]> git.proxmox.com Git - mirror_qemu.git/blob - hw/arm/virt.c
hw/arm/virt: Load bios image to MemoryRegion, not physaddr
[mirror_qemu.git] / hw / arm / virt.c
1 /*
2 * ARM mach-virt emulation
3 *
4 * Copyright (c) 2013 Linaro Limited
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
17 *
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
29 */
30
31 #include "qemu/osdep.h"
32 #include "hw/sysbus.h"
33 #include "hw/arm/arm.h"
34 #include "hw/arm/primecell.h"
35 #include "hw/arm/virt.h"
36 #include "hw/devices.h"
37 #include "net/net.h"
38 #include "sysemu/block-backend.h"
39 #include "sysemu/device_tree.h"
40 #include "sysemu/sysemu.h"
41 #include "sysemu/kvm.h"
42 #include "hw/boards.h"
43 #include "hw/loader.h"
44 #include "exec/address-spaces.h"
45 #include "qemu/bitops.h"
46 #include "qemu/error-report.h"
47 #include "hw/pci-host/gpex.h"
48 #include "hw/arm/virt-acpi-build.h"
49 #include "hw/arm/sysbus-fdt.h"
50 #include "hw/platform-bus.h"
51 #include "hw/arm/fdt.h"
52 #include "hw/intc/arm_gic_common.h"
53 #include "kvm_arm.h"
54 #include "hw/smbios/smbios.h"
55 #include "qapi/visitor.h"
56 #include "standard-headers/linux/input.h"
57
58 /* Number of external interrupt lines to configure the GIC with */
59 #define NUM_IRQS 256
60
61 #define PLATFORM_BUS_NUM_IRQS 64
62
63 static ARMPlatformBusSystemParams platform_bus_params;
64
65 typedef struct VirtBoardInfo {
66 struct arm_boot_info bootinfo;
67 const char *cpu_model;
68 const MemMapEntry *memmap;
69 const int *irqmap;
70 int smp_cpus;
71 void *fdt;
72 int fdt_size;
73 uint32_t clock_phandle;
74 uint32_t gic_phandle;
75 uint32_t v2m_phandle;
76 } VirtBoardInfo;
77
78 typedef struct {
79 MachineClass parent;
80 VirtBoardInfo *daughterboard;
81 } VirtMachineClass;
82
83 typedef struct {
84 MachineState parent;
85 bool secure;
86 bool highmem;
87 int32_t gic_version;
88 } VirtMachineState;
89
90 #define TYPE_VIRT_MACHINE MACHINE_TYPE_NAME("virt")
91 #define VIRT_MACHINE(obj) \
92 OBJECT_CHECK(VirtMachineState, (obj), TYPE_VIRT_MACHINE)
93 #define VIRT_MACHINE_GET_CLASS(obj) \
94 OBJECT_GET_CLASS(VirtMachineClass, obj, TYPE_VIRT_MACHINE)
95 #define VIRT_MACHINE_CLASS(klass) \
96 OBJECT_CLASS_CHECK(VirtMachineClass, klass, TYPE_VIRT_MACHINE)
97
98 /* RAM limit in GB. Since VIRT_MEM starts at the 1GB mark, this means
99 * RAM can go up to the 256GB mark, leaving 256GB of the physical
100 * address space unallocated and free for future use between 256G and 512G.
101 * If we need to provide more RAM to VMs in the future then we need to:
102 * * allocate a second bank of RAM starting at 2TB and working up
103 * * fix the DT and ACPI table generation code in QEMU to correctly
104 * report two split lumps of RAM to the guest
105 * * fix KVM in the host kernel to allow guests with >40 bit address spaces
106 * (We don't want to fill all the way up to 512GB with RAM because
107 * we might want it for non-RAM purposes later. Conversely it seems
108 * reasonable to assume that anybody configuring a VM with a quarter
109 * of a terabyte of RAM will be doing it on a host with more than a
110 * terabyte of physical address space.)
111 */
112 #define RAMLIMIT_GB 255
113 #define RAMLIMIT_BYTES (RAMLIMIT_GB * 1024ULL * 1024 * 1024)
114
115 /* Addresses and sizes of our components.
116 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
117 * 128MB..256MB is used for miscellaneous device I/O.
118 * 256MB..1GB is reserved for possible future PCI support (ie where the
119 * PCI memory window will go if we add a PCI host controller).
120 * 1GB and up is RAM (which may happily spill over into the
121 * high memory region beyond 4GB).
122 * This represents a compromise between how much RAM can be given to
123 * a 32 bit VM and leaving space for expansion and in particular for PCI.
124 * Note that devices should generally be placed at multiples of 0x10000,
125 * to accommodate guests using 64K pages.
126 */
127 static const MemMapEntry a15memmap[] = {
128 /* Space up to 0x8000000 is reserved for a boot ROM */
129 [VIRT_FLASH] = { 0, 0x08000000 },
130 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
131 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
132 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
133 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
134 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 },
135 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
136 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 },
137 /* This redistributor space allows up to 2*64kB*123 CPUs */
138 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 },
139 [VIRT_UART] = { 0x09000000, 0x00001000 },
140 [VIRT_RTC] = { 0x09010000, 0x00001000 },
141 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 },
142 [VIRT_GPIO] = { 0x09030000, 0x00001000 },
143 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 },
144 [VIRT_MMIO] = { 0x0a000000, 0x00000200 },
145 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
146 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 },
147 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 },
148 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 },
149 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 },
150 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 },
151 [VIRT_MEM] = { 0x40000000, RAMLIMIT_BYTES },
152 /* Second PCIe window, 512GB wide at the 512GB boundary */
153 [VIRT_PCIE_MMIO_HIGH] = { 0x8000000000ULL, 0x8000000000ULL },
154 };
155
156 static const int a15irqmap[] = {
157 [VIRT_UART] = 1,
158 [VIRT_RTC] = 2,
159 [VIRT_PCIE] = 3, /* ... to 6 */
160 [VIRT_GPIO] = 7,
161 [VIRT_SECURE_UART] = 8,
162 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
163 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
164 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
165 };
166
167 static VirtBoardInfo machines[] = {
168 {
169 .cpu_model = "cortex-a15",
170 .memmap = a15memmap,
171 .irqmap = a15irqmap,
172 },
173 {
174 .cpu_model = "cortex-a53",
175 .memmap = a15memmap,
176 .irqmap = a15irqmap,
177 },
178 {
179 .cpu_model = "cortex-a57",
180 .memmap = a15memmap,
181 .irqmap = a15irqmap,
182 },
183 {
184 .cpu_model = "host",
185 .memmap = a15memmap,
186 .irqmap = a15irqmap,
187 },
188 };
189
190 static VirtBoardInfo *find_machine_info(const char *cpu)
191 {
192 int i;
193
194 for (i = 0; i < ARRAY_SIZE(machines); i++) {
195 if (strcmp(cpu, machines[i].cpu_model) == 0) {
196 return &machines[i];
197 }
198 }
199 return NULL;
200 }
201
202 static void create_fdt(VirtBoardInfo *vbi)
203 {
204 void *fdt = create_device_tree(&vbi->fdt_size);
205
206 if (!fdt) {
207 error_report("create_device_tree() failed");
208 exit(1);
209 }
210
211 vbi->fdt = fdt;
212
213 /* Header */
214 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
215 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
216 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
217
218 /*
219 * /chosen and /memory nodes must exist for load_dtb
220 * to fill in necessary properties later
221 */
222 qemu_fdt_add_subnode(fdt, "/chosen");
223 qemu_fdt_add_subnode(fdt, "/memory");
224 qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
225
226 /* Clock node, for the benefit of the UART. The kernel device tree
227 * binding documentation claims the PL011 node clock properties are
228 * optional but in practice if you omit them the kernel refuses to
229 * probe for the device.
230 */
231 vbi->clock_phandle = qemu_fdt_alloc_phandle(fdt);
232 qemu_fdt_add_subnode(fdt, "/apb-pclk");
233 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
234 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
235 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
236 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
237 "clk24mhz");
238 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vbi->clock_phandle);
239
240 }
241
242 static void fdt_add_psci_node(const VirtBoardInfo *vbi)
243 {
244 uint32_t cpu_suspend_fn;
245 uint32_t cpu_off_fn;
246 uint32_t cpu_on_fn;
247 uint32_t migrate_fn;
248 void *fdt = vbi->fdt;
249 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
250
251 qemu_fdt_add_subnode(fdt, "/psci");
252 if (armcpu->psci_version == 2) {
253 const char comp[] = "arm,psci-0.2\0arm,psci";
254 qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
255
256 cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
257 if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
258 cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
259 cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
260 migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
261 } else {
262 cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
263 cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
264 migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
265 }
266 } else {
267 qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
268
269 cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
270 cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
271 cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
272 migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
273 }
274
275 /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
276 * to the instruction that should be used to invoke PSCI functions.
277 * However, the device tree binding uses 'method' instead, so that is
278 * what we should use here.
279 */
280 qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc");
281
282 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
283 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
284 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
285 qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
286 }
287
288 static void fdt_add_timer_nodes(const VirtBoardInfo *vbi, int gictype)
289 {
290 /* Note that on A15 h/w these interrupts are level-triggered,
291 * but for the GIC implementation provided by both QEMU and KVM
292 * they are edge-triggered.
293 */
294 ARMCPU *armcpu;
295 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
296
297 if (gictype == 2) {
298 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
299 GIC_FDT_IRQ_PPI_CPU_WIDTH,
300 (1 << vbi->smp_cpus) - 1);
301 }
302
303 qemu_fdt_add_subnode(vbi->fdt, "/timer");
304
305 armcpu = ARM_CPU(qemu_get_cpu(0));
306 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
307 const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
308 qemu_fdt_setprop(vbi->fdt, "/timer", "compatible",
309 compat, sizeof(compat));
310 } else {
311 qemu_fdt_setprop_string(vbi->fdt, "/timer", "compatible",
312 "arm,armv7-timer");
313 }
314 qemu_fdt_setprop(vbi->fdt, "/timer", "always-on", NULL, 0);
315 qemu_fdt_setprop_cells(vbi->fdt, "/timer", "interrupts",
316 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
317 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
318 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
319 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
320 }
321
322 static void fdt_add_cpu_nodes(const VirtBoardInfo *vbi)
323 {
324 int cpu;
325 int addr_cells = 1;
326
327 /*
328 * From Documentation/devicetree/bindings/arm/cpus.txt
329 * On ARM v8 64-bit systems value should be set to 2,
330 * that corresponds to the MPIDR_EL1 register size.
331 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
332 * in the system, #address-cells can be set to 1, since
333 * MPIDR_EL1[63:32] bits are not used for CPUs
334 * identification.
335 *
336 * Here we actually don't know whether our system is 32- or 64-bit one.
337 * The simplest way to go is to examine affinity IDs of all our CPUs. If
338 * at least one of them has Aff3 populated, we set #address-cells to 2.
339 */
340 for (cpu = 0; cpu < vbi->smp_cpus; cpu++) {
341 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
342
343 if (armcpu->mp_affinity & ARM_AFF3_MASK) {
344 addr_cells = 2;
345 break;
346 }
347 }
348
349 qemu_fdt_add_subnode(vbi->fdt, "/cpus");
350 qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#address-cells", addr_cells);
351 qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#size-cells", 0x0);
352
353 for (cpu = vbi->smp_cpus - 1; cpu >= 0; cpu--) {
354 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
355 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
356
357 qemu_fdt_add_subnode(vbi->fdt, nodename);
358 qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "cpu");
359 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible",
360 armcpu->dtb_compatible);
361
362 if (vbi->smp_cpus > 1) {
363 qemu_fdt_setprop_string(vbi->fdt, nodename,
364 "enable-method", "psci");
365 }
366
367 if (addr_cells == 2) {
368 qemu_fdt_setprop_u64(vbi->fdt, nodename, "reg",
369 armcpu->mp_affinity);
370 } else {
371 qemu_fdt_setprop_cell(vbi->fdt, nodename, "reg",
372 armcpu->mp_affinity);
373 }
374
375 g_free(nodename);
376 }
377 }
378
379 static void fdt_add_v2m_gic_node(VirtBoardInfo *vbi)
380 {
381 vbi->v2m_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
382 qemu_fdt_add_subnode(vbi->fdt, "/intc/v2m");
383 qemu_fdt_setprop_string(vbi->fdt, "/intc/v2m", "compatible",
384 "arm,gic-v2m-frame");
385 qemu_fdt_setprop(vbi->fdt, "/intc/v2m", "msi-controller", NULL, 0);
386 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc/v2m", "reg",
387 2, vbi->memmap[VIRT_GIC_V2M].base,
388 2, vbi->memmap[VIRT_GIC_V2M].size);
389 qemu_fdt_setprop_cell(vbi->fdt, "/intc/v2m", "phandle", vbi->v2m_phandle);
390 }
391
392 static void fdt_add_gic_node(VirtBoardInfo *vbi, int type)
393 {
394 vbi->gic_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
395 qemu_fdt_setprop_cell(vbi->fdt, "/", "interrupt-parent", vbi->gic_phandle);
396
397 qemu_fdt_add_subnode(vbi->fdt, "/intc");
398 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#interrupt-cells", 3);
399 qemu_fdt_setprop(vbi->fdt, "/intc", "interrupt-controller", NULL, 0);
400 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#address-cells", 0x2);
401 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#size-cells", 0x2);
402 qemu_fdt_setprop(vbi->fdt, "/intc", "ranges", NULL, 0);
403 if (type == 3) {
404 qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible",
405 "arm,gic-v3");
406 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg",
407 2, vbi->memmap[VIRT_GIC_DIST].base,
408 2, vbi->memmap[VIRT_GIC_DIST].size,
409 2, vbi->memmap[VIRT_GIC_REDIST].base,
410 2, vbi->memmap[VIRT_GIC_REDIST].size);
411 } else {
412 /* 'cortex-a15-gic' means 'GIC v2' */
413 qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible",
414 "arm,cortex-a15-gic");
415 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg",
416 2, vbi->memmap[VIRT_GIC_DIST].base,
417 2, vbi->memmap[VIRT_GIC_DIST].size,
418 2, vbi->memmap[VIRT_GIC_CPU].base,
419 2, vbi->memmap[VIRT_GIC_CPU].size);
420 }
421
422 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "phandle", vbi->gic_phandle);
423 }
424
425 static void create_v2m(VirtBoardInfo *vbi, qemu_irq *pic)
426 {
427 int i;
428 int irq = vbi->irqmap[VIRT_GIC_V2M];
429 DeviceState *dev;
430
431 dev = qdev_create(NULL, "arm-gicv2m");
432 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vbi->memmap[VIRT_GIC_V2M].base);
433 qdev_prop_set_uint32(dev, "base-spi", irq);
434 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
435 qdev_init_nofail(dev);
436
437 for (i = 0; i < NUM_GICV2M_SPIS; i++) {
438 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
439 }
440
441 fdt_add_v2m_gic_node(vbi);
442 }
443
444 static void create_gic(VirtBoardInfo *vbi, qemu_irq *pic, int type, bool secure)
445 {
446 /* We create a standalone GIC */
447 DeviceState *gicdev;
448 SysBusDevice *gicbusdev;
449 const char *gictype;
450 int i;
451
452 gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
453
454 gicdev = qdev_create(NULL, gictype);
455 qdev_prop_set_uint32(gicdev, "revision", type);
456 qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
457 /* Note that the num-irq property counts both internal and external
458 * interrupts; there are always 32 of the former (mandated by GIC spec).
459 */
460 qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
461 if (!kvm_irqchip_in_kernel()) {
462 qdev_prop_set_bit(gicdev, "has-security-extensions", secure);
463 }
464 qdev_init_nofail(gicdev);
465 gicbusdev = SYS_BUS_DEVICE(gicdev);
466 sysbus_mmio_map(gicbusdev, 0, vbi->memmap[VIRT_GIC_DIST].base);
467 if (type == 3) {
468 sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_REDIST].base);
469 } else {
470 sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_CPU].base);
471 }
472
473 /* Wire the outputs from each CPU's generic timer to the
474 * appropriate GIC PPI inputs, and the GIC's IRQ output to
475 * the CPU's IRQ input.
476 */
477 for (i = 0; i < smp_cpus; i++) {
478 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
479 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
480 int irq;
481 /* Mapping from the output timer irq lines from the CPU to the
482 * GIC PPI inputs we use for the virt board.
483 */
484 const int timer_irq[] = {
485 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
486 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
487 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
488 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
489 };
490
491 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
492 qdev_connect_gpio_out(cpudev, irq,
493 qdev_get_gpio_in(gicdev,
494 ppibase + timer_irq[irq]));
495 }
496
497 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
498 sysbus_connect_irq(gicbusdev, i + smp_cpus,
499 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
500 }
501
502 for (i = 0; i < NUM_IRQS; i++) {
503 pic[i] = qdev_get_gpio_in(gicdev, i);
504 }
505
506 fdt_add_gic_node(vbi, type);
507
508 if (type == 2) {
509 create_v2m(vbi, pic);
510 }
511 }
512
513 static void create_uart(const VirtBoardInfo *vbi, qemu_irq *pic, int uart,
514 MemoryRegion *mem)
515 {
516 char *nodename;
517 hwaddr base = vbi->memmap[uart].base;
518 hwaddr size = vbi->memmap[uart].size;
519 int irq = vbi->irqmap[uart];
520 const char compat[] = "arm,pl011\0arm,primecell";
521 const char clocknames[] = "uartclk\0apb_pclk";
522 DeviceState *dev = qdev_create(NULL, "pl011");
523 SysBusDevice *s = SYS_BUS_DEVICE(dev);
524
525 qdev_init_nofail(dev);
526 memory_region_add_subregion(mem, base,
527 sysbus_mmio_get_region(s, 0));
528 sysbus_connect_irq(s, 0, pic[irq]);
529
530 nodename = g_strdup_printf("/pl011@%" PRIx64, base);
531 qemu_fdt_add_subnode(vbi->fdt, nodename);
532 /* Note that we can't use setprop_string because of the embedded NUL */
533 qemu_fdt_setprop(vbi->fdt, nodename, "compatible",
534 compat, sizeof(compat));
535 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
536 2, base, 2, size);
537 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
538 GIC_FDT_IRQ_TYPE_SPI, irq,
539 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
540 qemu_fdt_setprop_cells(vbi->fdt, nodename, "clocks",
541 vbi->clock_phandle, vbi->clock_phandle);
542 qemu_fdt_setprop(vbi->fdt, nodename, "clock-names",
543 clocknames, sizeof(clocknames));
544
545 if (uart == VIRT_UART) {
546 qemu_fdt_setprop_string(vbi->fdt, "/chosen", "stdout-path", nodename);
547 } else {
548 /* Mark as not usable by the normal world */
549 qemu_fdt_setprop_string(vbi->fdt, nodename, "status", "disabled");
550 qemu_fdt_setprop_string(vbi->fdt, nodename, "secure-status", "okay");
551 }
552
553 g_free(nodename);
554 }
555
556 static void create_rtc(const VirtBoardInfo *vbi, qemu_irq *pic)
557 {
558 char *nodename;
559 hwaddr base = vbi->memmap[VIRT_RTC].base;
560 hwaddr size = vbi->memmap[VIRT_RTC].size;
561 int irq = vbi->irqmap[VIRT_RTC];
562 const char compat[] = "arm,pl031\0arm,primecell";
563
564 sysbus_create_simple("pl031", base, pic[irq]);
565
566 nodename = g_strdup_printf("/pl031@%" PRIx64, base);
567 qemu_fdt_add_subnode(vbi->fdt, nodename);
568 qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat));
569 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
570 2, base, 2, size);
571 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
572 GIC_FDT_IRQ_TYPE_SPI, irq,
573 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
574 qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle);
575 qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk");
576 g_free(nodename);
577 }
578
579 static DeviceState *pl061_dev;
580 static void virt_powerdown_req(Notifier *n, void *opaque)
581 {
582 /* use gpio Pin 3 for power button event */
583 qemu_set_irq(qdev_get_gpio_in(pl061_dev, 3), 1);
584 }
585
586 static Notifier virt_system_powerdown_notifier = {
587 .notify = virt_powerdown_req
588 };
589
590 static void create_gpio(const VirtBoardInfo *vbi, qemu_irq *pic)
591 {
592 char *nodename;
593 hwaddr base = vbi->memmap[VIRT_GPIO].base;
594 hwaddr size = vbi->memmap[VIRT_GPIO].size;
595 int irq = vbi->irqmap[VIRT_GPIO];
596 const char compat[] = "arm,pl061\0arm,primecell";
597
598 pl061_dev = sysbus_create_simple("pl061", base, pic[irq]);
599
600 uint32_t phandle = qemu_fdt_alloc_phandle(vbi->fdt);
601 nodename = g_strdup_printf("/pl061@%" PRIx64, base);
602 qemu_fdt_add_subnode(vbi->fdt, nodename);
603 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
604 2, base, 2, size);
605 qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat));
606 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#gpio-cells", 2);
607 qemu_fdt_setprop(vbi->fdt, nodename, "gpio-controller", NULL, 0);
608 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
609 GIC_FDT_IRQ_TYPE_SPI, irq,
610 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
611 qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle);
612 qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk");
613 qemu_fdt_setprop_cell(vbi->fdt, nodename, "phandle", phandle);
614
615 qemu_fdt_add_subnode(vbi->fdt, "/gpio-keys");
616 qemu_fdt_setprop_string(vbi->fdt, "/gpio-keys", "compatible", "gpio-keys");
617 qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys", "#size-cells", 0);
618 qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys", "#address-cells", 1);
619
620 qemu_fdt_add_subnode(vbi->fdt, "/gpio-keys/poweroff");
621 qemu_fdt_setprop_string(vbi->fdt, "/gpio-keys/poweroff",
622 "label", "GPIO Key Poweroff");
623 qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys/poweroff", "linux,code",
624 KEY_POWER);
625 qemu_fdt_setprop_cells(vbi->fdt, "/gpio-keys/poweroff",
626 "gpios", phandle, 3, 0);
627
628 /* connect powerdown request */
629 qemu_register_powerdown_notifier(&virt_system_powerdown_notifier);
630
631 g_free(nodename);
632 }
633
634 static void create_virtio_devices(const VirtBoardInfo *vbi, qemu_irq *pic)
635 {
636 int i;
637 hwaddr size = vbi->memmap[VIRT_MMIO].size;
638
639 /* We create the transports in forwards order. Since qbus_realize()
640 * prepends (not appends) new child buses, the incrementing loop below will
641 * create a list of virtio-mmio buses with decreasing base addresses.
642 *
643 * When a -device option is processed from the command line,
644 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
645 * order. The upshot is that -device options in increasing command line
646 * order are mapped to virtio-mmio buses with decreasing base addresses.
647 *
648 * When this code was originally written, that arrangement ensured that the
649 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
650 * the first -device on the command line. (The end-to-end order is a
651 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
652 * guest kernel's name-to-address assignment strategy.)
653 *
654 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
655 * the message, if not necessarily the code, of commit 70161ff336.
656 * Therefore the loop now establishes the inverse of the original intent.
657 *
658 * Unfortunately, we can't counteract the kernel change by reversing the
659 * loop; it would break existing command lines.
660 *
661 * In any case, the kernel makes no guarantee about the stability of
662 * enumeration order of virtio devices (as demonstrated by it changing
663 * between kernel versions). For reliable and stable identification
664 * of disks users must use UUIDs or similar mechanisms.
665 */
666 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
667 int irq = vbi->irqmap[VIRT_MMIO] + i;
668 hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
669
670 sysbus_create_simple("virtio-mmio", base, pic[irq]);
671 }
672
673 /* We add dtb nodes in reverse order so that they appear in the finished
674 * device tree lowest address first.
675 *
676 * Note that this mapping is independent of the loop above. The previous
677 * loop influences virtio device to virtio transport assignment, whereas
678 * this loop controls how virtio transports are laid out in the dtb.
679 */
680 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
681 char *nodename;
682 int irq = vbi->irqmap[VIRT_MMIO] + i;
683 hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
684
685 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
686 qemu_fdt_add_subnode(vbi->fdt, nodename);
687 qemu_fdt_setprop_string(vbi->fdt, nodename,
688 "compatible", "virtio,mmio");
689 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
690 2, base, 2, size);
691 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
692 GIC_FDT_IRQ_TYPE_SPI, irq,
693 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
694 g_free(nodename);
695 }
696 }
697
698 static void create_one_flash(const char *name, hwaddr flashbase,
699 hwaddr flashsize, const char *file)
700 {
701 /* Create and map a single flash device. We use the same
702 * parameters as the flash devices on the Versatile Express board.
703 */
704 DriveInfo *dinfo = drive_get_next(IF_PFLASH);
705 DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
706 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
707 const uint64_t sectorlength = 256 * 1024;
708
709 if (dinfo) {
710 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
711 &error_abort);
712 }
713
714 qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
715 qdev_prop_set_uint64(dev, "sector-length", sectorlength);
716 qdev_prop_set_uint8(dev, "width", 4);
717 qdev_prop_set_uint8(dev, "device-width", 2);
718 qdev_prop_set_bit(dev, "big-endian", false);
719 qdev_prop_set_uint16(dev, "id0", 0x89);
720 qdev_prop_set_uint16(dev, "id1", 0x18);
721 qdev_prop_set_uint16(dev, "id2", 0x00);
722 qdev_prop_set_uint16(dev, "id3", 0x00);
723 qdev_prop_set_string(dev, "name", name);
724 qdev_init_nofail(dev);
725
726 sysbus_mmio_map(sbd, 0, flashbase);
727
728 if (file) {
729 char *fn;
730 int image_size;
731
732 if (drive_get(IF_PFLASH, 0, 0)) {
733 error_report("The contents of the first flash device may be "
734 "specified with -bios or with -drive if=pflash... "
735 "but you cannot use both options at once");
736 exit(1);
737 }
738 fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, file);
739 if (!fn) {
740 error_report("Could not find ROM image '%s'", file);
741 exit(1);
742 }
743 image_size = load_image_mr(fn, sysbus_mmio_get_region(sbd, 0));
744 g_free(fn);
745 if (image_size < 0) {
746 error_report("Could not load ROM image '%s'", file);
747 exit(1);
748 }
749 }
750 }
751
752 static void create_flash(const VirtBoardInfo *vbi)
753 {
754 /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
755 * Any file passed via -bios goes in the first of these.
756 */
757 hwaddr flashsize = vbi->memmap[VIRT_FLASH].size / 2;
758 hwaddr flashbase = vbi->memmap[VIRT_FLASH].base;
759 char *nodename;
760
761 create_one_flash("virt.flash0", flashbase, flashsize, bios_name);
762 create_one_flash("virt.flash1", flashbase + flashsize, flashsize, NULL);
763
764 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
765 qemu_fdt_add_subnode(vbi->fdt, nodename);
766 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash");
767 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
768 2, flashbase, 2, flashsize,
769 2, flashbase + flashsize, 2, flashsize);
770 qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4);
771 g_free(nodename);
772 }
773
774 static void create_fw_cfg(const VirtBoardInfo *vbi, AddressSpace *as)
775 {
776 hwaddr base = vbi->memmap[VIRT_FW_CFG].base;
777 hwaddr size = vbi->memmap[VIRT_FW_CFG].size;
778 char *nodename;
779
780 fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
781
782 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
783 qemu_fdt_add_subnode(vbi->fdt, nodename);
784 qemu_fdt_setprop_string(vbi->fdt, nodename,
785 "compatible", "qemu,fw-cfg-mmio");
786 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
787 2, base, 2, size);
788 g_free(nodename);
789 }
790
791 static void create_pcie_irq_map(const VirtBoardInfo *vbi, uint32_t gic_phandle,
792 int first_irq, const char *nodename)
793 {
794 int devfn, pin;
795 uint32_t full_irq_map[4 * 4 * 10] = { 0 };
796 uint32_t *irq_map = full_irq_map;
797
798 for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
799 for (pin = 0; pin < 4; pin++) {
800 int irq_type = GIC_FDT_IRQ_TYPE_SPI;
801 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
802 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
803 int i;
804
805 uint32_t map[] = {
806 devfn << 8, 0, 0, /* devfn */
807 pin + 1, /* PCI pin */
808 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
809
810 /* Convert map to big endian */
811 for (i = 0; i < 10; i++) {
812 irq_map[i] = cpu_to_be32(map[i]);
813 }
814 irq_map += 10;
815 }
816 }
817
818 qemu_fdt_setprop(vbi->fdt, nodename, "interrupt-map",
819 full_irq_map, sizeof(full_irq_map));
820
821 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupt-map-mask",
822 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
823 0x7 /* PCI irq */);
824 }
825
826 static void create_pcie(const VirtBoardInfo *vbi, qemu_irq *pic,
827 bool use_highmem)
828 {
829 hwaddr base_mmio = vbi->memmap[VIRT_PCIE_MMIO].base;
830 hwaddr size_mmio = vbi->memmap[VIRT_PCIE_MMIO].size;
831 hwaddr base_mmio_high = vbi->memmap[VIRT_PCIE_MMIO_HIGH].base;
832 hwaddr size_mmio_high = vbi->memmap[VIRT_PCIE_MMIO_HIGH].size;
833 hwaddr base_pio = vbi->memmap[VIRT_PCIE_PIO].base;
834 hwaddr size_pio = vbi->memmap[VIRT_PCIE_PIO].size;
835 hwaddr base_ecam = vbi->memmap[VIRT_PCIE_ECAM].base;
836 hwaddr size_ecam = vbi->memmap[VIRT_PCIE_ECAM].size;
837 hwaddr base = base_mmio;
838 int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
839 int irq = vbi->irqmap[VIRT_PCIE];
840 MemoryRegion *mmio_alias;
841 MemoryRegion *mmio_reg;
842 MemoryRegion *ecam_alias;
843 MemoryRegion *ecam_reg;
844 DeviceState *dev;
845 char *nodename;
846 int i;
847 PCIHostState *pci;
848
849 dev = qdev_create(NULL, TYPE_GPEX_HOST);
850 qdev_init_nofail(dev);
851
852 /* Map only the first size_ecam bytes of ECAM space */
853 ecam_alias = g_new0(MemoryRegion, 1);
854 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
855 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
856 ecam_reg, 0, size_ecam);
857 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
858
859 /* Map the MMIO window into system address space so as to expose
860 * the section of PCI MMIO space which starts at the same base address
861 * (ie 1:1 mapping for that part of PCI MMIO space visible through
862 * the window).
863 */
864 mmio_alias = g_new0(MemoryRegion, 1);
865 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
866 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
867 mmio_reg, base_mmio, size_mmio);
868 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
869
870 if (use_highmem) {
871 /* Map high MMIO space */
872 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
873
874 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
875 mmio_reg, base_mmio_high, size_mmio_high);
876 memory_region_add_subregion(get_system_memory(), base_mmio_high,
877 high_mmio_alias);
878 }
879
880 /* Map IO port space */
881 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
882
883 for (i = 0; i < GPEX_NUM_IRQS; i++) {
884 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
885 }
886
887 pci = PCI_HOST_BRIDGE(dev);
888 if (pci->bus) {
889 for (i = 0; i < nb_nics; i++) {
890 NICInfo *nd = &nd_table[i];
891
892 if (!nd->model) {
893 nd->model = g_strdup("virtio");
894 }
895
896 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
897 }
898 }
899
900 nodename = g_strdup_printf("/pcie@%" PRIx64, base);
901 qemu_fdt_add_subnode(vbi->fdt, nodename);
902 qemu_fdt_setprop_string(vbi->fdt, nodename,
903 "compatible", "pci-host-ecam-generic");
904 qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "pci");
905 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#address-cells", 3);
906 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#size-cells", 2);
907 qemu_fdt_setprop_cells(vbi->fdt, nodename, "bus-range", 0,
908 nr_pcie_buses - 1);
909
910 if (vbi->v2m_phandle) {
911 qemu_fdt_setprop_cells(vbi->fdt, nodename, "msi-parent",
912 vbi->v2m_phandle);
913 }
914
915 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
916 2, base_ecam, 2, size_ecam);
917
918 if (use_highmem) {
919 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges",
920 1, FDT_PCI_RANGE_IOPORT, 2, 0,
921 2, base_pio, 2, size_pio,
922 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
923 2, base_mmio, 2, size_mmio,
924 1, FDT_PCI_RANGE_MMIO_64BIT,
925 2, base_mmio_high,
926 2, base_mmio_high, 2, size_mmio_high);
927 } else {
928 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges",
929 1, FDT_PCI_RANGE_IOPORT, 2, 0,
930 2, base_pio, 2, size_pio,
931 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
932 2, base_mmio, 2, size_mmio);
933 }
934
935 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#interrupt-cells", 1);
936 create_pcie_irq_map(vbi, vbi->gic_phandle, irq, nodename);
937
938 g_free(nodename);
939 }
940
941 static void create_platform_bus(VirtBoardInfo *vbi, qemu_irq *pic)
942 {
943 DeviceState *dev;
944 SysBusDevice *s;
945 int i;
946 ARMPlatformBusFDTParams *fdt_params = g_new(ARMPlatformBusFDTParams, 1);
947 MemoryRegion *sysmem = get_system_memory();
948
949 platform_bus_params.platform_bus_base = vbi->memmap[VIRT_PLATFORM_BUS].base;
950 platform_bus_params.platform_bus_size = vbi->memmap[VIRT_PLATFORM_BUS].size;
951 platform_bus_params.platform_bus_first_irq = vbi->irqmap[VIRT_PLATFORM_BUS];
952 platform_bus_params.platform_bus_num_irqs = PLATFORM_BUS_NUM_IRQS;
953
954 fdt_params->system_params = &platform_bus_params;
955 fdt_params->binfo = &vbi->bootinfo;
956 fdt_params->intc = "/intc";
957 /*
958 * register a machine init done notifier that creates the device tree
959 * nodes of the platform bus and its children dynamic sysbus devices
960 */
961 arm_register_platform_bus_fdt_creator(fdt_params);
962
963 dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
964 dev->id = TYPE_PLATFORM_BUS_DEVICE;
965 qdev_prop_set_uint32(dev, "num_irqs",
966 platform_bus_params.platform_bus_num_irqs);
967 qdev_prop_set_uint32(dev, "mmio_size",
968 platform_bus_params.platform_bus_size);
969 qdev_init_nofail(dev);
970 s = SYS_BUS_DEVICE(dev);
971
972 for (i = 0; i < platform_bus_params.platform_bus_num_irqs; i++) {
973 int irqn = platform_bus_params.platform_bus_first_irq + i;
974 sysbus_connect_irq(s, i, pic[irqn]);
975 }
976
977 memory_region_add_subregion(sysmem,
978 platform_bus_params.platform_bus_base,
979 sysbus_mmio_get_region(s, 0));
980 }
981
982 static void create_secure_ram(VirtBoardInfo *vbi, MemoryRegion *secure_sysmem)
983 {
984 MemoryRegion *secram = g_new(MemoryRegion, 1);
985 char *nodename;
986 hwaddr base = vbi->memmap[VIRT_SECURE_MEM].base;
987 hwaddr size = vbi->memmap[VIRT_SECURE_MEM].size;
988
989 memory_region_init_ram(secram, NULL, "virt.secure-ram", size, &error_fatal);
990 vmstate_register_ram_global(secram);
991 memory_region_add_subregion(secure_sysmem, base, secram);
992
993 nodename = g_strdup_printf("/secram@%" PRIx64, base);
994 qemu_fdt_add_subnode(vbi->fdt, nodename);
995 qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "memory");
996 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 2, base, 2, size);
997 qemu_fdt_setprop_string(vbi->fdt, nodename, "status", "disabled");
998 qemu_fdt_setprop_string(vbi->fdt, nodename, "secure-status", "okay");
999
1000 g_free(nodename);
1001 }
1002
1003 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1004 {
1005 const VirtBoardInfo *board = (const VirtBoardInfo *)binfo;
1006
1007 *fdt_size = board->fdt_size;
1008 return board->fdt;
1009 }
1010
1011 static void virt_build_smbios(VirtGuestInfo *guest_info)
1012 {
1013 FWCfgState *fw_cfg = guest_info->fw_cfg;
1014 uint8_t *smbios_tables, *smbios_anchor;
1015 size_t smbios_tables_len, smbios_anchor_len;
1016 const char *product = "QEMU Virtual Machine";
1017
1018 if (!fw_cfg) {
1019 return;
1020 }
1021
1022 if (kvm_enabled()) {
1023 product = "KVM Virtual Machine";
1024 }
1025
1026 smbios_set_defaults("QEMU", product,
1027 "1.0", false, true, SMBIOS_ENTRY_POINT_30);
1028
1029 smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len,
1030 &smbios_anchor, &smbios_anchor_len);
1031
1032 if (smbios_anchor) {
1033 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables",
1034 smbios_tables, smbios_tables_len);
1035 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor",
1036 smbios_anchor, smbios_anchor_len);
1037 }
1038 }
1039
1040 static
1041 void virt_guest_info_machine_done(Notifier *notifier, void *data)
1042 {
1043 VirtGuestInfoState *guest_info_state = container_of(notifier,
1044 VirtGuestInfoState, machine_done);
1045 virt_acpi_setup(&guest_info_state->info);
1046 virt_build_smbios(&guest_info_state->info);
1047 }
1048
1049 static void machvirt_init(MachineState *machine)
1050 {
1051 VirtMachineState *vms = VIRT_MACHINE(machine);
1052 qemu_irq pic[NUM_IRQS];
1053 MemoryRegion *sysmem = get_system_memory();
1054 MemoryRegion *secure_sysmem = NULL;
1055 int gic_version = vms->gic_version;
1056 int n, virt_max_cpus;
1057 MemoryRegion *ram = g_new(MemoryRegion, 1);
1058 const char *cpu_model = machine->cpu_model;
1059 VirtBoardInfo *vbi;
1060 VirtGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state);
1061 VirtGuestInfo *guest_info = &guest_info_state->info;
1062 char **cpustr;
1063
1064 if (!cpu_model) {
1065 cpu_model = "cortex-a15";
1066 }
1067
1068 /* We can probe only here because during property set
1069 * KVM is not available yet
1070 */
1071 if (!gic_version) {
1072 gic_version = kvm_arm_vgic_probe();
1073 if (!gic_version) {
1074 error_report("Unable to determine GIC version supported by host");
1075 error_printf("KVM acceleration is probably not supported\n");
1076 exit(1);
1077 }
1078 }
1079
1080 /* Separate the actual CPU model name from any appended features */
1081 cpustr = g_strsplit(cpu_model, ",", 2);
1082
1083 vbi = find_machine_info(cpustr[0]);
1084
1085 if (!vbi) {
1086 error_report("mach-virt: CPU %s not supported", cpustr[0]);
1087 exit(1);
1088 }
1089
1090 /* The maximum number of CPUs depends on the GIC version, or on how
1091 * many redistributors we can fit into the memory map.
1092 */
1093 if (gic_version == 3) {
1094 virt_max_cpus = vbi->memmap[VIRT_GIC_REDIST].size / 0x20000;
1095 } else {
1096 virt_max_cpus = GIC_NCPU;
1097 }
1098
1099 if (max_cpus > virt_max_cpus) {
1100 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1101 "supported by machine 'mach-virt' (%d)",
1102 max_cpus, virt_max_cpus);
1103 exit(1);
1104 }
1105
1106 vbi->smp_cpus = smp_cpus;
1107
1108 if (machine->ram_size > vbi->memmap[VIRT_MEM].size) {
1109 error_report("mach-virt: cannot model more than %dGB RAM", RAMLIMIT_GB);
1110 exit(1);
1111 }
1112
1113 if (vms->secure) {
1114 if (kvm_enabled()) {
1115 error_report("mach-virt: KVM does not support Security extensions");
1116 exit(1);
1117 }
1118
1119 /* The Secure view of the world is the same as the NonSecure,
1120 * but with a few extra devices. Create it as a container region
1121 * containing the system memory at low priority; any secure-only
1122 * devices go in at higher priority and take precedence.
1123 */
1124 secure_sysmem = g_new(MemoryRegion, 1);
1125 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1126 UINT64_MAX);
1127 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1128 }
1129
1130 create_fdt(vbi);
1131
1132 for (n = 0; n < smp_cpus; n++) {
1133 ObjectClass *oc = cpu_class_by_name(TYPE_ARM_CPU, cpustr[0]);
1134 CPUClass *cc = CPU_CLASS(oc);
1135 Object *cpuobj;
1136 Error *err = NULL;
1137 char *cpuopts = g_strdup(cpustr[1]);
1138
1139 if (!oc) {
1140 error_report("Unable to find CPU definition");
1141 exit(1);
1142 }
1143 cpuobj = object_new(object_class_get_name(oc));
1144
1145 /* Handle any CPU options specified by the user */
1146 cc->parse_features(CPU(cpuobj), cpuopts, &err);
1147 g_free(cpuopts);
1148 if (err) {
1149 error_report_err(err);
1150 exit(1);
1151 }
1152
1153 if (!vms->secure) {
1154 object_property_set_bool(cpuobj, false, "has_el3", NULL);
1155 }
1156
1157 object_property_set_int(cpuobj, QEMU_PSCI_CONDUIT_HVC, "psci-conduit",
1158 NULL);
1159
1160 /* Secondary CPUs start in PSCI powered-down state */
1161 if (n > 0) {
1162 object_property_set_bool(cpuobj, true, "start-powered-off", NULL);
1163 }
1164
1165 if (object_property_find(cpuobj, "reset-cbar", NULL)) {
1166 object_property_set_int(cpuobj, vbi->memmap[VIRT_CPUPERIPHS].base,
1167 "reset-cbar", &error_abort);
1168 }
1169
1170 object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
1171 &error_abort);
1172 if (vms->secure) {
1173 object_property_set_link(cpuobj, OBJECT(secure_sysmem),
1174 "secure-memory", &error_abort);
1175 }
1176
1177 object_property_set_bool(cpuobj, true, "realized", NULL);
1178 }
1179 g_strfreev(cpustr);
1180 fdt_add_timer_nodes(vbi, gic_version);
1181 fdt_add_cpu_nodes(vbi);
1182 fdt_add_psci_node(vbi);
1183
1184 memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
1185 machine->ram_size);
1186 memory_region_add_subregion(sysmem, vbi->memmap[VIRT_MEM].base, ram);
1187
1188 create_flash(vbi);
1189
1190 create_gic(vbi, pic, gic_version, vms->secure);
1191
1192 create_uart(vbi, pic, VIRT_UART, sysmem);
1193
1194 if (vms->secure) {
1195 create_secure_ram(vbi, secure_sysmem);
1196 create_uart(vbi, pic, VIRT_SECURE_UART, secure_sysmem);
1197 }
1198
1199 create_rtc(vbi, pic);
1200
1201 create_pcie(vbi, pic, vms->highmem);
1202
1203 create_gpio(vbi, pic);
1204
1205 /* Create mmio transports, so the user can create virtio backends
1206 * (which will be automatically plugged in to the transports). If
1207 * no backend is created the transport will just sit harmlessly idle.
1208 */
1209 create_virtio_devices(vbi, pic);
1210
1211 create_fw_cfg(vbi, &address_space_memory);
1212 rom_set_fw(fw_cfg_find());
1213
1214 guest_info->smp_cpus = smp_cpus;
1215 guest_info->fw_cfg = fw_cfg_find();
1216 guest_info->memmap = vbi->memmap;
1217 guest_info->irqmap = vbi->irqmap;
1218 guest_info->use_highmem = vms->highmem;
1219 guest_info->gic_version = gic_version;
1220 guest_info_state->machine_done.notify = virt_guest_info_machine_done;
1221 qemu_add_machine_init_done_notifier(&guest_info_state->machine_done);
1222
1223 vbi->bootinfo.ram_size = machine->ram_size;
1224 vbi->bootinfo.kernel_filename = machine->kernel_filename;
1225 vbi->bootinfo.kernel_cmdline = machine->kernel_cmdline;
1226 vbi->bootinfo.initrd_filename = machine->initrd_filename;
1227 vbi->bootinfo.nb_cpus = smp_cpus;
1228 vbi->bootinfo.board_id = -1;
1229 vbi->bootinfo.loader_start = vbi->memmap[VIRT_MEM].base;
1230 vbi->bootinfo.get_dtb = machvirt_dtb;
1231 vbi->bootinfo.firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0);
1232 arm_load_kernel(ARM_CPU(first_cpu), &vbi->bootinfo);
1233
1234 /*
1235 * arm_load_kernel machine init done notifier registration must
1236 * happen before the platform_bus_create call. In this latter,
1237 * another notifier is registered which adds platform bus nodes.
1238 * Notifiers are executed in registration reverse order.
1239 */
1240 create_platform_bus(vbi, pic);
1241 }
1242
1243 static bool virt_get_secure(Object *obj, Error **errp)
1244 {
1245 VirtMachineState *vms = VIRT_MACHINE(obj);
1246
1247 return vms->secure;
1248 }
1249
1250 static void virt_set_secure(Object *obj, bool value, Error **errp)
1251 {
1252 VirtMachineState *vms = VIRT_MACHINE(obj);
1253
1254 vms->secure = value;
1255 }
1256
1257 static bool virt_get_highmem(Object *obj, Error **errp)
1258 {
1259 VirtMachineState *vms = VIRT_MACHINE(obj);
1260
1261 return vms->highmem;
1262 }
1263
1264 static void virt_set_highmem(Object *obj, bool value, Error **errp)
1265 {
1266 VirtMachineState *vms = VIRT_MACHINE(obj);
1267
1268 vms->highmem = value;
1269 }
1270
1271 static char *virt_get_gic_version(Object *obj, Error **errp)
1272 {
1273 VirtMachineState *vms = VIRT_MACHINE(obj);
1274 const char *val = vms->gic_version == 3 ? "3" : "2";
1275
1276 return g_strdup(val);
1277 }
1278
1279 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
1280 {
1281 VirtMachineState *vms = VIRT_MACHINE(obj);
1282
1283 if (!strcmp(value, "3")) {
1284 vms->gic_version = 3;
1285 } else if (!strcmp(value, "2")) {
1286 vms->gic_version = 2;
1287 } else if (!strcmp(value, "host")) {
1288 vms->gic_version = 0; /* Will probe later */
1289 } else {
1290 error_setg(errp, "Invalid gic-version value");
1291 error_append_hint(errp, "Valid values are 3, 2, host.\n");
1292 }
1293 }
1294
1295 static void virt_instance_init(Object *obj)
1296 {
1297 VirtMachineState *vms = VIRT_MACHINE(obj);
1298
1299 /* EL3 is disabled by default on virt: this makes us consistent
1300 * between KVM and TCG for this board, and it also allows us to
1301 * boot UEFI blobs which assume no TrustZone support.
1302 */
1303 vms->secure = false;
1304 object_property_add_bool(obj, "secure", virt_get_secure,
1305 virt_set_secure, NULL);
1306 object_property_set_description(obj, "secure",
1307 "Set on/off to enable/disable the ARM "
1308 "Security Extensions (TrustZone)",
1309 NULL);
1310
1311 /* High memory is enabled by default */
1312 vms->highmem = true;
1313 object_property_add_bool(obj, "highmem", virt_get_highmem,
1314 virt_set_highmem, NULL);
1315 object_property_set_description(obj, "highmem",
1316 "Set on/off to enable/disable using "
1317 "physical address space above 32 bits",
1318 NULL);
1319 /* Default GIC type is v2 */
1320 vms->gic_version = 2;
1321 object_property_add_str(obj, "gic-version", virt_get_gic_version,
1322 virt_set_gic_version, NULL);
1323 object_property_set_description(obj, "gic-version",
1324 "Set GIC version. "
1325 "Valid values are 2, 3 and host", NULL);
1326 }
1327
1328 static void virt_class_init(ObjectClass *oc, void *data)
1329 {
1330 MachineClass *mc = MACHINE_CLASS(oc);
1331
1332 mc->desc = "ARM Virtual Machine",
1333 mc->init = machvirt_init;
1334 /* Start max_cpus at the maximum QEMU supports. We'll further restrict
1335 * it later in machvirt_init, where we have more information about the
1336 * configuration of the particular instance.
1337 */
1338 mc->max_cpus = MAX_CPUMASK_BITS;
1339 mc->has_dynamic_sysbus = true;
1340 mc->block_default_type = IF_VIRTIO;
1341 mc->no_cdrom = 1;
1342 mc->pci_allow_0_address = true;
1343 }
1344
1345 static const TypeInfo machvirt_info = {
1346 .name = TYPE_VIRT_MACHINE,
1347 .parent = TYPE_MACHINE,
1348 .instance_size = sizeof(VirtMachineState),
1349 .instance_init = virt_instance_init,
1350 .class_size = sizeof(VirtMachineClass),
1351 .class_init = virt_class_init,
1352 };
1353
1354 static void machvirt_machine_init(void)
1355 {
1356 type_register_static(&machvirt_info);
1357 }
1358
1359 machine_init(machvirt_machine_init);