]> git.proxmox.com Git - mirror_qemu.git/blob - hw/arm/virt.c
acpi: add acpi=OnOffAuto machine property to x86 and arm virt
[mirror_qemu.git] / hw / arm / virt.c
1 /*
2 * ARM mach-virt emulation
3 *
4 * Copyright (c) 2013 Linaro Limited
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
17 *
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
29 */
30
31 #include "qemu/osdep.h"
32 #include "qemu-common.h"
33 #include "qemu/units.h"
34 #include "qemu/option.h"
35 #include "monitor/qdev.h"
36 #include "qapi/error.h"
37 #include "hw/sysbus.h"
38 #include "hw/boards.h"
39 #include "hw/arm/boot.h"
40 #include "hw/arm/primecell.h"
41 #include "hw/arm/virt.h"
42 #include "hw/block/flash.h"
43 #include "hw/vfio/vfio-calxeda-xgmac.h"
44 #include "hw/vfio/vfio-amd-xgbe.h"
45 #include "hw/display/ramfb.h"
46 #include "net/net.h"
47 #include "sysemu/device_tree.h"
48 #include "sysemu/numa.h"
49 #include "sysemu/runstate.h"
50 #include "sysemu/sysemu.h"
51 #include "sysemu/tpm.h"
52 #include "sysemu/kvm.h"
53 #include "hw/loader.h"
54 #include "exec/address-spaces.h"
55 #include "qemu/bitops.h"
56 #include "qemu/error-report.h"
57 #include "qemu/module.h"
58 #include "hw/pci-host/gpex.h"
59 #include "hw/virtio/virtio-pci.h"
60 #include "hw/arm/sysbus-fdt.h"
61 #include "hw/platform-bus.h"
62 #include "hw/qdev-properties.h"
63 #include "hw/arm/fdt.h"
64 #include "hw/intc/arm_gic.h"
65 #include "hw/intc/arm_gicv3_common.h"
66 #include "hw/irq.h"
67 #include "kvm_arm.h"
68 #include "hw/firmware/smbios.h"
69 #include "qapi/visitor.h"
70 #include "qapi/qapi-visit-common.h"
71 #include "standard-headers/linux/input.h"
72 #include "hw/arm/smmuv3.h"
73 #include "hw/acpi/acpi.h"
74 #include "target/arm/internals.h"
75 #include "hw/mem/pc-dimm.h"
76 #include "hw/mem/nvdimm.h"
77 #include "hw/acpi/generic_event_device.h"
78 #include "hw/virtio/virtio-iommu.h"
79 #include "hw/char/pl011.h"
80
81 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
82 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
83 void *data) \
84 { \
85 MachineClass *mc = MACHINE_CLASS(oc); \
86 virt_machine_##major##_##minor##_options(mc); \
87 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
88 if (latest) { \
89 mc->alias = "virt"; \
90 } \
91 } \
92 static const TypeInfo machvirt_##major##_##minor##_info = { \
93 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
94 .parent = TYPE_VIRT_MACHINE, \
95 .class_init = virt_##major##_##minor##_class_init, \
96 }; \
97 static void machvirt_machine_##major##_##minor##_init(void) \
98 { \
99 type_register_static(&machvirt_##major##_##minor##_info); \
100 } \
101 type_init(machvirt_machine_##major##_##minor##_init);
102
103 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
104 DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
105 #define DEFINE_VIRT_MACHINE(major, minor) \
106 DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
107
108
109 /* Number of external interrupt lines to configure the GIC with */
110 #define NUM_IRQS 256
111
112 #define PLATFORM_BUS_NUM_IRQS 64
113
114 /* Legacy RAM limit in GB (< version 4.0) */
115 #define LEGACY_RAMLIMIT_GB 255
116 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB)
117
118 /* Addresses and sizes of our components.
119 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
120 * 128MB..256MB is used for miscellaneous device I/O.
121 * 256MB..1GB is reserved for possible future PCI support (ie where the
122 * PCI memory window will go if we add a PCI host controller).
123 * 1GB and up is RAM (which may happily spill over into the
124 * high memory region beyond 4GB).
125 * This represents a compromise between how much RAM can be given to
126 * a 32 bit VM and leaving space for expansion and in particular for PCI.
127 * Note that devices should generally be placed at multiples of 0x10000,
128 * to accommodate guests using 64K pages.
129 */
130 static const MemMapEntry base_memmap[] = {
131 /* Space up to 0x8000000 is reserved for a boot ROM */
132 [VIRT_FLASH] = { 0, 0x08000000 },
133 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
134 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
135 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
136 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
137 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 },
138 [VIRT_GIC_HYP] = { 0x08030000, 0x00010000 },
139 [VIRT_GIC_VCPU] = { 0x08040000, 0x00010000 },
140 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
141 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 },
142 /* This redistributor space allows up to 2*64kB*123 CPUs */
143 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 },
144 [VIRT_UART] = { 0x09000000, 0x00001000 },
145 [VIRT_RTC] = { 0x09010000, 0x00001000 },
146 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 },
147 [VIRT_GPIO] = { 0x09030000, 0x00001000 },
148 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 },
149 [VIRT_SMMU] = { 0x09050000, 0x00020000 },
150 [VIRT_PCDIMM_ACPI] = { 0x09070000, MEMORY_HOTPLUG_IO_LEN },
151 [VIRT_ACPI_GED] = { 0x09080000, ACPI_GED_EVT_SEL_LEN },
152 [VIRT_MMIO] = { 0x0a000000, 0x00000200 },
153 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
154 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 },
155 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 },
156 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 },
157 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 },
158 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 },
159 /* Actual RAM size depends on initial RAM and device memory settings */
160 [VIRT_MEM] = { GiB, LEGACY_RAMLIMIT_BYTES },
161 };
162
163 /*
164 * Highmem IO Regions: This memory map is floating, located after the RAM.
165 * Each MemMapEntry base (GPA) will be dynamically computed, depending on the
166 * top of the RAM, so that its base get the same alignment as the size,
167 * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is
168 * less than 256GiB of RAM, the floating area starts at the 256GiB mark.
169 * Note the extended_memmap is sized so that it eventually also includes the
170 * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last
171 * index of base_memmap).
172 */
173 static MemMapEntry extended_memmap[] = {
174 /* Additional 64 MB redist region (can contain up to 512 redistributors) */
175 [VIRT_HIGH_GIC_REDIST2] = { 0x0, 64 * MiB },
176 [VIRT_HIGH_PCIE_ECAM] = { 0x0, 256 * MiB },
177 /* Second PCIe window */
178 [VIRT_HIGH_PCIE_MMIO] = { 0x0, 512 * GiB },
179 };
180
181 static const int a15irqmap[] = {
182 [VIRT_UART] = 1,
183 [VIRT_RTC] = 2,
184 [VIRT_PCIE] = 3, /* ... to 6 */
185 [VIRT_GPIO] = 7,
186 [VIRT_SECURE_UART] = 8,
187 [VIRT_ACPI_GED] = 9,
188 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
189 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
190 [VIRT_SMMU] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */
191 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
192 };
193
194 static const char *valid_cpus[] = {
195 ARM_CPU_TYPE_NAME("cortex-a7"),
196 ARM_CPU_TYPE_NAME("cortex-a15"),
197 ARM_CPU_TYPE_NAME("cortex-a53"),
198 ARM_CPU_TYPE_NAME("cortex-a57"),
199 ARM_CPU_TYPE_NAME("cortex-a72"),
200 ARM_CPU_TYPE_NAME("host"),
201 ARM_CPU_TYPE_NAME("max"),
202 };
203
204 static bool cpu_type_valid(const char *cpu)
205 {
206 int i;
207
208 for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
209 if (strcmp(cpu, valid_cpus[i]) == 0) {
210 return true;
211 }
212 }
213 return false;
214 }
215
216 static void create_fdt(VirtMachineState *vms)
217 {
218 MachineState *ms = MACHINE(vms);
219 int nb_numa_nodes = ms->numa_state->num_nodes;
220 void *fdt = create_device_tree(&vms->fdt_size);
221
222 if (!fdt) {
223 error_report("create_device_tree() failed");
224 exit(1);
225 }
226
227 vms->fdt = fdt;
228
229 /* Header */
230 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
231 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
232 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
233
234 /* /chosen must exist for load_dtb to fill in necessary properties later */
235 qemu_fdt_add_subnode(fdt, "/chosen");
236
237 /* Clock node, for the benefit of the UART. The kernel device tree
238 * binding documentation claims the PL011 node clock properties are
239 * optional but in practice if you omit them the kernel refuses to
240 * probe for the device.
241 */
242 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
243 qemu_fdt_add_subnode(fdt, "/apb-pclk");
244 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
245 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
246 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
247 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
248 "clk24mhz");
249 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
250
251 if (nb_numa_nodes > 0 && ms->numa_state->have_numa_distance) {
252 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
253 uint32_t *matrix = g_malloc0(size);
254 int idx, i, j;
255
256 for (i = 0; i < nb_numa_nodes; i++) {
257 for (j = 0; j < nb_numa_nodes; j++) {
258 idx = (i * nb_numa_nodes + j) * 3;
259 matrix[idx + 0] = cpu_to_be32(i);
260 matrix[idx + 1] = cpu_to_be32(j);
261 matrix[idx + 2] =
262 cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
263 }
264 }
265
266 qemu_fdt_add_subnode(fdt, "/distance-map");
267 qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
268 "numa-distance-map-v1");
269 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
270 matrix, size);
271 g_free(matrix);
272 }
273 }
274
275 static void fdt_add_timer_nodes(const VirtMachineState *vms)
276 {
277 /* On real hardware these interrupts are level-triggered.
278 * On KVM they were edge-triggered before host kernel version 4.4,
279 * and level-triggered afterwards.
280 * On emulated QEMU they are level-triggered.
281 *
282 * Getting the DTB info about them wrong is awkward for some
283 * guest kernels:
284 * pre-4.8 ignore the DT and leave the interrupt configured
285 * with whatever the GIC reset value (or the bootloader) left it at
286 * 4.8 before rc6 honour the incorrect data by programming it back
287 * into the GIC, causing problems
288 * 4.8rc6 and later ignore the DT and always write "level triggered"
289 * into the GIC
290 *
291 * For backwards-compatibility, virt-2.8 and earlier will continue
292 * to say these are edge-triggered, but later machines will report
293 * the correct information.
294 */
295 ARMCPU *armcpu;
296 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
297 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
298
299 if (vmc->claim_edge_triggered_timers) {
300 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
301 }
302
303 if (vms->gic_version == VIRT_GIC_VERSION_2) {
304 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
305 GIC_FDT_IRQ_PPI_CPU_WIDTH,
306 (1 << vms->smp_cpus) - 1);
307 }
308
309 qemu_fdt_add_subnode(vms->fdt, "/timer");
310
311 armcpu = ARM_CPU(qemu_get_cpu(0));
312 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
313 const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
314 qemu_fdt_setprop(vms->fdt, "/timer", "compatible",
315 compat, sizeof(compat));
316 } else {
317 qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible",
318 "arm,armv7-timer");
319 }
320 qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0);
321 qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts",
322 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
323 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
324 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
325 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
326 }
327
328 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
329 {
330 int cpu;
331 int addr_cells = 1;
332 const MachineState *ms = MACHINE(vms);
333
334 /*
335 * From Documentation/devicetree/bindings/arm/cpus.txt
336 * On ARM v8 64-bit systems value should be set to 2,
337 * that corresponds to the MPIDR_EL1 register size.
338 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
339 * in the system, #address-cells can be set to 1, since
340 * MPIDR_EL1[63:32] bits are not used for CPUs
341 * identification.
342 *
343 * Here we actually don't know whether our system is 32- or 64-bit one.
344 * The simplest way to go is to examine affinity IDs of all our CPUs. If
345 * at least one of them has Aff3 populated, we set #address-cells to 2.
346 */
347 for (cpu = 0; cpu < vms->smp_cpus; cpu++) {
348 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
349
350 if (armcpu->mp_affinity & ARM_AFF3_MASK) {
351 addr_cells = 2;
352 break;
353 }
354 }
355
356 qemu_fdt_add_subnode(vms->fdt, "/cpus");
357 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells);
358 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0);
359
360 for (cpu = vms->smp_cpus - 1; cpu >= 0; cpu--) {
361 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
362 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
363 CPUState *cs = CPU(armcpu);
364
365 qemu_fdt_add_subnode(vms->fdt, nodename);
366 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu");
367 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
368 armcpu->dtb_compatible);
369
370 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED
371 && vms->smp_cpus > 1) {
372 qemu_fdt_setprop_string(vms->fdt, nodename,
373 "enable-method", "psci");
374 }
375
376 if (addr_cells == 2) {
377 qemu_fdt_setprop_u64(vms->fdt, nodename, "reg",
378 armcpu->mp_affinity);
379 } else {
380 qemu_fdt_setprop_cell(vms->fdt, nodename, "reg",
381 armcpu->mp_affinity);
382 }
383
384 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
385 qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id",
386 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
387 }
388
389 g_free(nodename);
390 }
391 }
392
393 static void fdt_add_its_gic_node(VirtMachineState *vms)
394 {
395 char *nodename;
396
397 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
398 nodename = g_strdup_printf("/intc/its@%" PRIx64,
399 vms->memmap[VIRT_GIC_ITS].base);
400 qemu_fdt_add_subnode(vms->fdt, nodename);
401 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
402 "arm,gic-v3-its");
403 qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0);
404 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
405 2, vms->memmap[VIRT_GIC_ITS].base,
406 2, vms->memmap[VIRT_GIC_ITS].size);
407 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle);
408 g_free(nodename);
409 }
410
411 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
412 {
413 char *nodename;
414
415 nodename = g_strdup_printf("/intc/v2m@%" PRIx64,
416 vms->memmap[VIRT_GIC_V2M].base);
417 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
418 qemu_fdt_add_subnode(vms->fdt, nodename);
419 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
420 "arm,gic-v2m-frame");
421 qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0);
422 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
423 2, vms->memmap[VIRT_GIC_V2M].base,
424 2, vms->memmap[VIRT_GIC_V2M].size);
425 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle);
426 g_free(nodename);
427 }
428
429 static void fdt_add_gic_node(VirtMachineState *vms)
430 {
431 char *nodename;
432
433 vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt);
434 qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle);
435
436 nodename = g_strdup_printf("/intc@%" PRIx64,
437 vms->memmap[VIRT_GIC_DIST].base);
438 qemu_fdt_add_subnode(vms->fdt, nodename);
439 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 3);
440 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-controller", NULL, 0);
441 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 0x2);
442 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 0x2);
443 qemu_fdt_setprop(vms->fdt, nodename, "ranges", NULL, 0);
444 if (vms->gic_version == VIRT_GIC_VERSION_3) {
445 int nb_redist_regions = virt_gicv3_redist_region_count(vms);
446
447 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
448 "arm,gic-v3");
449
450 qemu_fdt_setprop_cell(vms->fdt, nodename,
451 "#redistributor-regions", nb_redist_regions);
452
453 if (nb_redist_regions == 1) {
454 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
455 2, vms->memmap[VIRT_GIC_DIST].base,
456 2, vms->memmap[VIRT_GIC_DIST].size,
457 2, vms->memmap[VIRT_GIC_REDIST].base,
458 2, vms->memmap[VIRT_GIC_REDIST].size);
459 } else {
460 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
461 2, vms->memmap[VIRT_GIC_DIST].base,
462 2, vms->memmap[VIRT_GIC_DIST].size,
463 2, vms->memmap[VIRT_GIC_REDIST].base,
464 2, vms->memmap[VIRT_GIC_REDIST].size,
465 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base,
466 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size);
467 }
468
469 if (vms->virt) {
470 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
471 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
472 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
473 }
474 } else {
475 /* 'cortex-a15-gic' means 'GIC v2' */
476 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
477 "arm,cortex-a15-gic");
478 if (!vms->virt) {
479 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
480 2, vms->memmap[VIRT_GIC_DIST].base,
481 2, vms->memmap[VIRT_GIC_DIST].size,
482 2, vms->memmap[VIRT_GIC_CPU].base,
483 2, vms->memmap[VIRT_GIC_CPU].size);
484 } else {
485 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
486 2, vms->memmap[VIRT_GIC_DIST].base,
487 2, vms->memmap[VIRT_GIC_DIST].size,
488 2, vms->memmap[VIRT_GIC_CPU].base,
489 2, vms->memmap[VIRT_GIC_CPU].size,
490 2, vms->memmap[VIRT_GIC_HYP].base,
491 2, vms->memmap[VIRT_GIC_HYP].size,
492 2, vms->memmap[VIRT_GIC_VCPU].base,
493 2, vms->memmap[VIRT_GIC_VCPU].size);
494 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
495 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
496 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
497 }
498 }
499
500 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->gic_phandle);
501 g_free(nodename);
502 }
503
504 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
505 {
506 CPUState *cpu;
507 ARMCPU *armcpu;
508 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
509
510 CPU_FOREACH(cpu) {
511 armcpu = ARM_CPU(cpu);
512 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
513 return;
514 }
515 if (kvm_enabled()) {
516 if (kvm_irqchip_in_kernel()) {
517 kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ));
518 }
519 kvm_arm_pmu_init(cpu);
520 }
521 }
522
523 if (vms->gic_version == VIRT_GIC_VERSION_2) {
524 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
525 GIC_FDT_IRQ_PPI_CPU_WIDTH,
526 (1 << vms->smp_cpus) - 1);
527 }
528
529 armcpu = ARM_CPU(qemu_get_cpu(0));
530 qemu_fdt_add_subnode(vms->fdt, "/pmu");
531 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
532 const char compat[] = "arm,armv8-pmuv3";
533 qemu_fdt_setprop(vms->fdt, "/pmu", "compatible",
534 compat, sizeof(compat));
535 qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts",
536 GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
537 }
538 }
539
540 static inline DeviceState *create_acpi_ged(VirtMachineState *vms)
541 {
542 DeviceState *dev;
543 MachineState *ms = MACHINE(vms);
544 int irq = vms->irqmap[VIRT_ACPI_GED];
545 uint32_t event = ACPI_GED_PWR_DOWN_EVT;
546
547 if (ms->ram_slots) {
548 event |= ACPI_GED_MEM_HOTPLUG_EVT;
549 }
550
551 dev = qdev_create(NULL, TYPE_ACPI_GED);
552 qdev_prop_set_uint32(dev, "ged-event", event);
553
554 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_ACPI_GED].base);
555 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, vms->memmap[VIRT_PCDIMM_ACPI].base);
556 sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(vms->gic, irq));
557
558 qdev_init_nofail(dev);
559
560 return dev;
561 }
562
563 static void create_its(VirtMachineState *vms)
564 {
565 const char *itsclass = its_class_name();
566 DeviceState *dev;
567
568 if (!itsclass) {
569 /* Do nothing if not supported */
570 return;
571 }
572
573 dev = qdev_create(NULL, itsclass);
574
575 object_property_set_link(OBJECT(dev), OBJECT(vms->gic), "parent-gicv3",
576 &error_abort);
577 qdev_init_nofail(dev);
578 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
579
580 fdt_add_its_gic_node(vms);
581 }
582
583 static void create_v2m(VirtMachineState *vms)
584 {
585 int i;
586 int irq = vms->irqmap[VIRT_GIC_V2M];
587 DeviceState *dev;
588
589 dev = qdev_create(NULL, "arm-gicv2m");
590 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
591 qdev_prop_set_uint32(dev, "base-spi", irq);
592 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
593 qdev_init_nofail(dev);
594
595 for (i = 0; i < NUM_GICV2M_SPIS; i++) {
596 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
597 qdev_get_gpio_in(vms->gic, irq + i));
598 }
599
600 fdt_add_v2m_gic_node(vms);
601 }
602
603 static void create_gic(VirtMachineState *vms)
604 {
605 MachineState *ms = MACHINE(vms);
606 /* We create a standalone GIC */
607 SysBusDevice *gicbusdev;
608 const char *gictype;
609 int type = vms->gic_version, i;
610 unsigned int smp_cpus = ms->smp.cpus;
611 uint32_t nb_redist_regions = 0;
612
613 gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
614
615 vms->gic = qdev_create(NULL, gictype);
616 qdev_prop_set_uint32(vms->gic, "revision", type);
617 qdev_prop_set_uint32(vms->gic, "num-cpu", smp_cpus);
618 /* Note that the num-irq property counts both internal and external
619 * interrupts; there are always 32 of the former (mandated by GIC spec).
620 */
621 qdev_prop_set_uint32(vms->gic, "num-irq", NUM_IRQS + 32);
622 if (!kvm_irqchip_in_kernel()) {
623 qdev_prop_set_bit(vms->gic, "has-security-extensions", vms->secure);
624 }
625
626 if (type == 3) {
627 uint32_t redist0_capacity =
628 vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
629 uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
630
631 nb_redist_regions = virt_gicv3_redist_region_count(vms);
632
633 qdev_prop_set_uint32(vms->gic, "len-redist-region-count",
634 nb_redist_regions);
635 qdev_prop_set_uint32(vms->gic, "redist-region-count[0]", redist0_count);
636
637 if (nb_redist_regions == 2) {
638 uint32_t redist1_capacity =
639 vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE;
640
641 qdev_prop_set_uint32(vms->gic, "redist-region-count[1]",
642 MIN(smp_cpus - redist0_count, redist1_capacity));
643 }
644 } else {
645 if (!kvm_irqchip_in_kernel()) {
646 qdev_prop_set_bit(vms->gic, "has-virtualization-extensions",
647 vms->virt);
648 }
649 }
650 qdev_init_nofail(vms->gic);
651 gicbusdev = SYS_BUS_DEVICE(vms->gic);
652 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
653 if (type == 3) {
654 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
655 if (nb_redist_regions == 2) {
656 sysbus_mmio_map(gicbusdev, 2,
657 vms->memmap[VIRT_HIGH_GIC_REDIST2].base);
658 }
659 } else {
660 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
661 if (vms->virt) {
662 sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base);
663 sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base);
664 }
665 }
666
667 /* Wire the outputs from each CPU's generic timer and the GICv3
668 * maintenance interrupt signal to the appropriate GIC PPI inputs,
669 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
670 */
671 for (i = 0; i < smp_cpus; i++) {
672 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
673 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
674 int irq;
675 /* Mapping from the output timer irq lines from the CPU to the
676 * GIC PPI inputs we use for the virt board.
677 */
678 const int timer_irq[] = {
679 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
680 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
681 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
682 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
683 };
684
685 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
686 qdev_connect_gpio_out(cpudev, irq,
687 qdev_get_gpio_in(vms->gic,
688 ppibase + timer_irq[irq]));
689 }
690
691 if (type == 3) {
692 qemu_irq irq = qdev_get_gpio_in(vms->gic,
693 ppibase + ARCH_GIC_MAINT_IRQ);
694 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt",
695 0, irq);
696 } else if (vms->virt) {
697 qemu_irq irq = qdev_get_gpio_in(vms->gic,
698 ppibase + ARCH_GIC_MAINT_IRQ);
699 sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq);
700 }
701
702 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
703 qdev_get_gpio_in(vms->gic, ppibase
704 + VIRTUAL_PMU_IRQ));
705
706 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
707 sysbus_connect_irq(gicbusdev, i + smp_cpus,
708 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
709 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
710 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
711 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
712 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
713 }
714
715 fdt_add_gic_node(vms);
716
717 if (type == 3 && vms->its) {
718 create_its(vms);
719 } else if (type == 2) {
720 create_v2m(vms);
721 }
722 }
723
724 static void create_uart(const VirtMachineState *vms, int uart,
725 MemoryRegion *mem, Chardev *chr)
726 {
727 char *nodename;
728 hwaddr base = vms->memmap[uart].base;
729 hwaddr size = vms->memmap[uart].size;
730 int irq = vms->irqmap[uart];
731 const char compat[] = "arm,pl011\0arm,primecell";
732 const char clocknames[] = "uartclk\0apb_pclk";
733 DeviceState *dev = qdev_create(NULL, TYPE_PL011);
734 SysBusDevice *s = SYS_BUS_DEVICE(dev);
735
736 qdev_prop_set_chr(dev, "chardev", chr);
737 qdev_init_nofail(dev);
738 memory_region_add_subregion(mem, base,
739 sysbus_mmio_get_region(s, 0));
740 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
741
742 nodename = g_strdup_printf("/pl011@%" PRIx64, base);
743 qemu_fdt_add_subnode(vms->fdt, nodename);
744 /* Note that we can't use setprop_string because of the embedded NUL */
745 qemu_fdt_setprop(vms->fdt, nodename, "compatible",
746 compat, sizeof(compat));
747 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
748 2, base, 2, size);
749 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
750 GIC_FDT_IRQ_TYPE_SPI, irq,
751 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
752 qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks",
753 vms->clock_phandle, vms->clock_phandle);
754 qemu_fdt_setprop(vms->fdt, nodename, "clock-names",
755 clocknames, sizeof(clocknames));
756
757 if (uart == VIRT_UART) {
758 qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename);
759 } else {
760 /* Mark as not usable by the normal world */
761 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
762 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
763
764 qemu_fdt_add_subnode(vms->fdt, "/secure-chosen");
765 qemu_fdt_setprop_string(vms->fdt, "/secure-chosen", "stdout-path",
766 nodename);
767 }
768
769 g_free(nodename);
770 }
771
772 static void create_rtc(const VirtMachineState *vms)
773 {
774 char *nodename;
775 hwaddr base = vms->memmap[VIRT_RTC].base;
776 hwaddr size = vms->memmap[VIRT_RTC].size;
777 int irq = vms->irqmap[VIRT_RTC];
778 const char compat[] = "arm,pl031\0arm,primecell";
779
780 sysbus_create_simple("pl031", base, qdev_get_gpio_in(vms->gic, irq));
781
782 nodename = g_strdup_printf("/pl031@%" PRIx64, base);
783 qemu_fdt_add_subnode(vms->fdt, nodename);
784 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
785 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
786 2, base, 2, size);
787 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
788 GIC_FDT_IRQ_TYPE_SPI, irq,
789 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
790 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
791 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
792 g_free(nodename);
793 }
794
795 static DeviceState *gpio_key_dev;
796 static void virt_powerdown_req(Notifier *n, void *opaque)
797 {
798 VirtMachineState *s = container_of(n, VirtMachineState, powerdown_notifier);
799
800 if (s->acpi_dev) {
801 acpi_send_event(s->acpi_dev, ACPI_POWER_DOWN_STATUS);
802 } else {
803 /* use gpio Pin 3 for power button event */
804 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
805 }
806 }
807
808 static void create_gpio(const VirtMachineState *vms)
809 {
810 char *nodename;
811 DeviceState *pl061_dev;
812 hwaddr base = vms->memmap[VIRT_GPIO].base;
813 hwaddr size = vms->memmap[VIRT_GPIO].size;
814 int irq = vms->irqmap[VIRT_GPIO];
815 const char compat[] = "arm,pl061\0arm,primecell";
816
817 pl061_dev = sysbus_create_simple("pl061", base,
818 qdev_get_gpio_in(vms->gic, irq));
819
820 uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt);
821 nodename = g_strdup_printf("/pl061@%" PRIx64, base);
822 qemu_fdt_add_subnode(vms->fdt, nodename);
823 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
824 2, base, 2, size);
825 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
826 qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2);
827 qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0);
828 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
829 GIC_FDT_IRQ_TYPE_SPI, irq,
830 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
831 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
832 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
833 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle);
834
835 gpio_key_dev = sysbus_create_simple("gpio-key", -1,
836 qdev_get_gpio_in(pl061_dev, 3));
837 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys");
838 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys");
839 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0);
840 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1);
841
842 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff");
843 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff",
844 "label", "GPIO Key Poweroff");
845 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code",
846 KEY_POWER);
847 qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff",
848 "gpios", phandle, 3, 0);
849 g_free(nodename);
850 }
851
852 static void create_virtio_devices(const VirtMachineState *vms)
853 {
854 int i;
855 hwaddr size = vms->memmap[VIRT_MMIO].size;
856
857 /* We create the transports in forwards order. Since qbus_realize()
858 * prepends (not appends) new child buses, the incrementing loop below will
859 * create a list of virtio-mmio buses with decreasing base addresses.
860 *
861 * When a -device option is processed from the command line,
862 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
863 * order. The upshot is that -device options in increasing command line
864 * order are mapped to virtio-mmio buses with decreasing base addresses.
865 *
866 * When this code was originally written, that arrangement ensured that the
867 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
868 * the first -device on the command line. (The end-to-end order is a
869 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
870 * guest kernel's name-to-address assignment strategy.)
871 *
872 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
873 * the message, if not necessarily the code, of commit 70161ff336.
874 * Therefore the loop now establishes the inverse of the original intent.
875 *
876 * Unfortunately, we can't counteract the kernel change by reversing the
877 * loop; it would break existing command lines.
878 *
879 * In any case, the kernel makes no guarantee about the stability of
880 * enumeration order of virtio devices (as demonstrated by it changing
881 * between kernel versions). For reliable and stable identification
882 * of disks users must use UUIDs or similar mechanisms.
883 */
884 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
885 int irq = vms->irqmap[VIRT_MMIO] + i;
886 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
887
888 sysbus_create_simple("virtio-mmio", base,
889 qdev_get_gpio_in(vms->gic, irq));
890 }
891
892 /* We add dtb nodes in reverse order so that they appear in the finished
893 * device tree lowest address first.
894 *
895 * Note that this mapping is independent of the loop above. The previous
896 * loop influences virtio device to virtio transport assignment, whereas
897 * this loop controls how virtio transports are laid out in the dtb.
898 */
899 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
900 char *nodename;
901 int irq = vms->irqmap[VIRT_MMIO] + i;
902 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
903
904 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
905 qemu_fdt_add_subnode(vms->fdt, nodename);
906 qemu_fdt_setprop_string(vms->fdt, nodename,
907 "compatible", "virtio,mmio");
908 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
909 2, base, 2, size);
910 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
911 GIC_FDT_IRQ_TYPE_SPI, irq,
912 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
913 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
914 g_free(nodename);
915 }
916 }
917
918 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
919
920 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms,
921 const char *name,
922 const char *alias_prop_name)
923 {
924 /*
925 * Create a single flash device. We use the same parameters as
926 * the flash devices on the Versatile Express board.
927 */
928 DeviceState *dev = qdev_create(NULL, TYPE_PFLASH_CFI01);
929
930 qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
931 qdev_prop_set_uint8(dev, "width", 4);
932 qdev_prop_set_uint8(dev, "device-width", 2);
933 qdev_prop_set_bit(dev, "big-endian", false);
934 qdev_prop_set_uint16(dev, "id0", 0x89);
935 qdev_prop_set_uint16(dev, "id1", 0x18);
936 qdev_prop_set_uint16(dev, "id2", 0x00);
937 qdev_prop_set_uint16(dev, "id3", 0x00);
938 qdev_prop_set_string(dev, "name", name);
939 object_property_add_child(OBJECT(vms), name, OBJECT(dev),
940 &error_abort);
941 object_property_add_alias(OBJECT(vms), alias_prop_name,
942 OBJECT(dev), "drive", &error_abort);
943 return PFLASH_CFI01(dev);
944 }
945
946 static void virt_flash_create(VirtMachineState *vms)
947 {
948 vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0");
949 vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1");
950 }
951
952 static void virt_flash_map1(PFlashCFI01 *flash,
953 hwaddr base, hwaddr size,
954 MemoryRegion *sysmem)
955 {
956 DeviceState *dev = DEVICE(flash);
957
958 assert(size % VIRT_FLASH_SECTOR_SIZE == 0);
959 assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
960 qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
961 qdev_init_nofail(dev);
962
963 memory_region_add_subregion(sysmem, base,
964 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
965 0));
966 }
967
968 static void virt_flash_map(VirtMachineState *vms,
969 MemoryRegion *sysmem,
970 MemoryRegion *secure_sysmem)
971 {
972 /*
973 * Map two flash devices to fill the VIRT_FLASH space in the memmap.
974 * sysmem is the system memory space. secure_sysmem is the secure view
975 * of the system, and the first flash device should be made visible only
976 * there. The second flash device is visible to both secure and nonsecure.
977 * If sysmem == secure_sysmem this means there is no separate Secure
978 * address space and both flash devices are generally visible.
979 */
980 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
981 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
982
983 virt_flash_map1(vms->flash[0], flashbase, flashsize,
984 secure_sysmem);
985 virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize,
986 sysmem);
987 }
988
989 static void virt_flash_fdt(VirtMachineState *vms,
990 MemoryRegion *sysmem,
991 MemoryRegion *secure_sysmem)
992 {
993 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
994 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
995 char *nodename;
996
997 if (sysmem == secure_sysmem) {
998 /* Report both flash devices as a single node in the DT */
999 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
1000 qemu_fdt_add_subnode(vms->fdt, nodename);
1001 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
1002 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1003 2, flashbase, 2, flashsize,
1004 2, flashbase + flashsize, 2, flashsize);
1005 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
1006 g_free(nodename);
1007 } else {
1008 /*
1009 * Report the devices as separate nodes so we can mark one as
1010 * only visible to the secure world.
1011 */
1012 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
1013 qemu_fdt_add_subnode(vms->fdt, nodename);
1014 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
1015 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1016 2, flashbase, 2, flashsize);
1017 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
1018 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
1019 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
1020 g_free(nodename);
1021
1022 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
1023 qemu_fdt_add_subnode(vms->fdt, nodename);
1024 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
1025 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1026 2, flashbase + flashsize, 2, flashsize);
1027 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
1028 g_free(nodename);
1029 }
1030 }
1031
1032 static bool virt_firmware_init(VirtMachineState *vms,
1033 MemoryRegion *sysmem,
1034 MemoryRegion *secure_sysmem)
1035 {
1036 int i;
1037 BlockBackend *pflash_blk0;
1038
1039 /* Map legacy -drive if=pflash to machine properties */
1040 for (i = 0; i < ARRAY_SIZE(vms->flash); i++) {
1041 pflash_cfi01_legacy_drive(vms->flash[i],
1042 drive_get(IF_PFLASH, 0, i));
1043 }
1044
1045 virt_flash_map(vms, sysmem, secure_sysmem);
1046
1047 pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]);
1048
1049 if (bios_name) {
1050 char *fname;
1051 MemoryRegion *mr;
1052 int image_size;
1053
1054 if (pflash_blk0) {
1055 error_report("The contents of the first flash device may be "
1056 "specified with -bios or with -drive if=pflash... "
1057 "but you cannot use both options at once");
1058 exit(1);
1059 }
1060
1061 /* Fall back to -bios */
1062
1063 fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1064 if (!fname) {
1065 error_report("Could not find ROM image '%s'", bios_name);
1066 exit(1);
1067 }
1068 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0);
1069 image_size = load_image_mr(fname, mr);
1070 g_free(fname);
1071 if (image_size < 0) {
1072 error_report("Could not load ROM image '%s'", bios_name);
1073 exit(1);
1074 }
1075 }
1076
1077 return pflash_blk0 || bios_name;
1078 }
1079
1080 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
1081 {
1082 MachineState *ms = MACHINE(vms);
1083 hwaddr base = vms->memmap[VIRT_FW_CFG].base;
1084 hwaddr size = vms->memmap[VIRT_FW_CFG].size;
1085 FWCfgState *fw_cfg;
1086 char *nodename;
1087
1088 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
1089 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus);
1090
1091 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
1092 qemu_fdt_add_subnode(vms->fdt, nodename);
1093 qemu_fdt_setprop_string(vms->fdt, nodename,
1094 "compatible", "qemu,fw-cfg-mmio");
1095 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1096 2, base, 2, size);
1097 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1098 g_free(nodename);
1099 return fw_cfg;
1100 }
1101
1102 static void create_pcie_irq_map(const VirtMachineState *vms,
1103 uint32_t gic_phandle,
1104 int first_irq, const char *nodename)
1105 {
1106 int devfn, pin;
1107 uint32_t full_irq_map[4 * 4 * 10] = { 0 };
1108 uint32_t *irq_map = full_irq_map;
1109
1110 for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
1111 for (pin = 0; pin < 4; pin++) {
1112 int irq_type = GIC_FDT_IRQ_TYPE_SPI;
1113 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
1114 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
1115 int i;
1116
1117 uint32_t map[] = {
1118 devfn << 8, 0, 0, /* devfn */
1119 pin + 1, /* PCI pin */
1120 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
1121
1122 /* Convert map to big endian */
1123 for (i = 0; i < 10; i++) {
1124 irq_map[i] = cpu_to_be32(map[i]);
1125 }
1126 irq_map += 10;
1127 }
1128 }
1129
1130 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map",
1131 full_irq_map, sizeof(full_irq_map));
1132
1133 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask",
1134 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
1135 0x7 /* PCI irq */);
1136 }
1137
1138 static void create_smmu(const VirtMachineState *vms,
1139 PCIBus *bus)
1140 {
1141 char *node;
1142 const char compat[] = "arm,smmu-v3";
1143 int irq = vms->irqmap[VIRT_SMMU];
1144 int i;
1145 hwaddr base = vms->memmap[VIRT_SMMU].base;
1146 hwaddr size = vms->memmap[VIRT_SMMU].size;
1147 const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
1148 DeviceState *dev;
1149
1150 if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
1151 return;
1152 }
1153
1154 dev = qdev_create(NULL, "arm-smmuv3");
1155
1156 object_property_set_link(OBJECT(dev), OBJECT(bus), "primary-bus",
1157 &error_abort);
1158 qdev_init_nofail(dev);
1159 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
1160 for (i = 0; i < NUM_SMMU_IRQS; i++) {
1161 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1162 qdev_get_gpio_in(vms->gic, irq + i));
1163 }
1164
1165 node = g_strdup_printf("/smmuv3@%" PRIx64, base);
1166 qemu_fdt_add_subnode(vms->fdt, node);
1167 qemu_fdt_setprop(vms->fdt, node, "compatible", compat, sizeof(compat));
1168 qemu_fdt_setprop_sized_cells(vms->fdt, node, "reg", 2, base, 2, size);
1169
1170 qemu_fdt_setprop_cells(vms->fdt, node, "interrupts",
1171 GIC_FDT_IRQ_TYPE_SPI, irq , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1172 GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1173 GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1174 GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1175
1176 qemu_fdt_setprop(vms->fdt, node, "interrupt-names", irq_names,
1177 sizeof(irq_names));
1178
1179 qemu_fdt_setprop_cell(vms->fdt, node, "clocks", vms->clock_phandle);
1180 qemu_fdt_setprop_string(vms->fdt, node, "clock-names", "apb_pclk");
1181 qemu_fdt_setprop(vms->fdt, node, "dma-coherent", NULL, 0);
1182
1183 qemu_fdt_setprop_cell(vms->fdt, node, "#iommu-cells", 1);
1184
1185 qemu_fdt_setprop_cell(vms->fdt, node, "phandle", vms->iommu_phandle);
1186 g_free(node);
1187 }
1188
1189 static void create_virtio_iommu_dt_bindings(VirtMachineState *vms, Error **errp)
1190 {
1191 const char compat[] = "virtio,pci-iommu";
1192 uint16_t bdf = vms->virtio_iommu_bdf;
1193 char *node;
1194
1195 vms->iommu_phandle = qemu_fdt_alloc_phandle(vms->fdt);
1196
1197 node = g_strdup_printf("%s/virtio_iommu@%d", vms->pciehb_nodename, bdf);
1198 qemu_fdt_add_subnode(vms->fdt, node);
1199 qemu_fdt_setprop(vms->fdt, node, "compatible", compat, sizeof(compat));
1200 qemu_fdt_setprop_sized_cells(vms->fdt, node, "reg",
1201 1, bdf << 8, 1, 0, 1, 0,
1202 1, 0, 1, 0);
1203
1204 qemu_fdt_setprop_cell(vms->fdt, node, "#iommu-cells", 1);
1205 qemu_fdt_setprop_cell(vms->fdt, node, "phandle", vms->iommu_phandle);
1206 g_free(node);
1207
1208 qemu_fdt_setprop_cells(vms->fdt, vms->pciehb_nodename, "iommu-map",
1209 0x0, vms->iommu_phandle, 0x0, bdf,
1210 bdf + 1, vms->iommu_phandle, bdf + 1, 0xffff - bdf);
1211 }
1212
1213 static void create_pcie(VirtMachineState *vms)
1214 {
1215 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1216 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
1217 hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base;
1218 hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size;
1219 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1220 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
1221 hwaddr base_ecam, size_ecam;
1222 hwaddr base = base_mmio;
1223 int nr_pcie_buses;
1224 int irq = vms->irqmap[VIRT_PCIE];
1225 MemoryRegion *mmio_alias;
1226 MemoryRegion *mmio_reg;
1227 MemoryRegion *ecam_alias;
1228 MemoryRegion *ecam_reg;
1229 DeviceState *dev;
1230 char *nodename;
1231 int i, ecam_id;
1232 PCIHostState *pci;
1233
1234 dev = qdev_create(NULL, TYPE_GPEX_HOST);
1235 qdev_init_nofail(dev);
1236
1237 ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
1238 base_ecam = vms->memmap[ecam_id].base;
1239 size_ecam = vms->memmap[ecam_id].size;
1240 nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
1241 /* Map only the first size_ecam bytes of ECAM space */
1242 ecam_alias = g_new0(MemoryRegion, 1);
1243 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1244 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1245 ecam_reg, 0, size_ecam);
1246 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1247
1248 /* Map the MMIO window into system address space so as to expose
1249 * the section of PCI MMIO space which starts at the same base address
1250 * (ie 1:1 mapping for that part of PCI MMIO space visible through
1251 * the window).
1252 */
1253 mmio_alias = g_new0(MemoryRegion, 1);
1254 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1255 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1256 mmio_reg, base_mmio, size_mmio);
1257 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1258
1259 if (vms->highmem) {
1260 /* Map high MMIO space */
1261 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1262
1263 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1264 mmio_reg, base_mmio_high, size_mmio_high);
1265 memory_region_add_subregion(get_system_memory(), base_mmio_high,
1266 high_mmio_alias);
1267 }
1268
1269 /* Map IO port space */
1270 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1271
1272 for (i = 0; i < GPEX_NUM_IRQS; i++) {
1273 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1274 qdev_get_gpio_in(vms->gic, irq + i));
1275 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
1276 }
1277
1278 pci = PCI_HOST_BRIDGE(dev);
1279 if (pci->bus) {
1280 for (i = 0; i < nb_nics; i++) {
1281 NICInfo *nd = &nd_table[i];
1282
1283 if (!nd->model) {
1284 nd->model = g_strdup("virtio");
1285 }
1286
1287 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1288 }
1289 }
1290
1291 nodename = vms->pciehb_nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1292 qemu_fdt_add_subnode(vms->fdt, nodename);
1293 qemu_fdt_setprop_string(vms->fdt, nodename,
1294 "compatible", "pci-host-ecam-generic");
1295 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci");
1296 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3);
1297 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2);
1298 qemu_fdt_setprop_cell(vms->fdt, nodename, "linux,pci-domain", 0);
1299 qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0,
1300 nr_pcie_buses - 1);
1301 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1302
1303 if (vms->msi_phandle) {
1304 qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent",
1305 vms->msi_phandle);
1306 }
1307
1308 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1309 2, base_ecam, 2, size_ecam);
1310
1311 if (vms->highmem) {
1312 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1313 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1314 2, base_pio, 2, size_pio,
1315 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1316 2, base_mmio, 2, size_mmio,
1317 1, FDT_PCI_RANGE_MMIO_64BIT,
1318 2, base_mmio_high,
1319 2, base_mmio_high, 2, size_mmio_high);
1320 } else {
1321 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1322 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1323 2, base_pio, 2, size_pio,
1324 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1325 2, base_mmio, 2, size_mmio);
1326 }
1327
1328 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1);
1329 create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename);
1330
1331 if (vms->iommu) {
1332 vms->iommu_phandle = qemu_fdt_alloc_phandle(vms->fdt);
1333
1334 switch (vms->iommu) {
1335 case VIRT_IOMMU_SMMUV3:
1336 create_smmu(vms, pci->bus);
1337 qemu_fdt_setprop_cells(vms->fdt, nodename, "iommu-map",
1338 0x0, vms->iommu_phandle, 0x0, 0x10000);
1339 break;
1340 default:
1341 g_assert_not_reached();
1342 }
1343 }
1344 }
1345
1346 static void create_platform_bus(VirtMachineState *vms)
1347 {
1348 DeviceState *dev;
1349 SysBusDevice *s;
1350 int i;
1351 MemoryRegion *sysmem = get_system_memory();
1352
1353 dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
1354 dev->id = TYPE_PLATFORM_BUS_DEVICE;
1355 qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
1356 qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
1357 qdev_init_nofail(dev);
1358 vms->platform_bus_dev = dev;
1359
1360 s = SYS_BUS_DEVICE(dev);
1361 for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
1362 int irq = vms->irqmap[VIRT_PLATFORM_BUS] + i;
1363 sysbus_connect_irq(s, i, qdev_get_gpio_in(vms->gic, irq));
1364 }
1365
1366 memory_region_add_subregion(sysmem,
1367 vms->memmap[VIRT_PLATFORM_BUS].base,
1368 sysbus_mmio_get_region(s, 0));
1369 }
1370
1371 static void create_secure_ram(VirtMachineState *vms,
1372 MemoryRegion *secure_sysmem)
1373 {
1374 MemoryRegion *secram = g_new(MemoryRegion, 1);
1375 char *nodename;
1376 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1377 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1378
1379 memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1380 &error_fatal);
1381 memory_region_add_subregion(secure_sysmem, base, secram);
1382
1383 nodename = g_strdup_printf("/secram@%" PRIx64, base);
1384 qemu_fdt_add_subnode(vms->fdt, nodename);
1385 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory");
1386 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size);
1387 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
1388 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
1389
1390 g_free(nodename);
1391 }
1392
1393 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1394 {
1395 const VirtMachineState *board = container_of(binfo, VirtMachineState,
1396 bootinfo);
1397
1398 *fdt_size = board->fdt_size;
1399 return board->fdt;
1400 }
1401
1402 static void virt_build_smbios(VirtMachineState *vms)
1403 {
1404 MachineClass *mc = MACHINE_GET_CLASS(vms);
1405 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1406 uint8_t *smbios_tables, *smbios_anchor;
1407 size_t smbios_tables_len, smbios_anchor_len;
1408 const char *product = "QEMU Virtual Machine";
1409
1410 if (kvm_enabled()) {
1411 product = "KVM Virtual Machine";
1412 }
1413
1414 smbios_set_defaults("QEMU", product,
1415 vmc->smbios_old_sys_ver ? "1.0" : mc->name, false,
1416 true, SMBIOS_ENTRY_POINT_30);
1417
1418 smbios_get_tables(MACHINE(vms), NULL, 0, &smbios_tables, &smbios_tables_len,
1419 &smbios_anchor, &smbios_anchor_len);
1420
1421 if (smbios_anchor) {
1422 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1423 smbios_tables, smbios_tables_len);
1424 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1425 smbios_anchor, smbios_anchor_len);
1426 }
1427 }
1428
1429 static
1430 void virt_machine_done(Notifier *notifier, void *data)
1431 {
1432 VirtMachineState *vms = container_of(notifier, VirtMachineState,
1433 machine_done);
1434 MachineState *ms = MACHINE(vms);
1435 ARMCPU *cpu = ARM_CPU(first_cpu);
1436 struct arm_boot_info *info = &vms->bootinfo;
1437 AddressSpace *as = arm_boot_address_space(cpu, info);
1438
1439 /*
1440 * If the user provided a dtb, we assume the dynamic sysbus nodes
1441 * already are integrated there. This corresponds to a use case where
1442 * the dynamic sysbus nodes are complex and their generation is not yet
1443 * supported. In that case the user can take charge of the guest dt
1444 * while qemu takes charge of the qom stuff.
1445 */
1446 if (info->dtb_filename == NULL) {
1447 platform_bus_add_all_fdt_nodes(vms->fdt, "/intc",
1448 vms->memmap[VIRT_PLATFORM_BUS].base,
1449 vms->memmap[VIRT_PLATFORM_BUS].size,
1450 vms->irqmap[VIRT_PLATFORM_BUS]);
1451 }
1452 if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) {
1453 exit(1);
1454 }
1455
1456 virt_acpi_setup(vms);
1457 virt_build_smbios(vms);
1458 }
1459
1460 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1461 {
1462 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1463 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1464
1465 if (!vmc->disallow_affinity_adjustment) {
1466 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1467 * GIC's target-list limitations. 32-bit KVM hosts currently
1468 * always create clusters of 4 CPUs, but that is expected to
1469 * change when they gain support for gicv3. When KVM is enabled
1470 * it will override the changes we make here, therefore our
1471 * purposes are to make TCG consistent (with 64-bit KVM hosts)
1472 * and to improve SGI efficiency.
1473 */
1474 if (vms->gic_version == VIRT_GIC_VERSION_3) {
1475 clustersz = GICV3_TARGETLIST_BITS;
1476 } else {
1477 clustersz = GIC_TARGETLIST_BITS;
1478 }
1479 }
1480 return arm_cpu_mp_affinity(idx, clustersz);
1481 }
1482
1483 static void virt_set_memmap(VirtMachineState *vms)
1484 {
1485 MachineState *ms = MACHINE(vms);
1486 hwaddr base, device_memory_base, device_memory_size;
1487 int i;
1488
1489 vms->memmap = extended_memmap;
1490
1491 for (i = 0; i < ARRAY_SIZE(base_memmap); i++) {
1492 vms->memmap[i] = base_memmap[i];
1493 }
1494
1495 if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) {
1496 error_report("unsupported number of memory slots: %"PRIu64,
1497 ms->ram_slots);
1498 exit(EXIT_FAILURE);
1499 }
1500
1501 /*
1502 * We compute the base of the high IO region depending on the
1503 * amount of initial and device memory. The device memory start/size
1504 * is aligned on 1GiB. We never put the high IO region below 256GiB
1505 * so that if maxram_size is < 255GiB we keep the legacy memory map.
1506 * The device region size assumes 1GiB page max alignment per slot.
1507 */
1508 device_memory_base =
1509 ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB);
1510 device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB;
1511
1512 /* Base address of the high IO region */
1513 base = device_memory_base + ROUND_UP(device_memory_size, GiB);
1514 if (base < device_memory_base) {
1515 error_report("maxmem/slots too huge");
1516 exit(EXIT_FAILURE);
1517 }
1518 if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) {
1519 base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES;
1520 }
1521
1522 for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) {
1523 hwaddr size = extended_memmap[i].size;
1524
1525 base = ROUND_UP(base, size);
1526 vms->memmap[i].base = base;
1527 vms->memmap[i].size = size;
1528 base += size;
1529 }
1530 vms->highest_gpa = base - 1;
1531 if (device_memory_size > 0) {
1532 ms->device_memory = g_malloc0(sizeof(*ms->device_memory));
1533 ms->device_memory->base = device_memory_base;
1534 memory_region_init(&ms->device_memory->mr, OBJECT(vms),
1535 "device-memory", device_memory_size);
1536 }
1537 }
1538
1539 /*
1540 * finalize_gic_version - Determines the final gic_version
1541 * according to the gic-version property
1542 *
1543 * Default GIC type is v2
1544 */
1545 static void finalize_gic_version(VirtMachineState *vms)
1546 {
1547 unsigned int max_cpus = MACHINE(vms)->smp.max_cpus;
1548
1549 if (kvm_enabled()) {
1550 int probe_bitmap;
1551
1552 if (!kvm_irqchip_in_kernel()) {
1553 switch (vms->gic_version) {
1554 case VIRT_GIC_VERSION_HOST:
1555 warn_report(
1556 "gic-version=host not relevant with kernel-irqchip=off "
1557 "as only userspace GICv2 is supported. Using v2 ...");
1558 return;
1559 case VIRT_GIC_VERSION_MAX:
1560 case VIRT_GIC_VERSION_NOSEL:
1561 vms->gic_version = VIRT_GIC_VERSION_2;
1562 return;
1563 case VIRT_GIC_VERSION_2:
1564 return;
1565 case VIRT_GIC_VERSION_3:
1566 error_report(
1567 "gic-version=3 is not supported with kernel-irqchip=off");
1568 exit(1);
1569 }
1570 }
1571
1572 probe_bitmap = kvm_arm_vgic_probe();
1573 if (!probe_bitmap) {
1574 error_report("Unable to determine GIC version supported by host");
1575 exit(1);
1576 }
1577
1578 switch (vms->gic_version) {
1579 case VIRT_GIC_VERSION_HOST:
1580 case VIRT_GIC_VERSION_MAX:
1581 if (probe_bitmap & KVM_ARM_VGIC_V3) {
1582 vms->gic_version = VIRT_GIC_VERSION_3;
1583 } else {
1584 vms->gic_version = VIRT_GIC_VERSION_2;
1585 }
1586 return;
1587 case VIRT_GIC_VERSION_NOSEL:
1588 if ((probe_bitmap & KVM_ARM_VGIC_V2) && max_cpus <= GIC_NCPU) {
1589 vms->gic_version = VIRT_GIC_VERSION_2;
1590 } else if (probe_bitmap & KVM_ARM_VGIC_V3) {
1591 /*
1592 * in case the host does not support v2 in-kernel emulation or
1593 * the end-user requested more than 8 VCPUs we now default
1594 * to v3. In any case defaulting to v2 would be broken.
1595 */
1596 vms->gic_version = VIRT_GIC_VERSION_3;
1597 } else if (max_cpus > GIC_NCPU) {
1598 error_report("host only supports in-kernel GICv2 emulation "
1599 "but more than 8 vcpus are requested");
1600 exit(1);
1601 }
1602 break;
1603 case VIRT_GIC_VERSION_2:
1604 case VIRT_GIC_VERSION_3:
1605 break;
1606 }
1607
1608 /* Check chosen version is effectively supported by the host */
1609 if (vms->gic_version == VIRT_GIC_VERSION_2 &&
1610 !(probe_bitmap & KVM_ARM_VGIC_V2)) {
1611 error_report("host does not support in-kernel GICv2 emulation");
1612 exit(1);
1613 } else if (vms->gic_version == VIRT_GIC_VERSION_3 &&
1614 !(probe_bitmap & KVM_ARM_VGIC_V3)) {
1615 error_report("host does not support in-kernel GICv3 emulation");
1616 exit(1);
1617 }
1618 return;
1619 }
1620
1621 /* TCG mode */
1622 switch (vms->gic_version) {
1623 case VIRT_GIC_VERSION_NOSEL:
1624 vms->gic_version = VIRT_GIC_VERSION_2;
1625 break;
1626 case VIRT_GIC_VERSION_MAX:
1627 vms->gic_version = VIRT_GIC_VERSION_3;
1628 break;
1629 case VIRT_GIC_VERSION_HOST:
1630 error_report("gic-version=host requires KVM");
1631 exit(1);
1632 case VIRT_GIC_VERSION_2:
1633 case VIRT_GIC_VERSION_3:
1634 break;
1635 }
1636 }
1637
1638 static void machvirt_init(MachineState *machine)
1639 {
1640 VirtMachineState *vms = VIRT_MACHINE(machine);
1641 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
1642 MachineClass *mc = MACHINE_GET_CLASS(machine);
1643 const CPUArchIdList *possible_cpus;
1644 MemoryRegion *sysmem = get_system_memory();
1645 MemoryRegion *secure_sysmem = NULL;
1646 int n, virt_max_cpus;
1647 bool firmware_loaded;
1648 bool aarch64 = true;
1649 bool has_ged = !vmc->no_ged;
1650 unsigned int smp_cpus = machine->smp.cpus;
1651 unsigned int max_cpus = machine->smp.max_cpus;
1652
1653 /*
1654 * In accelerated mode, the memory map is computed earlier in kvm_type()
1655 * to create a VM with the right number of IPA bits.
1656 */
1657 if (!vms->memmap) {
1658 virt_set_memmap(vms);
1659 }
1660
1661 /* We can probe only here because during property set
1662 * KVM is not available yet
1663 */
1664 finalize_gic_version(vms);
1665
1666 if (!cpu_type_valid(machine->cpu_type)) {
1667 error_report("mach-virt: CPU type %s not supported", machine->cpu_type);
1668 exit(1);
1669 }
1670
1671 if (vms->secure) {
1672 if (kvm_enabled()) {
1673 error_report("mach-virt: KVM does not support Security extensions");
1674 exit(1);
1675 }
1676
1677 /*
1678 * The Secure view of the world is the same as the NonSecure,
1679 * but with a few extra devices. Create it as a container region
1680 * containing the system memory at low priority; any secure-only
1681 * devices go in at higher priority and take precedence.
1682 */
1683 secure_sysmem = g_new(MemoryRegion, 1);
1684 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1685 UINT64_MAX);
1686 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1687 }
1688
1689 firmware_loaded = virt_firmware_init(vms, sysmem,
1690 secure_sysmem ?: sysmem);
1691
1692 /* If we have an EL3 boot ROM then the assumption is that it will
1693 * implement PSCI itself, so disable QEMU's internal implementation
1694 * so it doesn't get in the way. Instead of starting secondary
1695 * CPUs in PSCI powerdown state we will start them all running and
1696 * let the boot ROM sort them out.
1697 * The usual case is that we do use QEMU's PSCI implementation;
1698 * if the guest has EL2 then we will use SMC as the conduit,
1699 * and otherwise we will use HVC (for backwards compatibility and
1700 * because if we're using KVM then we must use HVC).
1701 */
1702 if (vms->secure && firmware_loaded) {
1703 vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
1704 } else if (vms->virt) {
1705 vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
1706 } else {
1707 vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
1708 }
1709
1710 /* The maximum number of CPUs depends on the GIC version, or on how
1711 * many redistributors we can fit into the memory map.
1712 */
1713 if (vms->gic_version == VIRT_GIC_VERSION_3) {
1714 virt_max_cpus =
1715 vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
1716 virt_max_cpus +=
1717 vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE;
1718 } else {
1719 virt_max_cpus = GIC_NCPU;
1720 }
1721
1722 if (max_cpus > virt_max_cpus) {
1723 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1724 "supported by machine 'mach-virt' (%d)",
1725 max_cpus, virt_max_cpus);
1726 exit(1);
1727 }
1728
1729 vms->smp_cpus = smp_cpus;
1730
1731 if (vms->virt && kvm_enabled()) {
1732 error_report("mach-virt: KVM does not support providing "
1733 "Virtualization extensions to the guest CPU");
1734 exit(1);
1735 }
1736
1737 create_fdt(vms);
1738
1739 possible_cpus = mc->possible_cpu_arch_ids(machine);
1740 for (n = 0; n < possible_cpus->len; n++) {
1741 Object *cpuobj;
1742 CPUState *cs;
1743
1744 if (n >= smp_cpus) {
1745 break;
1746 }
1747
1748 cpuobj = object_new(possible_cpus->cpus[n].type);
1749 object_property_set_int(cpuobj, possible_cpus->cpus[n].arch_id,
1750 "mp-affinity", NULL);
1751
1752 cs = CPU(cpuobj);
1753 cs->cpu_index = n;
1754
1755 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
1756 &error_fatal);
1757
1758 aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
1759
1760 if (!vms->secure) {
1761 object_property_set_bool(cpuobj, false, "has_el3", NULL);
1762 }
1763
1764 if (!vms->virt && object_property_find(cpuobj, "has_el2", NULL)) {
1765 object_property_set_bool(cpuobj, false, "has_el2", NULL);
1766 }
1767
1768 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
1769 object_property_set_int(cpuobj, vms->psci_conduit,
1770 "psci-conduit", NULL);
1771
1772 /* Secondary CPUs start in PSCI powered-down state */
1773 if (n > 0) {
1774 object_property_set_bool(cpuobj, true,
1775 "start-powered-off", NULL);
1776 }
1777 }
1778
1779 if (vmc->kvm_no_adjvtime &&
1780 object_property_find(cpuobj, "kvm-no-adjvtime", NULL)) {
1781 object_property_set_bool(cpuobj, true, "kvm-no-adjvtime", NULL);
1782 }
1783
1784 if (vmc->no_pmu && object_property_find(cpuobj, "pmu", NULL)) {
1785 object_property_set_bool(cpuobj, false, "pmu", NULL);
1786 }
1787
1788 if (object_property_find(cpuobj, "reset-cbar", NULL)) {
1789 object_property_set_int(cpuobj, vms->memmap[VIRT_CPUPERIPHS].base,
1790 "reset-cbar", &error_abort);
1791 }
1792
1793 object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
1794 &error_abort);
1795 if (vms->secure) {
1796 object_property_set_link(cpuobj, OBJECT(secure_sysmem),
1797 "secure-memory", &error_abort);
1798 }
1799
1800 object_property_set_bool(cpuobj, true, "realized", &error_fatal);
1801 object_unref(cpuobj);
1802 }
1803 fdt_add_timer_nodes(vms);
1804 fdt_add_cpu_nodes(vms);
1805
1806 if (!kvm_enabled()) {
1807 ARMCPU *cpu = ARM_CPU(first_cpu);
1808 bool aarch64 = object_property_get_bool(OBJECT(cpu), "aarch64", NULL);
1809
1810 if (aarch64 && vms->highmem) {
1811 int requested_pa_size, pamax = arm_pamax(cpu);
1812
1813 requested_pa_size = 64 - clz64(vms->highest_gpa);
1814 if (pamax < requested_pa_size) {
1815 error_report("VCPU supports less PA bits (%d) than requested "
1816 "by the memory map (%d)", pamax, requested_pa_size);
1817 exit(1);
1818 }
1819 }
1820 }
1821
1822 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base,
1823 machine->ram);
1824 if (machine->device_memory) {
1825 memory_region_add_subregion(sysmem, machine->device_memory->base,
1826 &machine->device_memory->mr);
1827 }
1828
1829 virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem);
1830
1831 create_gic(vms);
1832
1833 fdt_add_pmu_nodes(vms);
1834
1835 create_uart(vms, VIRT_UART, sysmem, serial_hd(0));
1836
1837 if (vms->secure) {
1838 create_secure_ram(vms, secure_sysmem);
1839 create_uart(vms, VIRT_SECURE_UART, secure_sysmem, serial_hd(1));
1840 }
1841
1842 vms->highmem_ecam &= vms->highmem && (!firmware_loaded || aarch64);
1843
1844 create_rtc(vms);
1845
1846 create_pcie(vms);
1847
1848 if (has_ged && aarch64 && firmware_loaded && virt_is_acpi_enabled(vms)) {
1849 vms->acpi_dev = create_acpi_ged(vms);
1850 } else {
1851 create_gpio(vms);
1852 }
1853
1854 /* connect powerdown request */
1855 vms->powerdown_notifier.notify = virt_powerdown_req;
1856 qemu_register_powerdown_notifier(&vms->powerdown_notifier);
1857
1858 /* Create mmio transports, so the user can create virtio backends
1859 * (which will be automatically plugged in to the transports). If
1860 * no backend is created the transport will just sit harmlessly idle.
1861 */
1862 create_virtio_devices(vms);
1863
1864 vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
1865 rom_set_fw(vms->fw_cfg);
1866
1867 create_platform_bus(vms);
1868
1869 vms->bootinfo.ram_size = machine->ram_size;
1870 vms->bootinfo.nb_cpus = smp_cpus;
1871 vms->bootinfo.board_id = -1;
1872 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
1873 vms->bootinfo.get_dtb = machvirt_dtb;
1874 vms->bootinfo.skip_dtb_autoload = true;
1875 vms->bootinfo.firmware_loaded = firmware_loaded;
1876 arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo);
1877
1878 vms->machine_done.notify = virt_machine_done;
1879 qemu_add_machine_init_done_notifier(&vms->machine_done);
1880 }
1881
1882 static bool virt_get_secure(Object *obj, Error **errp)
1883 {
1884 VirtMachineState *vms = VIRT_MACHINE(obj);
1885
1886 return vms->secure;
1887 }
1888
1889 static void virt_set_secure(Object *obj, bool value, Error **errp)
1890 {
1891 VirtMachineState *vms = VIRT_MACHINE(obj);
1892
1893 vms->secure = value;
1894 }
1895
1896 static bool virt_get_virt(Object *obj, Error **errp)
1897 {
1898 VirtMachineState *vms = VIRT_MACHINE(obj);
1899
1900 return vms->virt;
1901 }
1902
1903 static void virt_set_virt(Object *obj, bool value, Error **errp)
1904 {
1905 VirtMachineState *vms = VIRT_MACHINE(obj);
1906
1907 vms->virt = value;
1908 }
1909
1910 static bool virt_get_highmem(Object *obj, Error **errp)
1911 {
1912 VirtMachineState *vms = VIRT_MACHINE(obj);
1913
1914 return vms->highmem;
1915 }
1916
1917 static void virt_set_highmem(Object *obj, bool value, Error **errp)
1918 {
1919 VirtMachineState *vms = VIRT_MACHINE(obj);
1920
1921 vms->highmem = value;
1922 }
1923
1924 static bool virt_get_its(Object *obj, Error **errp)
1925 {
1926 VirtMachineState *vms = VIRT_MACHINE(obj);
1927
1928 return vms->its;
1929 }
1930
1931 static void virt_set_its(Object *obj, bool value, Error **errp)
1932 {
1933 VirtMachineState *vms = VIRT_MACHINE(obj);
1934
1935 vms->its = value;
1936 }
1937
1938 bool virt_is_acpi_enabled(VirtMachineState *vms)
1939 {
1940 if (vms->acpi == ON_OFF_AUTO_OFF) {
1941 return false;
1942 }
1943 return true;
1944 }
1945
1946 static void virt_get_acpi(Object *obj, Visitor *v, const char *name,
1947 void *opaque, Error **errp)
1948 {
1949 VirtMachineState *vms = VIRT_MACHINE(obj);
1950 OnOffAuto acpi = vms->acpi;
1951
1952 visit_type_OnOffAuto(v, name, &acpi, errp);
1953 }
1954
1955 static void virt_set_acpi(Object *obj, Visitor *v, const char *name,
1956 void *opaque, Error **errp)
1957 {
1958 VirtMachineState *vms = VIRT_MACHINE(obj);
1959
1960 visit_type_OnOffAuto(v, name, &vms->acpi, errp);
1961 }
1962
1963 static char *virt_get_gic_version(Object *obj, Error **errp)
1964 {
1965 VirtMachineState *vms = VIRT_MACHINE(obj);
1966 const char *val = vms->gic_version == VIRT_GIC_VERSION_3 ? "3" : "2";
1967
1968 return g_strdup(val);
1969 }
1970
1971 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
1972 {
1973 VirtMachineState *vms = VIRT_MACHINE(obj);
1974
1975 if (!strcmp(value, "3")) {
1976 vms->gic_version = VIRT_GIC_VERSION_3;
1977 } else if (!strcmp(value, "2")) {
1978 vms->gic_version = VIRT_GIC_VERSION_2;
1979 } else if (!strcmp(value, "host")) {
1980 vms->gic_version = VIRT_GIC_VERSION_HOST; /* Will probe later */
1981 } else if (!strcmp(value, "max")) {
1982 vms->gic_version = VIRT_GIC_VERSION_MAX; /* Will probe later */
1983 } else {
1984 error_setg(errp, "Invalid gic-version value");
1985 error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
1986 }
1987 }
1988
1989 static char *virt_get_iommu(Object *obj, Error **errp)
1990 {
1991 VirtMachineState *vms = VIRT_MACHINE(obj);
1992
1993 switch (vms->iommu) {
1994 case VIRT_IOMMU_NONE:
1995 return g_strdup("none");
1996 case VIRT_IOMMU_SMMUV3:
1997 return g_strdup("smmuv3");
1998 default:
1999 g_assert_not_reached();
2000 }
2001 }
2002
2003 static void virt_set_iommu(Object *obj, const char *value, Error **errp)
2004 {
2005 VirtMachineState *vms = VIRT_MACHINE(obj);
2006
2007 if (!strcmp(value, "smmuv3")) {
2008 vms->iommu = VIRT_IOMMU_SMMUV3;
2009 } else if (!strcmp(value, "none")) {
2010 vms->iommu = VIRT_IOMMU_NONE;
2011 } else {
2012 error_setg(errp, "Invalid iommu value");
2013 error_append_hint(errp, "Valid values are none, smmuv3.\n");
2014 }
2015 }
2016
2017 static CpuInstanceProperties
2018 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2019 {
2020 MachineClass *mc = MACHINE_GET_CLASS(ms);
2021 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2022
2023 assert(cpu_index < possible_cpus->len);
2024 return possible_cpus->cpus[cpu_index].props;
2025 }
2026
2027 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
2028 {
2029 return idx % ms->numa_state->num_nodes;
2030 }
2031
2032 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
2033 {
2034 int n;
2035 unsigned int max_cpus = ms->smp.max_cpus;
2036 VirtMachineState *vms = VIRT_MACHINE(ms);
2037
2038 if (ms->possible_cpus) {
2039 assert(ms->possible_cpus->len == max_cpus);
2040 return ms->possible_cpus;
2041 }
2042
2043 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2044 sizeof(CPUArchId) * max_cpus);
2045 ms->possible_cpus->len = max_cpus;
2046 for (n = 0; n < ms->possible_cpus->len; n++) {
2047 ms->possible_cpus->cpus[n].type = ms->cpu_type;
2048 ms->possible_cpus->cpus[n].arch_id =
2049 virt_cpu_mp_affinity(vms, n);
2050 ms->possible_cpus->cpus[n].props.has_thread_id = true;
2051 ms->possible_cpus->cpus[n].props.thread_id = n;
2052 }
2053 return ms->possible_cpus;
2054 }
2055
2056 static void virt_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2057 Error **errp)
2058 {
2059 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2060 const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2061
2062 if (is_nvdimm) {
2063 error_setg(errp, "nvdimm is not yet supported");
2064 return;
2065 }
2066
2067 if (!vms->acpi_dev) {
2068 error_setg(errp,
2069 "memory hotplug is not enabled: missing acpi-ged device");
2070 return;
2071 }
2072
2073 pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), NULL, errp);
2074 }
2075
2076 static void virt_memory_plug(HotplugHandler *hotplug_dev,
2077 DeviceState *dev, Error **errp)
2078 {
2079 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2080 Error *local_err = NULL;
2081
2082 pc_dimm_plug(PC_DIMM(dev), MACHINE(vms), &local_err);
2083 if (local_err) {
2084 goto out;
2085 }
2086
2087 hotplug_handler_plug(HOTPLUG_HANDLER(vms->acpi_dev),
2088 dev, &error_abort);
2089
2090 out:
2091 error_propagate(errp, local_err);
2092 }
2093
2094 static void virt_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2095 DeviceState *dev, Error **errp)
2096 {
2097 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2098 virt_memory_pre_plug(hotplug_dev, dev, errp);
2099 }
2100 }
2101
2102 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2103 DeviceState *dev, Error **errp)
2104 {
2105 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2106
2107 if (vms->platform_bus_dev) {
2108 if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) {
2109 platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
2110 SYS_BUS_DEVICE(dev));
2111 }
2112 }
2113 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2114 virt_memory_plug(hotplug_dev, dev, errp);
2115 }
2116 if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2117 PCIDevice *pdev = PCI_DEVICE(dev);
2118
2119 vms->iommu = VIRT_IOMMU_VIRTIO;
2120 vms->virtio_iommu_bdf = pci_get_bdf(pdev);
2121 create_virtio_iommu_dt_bindings(vms, errp);
2122 }
2123 }
2124
2125 static void virt_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2126 DeviceState *dev, Error **errp)
2127 {
2128 error_setg(errp, "device unplug request for unsupported device"
2129 " type: %s", object_get_typename(OBJECT(dev)));
2130 }
2131
2132 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
2133 DeviceState *dev)
2134 {
2135 if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE) ||
2136 (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM))) {
2137 return HOTPLUG_HANDLER(machine);
2138 }
2139 if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2140 VirtMachineState *vms = VIRT_MACHINE(machine);
2141
2142 if (!vms->bootinfo.firmware_loaded || !virt_is_acpi_enabled(vms)) {
2143 return HOTPLUG_HANDLER(machine);
2144 }
2145 }
2146 return NULL;
2147 }
2148
2149 /*
2150 * for arm64 kvm_type [7-0] encodes the requested number of bits
2151 * in the IPA address space
2152 */
2153 static int virt_kvm_type(MachineState *ms, const char *type_str)
2154 {
2155 VirtMachineState *vms = VIRT_MACHINE(ms);
2156 int max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms);
2157 int requested_pa_size;
2158
2159 /* we freeze the memory map to compute the highest gpa */
2160 virt_set_memmap(vms);
2161
2162 requested_pa_size = 64 - clz64(vms->highest_gpa);
2163
2164 if (requested_pa_size > max_vm_pa_size) {
2165 error_report("-m and ,maxmem option values "
2166 "require an IPA range (%d bits) larger than "
2167 "the one supported by the host (%d bits)",
2168 requested_pa_size, max_vm_pa_size);
2169 exit(1);
2170 }
2171 /*
2172 * By default we return 0 which corresponds to an implicit legacy
2173 * 40b IPA setting. Otherwise we return the actual requested PA
2174 * logsize
2175 */
2176 return requested_pa_size > 40 ? requested_pa_size : 0;
2177 }
2178
2179 static void virt_machine_class_init(ObjectClass *oc, void *data)
2180 {
2181 MachineClass *mc = MACHINE_CLASS(oc);
2182 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2183
2184 mc->init = machvirt_init;
2185 /* Start with max_cpus set to 512, which is the maximum supported by KVM.
2186 * The value may be reduced later when we have more information about the
2187 * configuration of the particular instance.
2188 */
2189 mc->max_cpus = 512;
2190 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
2191 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
2192 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
2193 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM);
2194 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_TPM_TIS_SYSBUS);
2195 mc->block_default_type = IF_VIRTIO;
2196 mc->no_cdrom = 1;
2197 mc->pci_allow_0_address = true;
2198 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
2199 mc->minimum_page_bits = 12;
2200 mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
2201 mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
2202 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
2203 mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
2204 mc->kvm_type = virt_kvm_type;
2205 assert(!mc->get_hotplug_handler);
2206 mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
2207 hc->pre_plug = virt_machine_device_pre_plug_cb;
2208 hc->plug = virt_machine_device_plug_cb;
2209 hc->unplug_request = virt_machine_device_unplug_request_cb;
2210 mc->numa_mem_supported = true;
2211 mc->auto_enable_numa_with_memhp = true;
2212 mc->default_ram_id = "mach-virt.ram";
2213
2214 object_class_property_add(oc, "acpi", "OnOffAuto",
2215 virt_get_acpi, virt_set_acpi,
2216 NULL, NULL, &error_abort);
2217 object_class_property_set_description(oc, "acpi",
2218 "Enable ACPI", &error_abort);
2219 }
2220
2221 static void virt_instance_init(Object *obj)
2222 {
2223 VirtMachineState *vms = VIRT_MACHINE(obj);
2224 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
2225
2226 /* EL3 is disabled by default on virt: this makes us consistent
2227 * between KVM and TCG for this board, and it also allows us to
2228 * boot UEFI blobs which assume no TrustZone support.
2229 */
2230 vms->secure = false;
2231 object_property_add_bool(obj, "secure", virt_get_secure,
2232 virt_set_secure, NULL);
2233 object_property_set_description(obj, "secure",
2234 "Set on/off to enable/disable the ARM "
2235 "Security Extensions (TrustZone)",
2236 NULL);
2237
2238 /* EL2 is also disabled by default, for similar reasons */
2239 vms->virt = false;
2240 object_property_add_bool(obj, "virtualization", virt_get_virt,
2241 virt_set_virt, NULL);
2242 object_property_set_description(obj, "virtualization",
2243 "Set on/off to enable/disable emulating a "
2244 "guest CPU which implements the ARM "
2245 "Virtualization Extensions",
2246 NULL);
2247
2248 /* High memory is enabled by default */
2249 vms->highmem = true;
2250 object_property_add_bool(obj, "highmem", virt_get_highmem,
2251 virt_set_highmem, NULL);
2252 object_property_set_description(obj, "highmem",
2253 "Set on/off to enable/disable using "
2254 "physical address space above 32 bits",
2255 NULL);
2256 vms->gic_version = VIRT_GIC_VERSION_NOSEL;
2257 object_property_add_str(obj, "gic-version", virt_get_gic_version,
2258 virt_set_gic_version, NULL);
2259 object_property_set_description(obj, "gic-version",
2260 "Set GIC version. "
2261 "Valid values are 2, 3, host and max",
2262 NULL);
2263
2264 vms->highmem_ecam = !vmc->no_highmem_ecam;
2265
2266 if (vmc->no_its) {
2267 vms->its = false;
2268 } else {
2269 /* Default allows ITS instantiation */
2270 vms->its = true;
2271 object_property_add_bool(obj, "its", virt_get_its,
2272 virt_set_its, NULL);
2273 object_property_set_description(obj, "its",
2274 "Set on/off to enable/disable "
2275 "ITS instantiation",
2276 NULL);
2277 }
2278
2279 /* Default disallows iommu instantiation */
2280 vms->iommu = VIRT_IOMMU_NONE;
2281 object_property_add_str(obj, "iommu", virt_get_iommu, virt_set_iommu, NULL);
2282 object_property_set_description(obj, "iommu",
2283 "Set the IOMMU type. "
2284 "Valid values are none and smmuv3",
2285 NULL);
2286
2287 vms->irqmap = a15irqmap;
2288
2289 virt_flash_create(vms);
2290 }
2291
2292 static const TypeInfo virt_machine_info = {
2293 .name = TYPE_VIRT_MACHINE,
2294 .parent = TYPE_MACHINE,
2295 .abstract = true,
2296 .instance_size = sizeof(VirtMachineState),
2297 .class_size = sizeof(VirtMachineClass),
2298 .class_init = virt_machine_class_init,
2299 .instance_init = virt_instance_init,
2300 .interfaces = (InterfaceInfo[]) {
2301 { TYPE_HOTPLUG_HANDLER },
2302 { }
2303 },
2304 };
2305
2306 static void machvirt_machine_init(void)
2307 {
2308 type_register_static(&virt_machine_info);
2309 }
2310 type_init(machvirt_machine_init);
2311
2312 static void virt_machine_5_0_options(MachineClass *mc)
2313 {
2314 static GlobalProperty compat[] = {
2315 { TYPE_TPM_TIS_SYSBUS, "ppi", "false" },
2316 };
2317
2318 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
2319 }
2320 DEFINE_VIRT_MACHINE_AS_LATEST(5, 0)
2321
2322 static void virt_machine_4_2_options(MachineClass *mc)
2323 {
2324 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2325
2326 virt_machine_5_0_options(mc);
2327 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
2328 vmc->kvm_no_adjvtime = true;
2329 }
2330 DEFINE_VIRT_MACHINE(4, 2)
2331
2332 static void virt_machine_4_1_options(MachineClass *mc)
2333 {
2334 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2335
2336 virt_machine_4_2_options(mc);
2337 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
2338 vmc->no_ged = true;
2339 mc->auto_enable_numa_with_memhp = false;
2340 }
2341 DEFINE_VIRT_MACHINE(4, 1)
2342
2343 static void virt_machine_4_0_options(MachineClass *mc)
2344 {
2345 virt_machine_4_1_options(mc);
2346 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
2347 }
2348 DEFINE_VIRT_MACHINE(4, 0)
2349
2350 static void virt_machine_3_1_options(MachineClass *mc)
2351 {
2352 virt_machine_4_0_options(mc);
2353 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
2354 }
2355 DEFINE_VIRT_MACHINE(3, 1)
2356
2357 static void virt_machine_3_0_options(MachineClass *mc)
2358 {
2359 virt_machine_3_1_options(mc);
2360 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
2361 }
2362 DEFINE_VIRT_MACHINE(3, 0)
2363
2364 static void virt_machine_2_12_options(MachineClass *mc)
2365 {
2366 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2367
2368 virt_machine_3_0_options(mc);
2369 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
2370 vmc->no_highmem_ecam = true;
2371 mc->max_cpus = 255;
2372 }
2373 DEFINE_VIRT_MACHINE(2, 12)
2374
2375 static void virt_machine_2_11_options(MachineClass *mc)
2376 {
2377 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2378
2379 virt_machine_2_12_options(mc);
2380 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
2381 vmc->smbios_old_sys_ver = true;
2382 }
2383 DEFINE_VIRT_MACHINE(2, 11)
2384
2385 static void virt_machine_2_10_options(MachineClass *mc)
2386 {
2387 virt_machine_2_11_options(mc);
2388 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
2389 /* before 2.11 we never faulted accesses to bad addresses */
2390 mc->ignore_memory_transaction_failures = true;
2391 }
2392 DEFINE_VIRT_MACHINE(2, 10)
2393
2394 static void virt_machine_2_9_options(MachineClass *mc)
2395 {
2396 virt_machine_2_10_options(mc);
2397 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
2398 }
2399 DEFINE_VIRT_MACHINE(2, 9)
2400
2401 static void virt_machine_2_8_options(MachineClass *mc)
2402 {
2403 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2404
2405 virt_machine_2_9_options(mc);
2406 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
2407 /* For 2.8 and earlier we falsely claimed in the DT that
2408 * our timers were edge-triggered, not level-triggered.
2409 */
2410 vmc->claim_edge_triggered_timers = true;
2411 }
2412 DEFINE_VIRT_MACHINE(2, 8)
2413
2414 static void virt_machine_2_7_options(MachineClass *mc)
2415 {
2416 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2417
2418 virt_machine_2_8_options(mc);
2419 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
2420 /* ITS was introduced with 2.8 */
2421 vmc->no_its = true;
2422 /* Stick with 1K pages for migration compatibility */
2423 mc->minimum_page_bits = 0;
2424 }
2425 DEFINE_VIRT_MACHINE(2, 7)
2426
2427 static void virt_machine_2_6_options(MachineClass *mc)
2428 {
2429 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2430
2431 virt_machine_2_7_options(mc);
2432 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
2433 vmc->disallow_affinity_adjustment = true;
2434 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
2435 vmc->no_pmu = true;
2436 }
2437 DEFINE_VIRT_MACHINE(2, 6)