setprop_cells(ms->fdt, "/pmu", "interrupts",
624 GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
625 }
626 }
627
628 static inline DeviceState *create_acpi_ged(VirtMachineState *vms)
629 {
630 DeviceState *dev;
631 MachineState *ms = MACHINE(vms);
632 int irq = vms->irqmap[VIRT_ACPI_GED];
633 uint32_t event = ACPI_GED_PWR_DOWN_EVT;
634
635 if (ms->ram_slots) {
636 event |= ACPI_GED_MEM_HOTPLUG_EVT;
637 }
638
639 if (ms->nvdimms_state->is_enabled) {
640 event |= ACPI_GED_NVDIMM_HOTPLUG_EVT;
641 }
642
643 dev = qdev_new(TYPE_ACPI_GED);
644 qdev_prop_set_uint32(dev, "ged-event", event);
645
646 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_ACPI_GED].base);
647 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, vms->memmap[VIRT_PCDIMM_ACPI].base);
648 sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(vms->gic, irq));
649
650 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
651
652 return dev;
653 }
654
655 static void create_its(VirtMachineState *vms)
656 {
657 const char *itsclass = its_class_name();
658 DeviceState *dev;
659
660 if (!strcmp(itsclass, "arm-gicv3-its")) {
661 if (!vms->tcg_its) {
662 itsclass = NULL;
663 }
664 }
665
666 if (!itsclass) {
667 /* Do nothing if not supported */
668 return;
669 }
670
671 dev = qdev_new(itsclass);
672
673 object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(vms->gic),
674 &error_abort);
675 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
676 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
677
678 fdt_add_its_gic_node(vms);
679 vms->msi_controller = VIRT_MSI_CTRL_ITS;
680 }
681
682 static void create_v2m(VirtMachineState *vms)
683 {
684 int i;
685 int irq = vms->irqmap[VIRT_GIC_V2M];
686 DeviceState *dev;
687
688 dev = qdev_new("arm-gicv2m");
689 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
690 qdev_prop_set_uint32(dev, "base-spi", irq);
691 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
692 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
693
694 for (i = 0; i < NUM_GICV2M_SPIS; i++) {
695 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
696 qdev_get_gpio_in(vms->gic, irq + i));
697 }
698
699 fdt_add_v2m_gic_node(vms);
700 vms->msi_controller = VIRT_MSI_CTRL_GICV2M;
701 }
702
703 static void create_gic(VirtMachineState *vms, MemoryRegion *mem)
704 {
705 MachineState *ms = MACHINE(vms);
706 /* We create a standalone GIC */
707 SysBusDevice *gicbusdev;
708 const char *gictype;
709 int i;
710 unsigned int smp_cpus = ms->smp.cpus;
711 uint32_t nb_redist_regions = 0;
712 int revision;
713
714 if (vms->gic_version == VIRT_GIC_VERSION_2) {
715 gictype = gic_class_name();
716 } else {
717 gictype = gicv3_class_name();
718 }
719
720 switch (vms->gic_version) {
721 case VIRT_GIC_VERSION_2:
722 revision = 2;
723 break;
724 case VIRT_GIC_VERSION_3:
725 revision = 3;
726 break;
727 case VIRT_GIC_VERSION_4:
728 revision = 4;
729 break;
730 default:
731 g_assert_not_reached();
732 }
733 vms->gic = qdev_new(gictype);
734 qdev_prop_set_uint32(vms->gic, "revision", revision);
735 qdev_prop_set_uint32(vms->gic, "num-cpu", smp_cpus);
736 /* Note that the num-irq property counts both internal and external
737 * interrupts; there are always 32 of the former (mandated by GIC spec).
738 */
739 qdev_prop_set_uint32(vms->gic, "num-irq", NUM_IRQS + 32);
740 if (!kvm_irqchip_in_kernel()) {
741 qdev_prop_set_bit(vms->gic, "has-security-extensions", vms->secure);
742 }
743
744 if (vms->gic_version != VIRT_GIC_VERSION_2) {
745 uint32_t redist0_capacity = virt_redist_capacity(vms, VIRT_GIC_REDIST);
746 uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
747
748 nb_redist_regions = virt_gicv3_redist_region_count(vms);
749
750 qdev_prop_set_uint32(vms->gic, "len-redist-region-count",
751 nb_redist_regions);
752 qdev_prop_set_uint32(vms->gic, "redist-region-count[0]", redist0_count);
753
754 if (!kvm_irqchip_in_kernel()) {
755 if (vms->tcg_its) {
756 object_property_set_link(OBJECT(vms->gic), "sysmem",
757 OBJECT(mem), &error_fatal);
758 qdev_prop_set_bit(vms->gic, "has-lpi", true);
759 }
760 }
761
762 if (nb_redist_regions == 2) {
763 uint32_t redist1_capacity =
764 virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2);
765
766 qdev_prop_set_uint32(vms->gic, "redist-region-count[1]",
767 MIN(smp_cpus - redist0_count, redist1_capacity));
768 }
769 } else {
770 if (!kvm_irqchip_in_kernel()) {
771 qdev_prop_set_bit(vms->gic, "has-virtualization-extensions",
772 vms->virt);
773 }
774 }
775 gicbusdev = SYS_BUS_DEVICE(vms->gic);
776 sysbus_realize_and_unref(gicbusdev, &error_fatal);
777 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
778 if (vms->gic_version != VIRT_GIC_VERSION_2) {
779 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
780 if (nb_redist_regions == 2) {
781 sysbus_mmio_map(gicbusdev, 2,
782 vms->memmap[VIRT_HIGH_GIC_REDIST2].base);
783 }
784 } else {
785 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
786 if (vms->virt) {
787 sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base);
788 sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base);
789 }
790 }
791
792 /* Wire the outputs from each CPU's generic timer and the GICv3
793 * maintenance interrupt signal to the appropriate GIC PPI inputs,
794 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
795 */
796 for (i = 0; i < smp_cpus; i++) {
797 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
798 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
799 int irq;
800 /* Mapping from the output timer irq lines from the CPU to the
801 * GIC PPI inputs we use for the virt board.
802 */
803 const int timer_irq[] = {
804 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
805 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
806 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
807 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
808 };
809
810 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
811 qdev_connect_gpio_out(cpudev, irq,
812 qdev_get_gpio_in(vms->gic,
813 ppibase + timer_irq[irq]));
814 }
815
816 if (vms->gic_version != VIRT_GIC_VERSION_2) {
817 qemu_irq irq = qdev_get_gpio_in(vms->gic,
818 ppibase + ARCH_GIC_MAINT_IRQ);
819 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt",
820 0, irq);
821 } else if (vms->virt) {
822 qemu_irq irq = qdev_get_gpio_in(vms->gic,
823 ppibase + ARCH_GIC_MAINT_IRQ);
824 sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq);
825 }
826
827 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
828 qdev_get_gpio_in(vms->gic, ppibase
829 + VIRTUAL_PMU_IRQ));
830
831 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
832 sysbus_connect_irq(gicbusdev, i + smp_cpus,
833 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
834 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
835 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
836 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
837 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
838 }
839
840 fdt_add_gic_node(vms);
841
842 if (vms->gic_version != VIRT_GIC_VERSION_2 && vms->its) {
843 create_its(vms);
844 } else if (vms->gic_version == VIRT_GIC_VERSION_2) {
845 create_v2m(vms);
846 }
847 }
848
849 static void create_uart(const VirtMachineState *vms, int uart,
850 MemoryRegion *mem, Chardev *chr)
851 {
852 char *nodename;
853 hwaddr base = vms->memmap[uart].base;
854 hwaddr size = vms->memmap[uart].size;
855 int irq = vms->irqmap[uart];
856 const char compat[] = "arm,pl011\0arm,primecell";
857 const char clocknames[] = "uartclk\0apb_pclk";
858 DeviceState *dev = qdev_new(TYPE_PL011);
859 SysBusDevice *s = SYS_BUS_DEVICE(dev);
860 MachineState *ms = MACHINE(vms);
861
862 qdev_prop_set_chr(dev, "chardev", chr);
863 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
864 memory_region_add_subregion(mem, base,
865 sysbus_mmio_get_region(s, 0));
866 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
867
868 nodename = g_strdup_printf("/pl011@%" PRIx64, base);
869 qemu_fdt_add_subnode(ms->fdt, nodename);
870 /* Note that we can't use setprop_string because of the embedded NUL */
871 qemu_fdt_setprop(ms->fdt, nodename, "compatible",
872 compat, sizeof(compat));
873 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
874 2, base, 2, size);
875 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
876 GIC_FDT_IRQ_TYPE_SPI, irq,
877 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
878 qemu_fdt_setprop_cells(ms->fdt, nodename, "clocks",
879 vms->clock_phandle, vms->clock_phandle);
880 qemu_fdt_setprop(ms->fdt, nodename, "clock-names",
881 clocknames, sizeof(clocknames));
882
883 if (uart == VIRT_UART) {
884 qemu_fdt_setprop_string(ms->fdt, "/chosen", "stdout-path", nodename);
885 } else {
886 /* Mark as not usable by the normal world */
887 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
888 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
889
890 qemu_fdt_setprop_string(ms->fdt, "/secure-chosen", "stdout-path",
891 nodename);
892 }
893
894 g_free(nodename);
895 }
896
897 static void create_rtc(const VirtMachineState *vms)
898 {
899 char *nodename;
900 hwaddr base = vms->memmap[VIRT_RTC].base;
901 hwaddr size = vms->memmap[VIRT_RTC].size;
902 int irq = vms->irqmap[VIRT_RTC];
903 const char compat[] = "arm,pl031\0arm,primecell";
904 MachineState *ms = MACHINE(vms);
905
906 sysbus_create_simple("pl031", base, qdev_get_gpio_in(vms->gic, irq));
907
908 nodename = g_strdup_printf("/pl031@%" PRIx64, base);
909 qemu_fdt_add_subnode(ms->fdt, nodename);
910 qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
911 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
912 2, base, 2, size);
913 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
914 GIC_FDT_IRQ_TYPE_SPI, irq,
915 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
916 qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
917 qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
918 g_free(nodename);
919 }
920
921 static DeviceState *gpio_key_dev;
922 static void virt_powerdown_req(Notifier *n, void *opaque)
923 {
924 VirtMachineState *s = container_of(n, VirtMachineState, powerdown_notifier);
925
926 if (s->acpi_dev) {
927 acpi_send_event(s->acpi_dev, ACPI_POWER_DOWN_STATUS);
928 } else {
929 /* use gpio Pin 3 for power button event */
930 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
931 }
932 }
933
934 static void create_gpio_keys(char *fdt, DeviceState *pl061_dev,
935 uint32_t phandle)
936 {
937 gpio_key_dev = sysbus_create_simple("gpio-key", -1,
938 qdev_get_gpio_in(pl061_dev, 3));
939
940 qemu_fdt_add_subnode(fdt, "/gpio-keys");
941 qemu_fdt_setprop_string(fdt, "/gpio-keys", "compatible", "gpio-keys");
942
943 qemu_fdt_add_subnode(fdt, "/gpio-keys/poweroff");
944 qemu_fdt_setprop_string(fdt, "/gpio-keys/poweroff",
945 "label", "GPIO Key Poweroff");
946 qemu_fdt_setprop_cell(fdt, "/gpio-keys/poweroff", "linux,code",
947 KEY_POWER);
948 qemu_fdt_setprop_cells(fdt, "/gpio-keys/poweroff",
949 "gpios", phandle, 3, 0);
950 }
951
952 #define SECURE_GPIO_POWEROFF 0
953 #define SECURE_GPIO_RESET 1
954
955 static void create_secure_gpio_pwr(char *fdt, DeviceState *pl061_dev,
956 uint32_t phandle)
957 {
958 DeviceState *gpio_pwr_dev;
959
960 /* gpio-pwr */
961 gpio_pwr_dev = sysbus_create_simple("gpio-pwr", -1, NULL);
962
963 /* connect secure pl061 to gpio-pwr */
964 qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_RESET,
965 qdev_get_gpio_in_named(gpio_pwr_dev, "reset", 0));
966 qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_POWEROFF,
967 qdev_get_gpio_in_named(gpio_pwr_dev, "shutdown", 0));
968
969 qemu_fdt_add_subnode(fdt, "/gpio-poweroff");
970 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "compatible",
971 "gpio-poweroff");
972 qemu_fdt_setprop_cells(fdt, "/gpio-poweroff",
973 "gpios", phandle, SECURE_GPIO_POWEROFF, 0);
974 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "status", "disabled");
975 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "secure-status",
976 "okay");
977
978 qemu_fdt_add_subnode(fdt, "/gpio-restart");
979 qemu_fdt_setprop_string(fdt, "/gpio-restart", "compatible",
980 "gpio-restart");
981 qemu_fdt_setprop_cells(fdt, "/gpio-restart",
982 "gpios", phandle, SECURE_GPIO_RESET, 0);
983 qemu_fdt_setprop_string(fdt, "/gpio-restart", "status", "disabled");
984 qemu_fdt_setprop_string(fdt, "/gpio-restart", "secure-status",
985 "okay");
986 }
987
988 static void create_gpio_devices(const VirtMachineState *vms, int gpio,
989 MemoryRegion *mem)
990 {
991 char *nodename;
992 DeviceState *pl061_dev;
993 hwaddr base = vms->memmap[gpio].base;
994 hwaddr size = vms->memmap[gpio].size;
995 int irq = vms->irqmap[gpio];
996 const char compat[] = "arm,pl061\0arm,primecell";
997 SysBusDevice *s;
998 MachineState *ms = MACHINE(vms);
999
1000 pl061_dev = qdev_new("pl061");
1001 /* Pull lines down to 0 if not driven by the PL061 */
1002 qdev_prop_set_uint32(pl061_dev, "pullups", 0);
1003 qdev_prop_set_uint32(pl061_dev, "pulldowns", 0xff);
1004 s = SYS_BUS_DEVICE(pl061_dev);
1005 sysbus_realize_and_unref(s, &error_fatal);
1006 memory_region_add_subregion(mem, base, sysbus_mmio_get_region(s, 0));
1007 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
1008
1009 uint32_t phandle = qemu_fdt_alloc_phandle(ms->fdt);
1010 nodename = g_strdup_printf("/pl061@%" PRIx64, base);
1011 qemu_fdt_add_subnode(ms->fdt, nodename);
1012 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1013 2, base, 2, size);
1014 qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
1015 qemu_fdt_setprop_cell(ms->fdt, nodename, "#gpio-cells", 2);
1016 qemu_fdt_setprop(ms->fdt, nodename, "gpio-controller", NULL, 0);
1017 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
1018 GIC_FDT_IRQ_TYPE_SPI, irq,
1019 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
1020 qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
1021 qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
1022 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", phandle);
1023
1024 if (gpio != VIRT_GPIO) {
1025 /* Mark as not usable by the normal world */
1026 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1027 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1028 }
1029 g_free(nodename);
1030
1031 /* Child gpio devices */
1032 if (gpio == VIRT_GPIO) {
1033 create_gpio_keys(ms->fdt, pl061_dev, phandle);
1034 } else {
1035 create_secure_gpio_pwr(ms->fdt, pl061_dev, phandle);
1036 }
1037 }
1038
1039 static void create_virtio_devices(const VirtMachineState *vms)
1040 {
1041 int i;
1042 hwaddr size = vms->memmap[VIRT_MMIO].size;
1043 MachineState *ms = MACHINE(vms);
1044
1045 /* We create the transports in forwards order. Since qbus_realize()
1046 * prepends (not appends) new child buses, the incrementing loop below will
1047 * create a list of virtio-mmio buses with decreasing base addresses.
1048 *
1049 * When a -device option is processed from the command line,
1050 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
1051 * order. The upshot is that -device options in increasing command line
1052 * order are mapped to virtio-mmio buses with decreasing base addresses.
1053 *
1054 * When this code was originally written, that arrangement ensured that the
1055 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
1056 * the first -device on the command line. (The end-to-end order is a
1057 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
1058 * guest kernel's name-to-address assignment strategy.)
1059 *
1060 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
1061 * the message, if not necessarily the code, of commit 70161ff336.
1062 * Therefore the loop now establishes the inverse of the original intent.
1063 *
1064 * Unfortunately, we can't counteract the kernel change by reversing the
1065 * loop; it would break existing command lines.
1066 *
1067 * In any case, the kernel makes no guarantee about the stability of
1068 * enumeration order of virtio devices (as demonstrated by it changing
1069 * between kernel versions). For reliable and stable identification
1070 * of disks users must use UUIDs or similar mechanisms.
1071 */
1072 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
1073 int irq = vms->irqmap[VIRT_MMIO] + i;
1074 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
1075
1076 sysbus_create_simple("virtio-mmio", base,
1077 qdev_get_gpio_in(vms->gic, irq));
1078 }
1079
1080 /* We add dtb nodes in reverse order so that they appear in the finished
1081 * device tree lowest address first.
1082 *
1083 * Note that this mapping is independent of the loop above. The previous
1084 * loop influences virtio device to virtio transport assignment, whereas
1085 * this loop controls how virtio transports are laid out in the dtb.
1086 */
1087 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
1088 char *nodename;
1089 int irq = vms->irqmap[VIRT_MMIO] + i;
1090 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
1091
1092 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
1093 qemu_fdt_add_subnode(ms->fdt, nodename);
1094 qemu_fdt_setprop_string(ms->fdt, nodename,
1095 "compatible", "virtio,mmio");
1096 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1097 2, base, 2, size);
1098 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
1099 GIC_FDT_IRQ_TYPE_SPI, irq,
1100 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1101 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1102 g_free(nodename);
1103 }
1104 }
1105
1106 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
1107
1108 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms,
1109 const char *name,
1110 const char *alias_prop_name)
1111 {
1112 /*
1113 * Create a single flash device. We use the same parameters as
1114 * the flash devices on the Versatile Express board.
1115 */
1116 DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
1117
1118 qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
1119 qdev_prop_set_uint8(dev, "width", 4);
1120 qdev_prop_set_uint8(dev, "device-width", 2);
1121 qdev_prop_set_bit(dev, "big-endian", false);
1122 qdev_prop_set_uint16(dev, "id0", 0x89);
1123 qdev_prop_set_uint16(dev, "id1", 0x18);
1124 qdev_prop_set_uint16(dev, "id2", 0x00);
1125 qdev_prop_set_uint16(dev, "id3", 0x00);
1126 qdev_prop_set_string(dev, "name", name);
1127 object_property_add_child(OBJECT(vms), name, OBJECT(dev));
1128 object_property_add_alias(OBJECT(vms), alias_prop_name,
1129 OBJECT(dev), "drive");
1130 return PFLASH_CFI01(dev);
1131 }
1132
1133 static void virt_flash_create(VirtMachineState *vms)
1134 {
1135 vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0");
1136 vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1");
1137 }
1138
1139 static void virt_flash_map1(PFlashCFI01 *flash,
1140 hwaddr base, hwaddr size,
1141 MemoryRegion *sysmem)
1142 {
1143 DeviceState *dev = DEVICE(flash);
1144
1145 assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE));
1146 assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
1147 qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
1148 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1149
1150 memory_region_add_subregion(sysmem, base,
1151 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
1152 0));
1153 }
1154
1155 static void virt_flash_map(VirtMachineState *vms,
1156 MemoryRegion *sysmem,
1157 MemoryRegion *secure_sysmem)
1158 {
1159 /*
1160 * Map two flash devices to fill the VIRT_FLASH space in the memmap.
1161 * sysmem is the system memory space. secure_sysmem is the secure view
1162 * of the system, and the first flash device should be made visible only
1163 * there. The second flash device is visible to both secure and nonsecure.
1164 * If sysmem == secure_sysmem this means there is no separate Secure
1165 * address space and both flash devices are generally visible.
1166 */
1167 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1168 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1169
1170 virt_flash_map1(vms->flash[0], flashbase, flashsize,
1171 secure_sysmem);
1172 virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize,
1173 sysmem);
1174 }
1175
1176 static void virt_flash_fdt(VirtMachineState *vms,
1177 MemoryRegion *sysmem,
1178 MemoryRegion *secure_sysmem)
1179 {
1180 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1181 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1182 MachineState *ms = MACHINE(vms);
1183 char *nodename;
1184
1185 if (sysmem == secure_sysmem) {
1186 /* Report both flash devices as a single node in the DT */
1187 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
1188 qemu_fdt_add_subnode(ms->fdt, nodename);
1189 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1190 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1191 2, flashbase, 2, flashsize,
1192 2, flashbase + flashsize, 2, flashsize);
1193 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1194 g_free(nodename);
1195 } else {
1196 /*
1197 * Report the devices as separate nodes so we can mark one as
1198 * only visible to the secure world.
1199 */
1200 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
1201 qemu_fdt_add_subnode(ms->fdt, nodename);
1202 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1203 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1204 2, flashbase, 2, flashsize);
1205 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1206 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1207 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1208 g_free(nodename);
1209
1210 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase + flashsize);
1211 qemu_fdt_add_subnode(ms->fdt, nodename);
1212 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1213 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1214 2, flashbase + flashsize, 2, flashsize);
1215 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1216 g_free(nodename);
1217 }
1218 }
1219
1220 static bool virt_firmware_init(VirtMachineState *vms,
1221 MemoryRegion *sysmem,
1222 MemoryRegion *secure_sysmem)
1223 {
1224 int i;
1225 const char *bios_name;
1226 BlockBackend *pflash_blk0;
1227
1228 /* Map legacy -drive if=pflash to machine properties */
1229 for (i = 0; i < ARRAY_SIZE(vms->flash); i++) {
1230 pflash_cfi01_legacy_drive(vms->flash[i],
1231 drive_get(IF_PFLASH, 0, i));
1232 }
1233
1234 virt_flash_map(vms, sysmem, secure_sysmem);
1235
1236 pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]);
1237
1238 bios_name = MACHINE(vms)->firmware;
1239 if (bios_name) {
1240 char *fname;
1241 MemoryRegion *mr;
1242 int image_size;
1243
1244 if (pflash_blk0) {
1245 error_report("The contents of the first flash device may be "
1246 "specified with -bios or with -drive if=pflash... "
1247 "but you cannot use both options at once");
1248 exit(1);
1249 }
1250
1251 /* Fall back to -bios */
1252
1253 fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1254 if (!fname) {
1255 error_report("Could not find ROM image '%s'", bios_name);
1256 exit(1);
1257 }
1258 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0);
1259 image_size = load_image_mr(fname, mr);
1260 g_free(fname);
1261 if (image_size < 0) {
1262 error_report("Could not load ROM image '%s'", bios_name);
1263 exit(1);
1264 }
1265 }
1266
1267 return pflash_blk0 || bios_name;
1268 }
1269
1270 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
1271 {
1272 MachineState *ms = MACHINE(vms);
1273 hwaddr base = vms->memmap[VIRT_FW_CFG].base;
1274 hwaddr size = vms->memmap[VIRT_FW_CFG].size;
1275 FWCfgState *fw_cfg;
1276 char *nodename;
1277
1278 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
1279 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus);
1280
1281 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
1282 qemu_fdt_add_subnode(ms->fdt, nodename);
1283 qemu_fdt_setprop_string(ms->fdt, nodename,
1284 "compatible", "qemu,fw-cfg-mmio");
1285 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1286 2, base, 2, size);
1287 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1288 g_free(nodename);
1289 return fw_cfg;
1290 }
1291
1292 static void create_pcie_irq_map(const MachineState *ms,
1293 uint32_t gic_phandle,
1294 int first_irq, const char *nodename)
1295 {
1296 int devfn, pin;
1297 uint32_t full_irq_map[4 * 4 * 10] = { 0 };
1298 uint32_t *irq_map = full_irq_map;
1299
1300 for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
1301 for (pin = 0; pin < 4; pin++) {
1302 int irq_type = GIC_FDT_IRQ_TYPE_SPI;
1303 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
1304 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
1305 int i;
1306
1307 uint32_t map[] = {
1308 devfn << 8, 0, 0, /* devfn */
1309 pin + 1, /* PCI pin */
1310 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
1311
1312 /* Convert map to big endian */
1313 for (i = 0; i < 10; i++) {
1314 irq_map[i] = cpu_to_be32(map[i]);
1315 }
1316 irq_map += 10;
1317 }
1318 }
1319
1320 qemu_fdt_setprop(ms->fdt, nodename, "interrupt-map",
1321 full_irq_map, sizeof(full_irq_map));
1322
1323 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupt-map-mask",
1324 cpu_to_be16(PCI_DEVFN(3, 0)), /* Slot 3 */
1325 0, 0,
1326 0x7 /* PCI irq */);
1327 }
1328
1329 static void create_smmu(const VirtMachineState *vms,
1330 PCIBus *bus)
1331 {
1332 char *node;
1333 const char compat[] = "arm,smmu-v3";
1334 int irq = vms->irqmap[VIRT_SMMU];
1335 int i;
1336 hwaddr base = vms->memmap[VIRT_SMMU].base;
1337 hwaddr size = vms->memmap[VIRT_SMMU].size;
1338 const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
1339 DeviceState *dev;
1340 MachineState *ms = MACHINE(vms);
1341
1342 if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
1343 return;
1344 }
1345
1346 dev = qdev_new("arm-smmuv3");
1347
1348 object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus),
1349 &error_abort);
1350 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1351 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
1352 for (i = 0; i < NUM_SMMU_IRQS; i++) {
1353 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1354 qdev_get_gpio_in(vms->gic, irq + i));
1355 }
1356
1357 node = g_strdup_printf("/smmuv3@%" PRIx64, base);
1358 qemu_fdt_add_subnode(ms->fdt, node);
1359 qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
1360 qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg", 2, base, 2, size);
1361
1362 qemu_fdt_setprop_cells(ms->fdt, node, "interrupts",
1363 GIC_FDT_IRQ_TYPE_SPI, irq , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1364 GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1365 GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1366 GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1367
1368 qemu_fdt_setprop(ms->fdt, node, "interrupt-names", irq_names,
1369 sizeof(irq_names));
1370
1371 qemu_fdt_setprop(ms->fdt, node, "dma-coherent", NULL, 0);
1372
1373 qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
1374
1375 qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
1376 g_free(node);
1377 }
1378
1379 static void create_virtio_iommu_dt_bindings(VirtMachineState *vms)
1380 {
1381 const char compat[] = "virtio,pci-iommu\0pci1af4,1057";
1382 uint16_t bdf = vms->virtio_iommu_bdf;
1383 MachineState *ms = MACHINE(vms);
1384 char *node;
1385
1386 vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
1387
1388 node = g_strdup_printf("%s/virtio_iommu@%x,%x", vms->pciehb_nodename,
1389 PCI_SLOT(bdf), PCI_FUNC(bdf));
1390 qemu_fdt_add_subnode(ms->fdt, node);
1391 qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
1392 qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg",
1393 1, bdf << 8, 1, 0, 1, 0,
1394 1, 0, 1, 0);
1395
1396 qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
1397 qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
1398 g_free(node);
1399
1400 qemu_fdt_setprop_cells(ms->fdt, vms->pciehb_nodename, "iommu-map",
1401 0x0, vms->iommu_phandle, 0x0, bdf,
1402 bdf + 1, vms->iommu_phandle, bdf + 1, 0xffff - bdf);
1403 }
1404
1405 static void create_pcie(VirtMachineState *vms)
1406 {
1407 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1408 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
1409 hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base;
1410 hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size;
1411 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1412 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
1413 hwaddr base_ecam, size_ecam;
1414 hwaddr base = base_mmio;
1415 int nr_pcie_buses;
1416 int irq = vms->irqmap[VIRT_PCIE];
1417 MemoryRegion *mmio_alias;
1418 MemoryRegion *mmio_reg;
1419 MemoryRegion *ecam_alias;
1420 MemoryRegion *ecam_reg;
1421 DeviceState *dev;
1422 char *nodename;
1423 int i, ecam_id;
1424 PCIHostState *pci;
1425 MachineState *ms = MACHINE(vms);
1426
1427 dev = qdev_new(TYPE_GPEX_HOST);
1428 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1429
1430 ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
1431 base_ecam = vms->memmap[ecam_id].base;
1432 size_ecam = vms->memmap[ecam_id].size;
1433 nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
1434 /* Map only the first size_ecam bytes of ECAM space */
1435 ecam_alias = g_new0(MemoryRegion, 1);
1436 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1437 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1438 ecam_reg, 0, size_ecam);
1439 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1440
1441 /* Map the MMIO window into system address space so as to expose
1442 * the section of PCI MMIO space which starts at the same base address
1443 * (ie 1:1 mapping for that part of PCI MMIO space visible through
1444 * the window).
1445 */
1446 mmio_alias = g_new0(MemoryRegion, 1);
1447 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1448 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1449 mmio_reg, base_mmio, size_mmio);
1450 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1451
1452 if (vms->highmem_mmio) {
1453 /* Map high MMIO space */
1454 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1455
1456 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1457 mmio_reg, base_mmio_high, size_mmio_high);
1458 memory_region_add_subregion(get_system_memory(), base_mmio_high,
1459 high_mmio_alias);
1460 }
1461
1462 /* Map IO port space */
1463 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1464
1465 for (i = 0; i < GPEX_NUM_IRQS; i++) {
1466 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1467 qdev_get_gpio_in(vms->gic, irq + i));
1468 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
1469 }
1470
1471 pci = PCI_HOST_BRIDGE(dev);
1472 pci->bypass_iommu = vms->default_bus_bypass_iommu;
1473 vms->bus = pci->bus;
1474 if (vms->bus) {
1475 for (i = 0; i < nb_nics; i++) {
1476 NICInfo *nd = &nd_table[i];
1477
1478 if (!nd->model) {
1479 nd->model = g_strdup("virtio");
1480 }
1481
1482 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1483 }
1484 }
1485
1486 nodename = vms->pciehb_nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1487 qemu_fdt_add_subnode(ms->fdt, nodename);
1488 qemu_fdt_setprop_string(ms->fdt, nodename,
1489 "compatible", "pci-host-ecam-generic");
1490 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "pci");
1491 qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 3);
1492 qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 2);
1493 qemu_fdt_setprop_cell(ms->fdt, nodename, "linux,pci-domain", 0);
1494 qemu_fdt_setprop_cells(ms->fdt, nodename, "bus-range", 0,
1495 nr_pcie_buses - 1);
1496 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1497
1498 if (vms->msi_phandle) {
1499 qemu_fdt_setprop_cells(ms->fdt, nodename, "msi-map",
1500 0, vms->msi_phandle, 0, 0x10000);
1501 }
1502
1503 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1504 2, base_ecam, 2, size_ecam);
1505
1506 if (vms->highmem_mmio) {
1507 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
1508 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1509 2, base_pio, 2, size_pio,
1510 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1511 2, base_mmio, 2, size_mmio,
1512 1, FDT_PCI_RANGE_MMIO_64BIT,
1513 2, base_mmio_high,
1514 2, base_mmio_high, 2, size_mmio_high);
1515 } else {
1516 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
1517 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1518 2, base_pio, 2, size_pio,
1519 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1520 2, base_mmio, 2, size_mmio);
1521 }
1522
1523 qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 1);
1524 create_pcie_irq_map(ms, vms->gic_phandle, irq, nodename);
1525
1526 if (vms->iommu) {
1527 vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
1528
1529 switch (vms->iommu) {
1530 case VIRT_IOMMU_SMMUV3:
1531 create_smmu(vms, vms->bus);
1532 qemu_fdt_setprop_cells(ms->fdt, nodename, "iommu-map",
1533 0x0, vms->iommu_phandle, 0x0, 0x10000);
1534 break;
1535 default:
1536 g_assert_not_reached();
1537 }
1538 }
1539 }
1540
1541 static void create_platform_bus(VirtMachineState *vms)
1542 {
1543 DeviceState *dev;
1544 SysBusDevice *s;
1545 int i;
1546 MemoryRegion *sysmem = get_system_memory();
1547
1548 dev = qdev_new(TYPE_PLATFORM_BUS_DEVICE);
1549 dev->id = g_strdup(TYPE_PLATFORM_BUS_DEVICE);
1550 qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
1551 qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
1552 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1553 vms->platform_bus_dev = dev;
1554
1555 s = SYS_BUS_DEVICE(dev);
1556 for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
1557 int irq = vms->irqmap[VIRT_PLATFORM_BUS] + i;
1558 sysbus_connect_irq(s, i, qdev_get_gpio_in(vms->gic, irq));
1559 }
1560
1561 memory_region_add_subregion(sysmem,
1562 vms->memmap[VIRT_PLATFORM_BUS].base,
1563 sysbus_mmio_get_region(s, 0));
1564 }
1565
1566 static void create_tag_ram(MemoryRegion *tag_sysmem,
1567 hwaddr base, hwaddr size,
1568 const char *name)
1569 {
1570 MemoryRegion *tagram = g_new(MemoryRegion, 1);
1571
1572 memory_region_init_ram(tagram, NULL, name, size / 32, &error_fatal);
1573 memory_region_add_subregion(tag_sysmem, base / 32, tagram);
1574 }
1575
1576 static void create_secure_ram(VirtMachineState *vms,
1577 MemoryRegion *secure_sysmem,
1578 MemoryRegion *secure_tag_sysmem)
1579 {
1580 MemoryRegion *secram = g_new(MemoryRegion, 1);
1581 char *nodename;
1582 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1583 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1584 MachineState *ms = MACHINE(vms);
1585
1586 memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1587 &error_fatal);
1588 memory_region_add_subregion(secure_sysmem, base, secram);
1589
1590 nodename = g_strdup_printf("/secram@%" PRIx64, base);
1591 qemu_fdt_add_subnode(ms->fdt, nodename);
1592 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "memory");
1593 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 2, base, 2, size);
1594 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1595 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1596
1597 if (secure_tag_sysmem) {
1598 create_tag_ram(secure_tag_sysmem, base, size, "mach-virt.secure-tag");
1599 }
1600
1601 g_free(nodename);
1602 }
1603
1604 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1605 {
1606 const VirtMachineState *board = container_of(binfo, VirtMachineState,
1607 bootinfo);
1608 MachineState *ms = MACHINE(board);
1609
1610
1611 *fdt_size = board->fdt_size;
1612 return ms->fdt;
1613 }
1614
1615 static void virt_build_smbios(VirtMachineState *vms)
1616 {
1617 MachineClass *mc = MACHINE_GET_CLASS(vms);
1618 MachineState *ms = MACHINE(vms);
1619 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1620 uint8_t *smbios_tables, *smbios_anchor;
1621 size_t smbios_tables_len, smbios_anchor_len;
1622 struct smbios_phys_mem_area mem_array;
1623 const char *product = "QEMU Virtual Machine";
1624
1625 if (kvm_enabled()) {
1626 product = "KVM Virtual Machine";
1627 }
1628
1629 smbios_set_defaults("QEMU", product,
1630 vmc->smbios_old_sys_ver ? "1.0" : mc->name, false,
1631 true, SMBIOS_ENTRY_POINT_TYPE_64);
1632
1633 /* build the array of physical mem area from base_memmap */
1634 mem_array.address = vms->memmap[VIRT_MEM].base;
1635 mem_array.length = ms->ram_size;
1636
1637 smbios_get_tables(ms, &mem_array, 1,
1638 &smbios_tables, &smbios_tables_len,
1639 &smbios_anchor, &smbios_anchor_len,
1640 &error_fatal);
1641
1642 if (smbios_anchor) {
1643 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1644 smbios_tables, smbios_tables_len);
1645 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1646 smbios_anchor, smbios_anchor_len);
1647 }
1648 }
1649
1650 static
1651 void virt_machine_done(Notifier *notifier, void *data)
1652 {
1653 VirtMachineState *vms = container_of(notifier, VirtMachineState,
1654 machine_done);
1655 MachineState *ms = MACHINE(vms);
1656 ARMCPU *cpu = ARM_CPU(first_cpu);
1657 struct arm_boot_info *info = &vms->bootinfo;
1658 AddressSpace *as = arm_boot_address_space(cpu, info);
1659
1660 /*
1661 * If the user provided a dtb, we assume the dynamic sysbus nodes
1662 * already are integrated there. This corresponds to a use case where
1663 * the dynamic sysbus nodes are complex and their generation is not yet
1664 * supported. In that case the user can take charge of the guest dt
1665 * while qemu takes charge of the qom stuff.
1666 */
1667 if (info->dtb_filename == NULL) {
1668 platform_bus_add_all_fdt_nodes(ms->fdt, "/intc",
1669 vms->memmap[VIRT_PLATFORM_BUS].base,
1670 vms->memmap[VIRT_PLATFORM_BUS].size,
1671 vms->irqmap[VIRT_PLATFORM_BUS]);
1672 }
1673 if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) {
1674 exit(1);
1675 }
1676
1677 fw_cfg_add_extra_pci_roots(vms->bus, vms->fw_cfg);
1678
1679 virt_acpi_setup(vms);
1680 virt_build_smbios(vms);
1681 }
1682
1683 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1684 {
1685 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1686 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1687
1688 if (!vmc->disallow_affinity_adjustment) {
1689 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1690 * GIC's target-list limitations. 32-bit KVM hosts currently
1691 * always create clusters of 4 CPUs, but that is expected to
1692 * change when they gain support for gicv3. When KVM is enabled
1693 * it will override the changes we make here, therefore our
1694 * purposes are to make TCG consistent (with 64-bit KVM hosts)
1695 * and to improve SGI efficiency.
1696 */
1697 if (vms->gic_version == VIRT_GIC_VERSION_2) {
1698 clustersz = GIC_TARGETLIST_BITS;
1699 } else {
1700 clustersz = GICV3_TARGETLIST_BITS;
1701 }
1702 }
1703 return arm_cpu_mp_affinity(idx, clustersz);
1704 }
1705
1706 static inline bool *virt_get_high_memmap_enabled(VirtMachineState *vms,
1707 int index)
1708 {
1709 bool *enabled_array[] = {
1710 &vms->highmem_redists,
1711 &vms->highmem_ecam,
1712 &vms->highmem_mmio,
1713 };
1714
1715 assert(ARRAY_SIZE(extended_memmap) - VIRT_LOWMEMMAP_LAST ==
1716 ARRAY_SIZE(enabled_array));
1717 assert(index - VIRT_LOWMEMMAP_LAST < ARRAY_SIZE(enabled_array));
1718
1719 return enabled_array[index - VIRT_LOWMEMMAP_LAST];
1720 }
1721
1722 static void virt_set_high_memmap(VirtMachineState *vms,
1723 hwaddr base, int pa_bits)
1724 {
1725 hwaddr region_base, region_size;
1726 bool *region_enabled, fits;
1727 int i;
1728
1729 for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) {
1730 region_enabled = virt_get_high_memmap_enabled(vms, i);
1731 region_base = ROUND_UP(base, extended_memmap[i].size);
1732 region_size = extended_memmap[i].size;
1733
1734 vms->memmap[i].base = region_base;
1735 vms->memmap[i].size = region_size;
1736
1737 /*
1738 * Check each device to see if it fits in the PA space,
1739 * moving highest_gpa as we go. For compatibility, move
1740 * highest_gpa for disabled fitting devices as well, if
1741 * the compact layout has been disabled.
1742 *
1743 * For each device that doesn't fit, disable it.
1744 */
1745 fits = (region_base + region_size) <= BIT_ULL(pa_bits);
1746 *region_enabled &= fits;
1747 if (vms->highmem_compact && !*region_enabled) {
1748 continue;
1749 }
1750
1751 base = region_base + region_size;
1752 if (fits) {
1753 vms->highest_gpa = base - 1;
1754 }
1755 }
1756 }
1757
1758 static void virt_set_memmap(VirtMachineState *vms, int pa_bits)
1759 {
1760 MachineState *ms = MACHINE(vms);
1761 hwaddr base, device_memory_base, device_memory_size, memtop;
1762 int i;
1763
1764 vms->memmap = extended_memmap;
1765
1766 for (i = 0; i < ARRAY_SIZE(base_memmap); i++) {
1767 vms->memmap[i] = base_memmap[i];
1768 }
1769
1770 if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) {
1771 error_report("unsupported number of memory slots: %"PRIu64,
1772 ms->ram_slots);
1773 exit(EXIT_FAILURE);
1774 }
1775
1776 /*
1777 * !highmem is exactly the same as limiting the PA space to 32bit,
1778 * irrespective of the underlying capabilities of the HW.
1779 */
1780 if (!vms->highmem) {
1781 pa_bits = 32;
1782 }
1783
1784 /*
1785 * We compute the base of the high IO region depending on the
1786 * amount of initial and device memory. The device memory start/size
1787 * is aligned on 1GiB. We never put the high IO region below 256GiB
1788 * so that if maxram_size is < 255GiB we keep the legacy memory map.
1789 * The device region size assumes 1GiB page max alignment per slot.
1790 */
1791 device_memory_base =
1792 ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB);
1793 device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB;
1794
1795 /* Base address of the high IO region */
1796 memtop = base = device_memory_base + ROUND_UP(device_memory_size, GiB);
1797 if (memtop > BIT_ULL(pa_bits)) {
1798 error_report("Addressing limited to %d bits, but memory exceeds it by %llu bytes\n",
1799 pa_bits, memtop - BIT_ULL(pa_bits));
1800 exit(EXIT_FAILURE);
1801 }
1802 if (base < device_memory_base) {
1803 error_report("maxmem/slots too huge");
1804 exit(EXIT_FAILURE);
1805 }
1806 if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) {
1807 base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES;
1808 }
1809
1810 /* We know for sure that at least the memory fits in the PA space */
1811 vms->highest_gpa = memtop - 1;
1812
1813 virt_set_high_memmap(vms, base, pa_bits);
1814
1815 if (device_memory_size > 0) {
1816 ms->device_memory = g_malloc0(sizeof(*ms->device_memory));
1817 ms->device_memory->base = device_memory_base;
1818 memory_region_init(&ms->device_memory->mr, OBJECT(vms),
1819 "device-memory", device_memory_size);
1820 }
1821 }
1822
1823 /*
1824 * finalize_gic_version - Determines the final gic_version
1825 * according to the gic-version property
1826 *
1827 * Default GIC type is v2
1828 */
1829 static void finalize_gic_version(VirtMachineState *vms)
1830 {
1831 unsigned int max_cpus = MACHINE(vms)->smp.max_cpus;
1832
1833 if (kvm_enabled()) {
1834 int probe_bitmap;
1835
1836 if (!kvm_irqchip_in_kernel()) {
1837 switch (vms->gic_version) {
1838 case VIRT_GIC_VERSION_HOST:
1839 warn_report(
1840 "gic-version=host not relevant with kernel-irqchip=off "
1841 "as only userspace GICv2 is supported. Using v2 ...");
1842 return;
1843 case VIRT_GIC_VERSION_MAX:
1844 case VIRT_GIC_VERSION_NOSEL:
1845 vms->gic_version = VIRT_GIC_VERSION_2;
1846 return;
1847 case VIRT_GIC_VERSION_2:
1848 return;
1849 case VIRT_GIC_VERSION_3:
1850 error_report(
1851 "gic-version=3 is not supported with kernel-irqchip=off");
1852 exit(1);
1853 case VIRT_GIC_VERSION_4:
1854 error_report(
1855 "gic-version=4 is not supported with kernel-irqchip=off");
1856 exit(1);
1857 }
1858 }
1859
1860 probe_bitmap = kvm_arm_vgic_probe();
1861 if (!probe_bitmap) {
1862 error_report("Unable to determine GIC version supported by host");
1863 exit(1);
1864 }
1865
1866 switch (vms->gic_version) {
1867 case VIRT_GIC_VERSION_HOST:
1868 case VIRT_GIC_VERSION_MAX:
1869 if (probe_bitmap & KVM_ARM_VGIC_V3) {
1870 vms->gic_version = VIRT_GIC_VERSION_3;
1871 } else {
1872 vms->gic_version = VIRT_GIC_VERSION_2;
1873 }
1874 return;
1875 case VIRT_GIC_VERSION_NOSEL:
1876 if ((probe_bitmap & KVM_ARM_VGIC_V2) && max_cpus <= GIC_NCPU) {
1877 vms->gic_version = VIRT_GIC_VERSION_2;
1878 } else if (probe_bitmap & KVM_ARM_VGIC_V3) {
1879 /*
1880 * in case the host does not support v2 in-kernel emulation or
1881 * the end-user requested more than 8 VCPUs we now default
1882 * to v3. In any case defaulting to v2 would be broken.
1883 */
1884 vms->gic_version = VIRT_GIC_VERSION_3;
1885 } else if (max_cpus > GIC_NCPU) {
1886 error_report("host only supports in-kernel GICv2 emulation "
1887 "but more than 8 vcpus are requested");
1888 exit(1);
1889 }
1890 break;
1891 case VIRT_GIC_VERSION_2:
1892 case VIRT_GIC_VERSION_3:
1893 break;
1894 case VIRT_GIC_VERSION_4:
1895 error_report("gic-version=4 is not supported with KVM");
1896 exit(1);
1897 }
1898
1899 /* Check chosen version is effectively supported by the host */
1900 if (vms->gic_version == VIRT_GIC_VERSION_2 &&
1901 !(probe_bitmap & KVM_ARM_VGIC_V2)) {
1902 error_report("host does not support in-kernel GICv2 emulation");
1903 exit(1);
1904 } else if (vms->gic_version == VIRT_GIC_VERSION_3 &&
1905 !(probe_bitmap & KVM_ARM_VGIC_V3)) {
1906 error_report("host does not support in-kernel GICv3 emulation");
1907 exit(1);
1908 }
1909 return;
1910 }
1911
1912 /* TCG mode */
1913 switch (vms->gic_version) {
1914 case VIRT_GIC_VERSION_NOSEL:
1915 vms->gic_version = VIRT_GIC_VERSION_2;
1916 break;
1917 case VIRT_GIC_VERSION_MAX:
1918 if (module_object_class_by_name("arm-gicv3")) {
1919 /* CONFIG_ARM_GICV3_TCG was set */
1920 if (vms->virt) {
1921 /* GICv4 only makes sense if CPU has EL2 */
1922 vms->gic_version = VIRT_GIC_VERSION_4;
1923 } else {
1924 vms->gic_version = VIRT_GIC_VERSION_3;
1925 }
1926 } else {
1927 vms->gic_version = VIRT_GIC_VERSION_2;
1928 }
1929 break;
1930 case VIRT_GIC_VERSION_HOST:
1931 error_report("gic-version=host requires KVM");
1932 exit(1);
1933 case VIRT_GIC_VERSION_4:
1934 if (!vms->virt) {
1935 error_report("gic-version=4 requires virtualization enabled");
1936 exit(1);
1937 }
1938 break;
1939 case VIRT_GIC_VERSION_2:
1940 case VIRT_GIC_VERSION_3:
1941 break;
1942 }
1943 }
1944
1945 /*
1946 * virt_cpu_post_init() must be called after the CPUs have
1947 * been realized and the GIC has been created.
1948 */
1949 static void virt_cpu_post_init(VirtMachineState *vms, MemoryRegion *sysmem)
1950 {
1951 int max_cpus = MACHINE(vms)->smp.max_cpus;
1952 bool aarch64, pmu, steal_time;
1953 CPUState *cpu;
1954
1955 aarch64 = object_property_get_bool(OBJECT(first_cpu), "aarch64", NULL);
1956 pmu = object_property_get_bool(OBJECT(first_cpu), "pmu", NULL);
1957 steal_time = object_property_get_bool(OBJECT(first_cpu),
1958 "kvm-steal-time", NULL);
1959
1960 if (kvm_enabled()) {
1961 hwaddr pvtime_reg_base = vms->memmap[VIRT_PVTIME].base;
1962 hwaddr pvtime_reg_size = vms->memmap[VIRT_PVTIME].size;
1963
1964 if (steal_time) {
1965 MemoryRegion *pvtime = g_new(MemoryRegion, 1);
1966 hwaddr pvtime_size = max_cpus * PVTIME_SIZE_PER_CPU;
1967
1968 /* The memory region size must be a multiple of host page size. */
1969 pvtime_size = REAL_HOST_PAGE_ALIGN(pvtime_size);
1970
1971 if (pvtime_size > pvtime_reg_size) {
1972 error_report("pvtime requires a %" HWADDR_PRId
1973 " byte memory region for %d CPUs,"
1974 " but only %" HWADDR_PRId " has been reserved",
1975 pvtime_size, max_cpus, pvtime_reg_size);
1976 exit(1);
1977 }
1978
1979 memory_region_init_ram(pvtime, NULL, "pvtime", pvtime_size, NULL);
1980 memory_region_add_subregion(sysmem, pvtime_reg_base, pvtime);
1981 }
1982
1983 CPU_FOREACH(cpu) {
1984 if (pmu) {
1985 assert(arm_feature(&ARM_CPU(cpu)->env, ARM_FEATURE_PMU));
1986 if (kvm_irqchip_in_kernel()) {
1987 kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ));
1988 }
1989 kvm_arm_pmu_init(cpu);
1990 }
1991 if (steal_time) {
1992 kvm_arm_pvtime_init(cpu, pvtime_reg_base +
1993 cpu->cpu_index * PVTIME_SIZE_PER_CPU);
1994 }
1995 }
1996 } else {
1997 if (aarch64 && vms->highmem) {
1998 int requested_pa_size = 64 - clz64(vms->highest_gpa);
1999 int pamax = arm_pamax(ARM_CPU(first_cpu));
2000
2001 if (pamax < requested_pa_size) {
2002 error_report("VCPU supports less PA bits (%d) than "
2003 "requested by the memory map (%d)",
2004 pamax, requested_pa_size);
2005 exit(1);
2006 }
2007 }
2008 }
2009 }
2010
2011 static void machvirt_init(MachineState *machine)
2012 {
2013 VirtMachineState *vms = VIRT_MACHINE(machine);
2014 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
2015 MachineClass *mc = MACHINE_GET_CLASS(machine);
2016 const CPUArchIdList *possible_cpus;
2017 MemoryRegion *sysmem = get_system_memory();
2018 MemoryRegion *secure_sysmem = NULL;
2019 MemoryRegion *tag_sysmem = NULL;
2020 MemoryRegion *secure_tag_sysmem = NULL;
2021 int n, virt_max_cpus;
2022 bool firmware_loaded;
2023 bool aarch64 = true;
2024 bool has_ged = !vmc->no_ged;
2025 unsigned int smp_cpus = machine->smp.cpus;
2026 unsigned int max_cpus = machine->smp.max_cpus;
2027
2028 if (!cpu_type_valid(machine->cpu_type)) {
2029 error_report("mach-virt: CPU type %s not supported", machine->cpu_type);
2030 exit(1);
2031 }
2032
2033 possible_cpus = mc->possible_cpu_arch_ids(machine);
2034
2035 /*
2036 * In accelerated mode, the memory map is computed earlier in kvm_type()
2037 * to create a VM with the right number of IPA bits.
2038 */
2039 if (!vms->memmap) {
2040 Object *cpuobj;
2041 ARMCPU *armcpu;
2042 int pa_bits;
2043
2044 /*
2045 * Instanciate a temporary CPU object to find out about what
2046 * we are about to deal with. Once this is done, get rid of
2047 * the object.
2048 */
2049 cpuobj = object_new(possible_cpus->cpus[0].type);
2050 armcpu = ARM_CPU(cpuobj);
2051
2052 pa_bits = arm_pamax(armcpu);
2053
2054 object_unref(cpuobj);
2055
2056 virt_set_memmap(vms, pa_bits);
2057 }
2058
2059 /* We can probe only here because during property set
2060 * KVM is not available yet
2061 */
2062 finalize_gic_version(vms);
2063
2064 if (vms->secure) {
2065 /*
2066 * The Secure view of the world is the same as the NonSecure,
2067 * but with a few extra devices. Create it as a container region
2068 * containing the system memory at low priority; any secure-only
2069 * devices go in at higher priority and take precedence.
2070 */
2071 secure_sysmem = g_new(MemoryRegion, 1);
2072 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
2073 UINT64_MAX);
2074 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
2075 }
2076
2077 firmware_loaded = virt_firmware_init(vms, sysmem,
2078 secure_sysmem ?: sysmem);
2079
2080 /* If we have an EL3 boot ROM then the assumption is that it will
2081 * implement PSCI itself, so disable QEMU's internal implementation
2082 * so it doesn't get in the way. Instead of starting secondary
2083 * CPUs in PSCI powerdown state we will start them all running and
2084 * let the boot ROM sort them out.
2085 * The usual case is that we do use QEMU's PSCI implementation;
2086 * if the guest has EL2 then we will use SMC as the conduit,
2087 * and otherwise we will use HVC (for backwards compatibility and
2088 * because if we're using KVM then we must use HVC).
2089 */
2090 if (vms->secure && firmware_loaded) {
2091 vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
2092 } else if (vms->virt) {
2093 vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
2094 } else {
2095 vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
2096 }
2097
2098 /*
2099 * The maximum number of CPUs depends on the GIC version, or on how
2100 * many redistributors we can fit into the memory map (which in turn
2101 * depends on whether this is a GICv3 or v4).
2102 */
2103 if (vms->gic_version == VIRT_GIC_VERSION_2) {
2104 virt_max_cpus = GIC_NCPU;
2105 } else {
2106 virt_max_cpus = virt_redist_capacity(vms, VIRT_GIC_REDIST);
2107 if (vms->highmem_redists) {
2108 virt_max_cpus += virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2);
2109 }
2110 }
2111
2112 if (max_cpus > virt_max_cpus) {
2113 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
2114 "supported by machine 'mach-virt' (%d)",
2115 max_cpus, virt_max_cpus);
2116 if (vms->gic_version != VIRT_GIC_VERSION_2 && !vms->highmem_redists) {
2117 error_printf("Try 'highmem-redists=on' for more CPUs\n");
2118 }
2119
2120 exit(1);
2121 }
2122
2123 if (vms->secure && (kvm_enabled() || hvf_enabled())) {
2124 error_report("mach-virt: %s does not support providing "
2125 "Security extensions (TrustZone) to the guest CPU",
2126 kvm_enabled() ? "KVM" : "HVF");
2127 exit(1);
2128 }
2129
2130 if (vms->virt && (kvm_enabled() || hvf_enabled())) {
2131 error_report("mach-virt: %s does not support providing "
2132 "Virtualization extensions to the guest CPU",
2133 kvm_enabled() ? "KVM" : "HVF");
2134 exit(1);
2135 }
2136
2137 if (vms->mte && (kvm_enabled() || hvf_enabled())) {
2138 error_report("mach-virt: %s does not support providing "
2139 "MTE to the guest CPU",
2140 kvm_enabled() ? "KVM" : "HVF");
2141 exit(1);
2142 }
2143
2144 create_fdt(vms);
2145
2146 assert(possible_cpus->len == max_cpus);
2147 for (n = 0; n < possible_cpus->len; n++) {
2148 Object *cpuobj;
2149 CPUState *cs;
2150
2151 if (n >= smp_cpus) {
2152 break;
2153 }
2154
2155 cpuobj = object_new(possible_cpus->cpus[n].type);
2156 object_property_set_int(cpuobj, "mp-affinity",
2157 possible_cpus->cpus[n].arch_id, NULL);
2158
2159 cs = CPU(cpuobj);
2160 cs->cpu_index = n;
2161
2162 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
2163 &error_fatal);
2164
2165 aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
2166
2167 if (!vms->secure) {
2168 object_property_set_bool(cpuobj, "has_el3", false, NULL);
2169 }
2170
2171 if (!vms->virt && object_property_find(cpuobj, "has_el2")) {
2172 object_property_set_bool(cpuobj, "has_el2", false, NULL);
2173 }
2174
2175 if (vmc->kvm_no_adjvtime &&
2176 object_property_find(cpuobj, "kvm-no-adjvtime")) {
2177 object_property_set_bool(cpuobj, "kvm-no-adjvtime", true, NULL);
2178 }
2179
2180 if (vmc->no_kvm_steal_time &&
2181 object_property_find(cpuobj, "kvm-steal-time")) {
2182 object_property_set_bool(cpuobj, "kvm-steal-time", false, NULL);
2183 }
2184
2185 if (vmc->no_pmu && object_property_find(cpuobj, "pmu")) {
2186 object_property_set_bool(cpuobj, "pmu", false, NULL);
2187 }
2188
2189 if (vmc->no_tcg_lpa2 && object_property_find(cpuobj, "lpa2")) {
2190 object_property_set_bool(cpuobj, "lpa2", false, NULL);
2191 }
2192
2193 if (object_property_find(cpuobj, "reset-cbar")) {
2194 object_property_set_int(cpuobj, "reset-cbar",
2195 vms->memmap[VIRT_CPUPERIPHS].base,
2196 &error_abort);
2197 }
2198
2199 object_property_set_link(cpuobj, "memory", OBJECT(sysmem),
2200 &error_abort);
2201 if (vms->secure) {
2202 object_property_set_link(cpuobj, "secure-memory",
2203 OBJECT(secure_sysmem), &error_abort);
2204 }
2205
2206 if (vms->mte) {
2207 /* Create the memory region only once, but link to all cpus. */
2208 if (!tag_sysmem) {
2209 /*
2210 * The property exists only if MemTag is supported.
2211 * If it is, we must allocate the ram to back that up.
2212 */
2213 if (!object_property_find(cpuobj, "tag-memory")) {
2214 error_report("MTE requested, but not supported "
2215 "by the guest CPU");
2216 exit(1);
2217 }
2218
2219 tag_sysmem = g_new(MemoryRegion, 1);
2220 memory_region_init(tag_sysmem, OBJECT(machine),
2221 "tag-memory", UINT64_MAX / 32);
2222
2223 if (vms->secure) {
2224 secure_tag_sysmem = g_new(MemoryRegion, 1);
2225 memory_region_init(secure_tag_sysmem, OBJECT(machine),
2226 "secure-tag-memory", UINT64_MAX / 32);
2227
2228 /* As with ram, secure-tag takes precedence over tag. */
2229 memory_region_add_subregion_overlap(secure_tag_sysmem, 0,
2230 tag_sysmem, -1);
2231 }
2232 }
2233
2234 object_property_set_link(cpuobj, "tag-memory", OBJECT(tag_sysmem),
2235 &error_abort);
2236 if (vms->secure) {
2237 object_property_set_link(cpuobj, "secure-tag-memory",
2238 OBJECT(secure_tag_sysmem),
2239 &error_abort);
2240 }
2241 }
2242
2243 qdev_realize(DEVICE(cpuobj), NULL, &error_fatal);
2244 object_unref(cpuobj);
2245 }
2246 fdt_add_timer_nodes(vms);
2247 fdt_add_cpu_nodes(vms);
2248
2249 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base,
2250 machine->ram);
2251 if (machine->device_memory) {
2252 memory_region_add_subregion(sysmem, machine->device_memory->base,
2253 &machine->device_memory->mr);
2254 }
2255
2256 virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem);
2257
2258 create_gic(vms, sysmem);
2259
2260 virt_cpu_post_init(vms, sysmem);
2261
2262 fdt_add_pmu_nodes(vms);
2263
2264 create_uart(vms, VIRT_UART, sysmem, serial_hd(0));
2265
2266 if (vms->secure) {
2267 create_secure_ram(vms, secure_sysmem, secure_tag_sysmem);
2268 create_uart(vms, VIRT_SECURE_UART, secure_sysmem, serial_hd(1));
2269 }
2270
2271 if (tag_sysmem) {
2272 create_tag_ram(tag_sysmem, vms->memmap[VIRT_MEM].base,
2273 machine->ram_size, "mach-virt.tag");
2274 }
2275
2276 vms->highmem_ecam &= (!firmware_loaded || aarch64);
2277
2278 create_rtc(vms);
2279
2280 create_pcie(vms);
2281
2282 if (has_ged && aarch64 && firmware_loaded && virt_is_acpi_enabled(vms)) {
2283 vms->acpi_dev = create_acpi_ged(vms);
2284 } else {
2285 create_gpio_devices(vms, VIRT_GPIO, sysmem);
2286 }
2287
2288 if (vms->secure && !vmc->no_secure_gpio) {
2289 create_gpio_devices(vms, VIRT_SECURE_GPIO, secure_sysmem);
2290 }
2291
2292 /* connect powerdown request */
2293 vms->powerdown_notifier.notify = virt_powerdown_req;
2294 qemu_register_powerdown_notifier(&vms->powerdown_notifier);
2295
2296 /* Create mmio transports, so the user can create virtio backends
2297 * (which will be automatically plugged in to the transports). If
2298 * no backend is created the transport will just sit harmlessly idle.
2299 */
2300 create_virtio_devices(vms);
2301
2302 vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
2303 rom_set_fw(vms->fw_cfg);
2304
2305 create_platform_bus(vms);
2306
2307 if (machine->nvdimms_state->is_enabled) {
2308 const struct AcpiGenericAddress arm_virt_nvdimm_acpi_dsmio = {
2309 .space_id = AML_AS_SYSTEM_MEMORY,
2310 .address = vms->memmap[VIRT_NVDIMM_ACPI].base,
2311 .bit_width = NVDIMM_ACPI_IO_LEN << 3
2312 };
2313
2314 nvdimm_init_acpi_state(machine->nvdimms_state, sysmem,
2315 arm_virt_nvdimm_acpi_dsmio,
2316 vms->fw_cfg, OBJECT(vms));
2317 }
2318
2319 vms->bootinfo.ram_size = machine->ram_size;
2320 vms->bootinfo.board_id = -1;
2321 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
2322 vms->bootinfo.get_dtb = machvirt_dtb;
2323 vms->bootinfo.skip_dtb_autoload = true;
2324 vms->bootinfo.firmware_loaded = firmware_loaded;
2325 vms->bootinfo.psci_conduit = vms->psci_conduit;
2326 arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo);
2327
2328 vms->machine_done.notify = virt_machine_done;
2329 qemu_add_machine_init_done_notifier(&vms->machine_done);
2330 }
2331
2332 static bool virt_get_secure(Object *obj, Error **errp)
2333 {
2334 VirtMachineState *vms = VIRT_MACHINE(obj);
2335
2336 return vms->secure;
2337 }
2338
2339 static void virt_set_secure(Object *obj, bool value, Error **errp)
2340 {
2341 VirtMachineState *vms = VIRT_MACHINE(obj);
2342
2343 vms->secure = value;
2344 }
2345
2346 static bool virt_get_virt(Object *obj, Error **errp)
2347 {
2348 VirtMachineState *vms = VIRT_MACHINE(obj);
2349
2350 return vms->virt;
2351 }
2352
2353 static void virt_set_virt(Object *obj, bool value, Error **errp)
2354 {
2355 VirtMachineState *vms = VIRT_MACHINE(obj);
2356
2357 vms->virt = value;
2358 }
2359
2360 static bool virt_get_highmem(Object *obj, Error **errp)
2361 {
2362 VirtMachineState *vms = VIRT_MACHINE(obj);
2363
2364 return vms->highmem;
2365 }
2366
2367 static void virt_set_highmem(Object *obj, bool value, Error **errp)
2368 {
2369 VirtMachineState *vms = VIRT_MACHINE(obj);
2370
2371 vms->highmem = value;
2372 }
2373
2374 static bool virt_get_compact_highmem(Object *obj, Error **errp)
2375 {
2376 VirtMachineState *vms = VIRT_MACHINE(obj);
2377
2378 return vms->highmem_compact;
2379 }
2380
2381 static void virt_set_compact_highmem(Object *obj, bool value, Error **errp)
2382 {
2383 VirtMachineState *vms = VIRT_MACHINE(obj);
2384
2385 vms->highmem_compact = value;
2386 }
2387
2388 static bool virt_get_highmem_redists(Object *obj, Error **errp)
2389 {
2390 VirtMachineState *vms = VIRT_MACHINE(obj);
2391
2392 return vms->highmem_redists;
2393 }
2394
2395 static void virt_set_highmem_redists(Object *obj, bool value, Error **errp)
2396 {
2397 VirtMachineState *vms = VIRT_MACHINE(obj);
2398
2399 vms->highmem_redists = value;
2400 }
2401
2402 static bool virt_get_highmem_ecam(Object *obj, Error **errp)
2403 {
2404 VirtMachineState *vms = VIRT_MACHINE(obj);
2405
2406 return vms->highmem_ecam;
2407 }
2408
2409 static void virt_set_highmem_ecam(Object *obj, bool value, Error **errp)
2410 {
2411 VirtMachineState *vms = VIRT_MACHINE(obj);
2412
2413 vms->highmem_ecam = value;
2414 }
2415
2416 static bool virt_get_highmem_mmio(Object *obj, Error **errp)
2417 {
2418 VirtMachineState *vms = VIRT_MACHINE(obj);
2419
2420 return vms->highmem_mmio;
2421 }
2422
2423 static void virt_set_highmem_mmio(Object *obj, bool value, Error **errp)
2424 {
2425 VirtMachineState *vms = VIRT_MACHINE(obj);
2426
2427 vms->highmem_mmio = value;
2428 }
2429
2430
2431 static bool virt_get_its(Object *obj, Error **errp)
2432 {
2433 VirtMachineState *vms = VIRT_MACHINE(obj);
2434
2435 return vms->its;
2436 }
2437
2438 static void virt_set_its(Object *obj, bool value, Error **errp)
2439 {
2440 VirtMachineState *vms = VIRT_MACHINE(obj);
2441
2442 vms->its = value;
2443 }
2444
2445 static bool virt_get_dtb_randomness(Object *obj, Error **errp)
2446 {
2447 VirtMachineState *vms = VIRT_MACHINE(obj);
2448
2449 return vms->dtb_randomness;
2450 }
2451
2452 static void virt_set_dtb_randomness(Object *obj, bool value, Error **errp)
2453 {
2454 VirtMachineState *vms = VIRT_MACHINE(obj);
2455
2456 vms->dtb_randomness = value;
2457 }
2458
2459 static char *virt_get_oem_id(Object *obj, Error **errp)
2460 {
2461 VirtMachineState *vms = VIRT_MACHINE(obj);
2462
2463 return g_strdup(vms->oem_id);
2464 }
2465
2466 static void virt_set_oem_id(Object *obj, const char *value, Error **errp)
2467 {
2468 VirtMachineState *vms = VIRT_MACHINE(obj);
2469 size_t len = strlen(value);
2470
2471 if (len > 6) {
2472 error_setg(errp,
2473 "User specified oem-id value is bigger than 6 bytes in size");
2474 return;
2475 }
2476
2477 strncpy(vms->oem_id, value, 6);
2478 }
2479
2480 static char *virt_get_oem_table_id(Object *obj, Error **errp)
2481 {
2482 VirtMachineState *vms = VIRT_MACHINE(obj);
2483
2484 return g_strdup(vms->oem_table_id);
2485 }
2486
2487 static void virt_set_oem_table_id(Object *obj, const char *value,
2488 Error **errp)
2489 {
2490 VirtMachineState *vms = VIRT_MACHINE(obj);
2491 size_t len = strlen(value);
2492
2493 if (len > 8) {
2494 error_setg(errp,
2495 "User specified oem-table-id value is bigger than 8 bytes in size");
2496 return;
2497 }
2498 strncpy(vms->oem_table_id, value, 8);
2499 }
2500
2501
2502 bool virt_is_acpi_enabled(VirtMachineState *vms)
2503 {
2504 if (vms->acpi == ON_OFF_AUTO_OFF) {
2505 return false;
2506 }
2507 return true;
2508 }
2509
2510 static void virt_get_acpi(Object *obj, Visitor *v, const char *name,
2511 void *opaque, Error **errp)
2512 {
2513 VirtMachineState *vms = VIRT_MACHINE(obj);
2514 OnOffAuto acpi = vms->acpi;
2515
2516 visit_type_OnOffAuto(v, name, &acpi, errp);
2517 }
2518
2519 static void virt_set_acpi(Object *obj, Visitor *v, const char *name,
2520 void *opaque, Error **errp)
2521 {
2522 VirtMachineState *vms = VIRT_MACHINE(obj);
2523
2524 visit_type_OnOffAuto(v, name, &vms->acpi, errp);
2525 }
2526
2527 static bool virt_get_ras(Object *obj, Error **errp)
2528 {
2529 VirtMachineState *vms = VIRT_MACHINE(obj);
2530
2531 return vms->ras;
2532 }
2533
2534 static void virt_set_ras(Object *obj, bool value, Error **errp)
2535 {
2536 VirtMachineState *vms = VIRT_MACHINE(obj);
2537
2538 vms->ras = value;
2539 }
2540
2541 static bool virt_get_mte(Object *obj, Error **errp)
2542 {
2543 VirtMachineState *vms = VIRT_MACHINE(obj);
2544
2545 return vms->mte;
2546 }
2547
2548 static void virt_set_mte(Object *obj, bool value, Error **errp)
2549 {
2550 VirtMachineState *vms = VIRT_MACHINE(obj);
2551
2552 vms->mte = value;
2553 }
2554
2555 static char *virt_get_gic_version(Object *obj, Error **errp)
2556 {
2557 VirtMachineState *vms = VIRT_MACHINE(obj);
2558 const char *val;
2559
2560 switch (vms->gic_version) {
2561 case VIRT_GIC_VERSION_4:
2562 val = "4";
2563 break;
2564 case VIRT_GIC_VERSION_3:
2565 val = "3";
2566 break;
2567 default:
2568 val = "2";
2569 break;
2570 }
2571 return g_strdup(val);
2572 }
2573
2574 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
2575 {
2576 VirtMachineState *vms = VIRT_MACHINE(obj);
2577
2578 if (!strcmp(value, "4")) {
2579 vms->gic_version = VIRT_GIC_VERSION_4;
2580 } else if (!strcmp(value, "3")) {
2581 vms->gic_version = VIRT_GIC_VERSION_3;
2582 } else if (!strcmp(value, "2")) {
2583 vms->gic_version = VIRT_GIC_VERSION_2;
2584 } else if (!strcmp(value, "host")) {
2585 vms->gic_version = VIRT_GIC_VERSION_HOST; /* Will probe later */
2586 } else if (!strcmp(value, "max")) {
2587 vms->gic_version = VIRT_GIC_VERSION_MAX; /* Will probe later */
2588 } else {
2589 error_setg(errp, "Invalid gic-version value");
2590 error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
2591 }
2592 }
2593
2594 static char *virt_get_iommu(Object *obj, Error **errp)
2595 {
2596 VirtMachineState *vms = VIRT_MACHINE(obj);
2597
2598 switch (vms->iommu) {
2599 case VIRT_IOMMU_NONE:
2600 return g_strdup("none");
2601 case VIRT_IOMMU_SMMUV3:
2602 return g_strdup("smmuv3");
2603 default:
2604 g_assert_not_reached();
2605 }
2606 }
2607
2608 static void virt_set_iommu(Object *obj, const char *value, Error **errp)
2609 {
2610 VirtMachineState *vms = VIRT_MACHINE(obj);
2611
2612 if (!strcmp(value, "smmuv3")) {
2613 vms->iommu = VIRT_IOMMU_SMMUV3;
2614 } else if (!strcmp(value, "none")) {
2615 vms->iommu = VIRT_IOMMU_NONE;
2616 } else {
2617 error_setg(errp, "Invalid iommu value");
2618 error_append_hint(errp, "Valid values are none, smmuv3.\n");
2619 }
2620 }
2621
2622 static bool virt_get_default_bus_bypass_iommu(Object *obj, Error **errp)
2623 {
2624 VirtMachineState *vms = VIRT_MACHINE(obj);
2625
2626 return vms->default_bus_bypass_iommu;
2627 }
2628
2629 static void virt_set_default_bus_bypass_iommu(Object *obj, bool value,
2630 Error **errp)
2631 {
2632 VirtMachineState *vms = VIRT_MACHINE(obj);
2633
2634 vms->default_bus_bypass_iommu = value;
2635 }
2636
2637 static CpuInstanceProperties
2638 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2639 {
2640 MachineClass *mc = MACHINE_GET_CLASS(ms);
2641 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2642
2643 assert(cpu_index < possible_cpus->len);
2644 return possible_cpus->cpus[cpu_index].props;
2645 }
2646
2647 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
2648 {
2649 int64_t socket_id = ms->possible_cpus->cpus[idx].props.socket_id;
2650
2651 return socket_id % ms->numa_state->num_nodes;
2652 }
2653
2654 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
2655 {
2656 int n;
2657 unsigned int max_cpus = ms->smp.max_cpus;
2658 VirtMachineState *vms = VIRT_MACHINE(ms);
2659 MachineClass *mc = MACHINE_GET_CLASS(vms);
2660
2661 if (ms->possible_cpus) {
2662 assert(ms->possible_cpus->len == max_cpus);
2663 return ms->possible_cpus;
2664 }
2665
2666 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2667 sizeof(CPUArchId) * max_cpus);
2668 ms->possible_cpus->len = max_cpus;
2669 for (n = 0; n < ms->possible_cpus->len; n++) {
2670 ms->possible_cpus->cpus[n].type = ms->cpu_type;
2671 ms->possible_cpus->cpus[n].arch_id =
2672 virt_cpu_mp_affinity(vms, n);
2673
2674 assert(!mc->smp_props.dies_supported);
2675 ms->possible_cpus->cpus[n].props.has_socket_id = true;
2676 ms->possible_cpus->cpus[n].props.socket_id =
2677 n / (ms->smp.clusters * ms->smp.cores * ms->smp.threads);
2678 ms->possible_cpus->cpus[n].props.has_cluster_id = true;
2679 ms->possible_cpus->cpus[n].props.cluster_id =
2680 (n / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters;
2681 ms->possible_cpus->cpus[n].props.has_core_id = true;
2682 ms->possible_cpus->cpus[n].props.core_id =
2683 (n / ms->smp.threads) % ms->smp.cores;
2684 ms->possible_cpus->cpus[n].props.has_thread_id = true;
2685 ms->possible_cpus->cpus[n].props.thread_id =
2686 n % ms->smp.threads;
2687 }
2688 return ms->possible_cpus;
2689 }
2690
2691 static void virt_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2692 Error **errp)
2693 {
2694 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2695 const MachineState *ms = MACHINE(hotplug_dev);
2696 const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2697
2698 if (!vms->acpi_dev) {
2699 error_setg(errp,
2700 "memory hotplug is not enabled: missing acpi-ged device");
2701 return;
2702 }
2703
2704 if (vms->mte) {
2705 error_setg(errp, "memory hotplug is not enabled: MTE is enabled");
2706 return;
2707 }
2708
2709 if (is_nvdimm && !ms->nvdimms_state->is_enabled) {
2710 error_setg(errp, "nvdimm is not enabled: add 'nvdimm=on' to '-M'");
2711 return;
2712 }
2713
2714 pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), NULL, errp);
2715 }
2716
2717 static void virt_memory_plug(HotplugHandler *hotplug_dev,
2718 DeviceState *dev, Error **errp)
2719 {
2720 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2721 MachineState *ms = MACHINE(hotplug_dev);
2722 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2723
2724 pc_dimm_plug(PC_DIMM(dev), MACHINE(vms));
2725
2726 if (is_nvdimm) {
2727 nvdimm_plug(ms->nvdimms_state);
2728 }
2729
2730 hotplug_handler_plug(HOTPLUG_HANDLER(vms->acpi_dev),
2731 dev, &error_abort);
2732 }
2733
2734 static void virt_virtio_md_pci_pre_plug(HotplugHandler *hotplug_dev,
2735 DeviceState *dev, Error **errp)
2736 {
2737 HotplugHandler *hotplug_dev2 = qdev_get_bus_hotplug_handler(dev);
2738 Error *local_err = NULL;
2739
2740 if (!hotplug_dev2 && dev->hotplugged) {
2741 /*
2742 * Without a bus hotplug handler, we cannot control the plug/unplug
2743 * order. We should never reach this point when hotplugging on ARM.
2744 * However, it's nice to add a safety net, similar to what we have
2745 * on x86.
2746 */
2747 error_setg(errp, "hotplug of virtio based memory devices not supported"
2748 " on this bus.");
2749 return;
2750 }
2751 /*
2752 * First, see if we can plug this memory device at all. If that
2753 * succeeds, branch of to the actual hotplug handler.
2754 */
2755 memory_device_pre_plug(MEMORY_DEVICE(dev), MACHINE(hotplug_dev), NULL,
2756 &local_err);
2757 if (!local_err && hotplug_dev2) {
2758 hotplug_handler_pre_plug(hotplug_dev2, dev, &local_err);
2759 }
2760 error_propagate(errp, local_err);
2761 }
2762
2763 static void virt_virtio_md_pci_plug(HotplugHandler *hotplug_dev,
2764 DeviceState *dev, Error **errp)
2765 {
2766 HotplugHandler *hotplug_dev2 = qdev_get_bus_hotplug_handler(dev);
2767 Error *local_err = NULL;
2768
2769 /*
2770 * Plug the memory device first and then branch off to the actual
2771 * hotplug handler. If that one fails, we can easily undo the memory
2772 * device bits.
2773 */
2774 memory_device_plug(MEMORY_DEVICE(dev), MACHINE(hotplug_dev));
2775 if (hotplug_dev2) {
2776 hotplug_handler_plug(hotplug_dev2, dev, &local_err);
2777 if (local_err) {
2778 memory_device_unplug(MEMORY_DEVICE(dev), MACHINE(hotplug_dev));
2779 }
2780 }
2781 error_propagate(errp, local_err);
2782 }
2783
2784 static void virt_virtio_md_pci_unplug_request(HotplugHandler *hotplug_dev,
2785 DeviceState *dev, Error **errp)
2786 {
2787 /* We don't support hot unplug of virtio based memory devices */
2788 error_setg(errp, "virtio based memory devices cannot be unplugged.");
2789 }
2790
2791
2792 static void virt_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2793 DeviceState *dev, Error **errp)
2794 {
2795 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2796
2797 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2798 virt_memory_pre_plug(hotplug_dev, dev, errp);
2799 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MEM_PCI)) {
2800 virt_virtio_md_pci_pre_plug(hotplug_dev, dev, errp);
2801 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2802 hwaddr db_start = 0, db_end = 0;
2803 char *resv_prop_str;
2804
2805 if (vms->iommu != VIRT_IOMMU_NONE) {
2806 error_setg(errp, "virt machine does not support multiple IOMMUs");
2807 return;
2808 }
2809
2810 switch (vms->msi_controller) {
2811 case VIRT_MSI_CTRL_NONE:
2812 return;
2813 case VIRT_MSI_CTRL_ITS:
2814 /* GITS_TRANSLATER page */
2815 db_start = base_memmap[VIRT_GIC_ITS].base + 0x10000;
2816 db_end = base_memmap[VIRT_GIC_ITS].base +
2817 base_memmap[VIRT_GIC_ITS].size - 1;
2818 break;
2819 case VIRT_MSI_CTRL_GICV2M:
2820 /* MSI_SETSPI_NS page */
2821 db_start = base_memmap[VIRT_GIC_V2M].base;
2822 db_end = db_start + base_memmap[VIRT_GIC_V2M].size - 1;
2823 break;
2824 }
2825 resv_prop_str = g_strdup_printf("0x%"PRIx64":0x%"PRIx64":%u",
2826 db_start, db_end,
2827 VIRTIO_IOMMU_RESV_MEM_T_MSI);
2828
2829 object_property_set_uint(OBJECT(dev), "len-reserved-regions", 1, errp);
2830 object_property_set_str(OBJECT(dev), "reserved-regions[0]",
2831 resv_prop_str, errp);
2832 g_free(resv_prop_str);
2833 }
2834 }
2835
2836 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2837 DeviceState *dev, Error **errp)
2838 {
2839 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2840
2841 if (vms->platform_bus_dev) {
2842 MachineClass *mc = MACHINE_GET_CLASS(vms);
2843
2844 if (device_is_dynamic_sysbus(mc, dev)) {
2845 platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
2846 SYS_BUS_DEVICE(dev));
2847 }
2848 }
2849 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2850 virt_memory_plug(hotplug_dev, dev, errp);
2851 }
2852
2853 if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MEM_PCI)) {
2854 virt_virtio_md_pci_plug(hotplug_dev, dev, errp);
2855 }
2856
2857 if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2858 PCIDevice *pdev = PCI_DEVICE(dev);
2859
2860 vms->iommu = VIRT_IOMMU_VIRTIO;
2861 vms->virtio_iommu_bdf = pci_get_bdf(pdev);
2862 create_virtio_iommu_dt_bindings(vms);
2863 }
2864 }
2865
2866 static void virt_dimm_unplug_request(HotplugHandler *hotplug_dev,
2867 DeviceState *dev, Error **errp)
2868 {
2869 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2870
2871 if (!vms->acpi_dev) {
2872 error_setg(errp,
2873 "memory hotplug is not enabled: missing acpi-ged device");
2874 return;
2875 }
2876
2877 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
2878 error_setg(errp, "nvdimm device hot unplug is not supported yet.");
2879 return;
2880 }
2881
2882 hotplug_handler_unplug_request(HOTPLUG_HANDLER(vms->acpi_dev), dev,
2883 errp);
2884 }
2885
2886 static void virt_dimm_unplug(HotplugHandler *hotplug_dev,
2887 DeviceState *dev, Error **errp)
2888 {
2889 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2890 Error *local_err = NULL;
2891
2892 hotplug_handler_unplug(HOTPLUG_HANDLER(vms->acpi_dev), dev, &local_err);
2893 if (local_err) {
2894 goto out;
2895 }
2896
2897 pc_dimm_unplug(PC_DIMM(dev), MACHINE(vms));
2898 qdev_unrealize(dev);
2899
2900 out:
2901 error_propagate(errp, local_err);
2902 }
2903
2904 static void virt_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2905 DeviceState *dev, Error **errp)
2906 {
2907 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2908 virt_dimm_unplug_request(hotplug_dev, dev, errp);
2909 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MEM_PCI)) {
2910 virt_virtio_md_pci_unplug_request(hotplug_dev, dev, errp);
2911 } else {
2912 error_setg(errp, "device unplug request for unsupported device"
2913 " type: %s", object_get_typename(OBJECT(dev)));
2914 }
2915 }
2916
2917 static void virt_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2918 DeviceState *dev, Error **errp)
2919 {
2920 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2921 virt_dimm_unplug(hotplug_dev, dev, errp);
2922 } else {
2923 error_setg(errp, "virt: device unplug for unsupported device"
2924 " type: %s", object_get_typename(OBJECT(dev)));
2925 }
2926 }
2927
2928 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
2929 DeviceState *dev)
2930 {
2931 MachineClass *mc = MACHINE_GET_CLASS(machine);
2932
2933 if (device_is_dynamic_sysbus(mc, dev) ||
2934 object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2935 object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MEM_PCI) ||
2936 object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2937 return HOTPLUG_HANDLER(machine);
2938 }
2939 return NULL;
2940 }
2941
2942 /*
2943 * for arm64 kvm_type [7-0] encodes the requested number of bits
2944 * in the IPA address space
2945 */
2946 static int virt_kvm_type(MachineState *ms, const char *type_str)
2947 {
2948 VirtMachineState *vms = VIRT_MACHINE(ms);
2949 int max_vm_pa_size, requested_pa_size;
2950 bool fixed_ipa;
2951
2952 max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa);
2953
2954 /* we freeze the memory map to compute the highest gpa */
2955 virt_set_memmap(vms, max_vm_pa_size);
2956
2957 requested_pa_size = 64 - clz64(vms->highest_gpa);
2958
2959 /*
2960 * KVM requires the IPA size to be at least 32 bits.
2961 */
2962 if (requested_pa_size < 32) {
2963 requested_pa_size = 32;
2964 }
2965
2966 if (requested_pa_size > max_vm_pa_size) {
2967 error_report("-m and ,maxmem option values "
2968 "require an IPA range (%d bits) larger than "
2969 "the one supported by the host (%d bits)",
2970 requested_pa_size, max_vm_pa_size);
2971 exit(1);
2972 }
2973 /*
2974 * We return the requested PA log size, unless KVM only supports
2975 * the implicit legacy 40b IPA setting, in which case the kvm_type
2976 * must be 0.
2977 */
2978 return fixed_ipa ? 0 : requested_pa_size;
2979 }
2980
2981 static void virt_machine_class_init(ObjectClass *oc, void *data)
2982 {
2983 MachineClass *mc = MACHINE_CLASS(oc);
2984 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2985
2986 mc->init = machvirt_init;
2987 /* Start with max_cpus set to 512, which is the maximum supported by KVM.
2988 * The value may be reduced later when we have more information about the
2989 * configuration of the particular instance.
2990 */
2991 mc->max_cpus = 512;
2992 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
2993 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
2994 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
2995 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM);
2996 #ifdef CONFIG_TPM
2997 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_TPM_TIS_SYSBUS);
2998 #endif
2999 mc->block_default_type = IF_VIRTIO;
3000 mc->no_cdrom = 1;
3001 mc->pci_allow_0_address = true;
3002 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
3003 mc->minimum_page_bits = 12;
3004 mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
3005 mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
3006 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
3007 mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
3008 mc->kvm_type = virt_kvm_type;
3009 assert(!mc->get_hotplug_handler);
3010 mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
3011 hc->pre_plug = virt_machine_device_pre_plug_cb;
3012 hc->plug = virt_machine_device_plug_cb;
3013 hc->unplug_request = virt_machine_device_unplug_request_cb;
3014 hc->unplug = virt_machine_device_unplug_cb;
3015 mc->nvdimm_supported = true;
3016 mc->smp_props.clusters_supported = true;
3017 mc->auto_enable_numa_with_memhp = true;
3018 mc->auto_enable_numa_with_memdev = true;
3019 mc->default_ram_id = "mach-virt.ram";
3020
3021 object_class_property_add(oc, "acpi", "OnOffAuto",
3022 virt_get_acpi, virt_set_acpi,
3023 NULL, NULL);
3024 object_class_property_set_description(oc, "acpi",
3025 "Enable ACPI");
3026 object_class_property_add_bool(oc, "secure", virt_get_secure,
3027 virt_set_secure);
3028 object_class_property_set_description(oc, "secure",
3029 "Set on/off to enable/disable the ARM "
3030 "Security Extensions (TrustZone)");
3031
3032 object_class_property_add_bool(oc, "virtualization", virt_get_virt,
3033 virt_set_virt);
3034 object_class_property_set_description(oc, "virtualization",
3035 "Set on/off to enable/disable emulating a "
3036 "guest CPU which implements the ARM "
3037 "Virtualization Extensions");
3038
3039 object_class_property_add_bool(oc, "highmem", virt_get_highmem,
3040 virt_set_highmem);
3041 object_class_property_set_description(oc, "highmem",
3042 "Set on/off to enable/disable using "
3043 "physical address space above 32 bits");
3044
3045 object_class_property_add_bool(oc, "compact-highmem",
3046 virt_get_compact_highmem,
3047 virt_set_compact_highmem);
3048 object_class_property_set_description(oc, "compact-highmem",
3049 "Set on/off to enable/disable compact "
3050 "layout for high memory regions");
3051
3052 object_class_property_add_bool(oc, "highmem-redists",
3053 virt_get_highmem_redists,
3054 virt_set_highmem_redists);
3055 object_class_property_set_description(oc, "highmem-redists",
3056 "Set on/off to enable/disable high "
3057 "memory region for GICv3 or GICv4 "
3058 "redistributor");
3059
3060 object_class_property_add_bool(oc, "highmem-ecam",
3061 virt_get_highmem_ecam,
3062 virt_set_highmem_ecam);
3063 object_class_property_set_description(oc, "highmem-ecam",
3064 "Set on/off to enable/disable high "
3065 "memory region for PCI ECAM");
3066
3067 object_class_property_add_bool(oc, "highmem-mmio",
3068 virt_get_highmem_mmio,
3069 virt_set_highmem_mmio);
3070 object_class_property_set_description(oc, "highmem-mmio",
3071 "Set on/off to enable/disable high "
3072 "memory region for PCI MMIO");
3073
3074 object_class_property_add_str(oc, "gic-version", virt_get_gic_version,
3075 virt_set_gic_version);
3076 object_class_property_set_description(oc, "gic-version",
3077 "Set GIC version. "
3078 "Valid values are 2, 3, 4, host and max");
3079
3080 object_class_property_add_str(oc, "iommu", virt_get_iommu, virt_set_iommu);
3081 object_class_property_set_description(oc, "iommu",
3082 "Set the IOMMU type. "
3083 "Valid values are none and smmuv3");
3084
3085 object_class_property_add_bool(oc, "default-bus-bypass-iommu",
3086 virt_get_default_bus_bypass_iommu,
3087 virt_set_default_bus_bypass_iommu);
3088 object_class_property_set_description(oc, "default-bus-bypass-iommu",
3089 "Set on/off to enable/disable "
3090 "bypass_iommu for default root bus");
3091
3092 object_class_property_add_bool(oc, "ras", virt_get_ras,
3093 virt_set_ras);
3094 object_class_property_set_description(oc, "ras",
3095 "Set on/off to enable/disable reporting host memory errors "
3096 "to a KVM guest using ACPI and guest external abort exceptions");
3097
3098 object_class_property_add_bool(oc, "mte", virt_get_mte, virt_set_mte);
3099 object_class_property_set_description(oc, "mte",
3100 "Set on/off to enable/disable emulating a "
3101 "guest CPU which implements the ARM "
3102 "Memory Tagging Extension");
3103
3104 object_class_property_add_bool(oc, "its", virt_get_its,
3105 virt_set_its);
3106 object_class_property_set_description(oc, "its",
3107 "Set on/off to enable/disable "
3108 "ITS instantiation");
3109
3110 object_class_property_add_bool(oc, "dtb-randomness",
3111 virt_get_dtb_randomness,
3112 virt_set_dtb_randomness);
3113 object_class_property_set_description(oc, "dtb-randomness",
3114 "Set off to disable passing random or "
3115 "non-deterministic dtb nodes to guest");
3116
3117 object_class_property_add_bool(oc, "dtb-kaslr-seed",
3118 virt_get_dtb_randomness,
3119 virt_set_dtb_randomness);
3120 object_class_property_set_description(oc, "dtb-kaslr-seed",
3121 "Deprecated synonym of dtb-randomness");
3122
3123 object_class_property_add_str(oc, "x-oem-id",
3124 virt_get_oem_id,
3125 virt_set_oem_id);
3126 object_class_property_set_description(oc, "x-oem-id",
3127 "Override the default value of field OEMID "
3128 "in ACPI table header."
3129 "The string may be up to 6 bytes in size");
3130
3131
3132 object_class_property_add_str(oc, "x-oem-table-id",
3133 virt_get_oem_table_id,
3134 virt_set_oem_table_id);
3135 object_class_property_set_description(oc, "x-oem-table-id",
3136 "Override the default value of field OEM Table ID "
3137 "in ACPI table header."
3138 "The string may be up to 8 bytes in size");
3139
3140 }
3141
3142 static void virt_instance_init(Object *obj)
3143 {
3144 VirtMachineState *vms = VIRT_MACHINE(obj);
3145 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
3146
3147 /* EL3 is disabled by default on virt: this makes us consistent
3148 * between KVM and TCG for this board, and it also allows us to
3149 * boot UEFI blobs which assume no TrustZone support.
3150 */
3151 vms->secure = false;
3152
3153 /* EL2 is also disabled by default, for similar reasons */
3154 vms->virt = false;
3155
3156 /* High memory is enabled by default */
3157 vms->highmem = true;
3158 vms->highmem_compact = !vmc->no_highmem_compact;
3159 vms->gic_version = VIRT_GIC_VERSION_NOSEL;
3160
3161 vms->highmem_ecam = !vmc->no_highmem_ecam;
3162 vms->highmem_mmio = true;
3163 vms->highmem_redists = true;
3164
3165 if (vmc->no_its) {
3166 vms->its = false;
3167 } else {
3168 /* Default allows ITS instantiation */
3169 vms->its = true;
3170
3171 if (vmc->no_tcg_its) {
3172 vms->tcg_its = false;
3173 } else {
3174 vms->tcg_its = true;
3175 }
3176 }
3177
3178 /* Default disallows iommu instantiation */
3179 vms->iommu = VIRT_IOMMU_NONE;
3180
3181 /* The default root bus is attached to iommu by default */
3182 vms->default_bus_bypass_iommu = false;
3183
3184 /* Default disallows RAS instantiation */
3185 vms->ras = false;
3186
3187 /* MTE is disabled by default. */
3188 vms->mte = false;
3189
3190 /* Supply kaslr-seed and rng-seed by default */
3191 vms->dtb_randomness = true;
3192
3193 vms->irqmap = a15irqmap;
3194
3195 virt_flash_create(vms);
3196
3197 vms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6);
3198 vms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8);
3199 }
3200
3201 static const TypeInfo virt_machine_info = {
3202 .name = TYPE_VIRT_MACHINE,
3203 .parent = TYPE_MACHINE,
3204 .abstract = true,
3205 .instance_size = sizeof(VirtMachineState),
3206 .class_size = sizeof(VirtMachineClass),
3207 .class_init = virt_machine_class_init,
3208 .instance_init = virt_instance_init,
3209 .interfaces = (InterfaceInfo[]) {
3210 { TYPE_HOTPLUG_HANDLER },
3211 { }
3212 },
3213 };
3214
3215 static void machvirt_machine_init(void)
3216 {
3217 type_register_static(&virt_machine_info);
3218 }
3219 type_init(machvirt_machine_init);
3220
3221 static void virt_machine_8_0_options(MachineClass *mc)
3222 {
3223 }
3224 DEFINE_VIRT_MACHINE_AS_LATEST(8, 0)
3225
3226 static void virt_machine_7_2_options(MachineClass *mc)
3227 {
3228 virt_machine_8_0_options(mc);
3229 compat_props_add(mc->compat_props, hw_compat_7_2, hw_compat_7_2_len);
3230 }
3231 DEFINE_VIRT_MACHINE(7, 2)
3232
3233 static void virt_machine_7_1_options(MachineClass *mc)
3234 {
3235 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3236
3237 virt_machine_7_2_options(mc);
3238 compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len);
3239 /* Compact layout for high memory regions was introduced with 7.2 */
3240 vmc->no_highmem_compact = true;
3241 }
3242 DEFINE_VIRT_MACHINE(7, 1)
3243
3244 static void virt_machine_7_0_options(MachineClass *mc)
3245 {
3246 virt_machine_7_1_options(mc);
3247 compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len);
3248 }
3249 DEFINE_VIRT_MACHINE(7, 0)
3250
3251 static void virt_machine_6_2_options(MachineClass *mc)
3252 {
3253 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3254
3255 virt_machine_7_0_options(mc);
3256 compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len);
3257 vmc->no_tcg_lpa2 = true;
3258 }
3259 DEFINE_VIRT_MACHINE(6, 2)
3260
3261 static void virt_machine_6_1_options(MachineClass *mc)
3262 {
3263 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3264
3265 virt_machine_6_2_options(mc);
3266 compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len);
3267 mc->smp_props.prefer_sockets = true;
3268 vmc->no_cpu_topology = true;
3269
3270 /* qemu ITS was introduced with 6.2 */
3271 vmc->no_tcg_its = true;
3272 }
3273 DEFINE_VIRT_MACHINE(6, 1)
3274
3275 static void virt_machine_6_0_options(MachineClass *mc)
3276 {
3277 virt_machine_6_1_options(mc);
3278 compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len);
3279 }
3280 DEFINE_VIRT_MACHINE(6, 0)
3281
3282 static void virt_machine_5_2_options(MachineClass *mc)
3283 {
3284 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3285
3286 virt_machine_6_0_options(mc);
3287 compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
3288 vmc->no_secure_gpio = true;
3289 }
3290 DEFINE_VIRT_MACHINE(5, 2)
3291
3292 static void virt_machine_5_1_options(MachineClass *mc)
3293 {
3294 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3295
3296 virt_machine_5_2_options(mc);
3297 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
3298 vmc->no_kvm_steal_time = true;
3299 }
3300 DEFINE_VIRT_MACHINE(5, 1)
3301
3302 static void virt_machine_5_0_options(MachineClass *mc)
3303 {
3304 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3305
3306 virt_machine_5_1_options(mc);
3307 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
3308 mc->numa_mem_supported = true;
3309 vmc->acpi_expose_flash = true;
3310 mc->auto_enable_numa_with_memdev = false;
3311 }
3312 DEFINE_VIRT_MACHINE(5, 0)
3313
3314 static void virt_machine_4_2_options(MachineClass *mc)
3315 {
3316 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3317
3318 virt_machine_5_0_options(mc);
3319 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
3320 vmc->kvm_no_adjvtime = true;
3321 }
3322 DEFINE_VIRT_MACHINE(4, 2)
3323
3324 static void virt_machine_4_1_options(MachineClass *mc)
3325 {
3326 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3327
3328 virt_machine_4_2_options(mc);
3329 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
3330 vmc->no_ged = true;
3331 mc->auto_enable_numa_with_memhp = false;
3332 }
3333 DEFINE_VIRT_MACHINE(4, 1)
3334
3335 static void virt_machine_4_0_options(MachineClass *mc)
3336 {
3337 virt_machine_4_1_options(mc);
3338 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
3339 }
3340 DEFINE_VIRT_MACHINE(4, 0)
3341
3342 static void virt_machine_3_1_options(MachineClass *mc)
3343 {
3344 virt_machine_4_0_options(mc);
3345 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
3346 }
3347 DEFINE_VIRT_MACHINE(3, 1)
3348
3349 static void virt_machine_3_0_options(MachineClass *mc)
3350 {
3351 virt_machine_3_1_options(mc);
3352 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
3353 }
3354 DEFINE_VIRT_MACHINE(3, 0)
3355
3356 static void virt_machine_2_12_options(MachineClass *mc)
3357 {
3358 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3359
3360 virt_machine_3_0_options(mc);
3361 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
3362 vmc->no_highmem_ecam = true;
3363 mc->max_cpus = 255;
3364 }
3365 DEFINE_VIRT_MACHINE(2, 12)
3366
3367 static void virt_machine_2_11_options(MachineClass *mc)
3368 {
3369 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3370
3371 virt_machine_2_12_options(mc);
3372 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
3373 vmc->smbios_old_sys_ver = true;
3374 }
3375 DEFINE_VIRT_MACHINE(2, 11)
3376
3377 static void virt_machine_2_10_options(MachineClass *mc)
3378 {
3379 virt_machine_2_11_options(mc);
3380 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
3381 /* before 2.11 we never faulted accesses to bad addresses */
3382 mc->ignore_memory_transaction_failures = true;
3383 }
3384 DEFINE_VIRT_MACHINE(2, 10)
3385
3386 static void virt_machine_2_9_options(MachineClass *mc)
3387 {
3388 virt_machine_2_10_options(mc);
3389 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
3390 }
3391 DEFINE_VIRT_MACHINE(2, 9)
3392
3393 static void virt_machine_2_8_options(MachineClass *mc)
3394 {
3395 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3396
3397 virt_machine_2_9_options(mc);
3398 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
3399 /* For 2.8 and earlier we falsely claimed in the DT that
3400 * our timers were edge-triggered, not level-triggered.
3401 */
3402 vmc->claim_edge_triggered_timers = true;
3403 }
3404 DEFINE_VIRT_MACHINE(2, 8)
3405
3406 static void virt_machine_2_7_options(MachineClass *mc)
3407 {
3408 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3409
3410 virt_machine_2_8_options(mc);
3411 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
3412 /* ITS was introduced with 2.8 */
3413 vmc->no_its = true;
3414 /* Stick with 1K pages for migration compatibility */
3415 mc->minimum_page_bits = 0;
3416 }
3417 DEFINE_VIRT_MACHINE(2, 7)
3418
3419 static void virt_machine_2_6_options(MachineClass *mc)
3420 {
3421 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3422
3423 virt_machine_2_7_options(mc);
3424 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
3425 vmc->disallow_affinity_adjustment = true;
3426 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
3427 vmc->no_pmu = true;
3428 }
3429 DEFINE_VIRT_MACHINE(2, 6)