]> git.proxmox.com Git - mirror_qemu.git/blob - hw/arm/virt.c
Merge remote-tracking branch 'remotes/kraxel/tags/usb-20190108-pull-request' into...
[mirror_qemu.git] / hw / arm / virt.c
1 /*
2 * ARM mach-virt emulation
3 *
4 * Copyright (c) 2013 Linaro Limited
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
17 *
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
29 */
30
31 #include "qemu/osdep.h"
32 #include "qapi/error.h"
33 #include "hw/sysbus.h"
34 #include "hw/arm/arm.h"
35 #include "hw/arm/primecell.h"
36 #include "hw/arm/virt.h"
37 #include "hw/vfio/vfio-calxeda-xgmac.h"
38 #include "hw/vfio/vfio-amd-xgbe.h"
39 #include "hw/display/ramfb.h"
40 #include "hw/devices.h"
41 #include "net/net.h"
42 #include "sysemu/device_tree.h"
43 #include "sysemu/numa.h"
44 #include "sysemu/sysemu.h"
45 #include "sysemu/kvm.h"
46 #include "hw/loader.h"
47 #include "exec/address-spaces.h"
48 #include "qemu/bitops.h"
49 #include "qemu/error-report.h"
50 #include "hw/pci-host/gpex.h"
51 #include "hw/arm/sysbus-fdt.h"
52 #include "hw/platform-bus.h"
53 #include "hw/arm/fdt.h"
54 #include "hw/intc/arm_gic.h"
55 #include "hw/intc/arm_gicv3_common.h"
56 #include "kvm_arm.h"
57 #include "hw/firmware/smbios.h"
58 #include "qapi/visitor.h"
59 #include "standard-headers/linux/input.h"
60 #include "hw/arm/smmuv3.h"
61
62 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
63 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
64 void *data) \
65 { \
66 MachineClass *mc = MACHINE_CLASS(oc); \
67 virt_machine_##major##_##minor##_options(mc); \
68 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
69 if (latest) { \
70 mc->alias = "virt"; \
71 } \
72 } \
73 static const TypeInfo machvirt_##major##_##minor##_info = { \
74 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
75 .parent = TYPE_VIRT_MACHINE, \
76 .class_init = virt_##major##_##minor##_class_init, \
77 }; \
78 static void machvirt_machine_##major##_##minor##_init(void) \
79 { \
80 type_register_static(&machvirt_##major##_##minor##_info); \
81 } \
82 type_init(machvirt_machine_##major##_##minor##_init);
83
84 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
85 DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
86 #define DEFINE_VIRT_MACHINE(major, minor) \
87 DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
88
89
90 /* Number of external interrupt lines to configure the GIC with */
91 #define NUM_IRQS 256
92
93 #define PLATFORM_BUS_NUM_IRQS 64
94
95 /* RAM limit in GB. Since VIRT_MEM starts at the 1GB mark, this means
96 * RAM can go up to the 256GB mark, leaving 256GB of the physical
97 * address space unallocated and free for future use between 256G and 512G.
98 * If we need to provide more RAM to VMs in the future then we need to:
99 * * allocate a second bank of RAM starting at 2TB and working up
100 * * fix the DT and ACPI table generation code in QEMU to correctly
101 * report two split lumps of RAM to the guest
102 * * fix KVM in the host kernel to allow guests with >40 bit address spaces
103 * (We don't want to fill all the way up to 512GB with RAM because
104 * we might want it for non-RAM purposes later. Conversely it seems
105 * reasonable to assume that anybody configuring a VM with a quarter
106 * of a terabyte of RAM will be doing it on a host with more than a
107 * terabyte of physical address space.)
108 */
109 #define RAMLIMIT_GB 255
110 #define RAMLIMIT_BYTES (RAMLIMIT_GB * 1024ULL * 1024 * 1024)
111
112 /* Addresses and sizes of our components.
113 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
114 * 128MB..256MB is used for miscellaneous device I/O.
115 * 256MB..1GB is reserved for possible future PCI support (ie where the
116 * PCI memory window will go if we add a PCI host controller).
117 * 1GB and up is RAM (which may happily spill over into the
118 * high memory region beyond 4GB).
119 * This represents a compromise between how much RAM can be given to
120 * a 32 bit VM and leaving space for expansion and in particular for PCI.
121 * Note that devices should generally be placed at multiples of 0x10000,
122 * to accommodate guests using 64K pages.
123 */
124 static const MemMapEntry a15memmap[] = {
125 /* Space up to 0x8000000 is reserved for a boot ROM */
126 [VIRT_FLASH] = { 0, 0x08000000 },
127 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
128 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
129 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
130 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
131 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 },
132 [VIRT_GIC_HYP] = { 0x08030000, 0x00010000 },
133 [VIRT_GIC_VCPU] = { 0x08040000, 0x00010000 },
134 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
135 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 },
136 /* This redistributor space allows up to 2*64kB*123 CPUs */
137 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 },
138 [VIRT_UART] = { 0x09000000, 0x00001000 },
139 [VIRT_RTC] = { 0x09010000, 0x00001000 },
140 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 },
141 [VIRT_GPIO] = { 0x09030000, 0x00001000 },
142 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 },
143 [VIRT_SMMU] = { 0x09050000, 0x00020000 },
144 [VIRT_MMIO] = { 0x0a000000, 0x00000200 },
145 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
146 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 },
147 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 },
148 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 },
149 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 },
150 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 },
151 [VIRT_MEM] = { 0x40000000, RAMLIMIT_BYTES },
152 /* Additional 64 MB redist region (can contain up to 512 redistributors) */
153 [VIRT_GIC_REDIST2] = { 0x4000000000ULL, 0x4000000 },
154 [VIRT_PCIE_ECAM_HIGH] = { 0x4010000000ULL, 0x10000000 },
155 /* Second PCIe window, 512GB wide at the 512GB boundary */
156 [VIRT_PCIE_MMIO_HIGH] = { 0x8000000000ULL, 0x8000000000ULL },
157 };
158
159 static const int a15irqmap[] = {
160 [VIRT_UART] = 1,
161 [VIRT_RTC] = 2,
162 [VIRT_PCIE] = 3, /* ... to 6 */
163 [VIRT_GPIO] = 7,
164 [VIRT_SECURE_UART] = 8,
165 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
166 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
167 [VIRT_SMMU] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */
168 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
169 };
170
171 static const char *valid_cpus[] = {
172 ARM_CPU_TYPE_NAME("cortex-a15"),
173 ARM_CPU_TYPE_NAME("cortex-a53"),
174 ARM_CPU_TYPE_NAME("cortex-a57"),
175 ARM_CPU_TYPE_NAME("cortex-a72"),
176 ARM_CPU_TYPE_NAME("host"),
177 ARM_CPU_TYPE_NAME("max"),
178 };
179
180 static bool cpu_type_valid(const char *cpu)
181 {
182 int i;
183
184 for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
185 if (strcmp(cpu, valid_cpus[i]) == 0) {
186 return true;
187 }
188 }
189 return false;
190 }
191
192 static void create_fdt(VirtMachineState *vms)
193 {
194 void *fdt = create_device_tree(&vms->fdt_size);
195
196 if (!fdt) {
197 error_report("create_device_tree() failed");
198 exit(1);
199 }
200
201 vms->fdt = fdt;
202
203 /* Header */
204 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
205 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
206 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
207
208 /* /chosen must exist for load_dtb to fill in necessary properties later */
209 qemu_fdt_add_subnode(fdt, "/chosen");
210
211 /* Clock node, for the benefit of the UART. The kernel device tree
212 * binding documentation claims the PL011 node clock properties are
213 * optional but in practice if you omit them the kernel refuses to
214 * probe for the device.
215 */
216 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
217 qemu_fdt_add_subnode(fdt, "/apb-pclk");
218 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
219 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
220 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
221 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
222 "clk24mhz");
223 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
224
225 if (have_numa_distance) {
226 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
227 uint32_t *matrix = g_malloc0(size);
228 int idx, i, j;
229
230 for (i = 0; i < nb_numa_nodes; i++) {
231 for (j = 0; j < nb_numa_nodes; j++) {
232 idx = (i * nb_numa_nodes + j) * 3;
233 matrix[idx + 0] = cpu_to_be32(i);
234 matrix[idx + 1] = cpu_to_be32(j);
235 matrix[idx + 2] = cpu_to_be32(numa_info[i].distance[j]);
236 }
237 }
238
239 qemu_fdt_add_subnode(fdt, "/distance-map");
240 qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
241 "numa-distance-map-v1");
242 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
243 matrix, size);
244 g_free(matrix);
245 }
246 }
247
248 static void fdt_add_timer_nodes(const VirtMachineState *vms)
249 {
250 /* On real hardware these interrupts are level-triggered.
251 * On KVM they were edge-triggered before host kernel version 4.4,
252 * and level-triggered afterwards.
253 * On emulated QEMU they are level-triggered.
254 *
255 * Getting the DTB info about them wrong is awkward for some
256 * guest kernels:
257 * pre-4.8 ignore the DT and leave the interrupt configured
258 * with whatever the GIC reset value (or the bootloader) left it at
259 * 4.8 before rc6 honour the incorrect data by programming it back
260 * into the GIC, causing problems
261 * 4.8rc6 and later ignore the DT and always write "level triggered"
262 * into the GIC
263 *
264 * For backwards-compatibility, virt-2.8 and earlier will continue
265 * to say these are edge-triggered, but later machines will report
266 * the correct information.
267 */
268 ARMCPU *armcpu;
269 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
270 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
271
272 if (vmc->claim_edge_triggered_timers) {
273 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
274 }
275
276 if (vms->gic_version == 2) {
277 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
278 GIC_FDT_IRQ_PPI_CPU_WIDTH,
279 (1 << vms->smp_cpus) - 1);
280 }
281
282 qemu_fdt_add_subnode(vms->fdt, "/timer");
283
284 armcpu = ARM_CPU(qemu_get_cpu(0));
285 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
286 const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
287 qemu_fdt_setprop(vms->fdt, "/timer", "compatible",
288 compat, sizeof(compat));
289 } else {
290 qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible",
291 "arm,armv7-timer");
292 }
293 qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0);
294 qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts",
295 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
296 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
297 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
298 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
299 }
300
301 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
302 {
303 int cpu;
304 int addr_cells = 1;
305 const MachineState *ms = MACHINE(vms);
306
307 /*
308 * From Documentation/devicetree/bindings/arm/cpus.txt
309 * On ARM v8 64-bit systems value should be set to 2,
310 * that corresponds to the MPIDR_EL1 register size.
311 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
312 * in the system, #address-cells can be set to 1, since
313 * MPIDR_EL1[63:32] bits are not used for CPUs
314 * identification.
315 *
316 * Here we actually don't know whether our system is 32- or 64-bit one.
317 * The simplest way to go is to examine affinity IDs of all our CPUs. If
318 * at least one of them has Aff3 populated, we set #address-cells to 2.
319 */
320 for (cpu = 0; cpu < vms->smp_cpus; cpu++) {
321 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
322
323 if (armcpu->mp_affinity & ARM_AFF3_MASK) {
324 addr_cells = 2;
325 break;
326 }
327 }
328
329 qemu_fdt_add_subnode(vms->fdt, "/cpus");
330 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells);
331 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0);
332
333 for (cpu = vms->smp_cpus - 1; cpu >= 0; cpu--) {
334 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
335 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
336 CPUState *cs = CPU(armcpu);
337
338 qemu_fdt_add_subnode(vms->fdt, nodename);
339 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu");
340 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
341 armcpu->dtb_compatible);
342
343 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED
344 && vms->smp_cpus > 1) {
345 qemu_fdt_setprop_string(vms->fdt, nodename,
346 "enable-method", "psci");
347 }
348
349 if (addr_cells == 2) {
350 qemu_fdt_setprop_u64(vms->fdt, nodename, "reg",
351 armcpu->mp_affinity);
352 } else {
353 qemu_fdt_setprop_cell(vms->fdt, nodename, "reg",
354 armcpu->mp_affinity);
355 }
356
357 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
358 qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id",
359 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
360 }
361
362 g_free(nodename);
363 }
364 }
365
366 static void fdt_add_its_gic_node(VirtMachineState *vms)
367 {
368 char *nodename;
369
370 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
371 nodename = g_strdup_printf("/intc/its@%" PRIx64,
372 vms->memmap[VIRT_GIC_ITS].base);
373 qemu_fdt_add_subnode(vms->fdt, nodename);
374 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
375 "arm,gic-v3-its");
376 qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0);
377 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
378 2, vms->memmap[VIRT_GIC_ITS].base,
379 2, vms->memmap[VIRT_GIC_ITS].size);
380 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle);
381 g_free(nodename);
382 }
383
384 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
385 {
386 char *nodename;
387
388 nodename = g_strdup_printf("/intc/v2m@%" PRIx64,
389 vms->memmap[VIRT_GIC_V2M].base);
390 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
391 qemu_fdt_add_subnode(vms->fdt, nodename);
392 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
393 "arm,gic-v2m-frame");
394 qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0);
395 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
396 2, vms->memmap[VIRT_GIC_V2M].base,
397 2, vms->memmap[VIRT_GIC_V2M].size);
398 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle);
399 g_free(nodename);
400 }
401
402 static void fdt_add_gic_node(VirtMachineState *vms)
403 {
404 char *nodename;
405
406 vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt);
407 qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle);
408
409 nodename = g_strdup_printf("/intc@%" PRIx64,
410 vms->memmap[VIRT_GIC_DIST].base);
411 qemu_fdt_add_subnode(vms->fdt, nodename);
412 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 3);
413 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-controller", NULL, 0);
414 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 0x2);
415 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 0x2);
416 qemu_fdt_setprop(vms->fdt, nodename, "ranges", NULL, 0);
417 if (vms->gic_version == 3) {
418 int nb_redist_regions = virt_gicv3_redist_region_count(vms);
419
420 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
421 "arm,gic-v3");
422
423 qemu_fdt_setprop_cell(vms->fdt, nodename,
424 "#redistributor-regions", nb_redist_regions);
425
426 if (nb_redist_regions == 1) {
427 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
428 2, vms->memmap[VIRT_GIC_DIST].base,
429 2, vms->memmap[VIRT_GIC_DIST].size,
430 2, vms->memmap[VIRT_GIC_REDIST].base,
431 2, vms->memmap[VIRT_GIC_REDIST].size);
432 } else {
433 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
434 2, vms->memmap[VIRT_GIC_DIST].base,
435 2, vms->memmap[VIRT_GIC_DIST].size,
436 2, vms->memmap[VIRT_GIC_REDIST].base,
437 2, vms->memmap[VIRT_GIC_REDIST].size,
438 2, vms->memmap[VIRT_GIC_REDIST2].base,
439 2, vms->memmap[VIRT_GIC_REDIST2].size);
440 }
441
442 if (vms->virt) {
443 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
444 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
445 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
446 }
447 } else {
448 /* 'cortex-a15-gic' means 'GIC v2' */
449 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
450 "arm,cortex-a15-gic");
451 if (!vms->virt) {
452 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
453 2, vms->memmap[VIRT_GIC_DIST].base,
454 2, vms->memmap[VIRT_GIC_DIST].size,
455 2, vms->memmap[VIRT_GIC_CPU].base,
456 2, vms->memmap[VIRT_GIC_CPU].size);
457 } else {
458 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
459 2, vms->memmap[VIRT_GIC_DIST].base,
460 2, vms->memmap[VIRT_GIC_DIST].size,
461 2, vms->memmap[VIRT_GIC_CPU].base,
462 2, vms->memmap[VIRT_GIC_CPU].size,
463 2, vms->memmap[VIRT_GIC_HYP].base,
464 2, vms->memmap[VIRT_GIC_HYP].size,
465 2, vms->memmap[VIRT_GIC_VCPU].base,
466 2, vms->memmap[VIRT_GIC_VCPU].size);
467 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
468 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
469 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
470 }
471 }
472
473 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->gic_phandle);
474 g_free(nodename);
475 }
476
477 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
478 {
479 CPUState *cpu;
480 ARMCPU *armcpu;
481 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
482
483 CPU_FOREACH(cpu) {
484 armcpu = ARM_CPU(cpu);
485 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
486 return;
487 }
488 if (kvm_enabled()) {
489 if (kvm_irqchip_in_kernel()) {
490 kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ));
491 }
492 kvm_arm_pmu_init(cpu);
493 }
494 }
495
496 if (vms->gic_version == 2) {
497 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
498 GIC_FDT_IRQ_PPI_CPU_WIDTH,
499 (1 << vms->smp_cpus) - 1);
500 }
501
502 armcpu = ARM_CPU(qemu_get_cpu(0));
503 qemu_fdt_add_subnode(vms->fdt, "/pmu");
504 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
505 const char compat[] = "arm,armv8-pmuv3";
506 qemu_fdt_setprop(vms->fdt, "/pmu", "compatible",
507 compat, sizeof(compat));
508 qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts",
509 GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
510 }
511 }
512
513 static void create_its(VirtMachineState *vms, DeviceState *gicdev)
514 {
515 const char *itsclass = its_class_name();
516 DeviceState *dev;
517
518 if (!itsclass) {
519 /* Do nothing if not supported */
520 return;
521 }
522
523 dev = qdev_create(NULL, itsclass);
524
525 object_property_set_link(OBJECT(dev), OBJECT(gicdev), "parent-gicv3",
526 &error_abort);
527 qdev_init_nofail(dev);
528 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
529
530 fdt_add_its_gic_node(vms);
531 }
532
533 static void create_v2m(VirtMachineState *vms, qemu_irq *pic)
534 {
535 int i;
536 int irq = vms->irqmap[VIRT_GIC_V2M];
537 DeviceState *dev;
538
539 dev = qdev_create(NULL, "arm-gicv2m");
540 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
541 qdev_prop_set_uint32(dev, "base-spi", irq);
542 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
543 qdev_init_nofail(dev);
544
545 for (i = 0; i < NUM_GICV2M_SPIS; i++) {
546 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
547 }
548
549 fdt_add_v2m_gic_node(vms);
550 }
551
552 static void create_gic(VirtMachineState *vms, qemu_irq *pic)
553 {
554 /* We create a standalone GIC */
555 DeviceState *gicdev;
556 SysBusDevice *gicbusdev;
557 const char *gictype;
558 int type = vms->gic_version, i;
559 uint32_t nb_redist_regions = 0;
560
561 gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
562
563 gicdev = qdev_create(NULL, gictype);
564 qdev_prop_set_uint32(gicdev, "revision", type);
565 qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
566 /* Note that the num-irq property counts both internal and external
567 * interrupts; there are always 32 of the former (mandated by GIC spec).
568 */
569 qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
570 if (!kvm_irqchip_in_kernel()) {
571 qdev_prop_set_bit(gicdev, "has-security-extensions", vms->secure);
572 }
573
574 if (type == 3) {
575 uint32_t redist0_capacity =
576 vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
577 uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
578
579 nb_redist_regions = virt_gicv3_redist_region_count(vms);
580
581 qdev_prop_set_uint32(gicdev, "len-redist-region-count",
582 nb_redist_regions);
583 qdev_prop_set_uint32(gicdev, "redist-region-count[0]", redist0_count);
584
585 if (nb_redist_regions == 2) {
586 uint32_t redist1_capacity =
587 vms->memmap[VIRT_GIC_REDIST2].size / GICV3_REDIST_SIZE;
588
589 qdev_prop_set_uint32(gicdev, "redist-region-count[1]",
590 MIN(smp_cpus - redist0_count, redist1_capacity));
591 }
592 } else {
593 if (!kvm_irqchip_in_kernel()) {
594 qdev_prop_set_bit(gicdev, "has-virtualization-extensions",
595 vms->virt);
596 }
597 }
598 qdev_init_nofail(gicdev);
599 gicbusdev = SYS_BUS_DEVICE(gicdev);
600 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
601 if (type == 3) {
602 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
603 if (nb_redist_regions == 2) {
604 sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_REDIST2].base);
605 }
606 } else {
607 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
608 if (vms->virt) {
609 sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base);
610 sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base);
611 }
612 }
613
614 /* Wire the outputs from each CPU's generic timer and the GICv3
615 * maintenance interrupt signal to the appropriate GIC PPI inputs,
616 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
617 */
618 for (i = 0; i < smp_cpus; i++) {
619 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
620 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
621 int irq;
622 /* Mapping from the output timer irq lines from the CPU to the
623 * GIC PPI inputs we use for the virt board.
624 */
625 const int timer_irq[] = {
626 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
627 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
628 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
629 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
630 };
631
632 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
633 qdev_connect_gpio_out(cpudev, irq,
634 qdev_get_gpio_in(gicdev,
635 ppibase + timer_irq[irq]));
636 }
637
638 if (type == 3) {
639 qemu_irq irq = qdev_get_gpio_in(gicdev,
640 ppibase + ARCH_GIC_MAINT_IRQ);
641 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt",
642 0, irq);
643 } else if (vms->virt) {
644 qemu_irq irq = qdev_get_gpio_in(gicdev,
645 ppibase + ARCH_GIC_MAINT_IRQ);
646 sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq);
647 }
648
649 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
650 qdev_get_gpio_in(gicdev, ppibase
651 + VIRTUAL_PMU_IRQ));
652
653 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
654 sysbus_connect_irq(gicbusdev, i + smp_cpus,
655 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
656 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
657 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
658 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
659 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
660 }
661
662 for (i = 0; i < NUM_IRQS; i++) {
663 pic[i] = qdev_get_gpio_in(gicdev, i);
664 }
665
666 fdt_add_gic_node(vms);
667
668 if (type == 3 && vms->its) {
669 create_its(vms, gicdev);
670 } else if (type == 2) {
671 create_v2m(vms, pic);
672 }
673 }
674
675 static void create_uart(const VirtMachineState *vms, qemu_irq *pic, int uart,
676 MemoryRegion *mem, Chardev *chr)
677 {
678 char *nodename;
679 hwaddr base = vms->memmap[uart].base;
680 hwaddr size = vms->memmap[uart].size;
681 int irq = vms->irqmap[uart];
682 const char compat[] = "arm,pl011\0arm,primecell";
683 const char clocknames[] = "uartclk\0apb_pclk";
684 DeviceState *dev = qdev_create(NULL, "pl011");
685 SysBusDevice *s = SYS_BUS_DEVICE(dev);
686
687 qdev_prop_set_chr(dev, "chardev", chr);
688 qdev_init_nofail(dev);
689 memory_region_add_subregion(mem, base,
690 sysbus_mmio_get_region(s, 0));
691 sysbus_connect_irq(s, 0, pic[irq]);
692
693 nodename = g_strdup_printf("/pl011@%" PRIx64, base);
694 qemu_fdt_add_subnode(vms->fdt, nodename);
695 /* Note that we can't use setprop_string because of the embedded NUL */
696 qemu_fdt_setprop(vms->fdt, nodename, "compatible",
697 compat, sizeof(compat));
698 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
699 2, base, 2, size);
700 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
701 GIC_FDT_IRQ_TYPE_SPI, irq,
702 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
703 qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks",
704 vms->clock_phandle, vms->clock_phandle);
705 qemu_fdt_setprop(vms->fdt, nodename, "clock-names",
706 clocknames, sizeof(clocknames));
707
708 if (uart == VIRT_UART) {
709 qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename);
710 } else {
711 /* Mark as not usable by the normal world */
712 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
713 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
714
715 qemu_fdt_add_subnode(vms->fdt, "/secure-chosen");
716 qemu_fdt_setprop_string(vms->fdt, "/secure-chosen", "stdout-path",
717 nodename);
718 }
719
720 g_free(nodename);
721 }
722
723 static void create_rtc(const VirtMachineState *vms, qemu_irq *pic)
724 {
725 char *nodename;
726 hwaddr base = vms->memmap[VIRT_RTC].base;
727 hwaddr size = vms->memmap[VIRT_RTC].size;
728 int irq = vms->irqmap[VIRT_RTC];
729 const char compat[] = "arm,pl031\0arm,primecell";
730
731 sysbus_create_simple("pl031", base, pic[irq]);
732
733 nodename = g_strdup_printf("/pl031@%" PRIx64, base);
734 qemu_fdt_add_subnode(vms->fdt, nodename);
735 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
736 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
737 2, base, 2, size);
738 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
739 GIC_FDT_IRQ_TYPE_SPI, irq,
740 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
741 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
742 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
743 g_free(nodename);
744 }
745
746 static DeviceState *gpio_key_dev;
747 static void virt_powerdown_req(Notifier *n, void *opaque)
748 {
749 /* use gpio Pin 3 for power button event */
750 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
751 }
752
753 static Notifier virt_system_powerdown_notifier = {
754 .notify = virt_powerdown_req
755 };
756
757 static void create_gpio(const VirtMachineState *vms, qemu_irq *pic)
758 {
759 char *nodename;
760 DeviceState *pl061_dev;
761 hwaddr base = vms->memmap[VIRT_GPIO].base;
762 hwaddr size = vms->memmap[VIRT_GPIO].size;
763 int irq = vms->irqmap[VIRT_GPIO];
764 const char compat[] = "arm,pl061\0arm,primecell";
765
766 pl061_dev = sysbus_create_simple("pl061", base, pic[irq]);
767
768 uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt);
769 nodename = g_strdup_printf("/pl061@%" PRIx64, base);
770 qemu_fdt_add_subnode(vms->fdt, nodename);
771 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
772 2, base, 2, size);
773 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
774 qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2);
775 qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0);
776 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
777 GIC_FDT_IRQ_TYPE_SPI, irq,
778 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
779 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
780 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
781 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle);
782
783 gpio_key_dev = sysbus_create_simple("gpio-key", -1,
784 qdev_get_gpio_in(pl061_dev, 3));
785 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys");
786 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys");
787 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0);
788 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1);
789
790 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff");
791 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff",
792 "label", "GPIO Key Poweroff");
793 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code",
794 KEY_POWER);
795 qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff",
796 "gpios", phandle, 3, 0);
797
798 /* connect powerdown request */
799 qemu_register_powerdown_notifier(&virt_system_powerdown_notifier);
800
801 g_free(nodename);
802 }
803
804 static void create_virtio_devices(const VirtMachineState *vms, qemu_irq *pic)
805 {
806 int i;
807 hwaddr size = vms->memmap[VIRT_MMIO].size;
808
809 /* We create the transports in forwards order. Since qbus_realize()
810 * prepends (not appends) new child buses, the incrementing loop below will
811 * create a list of virtio-mmio buses with decreasing base addresses.
812 *
813 * When a -device option is processed from the command line,
814 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
815 * order. The upshot is that -device options in increasing command line
816 * order are mapped to virtio-mmio buses with decreasing base addresses.
817 *
818 * When this code was originally written, that arrangement ensured that the
819 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
820 * the first -device on the command line. (The end-to-end order is a
821 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
822 * guest kernel's name-to-address assignment strategy.)
823 *
824 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
825 * the message, if not necessarily the code, of commit 70161ff336.
826 * Therefore the loop now establishes the inverse of the original intent.
827 *
828 * Unfortunately, we can't counteract the kernel change by reversing the
829 * loop; it would break existing command lines.
830 *
831 * In any case, the kernel makes no guarantee about the stability of
832 * enumeration order of virtio devices (as demonstrated by it changing
833 * between kernel versions). For reliable and stable identification
834 * of disks users must use UUIDs or similar mechanisms.
835 */
836 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
837 int irq = vms->irqmap[VIRT_MMIO] + i;
838 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
839
840 sysbus_create_simple("virtio-mmio", base, pic[irq]);
841 }
842
843 /* We add dtb nodes in reverse order so that they appear in the finished
844 * device tree lowest address first.
845 *
846 * Note that this mapping is independent of the loop above. The previous
847 * loop influences virtio device to virtio transport assignment, whereas
848 * this loop controls how virtio transports are laid out in the dtb.
849 */
850 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
851 char *nodename;
852 int irq = vms->irqmap[VIRT_MMIO] + i;
853 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
854
855 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
856 qemu_fdt_add_subnode(vms->fdt, nodename);
857 qemu_fdt_setprop_string(vms->fdt, nodename,
858 "compatible", "virtio,mmio");
859 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
860 2, base, 2, size);
861 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
862 GIC_FDT_IRQ_TYPE_SPI, irq,
863 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
864 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
865 g_free(nodename);
866 }
867 }
868
869 static void create_one_flash(const char *name, hwaddr flashbase,
870 hwaddr flashsize, const char *file,
871 MemoryRegion *sysmem)
872 {
873 /* Create and map a single flash device. We use the same
874 * parameters as the flash devices on the Versatile Express board.
875 */
876 DriveInfo *dinfo = drive_get_next(IF_PFLASH);
877 DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
878 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
879 const uint64_t sectorlength = 256 * 1024;
880
881 if (dinfo) {
882 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
883 &error_abort);
884 }
885
886 qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
887 qdev_prop_set_uint64(dev, "sector-length", sectorlength);
888 qdev_prop_set_uint8(dev, "width", 4);
889 qdev_prop_set_uint8(dev, "device-width", 2);
890 qdev_prop_set_bit(dev, "big-endian", false);
891 qdev_prop_set_uint16(dev, "id0", 0x89);
892 qdev_prop_set_uint16(dev, "id1", 0x18);
893 qdev_prop_set_uint16(dev, "id2", 0x00);
894 qdev_prop_set_uint16(dev, "id3", 0x00);
895 qdev_prop_set_string(dev, "name", name);
896 qdev_init_nofail(dev);
897
898 memory_region_add_subregion(sysmem, flashbase,
899 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0));
900
901 if (file) {
902 char *fn;
903 int image_size;
904
905 if (drive_get(IF_PFLASH, 0, 0)) {
906 error_report("The contents of the first flash device may be "
907 "specified with -bios or with -drive if=pflash... "
908 "but you cannot use both options at once");
909 exit(1);
910 }
911 fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, file);
912 if (!fn) {
913 error_report("Could not find ROM image '%s'", file);
914 exit(1);
915 }
916 image_size = load_image_mr(fn, sysbus_mmio_get_region(sbd, 0));
917 g_free(fn);
918 if (image_size < 0) {
919 error_report("Could not load ROM image '%s'", file);
920 exit(1);
921 }
922 }
923 }
924
925 static void create_flash(const VirtMachineState *vms,
926 MemoryRegion *sysmem,
927 MemoryRegion *secure_sysmem)
928 {
929 /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
930 * Any file passed via -bios goes in the first of these.
931 * sysmem is the system memory space. secure_sysmem is the secure view
932 * of the system, and the first flash device should be made visible only
933 * there. The second flash device is visible to both secure and nonsecure.
934 * If sysmem == secure_sysmem this means there is no separate Secure
935 * address space and both flash devices are generally visible.
936 */
937 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
938 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
939 char *nodename;
940
941 create_one_flash("virt.flash0", flashbase, flashsize,
942 bios_name, secure_sysmem);
943 create_one_flash("virt.flash1", flashbase + flashsize, flashsize,
944 NULL, sysmem);
945
946 if (sysmem == secure_sysmem) {
947 /* Report both flash devices as a single node in the DT */
948 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
949 qemu_fdt_add_subnode(vms->fdt, nodename);
950 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
951 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
952 2, flashbase, 2, flashsize,
953 2, flashbase + flashsize, 2, flashsize);
954 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
955 g_free(nodename);
956 } else {
957 /* Report the devices as separate nodes so we can mark one as
958 * only visible to the secure world.
959 */
960 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
961 qemu_fdt_add_subnode(vms->fdt, nodename);
962 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
963 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
964 2, flashbase, 2, flashsize);
965 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
966 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
967 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
968 g_free(nodename);
969
970 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
971 qemu_fdt_add_subnode(vms->fdt, nodename);
972 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
973 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
974 2, flashbase + flashsize, 2, flashsize);
975 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
976 g_free(nodename);
977 }
978 }
979
980 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
981 {
982 hwaddr base = vms->memmap[VIRT_FW_CFG].base;
983 hwaddr size = vms->memmap[VIRT_FW_CFG].size;
984 FWCfgState *fw_cfg;
985 char *nodename;
986
987 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
988 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus);
989
990 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
991 qemu_fdt_add_subnode(vms->fdt, nodename);
992 qemu_fdt_setprop_string(vms->fdt, nodename,
993 "compatible", "qemu,fw-cfg-mmio");
994 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
995 2, base, 2, size);
996 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
997 g_free(nodename);
998 return fw_cfg;
999 }
1000
1001 static void create_pcie_irq_map(const VirtMachineState *vms,
1002 uint32_t gic_phandle,
1003 int first_irq, const char *nodename)
1004 {
1005 int devfn, pin;
1006 uint32_t full_irq_map[4 * 4 * 10] = { 0 };
1007 uint32_t *irq_map = full_irq_map;
1008
1009 for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
1010 for (pin = 0; pin < 4; pin++) {
1011 int irq_type = GIC_FDT_IRQ_TYPE_SPI;
1012 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
1013 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
1014 int i;
1015
1016 uint32_t map[] = {
1017 devfn << 8, 0, 0, /* devfn */
1018 pin + 1, /* PCI pin */
1019 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
1020
1021 /* Convert map to big endian */
1022 for (i = 0; i < 10; i++) {
1023 irq_map[i] = cpu_to_be32(map[i]);
1024 }
1025 irq_map += 10;
1026 }
1027 }
1028
1029 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map",
1030 full_irq_map, sizeof(full_irq_map));
1031
1032 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask",
1033 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
1034 0x7 /* PCI irq */);
1035 }
1036
1037 static void create_smmu(const VirtMachineState *vms, qemu_irq *pic,
1038 PCIBus *bus)
1039 {
1040 char *node;
1041 const char compat[] = "arm,smmu-v3";
1042 int irq = vms->irqmap[VIRT_SMMU];
1043 int i;
1044 hwaddr base = vms->memmap[VIRT_SMMU].base;
1045 hwaddr size = vms->memmap[VIRT_SMMU].size;
1046 const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
1047 DeviceState *dev;
1048
1049 if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
1050 return;
1051 }
1052
1053 dev = qdev_create(NULL, "arm-smmuv3");
1054
1055 object_property_set_link(OBJECT(dev), OBJECT(bus), "primary-bus",
1056 &error_abort);
1057 qdev_init_nofail(dev);
1058 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
1059 for (i = 0; i < NUM_SMMU_IRQS; i++) {
1060 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1061 }
1062
1063 node = g_strdup_printf("/smmuv3@%" PRIx64, base);
1064 qemu_fdt_add_subnode(vms->fdt, node);
1065 qemu_fdt_setprop(vms->fdt, node, "compatible", compat, sizeof(compat));
1066 qemu_fdt_setprop_sized_cells(vms->fdt, node, "reg", 2, base, 2, size);
1067
1068 qemu_fdt_setprop_cells(vms->fdt, node, "interrupts",
1069 GIC_FDT_IRQ_TYPE_SPI, irq , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1070 GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1071 GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1072 GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1073
1074 qemu_fdt_setprop(vms->fdt, node, "interrupt-names", irq_names,
1075 sizeof(irq_names));
1076
1077 qemu_fdt_setprop_cell(vms->fdt, node, "clocks", vms->clock_phandle);
1078 qemu_fdt_setprop_string(vms->fdt, node, "clock-names", "apb_pclk");
1079 qemu_fdt_setprop(vms->fdt, node, "dma-coherent", NULL, 0);
1080
1081 qemu_fdt_setprop_cell(vms->fdt, node, "#iommu-cells", 1);
1082
1083 qemu_fdt_setprop_cell(vms->fdt, node, "phandle", vms->iommu_phandle);
1084 g_free(node);
1085 }
1086
1087 static void create_pcie(VirtMachineState *vms, qemu_irq *pic)
1088 {
1089 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1090 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
1091 hwaddr base_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].base;
1092 hwaddr size_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].size;
1093 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1094 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
1095 hwaddr base_ecam, size_ecam;
1096 hwaddr base = base_mmio;
1097 int nr_pcie_buses;
1098 int irq = vms->irqmap[VIRT_PCIE];
1099 MemoryRegion *mmio_alias;
1100 MemoryRegion *mmio_reg;
1101 MemoryRegion *ecam_alias;
1102 MemoryRegion *ecam_reg;
1103 DeviceState *dev;
1104 char *nodename;
1105 int i, ecam_id;
1106 PCIHostState *pci;
1107
1108 dev = qdev_create(NULL, TYPE_GPEX_HOST);
1109 qdev_init_nofail(dev);
1110
1111 ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
1112 base_ecam = vms->memmap[ecam_id].base;
1113 size_ecam = vms->memmap[ecam_id].size;
1114 nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
1115 /* Map only the first size_ecam bytes of ECAM space */
1116 ecam_alias = g_new0(MemoryRegion, 1);
1117 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1118 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1119 ecam_reg, 0, size_ecam);
1120 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1121
1122 /* Map the MMIO window into system address space so as to expose
1123 * the section of PCI MMIO space which starts at the same base address
1124 * (ie 1:1 mapping for that part of PCI MMIO space visible through
1125 * the window).
1126 */
1127 mmio_alias = g_new0(MemoryRegion, 1);
1128 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1129 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1130 mmio_reg, base_mmio, size_mmio);
1131 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1132
1133 if (vms->highmem) {
1134 /* Map high MMIO space */
1135 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1136
1137 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1138 mmio_reg, base_mmio_high, size_mmio_high);
1139 memory_region_add_subregion(get_system_memory(), base_mmio_high,
1140 high_mmio_alias);
1141 }
1142
1143 /* Map IO port space */
1144 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1145
1146 for (i = 0; i < GPEX_NUM_IRQS; i++) {
1147 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1148 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
1149 }
1150
1151 pci = PCI_HOST_BRIDGE(dev);
1152 if (pci->bus) {
1153 for (i = 0; i < nb_nics; i++) {
1154 NICInfo *nd = &nd_table[i];
1155
1156 if (!nd->model) {
1157 nd->model = g_strdup("virtio");
1158 }
1159
1160 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1161 }
1162 }
1163
1164 nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1165 qemu_fdt_add_subnode(vms->fdt, nodename);
1166 qemu_fdt_setprop_string(vms->fdt, nodename,
1167 "compatible", "pci-host-ecam-generic");
1168 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci");
1169 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3);
1170 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2);
1171 qemu_fdt_setprop_cell(vms->fdt, nodename, "linux,pci-domain", 0);
1172 qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0,
1173 nr_pcie_buses - 1);
1174 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1175
1176 if (vms->msi_phandle) {
1177 qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent",
1178 vms->msi_phandle);
1179 }
1180
1181 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1182 2, base_ecam, 2, size_ecam);
1183
1184 if (vms->highmem) {
1185 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1186 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1187 2, base_pio, 2, size_pio,
1188 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1189 2, base_mmio, 2, size_mmio,
1190 1, FDT_PCI_RANGE_MMIO_64BIT,
1191 2, base_mmio_high,
1192 2, base_mmio_high, 2, size_mmio_high);
1193 } else {
1194 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1195 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1196 2, base_pio, 2, size_pio,
1197 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1198 2, base_mmio, 2, size_mmio);
1199 }
1200
1201 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1);
1202 create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename);
1203
1204 if (vms->iommu) {
1205 vms->iommu_phandle = qemu_fdt_alloc_phandle(vms->fdt);
1206
1207 create_smmu(vms, pic, pci->bus);
1208
1209 qemu_fdt_setprop_cells(vms->fdt, nodename, "iommu-map",
1210 0x0, vms->iommu_phandle, 0x0, 0x10000);
1211 }
1212
1213 g_free(nodename);
1214 }
1215
1216 static void create_platform_bus(VirtMachineState *vms, qemu_irq *pic)
1217 {
1218 DeviceState *dev;
1219 SysBusDevice *s;
1220 int i;
1221 MemoryRegion *sysmem = get_system_memory();
1222
1223 dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
1224 dev->id = TYPE_PLATFORM_BUS_DEVICE;
1225 qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
1226 qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
1227 qdev_init_nofail(dev);
1228 vms->platform_bus_dev = dev;
1229
1230 s = SYS_BUS_DEVICE(dev);
1231 for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
1232 int irqn = vms->irqmap[VIRT_PLATFORM_BUS] + i;
1233 sysbus_connect_irq(s, i, pic[irqn]);
1234 }
1235
1236 memory_region_add_subregion(sysmem,
1237 vms->memmap[VIRT_PLATFORM_BUS].base,
1238 sysbus_mmio_get_region(s, 0));
1239 }
1240
1241 static void create_secure_ram(VirtMachineState *vms,
1242 MemoryRegion *secure_sysmem)
1243 {
1244 MemoryRegion *secram = g_new(MemoryRegion, 1);
1245 char *nodename;
1246 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1247 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1248
1249 memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1250 &error_fatal);
1251 memory_region_add_subregion(secure_sysmem, base, secram);
1252
1253 nodename = g_strdup_printf("/secram@%" PRIx64, base);
1254 qemu_fdt_add_subnode(vms->fdt, nodename);
1255 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory");
1256 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size);
1257 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
1258 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
1259
1260 g_free(nodename);
1261 }
1262
1263 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1264 {
1265 const VirtMachineState *board = container_of(binfo, VirtMachineState,
1266 bootinfo);
1267
1268 *fdt_size = board->fdt_size;
1269 return board->fdt;
1270 }
1271
1272 static void virt_build_smbios(VirtMachineState *vms)
1273 {
1274 MachineClass *mc = MACHINE_GET_CLASS(vms);
1275 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1276 uint8_t *smbios_tables, *smbios_anchor;
1277 size_t smbios_tables_len, smbios_anchor_len;
1278 const char *product = "QEMU Virtual Machine";
1279
1280 if (!vms->fw_cfg) {
1281 return;
1282 }
1283
1284 if (kvm_enabled()) {
1285 product = "KVM Virtual Machine";
1286 }
1287
1288 smbios_set_defaults("QEMU", product,
1289 vmc->smbios_old_sys_ver ? "1.0" : mc->name, false,
1290 true, SMBIOS_ENTRY_POINT_30);
1291
1292 smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len,
1293 &smbios_anchor, &smbios_anchor_len);
1294
1295 if (smbios_anchor) {
1296 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1297 smbios_tables, smbios_tables_len);
1298 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1299 smbios_anchor, smbios_anchor_len);
1300 }
1301 }
1302
1303 static
1304 void virt_machine_done(Notifier *notifier, void *data)
1305 {
1306 VirtMachineState *vms = container_of(notifier, VirtMachineState,
1307 machine_done);
1308 ARMCPU *cpu = ARM_CPU(first_cpu);
1309 struct arm_boot_info *info = &vms->bootinfo;
1310 AddressSpace *as = arm_boot_address_space(cpu, info);
1311
1312 /*
1313 * If the user provided a dtb, we assume the dynamic sysbus nodes
1314 * already are integrated there. This corresponds to a use case where
1315 * the dynamic sysbus nodes are complex and their generation is not yet
1316 * supported. In that case the user can take charge of the guest dt
1317 * while qemu takes charge of the qom stuff.
1318 */
1319 if (info->dtb_filename == NULL) {
1320 platform_bus_add_all_fdt_nodes(vms->fdt, "/intc",
1321 vms->memmap[VIRT_PLATFORM_BUS].base,
1322 vms->memmap[VIRT_PLATFORM_BUS].size,
1323 vms->irqmap[VIRT_PLATFORM_BUS]);
1324 }
1325 if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as) < 0) {
1326 exit(1);
1327 }
1328
1329 virt_acpi_setup(vms);
1330 virt_build_smbios(vms);
1331 }
1332
1333 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1334 {
1335 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1336 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1337
1338 if (!vmc->disallow_affinity_adjustment) {
1339 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1340 * GIC's target-list limitations. 32-bit KVM hosts currently
1341 * always create clusters of 4 CPUs, but that is expected to
1342 * change when they gain support for gicv3. When KVM is enabled
1343 * it will override the changes we make here, therefore our
1344 * purposes are to make TCG consistent (with 64-bit KVM hosts)
1345 * and to improve SGI efficiency.
1346 */
1347 if (vms->gic_version == 3) {
1348 clustersz = GICV3_TARGETLIST_BITS;
1349 } else {
1350 clustersz = GIC_TARGETLIST_BITS;
1351 }
1352 }
1353 return arm_cpu_mp_affinity(idx, clustersz);
1354 }
1355
1356 static void machvirt_init(MachineState *machine)
1357 {
1358 VirtMachineState *vms = VIRT_MACHINE(machine);
1359 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
1360 MachineClass *mc = MACHINE_GET_CLASS(machine);
1361 const CPUArchIdList *possible_cpus;
1362 qemu_irq pic[NUM_IRQS];
1363 MemoryRegion *sysmem = get_system_memory();
1364 MemoryRegion *secure_sysmem = NULL;
1365 int n, virt_max_cpus;
1366 MemoryRegion *ram = g_new(MemoryRegion, 1);
1367 bool firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0);
1368 bool aarch64 = true;
1369
1370 /* We can probe only here because during property set
1371 * KVM is not available yet
1372 */
1373 if (vms->gic_version <= 0) {
1374 /* "host" or "max" */
1375 if (!kvm_enabled()) {
1376 if (vms->gic_version == 0) {
1377 error_report("gic-version=host requires KVM");
1378 exit(1);
1379 } else {
1380 /* "max": currently means 3 for TCG */
1381 vms->gic_version = 3;
1382 }
1383 } else {
1384 vms->gic_version = kvm_arm_vgic_probe();
1385 if (!vms->gic_version) {
1386 error_report(
1387 "Unable to determine GIC version supported by host");
1388 exit(1);
1389 }
1390 }
1391 }
1392
1393 if (!cpu_type_valid(machine->cpu_type)) {
1394 error_report("mach-virt: CPU type %s not supported", machine->cpu_type);
1395 exit(1);
1396 }
1397
1398 /* If we have an EL3 boot ROM then the assumption is that it will
1399 * implement PSCI itself, so disable QEMU's internal implementation
1400 * so it doesn't get in the way. Instead of starting secondary
1401 * CPUs in PSCI powerdown state we will start them all running and
1402 * let the boot ROM sort them out.
1403 * The usual case is that we do use QEMU's PSCI implementation;
1404 * if the guest has EL2 then we will use SMC as the conduit,
1405 * and otherwise we will use HVC (for backwards compatibility and
1406 * because if we're using KVM then we must use HVC).
1407 */
1408 if (vms->secure && firmware_loaded) {
1409 vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
1410 } else if (vms->virt) {
1411 vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
1412 } else {
1413 vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
1414 }
1415
1416 /* The maximum number of CPUs depends on the GIC version, or on how
1417 * many redistributors we can fit into the memory map.
1418 */
1419 if (vms->gic_version == 3) {
1420 virt_max_cpus = vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
1421 virt_max_cpus += vms->memmap[VIRT_GIC_REDIST2].size / GICV3_REDIST_SIZE;
1422 } else {
1423 virt_max_cpus = GIC_NCPU;
1424 }
1425
1426 if (max_cpus > virt_max_cpus) {
1427 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1428 "supported by machine 'mach-virt' (%d)",
1429 max_cpus, virt_max_cpus);
1430 exit(1);
1431 }
1432
1433 vms->smp_cpus = smp_cpus;
1434
1435 if (machine->ram_size > vms->memmap[VIRT_MEM].size) {
1436 error_report("mach-virt: cannot model more than %dGB RAM", RAMLIMIT_GB);
1437 exit(1);
1438 }
1439
1440 if (vms->virt && kvm_enabled()) {
1441 error_report("mach-virt: KVM does not support providing "
1442 "Virtualization extensions to the guest CPU");
1443 exit(1);
1444 }
1445
1446 if (vms->secure) {
1447 if (kvm_enabled()) {
1448 error_report("mach-virt: KVM does not support Security extensions");
1449 exit(1);
1450 }
1451
1452 /* The Secure view of the world is the same as the NonSecure,
1453 * but with a few extra devices. Create it as a container region
1454 * containing the system memory at low priority; any secure-only
1455 * devices go in at higher priority and take precedence.
1456 */
1457 secure_sysmem = g_new(MemoryRegion, 1);
1458 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1459 UINT64_MAX);
1460 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1461 }
1462
1463 create_fdt(vms);
1464
1465 possible_cpus = mc->possible_cpu_arch_ids(machine);
1466 for (n = 0; n < possible_cpus->len; n++) {
1467 Object *cpuobj;
1468 CPUState *cs;
1469
1470 if (n >= smp_cpus) {
1471 break;
1472 }
1473
1474 cpuobj = object_new(possible_cpus->cpus[n].type);
1475 object_property_set_int(cpuobj, possible_cpus->cpus[n].arch_id,
1476 "mp-affinity", NULL);
1477
1478 cs = CPU(cpuobj);
1479 cs->cpu_index = n;
1480
1481 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
1482 &error_fatal);
1483
1484 aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
1485
1486 if (!vms->secure) {
1487 object_property_set_bool(cpuobj, false, "has_el3", NULL);
1488 }
1489
1490 if (!vms->virt && object_property_find(cpuobj, "has_el2", NULL)) {
1491 object_property_set_bool(cpuobj, false, "has_el2", NULL);
1492 }
1493
1494 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
1495 object_property_set_int(cpuobj, vms->psci_conduit,
1496 "psci-conduit", NULL);
1497
1498 /* Secondary CPUs start in PSCI powered-down state */
1499 if (n > 0) {
1500 object_property_set_bool(cpuobj, true,
1501 "start-powered-off", NULL);
1502 }
1503 }
1504
1505 if (vmc->no_pmu && object_property_find(cpuobj, "pmu", NULL)) {
1506 object_property_set_bool(cpuobj, false, "pmu", NULL);
1507 }
1508
1509 if (object_property_find(cpuobj, "reset-cbar", NULL)) {
1510 object_property_set_int(cpuobj, vms->memmap[VIRT_CPUPERIPHS].base,
1511 "reset-cbar", &error_abort);
1512 }
1513
1514 object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
1515 &error_abort);
1516 if (vms->secure) {
1517 object_property_set_link(cpuobj, OBJECT(secure_sysmem),
1518 "secure-memory", &error_abort);
1519 }
1520
1521 object_property_set_bool(cpuobj, true, "realized", &error_fatal);
1522 object_unref(cpuobj);
1523 }
1524 fdt_add_timer_nodes(vms);
1525 fdt_add_cpu_nodes(vms);
1526
1527 memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
1528 machine->ram_size);
1529 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, ram);
1530
1531 create_flash(vms, sysmem, secure_sysmem ? secure_sysmem : sysmem);
1532
1533 create_gic(vms, pic);
1534
1535 fdt_add_pmu_nodes(vms);
1536
1537 create_uart(vms, pic, VIRT_UART, sysmem, serial_hd(0));
1538
1539 if (vms->secure) {
1540 create_secure_ram(vms, secure_sysmem);
1541 create_uart(vms, pic, VIRT_SECURE_UART, secure_sysmem, serial_hd(1));
1542 }
1543
1544 vms->highmem_ecam &= vms->highmem && (!firmware_loaded || aarch64);
1545
1546 create_rtc(vms, pic);
1547
1548 create_pcie(vms, pic);
1549
1550 create_gpio(vms, pic);
1551
1552 /* Create mmio transports, so the user can create virtio backends
1553 * (which will be automatically plugged in to the transports). If
1554 * no backend is created the transport will just sit harmlessly idle.
1555 */
1556 create_virtio_devices(vms, pic);
1557
1558 vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
1559 rom_set_fw(vms->fw_cfg);
1560
1561 create_platform_bus(vms, pic);
1562
1563 vms->bootinfo.ram_size = machine->ram_size;
1564 vms->bootinfo.kernel_filename = machine->kernel_filename;
1565 vms->bootinfo.kernel_cmdline = machine->kernel_cmdline;
1566 vms->bootinfo.initrd_filename = machine->initrd_filename;
1567 vms->bootinfo.nb_cpus = smp_cpus;
1568 vms->bootinfo.board_id = -1;
1569 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
1570 vms->bootinfo.get_dtb = machvirt_dtb;
1571 vms->bootinfo.skip_dtb_autoload = true;
1572 vms->bootinfo.firmware_loaded = firmware_loaded;
1573 arm_load_kernel(ARM_CPU(first_cpu), &vms->bootinfo);
1574
1575 vms->machine_done.notify = virt_machine_done;
1576 qemu_add_machine_init_done_notifier(&vms->machine_done);
1577 }
1578
1579 static bool virt_get_secure(Object *obj, Error **errp)
1580 {
1581 VirtMachineState *vms = VIRT_MACHINE(obj);
1582
1583 return vms->secure;
1584 }
1585
1586 static void virt_set_secure(Object *obj, bool value, Error **errp)
1587 {
1588 VirtMachineState *vms = VIRT_MACHINE(obj);
1589
1590 vms->secure = value;
1591 }
1592
1593 static bool virt_get_virt(Object *obj, Error **errp)
1594 {
1595 VirtMachineState *vms = VIRT_MACHINE(obj);
1596
1597 return vms->virt;
1598 }
1599
1600 static void virt_set_virt(Object *obj, bool value, Error **errp)
1601 {
1602 VirtMachineState *vms = VIRT_MACHINE(obj);
1603
1604 vms->virt = value;
1605 }
1606
1607 static bool virt_get_highmem(Object *obj, Error **errp)
1608 {
1609 VirtMachineState *vms = VIRT_MACHINE(obj);
1610
1611 return vms->highmem;
1612 }
1613
1614 static void virt_set_highmem(Object *obj, bool value, Error **errp)
1615 {
1616 VirtMachineState *vms = VIRT_MACHINE(obj);
1617
1618 vms->highmem = value;
1619 }
1620
1621 static bool virt_get_its(Object *obj, Error **errp)
1622 {
1623 VirtMachineState *vms = VIRT_MACHINE(obj);
1624
1625 return vms->its;
1626 }
1627
1628 static void virt_set_its(Object *obj, bool value, Error **errp)
1629 {
1630 VirtMachineState *vms = VIRT_MACHINE(obj);
1631
1632 vms->its = value;
1633 }
1634
1635 static char *virt_get_gic_version(Object *obj, Error **errp)
1636 {
1637 VirtMachineState *vms = VIRT_MACHINE(obj);
1638 const char *val = vms->gic_version == 3 ? "3" : "2";
1639
1640 return g_strdup(val);
1641 }
1642
1643 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
1644 {
1645 VirtMachineState *vms = VIRT_MACHINE(obj);
1646
1647 if (!strcmp(value, "3")) {
1648 vms->gic_version = 3;
1649 } else if (!strcmp(value, "2")) {
1650 vms->gic_version = 2;
1651 } else if (!strcmp(value, "host")) {
1652 vms->gic_version = 0; /* Will probe later */
1653 } else if (!strcmp(value, "max")) {
1654 vms->gic_version = -1; /* Will probe later */
1655 } else {
1656 error_setg(errp, "Invalid gic-version value");
1657 error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
1658 }
1659 }
1660
1661 static char *virt_get_iommu(Object *obj, Error **errp)
1662 {
1663 VirtMachineState *vms = VIRT_MACHINE(obj);
1664
1665 switch (vms->iommu) {
1666 case VIRT_IOMMU_NONE:
1667 return g_strdup("none");
1668 case VIRT_IOMMU_SMMUV3:
1669 return g_strdup("smmuv3");
1670 default:
1671 g_assert_not_reached();
1672 }
1673 }
1674
1675 static void virt_set_iommu(Object *obj, const char *value, Error **errp)
1676 {
1677 VirtMachineState *vms = VIRT_MACHINE(obj);
1678
1679 if (!strcmp(value, "smmuv3")) {
1680 vms->iommu = VIRT_IOMMU_SMMUV3;
1681 } else if (!strcmp(value, "none")) {
1682 vms->iommu = VIRT_IOMMU_NONE;
1683 } else {
1684 error_setg(errp, "Invalid iommu value");
1685 error_append_hint(errp, "Valid values are none, smmuv3.\n");
1686 }
1687 }
1688
1689 static CpuInstanceProperties
1690 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
1691 {
1692 MachineClass *mc = MACHINE_GET_CLASS(ms);
1693 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
1694
1695 assert(cpu_index < possible_cpus->len);
1696 return possible_cpus->cpus[cpu_index].props;
1697 }
1698
1699 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
1700 {
1701 return idx % nb_numa_nodes;
1702 }
1703
1704 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
1705 {
1706 int n;
1707 VirtMachineState *vms = VIRT_MACHINE(ms);
1708
1709 if (ms->possible_cpus) {
1710 assert(ms->possible_cpus->len == max_cpus);
1711 return ms->possible_cpus;
1712 }
1713
1714 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
1715 sizeof(CPUArchId) * max_cpus);
1716 ms->possible_cpus->len = max_cpus;
1717 for (n = 0; n < ms->possible_cpus->len; n++) {
1718 ms->possible_cpus->cpus[n].type = ms->cpu_type;
1719 ms->possible_cpus->cpus[n].arch_id =
1720 virt_cpu_mp_affinity(vms, n);
1721 ms->possible_cpus->cpus[n].props.has_thread_id = true;
1722 ms->possible_cpus->cpus[n].props.thread_id = n;
1723 }
1724 return ms->possible_cpus;
1725 }
1726
1727 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
1728 DeviceState *dev, Error **errp)
1729 {
1730 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
1731
1732 if (vms->platform_bus_dev) {
1733 if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) {
1734 platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
1735 SYS_BUS_DEVICE(dev));
1736 }
1737 }
1738 }
1739
1740 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
1741 DeviceState *dev)
1742 {
1743 if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) {
1744 return HOTPLUG_HANDLER(machine);
1745 }
1746
1747 return NULL;
1748 }
1749
1750 static void virt_machine_class_init(ObjectClass *oc, void *data)
1751 {
1752 MachineClass *mc = MACHINE_CLASS(oc);
1753 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
1754
1755 mc->init = machvirt_init;
1756 /* Start with max_cpus set to 512, which is the maximum supported by KVM.
1757 * The value may be reduced later when we have more information about the
1758 * configuration of the particular instance.
1759 */
1760 mc->max_cpus = 512;
1761 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
1762 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
1763 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
1764 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM);
1765 mc->block_default_type = IF_VIRTIO;
1766 mc->no_cdrom = 1;
1767 mc->pci_allow_0_address = true;
1768 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
1769 mc->minimum_page_bits = 12;
1770 mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
1771 mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
1772 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
1773 mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
1774 assert(!mc->get_hotplug_handler);
1775 mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
1776 hc->plug = virt_machine_device_plug_cb;
1777 }
1778
1779 static void virt_instance_init(Object *obj)
1780 {
1781 VirtMachineState *vms = VIRT_MACHINE(obj);
1782 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1783
1784 /* EL3 is disabled by default on virt: this makes us consistent
1785 * between KVM and TCG for this board, and it also allows us to
1786 * boot UEFI blobs which assume no TrustZone support.
1787 */
1788 vms->secure = false;
1789 object_property_add_bool(obj, "secure", virt_get_secure,
1790 virt_set_secure, NULL);
1791 object_property_set_description(obj, "secure",
1792 "Set on/off to enable/disable the ARM "
1793 "Security Extensions (TrustZone)",
1794 NULL);
1795
1796 /* EL2 is also disabled by default, for similar reasons */
1797 vms->virt = false;
1798 object_property_add_bool(obj, "virtualization", virt_get_virt,
1799 virt_set_virt, NULL);
1800 object_property_set_description(obj, "virtualization",
1801 "Set on/off to enable/disable emulating a "
1802 "guest CPU which implements the ARM "
1803 "Virtualization Extensions",
1804 NULL);
1805
1806 /* High memory is enabled by default */
1807 vms->highmem = true;
1808 object_property_add_bool(obj, "highmem", virt_get_highmem,
1809 virt_set_highmem, NULL);
1810 object_property_set_description(obj, "highmem",
1811 "Set on/off to enable/disable using "
1812 "physical address space above 32 bits",
1813 NULL);
1814 /* Default GIC type is v2 */
1815 vms->gic_version = 2;
1816 object_property_add_str(obj, "gic-version", virt_get_gic_version,
1817 virt_set_gic_version, NULL);
1818 object_property_set_description(obj, "gic-version",
1819 "Set GIC version. "
1820 "Valid values are 2, 3 and host", NULL);
1821
1822 vms->highmem_ecam = !vmc->no_highmem_ecam;
1823
1824 if (vmc->no_its) {
1825 vms->its = false;
1826 } else {
1827 /* Default allows ITS instantiation */
1828 vms->its = true;
1829 object_property_add_bool(obj, "its", virt_get_its,
1830 virt_set_its, NULL);
1831 object_property_set_description(obj, "its",
1832 "Set on/off to enable/disable "
1833 "ITS instantiation",
1834 NULL);
1835 }
1836
1837 /* Default disallows iommu instantiation */
1838 vms->iommu = VIRT_IOMMU_NONE;
1839 object_property_add_str(obj, "iommu", virt_get_iommu, virt_set_iommu, NULL);
1840 object_property_set_description(obj, "iommu",
1841 "Set the IOMMU type. "
1842 "Valid values are none and smmuv3",
1843 NULL);
1844
1845 vms->memmap = a15memmap;
1846 vms->irqmap = a15irqmap;
1847 }
1848
1849 static const TypeInfo virt_machine_info = {
1850 .name = TYPE_VIRT_MACHINE,
1851 .parent = TYPE_MACHINE,
1852 .abstract = true,
1853 .instance_size = sizeof(VirtMachineState),
1854 .class_size = sizeof(VirtMachineClass),
1855 .class_init = virt_machine_class_init,
1856 .instance_init = virt_instance_init,
1857 .interfaces = (InterfaceInfo[]) {
1858 { TYPE_HOTPLUG_HANDLER },
1859 { }
1860 },
1861 };
1862
1863 static void machvirt_machine_init(void)
1864 {
1865 type_register_static(&virt_machine_info);
1866 }
1867 type_init(machvirt_machine_init);
1868
1869 static void virt_machine_4_0_options(MachineClass *mc)
1870 {
1871 }
1872 DEFINE_VIRT_MACHINE_AS_LATEST(4, 0)
1873
1874 static void virt_machine_3_1_options(MachineClass *mc)
1875 {
1876 virt_machine_4_0_options(mc);
1877 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
1878 }
1879 DEFINE_VIRT_MACHINE(3, 1)
1880
1881 static void virt_machine_3_0_options(MachineClass *mc)
1882 {
1883 virt_machine_3_1_options(mc);
1884 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
1885 }
1886 DEFINE_VIRT_MACHINE(3, 0)
1887
1888 static void virt_machine_2_12_options(MachineClass *mc)
1889 {
1890 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1891
1892 virt_machine_3_0_options(mc);
1893 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
1894 vmc->no_highmem_ecam = true;
1895 mc->max_cpus = 255;
1896 }
1897 DEFINE_VIRT_MACHINE(2, 12)
1898
1899 static void virt_machine_2_11_options(MachineClass *mc)
1900 {
1901 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1902
1903 virt_machine_2_12_options(mc);
1904 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
1905 vmc->smbios_old_sys_ver = true;
1906 }
1907 DEFINE_VIRT_MACHINE(2, 11)
1908
1909 static void virt_machine_2_10_options(MachineClass *mc)
1910 {
1911 virt_machine_2_11_options(mc);
1912 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
1913 /* before 2.11 we never faulted accesses to bad addresses */
1914 mc->ignore_memory_transaction_failures = true;
1915 }
1916 DEFINE_VIRT_MACHINE(2, 10)
1917
1918 static void virt_machine_2_9_options(MachineClass *mc)
1919 {
1920 virt_machine_2_10_options(mc);
1921 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
1922 }
1923 DEFINE_VIRT_MACHINE(2, 9)
1924
1925 static void virt_machine_2_8_options(MachineClass *mc)
1926 {
1927 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1928
1929 virt_machine_2_9_options(mc);
1930 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
1931 /* For 2.8 and earlier we falsely claimed in the DT that
1932 * our timers were edge-triggered, not level-triggered.
1933 */
1934 vmc->claim_edge_triggered_timers = true;
1935 }
1936 DEFINE_VIRT_MACHINE(2, 8)
1937
1938 static void virt_machine_2_7_options(MachineClass *mc)
1939 {
1940 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1941
1942 virt_machine_2_8_options(mc);
1943 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
1944 /* ITS was introduced with 2.8 */
1945 vmc->no_its = true;
1946 /* Stick with 1K pages for migration compatibility */
1947 mc->minimum_page_bits = 0;
1948 }
1949 DEFINE_VIRT_MACHINE(2, 7)
1950
1951 static void virt_machine_2_6_options(MachineClass *mc)
1952 {
1953 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1954
1955 virt_machine_2_7_options(mc);
1956 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
1957 vmc->disallow_affinity_adjustment = true;
1958 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
1959 vmc->no_pmu = true;
1960 }
1961 DEFINE_VIRT_MACHINE(2, 6)