]> git.proxmox.com Git - mirror_qemu.git/blob - hw/arm/virt.c
Merge remote-tracking branch 'remotes/kevin/tags/for-upstream' into staging
[mirror_qemu.git] / hw / arm / virt.c
1 /*
2 * ARM mach-virt emulation
3 *
4 * Copyright (c) 2013 Linaro Limited
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
17 *
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
29 */
30
31 #include "qemu/osdep.h"
32 #include "qemu-common.h"
33 #include "qemu/units.h"
34 #include "qemu/option.h"
35 #include "monitor/qdev.h"
36 #include "qapi/error.h"
37 #include "hw/sysbus.h"
38 #include "hw/boards.h"
39 #include "hw/arm/boot.h"
40 #include "hw/arm/primecell.h"
41 #include "hw/arm/virt.h"
42 #include "hw/block/flash.h"
43 #include "hw/vfio/vfio-calxeda-xgmac.h"
44 #include "hw/vfio/vfio-amd-xgbe.h"
45 #include "hw/display/ramfb.h"
46 #include "net/net.h"
47 #include "sysemu/device_tree.h"
48 #include "sysemu/numa.h"
49 #include "sysemu/runstate.h"
50 #include "sysemu/sysemu.h"
51 #include "sysemu/tpm.h"
52 #include "sysemu/kvm.h"
53 #include "hw/loader.h"
54 #include "exec/address-spaces.h"
55 #include "qemu/bitops.h"
56 #include "qemu/error-report.h"
57 #include "qemu/module.h"
58 #include "hw/pci-host/gpex.h"
59 #include "hw/virtio/virtio-pci.h"
60 #include "hw/arm/sysbus-fdt.h"
61 #include "hw/platform-bus.h"
62 #include "hw/qdev-properties.h"
63 #include "hw/arm/fdt.h"
64 #include "hw/intc/arm_gic.h"
65 #include "hw/intc/arm_gicv3_common.h"
66 #include "hw/irq.h"
67 #include "kvm_arm.h"
68 #include "hw/firmware/smbios.h"
69 #include "qapi/visitor.h"
70 #include "qapi/qapi-visit-common.h"
71 #include "standard-headers/linux/input.h"
72 #include "hw/arm/smmuv3.h"
73 #include "hw/acpi/acpi.h"
74 #include "target/arm/internals.h"
75 #include "hw/mem/pc-dimm.h"
76 #include "hw/mem/nvdimm.h"
77 #include "hw/acpi/generic_event_device.h"
78 #include "hw/virtio/virtio-iommu.h"
79 #include "hw/char/pl011.h"
80 #include "qemu/guest-random.h"
81
82 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
83 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
84 void *data) \
85 { \
86 MachineClass *mc = MACHINE_CLASS(oc); \
87 virt_machine_##major##_##minor##_options(mc); \
88 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
89 if (latest) { \
90 mc->alias = "virt"; \
91 } \
92 } \
93 static const TypeInfo machvirt_##major##_##minor##_info = { \
94 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
95 .parent = TYPE_VIRT_MACHINE, \
96 .class_init = virt_##major##_##minor##_class_init, \
97 }; \
98 static void machvirt_machine_##major##_##minor##_init(void) \
99 { \
100 type_register_static(&machvirt_##major##_##minor##_info); \
101 } \
102 type_init(machvirt_machine_##major##_##minor##_init);
103
104 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
105 DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
106 #define DEFINE_VIRT_MACHINE(major, minor) \
107 DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
108
109
110 /* Number of external interrupt lines to configure the GIC with */
111 #define NUM_IRQS 256
112
113 #define PLATFORM_BUS_NUM_IRQS 64
114
115 /* Legacy RAM limit in GB (< version 4.0) */
116 #define LEGACY_RAMLIMIT_GB 255
117 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB)
118
119 /* Addresses and sizes of our components.
120 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
121 * 128MB..256MB is used for miscellaneous device I/O.
122 * 256MB..1GB is reserved for possible future PCI support (ie where the
123 * PCI memory window will go if we add a PCI host controller).
124 * 1GB and up is RAM (which may happily spill over into the
125 * high memory region beyond 4GB).
126 * This represents a compromise between how much RAM can be given to
127 * a 32 bit VM and leaving space for expansion and in particular for PCI.
128 * Note that devices should generally be placed at multiples of 0x10000,
129 * to accommodate guests using 64K pages.
130 */
131 static const MemMapEntry base_memmap[] = {
132 /* Space up to 0x8000000 is reserved for a boot ROM */
133 [VIRT_FLASH] = { 0, 0x08000000 },
134 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
135 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
136 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
137 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
138 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 },
139 [VIRT_GIC_HYP] = { 0x08030000, 0x00010000 },
140 [VIRT_GIC_VCPU] = { 0x08040000, 0x00010000 },
141 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
142 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 },
143 /* This redistributor space allows up to 2*64kB*123 CPUs */
144 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 },
145 [VIRT_UART] = { 0x09000000, 0x00001000 },
146 [VIRT_RTC] = { 0x09010000, 0x00001000 },
147 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 },
148 [VIRT_GPIO] = { 0x09030000, 0x00001000 },
149 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 },
150 [VIRT_SMMU] = { 0x09050000, 0x00020000 },
151 [VIRT_PCDIMM_ACPI] = { 0x09070000, MEMORY_HOTPLUG_IO_LEN },
152 [VIRT_ACPI_GED] = { 0x09080000, ACPI_GED_EVT_SEL_LEN },
153 [VIRT_MMIO] = { 0x0a000000, 0x00000200 },
154 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
155 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 },
156 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 },
157 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 },
158 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 },
159 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 },
160 /* Actual RAM size depends on initial RAM and device memory settings */
161 [VIRT_MEM] = { GiB, LEGACY_RAMLIMIT_BYTES },
162 };
163
164 /*
165 * Highmem IO Regions: This memory map is floating, located after the RAM.
166 * Each MemMapEntry base (GPA) will be dynamically computed, depending on the
167 * top of the RAM, so that its base get the same alignment as the size,
168 * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is
169 * less than 256GiB of RAM, the floating area starts at the 256GiB mark.
170 * Note the extended_memmap is sized so that it eventually also includes the
171 * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last
172 * index of base_memmap).
173 */
174 static MemMapEntry extended_memmap[] = {
175 /* Additional 64 MB redist region (can contain up to 512 redistributors) */
176 [VIRT_HIGH_GIC_REDIST2] = { 0x0, 64 * MiB },
177 [VIRT_HIGH_PCIE_ECAM] = { 0x0, 256 * MiB },
178 /* Second PCIe window */
179 [VIRT_HIGH_PCIE_MMIO] = { 0x0, 512 * GiB },
180 };
181
182 static const int a15irqmap[] = {
183 [VIRT_UART] = 1,
184 [VIRT_RTC] = 2,
185 [VIRT_PCIE] = 3, /* ... to 6 */
186 [VIRT_GPIO] = 7,
187 [VIRT_SECURE_UART] = 8,
188 [VIRT_ACPI_GED] = 9,
189 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
190 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
191 [VIRT_SMMU] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */
192 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
193 };
194
195 static const char *valid_cpus[] = {
196 ARM_CPU_TYPE_NAME("cortex-a7"),
197 ARM_CPU_TYPE_NAME("cortex-a15"),
198 ARM_CPU_TYPE_NAME("cortex-a53"),
199 ARM_CPU_TYPE_NAME("cortex-a57"),
200 ARM_CPU_TYPE_NAME("cortex-a72"),
201 ARM_CPU_TYPE_NAME("host"),
202 ARM_CPU_TYPE_NAME("max"),
203 };
204
205 static bool cpu_type_valid(const char *cpu)
206 {
207 int i;
208
209 for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
210 if (strcmp(cpu, valid_cpus[i]) == 0) {
211 return true;
212 }
213 }
214 return false;
215 }
216
217 static void create_kaslr_seed(VirtMachineState *vms, const char *node)
218 {
219 Error *err = NULL;
220 uint64_t seed;
221
222 if (qemu_guest_getrandom(&seed, sizeof(seed), &err)) {
223 error_free(err);
224 return;
225 }
226 qemu_fdt_setprop_u64(vms->fdt, node, "kaslr-seed", seed);
227 }
228
229 static void create_fdt(VirtMachineState *vms)
230 {
231 MachineState *ms = MACHINE(vms);
232 int nb_numa_nodes = ms->numa_state->num_nodes;
233 void *fdt = create_device_tree(&vms->fdt_size);
234
235 if (!fdt) {
236 error_report("create_device_tree() failed");
237 exit(1);
238 }
239
240 vms->fdt = fdt;
241
242 /* Header */
243 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
244 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
245 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
246
247 /* /chosen must exist for load_dtb to fill in necessary properties later */
248 qemu_fdt_add_subnode(fdt, "/chosen");
249 create_kaslr_seed(vms, "/chosen");
250
251 if (vms->secure) {
252 qemu_fdt_add_subnode(fdt, "/secure-chosen");
253 create_kaslr_seed(vms, "/secure-chosen");
254 }
255
256 /* Clock node, for the benefit of the UART. The kernel device tree
257 * binding documentation claims the PL011 node clock properties are
258 * optional but in practice if you omit them the kernel refuses to
259 * probe for the device.
260 */
261 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
262 qemu_fdt_add_subnode(fdt, "/apb-pclk");
263 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
264 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
265 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
266 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
267 "clk24mhz");
268 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
269
270 if (nb_numa_nodes > 0 && ms->numa_state->have_numa_distance) {
271 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
272 uint32_t *matrix = g_malloc0(size);
273 int idx, i, j;
274
275 for (i = 0; i < nb_numa_nodes; i++) {
276 for (j = 0; j < nb_numa_nodes; j++) {
277 idx = (i * nb_numa_nodes + j) * 3;
278 matrix[idx + 0] = cpu_to_be32(i);
279 matrix[idx + 1] = cpu_to_be32(j);
280 matrix[idx + 2] =
281 cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
282 }
283 }
284
285 qemu_fdt_add_subnode(fdt, "/distance-map");
286 qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
287 "numa-distance-map-v1");
288 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
289 matrix, size);
290 g_free(matrix);
291 }
292 }
293
294 static void fdt_add_timer_nodes(const VirtMachineState *vms)
295 {
296 /* On real hardware these interrupts are level-triggered.
297 * On KVM they were edge-triggered before host kernel version 4.4,
298 * and level-triggered afterwards.
299 * On emulated QEMU they are level-triggered.
300 *
301 * Getting the DTB info about them wrong is awkward for some
302 * guest kernels:
303 * pre-4.8 ignore the DT and leave the interrupt configured
304 * with whatever the GIC reset value (or the bootloader) left it at
305 * 4.8 before rc6 honour the incorrect data by programming it back
306 * into the GIC, causing problems
307 * 4.8rc6 and later ignore the DT and always write "level triggered"
308 * into the GIC
309 *
310 * For backwards-compatibility, virt-2.8 and earlier will continue
311 * to say these are edge-triggered, but later machines will report
312 * the correct information.
313 */
314 ARMCPU *armcpu;
315 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
316 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
317
318 if (vmc->claim_edge_triggered_timers) {
319 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
320 }
321
322 if (vms->gic_version == VIRT_GIC_VERSION_2) {
323 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
324 GIC_FDT_IRQ_PPI_CPU_WIDTH,
325 (1 << vms->smp_cpus) - 1);
326 }
327
328 qemu_fdt_add_subnode(vms->fdt, "/timer");
329
330 armcpu = ARM_CPU(qemu_get_cpu(0));
331 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
332 const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
333 qemu_fdt_setprop(vms->fdt, "/timer", "compatible",
334 compat, sizeof(compat));
335 } else {
336 qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible",
337 "arm,armv7-timer");
338 }
339 qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0);
340 qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts",
341 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
342 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
343 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
344 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
345 }
346
347 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
348 {
349 int cpu;
350 int addr_cells = 1;
351 const MachineState *ms = MACHINE(vms);
352
353 /*
354 * From Documentation/devicetree/bindings/arm/cpus.txt
355 * On ARM v8 64-bit systems value should be set to 2,
356 * that corresponds to the MPIDR_EL1 register size.
357 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
358 * in the system, #address-cells can be set to 1, since
359 * MPIDR_EL1[63:32] bits are not used for CPUs
360 * identification.
361 *
362 * Here we actually don't know whether our system is 32- or 64-bit one.
363 * The simplest way to go is to examine affinity IDs of all our CPUs. If
364 * at least one of them has Aff3 populated, we set #address-cells to 2.
365 */
366 for (cpu = 0; cpu < vms->smp_cpus; cpu++) {
367 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
368
369 if (armcpu->mp_affinity & ARM_AFF3_MASK) {
370 addr_cells = 2;
371 break;
372 }
373 }
374
375 qemu_fdt_add_subnode(vms->fdt, "/cpus");
376 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells);
377 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0);
378
379 for (cpu = vms->smp_cpus - 1; cpu >= 0; cpu--) {
380 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
381 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
382 CPUState *cs = CPU(armcpu);
383
384 qemu_fdt_add_subnode(vms->fdt, nodename);
385 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu");
386 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
387 armcpu->dtb_compatible);
388
389 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED
390 && vms->smp_cpus > 1) {
391 qemu_fdt_setprop_string(vms->fdt, nodename,
392 "enable-method", "psci");
393 }
394
395 if (addr_cells == 2) {
396 qemu_fdt_setprop_u64(vms->fdt, nodename, "reg",
397 armcpu->mp_affinity);
398 } else {
399 qemu_fdt_setprop_cell(vms->fdt, nodename, "reg",
400 armcpu->mp_affinity);
401 }
402
403 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
404 qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id",
405 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
406 }
407
408 g_free(nodename);
409 }
410 }
411
412 static void fdt_add_its_gic_node(VirtMachineState *vms)
413 {
414 char *nodename;
415
416 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
417 nodename = g_strdup_printf("/intc/its@%" PRIx64,
418 vms->memmap[VIRT_GIC_ITS].base);
419 qemu_fdt_add_subnode(vms->fdt, nodename);
420 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
421 "arm,gic-v3-its");
422 qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0);
423 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
424 2, vms->memmap[VIRT_GIC_ITS].base,
425 2, vms->memmap[VIRT_GIC_ITS].size);
426 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle);
427 g_free(nodename);
428 }
429
430 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
431 {
432 char *nodename;
433
434 nodename = g_strdup_printf("/intc/v2m@%" PRIx64,
435 vms->memmap[VIRT_GIC_V2M].base);
436 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
437 qemu_fdt_add_subnode(vms->fdt, nodename);
438 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
439 "arm,gic-v2m-frame");
440 qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0);
441 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
442 2, vms->memmap[VIRT_GIC_V2M].base,
443 2, vms->memmap[VIRT_GIC_V2M].size);
444 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle);
445 g_free(nodename);
446 }
447
448 static void fdt_add_gic_node(VirtMachineState *vms)
449 {
450 char *nodename;
451
452 vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt);
453 qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle);
454
455 nodename = g_strdup_printf("/intc@%" PRIx64,
456 vms->memmap[VIRT_GIC_DIST].base);
457 qemu_fdt_add_subnode(vms->fdt, nodename);
458 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 3);
459 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-controller", NULL, 0);
460 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 0x2);
461 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 0x2);
462 qemu_fdt_setprop(vms->fdt, nodename, "ranges", NULL, 0);
463 if (vms->gic_version == VIRT_GIC_VERSION_3) {
464 int nb_redist_regions = virt_gicv3_redist_region_count(vms);
465
466 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
467 "arm,gic-v3");
468
469 qemu_fdt_setprop_cell(vms->fdt, nodename,
470 "#redistributor-regions", nb_redist_regions);
471
472 if (nb_redist_regions == 1) {
473 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
474 2, vms->memmap[VIRT_GIC_DIST].base,
475 2, vms->memmap[VIRT_GIC_DIST].size,
476 2, vms->memmap[VIRT_GIC_REDIST].base,
477 2, vms->memmap[VIRT_GIC_REDIST].size);
478 } else {
479 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
480 2, vms->memmap[VIRT_GIC_DIST].base,
481 2, vms->memmap[VIRT_GIC_DIST].size,
482 2, vms->memmap[VIRT_GIC_REDIST].base,
483 2, vms->memmap[VIRT_GIC_REDIST].size,
484 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base,
485 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size);
486 }
487
488 if (vms->virt) {
489 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
490 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
491 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
492 }
493 } else {
494 /* 'cortex-a15-gic' means 'GIC v2' */
495 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
496 "arm,cortex-a15-gic");
497 if (!vms->virt) {
498 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
499 2, vms->memmap[VIRT_GIC_DIST].base,
500 2, vms->memmap[VIRT_GIC_DIST].size,
501 2, vms->memmap[VIRT_GIC_CPU].base,
502 2, vms->memmap[VIRT_GIC_CPU].size);
503 } else {
504 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
505 2, vms->memmap[VIRT_GIC_DIST].base,
506 2, vms->memmap[VIRT_GIC_DIST].size,
507 2, vms->memmap[VIRT_GIC_CPU].base,
508 2, vms->memmap[VIRT_GIC_CPU].size,
509 2, vms->memmap[VIRT_GIC_HYP].base,
510 2, vms->memmap[VIRT_GIC_HYP].size,
511 2, vms->memmap[VIRT_GIC_VCPU].base,
512 2, vms->memmap[VIRT_GIC_VCPU].size);
513 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
514 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
515 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
516 }
517 }
518
519 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->gic_phandle);
520 g_free(nodename);
521 }
522
523 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
524 {
525 CPUState *cpu;
526 ARMCPU *armcpu;
527 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
528
529 CPU_FOREACH(cpu) {
530 armcpu = ARM_CPU(cpu);
531 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
532 return;
533 }
534 if (kvm_enabled()) {
535 if (kvm_irqchip_in_kernel()) {
536 kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ));
537 }
538 kvm_arm_pmu_init(cpu);
539 }
540 }
541
542 if (vms->gic_version == VIRT_GIC_VERSION_2) {
543 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
544 GIC_FDT_IRQ_PPI_CPU_WIDTH,
545 (1 << vms->smp_cpus) - 1);
546 }
547
548 armcpu = ARM_CPU(qemu_get_cpu(0));
549 qemu_fdt_add_subnode(vms->fdt, "/pmu");
550 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
551 const char compat[] = "arm,armv8-pmuv3";
552 qemu_fdt_setprop(vms->fdt, "/pmu", "compatible",
553 compat, sizeof(compat));
554 qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts",
555 GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
556 }
557 }
558
559 static inline DeviceState *create_acpi_ged(VirtMachineState *vms)
560 {
561 DeviceState *dev;
562 MachineState *ms = MACHINE(vms);
563 int irq = vms->irqmap[VIRT_ACPI_GED];
564 uint32_t event = ACPI_GED_PWR_DOWN_EVT;
565
566 if (ms->ram_slots) {
567 event |= ACPI_GED_MEM_HOTPLUG_EVT;
568 }
569
570 dev = qdev_create(NULL, TYPE_ACPI_GED);
571 qdev_prop_set_uint32(dev, "ged-event", event);
572
573 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_ACPI_GED].base);
574 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, vms->memmap[VIRT_PCDIMM_ACPI].base);
575 sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(vms->gic, irq));
576
577 qdev_init_nofail(dev);
578
579 return dev;
580 }
581
582 static void create_its(VirtMachineState *vms)
583 {
584 const char *itsclass = its_class_name();
585 DeviceState *dev;
586
587 if (!itsclass) {
588 /* Do nothing if not supported */
589 return;
590 }
591
592 dev = qdev_create(NULL, itsclass);
593
594 object_property_set_link(OBJECT(dev), OBJECT(vms->gic), "parent-gicv3",
595 &error_abort);
596 qdev_init_nofail(dev);
597 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
598
599 fdt_add_its_gic_node(vms);
600 }
601
602 static void create_v2m(VirtMachineState *vms)
603 {
604 int i;
605 int irq = vms->irqmap[VIRT_GIC_V2M];
606 DeviceState *dev;
607
608 dev = qdev_create(NULL, "arm-gicv2m");
609 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
610 qdev_prop_set_uint32(dev, "base-spi", irq);
611 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
612 qdev_init_nofail(dev);
613
614 for (i = 0; i < NUM_GICV2M_SPIS; i++) {
615 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
616 qdev_get_gpio_in(vms->gic, irq + i));
617 }
618
619 fdt_add_v2m_gic_node(vms);
620 }
621
622 static void create_gic(VirtMachineState *vms)
623 {
624 MachineState *ms = MACHINE(vms);
625 /* We create a standalone GIC */
626 SysBusDevice *gicbusdev;
627 const char *gictype;
628 int type = vms->gic_version, i;
629 unsigned int smp_cpus = ms->smp.cpus;
630 uint32_t nb_redist_regions = 0;
631
632 gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
633
634 vms->gic = qdev_create(NULL, gictype);
635 qdev_prop_set_uint32(vms->gic, "revision", type);
636 qdev_prop_set_uint32(vms->gic, "num-cpu", smp_cpus);
637 /* Note that the num-irq property counts both internal and external
638 * interrupts; there are always 32 of the former (mandated by GIC spec).
639 */
640 qdev_prop_set_uint32(vms->gic, "num-irq", NUM_IRQS + 32);
641 if (!kvm_irqchip_in_kernel()) {
642 qdev_prop_set_bit(vms->gic, "has-security-extensions", vms->secure);
643 }
644
645 if (type == 3) {
646 uint32_t redist0_capacity =
647 vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
648 uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
649
650 nb_redist_regions = virt_gicv3_redist_region_count(vms);
651
652 qdev_prop_set_uint32(vms->gic, "len-redist-region-count",
653 nb_redist_regions);
654 qdev_prop_set_uint32(vms->gic, "redist-region-count[0]", redist0_count);
655
656 if (nb_redist_regions == 2) {
657 uint32_t redist1_capacity =
658 vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE;
659
660 qdev_prop_set_uint32(vms->gic, "redist-region-count[1]",
661 MIN(smp_cpus - redist0_count, redist1_capacity));
662 }
663 } else {
664 if (!kvm_irqchip_in_kernel()) {
665 qdev_prop_set_bit(vms->gic, "has-virtualization-extensions",
666 vms->virt);
667 }
668 }
669 qdev_init_nofail(vms->gic);
670 gicbusdev = SYS_BUS_DEVICE(vms->gic);
671 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
672 if (type == 3) {
673 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
674 if (nb_redist_regions == 2) {
675 sysbus_mmio_map(gicbusdev, 2,
676 vms->memmap[VIRT_HIGH_GIC_REDIST2].base);
677 }
678 } else {
679 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
680 if (vms->virt) {
681 sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base);
682 sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base);
683 }
684 }
685
686 /* Wire the outputs from each CPU's generic timer and the GICv3
687 * maintenance interrupt signal to the appropriate GIC PPI inputs,
688 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
689 */
690 for (i = 0; i < smp_cpus; i++) {
691 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
692 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
693 int irq;
694 /* Mapping from the output timer irq lines from the CPU to the
695 * GIC PPI inputs we use for the virt board.
696 */
697 const int timer_irq[] = {
698 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
699 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
700 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
701 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
702 };
703
704 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
705 qdev_connect_gpio_out(cpudev, irq,
706 qdev_get_gpio_in(vms->gic,
707 ppibase + timer_irq[irq]));
708 }
709
710 if (type == 3) {
711 qemu_irq irq = qdev_get_gpio_in(vms->gic,
712 ppibase + ARCH_GIC_MAINT_IRQ);
713 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt",
714 0, irq);
715 } else if (vms->virt) {
716 qemu_irq irq = qdev_get_gpio_in(vms->gic,
717 ppibase + ARCH_GIC_MAINT_IRQ);
718 sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq);
719 }
720
721 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
722 qdev_get_gpio_in(vms->gic, ppibase
723 + VIRTUAL_PMU_IRQ));
724
725 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
726 sysbus_connect_irq(gicbusdev, i + smp_cpus,
727 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
728 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
729 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
730 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
731 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
732 }
733
734 fdt_add_gic_node(vms);
735
736 if (type == 3 && vms->its) {
737 create_its(vms);
738 } else if (type == 2) {
739 create_v2m(vms);
740 }
741 }
742
743 static void create_uart(const VirtMachineState *vms, int uart,
744 MemoryRegion *mem, Chardev *chr)
745 {
746 char *nodename;
747 hwaddr base = vms->memmap[uart].base;
748 hwaddr size = vms->memmap[uart].size;
749 int irq = vms->irqmap[uart];
750 const char compat[] = "arm,pl011\0arm,primecell";
751 const char clocknames[] = "uartclk\0apb_pclk";
752 DeviceState *dev = qdev_create(NULL, TYPE_PL011);
753 SysBusDevice *s = SYS_BUS_DEVICE(dev);
754
755 qdev_prop_set_chr(dev, "chardev", chr);
756 qdev_init_nofail(dev);
757 memory_region_add_subregion(mem, base,
758 sysbus_mmio_get_region(s, 0));
759 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
760
761 nodename = g_strdup_printf("/pl011@%" PRIx64, base);
762 qemu_fdt_add_subnode(vms->fdt, nodename);
763 /* Note that we can't use setprop_string because of the embedded NUL */
764 qemu_fdt_setprop(vms->fdt, nodename, "compatible",
765 compat, sizeof(compat));
766 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
767 2, base, 2, size);
768 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
769 GIC_FDT_IRQ_TYPE_SPI, irq,
770 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
771 qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks",
772 vms->clock_phandle, vms->clock_phandle);
773 qemu_fdt_setprop(vms->fdt, nodename, "clock-names",
774 clocknames, sizeof(clocknames));
775
776 if (uart == VIRT_UART) {
777 qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename);
778 } else {
779 /* Mark as not usable by the normal world */
780 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
781 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
782
783 qemu_fdt_setprop_string(vms->fdt, "/secure-chosen", "stdout-path",
784 nodename);
785 }
786
787 g_free(nodename);
788 }
789
790 static void create_rtc(const VirtMachineState *vms)
791 {
792 char *nodename;
793 hwaddr base = vms->memmap[VIRT_RTC].base;
794 hwaddr size = vms->memmap[VIRT_RTC].size;
795 int irq = vms->irqmap[VIRT_RTC];
796 const char compat[] = "arm,pl031\0arm,primecell";
797
798 sysbus_create_simple("pl031", base, qdev_get_gpio_in(vms->gic, irq));
799
800 nodename = g_strdup_printf("/pl031@%" PRIx64, base);
801 qemu_fdt_add_subnode(vms->fdt, nodename);
802 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
803 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
804 2, base, 2, size);
805 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
806 GIC_FDT_IRQ_TYPE_SPI, irq,
807 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
808 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
809 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
810 g_free(nodename);
811 }
812
813 static DeviceState *gpio_key_dev;
814 static void virt_powerdown_req(Notifier *n, void *opaque)
815 {
816 VirtMachineState *s = container_of(n, VirtMachineState, powerdown_notifier);
817
818 if (s->acpi_dev) {
819 acpi_send_event(s->acpi_dev, ACPI_POWER_DOWN_STATUS);
820 } else {
821 /* use gpio Pin 3 for power button event */
822 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
823 }
824 }
825
826 static void create_gpio(const VirtMachineState *vms)
827 {
828 char *nodename;
829 DeviceState *pl061_dev;
830 hwaddr base = vms->memmap[VIRT_GPIO].base;
831 hwaddr size = vms->memmap[VIRT_GPIO].size;
832 int irq = vms->irqmap[VIRT_GPIO];
833 const char compat[] = "arm,pl061\0arm,primecell";
834
835 pl061_dev = sysbus_create_simple("pl061", base,
836 qdev_get_gpio_in(vms->gic, irq));
837
838 uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt);
839 nodename = g_strdup_printf("/pl061@%" PRIx64, base);
840 qemu_fdt_add_subnode(vms->fdt, nodename);
841 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
842 2, base, 2, size);
843 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
844 qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2);
845 qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0);
846 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
847 GIC_FDT_IRQ_TYPE_SPI, irq,
848 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
849 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
850 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
851 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle);
852
853 gpio_key_dev = sysbus_create_simple("gpio-key", -1,
854 qdev_get_gpio_in(pl061_dev, 3));
855 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys");
856 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys");
857 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0);
858 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1);
859
860 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff");
861 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff",
862 "label", "GPIO Key Poweroff");
863 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code",
864 KEY_POWER);
865 qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff",
866 "gpios", phandle, 3, 0);
867 g_free(nodename);
868 }
869
870 static void create_virtio_devices(const VirtMachineState *vms)
871 {
872 int i;
873 hwaddr size = vms->memmap[VIRT_MMIO].size;
874
875 /* We create the transports in forwards order. Since qbus_realize()
876 * prepends (not appends) new child buses, the incrementing loop below will
877 * create a list of virtio-mmio buses with decreasing base addresses.
878 *
879 * When a -device option is processed from the command line,
880 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
881 * order. The upshot is that -device options in increasing command line
882 * order are mapped to virtio-mmio buses with decreasing base addresses.
883 *
884 * When this code was originally written, that arrangement ensured that the
885 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
886 * the first -device on the command line. (The end-to-end order is a
887 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
888 * guest kernel's name-to-address assignment strategy.)
889 *
890 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
891 * the message, if not necessarily the code, of commit 70161ff336.
892 * Therefore the loop now establishes the inverse of the original intent.
893 *
894 * Unfortunately, we can't counteract the kernel change by reversing the
895 * loop; it would break existing command lines.
896 *
897 * In any case, the kernel makes no guarantee about the stability of
898 * enumeration order of virtio devices (as demonstrated by it changing
899 * between kernel versions). For reliable and stable identification
900 * of disks users must use UUIDs or similar mechanisms.
901 */
902 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
903 int irq = vms->irqmap[VIRT_MMIO] + i;
904 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
905
906 sysbus_create_simple("virtio-mmio", base,
907 qdev_get_gpio_in(vms->gic, irq));
908 }
909
910 /* We add dtb nodes in reverse order so that they appear in the finished
911 * device tree lowest address first.
912 *
913 * Note that this mapping is independent of the loop above. The previous
914 * loop influences virtio device to virtio transport assignment, whereas
915 * this loop controls how virtio transports are laid out in the dtb.
916 */
917 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
918 char *nodename;
919 int irq = vms->irqmap[VIRT_MMIO] + i;
920 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
921
922 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
923 qemu_fdt_add_subnode(vms->fdt, nodename);
924 qemu_fdt_setprop_string(vms->fdt, nodename,
925 "compatible", "virtio,mmio");
926 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
927 2, base, 2, size);
928 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
929 GIC_FDT_IRQ_TYPE_SPI, irq,
930 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
931 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
932 g_free(nodename);
933 }
934 }
935
936 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
937
938 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms,
939 const char *name,
940 const char *alias_prop_name)
941 {
942 /*
943 * Create a single flash device. We use the same parameters as
944 * the flash devices on the Versatile Express board.
945 */
946 DeviceState *dev = qdev_create(NULL, TYPE_PFLASH_CFI01);
947
948 qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
949 qdev_prop_set_uint8(dev, "width", 4);
950 qdev_prop_set_uint8(dev, "device-width", 2);
951 qdev_prop_set_bit(dev, "big-endian", false);
952 qdev_prop_set_uint16(dev, "id0", 0x89);
953 qdev_prop_set_uint16(dev, "id1", 0x18);
954 qdev_prop_set_uint16(dev, "id2", 0x00);
955 qdev_prop_set_uint16(dev, "id3", 0x00);
956 qdev_prop_set_string(dev, "name", name);
957 object_property_add_child(OBJECT(vms), name, OBJECT(dev),
958 &error_abort);
959 object_property_add_alias(OBJECT(vms), alias_prop_name,
960 OBJECT(dev), "drive", &error_abort);
961 return PFLASH_CFI01(dev);
962 }
963
964 static void virt_flash_create(VirtMachineState *vms)
965 {
966 vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0");
967 vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1");
968 }
969
970 static void virt_flash_map1(PFlashCFI01 *flash,
971 hwaddr base, hwaddr size,
972 MemoryRegion *sysmem)
973 {
974 DeviceState *dev = DEVICE(flash);
975
976 assert(size % VIRT_FLASH_SECTOR_SIZE == 0);
977 assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
978 qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
979 qdev_init_nofail(dev);
980
981 memory_region_add_subregion(sysmem, base,
982 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
983 0));
984 }
985
986 static void virt_flash_map(VirtMachineState *vms,
987 MemoryRegion *sysmem,
988 MemoryRegion *secure_sysmem)
989 {
990 /*
991 * Map two flash devices to fill the VIRT_FLASH space in the memmap.
992 * sysmem is the system memory space. secure_sysmem is the secure view
993 * of the system, and the first flash device should be made visible only
994 * there. The second flash device is visible to both secure and nonsecure.
995 * If sysmem == secure_sysmem this means there is no separate Secure
996 * address space and both flash devices are generally visible.
997 */
998 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
999 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1000
1001 virt_flash_map1(vms->flash[0], flashbase, flashsize,
1002 secure_sysmem);
1003 virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize,
1004 sysmem);
1005 }
1006
1007 static void virt_flash_fdt(VirtMachineState *vms,
1008 MemoryRegion *sysmem,
1009 MemoryRegion *secure_sysmem)
1010 {
1011 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1012 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1013 char *nodename;
1014
1015 if (sysmem == secure_sysmem) {
1016 /* Report both flash devices as a single node in the DT */
1017 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
1018 qemu_fdt_add_subnode(vms->fdt, nodename);
1019 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
1020 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1021 2, flashbase, 2, flashsize,
1022 2, flashbase + flashsize, 2, flashsize);
1023 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
1024 g_free(nodename);
1025 } else {
1026 /*
1027 * Report the devices as separate nodes so we can mark one as
1028 * only visible to the secure world.
1029 */
1030 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
1031 qemu_fdt_add_subnode(vms->fdt, nodename);
1032 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
1033 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1034 2, flashbase, 2, flashsize);
1035 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
1036 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
1037 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
1038 g_free(nodename);
1039
1040 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
1041 qemu_fdt_add_subnode(vms->fdt, nodename);
1042 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
1043 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1044 2, flashbase + flashsize, 2, flashsize);
1045 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
1046 g_free(nodename);
1047 }
1048 }
1049
1050 static bool virt_firmware_init(VirtMachineState *vms,
1051 MemoryRegion *sysmem,
1052 MemoryRegion *secure_sysmem)
1053 {
1054 int i;
1055 BlockBackend *pflash_blk0;
1056
1057 /* Map legacy -drive if=pflash to machine properties */
1058 for (i = 0; i < ARRAY_SIZE(vms->flash); i++) {
1059 pflash_cfi01_legacy_drive(vms->flash[i],
1060 drive_get(IF_PFLASH, 0, i));
1061 }
1062
1063 virt_flash_map(vms, sysmem, secure_sysmem);
1064
1065 pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]);
1066
1067 if (bios_name) {
1068 char *fname;
1069 MemoryRegion *mr;
1070 int image_size;
1071
1072 if (pflash_blk0) {
1073 error_report("The contents of the first flash device may be "
1074 "specified with -bios or with -drive if=pflash... "
1075 "but you cannot use both options at once");
1076 exit(1);
1077 }
1078
1079 /* Fall back to -bios */
1080
1081 fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1082 if (!fname) {
1083 error_report("Could not find ROM image '%s'", bios_name);
1084 exit(1);
1085 }
1086 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0);
1087 image_size = load_image_mr(fname, mr);
1088 g_free(fname);
1089 if (image_size < 0) {
1090 error_report("Could not load ROM image '%s'", bios_name);
1091 exit(1);
1092 }
1093 }
1094
1095 return pflash_blk0 || bios_name;
1096 }
1097
1098 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
1099 {
1100 MachineState *ms = MACHINE(vms);
1101 hwaddr base = vms->memmap[VIRT_FW_CFG].base;
1102 hwaddr size = vms->memmap[VIRT_FW_CFG].size;
1103 FWCfgState *fw_cfg;
1104 char *nodename;
1105
1106 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
1107 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus);
1108
1109 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
1110 qemu_fdt_add_subnode(vms->fdt, nodename);
1111 qemu_fdt_setprop_string(vms->fdt, nodename,
1112 "compatible", "qemu,fw-cfg-mmio");
1113 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1114 2, base, 2, size);
1115 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1116 g_free(nodename);
1117 return fw_cfg;
1118 }
1119
1120 static void create_pcie_irq_map(const VirtMachineState *vms,
1121 uint32_t gic_phandle,
1122 int first_irq, const char *nodename)
1123 {
1124 int devfn, pin;
1125 uint32_t full_irq_map[4 * 4 * 10] = { 0 };
1126 uint32_t *irq_map = full_irq_map;
1127
1128 for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
1129 for (pin = 0; pin < 4; pin++) {
1130 int irq_type = GIC_FDT_IRQ_TYPE_SPI;
1131 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
1132 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
1133 int i;
1134
1135 uint32_t map[] = {
1136 devfn << 8, 0, 0, /* devfn */
1137 pin + 1, /* PCI pin */
1138 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
1139
1140 /* Convert map to big endian */
1141 for (i = 0; i < 10; i++) {
1142 irq_map[i] = cpu_to_be32(map[i]);
1143 }
1144 irq_map += 10;
1145 }
1146 }
1147
1148 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map",
1149 full_irq_map, sizeof(full_irq_map));
1150
1151 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask",
1152 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
1153 0x7 /* PCI irq */);
1154 }
1155
1156 static void create_smmu(const VirtMachineState *vms,
1157 PCIBus *bus)
1158 {
1159 char *node;
1160 const char compat[] = "arm,smmu-v3";
1161 int irq = vms->irqmap[VIRT_SMMU];
1162 int i;
1163 hwaddr base = vms->memmap[VIRT_SMMU].base;
1164 hwaddr size = vms->memmap[VIRT_SMMU].size;
1165 const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
1166 DeviceState *dev;
1167
1168 if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
1169 return;
1170 }
1171
1172 dev = qdev_create(NULL, "arm-smmuv3");
1173
1174 object_property_set_link(OBJECT(dev), OBJECT(bus), "primary-bus",
1175 &error_abort);
1176 qdev_init_nofail(dev);
1177 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
1178 for (i = 0; i < NUM_SMMU_IRQS; i++) {
1179 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1180 qdev_get_gpio_in(vms->gic, irq + i));
1181 }
1182
1183 node = g_strdup_printf("/smmuv3@%" PRIx64, base);
1184 qemu_fdt_add_subnode(vms->fdt, node);
1185 qemu_fdt_setprop(vms->fdt, node, "compatible", compat, sizeof(compat));
1186 qemu_fdt_setprop_sized_cells(vms->fdt, node, "reg", 2, base, 2, size);
1187
1188 qemu_fdt_setprop_cells(vms->fdt, node, "interrupts",
1189 GIC_FDT_IRQ_TYPE_SPI, irq , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1190 GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1191 GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1192 GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1193
1194 qemu_fdt_setprop(vms->fdt, node, "interrupt-names", irq_names,
1195 sizeof(irq_names));
1196
1197 qemu_fdt_setprop_cell(vms->fdt, node, "clocks", vms->clock_phandle);
1198 qemu_fdt_setprop_string(vms->fdt, node, "clock-names", "apb_pclk");
1199 qemu_fdt_setprop(vms->fdt, node, "dma-coherent", NULL, 0);
1200
1201 qemu_fdt_setprop_cell(vms->fdt, node, "#iommu-cells", 1);
1202
1203 qemu_fdt_setprop_cell(vms->fdt, node, "phandle", vms->iommu_phandle);
1204 g_free(node);
1205 }
1206
1207 static void create_virtio_iommu_dt_bindings(VirtMachineState *vms)
1208 {
1209 const char compat[] = "virtio,pci-iommu";
1210 uint16_t bdf = vms->virtio_iommu_bdf;
1211 char *node;
1212
1213 vms->iommu_phandle = qemu_fdt_alloc_phandle(vms->fdt);
1214
1215 node = g_strdup_printf("%s/virtio_iommu@%d", vms->pciehb_nodename, bdf);
1216 qemu_fdt_add_subnode(vms->fdt, node);
1217 qemu_fdt_setprop(vms->fdt, node, "compatible", compat, sizeof(compat));
1218 qemu_fdt_setprop_sized_cells(vms->fdt, node, "reg",
1219 1, bdf << 8, 1, 0, 1, 0,
1220 1, 0, 1, 0);
1221
1222 qemu_fdt_setprop_cell(vms->fdt, node, "#iommu-cells", 1);
1223 qemu_fdt_setprop_cell(vms->fdt, node, "phandle", vms->iommu_phandle);
1224 g_free(node);
1225
1226 qemu_fdt_setprop_cells(vms->fdt, vms->pciehb_nodename, "iommu-map",
1227 0x0, vms->iommu_phandle, 0x0, bdf,
1228 bdf + 1, vms->iommu_phandle, bdf + 1, 0xffff - bdf);
1229 }
1230
1231 static void create_pcie(VirtMachineState *vms)
1232 {
1233 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1234 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
1235 hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base;
1236 hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size;
1237 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1238 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
1239 hwaddr base_ecam, size_ecam;
1240 hwaddr base = base_mmio;
1241 int nr_pcie_buses;
1242 int irq = vms->irqmap[VIRT_PCIE];
1243 MemoryRegion *mmio_alias;
1244 MemoryRegion *mmio_reg;
1245 MemoryRegion *ecam_alias;
1246 MemoryRegion *ecam_reg;
1247 DeviceState *dev;
1248 char *nodename;
1249 int i, ecam_id;
1250 PCIHostState *pci;
1251
1252 dev = qdev_create(NULL, TYPE_GPEX_HOST);
1253 qdev_init_nofail(dev);
1254
1255 ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
1256 base_ecam = vms->memmap[ecam_id].base;
1257 size_ecam = vms->memmap[ecam_id].size;
1258 nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
1259 /* Map only the first size_ecam bytes of ECAM space */
1260 ecam_alias = g_new0(MemoryRegion, 1);
1261 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1262 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1263 ecam_reg, 0, size_ecam);
1264 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1265
1266 /* Map the MMIO window into system address space so as to expose
1267 * the section of PCI MMIO space which starts at the same base address
1268 * (ie 1:1 mapping for that part of PCI MMIO space visible through
1269 * the window).
1270 */
1271 mmio_alias = g_new0(MemoryRegion, 1);
1272 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1273 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1274 mmio_reg, base_mmio, size_mmio);
1275 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1276
1277 if (vms->highmem) {
1278 /* Map high MMIO space */
1279 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1280
1281 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1282 mmio_reg, base_mmio_high, size_mmio_high);
1283 memory_region_add_subregion(get_system_memory(), base_mmio_high,
1284 high_mmio_alias);
1285 }
1286
1287 /* Map IO port space */
1288 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1289
1290 for (i = 0; i < GPEX_NUM_IRQS; i++) {
1291 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1292 qdev_get_gpio_in(vms->gic, irq + i));
1293 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
1294 }
1295
1296 pci = PCI_HOST_BRIDGE(dev);
1297 if (pci->bus) {
1298 for (i = 0; i < nb_nics; i++) {
1299 NICInfo *nd = &nd_table[i];
1300
1301 if (!nd->model) {
1302 nd->model = g_strdup("virtio");
1303 }
1304
1305 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1306 }
1307 }
1308
1309 nodename = vms->pciehb_nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1310 qemu_fdt_add_subnode(vms->fdt, nodename);
1311 qemu_fdt_setprop_string(vms->fdt, nodename,
1312 "compatible", "pci-host-ecam-generic");
1313 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci");
1314 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3);
1315 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2);
1316 qemu_fdt_setprop_cell(vms->fdt, nodename, "linux,pci-domain", 0);
1317 qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0,
1318 nr_pcie_buses - 1);
1319 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1320
1321 if (vms->msi_phandle) {
1322 qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent",
1323 vms->msi_phandle);
1324 }
1325
1326 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1327 2, base_ecam, 2, size_ecam);
1328
1329 if (vms->highmem) {
1330 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1331 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1332 2, base_pio, 2, size_pio,
1333 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1334 2, base_mmio, 2, size_mmio,
1335 1, FDT_PCI_RANGE_MMIO_64BIT,
1336 2, base_mmio_high,
1337 2, base_mmio_high, 2, size_mmio_high);
1338 } else {
1339 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1340 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1341 2, base_pio, 2, size_pio,
1342 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1343 2, base_mmio, 2, size_mmio);
1344 }
1345
1346 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1);
1347 create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename);
1348
1349 if (vms->iommu) {
1350 vms->iommu_phandle = qemu_fdt_alloc_phandle(vms->fdt);
1351
1352 switch (vms->iommu) {
1353 case VIRT_IOMMU_SMMUV3:
1354 create_smmu(vms, pci->bus);
1355 qemu_fdt_setprop_cells(vms->fdt, nodename, "iommu-map",
1356 0x0, vms->iommu_phandle, 0x0, 0x10000);
1357 break;
1358 default:
1359 g_assert_not_reached();
1360 }
1361 }
1362 }
1363
1364 static void create_platform_bus(VirtMachineState *vms)
1365 {
1366 DeviceState *dev;
1367 SysBusDevice *s;
1368 int i;
1369 MemoryRegion *sysmem = get_system_memory();
1370
1371 dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
1372 dev->id = TYPE_PLATFORM_BUS_DEVICE;
1373 qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
1374 qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
1375 qdev_init_nofail(dev);
1376 vms->platform_bus_dev = dev;
1377
1378 s = SYS_BUS_DEVICE(dev);
1379 for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
1380 int irq = vms->irqmap[VIRT_PLATFORM_BUS] + i;
1381 sysbus_connect_irq(s, i, qdev_get_gpio_in(vms->gic, irq));
1382 }
1383
1384 memory_region_add_subregion(sysmem,
1385 vms->memmap[VIRT_PLATFORM_BUS].base,
1386 sysbus_mmio_get_region(s, 0));
1387 }
1388
1389 static void create_secure_ram(VirtMachineState *vms,
1390 MemoryRegion *secure_sysmem)
1391 {
1392 MemoryRegion *secram = g_new(MemoryRegion, 1);
1393 char *nodename;
1394 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1395 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1396
1397 memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1398 &error_fatal);
1399 memory_region_add_subregion(secure_sysmem, base, secram);
1400
1401 nodename = g_strdup_printf("/secram@%" PRIx64, base);
1402 qemu_fdt_add_subnode(vms->fdt, nodename);
1403 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory");
1404 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size);
1405 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
1406 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
1407
1408 g_free(nodename);
1409 }
1410
1411 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1412 {
1413 const VirtMachineState *board = container_of(binfo, VirtMachineState,
1414 bootinfo);
1415
1416 *fdt_size = board->fdt_size;
1417 return board->fdt;
1418 }
1419
1420 static void virt_build_smbios(VirtMachineState *vms)
1421 {
1422 MachineClass *mc = MACHINE_GET_CLASS(vms);
1423 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1424 uint8_t *smbios_tables, *smbios_anchor;
1425 size_t smbios_tables_len, smbios_anchor_len;
1426 const char *product = "QEMU Virtual Machine";
1427
1428 if (kvm_enabled()) {
1429 product = "KVM Virtual Machine";
1430 }
1431
1432 smbios_set_defaults("QEMU", product,
1433 vmc->smbios_old_sys_ver ? "1.0" : mc->name, false,
1434 true, SMBIOS_ENTRY_POINT_30);
1435
1436 smbios_get_tables(MACHINE(vms), NULL, 0, &smbios_tables, &smbios_tables_len,
1437 &smbios_anchor, &smbios_anchor_len);
1438
1439 if (smbios_anchor) {
1440 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1441 smbios_tables, smbios_tables_len);
1442 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1443 smbios_anchor, smbios_anchor_len);
1444 }
1445 }
1446
1447 static
1448 void virt_machine_done(Notifier *notifier, void *data)
1449 {
1450 VirtMachineState *vms = container_of(notifier, VirtMachineState,
1451 machine_done);
1452 MachineState *ms = MACHINE(vms);
1453 ARMCPU *cpu = ARM_CPU(first_cpu);
1454 struct arm_boot_info *info = &vms->bootinfo;
1455 AddressSpace *as = arm_boot_address_space(cpu, info);
1456
1457 /*
1458 * If the user provided a dtb, we assume the dynamic sysbus nodes
1459 * already are integrated there. This corresponds to a use case where
1460 * the dynamic sysbus nodes are complex and their generation is not yet
1461 * supported. In that case the user can take charge of the guest dt
1462 * while qemu takes charge of the qom stuff.
1463 */
1464 if (info->dtb_filename == NULL) {
1465 platform_bus_add_all_fdt_nodes(vms->fdt, "/intc",
1466 vms->memmap[VIRT_PLATFORM_BUS].base,
1467 vms->memmap[VIRT_PLATFORM_BUS].size,
1468 vms->irqmap[VIRT_PLATFORM_BUS]);
1469 }
1470 if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) {
1471 exit(1);
1472 }
1473
1474 virt_acpi_setup(vms);
1475 virt_build_smbios(vms);
1476 }
1477
1478 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1479 {
1480 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1481 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1482
1483 if (!vmc->disallow_affinity_adjustment) {
1484 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1485 * GIC's target-list limitations. 32-bit KVM hosts currently
1486 * always create clusters of 4 CPUs, but that is expected to
1487 * change when they gain support for gicv3. When KVM is enabled
1488 * it will override the changes we make here, therefore our
1489 * purposes are to make TCG consistent (with 64-bit KVM hosts)
1490 * and to improve SGI efficiency.
1491 */
1492 if (vms->gic_version == VIRT_GIC_VERSION_3) {
1493 clustersz = GICV3_TARGETLIST_BITS;
1494 } else {
1495 clustersz = GIC_TARGETLIST_BITS;
1496 }
1497 }
1498 return arm_cpu_mp_affinity(idx, clustersz);
1499 }
1500
1501 static void virt_set_memmap(VirtMachineState *vms)
1502 {
1503 MachineState *ms = MACHINE(vms);
1504 hwaddr base, device_memory_base, device_memory_size;
1505 int i;
1506
1507 vms->memmap = extended_memmap;
1508
1509 for (i = 0; i < ARRAY_SIZE(base_memmap); i++) {
1510 vms->memmap[i] = base_memmap[i];
1511 }
1512
1513 if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) {
1514 error_report("unsupported number of memory slots: %"PRIu64,
1515 ms->ram_slots);
1516 exit(EXIT_FAILURE);
1517 }
1518
1519 /*
1520 * We compute the base of the high IO region depending on the
1521 * amount of initial and device memory. The device memory start/size
1522 * is aligned on 1GiB. We never put the high IO region below 256GiB
1523 * so that if maxram_size is < 255GiB we keep the legacy memory map.
1524 * The device region size assumes 1GiB page max alignment per slot.
1525 */
1526 device_memory_base =
1527 ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB);
1528 device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB;
1529
1530 /* Base address of the high IO region */
1531 base = device_memory_base + ROUND_UP(device_memory_size, GiB);
1532 if (base < device_memory_base) {
1533 error_report("maxmem/slots too huge");
1534 exit(EXIT_FAILURE);
1535 }
1536 if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) {
1537 base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES;
1538 }
1539
1540 for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) {
1541 hwaddr size = extended_memmap[i].size;
1542
1543 base = ROUND_UP(base, size);
1544 vms->memmap[i].base = base;
1545 vms->memmap[i].size = size;
1546 base += size;
1547 }
1548 vms->highest_gpa = base - 1;
1549 if (device_memory_size > 0) {
1550 ms->device_memory = g_malloc0(sizeof(*ms->device_memory));
1551 ms->device_memory->base = device_memory_base;
1552 memory_region_init(&ms->device_memory->mr, OBJECT(vms),
1553 "device-memory", device_memory_size);
1554 }
1555 }
1556
1557 /*
1558 * finalize_gic_version - Determines the final gic_version
1559 * according to the gic-version property
1560 *
1561 * Default GIC type is v2
1562 */
1563 static void finalize_gic_version(VirtMachineState *vms)
1564 {
1565 unsigned int max_cpus = MACHINE(vms)->smp.max_cpus;
1566
1567 if (kvm_enabled()) {
1568 int probe_bitmap;
1569
1570 if (!kvm_irqchip_in_kernel()) {
1571 switch (vms->gic_version) {
1572 case VIRT_GIC_VERSION_HOST:
1573 warn_report(
1574 "gic-version=host not relevant with kernel-irqchip=off "
1575 "as only userspace GICv2 is supported. Using v2 ...");
1576 return;
1577 case VIRT_GIC_VERSION_MAX:
1578 case VIRT_GIC_VERSION_NOSEL:
1579 vms->gic_version = VIRT_GIC_VERSION_2;
1580 return;
1581 case VIRT_GIC_VERSION_2:
1582 return;
1583 case VIRT_GIC_VERSION_3:
1584 error_report(
1585 "gic-version=3 is not supported with kernel-irqchip=off");
1586 exit(1);
1587 }
1588 }
1589
1590 probe_bitmap = kvm_arm_vgic_probe();
1591 if (!probe_bitmap) {
1592 error_report("Unable to determine GIC version supported by host");
1593 exit(1);
1594 }
1595
1596 switch (vms->gic_version) {
1597 case VIRT_GIC_VERSION_HOST:
1598 case VIRT_GIC_VERSION_MAX:
1599 if (probe_bitmap & KVM_ARM_VGIC_V3) {
1600 vms->gic_version = VIRT_GIC_VERSION_3;
1601 } else {
1602 vms->gic_version = VIRT_GIC_VERSION_2;
1603 }
1604 return;
1605 case VIRT_GIC_VERSION_NOSEL:
1606 if ((probe_bitmap & KVM_ARM_VGIC_V2) && max_cpus <= GIC_NCPU) {
1607 vms->gic_version = VIRT_GIC_VERSION_2;
1608 } else if (probe_bitmap & KVM_ARM_VGIC_V3) {
1609 /*
1610 * in case the host does not support v2 in-kernel emulation or
1611 * the end-user requested more than 8 VCPUs we now default
1612 * to v3. In any case defaulting to v2 would be broken.
1613 */
1614 vms->gic_version = VIRT_GIC_VERSION_3;
1615 } else if (max_cpus > GIC_NCPU) {
1616 error_report("host only supports in-kernel GICv2 emulation "
1617 "but more than 8 vcpus are requested");
1618 exit(1);
1619 }
1620 break;
1621 case VIRT_GIC_VERSION_2:
1622 case VIRT_GIC_VERSION_3:
1623 break;
1624 }
1625
1626 /* Check chosen version is effectively supported by the host */
1627 if (vms->gic_version == VIRT_GIC_VERSION_2 &&
1628 !(probe_bitmap & KVM_ARM_VGIC_V2)) {
1629 error_report("host does not support in-kernel GICv2 emulation");
1630 exit(1);
1631 } else if (vms->gic_version == VIRT_GIC_VERSION_3 &&
1632 !(probe_bitmap & KVM_ARM_VGIC_V3)) {
1633 error_report("host does not support in-kernel GICv3 emulation");
1634 exit(1);
1635 }
1636 return;
1637 }
1638
1639 /* TCG mode */
1640 switch (vms->gic_version) {
1641 case VIRT_GIC_VERSION_NOSEL:
1642 vms->gic_version = VIRT_GIC_VERSION_2;
1643 break;
1644 case VIRT_GIC_VERSION_MAX:
1645 vms->gic_version = VIRT_GIC_VERSION_3;
1646 break;
1647 case VIRT_GIC_VERSION_HOST:
1648 error_report("gic-version=host requires KVM");
1649 exit(1);
1650 case VIRT_GIC_VERSION_2:
1651 case VIRT_GIC_VERSION_3:
1652 break;
1653 }
1654 }
1655
1656 static void machvirt_init(MachineState *machine)
1657 {
1658 VirtMachineState *vms = VIRT_MACHINE(machine);
1659 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
1660 MachineClass *mc = MACHINE_GET_CLASS(machine);
1661 const CPUArchIdList *possible_cpus;
1662 MemoryRegion *sysmem = get_system_memory();
1663 MemoryRegion *secure_sysmem = NULL;
1664 int n, virt_max_cpus;
1665 bool firmware_loaded;
1666 bool aarch64 = true;
1667 bool has_ged = !vmc->no_ged;
1668 unsigned int smp_cpus = machine->smp.cpus;
1669 unsigned int max_cpus = machine->smp.max_cpus;
1670
1671 /*
1672 * In accelerated mode, the memory map is computed earlier in kvm_type()
1673 * to create a VM with the right number of IPA bits.
1674 */
1675 if (!vms->memmap) {
1676 virt_set_memmap(vms);
1677 }
1678
1679 /* We can probe only here because during property set
1680 * KVM is not available yet
1681 */
1682 finalize_gic_version(vms);
1683
1684 if (!cpu_type_valid(machine->cpu_type)) {
1685 error_report("mach-virt: CPU type %s not supported", machine->cpu_type);
1686 exit(1);
1687 }
1688
1689 if (vms->secure) {
1690 if (kvm_enabled()) {
1691 error_report("mach-virt: KVM does not support Security extensions");
1692 exit(1);
1693 }
1694
1695 /*
1696 * The Secure view of the world is the same as the NonSecure,
1697 * but with a few extra devices. Create it as a container region
1698 * containing the system memory at low priority; any secure-only
1699 * devices go in at higher priority and take precedence.
1700 */
1701 secure_sysmem = g_new(MemoryRegion, 1);
1702 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1703 UINT64_MAX);
1704 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1705 }
1706
1707 firmware_loaded = virt_firmware_init(vms, sysmem,
1708 secure_sysmem ?: sysmem);
1709
1710 /* If we have an EL3 boot ROM then the assumption is that it will
1711 * implement PSCI itself, so disable QEMU's internal implementation
1712 * so it doesn't get in the way. Instead of starting secondary
1713 * CPUs in PSCI powerdown state we will start them all running and
1714 * let the boot ROM sort them out.
1715 * The usual case is that we do use QEMU's PSCI implementation;
1716 * if the guest has EL2 then we will use SMC as the conduit,
1717 * and otherwise we will use HVC (for backwards compatibility and
1718 * because if we're using KVM then we must use HVC).
1719 */
1720 if (vms->secure && firmware_loaded) {
1721 vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
1722 } else if (vms->virt) {
1723 vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
1724 } else {
1725 vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
1726 }
1727
1728 /* The maximum number of CPUs depends on the GIC version, or on how
1729 * many redistributors we can fit into the memory map.
1730 */
1731 if (vms->gic_version == VIRT_GIC_VERSION_3) {
1732 virt_max_cpus =
1733 vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
1734 virt_max_cpus +=
1735 vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE;
1736 } else {
1737 virt_max_cpus = GIC_NCPU;
1738 }
1739
1740 if (max_cpus > virt_max_cpus) {
1741 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1742 "supported by machine 'mach-virt' (%d)",
1743 max_cpus, virt_max_cpus);
1744 exit(1);
1745 }
1746
1747 vms->smp_cpus = smp_cpus;
1748
1749 if (vms->virt && kvm_enabled()) {
1750 error_report("mach-virt: KVM does not support providing "
1751 "Virtualization extensions to the guest CPU");
1752 exit(1);
1753 }
1754
1755 create_fdt(vms);
1756
1757 possible_cpus = mc->possible_cpu_arch_ids(machine);
1758 for (n = 0; n < possible_cpus->len; n++) {
1759 Object *cpuobj;
1760 CPUState *cs;
1761
1762 if (n >= smp_cpus) {
1763 break;
1764 }
1765
1766 cpuobj = object_new(possible_cpus->cpus[n].type);
1767 object_property_set_int(cpuobj, possible_cpus->cpus[n].arch_id,
1768 "mp-affinity", NULL);
1769
1770 cs = CPU(cpuobj);
1771 cs->cpu_index = n;
1772
1773 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
1774 &error_fatal);
1775
1776 aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
1777
1778 if (!vms->secure) {
1779 object_property_set_bool(cpuobj, false, "has_el3", NULL);
1780 }
1781
1782 if (!vms->virt && object_property_find(cpuobj, "has_el2", NULL)) {
1783 object_property_set_bool(cpuobj, false, "has_el2", NULL);
1784 }
1785
1786 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
1787 object_property_set_int(cpuobj, vms->psci_conduit,
1788 "psci-conduit", NULL);
1789
1790 /* Secondary CPUs start in PSCI powered-down state */
1791 if (n > 0) {
1792 object_property_set_bool(cpuobj, true,
1793 "start-powered-off", NULL);
1794 }
1795 }
1796
1797 if (vmc->kvm_no_adjvtime &&
1798 object_property_find(cpuobj, "kvm-no-adjvtime", NULL)) {
1799 object_property_set_bool(cpuobj, true, "kvm-no-adjvtime", NULL);
1800 }
1801
1802 if (vmc->no_pmu && object_property_find(cpuobj, "pmu", NULL)) {
1803 object_property_set_bool(cpuobj, false, "pmu", NULL);
1804 }
1805
1806 if (object_property_find(cpuobj, "reset-cbar", NULL)) {
1807 object_property_set_int(cpuobj, vms->memmap[VIRT_CPUPERIPHS].base,
1808 "reset-cbar", &error_abort);
1809 }
1810
1811 object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
1812 &error_abort);
1813 if (vms->secure) {
1814 object_property_set_link(cpuobj, OBJECT(secure_sysmem),
1815 "secure-memory", &error_abort);
1816 }
1817
1818 object_property_set_bool(cpuobj, true, "realized", &error_fatal);
1819 object_unref(cpuobj);
1820 }
1821 fdt_add_timer_nodes(vms);
1822 fdt_add_cpu_nodes(vms);
1823
1824 if (!kvm_enabled()) {
1825 ARMCPU *cpu = ARM_CPU(first_cpu);
1826 bool aarch64 = object_property_get_bool(OBJECT(cpu), "aarch64", NULL);
1827
1828 if (aarch64 && vms->highmem) {
1829 int requested_pa_size, pamax = arm_pamax(cpu);
1830
1831 requested_pa_size = 64 - clz64(vms->highest_gpa);
1832 if (pamax < requested_pa_size) {
1833 error_report("VCPU supports less PA bits (%d) than requested "
1834 "by the memory map (%d)", pamax, requested_pa_size);
1835 exit(1);
1836 }
1837 }
1838 }
1839
1840 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base,
1841 machine->ram);
1842 if (machine->device_memory) {
1843 memory_region_add_subregion(sysmem, machine->device_memory->base,
1844 &machine->device_memory->mr);
1845 }
1846
1847 virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem);
1848
1849 create_gic(vms);
1850
1851 fdt_add_pmu_nodes(vms);
1852
1853 create_uart(vms, VIRT_UART, sysmem, serial_hd(0));
1854
1855 if (vms->secure) {
1856 create_secure_ram(vms, secure_sysmem);
1857 create_uart(vms, VIRT_SECURE_UART, secure_sysmem, serial_hd(1));
1858 }
1859
1860 vms->highmem_ecam &= vms->highmem && (!firmware_loaded || aarch64);
1861
1862 create_rtc(vms);
1863
1864 create_pcie(vms);
1865
1866 if (has_ged && aarch64 && firmware_loaded && virt_is_acpi_enabled(vms)) {
1867 vms->acpi_dev = create_acpi_ged(vms);
1868 } else {
1869 create_gpio(vms);
1870 }
1871
1872 /* connect powerdown request */
1873 vms->powerdown_notifier.notify = virt_powerdown_req;
1874 qemu_register_powerdown_notifier(&vms->powerdown_notifier);
1875
1876 /* Create mmio transports, so the user can create virtio backends
1877 * (which will be automatically plugged in to the transports). If
1878 * no backend is created the transport will just sit harmlessly idle.
1879 */
1880 create_virtio_devices(vms);
1881
1882 vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
1883 rom_set_fw(vms->fw_cfg);
1884
1885 create_platform_bus(vms);
1886
1887 vms->bootinfo.ram_size = machine->ram_size;
1888 vms->bootinfo.nb_cpus = smp_cpus;
1889 vms->bootinfo.board_id = -1;
1890 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
1891 vms->bootinfo.get_dtb = machvirt_dtb;
1892 vms->bootinfo.skip_dtb_autoload = true;
1893 vms->bootinfo.firmware_loaded = firmware_loaded;
1894 arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo);
1895
1896 vms->machine_done.notify = virt_machine_done;
1897 qemu_add_machine_init_done_notifier(&vms->machine_done);
1898 }
1899
1900 static bool virt_get_secure(Object *obj, Error **errp)
1901 {
1902 VirtMachineState *vms = VIRT_MACHINE(obj);
1903
1904 return vms->secure;
1905 }
1906
1907 static void virt_set_secure(Object *obj, bool value, Error **errp)
1908 {
1909 VirtMachineState *vms = VIRT_MACHINE(obj);
1910
1911 vms->secure = value;
1912 }
1913
1914 static bool virt_get_virt(Object *obj, Error **errp)
1915 {
1916 VirtMachineState *vms = VIRT_MACHINE(obj);
1917
1918 return vms->virt;
1919 }
1920
1921 static void virt_set_virt(Object *obj, bool value, Error **errp)
1922 {
1923 VirtMachineState *vms = VIRT_MACHINE(obj);
1924
1925 vms->virt = value;
1926 }
1927
1928 static bool virt_get_highmem(Object *obj, Error **errp)
1929 {
1930 VirtMachineState *vms = VIRT_MACHINE(obj);
1931
1932 return vms->highmem;
1933 }
1934
1935 static void virt_set_highmem(Object *obj, bool value, Error **errp)
1936 {
1937 VirtMachineState *vms = VIRT_MACHINE(obj);
1938
1939 vms->highmem = value;
1940 }
1941
1942 static bool virt_get_its(Object *obj, Error **errp)
1943 {
1944 VirtMachineState *vms = VIRT_MACHINE(obj);
1945
1946 return vms->its;
1947 }
1948
1949 static void virt_set_its(Object *obj, bool value, Error **errp)
1950 {
1951 VirtMachineState *vms = VIRT_MACHINE(obj);
1952
1953 vms->its = value;
1954 }
1955
1956 bool virt_is_acpi_enabled(VirtMachineState *vms)
1957 {
1958 if (vms->acpi == ON_OFF_AUTO_OFF) {
1959 return false;
1960 }
1961 return true;
1962 }
1963
1964 static void virt_get_acpi(Object *obj, Visitor *v, const char *name,
1965 void *opaque, Error **errp)
1966 {
1967 VirtMachineState *vms = VIRT_MACHINE(obj);
1968 OnOffAuto acpi = vms->acpi;
1969
1970 visit_type_OnOffAuto(v, name, &acpi, errp);
1971 }
1972
1973 static void virt_set_acpi(Object *obj, Visitor *v, const char *name,
1974 void *opaque, Error **errp)
1975 {
1976 VirtMachineState *vms = VIRT_MACHINE(obj);
1977
1978 visit_type_OnOffAuto(v, name, &vms->acpi, errp);
1979 }
1980
1981 static char *virt_get_gic_version(Object *obj, Error **errp)
1982 {
1983 VirtMachineState *vms = VIRT_MACHINE(obj);
1984 const char *val = vms->gic_version == VIRT_GIC_VERSION_3 ? "3" : "2";
1985
1986 return g_strdup(val);
1987 }
1988
1989 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
1990 {
1991 VirtMachineState *vms = VIRT_MACHINE(obj);
1992
1993 if (!strcmp(value, "3")) {
1994 vms->gic_version = VIRT_GIC_VERSION_3;
1995 } else if (!strcmp(value, "2")) {
1996 vms->gic_version = VIRT_GIC_VERSION_2;
1997 } else if (!strcmp(value, "host")) {
1998 vms->gic_version = VIRT_GIC_VERSION_HOST; /* Will probe later */
1999 } else if (!strcmp(value, "max")) {
2000 vms->gic_version = VIRT_GIC_VERSION_MAX; /* Will probe later */
2001 } else {
2002 error_setg(errp, "Invalid gic-version value");
2003 error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
2004 }
2005 }
2006
2007 static char *virt_get_iommu(Object *obj, Error **errp)
2008 {
2009 VirtMachineState *vms = VIRT_MACHINE(obj);
2010
2011 switch (vms->iommu) {
2012 case VIRT_IOMMU_NONE:
2013 return g_strdup("none");
2014 case VIRT_IOMMU_SMMUV3:
2015 return g_strdup("smmuv3");
2016 default:
2017 g_assert_not_reached();
2018 }
2019 }
2020
2021 static void virt_set_iommu(Object *obj, const char *value, Error **errp)
2022 {
2023 VirtMachineState *vms = VIRT_MACHINE(obj);
2024
2025 if (!strcmp(value, "smmuv3")) {
2026 vms->iommu = VIRT_IOMMU_SMMUV3;
2027 } else if (!strcmp(value, "none")) {
2028 vms->iommu = VIRT_IOMMU_NONE;
2029 } else {
2030 error_setg(errp, "Invalid iommu value");
2031 error_append_hint(errp, "Valid values are none, smmuv3.\n");
2032 }
2033 }
2034
2035 static CpuInstanceProperties
2036 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2037 {
2038 MachineClass *mc = MACHINE_GET_CLASS(ms);
2039 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2040
2041 assert(cpu_index < possible_cpus->len);
2042 return possible_cpus->cpus[cpu_index].props;
2043 }
2044
2045 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
2046 {
2047 return idx % ms->numa_state->num_nodes;
2048 }
2049
2050 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
2051 {
2052 int n;
2053 unsigned int max_cpus = ms->smp.max_cpus;
2054 VirtMachineState *vms = VIRT_MACHINE(ms);
2055
2056 if (ms->possible_cpus) {
2057 assert(ms->possible_cpus->len == max_cpus);
2058 return ms->possible_cpus;
2059 }
2060
2061 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2062 sizeof(CPUArchId) * max_cpus);
2063 ms->possible_cpus->len = max_cpus;
2064 for (n = 0; n < ms->possible_cpus->len; n++) {
2065 ms->possible_cpus->cpus[n].type = ms->cpu_type;
2066 ms->possible_cpus->cpus[n].arch_id =
2067 virt_cpu_mp_affinity(vms, n);
2068 ms->possible_cpus->cpus[n].props.has_thread_id = true;
2069 ms->possible_cpus->cpus[n].props.thread_id = n;
2070 }
2071 return ms->possible_cpus;
2072 }
2073
2074 static void virt_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2075 Error **errp)
2076 {
2077 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2078 const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2079
2080 if (is_nvdimm) {
2081 error_setg(errp, "nvdimm is not yet supported");
2082 return;
2083 }
2084
2085 if (!vms->acpi_dev) {
2086 error_setg(errp,
2087 "memory hotplug is not enabled: missing acpi-ged device");
2088 return;
2089 }
2090
2091 pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), NULL, errp);
2092 }
2093
2094 static void virt_memory_plug(HotplugHandler *hotplug_dev,
2095 DeviceState *dev, Error **errp)
2096 {
2097 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2098 Error *local_err = NULL;
2099
2100 pc_dimm_plug(PC_DIMM(dev), MACHINE(vms), &local_err);
2101 if (local_err) {
2102 goto out;
2103 }
2104
2105 hotplug_handler_plug(HOTPLUG_HANDLER(vms->acpi_dev),
2106 dev, &error_abort);
2107
2108 out:
2109 error_propagate(errp, local_err);
2110 }
2111
2112 static void virt_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2113 DeviceState *dev, Error **errp)
2114 {
2115 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2116 virt_memory_pre_plug(hotplug_dev, dev, errp);
2117 }
2118 }
2119
2120 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2121 DeviceState *dev, Error **errp)
2122 {
2123 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2124
2125 if (vms->platform_bus_dev) {
2126 if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) {
2127 platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
2128 SYS_BUS_DEVICE(dev));
2129 }
2130 }
2131 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2132 virt_memory_plug(hotplug_dev, dev, errp);
2133 }
2134 if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2135 PCIDevice *pdev = PCI_DEVICE(dev);
2136
2137 vms->iommu = VIRT_IOMMU_VIRTIO;
2138 vms->virtio_iommu_bdf = pci_get_bdf(pdev);
2139 create_virtio_iommu_dt_bindings(vms);
2140 }
2141 }
2142
2143 static void virt_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2144 DeviceState *dev, Error **errp)
2145 {
2146 error_setg(errp, "device unplug request for unsupported device"
2147 " type: %s", object_get_typename(OBJECT(dev)));
2148 }
2149
2150 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
2151 DeviceState *dev)
2152 {
2153 if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE) ||
2154 (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM))) {
2155 return HOTPLUG_HANDLER(machine);
2156 }
2157 if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2158 VirtMachineState *vms = VIRT_MACHINE(machine);
2159
2160 if (!vms->bootinfo.firmware_loaded || !virt_is_acpi_enabled(vms)) {
2161 return HOTPLUG_HANDLER(machine);
2162 }
2163 }
2164 return NULL;
2165 }
2166
2167 /*
2168 * for arm64 kvm_type [7-0] encodes the requested number of bits
2169 * in the IPA address space
2170 */
2171 static int virt_kvm_type(MachineState *ms, const char *type_str)
2172 {
2173 VirtMachineState *vms = VIRT_MACHINE(ms);
2174 int max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms);
2175 int requested_pa_size;
2176
2177 /* we freeze the memory map to compute the highest gpa */
2178 virt_set_memmap(vms);
2179
2180 requested_pa_size = 64 - clz64(vms->highest_gpa);
2181
2182 if (requested_pa_size > max_vm_pa_size) {
2183 error_report("-m and ,maxmem option values "
2184 "require an IPA range (%d bits) larger than "
2185 "the one supported by the host (%d bits)",
2186 requested_pa_size, max_vm_pa_size);
2187 exit(1);
2188 }
2189 /*
2190 * By default we return 0 which corresponds to an implicit legacy
2191 * 40b IPA setting. Otherwise we return the actual requested PA
2192 * logsize
2193 */
2194 return requested_pa_size > 40 ? requested_pa_size : 0;
2195 }
2196
2197 static void virt_machine_class_init(ObjectClass *oc, void *data)
2198 {
2199 MachineClass *mc = MACHINE_CLASS(oc);
2200 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2201
2202 mc->init = machvirt_init;
2203 /* Start with max_cpus set to 512, which is the maximum supported by KVM.
2204 * The value may be reduced later when we have more information about the
2205 * configuration of the particular instance.
2206 */
2207 mc->max_cpus = 512;
2208 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
2209 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
2210 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
2211 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM);
2212 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_TPM_TIS_SYSBUS);
2213 mc->block_default_type = IF_VIRTIO;
2214 mc->no_cdrom = 1;
2215 mc->pci_allow_0_address = true;
2216 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
2217 mc->minimum_page_bits = 12;
2218 mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
2219 mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
2220 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
2221 mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
2222 mc->kvm_type = virt_kvm_type;
2223 assert(!mc->get_hotplug_handler);
2224 mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
2225 hc->pre_plug = virt_machine_device_pre_plug_cb;
2226 hc->plug = virt_machine_device_plug_cb;
2227 hc->unplug_request = virt_machine_device_unplug_request_cb;
2228 mc->numa_mem_supported = true;
2229 mc->auto_enable_numa_with_memhp = true;
2230 mc->default_ram_id = "mach-virt.ram";
2231
2232 object_class_property_add(oc, "acpi", "OnOffAuto",
2233 virt_get_acpi, virt_set_acpi,
2234 NULL, NULL, &error_abort);
2235 object_class_property_set_description(oc, "acpi",
2236 "Enable ACPI", &error_abort);
2237 }
2238
2239 static void virt_instance_init(Object *obj)
2240 {
2241 VirtMachineState *vms = VIRT_MACHINE(obj);
2242 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
2243
2244 /* EL3 is disabled by default on virt: this makes us consistent
2245 * between KVM and TCG for this board, and it also allows us to
2246 * boot UEFI blobs which assume no TrustZone support.
2247 */
2248 vms->secure = false;
2249 object_property_add_bool(obj, "secure", virt_get_secure,
2250 virt_set_secure, NULL);
2251 object_property_set_description(obj, "secure",
2252 "Set on/off to enable/disable the ARM "
2253 "Security Extensions (TrustZone)",
2254 NULL);
2255
2256 /* EL2 is also disabled by default, for similar reasons */
2257 vms->virt = false;
2258 object_property_add_bool(obj, "virtualization", virt_get_virt,
2259 virt_set_virt, NULL);
2260 object_property_set_description(obj, "virtualization",
2261 "Set on/off to enable/disable emulating a "
2262 "guest CPU which implements the ARM "
2263 "Virtualization Extensions",
2264 NULL);
2265
2266 /* High memory is enabled by default */
2267 vms->highmem = true;
2268 object_property_add_bool(obj, "highmem", virt_get_highmem,
2269 virt_set_highmem, NULL);
2270 object_property_set_description(obj, "highmem",
2271 "Set on/off to enable/disable using "
2272 "physical address space above 32 bits",
2273 NULL);
2274 vms->gic_version = VIRT_GIC_VERSION_NOSEL;
2275 object_property_add_str(obj, "gic-version", virt_get_gic_version,
2276 virt_set_gic_version, NULL);
2277 object_property_set_description(obj, "gic-version",
2278 "Set GIC version. "
2279 "Valid values are 2, 3, host and max",
2280 NULL);
2281
2282 vms->highmem_ecam = !vmc->no_highmem_ecam;
2283
2284 if (vmc->no_its) {
2285 vms->its = false;
2286 } else {
2287 /* Default allows ITS instantiation */
2288 vms->its = true;
2289 object_property_add_bool(obj, "its", virt_get_its,
2290 virt_set_its, NULL);
2291 object_property_set_description(obj, "its",
2292 "Set on/off to enable/disable "
2293 "ITS instantiation",
2294 NULL);
2295 }
2296
2297 /* Default disallows iommu instantiation */
2298 vms->iommu = VIRT_IOMMU_NONE;
2299 object_property_add_str(obj, "iommu", virt_get_iommu, virt_set_iommu, NULL);
2300 object_property_set_description(obj, "iommu",
2301 "Set the IOMMU type. "
2302 "Valid values are none and smmuv3",
2303 NULL);
2304
2305 vms->irqmap = a15irqmap;
2306
2307 virt_flash_create(vms);
2308 }
2309
2310 static const TypeInfo virt_machine_info = {
2311 .name = TYPE_VIRT_MACHINE,
2312 .parent = TYPE_MACHINE,
2313 .abstract = true,
2314 .instance_size = sizeof(VirtMachineState),
2315 .class_size = sizeof(VirtMachineClass),
2316 .class_init = virt_machine_class_init,
2317 .instance_init = virt_instance_init,
2318 .interfaces = (InterfaceInfo[]) {
2319 { TYPE_HOTPLUG_HANDLER },
2320 { }
2321 },
2322 };
2323
2324 static void machvirt_machine_init(void)
2325 {
2326 type_register_static(&virt_machine_info);
2327 }
2328 type_init(machvirt_machine_init);
2329
2330 static void virt_machine_5_0_options(MachineClass *mc)
2331 {
2332 static GlobalProperty compat[] = {
2333 { TYPE_TPM_TIS_SYSBUS, "ppi", "false" },
2334 };
2335
2336 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
2337 }
2338 DEFINE_VIRT_MACHINE_AS_LATEST(5, 0)
2339
2340 static void virt_machine_4_2_options(MachineClass *mc)
2341 {
2342 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2343
2344 virt_machine_5_0_options(mc);
2345 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
2346 vmc->kvm_no_adjvtime = true;
2347 }
2348 DEFINE_VIRT_MACHINE(4, 2)
2349
2350 static void virt_machine_4_1_options(MachineClass *mc)
2351 {
2352 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2353
2354 virt_machine_4_2_options(mc);
2355 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
2356 vmc->no_ged = true;
2357 mc->auto_enable_numa_with_memhp = false;
2358 }
2359 DEFINE_VIRT_MACHINE(4, 1)
2360
2361 static void virt_machine_4_0_options(MachineClass *mc)
2362 {
2363 virt_machine_4_1_options(mc);
2364 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
2365 }
2366 DEFINE_VIRT_MACHINE(4, 0)
2367
2368 static void virt_machine_3_1_options(MachineClass *mc)
2369 {
2370 virt_machine_4_0_options(mc);
2371 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
2372 }
2373 DEFINE_VIRT_MACHINE(3, 1)
2374
2375 static void virt_machine_3_0_options(MachineClass *mc)
2376 {
2377 virt_machine_3_1_options(mc);
2378 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
2379 }
2380 DEFINE_VIRT_MACHINE(3, 0)
2381
2382 static void virt_machine_2_12_options(MachineClass *mc)
2383 {
2384 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2385
2386 virt_machine_3_0_options(mc);
2387 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
2388 vmc->no_highmem_ecam = true;
2389 mc->max_cpus = 255;
2390 }
2391 DEFINE_VIRT_MACHINE(2, 12)
2392
2393 static void virt_machine_2_11_options(MachineClass *mc)
2394 {
2395 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2396
2397 virt_machine_2_12_options(mc);
2398 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
2399 vmc->smbios_old_sys_ver = true;
2400 }
2401 DEFINE_VIRT_MACHINE(2, 11)
2402
2403 static void virt_machine_2_10_options(MachineClass *mc)
2404 {
2405 virt_machine_2_11_options(mc);
2406 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
2407 /* before 2.11 we never faulted accesses to bad addresses */
2408 mc->ignore_memory_transaction_failures = true;
2409 }
2410 DEFINE_VIRT_MACHINE(2, 10)
2411
2412 static void virt_machine_2_9_options(MachineClass *mc)
2413 {
2414 virt_machine_2_10_options(mc);
2415 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
2416 }
2417 DEFINE_VIRT_MACHINE(2, 9)
2418
2419 static void virt_machine_2_8_options(MachineClass *mc)
2420 {
2421 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2422
2423 virt_machine_2_9_options(mc);
2424 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
2425 /* For 2.8 and earlier we falsely claimed in the DT that
2426 * our timers were edge-triggered, not level-triggered.
2427 */
2428 vmc->claim_edge_triggered_timers = true;
2429 }
2430 DEFINE_VIRT_MACHINE(2, 8)
2431
2432 static void virt_machine_2_7_options(MachineClass *mc)
2433 {
2434 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2435
2436 virt_machine_2_8_options(mc);
2437 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
2438 /* ITS was introduced with 2.8 */
2439 vmc->no_its = true;
2440 /* Stick with 1K pages for migration compatibility */
2441 mc->minimum_page_bits = 0;
2442 }
2443 DEFINE_VIRT_MACHINE(2, 7)
2444
2445 static void virt_machine_2_6_options(MachineClass *mc)
2446 {
2447 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2448
2449 virt_machine_2_7_options(mc);
2450 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
2451 vmc->disallow_affinity_adjustment = true;
2452 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
2453 vmc->no_pmu = true;
2454 }
2455 DEFINE_VIRT_MACHINE(2, 6)