]> git.proxmox.com Git - mirror_qemu.git/blob - hw/arm/virt.c
hw/arm/virt: fix GIC maintenance IRQ registration
[mirror_qemu.git] / hw / arm / virt.c
1 /*
2 * ARM mach-virt emulation
3 *
4 * Copyright (c) 2013 Linaro Limited
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
17 *
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
29 */
30
31 #include "qemu/osdep.h"
32 #include "qemu/datadir.h"
33 #include "qemu/units.h"
34 #include "qemu/option.h"
35 #include "monitor/qdev.h"
36 #include "hw/sysbus.h"
37 #include "hw/arm/boot.h"
38 #include "hw/arm/primecell.h"
39 #include "hw/arm/virt.h"
40 #include "hw/block/flash.h"
41 #include "hw/vfio/vfio-calxeda-xgmac.h"
42 #include "hw/vfio/vfio-amd-xgbe.h"
43 #include "hw/display/ramfb.h"
44 #include "net/net.h"
45 #include "sysemu/device_tree.h"
46 #include "sysemu/numa.h"
47 #include "sysemu/runstate.h"
48 #include "sysemu/tpm.h"
49 #include "sysemu/tcg.h"
50 #include "sysemu/kvm.h"
51 #include "sysemu/hvf.h"
52 #include "sysemu/qtest.h"
53 #include "hw/loader.h"
54 #include "qapi/error.h"
55 #include "qemu/bitops.h"
56 #include "qemu/error-report.h"
57 #include "qemu/module.h"
58 #include "hw/pci-host/gpex.h"
59 #include "hw/virtio/virtio-pci.h"
60 #include "hw/core/sysbus-fdt.h"
61 #include "hw/platform-bus.h"
62 #include "hw/qdev-properties.h"
63 #include "hw/arm/fdt.h"
64 #include "hw/intc/arm_gic.h"
65 #include "hw/intc/arm_gicv3_common.h"
66 #include "hw/intc/arm_gicv3_its_common.h"
67 #include "hw/irq.h"
68 #include "kvm_arm.h"
69 #include "hw/firmware/smbios.h"
70 #include "qapi/visitor.h"
71 #include "qapi/qapi-visit-common.h"
72 #include "qapi/qmp/qlist.h"
73 #include "standard-headers/linux/input.h"
74 #include "hw/arm/smmuv3.h"
75 #include "hw/acpi/acpi.h"
76 #include "target/arm/internals.h"
77 #include "hw/mem/pc-dimm.h"
78 #include "hw/mem/nvdimm.h"
79 #include "hw/acpi/generic_event_device.h"
80 #include "hw/virtio/virtio-md-pci.h"
81 #include "hw/virtio/virtio-iommu.h"
82 #include "hw/char/pl011.h"
83 #include "qemu/guest-random.h"
84
85 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
86 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
87 void *data) \
88 { \
89 MachineClass *mc = MACHINE_CLASS(oc); \
90 virt_machine_##major##_##minor##_options(mc); \
91 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
92 if (latest) { \
93 mc->alias = "virt"; \
94 } \
95 } \
96 static const TypeInfo machvirt_##major##_##minor##_info = { \
97 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
98 .parent = TYPE_VIRT_MACHINE, \
99 .class_init = virt_##major##_##minor##_class_init, \
100 }; \
101 static void machvirt_machine_##major##_##minor##_init(void) \
102 { \
103 type_register_static(&machvirt_##major##_##minor##_info); \
104 } \
105 type_init(machvirt_machine_##major##_##minor##_init);
106
107 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
108 DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
109 #define DEFINE_VIRT_MACHINE(major, minor) \
110 DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
111
112
113 /* Number of external interrupt lines to configure the GIC with */
114 #define NUM_IRQS 256
115
116 #define PLATFORM_BUS_NUM_IRQS 64
117
118 /* Legacy RAM limit in GB (< version 4.0) */
119 #define LEGACY_RAMLIMIT_GB 255
120 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB)
121
122 /* Addresses and sizes of our components.
123 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
124 * 128MB..256MB is used for miscellaneous device I/O.
125 * 256MB..1GB is reserved for possible future PCI support (ie where the
126 * PCI memory window will go if we add a PCI host controller).
127 * 1GB and up is RAM (which may happily spill over into the
128 * high memory region beyond 4GB).
129 * This represents a compromise between how much RAM can be given to
130 * a 32 bit VM and leaving space for expansion and in particular for PCI.
131 * Note that devices should generally be placed at multiples of 0x10000,
132 * to accommodate guests using 64K pages.
133 */
134 static const MemMapEntry base_memmap[] = {
135 /* Space up to 0x8000000 is reserved for a boot ROM */
136 [VIRT_FLASH] = { 0, 0x08000000 },
137 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
138 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
139 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
140 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
141 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 },
142 [VIRT_GIC_HYP] = { 0x08030000, 0x00010000 },
143 [VIRT_GIC_VCPU] = { 0x08040000, 0x00010000 },
144 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
145 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 },
146 /* This redistributor space allows up to 2*64kB*123 CPUs */
147 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 },
148 [VIRT_UART] = { 0x09000000, 0x00001000 },
149 [VIRT_RTC] = { 0x09010000, 0x00001000 },
150 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 },
151 [VIRT_GPIO] = { 0x09030000, 0x00001000 },
152 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 },
153 [VIRT_SMMU] = { 0x09050000, 0x00020000 },
154 [VIRT_PCDIMM_ACPI] = { 0x09070000, MEMORY_HOTPLUG_IO_LEN },
155 [VIRT_ACPI_GED] = { 0x09080000, ACPI_GED_EVT_SEL_LEN },
156 [VIRT_NVDIMM_ACPI] = { 0x09090000, NVDIMM_ACPI_IO_LEN},
157 [VIRT_PVTIME] = { 0x090a0000, 0x00010000 },
158 [VIRT_SECURE_GPIO] = { 0x090b0000, 0x00001000 },
159 [VIRT_MMIO] = { 0x0a000000, 0x00000200 },
160 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
161 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 },
162 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 },
163 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 },
164 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 },
165 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 },
166 /* Actual RAM size depends on initial RAM and device memory settings */
167 [VIRT_MEM] = { GiB, LEGACY_RAMLIMIT_BYTES },
168 };
169
170 /*
171 * Highmem IO Regions: This memory map is floating, located after the RAM.
172 * Each MemMapEntry base (GPA) will be dynamically computed, depending on the
173 * top of the RAM, so that its base get the same alignment as the size,
174 * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is
175 * less than 256GiB of RAM, the floating area starts at the 256GiB mark.
176 * Note the extended_memmap is sized so that it eventually also includes the
177 * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last
178 * index of base_memmap).
179 *
180 * The memory map for these Highmem IO Regions can be in legacy or compact
181 * layout, depending on 'compact-highmem' property. With legacy layout, the
182 * PA space for one specific region is always reserved, even if the region
183 * has been disabled or doesn't fit into the PA space. However, the PA space
184 * for the region won't be reserved in these circumstances with compact layout.
185 */
186 static MemMapEntry extended_memmap[] = {
187 /* Additional 64 MB redist region (can contain up to 512 redistributors) */
188 [VIRT_HIGH_GIC_REDIST2] = { 0x0, 64 * MiB },
189 [VIRT_HIGH_PCIE_ECAM] = { 0x0, 256 * MiB },
190 /* Second PCIe window */
191 [VIRT_HIGH_PCIE_MMIO] = { 0x0, 512 * GiB },
192 };
193
194 static const int a15irqmap[] = {
195 [VIRT_UART] = 1,
196 [VIRT_RTC] = 2,
197 [VIRT_PCIE] = 3, /* ... to 6 */
198 [VIRT_GPIO] = 7,
199 [VIRT_SECURE_UART] = 8,
200 [VIRT_ACPI_GED] = 9,
201 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
202 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
203 [VIRT_SMMU] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */
204 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
205 };
206
207 static const char *valid_cpus[] = {
208 #ifdef CONFIG_TCG
209 ARM_CPU_TYPE_NAME("cortex-a7"),
210 ARM_CPU_TYPE_NAME("cortex-a15"),
211 ARM_CPU_TYPE_NAME("cortex-a35"),
212 ARM_CPU_TYPE_NAME("cortex-a55"),
213 ARM_CPU_TYPE_NAME("cortex-a72"),
214 ARM_CPU_TYPE_NAME("cortex-a76"),
215 ARM_CPU_TYPE_NAME("cortex-a710"),
216 ARM_CPU_TYPE_NAME("a64fx"),
217 ARM_CPU_TYPE_NAME("neoverse-n1"),
218 ARM_CPU_TYPE_NAME("neoverse-v1"),
219 ARM_CPU_TYPE_NAME("neoverse-n2"),
220 #endif
221 ARM_CPU_TYPE_NAME("cortex-a53"),
222 ARM_CPU_TYPE_NAME("cortex-a57"),
223 ARM_CPU_TYPE_NAME("host"),
224 ARM_CPU_TYPE_NAME("max"),
225 };
226
227 static bool cpu_type_valid(const char *cpu)
228 {
229 int i;
230
231 for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
232 if (strcmp(cpu, valid_cpus[i]) == 0) {
233 return true;
234 }
235 }
236 return false;
237 }
238
239 static void create_randomness(MachineState *ms, const char *node)
240 {
241 struct {
242 uint64_t kaslr;
243 uint8_t rng[32];
244 } seed;
245
246 if (qemu_guest_getrandom(&seed, sizeof(seed), NULL)) {
247 return;
248 }
249 qemu_fdt_setprop_u64(ms->fdt, node, "kaslr-seed", seed.kaslr);
250 qemu_fdt_setprop(ms->fdt, node, "rng-seed", seed.rng, sizeof(seed.rng));
251 }
252
253 static void create_fdt(VirtMachineState *vms)
254 {
255 MachineState *ms = MACHINE(vms);
256 int nb_numa_nodes = ms->numa_state->num_nodes;
257 void *fdt = create_device_tree(&vms->fdt_size);
258
259 if (!fdt) {
260 error_report("create_device_tree() failed");
261 exit(1);
262 }
263
264 ms->fdt = fdt;
265
266 /* Header */
267 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
268 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
269 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
270 qemu_fdt_setprop_string(fdt, "/", "model", "linux,dummy-virt");
271
272 /* /chosen must exist for load_dtb to fill in necessary properties later */
273 qemu_fdt_add_subnode(fdt, "/chosen");
274 if (vms->dtb_randomness) {
275 create_randomness(ms, "/chosen");
276 }
277
278 if (vms->secure) {
279 qemu_fdt_add_subnode(fdt, "/secure-chosen");
280 if (vms->dtb_randomness) {
281 create_randomness(ms, "/secure-chosen");
282 }
283 }
284
285 /* Clock node, for the benefit of the UART. The kernel device tree
286 * binding documentation claims the PL011 node clock properties are
287 * optional but in practice if you omit them the kernel refuses to
288 * probe for the device.
289 */
290 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
291 qemu_fdt_add_subnode(fdt, "/apb-pclk");
292 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
293 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
294 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
295 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
296 "clk24mhz");
297 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
298
299 if (nb_numa_nodes > 0 && ms->numa_state->have_numa_distance) {
300 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
301 uint32_t *matrix = g_malloc0(size);
302 int idx, i, j;
303
304 for (i = 0; i < nb_numa_nodes; i++) {
305 for (j = 0; j < nb_numa_nodes; j++) {
306 idx = (i * nb_numa_nodes + j) * 3;
307 matrix[idx + 0] = cpu_to_be32(i);
308 matrix[idx + 1] = cpu_to_be32(j);
309 matrix[idx + 2] =
310 cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
311 }
312 }
313
314 qemu_fdt_add_subnode(fdt, "/distance-map");
315 qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
316 "numa-distance-map-v1");
317 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
318 matrix, size);
319 g_free(matrix);
320 }
321 }
322
323 static void fdt_add_timer_nodes(const VirtMachineState *vms)
324 {
325 /* On real hardware these interrupts are level-triggered.
326 * On KVM they were edge-triggered before host kernel version 4.4,
327 * and level-triggered afterwards.
328 * On emulated QEMU they are level-triggered.
329 *
330 * Getting the DTB info about them wrong is awkward for some
331 * guest kernels:
332 * pre-4.8 ignore the DT and leave the interrupt configured
333 * with whatever the GIC reset value (or the bootloader) left it at
334 * 4.8 before rc6 honour the incorrect data by programming it back
335 * into the GIC, causing problems
336 * 4.8rc6 and later ignore the DT and always write "level triggered"
337 * into the GIC
338 *
339 * For backwards-compatibility, virt-2.8 and earlier will continue
340 * to say these are edge-triggered, but later machines will report
341 * the correct information.
342 */
343 ARMCPU *armcpu;
344 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
345 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
346 MachineState *ms = MACHINE(vms);
347
348 if (vmc->claim_edge_triggered_timers) {
349 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
350 }
351
352 if (vms->gic_version == VIRT_GIC_VERSION_2) {
353 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
354 GIC_FDT_IRQ_PPI_CPU_WIDTH,
355 (1 << MACHINE(vms)->smp.cpus) - 1);
356 }
357
358 qemu_fdt_add_subnode(ms->fdt, "/timer");
359
360 armcpu = ARM_CPU(qemu_get_cpu(0));
361 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
362 const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
363 qemu_fdt_setprop(ms->fdt, "/timer", "compatible",
364 compat, sizeof(compat));
365 } else {
366 qemu_fdt_setprop_string(ms->fdt, "/timer", "compatible",
367 "arm,armv7-timer");
368 }
369 qemu_fdt_setprop(ms->fdt, "/timer", "always-on", NULL, 0);
370 qemu_fdt_setprop_cells(ms->fdt, "/timer", "interrupts",
371 GIC_FDT_IRQ_TYPE_PPI,
372 INTID_TO_PPI(ARCH_TIMER_S_EL1_IRQ), irqflags,
373 GIC_FDT_IRQ_TYPE_PPI,
374 INTID_TO_PPI(ARCH_TIMER_NS_EL1_IRQ), irqflags,
375 GIC_FDT_IRQ_TYPE_PPI,
376 INTID_TO_PPI(ARCH_TIMER_VIRT_IRQ), irqflags,
377 GIC_FDT_IRQ_TYPE_PPI,
378 INTID_TO_PPI(ARCH_TIMER_NS_EL2_IRQ), irqflags);
379 }
380
381 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
382 {
383 int cpu;
384 int addr_cells = 1;
385 const MachineState *ms = MACHINE(vms);
386 const VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
387 int smp_cpus = ms->smp.cpus;
388
389 /*
390 * See Linux Documentation/devicetree/bindings/arm/cpus.yaml
391 * On ARM v8 64-bit systems value should be set to 2,
392 * that corresponds to the MPIDR_EL1 register size.
393 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
394 * in the system, #address-cells can be set to 1, since
395 * MPIDR_EL1[63:32] bits are not used for CPUs
396 * identification.
397 *
398 * Here we actually don't know whether our system is 32- or 64-bit one.
399 * The simplest way to go is to examine affinity IDs of all our CPUs. If
400 * at least one of them has Aff3 populated, we set #address-cells to 2.
401 */
402 for (cpu = 0; cpu < smp_cpus; cpu++) {
403 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
404
405 if (armcpu->mp_affinity & ARM_AFF3_MASK) {
406 addr_cells = 2;
407 break;
408 }
409 }
410
411 qemu_fdt_add_subnode(ms->fdt, "/cpus");
412 qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#address-cells", addr_cells);
413 qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#size-cells", 0x0);
414
415 for (cpu = smp_cpus - 1; cpu >= 0; cpu--) {
416 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
417 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
418 CPUState *cs = CPU(armcpu);
419
420 qemu_fdt_add_subnode(ms->fdt, nodename);
421 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "cpu");
422 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
423 armcpu->dtb_compatible);
424
425 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED && smp_cpus > 1) {
426 qemu_fdt_setprop_string(ms->fdt, nodename,
427 "enable-method", "psci");
428 }
429
430 if (addr_cells == 2) {
431 qemu_fdt_setprop_u64(ms->fdt, nodename, "reg",
432 armcpu->mp_affinity);
433 } else {
434 qemu_fdt_setprop_cell(ms->fdt, nodename, "reg",
435 armcpu->mp_affinity);
436 }
437
438 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
439 qemu_fdt_setprop_cell(ms->fdt, nodename, "numa-node-id",
440 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
441 }
442
443 if (!vmc->no_cpu_topology) {
444 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle",
445 qemu_fdt_alloc_phandle(ms->fdt));
446 }
447
448 g_free(nodename);
449 }
450
451 if (!vmc->no_cpu_topology) {
452 /*
453 * Add vCPU topology description through fdt node cpu-map.
454 *
455 * See Linux Documentation/devicetree/bindings/cpu/cpu-topology.txt
456 * In a SMP system, the hierarchy of CPUs can be defined through
457 * four entities that are used to describe the layout of CPUs in
458 * the system: socket/cluster/core/thread.
459 *
460 * A socket node represents the boundary of system physical package
461 * and its child nodes must be one or more cluster nodes. A system
462 * can contain several layers of clustering within a single physical
463 * package and cluster nodes can be contained in parent cluster nodes.
464 *
465 * Note: currently we only support one layer of clustering within
466 * each physical package.
467 */
468 qemu_fdt_add_subnode(ms->fdt, "/cpus/cpu-map");
469
470 for (cpu = smp_cpus - 1; cpu >= 0; cpu--) {
471 char *cpu_path = g_strdup_printf("/cpus/cpu@%d", cpu);
472 char *map_path;
473
474 if (ms->smp.threads > 1) {
475 map_path = g_strdup_printf(
476 "/cpus/cpu-map/socket%d/cluster%d/core%d/thread%d",
477 cpu / (ms->smp.clusters * ms->smp.cores * ms->smp.threads),
478 (cpu / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters,
479 (cpu / ms->smp.threads) % ms->smp.cores,
480 cpu % ms->smp.threads);
481 } else {
482 map_path = g_strdup_printf(
483 "/cpus/cpu-map/socket%d/cluster%d/core%d",
484 cpu / (ms->smp.clusters * ms->smp.cores),
485 (cpu / ms->smp.cores) % ms->smp.clusters,
486 cpu % ms->smp.cores);
487 }
488 qemu_fdt_add_path(ms->fdt, map_path);
489 qemu_fdt_setprop_phandle(ms->fdt, map_path, "cpu", cpu_path);
490
491 g_free(map_path);
492 g_free(cpu_path);
493 }
494 }
495 }
496
497 static void fdt_add_its_gic_node(VirtMachineState *vms)
498 {
499 char *nodename;
500 MachineState *ms = MACHINE(vms);
501
502 vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
503 nodename = g_strdup_printf("/intc/its@%" PRIx64,
504 vms->memmap[VIRT_GIC_ITS].base);
505 qemu_fdt_add_subnode(ms->fdt, nodename);
506 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
507 "arm,gic-v3-its");
508 qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
509 qemu_fdt_setprop_cell(ms->fdt, nodename, "#msi-cells", 1);
510 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
511 2, vms->memmap[VIRT_GIC_ITS].base,
512 2, vms->memmap[VIRT_GIC_ITS].size);
513 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
514 g_free(nodename);
515 }
516
517 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
518 {
519 MachineState *ms = MACHINE(vms);
520 char *nodename;
521
522 nodename = g_strdup_printf("/intc/v2m@%" PRIx64,
523 vms->memmap[VIRT_GIC_V2M].base);
524 vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
525 qemu_fdt_add_subnode(ms->fdt, nodename);
526 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
527 "arm,gic-v2m-frame");
528 qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
529 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
530 2, vms->memmap[VIRT_GIC_V2M].base,
531 2, vms->memmap[VIRT_GIC_V2M].size);
532 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
533 g_free(nodename);
534 }
535
536 static void fdt_add_gic_node(VirtMachineState *vms)
537 {
538 MachineState *ms = MACHINE(vms);
539 char *nodename;
540
541 vms->gic_phandle = qemu_fdt_alloc_phandle(ms->fdt);
542 qemu_fdt_setprop_cell(ms->fdt, "/", "interrupt-parent", vms->gic_phandle);
543
544 nodename = g_strdup_printf("/intc@%" PRIx64,
545 vms->memmap[VIRT_GIC_DIST].base);
546 qemu_fdt_add_subnode(ms->fdt, nodename);
547 qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 3);
548 qemu_fdt_setprop(ms->fdt, nodename, "interrupt-controller", NULL, 0);
549 qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 0x2);
550 qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 0x2);
551 qemu_fdt_setprop(ms->fdt, nodename, "ranges", NULL, 0);
552 if (vms->gic_version != VIRT_GIC_VERSION_2) {
553 int nb_redist_regions = virt_gicv3_redist_region_count(vms);
554
555 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
556 "arm,gic-v3");
557
558 qemu_fdt_setprop_cell(ms->fdt, nodename,
559 "#redistributor-regions", nb_redist_regions);
560
561 if (nb_redist_regions == 1) {
562 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
563 2, vms->memmap[VIRT_GIC_DIST].base,
564 2, vms->memmap[VIRT_GIC_DIST].size,
565 2, vms->memmap[VIRT_GIC_REDIST].base,
566 2, vms->memmap[VIRT_GIC_REDIST].size);
567 } else {
568 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
569 2, vms->memmap[VIRT_GIC_DIST].base,
570 2, vms->memmap[VIRT_GIC_DIST].size,
571 2, vms->memmap[VIRT_GIC_REDIST].base,
572 2, vms->memmap[VIRT_GIC_REDIST].size,
573 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base,
574 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size);
575 }
576
577 if (vms->virt) {
578 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
579 GIC_FDT_IRQ_TYPE_PPI,
580 INTID_TO_PPI(ARCH_GIC_MAINT_IRQ),
581 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
582 }
583 } else {
584 /* 'cortex-a15-gic' means 'GIC v2' */
585 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
586 "arm,cortex-a15-gic");
587 if (!vms->virt) {
588 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
589 2, vms->memmap[VIRT_GIC_DIST].base,
590 2, vms->memmap[VIRT_GIC_DIST].size,
591 2, vms->memmap[VIRT_GIC_CPU].base,
592 2, vms->memmap[VIRT_GIC_CPU].size);
593 } else {
594 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
595 2, vms->memmap[VIRT_GIC_DIST].base,
596 2, vms->memmap[VIRT_GIC_DIST].size,
597 2, vms->memmap[VIRT_GIC_CPU].base,
598 2, vms->memmap[VIRT_GIC_CPU].size,
599 2, vms->memmap[VIRT_GIC_HYP].base,
600 2, vms->memmap[VIRT_GIC_HYP].size,
601 2, vms->memmap[VIRT_GIC_VCPU].base,
602 2, vms->memmap[VIRT_GIC_VCPU].size);
603 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
604 GIC_FDT_IRQ_TYPE_PPI,
605 INTID_TO_PPI(ARCH_GIC_MAINT_IRQ),
606 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
607 }
608 }
609
610 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->gic_phandle);
611 g_free(nodename);
612 }
613
614 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
615 {
616 ARMCPU *armcpu = ARM_CPU(first_cpu);
617 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
618 MachineState *ms = MACHINE(vms);
619
620 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
621 assert(!object_property_get_bool(OBJECT(armcpu), "pmu", NULL));
622 return;
623 }
624
625 if (vms->gic_version == VIRT_GIC_VERSION_2) {
626 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
627 GIC_FDT_IRQ_PPI_CPU_WIDTH,
628 (1 << MACHINE(vms)->smp.cpus) - 1);
629 }
630
631 qemu_fdt_add_subnode(ms->fdt, "/pmu");
632 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
633 const char compat[] = "arm,armv8-pmuv3";
634 qemu_fdt_setprop(ms->fdt, "/pmu", "compatible",
635 compat, sizeof(compat));
636 qemu_fdt_setprop_cells(ms->fdt, "/pmu", "interrupts",
637 GIC_FDT_IRQ_TYPE_PPI,
638 INTID_TO_PPI(VIRTUAL_PMU_IRQ), irqflags);
639 }
640 }
641
642 static inline DeviceState *create_acpi_ged(VirtMachineState *vms)
643 {
644 DeviceState *dev;
645 MachineState *ms = MACHINE(vms);
646 int irq = vms->irqmap[VIRT_ACPI_GED];
647 uint32_t event = ACPI_GED_PWR_DOWN_EVT;
648
649 if (ms->ram_slots) {
650 event |= ACPI_GED_MEM_HOTPLUG_EVT;
651 }
652
653 if (ms->nvdimms_state->is_enabled) {
654 event |= ACPI_GED_NVDIMM_HOTPLUG_EVT;
655 }
656
657 dev = qdev_new(TYPE_ACPI_GED);
658 qdev_prop_set_uint32(dev, "ged-event", event);
659 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
660
661 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_ACPI_GED].base);
662 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, vms->memmap[VIRT_PCDIMM_ACPI].base);
663 sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(vms->gic, irq));
664
665 return dev;
666 }
667
668 static void create_its(VirtMachineState *vms)
669 {
670 const char *itsclass = its_class_name();
671 DeviceState *dev;
672
673 if (!strcmp(itsclass, "arm-gicv3-its")) {
674 if (!vms->tcg_its) {
675 itsclass = NULL;
676 }
677 }
678
679 if (!itsclass) {
680 /* Do nothing if not supported */
681 return;
682 }
683
684 dev = qdev_new(itsclass);
685
686 object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(vms->gic),
687 &error_abort);
688 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
689 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
690
691 fdt_add_its_gic_node(vms);
692 vms->msi_controller = VIRT_MSI_CTRL_ITS;
693 }
694
695 static void create_v2m(VirtMachineState *vms)
696 {
697 int i;
698 int irq = vms->irqmap[VIRT_GIC_V2M];
699 DeviceState *dev;
700
701 dev = qdev_new("arm-gicv2m");
702 qdev_prop_set_uint32(dev, "base-spi", irq);
703 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
704 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
705 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
706
707 for (i = 0; i < NUM_GICV2M_SPIS; i++) {
708 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
709 qdev_get_gpio_in(vms->gic, irq + i));
710 }
711
712 fdt_add_v2m_gic_node(vms);
713 vms->msi_controller = VIRT_MSI_CTRL_GICV2M;
714 }
715
716 static void create_gic(VirtMachineState *vms, MemoryRegion *mem)
717 {
718 MachineState *ms = MACHINE(vms);
719 /* We create a standalone GIC */
720 SysBusDevice *gicbusdev;
721 const char *gictype;
722 int i;
723 unsigned int smp_cpus = ms->smp.cpus;
724 uint32_t nb_redist_regions = 0;
725 int revision;
726
727 if (vms->gic_version == VIRT_GIC_VERSION_2) {
728 gictype = gic_class_name();
729 } else {
730 gictype = gicv3_class_name();
731 }
732
733 switch (vms->gic_version) {
734 case VIRT_GIC_VERSION_2:
735 revision = 2;
736 break;
737 case VIRT_GIC_VERSION_3:
738 revision = 3;
739 break;
740 case VIRT_GIC_VERSION_4:
741 revision = 4;
742 break;
743 default:
744 g_assert_not_reached();
745 }
746 vms->gic = qdev_new(gictype);
747 qdev_prop_set_uint32(vms->gic, "revision", revision);
748 qdev_prop_set_uint32(vms->gic, "num-cpu", smp_cpus);
749 /* Note that the num-irq property counts both internal and external
750 * interrupts; there are always 32 of the former (mandated by GIC spec).
751 */
752 qdev_prop_set_uint32(vms->gic, "num-irq", NUM_IRQS + 32);
753 if (!kvm_irqchip_in_kernel()) {
754 qdev_prop_set_bit(vms->gic, "has-security-extensions", vms->secure);
755 }
756
757 if (vms->gic_version != VIRT_GIC_VERSION_2) {
758 QList *redist_region_count;
759 uint32_t redist0_capacity = virt_redist_capacity(vms, VIRT_GIC_REDIST);
760 uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
761
762 nb_redist_regions = virt_gicv3_redist_region_count(vms);
763
764 redist_region_count = qlist_new();
765 qlist_append_int(redist_region_count, redist0_count);
766 if (nb_redist_regions == 2) {
767 uint32_t redist1_capacity =
768 virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2);
769
770 qlist_append_int(redist_region_count,
771 MIN(smp_cpus - redist0_count, redist1_capacity));
772 }
773 qdev_prop_set_array(vms->gic, "redist-region-count",
774 redist_region_count);
775
776 if (!kvm_irqchip_in_kernel()) {
777 if (vms->tcg_its) {
778 object_property_set_link(OBJECT(vms->gic), "sysmem",
779 OBJECT(mem), &error_fatal);
780 qdev_prop_set_bit(vms->gic, "has-lpi", true);
781 }
782 }
783 } else {
784 if (!kvm_irqchip_in_kernel()) {
785 qdev_prop_set_bit(vms->gic, "has-virtualization-extensions",
786 vms->virt);
787 }
788 }
789 gicbusdev = SYS_BUS_DEVICE(vms->gic);
790 sysbus_realize_and_unref(gicbusdev, &error_fatal);
791 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
792 if (vms->gic_version != VIRT_GIC_VERSION_2) {
793 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
794 if (nb_redist_regions == 2) {
795 sysbus_mmio_map(gicbusdev, 2,
796 vms->memmap[VIRT_HIGH_GIC_REDIST2].base);
797 }
798 } else {
799 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
800 if (vms->virt) {
801 sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base);
802 sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base);
803 }
804 }
805
806 /* Wire the outputs from each CPU's generic timer and the GICv3
807 * maintenance interrupt signal to the appropriate GIC PPI inputs,
808 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
809 */
810 for (i = 0; i < smp_cpus; i++) {
811 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
812 int intidbase = NUM_IRQS + i * GIC_INTERNAL;
813 /* Mapping from the output timer irq lines from the CPU to the
814 * GIC PPI inputs we use for the virt board.
815 */
816 const int timer_irq[] = {
817 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
818 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
819 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
820 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
821 };
822
823 for (unsigned irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
824 qdev_connect_gpio_out(cpudev, irq,
825 qdev_get_gpio_in(vms->gic,
826 intidbase + timer_irq[irq]));
827 }
828
829 if (vms->gic_version != VIRT_GIC_VERSION_2) {
830 qemu_irq irq = qdev_get_gpio_in(vms->gic,
831 intidbase + ARCH_GIC_MAINT_IRQ);
832 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt",
833 0, irq);
834 } else if (vms->virt) {
835 qemu_irq irq = qdev_get_gpio_in(vms->gic,
836 intidbase + ARCH_GIC_MAINT_IRQ);
837 sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq);
838 }
839
840 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
841 qdev_get_gpio_in(vms->gic, intidbase
842 + VIRTUAL_PMU_IRQ));
843
844 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
845 sysbus_connect_irq(gicbusdev, i + smp_cpus,
846 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
847 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
848 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
849 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
850 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
851 }
852
853 fdt_add_gic_node(vms);
854
855 if (vms->gic_version != VIRT_GIC_VERSION_2 && vms->its) {
856 create_its(vms);
857 } else if (vms->gic_version == VIRT_GIC_VERSION_2) {
858 create_v2m(vms);
859 }
860 }
861
862 static void create_uart(const VirtMachineState *vms, int uart,
863 MemoryRegion *mem, Chardev *chr)
864 {
865 char *nodename;
866 hwaddr base = vms->memmap[uart].base;
867 hwaddr size = vms->memmap[uart].size;
868 int irq = vms->irqmap[uart];
869 const char compat[] = "arm,pl011\0arm,primecell";
870 const char clocknames[] = "uartclk\0apb_pclk";
871 DeviceState *dev = qdev_new(TYPE_PL011);
872 SysBusDevice *s = SYS_BUS_DEVICE(dev);
873 MachineState *ms = MACHINE(vms);
874
875 qdev_prop_set_chr(dev, "chardev", chr);
876 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
877 memory_region_add_subregion(mem, base,
878 sysbus_mmio_get_region(s, 0));
879 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
880
881 nodename = g_strdup_printf("/pl011@%" PRIx64, base);
882 qemu_fdt_add_subnode(ms->fdt, nodename);
883 /* Note that we can't use setprop_string because of the embedded NUL */
884 qemu_fdt_setprop(ms->fdt, nodename, "compatible",
885 compat, sizeof(compat));
886 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
887 2, base, 2, size);
888 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
889 GIC_FDT_IRQ_TYPE_SPI, irq,
890 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
891 qemu_fdt_setprop_cells(ms->fdt, nodename, "clocks",
892 vms->clock_phandle, vms->clock_phandle);
893 qemu_fdt_setprop(ms->fdt, nodename, "clock-names",
894 clocknames, sizeof(clocknames));
895
896 if (uart == VIRT_UART) {
897 qemu_fdt_setprop_string(ms->fdt, "/chosen", "stdout-path", nodename);
898 } else {
899 /* Mark as not usable by the normal world */
900 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
901 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
902
903 qemu_fdt_setprop_string(ms->fdt, "/secure-chosen", "stdout-path",
904 nodename);
905 }
906
907 g_free(nodename);
908 }
909
910 static void create_rtc(const VirtMachineState *vms)
911 {
912 char *nodename;
913 hwaddr base = vms->memmap[VIRT_RTC].base;
914 hwaddr size = vms->memmap[VIRT_RTC].size;
915 int irq = vms->irqmap[VIRT_RTC];
916 const char compat[] = "arm,pl031\0arm,primecell";
917 MachineState *ms = MACHINE(vms);
918
919 sysbus_create_simple("pl031", base, qdev_get_gpio_in(vms->gic, irq));
920
921 nodename = g_strdup_printf("/pl031@%" PRIx64, base);
922 qemu_fdt_add_subnode(ms->fdt, nodename);
923 qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
924 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
925 2, base, 2, size);
926 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
927 GIC_FDT_IRQ_TYPE_SPI, irq,
928 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
929 qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
930 qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
931 g_free(nodename);
932 }
933
934 static DeviceState *gpio_key_dev;
935 static void virt_powerdown_req(Notifier *n, void *opaque)
936 {
937 VirtMachineState *s = container_of(n, VirtMachineState, powerdown_notifier);
938
939 if (s->acpi_dev) {
940 acpi_send_event(s->acpi_dev, ACPI_POWER_DOWN_STATUS);
941 } else {
942 /* use gpio Pin 3 for power button event */
943 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
944 }
945 }
946
947 static void create_gpio_keys(char *fdt, DeviceState *pl061_dev,
948 uint32_t phandle)
949 {
950 gpio_key_dev = sysbus_create_simple("gpio-key", -1,
951 qdev_get_gpio_in(pl061_dev, 3));
952
953 qemu_fdt_add_subnode(fdt, "/gpio-keys");
954 qemu_fdt_setprop_string(fdt, "/gpio-keys", "compatible", "gpio-keys");
955
956 qemu_fdt_add_subnode(fdt, "/gpio-keys/poweroff");
957 qemu_fdt_setprop_string(fdt, "/gpio-keys/poweroff",
958 "label", "GPIO Key Poweroff");
959 qemu_fdt_setprop_cell(fdt, "/gpio-keys/poweroff", "linux,code",
960 KEY_POWER);
961 qemu_fdt_setprop_cells(fdt, "/gpio-keys/poweroff",
962 "gpios", phandle, 3, 0);
963 }
964
965 #define SECURE_GPIO_POWEROFF 0
966 #define SECURE_GPIO_RESET 1
967
968 static void create_secure_gpio_pwr(char *fdt, DeviceState *pl061_dev,
969 uint32_t phandle)
970 {
971 DeviceState *gpio_pwr_dev;
972
973 /* gpio-pwr */
974 gpio_pwr_dev = sysbus_create_simple("gpio-pwr", -1, NULL);
975
976 /* connect secure pl061 to gpio-pwr */
977 qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_RESET,
978 qdev_get_gpio_in_named(gpio_pwr_dev, "reset", 0));
979 qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_POWEROFF,
980 qdev_get_gpio_in_named(gpio_pwr_dev, "shutdown", 0));
981
982 qemu_fdt_add_subnode(fdt, "/gpio-poweroff");
983 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "compatible",
984 "gpio-poweroff");
985 qemu_fdt_setprop_cells(fdt, "/gpio-poweroff",
986 "gpios", phandle, SECURE_GPIO_POWEROFF, 0);
987 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "status", "disabled");
988 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "secure-status",
989 "okay");
990
991 qemu_fdt_add_subnode(fdt, "/gpio-restart");
992 qemu_fdt_setprop_string(fdt, "/gpio-restart", "compatible",
993 "gpio-restart");
994 qemu_fdt_setprop_cells(fdt, "/gpio-restart",
995 "gpios", phandle, SECURE_GPIO_RESET, 0);
996 qemu_fdt_setprop_string(fdt, "/gpio-restart", "status", "disabled");
997 qemu_fdt_setprop_string(fdt, "/gpio-restart", "secure-status",
998 "okay");
999 }
1000
1001 static void create_gpio_devices(const VirtMachineState *vms, int gpio,
1002 MemoryRegion *mem)
1003 {
1004 char *nodename;
1005 DeviceState *pl061_dev;
1006 hwaddr base = vms->memmap[gpio].base;
1007 hwaddr size = vms->memmap[gpio].size;
1008 int irq = vms->irqmap[gpio];
1009 const char compat[] = "arm,pl061\0arm,primecell";
1010 SysBusDevice *s;
1011 MachineState *ms = MACHINE(vms);
1012
1013 pl061_dev = qdev_new("pl061");
1014 /* Pull lines down to 0 if not driven by the PL061 */
1015 qdev_prop_set_uint32(pl061_dev, "pullups", 0);
1016 qdev_prop_set_uint32(pl061_dev, "pulldowns", 0xff);
1017 s = SYS_BUS_DEVICE(pl061_dev);
1018 sysbus_realize_and_unref(s, &error_fatal);
1019 memory_region_add_subregion(mem, base, sysbus_mmio_get_region(s, 0));
1020 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
1021
1022 uint32_t phandle = qemu_fdt_alloc_phandle(ms->fdt);
1023 nodename = g_strdup_printf("/pl061@%" PRIx64, base);
1024 qemu_fdt_add_subnode(ms->fdt, nodename);
1025 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1026 2, base, 2, size);
1027 qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
1028 qemu_fdt_setprop_cell(ms->fdt, nodename, "#gpio-cells", 2);
1029 qemu_fdt_setprop(ms->fdt, nodename, "gpio-controller", NULL, 0);
1030 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
1031 GIC_FDT_IRQ_TYPE_SPI, irq,
1032 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
1033 qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
1034 qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
1035 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", phandle);
1036
1037 if (gpio != VIRT_GPIO) {
1038 /* Mark as not usable by the normal world */
1039 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1040 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1041 }
1042 g_free(nodename);
1043
1044 /* Child gpio devices */
1045 if (gpio == VIRT_GPIO) {
1046 create_gpio_keys(ms->fdt, pl061_dev, phandle);
1047 } else {
1048 create_secure_gpio_pwr(ms->fdt, pl061_dev, phandle);
1049 }
1050 }
1051
1052 static void create_virtio_devices(const VirtMachineState *vms)
1053 {
1054 int i;
1055 hwaddr size = vms->memmap[VIRT_MMIO].size;
1056 MachineState *ms = MACHINE(vms);
1057
1058 /* We create the transports in forwards order. Since qbus_realize()
1059 * prepends (not appends) new child buses, the incrementing loop below will
1060 * create a list of virtio-mmio buses with decreasing base addresses.
1061 *
1062 * When a -device option is processed from the command line,
1063 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
1064 * order. The upshot is that -device options in increasing command line
1065 * order are mapped to virtio-mmio buses with decreasing base addresses.
1066 *
1067 * When this code was originally written, that arrangement ensured that the
1068 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
1069 * the first -device on the command line. (The end-to-end order is a
1070 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
1071 * guest kernel's name-to-address assignment strategy.)
1072 *
1073 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
1074 * the message, if not necessarily the code, of commit 70161ff336.
1075 * Therefore the loop now establishes the inverse of the original intent.
1076 *
1077 * Unfortunately, we can't counteract the kernel change by reversing the
1078 * loop; it would break existing command lines.
1079 *
1080 * In any case, the kernel makes no guarantee about the stability of
1081 * enumeration order of virtio devices (as demonstrated by it changing
1082 * between kernel versions). For reliable and stable identification
1083 * of disks users must use UUIDs or similar mechanisms.
1084 */
1085 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
1086 int irq = vms->irqmap[VIRT_MMIO] + i;
1087 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
1088
1089 sysbus_create_simple("virtio-mmio", base,
1090 qdev_get_gpio_in(vms->gic, irq));
1091 }
1092
1093 /* We add dtb nodes in reverse order so that they appear in the finished
1094 * device tree lowest address first.
1095 *
1096 * Note that this mapping is independent of the loop above. The previous
1097 * loop influences virtio device to virtio transport assignment, whereas
1098 * this loop controls how virtio transports are laid out in the dtb.
1099 */
1100 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
1101 char *nodename;
1102 int irq = vms->irqmap[VIRT_MMIO] + i;
1103 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
1104
1105 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
1106 qemu_fdt_add_subnode(ms->fdt, nodename);
1107 qemu_fdt_setprop_string(ms->fdt, nodename,
1108 "compatible", "virtio,mmio");
1109 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1110 2, base, 2, size);
1111 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
1112 GIC_FDT_IRQ_TYPE_SPI, irq,
1113 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1114 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1115 g_free(nodename);
1116 }
1117 }
1118
1119 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
1120
1121 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms,
1122 const char *name,
1123 const char *alias_prop_name)
1124 {
1125 /*
1126 * Create a single flash device. We use the same parameters as
1127 * the flash devices on the Versatile Express board.
1128 */
1129 DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
1130
1131 qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
1132 qdev_prop_set_uint8(dev, "width", 4);
1133 qdev_prop_set_uint8(dev, "device-width", 2);
1134 qdev_prop_set_bit(dev, "big-endian", false);
1135 qdev_prop_set_uint16(dev, "id0", 0x89);
1136 qdev_prop_set_uint16(dev, "id1", 0x18);
1137 qdev_prop_set_uint16(dev, "id2", 0x00);
1138 qdev_prop_set_uint16(dev, "id3", 0x00);
1139 qdev_prop_set_string(dev, "name", name);
1140 object_property_add_child(OBJECT(vms), name, OBJECT(dev));
1141 object_property_add_alias(OBJECT(vms), alias_prop_name,
1142 OBJECT(dev), "drive");
1143 return PFLASH_CFI01(dev);
1144 }
1145
1146 static void virt_flash_create(VirtMachineState *vms)
1147 {
1148 vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0");
1149 vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1");
1150 }
1151
1152 static void virt_flash_map1(PFlashCFI01 *flash,
1153 hwaddr base, hwaddr size,
1154 MemoryRegion *sysmem)
1155 {
1156 DeviceState *dev = DEVICE(flash);
1157
1158 assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE));
1159 assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
1160 qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
1161 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1162
1163 memory_region_add_subregion(sysmem, base,
1164 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
1165 0));
1166 }
1167
1168 static void virt_flash_map(VirtMachineState *vms,
1169 MemoryRegion *sysmem,
1170 MemoryRegion *secure_sysmem)
1171 {
1172 /*
1173 * Map two flash devices to fill the VIRT_FLASH space in the memmap.
1174 * sysmem is the system memory space. secure_sysmem is the secure view
1175 * of the system, and the first flash device should be made visible only
1176 * there. The second flash device is visible to both secure and nonsecure.
1177 * If sysmem == secure_sysmem this means there is no separate Secure
1178 * address space and both flash devices are generally visible.
1179 */
1180 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1181 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1182
1183 virt_flash_map1(vms->flash[0], flashbase, flashsize,
1184 secure_sysmem);
1185 virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize,
1186 sysmem);
1187 }
1188
1189 static void virt_flash_fdt(VirtMachineState *vms,
1190 MemoryRegion *sysmem,
1191 MemoryRegion *secure_sysmem)
1192 {
1193 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1194 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1195 MachineState *ms = MACHINE(vms);
1196 char *nodename;
1197
1198 if (sysmem == secure_sysmem) {
1199 /* Report both flash devices as a single node in the DT */
1200 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
1201 qemu_fdt_add_subnode(ms->fdt, nodename);
1202 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1203 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1204 2, flashbase, 2, flashsize,
1205 2, flashbase + flashsize, 2, flashsize);
1206 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1207 g_free(nodename);
1208 } else {
1209 /*
1210 * Report the devices as separate nodes so we can mark one as
1211 * only visible to the secure world.
1212 */
1213 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
1214 qemu_fdt_add_subnode(ms->fdt, nodename);
1215 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1216 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1217 2, flashbase, 2, flashsize);
1218 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1219 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1220 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1221 g_free(nodename);
1222
1223 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase + flashsize);
1224 qemu_fdt_add_subnode(ms->fdt, nodename);
1225 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1226 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1227 2, flashbase + flashsize, 2, flashsize);
1228 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1229 g_free(nodename);
1230 }
1231 }
1232
1233 static bool virt_firmware_init(VirtMachineState *vms,
1234 MemoryRegion *sysmem,
1235 MemoryRegion *secure_sysmem)
1236 {
1237 int i;
1238 const char *bios_name;
1239 BlockBackend *pflash_blk0;
1240
1241 /* Map legacy -drive if=pflash to machine properties */
1242 for (i = 0; i < ARRAY_SIZE(vms->flash); i++) {
1243 pflash_cfi01_legacy_drive(vms->flash[i],
1244 drive_get(IF_PFLASH, 0, i));
1245 }
1246
1247 virt_flash_map(vms, sysmem, secure_sysmem);
1248
1249 pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]);
1250
1251 bios_name = MACHINE(vms)->firmware;
1252 if (bios_name) {
1253 char *fname;
1254 MemoryRegion *mr;
1255 int image_size;
1256
1257 if (pflash_blk0) {
1258 error_report("The contents of the first flash device may be "
1259 "specified with -bios or with -drive if=pflash... "
1260 "but you cannot use both options at once");
1261 exit(1);
1262 }
1263
1264 /* Fall back to -bios */
1265
1266 fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1267 if (!fname) {
1268 error_report("Could not find ROM image '%s'", bios_name);
1269 exit(1);
1270 }
1271 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0);
1272 image_size = load_image_mr(fname, mr);
1273 g_free(fname);
1274 if (image_size < 0) {
1275 error_report("Could not load ROM image '%s'", bios_name);
1276 exit(1);
1277 }
1278 }
1279
1280 return pflash_blk0 || bios_name;
1281 }
1282
1283 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
1284 {
1285 MachineState *ms = MACHINE(vms);
1286 hwaddr base = vms->memmap[VIRT_FW_CFG].base;
1287 hwaddr size = vms->memmap[VIRT_FW_CFG].size;
1288 FWCfgState *fw_cfg;
1289 char *nodename;
1290
1291 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
1292 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus);
1293
1294 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
1295 qemu_fdt_add_subnode(ms->fdt, nodename);
1296 qemu_fdt_setprop_string(ms->fdt, nodename,
1297 "compatible", "qemu,fw-cfg-mmio");
1298 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1299 2, base, 2, size);
1300 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1301 g_free(nodename);
1302 return fw_cfg;
1303 }
1304
1305 static void create_pcie_irq_map(const MachineState *ms,
1306 uint32_t gic_phandle,
1307 int first_irq, const char *nodename)
1308 {
1309 int devfn, pin;
1310 uint32_t full_irq_map[4 * 4 * 10] = { 0 };
1311 uint32_t *irq_map = full_irq_map;
1312
1313 for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
1314 for (pin = 0; pin < 4; pin++) {
1315 int irq_type = GIC_FDT_IRQ_TYPE_SPI;
1316 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
1317 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
1318 int i;
1319
1320 uint32_t map[] = {
1321 devfn << 8, 0, 0, /* devfn */
1322 pin + 1, /* PCI pin */
1323 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
1324
1325 /* Convert map to big endian */
1326 for (i = 0; i < 10; i++) {
1327 irq_map[i] = cpu_to_be32(map[i]);
1328 }
1329 irq_map += 10;
1330 }
1331 }
1332
1333 qemu_fdt_setprop(ms->fdt, nodename, "interrupt-map",
1334 full_irq_map, sizeof(full_irq_map));
1335
1336 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupt-map-mask",
1337 cpu_to_be16(PCI_DEVFN(3, 0)), /* Slot 3 */
1338 0, 0,
1339 0x7 /* PCI irq */);
1340 }
1341
1342 static void create_smmu(const VirtMachineState *vms,
1343 PCIBus *bus)
1344 {
1345 char *node;
1346 const char compat[] = "arm,smmu-v3";
1347 int irq = vms->irqmap[VIRT_SMMU];
1348 int i;
1349 hwaddr base = vms->memmap[VIRT_SMMU].base;
1350 hwaddr size = vms->memmap[VIRT_SMMU].size;
1351 const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
1352 DeviceState *dev;
1353 MachineState *ms = MACHINE(vms);
1354
1355 if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
1356 return;
1357 }
1358
1359 dev = qdev_new(TYPE_ARM_SMMUV3);
1360
1361 object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus),
1362 &error_abort);
1363 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1364 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
1365 for (i = 0; i < NUM_SMMU_IRQS; i++) {
1366 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1367 qdev_get_gpio_in(vms->gic, irq + i));
1368 }
1369
1370 node = g_strdup_printf("/smmuv3@%" PRIx64, base);
1371 qemu_fdt_add_subnode(ms->fdt, node);
1372 qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
1373 qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg", 2, base, 2, size);
1374
1375 qemu_fdt_setprop_cells(ms->fdt, node, "interrupts",
1376 GIC_FDT_IRQ_TYPE_SPI, irq , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1377 GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1378 GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1379 GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1380
1381 qemu_fdt_setprop(ms->fdt, node, "interrupt-names", irq_names,
1382 sizeof(irq_names));
1383
1384 qemu_fdt_setprop(ms->fdt, node, "dma-coherent", NULL, 0);
1385
1386 qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
1387
1388 qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
1389 g_free(node);
1390 }
1391
1392 static void create_virtio_iommu_dt_bindings(VirtMachineState *vms)
1393 {
1394 const char compat[] = "virtio,pci-iommu\0pci1af4,1057";
1395 uint16_t bdf = vms->virtio_iommu_bdf;
1396 MachineState *ms = MACHINE(vms);
1397 char *node;
1398
1399 vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
1400
1401 node = g_strdup_printf("%s/virtio_iommu@%x,%x", vms->pciehb_nodename,
1402 PCI_SLOT(bdf), PCI_FUNC(bdf));
1403 qemu_fdt_add_subnode(ms->fdt, node);
1404 qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
1405 qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg",
1406 1, bdf << 8, 1, 0, 1, 0,
1407 1, 0, 1, 0);
1408
1409 qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
1410 qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
1411 g_free(node);
1412
1413 qemu_fdt_setprop_cells(ms->fdt, vms->pciehb_nodename, "iommu-map",
1414 0x0, vms->iommu_phandle, 0x0, bdf,
1415 bdf + 1, vms->iommu_phandle, bdf + 1, 0xffff - bdf);
1416 }
1417
1418 static void create_pcie(VirtMachineState *vms)
1419 {
1420 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1421 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
1422 hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base;
1423 hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size;
1424 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1425 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
1426 hwaddr base_ecam, size_ecam;
1427 hwaddr base = base_mmio;
1428 int nr_pcie_buses;
1429 int irq = vms->irqmap[VIRT_PCIE];
1430 MemoryRegion *mmio_alias;
1431 MemoryRegion *mmio_reg;
1432 MemoryRegion *ecam_alias;
1433 MemoryRegion *ecam_reg;
1434 DeviceState *dev;
1435 char *nodename;
1436 int i, ecam_id;
1437 PCIHostState *pci;
1438 MachineState *ms = MACHINE(vms);
1439 MachineClass *mc = MACHINE_GET_CLASS(ms);
1440
1441 dev = qdev_new(TYPE_GPEX_HOST);
1442 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1443
1444 ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
1445 base_ecam = vms->memmap[ecam_id].base;
1446 size_ecam = vms->memmap[ecam_id].size;
1447 nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
1448 /* Map only the first size_ecam bytes of ECAM space */
1449 ecam_alias = g_new0(MemoryRegion, 1);
1450 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1451 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1452 ecam_reg, 0, size_ecam);
1453 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1454
1455 /* Map the MMIO window into system address space so as to expose
1456 * the section of PCI MMIO space which starts at the same base address
1457 * (ie 1:1 mapping for that part of PCI MMIO space visible through
1458 * the window).
1459 */
1460 mmio_alias = g_new0(MemoryRegion, 1);
1461 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1462 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1463 mmio_reg, base_mmio, size_mmio);
1464 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1465
1466 if (vms->highmem_mmio) {
1467 /* Map high MMIO space */
1468 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1469
1470 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1471 mmio_reg, base_mmio_high, size_mmio_high);
1472 memory_region_add_subregion(get_system_memory(), base_mmio_high,
1473 high_mmio_alias);
1474 }
1475
1476 /* Map IO port space */
1477 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1478
1479 for (i = 0; i < GPEX_NUM_IRQS; i++) {
1480 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1481 qdev_get_gpio_in(vms->gic, irq + i));
1482 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
1483 }
1484
1485 pci = PCI_HOST_BRIDGE(dev);
1486 pci->bypass_iommu = vms->default_bus_bypass_iommu;
1487 vms->bus = pci->bus;
1488 if (vms->bus) {
1489 for (i = 0; i < nb_nics; i++) {
1490 pci_nic_init_nofail(&nd_table[i], pci->bus, mc->default_nic, NULL);
1491 }
1492 }
1493
1494 nodename = vms->pciehb_nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1495 qemu_fdt_add_subnode(ms->fdt, nodename);
1496 qemu_fdt_setprop_string(ms->fdt, nodename,
1497 "compatible", "pci-host-ecam-generic");
1498 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "pci");
1499 qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 3);
1500 qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 2);
1501 qemu_fdt_setprop_cell(ms->fdt, nodename, "linux,pci-domain", 0);
1502 qemu_fdt_setprop_cells(ms->fdt, nodename, "bus-range", 0,
1503 nr_pcie_buses - 1);
1504 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1505
1506 if (vms->msi_phandle) {
1507 qemu_fdt_setprop_cells(ms->fdt, nodename, "msi-map",
1508 0, vms->msi_phandle, 0, 0x10000);
1509 }
1510
1511 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1512 2, base_ecam, 2, size_ecam);
1513
1514 if (vms->highmem_mmio) {
1515 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
1516 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1517 2, base_pio, 2, size_pio,
1518 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1519 2, base_mmio, 2, size_mmio,
1520 1, FDT_PCI_RANGE_MMIO_64BIT,
1521 2, base_mmio_high,
1522 2, base_mmio_high, 2, size_mmio_high);
1523 } else {
1524 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
1525 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1526 2, base_pio, 2, size_pio,
1527 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1528 2, base_mmio, 2, size_mmio);
1529 }
1530
1531 qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 1);
1532 create_pcie_irq_map(ms, vms->gic_phandle, irq, nodename);
1533
1534 if (vms->iommu) {
1535 vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
1536
1537 switch (vms->iommu) {
1538 case VIRT_IOMMU_SMMUV3:
1539 create_smmu(vms, vms->bus);
1540 qemu_fdt_setprop_cells(ms->fdt, nodename, "iommu-map",
1541 0x0, vms->iommu_phandle, 0x0, 0x10000);
1542 break;
1543 default:
1544 g_assert_not_reached();
1545 }
1546 }
1547 }
1548
1549 static void create_platform_bus(VirtMachineState *vms)
1550 {
1551 DeviceState *dev;
1552 SysBusDevice *s;
1553 int i;
1554 MemoryRegion *sysmem = get_system_memory();
1555
1556 dev = qdev_new(TYPE_PLATFORM_BUS_DEVICE);
1557 dev->id = g_strdup(TYPE_PLATFORM_BUS_DEVICE);
1558 qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
1559 qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
1560 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1561 vms->platform_bus_dev = dev;
1562
1563 s = SYS_BUS_DEVICE(dev);
1564 for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
1565 int irq = vms->irqmap[VIRT_PLATFORM_BUS] + i;
1566 sysbus_connect_irq(s, i, qdev_get_gpio_in(vms->gic, irq));
1567 }
1568
1569 memory_region_add_subregion(sysmem,
1570 vms->memmap[VIRT_PLATFORM_BUS].base,
1571 sysbus_mmio_get_region(s, 0));
1572 }
1573
1574 static void create_tag_ram(MemoryRegion *tag_sysmem,
1575 hwaddr base, hwaddr size,
1576 const char *name)
1577 {
1578 MemoryRegion *tagram = g_new(MemoryRegion, 1);
1579
1580 memory_region_init_ram(tagram, NULL, name, size / 32, &error_fatal);
1581 memory_region_add_subregion(tag_sysmem, base / 32, tagram);
1582 }
1583
1584 static void create_secure_ram(VirtMachineState *vms,
1585 MemoryRegion *secure_sysmem,
1586 MemoryRegion *secure_tag_sysmem)
1587 {
1588 MemoryRegion *secram = g_new(MemoryRegion, 1);
1589 char *nodename;
1590 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1591 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1592 MachineState *ms = MACHINE(vms);
1593
1594 memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1595 &error_fatal);
1596 memory_region_add_subregion(secure_sysmem, base, secram);
1597
1598 nodename = g_strdup_printf("/secram@%" PRIx64, base);
1599 qemu_fdt_add_subnode(ms->fdt, nodename);
1600 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "memory");
1601 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 2, base, 2, size);
1602 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1603 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1604
1605 if (secure_tag_sysmem) {
1606 create_tag_ram(secure_tag_sysmem, base, size, "mach-virt.secure-tag");
1607 }
1608
1609 g_free(nodename);
1610 }
1611
1612 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1613 {
1614 const VirtMachineState *board = container_of(binfo, VirtMachineState,
1615 bootinfo);
1616 MachineState *ms = MACHINE(board);
1617
1618
1619 *fdt_size = board->fdt_size;
1620 return ms->fdt;
1621 }
1622
1623 static void virt_build_smbios(VirtMachineState *vms)
1624 {
1625 MachineClass *mc = MACHINE_GET_CLASS(vms);
1626 MachineState *ms = MACHINE(vms);
1627 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1628 uint8_t *smbios_tables, *smbios_anchor;
1629 size_t smbios_tables_len, smbios_anchor_len;
1630 struct smbios_phys_mem_area mem_array;
1631 const char *product = "QEMU Virtual Machine";
1632
1633 if (kvm_enabled()) {
1634 product = "KVM Virtual Machine";
1635 }
1636
1637 smbios_set_defaults("QEMU", product,
1638 vmc->smbios_old_sys_ver ? "1.0" : mc->name, false,
1639 true, SMBIOS_ENTRY_POINT_TYPE_64);
1640
1641 /* build the array of physical mem area from base_memmap */
1642 mem_array.address = vms->memmap[VIRT_MEM].base;
1643 mem_array.length = ms->ram_size;
1644
1645 smbios_get_tables(ms, &mem_array, 1,
1646 &smbios_tables, &smbios_tables_len,
1647 &smbios_anchor, &smbios_anchor_len,
1648 &error_fatal);
1649
1650 if (smbios_anchor) {
1651 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1652 smbios_tables, smbios_tables_len);
1653 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1654 smbios_anchor, smbios_anchor_len);
1655 }
1656 }
1657
1658 static
1659 void virt_machine_done(Notifier *notifier, void *data)
1660 {
1661 VirtMachineState *vms = container_of(notifier, VirtMachineState,
1662 machine_done);
1663 MachineState *ms = MACHINE(vms);
1664 ARMCPU *cpu = ARM_CPU(first_cpu);
1665 struct arm_boot_info *info = &vms->bootinfo;
1666 AddressSpace *as = arm_boot_address_space(cpu, info);
1667
1668 /*
1669 * If the user provided a dtb, we assume the dynamic sysbus nodes
1670 * already are integrated there. This corresponds to a use case where
1671 * the dynamic sysbus nodes are complex and their generation is not yet
1672 * supported. In that case the user can take charge of the guest dt
1673 * while qemu takes charge of the qom stuff.
1674 */
1675 if (info->dtb_filename == NULL) {
1676 platform_bus_add_all_fdt_nodes(ms->fdt, "/intc",
1677 vms->memmap[VIRT_PLATFORM_BUS].base,
1678 vms->memmap[VIRT_PLATFORM_BUS].size,
1679 vms->irqmap[VIRT_PLATFORM_BUS]);
1680 }
1681 if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) {
1682 exit(1);
1683 }
1684
1685 fw_cfg_add_extra_pci_roots(vms->bus, vms->fw_cfg);
1686
1687 virt_acpi_setup(vms);
1688 virt_build_smbios(vms);
1689 }
1690
1691 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1692 {
1693 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1694 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1695
1696 if (!vmc->disallow_affinity_adjustment) {
1697 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1698 * GIC's target-list limitations. 32-bit KVM hosts currently
1699 * always create clusters of 4 CPUs, but that is expected to
1700 * change when they gain support for gicv3. When KVM is enabled
1701 * it will override the changes we make here, therefore our
1702 * purposes are to make TCG consistent (with 64-bit KVM hosts)
1703 * and to improve SGI efficiency.
1704 */
1705 if (vms->gic_version == VIRT_GIC_VERSION_2) {
1706 clustersz = GIC_TARGETLIST_BITS;
1707 } else {
1708 clustersz = GICV3_TARGETLIST_BITS;
1709 }
1710 }
1711 return arm_cpu_mp_affinity(idx, clustersz);
1712 }
1713
1714 static inline bool *virt_get_high_memmap_enabled(VirtMachineState *vms,
1715 int index)
1716 {
1717 bool *enabled_array[] = {
1718 &vms->highmem_redists,
1719 &vms->highmem_ecam,
1720 &vms->highmem_mmio,
1721 };
1722
1723 assert(ARRAY_SIZE(extended_memmap) - VIRT_LOWMEMMAP_LAST ==
1724 ARRAY_SIZE(enabled_array));
1725 assert(index - VIRT_LOWMEMMAP_LAST < ARRAY_SIZE(enabled_array));
1726
1727 return enabled_array[index - VIRT_LOWMEMMAP_LAST];
1728 }
1729
1730 static void virt_set_high_memmap(VirtMachineState *vms,
1731 hwaddr base, int pa_bits)
1732 {
1733 hwaddr region_base, region_size;
1734 bool *region_enabled, fits;
1735 int i;
1736
1737 for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) {
1738 region_enabled = virt_get_high_memmap_enabled(vms, i);
1739 region_base = ROUND_UP(base, extended_memmap[i].size);
1740 region_size = extended_memmap[i].size;
1741
1742 vms->memmap[i].base = region_base;
1743 vms->memmap[i].size = region_size;
1744
1745 /*
1746 * Check each device to see if it fits in the PA space,
1747 * moving highest_gpa as we go. For compatibility, move
1748 * highest_gpa for disabled fitting devices as well, if
1749 * the compact layout has been disabled.
1750 *
1751 * For each device that doesn't fit, disable it.
1752 */
1753 fits = (region_base + region_size) <= BIT_ULL(pa_bits);
1754 *region_enabled &= fits;
1755 if (vms->highmem_compact && !*region_enabled) {
1756 continue;
1757 }
1758
1759 base = region_base + region_size;
1760 if (fits) {
1761 vms->highest_gpa = base - 1;
1762 }
1763 }
1764 }
1765
1766 static void virt_set_memmap(VirtMachineState *vms, int pa_bits)
1767 {
1768 MachineState *ms = MACHINE(vms);
1769 hwaddr base, device_memory_base, device_memory_size, memtop;
1770 int i;
1771
1772 vms->memmap = extended_memmap;
1773
1774 for (i = 0; i < ARRAY_SIZE(base_memmap); i++) {
1775 vms->memmap[i] = base_memmap[i];
1776 }
1777
1778 if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) {
1779 error_report("unsupported number of memory slots: %"PRIu64,
1780 ms->ram_slots);
1781 exit(EXIT_FAILURE);
1782 }
1783
1784 /*
1785 * !highmem is exactly the same as limiting the PA space to 32bit,
1786 * irrespective of the underlying capabilities of the HW.
1787 */
1788 if (!vms->highmem) {
1789 pa_bits = 32;
1790 }
1791
1792 /*
1793 * We compute the base of the high IO region depending on the
1794 * amount of initial and device memory. The device memory start/size
1795 * is aligned on 1GiB. We never put the high IO region below 256GiB
1796 * so that if maxram_size is < 255GiB we keep the legacy memory map.
1797 * The device region size assumes 1GiB page max alignment per slot.
1798 */
1799 device_memory_base =
1800 ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB);
1801 device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB;
1802
1803 /* Base address of the high IO region */
1804 memtop = base = device_memory_base + ROUND_UP(device_memory_size, GiB);
1805 if (memtop > BIT_ULL(pa_bits)) {
1806 error_report("Addressing limited to %d bits, but memory exceeds it by %llu bytes\n",
1807 pa_bits, memtop - BIT_ULL(pa_bits));
1808 exit(EXIT_FAILURE);
1809 }
1810 if (base < device_memory_base) {
1811 error_report("maxmem/slots too huge");
1812 exit(EXIT_FAILURE);
1813 }
1814 if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) {
1815 base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES;
1816 }
1817
1818 /* We know for sure that at least the memory fits in the PA space */
1819 vms->highest_gpa = memtop - 1;
1820
1821 virt_set_high_memmap(vms, base, pa_bits);
1822
1823 if (device_memory_size > 0) {
1824 machine_memory_devices_init(ms, device_memory_base, device_memory_size);
1825 }
1826 }
1827
1828 static VirtGICType finalize_gic_version_do(const char *accel_name,
1829 VirtGICType gic_version,
1830 int gics_supported,
1831 unsigned int max_cpus)
1832 {
1833 /* Convert host/max/nosel to GIC version number */
1834 switch (gic_version) {
1835 case VIRT_GIC_VERSION_HOST:
1836 if (!kvm_enabled()) {
1837 error_report("gic-version=host requires KVM");
1838 exit(1);
1839 }
1840
1841 /* For KVM, gic-version=host means gic-version=max */
1842 return finalize_gic_version_do(accel_name, VIRT_GIC_VERSION_MAX,
1843 gics_supported, max_cpus);
1844 case VIRT_GIC_VERSION_MAX:
1845 if (gics_supported & VIRT_GIC_VERSION_4_MASK) {
1846 gic_version = VIRT_GIC_VERSION_4;
1847 } else if (gics_supported & VIRT_GIC_VERSION_3_MASK) {
1848 gic_version = VIRT_GIC_VERSION_3;
1849 } else {
1850 gic_version = VIRT_GIC_VERSION_2;
1851 }
1852 break;
1853 case VIRT_GIC_VERSION_NOSEL:
1854 if ((gics_supported & VIRT_GIC_VERSION_2_MASK) &&
1855 max_cpus <= GIC_NCPU) {
1856 gic_version = VIRT_GIC_VERSION_2;
1857 } else if (gics_supported & VIRT_GIC_VERSION_3_MASK) {
1858 /*
1859 * in case the host does not support v2 emulation or
1860 * the end-user requested more than 8 VCPUs we now default
1861 * to v3. In any case defaulting to v2 would be broken.
1862 */
1863 gic_version = VIRT_GIC_VERSION_3;
1864 } else if (max_cpus > GIC_NCPU) {
1865 error_report("%s only supports GICv2 emulation but more than 8 "
1866 "vcpus are requested", accel_name);
1867 exit(1);
1868 }
1869 break;
1870 case VIRT_GIC_VERSION_2:
1871 case VIRT_GIC_VERSION_3:
1872 case VIRT_GIC_VERSION_4:
1873 break;
1874 }
1875
1876 /* Check chosen version is effectively supported */
1877 switch (gic_version) {
1878 case VIRT_GIC_VERSION_2:
1879 if (!(gics_supported & VIRT_GIC_VERSION_2_MASK)) {
1880 error_report("%s does not support GICv2 emulation", accel_name);
1881 exit(1);
1882 }
1883 break;
1884 case VIRT_GIC_VERSION_3:
1885 if (!(gics_supported & VIRT_GIC_VERSION_3_MASK)) {
1886 error_report("%s does not support GICv3 emulation", accel_name);
1887 exit(1);
1888 }
1889 break;
1890 case VIRT_GIC_VERSION_4:
1891 if (!(gics_supported & VIRT_GIC_VERSION_4_MASK)) {
1892 error_report("%s does not support GICv4 emulation, is virtualization=on?",
1893 accel_name);
1894 exit(1);
1895 }
1896 break;
1897 default:
1898 error_report("logic error in finalize_gic_version");
1899 exit(1);
1900 break;
1901 }
1902
1903 return gic_version;
1904 }
1905
1906 /*
1907 * finalize_gic_version - Determines the final gic_version
1908 * according to the gic-version property
1909 *
1910 * Default GIC type is v2
1911 */
1912 static void finalize_gic_version(VirtMachineState *vms)
1913 {
1914 const char *accel_name = current_accel_name();
1915 unsigned int max_cpus = MACHINE(vms)->smp.max_cpus;
1916 int gics_supported = 0;
1917
1918 /* Determine which GIC versions the current environment supports */
1919 if (kvm_enabled() && kvm_irqchip_in_kernel()) {
1920 int probe_bitmap = kvm_arm_vgic_probe();
1921
1922 if (!probe_bitmap) {
1923 error_report("Unable to determine GIC version supported by host");
1924 exit(1);
1925 }
1926
1927 if (probe_bitmap & KVM_ARM_VGIC_V2) {
1928 gics_supported |= VIRT_GIC_VERSION_2_MASK;
1929 }
1930 if (probe_bitmap & KVM_ARM_VGIC_V3) {
1931 gics_supported |= VIRT_GIC_VERSION_3_MASK;
1932 }
1933 } else if (kvm_enabled() && !kvm_irqchip_in_kernel()) {
1934 /* KVM w/o kernel irqchip can only deal with GICv2 */
1935 gics_supported |= VIRT_GIC_VERSION_2_MASK;
1936 accel_name = "KVM with kernel-irqchip=off";
1937 } else if (tcg_enabled() || hvf_enabled() || qtest_enabled()) {
1938 gics_supported |= VIRT_GIC_VERSION_2_MASK;
1939 if (module_object_class_by_name("arm-gicv3")) {
1940 gics_supported |= VIRT_GIC_VERSION_3_MASK;
1941 if (vms->virt) {
1942 /* GICv4 only makes sense if CPU has EL2 */
1943 gics_supported |= VIRT_GIC_VERSION_4_MASK;
1944 }
1945 }
1946 } else {
1947 error_report("Unsupported accelerator, can not determine GIC support");
1948 exit(1);
1949 }
1950
1951 /*
1952 * Then convert helpers like host/max to concrete GIC versions and ensure
1953 * the desired version is supported
1954 */
1955 vms->gic_version = finalize_gic_version_do(accel_name, vms->gic_version,
1956 gics_supported, max_cpus);
1957 }
1958
1959 /*
1960 * virt_cpu_post_init() must be called after the CPUs have
1961 * been realized and the GIC has been created.
1962 */
1963 static void virt_cpu_post_init(VirtMachineState *vms, MemoryRegion *sysmem)
1964 {
1965 int max_cpus = MACHINE(vms)->smp.max_cpus;
1966 bool aarch64, pmu, steal_time;
1967 CPUState *cpu;
1968
1969 aarch64 = object_property_get_bool(OBJECT(first_cpu), "aarch64", NULL);
1970 pmu = object_property_get_bool(OBJECT(first_cpu), "pmu", NULL);
1971 steal_time = object_property_get_bool(OBJECT(first_cpu),
1972 "kvm-steal-time", NULL);
1973
1974 if (kvm_enabled()) {
1975 hwaddr pvtime_reg_base = vms->memmap[VIRT_PVTIME].base;
1976 hwaddr pvtime_reg_size = vms->memmap[VIRT_PVTIME].size;
1977
1978 if (steal_time) {
1979 MemoryRegion *pvtime = g_new(MemoryRegion, 1);
1980 hwaddr pvtime_size = max_cpus * PVTIME_SIZE_PER_CPU;
1981
1982 /* The memory region size must be a multiple of host page size. */
1983 pvtime_size = REAL_HOST_PAGE_ALIGN(pvtime_size);
1984
1985 if (pvtime_size > pvtime_reg_size) {
1986 error_report("pvtime requires a %" HWADDR_PRId
1987 " byte memory region for %d CPUs,"
1988 " but only %" HWADDR_PRId " has been reserved",
1989 pvtime_size, max_cpus, pvtime_reg_size);
1990 exit(1);
1991 }
1992
1993 memory_region_init_ram(pvtime, NULL, "pvtime", pvtime_size, NULL);
1994 memory_region_add_subregion(sysmem, pvtime_reg_base, pvtime);
1995 }
1996
1997 CPU_FOREACH(cpu) {
1998 if (pmu) {
1999 assert(arm_feature(&ARM_CPU(cpu)->env, ARM_FEATURE_PMU));
2000 if (kvm_irqchip_in_kernel()) {
2001 kvm_arm_pmu_set_irq(cpu, VIRTUAL_PMU_IRQ);
2002 }
2003 kvm_arm_pmu_init(cpu);
2004 }
2005 if (steal_time) {
2006 kvm_arm_pvtime_init(cpu, pvtime_reg_base +
2007 cpu->cpu_index * PVTIME_SIZE_PER_CPU);
2008 }
2009 }
2010 } else {
2011 if (aarch64 && vms->highmem) {
2012 int requested_pa_size = 64 - clz64(vms->highest_gpa);
2013 int pamax = arm_pamax(ARM_CPU(first_cpu));
2014
2015 if (pamax < requested_pa_size) {
2016 error_report("VCPU supports less PA bits (%d) than "
2017 "requested by the memory map (%d)",
2018 pamax, requested_pa_size);
2019 exit(1);
2020 }
2021 }
2022 }
2023 }
2024
2025 static void machvirt_init(MachineState *machine)
2026 {
2027 VirtMachineState *vms = VIRT_MACHINE(machine);
2028 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
2029 MachineClass *mc = MACHINE_GET_CLASS(machine);
2030 const CPUArchIdList *possible_cpus;
2031 MemoryRegion *sysmem = get_system_memory();
2032 MemoryRegion *secure_sysmem = NULL;
2033 MemoryRegion *tag_sysmem = NULL;
2034 MemoryRegion *secure_tag_sysmem = NULL;
2035 int n, virt_max_cpus;
2036 bool firmware_loaded;
2037 bool aarch64 = true;
2038 bool has_ged = !vmc->no_ged;
2039 unsigned int smp_cpus = machine->smp.cpus;
2040 unsigned int max_cpus = machine->smp.max_cpus;
2041
2042 if (!cpu_type_valid(machine->cpu_type)) {
2043 error_report("mach-virt: CPU type %s not supported", machine->cpu_type);
2044 exit(1);
2045 }
2046
2047 possible_cpus = mc->possible_cpu_arch_ids(machine);
2048
2049 /*
2050 * In accelerated mode, the memory map is computed earlier in kvm_type()
2051 * to create a VM with the right number of IPA bits.
2052 */
2053 if (!vms->memmap) {
2054 Object *cpuobj;
2055 ARMCPU *armcpu;
2056 int pa_bits;
2057
2058 /*
2059 * Instantiate a temporary CPU object to find out about what
2060 * we are about to deal with. Once this is done, get rid of
2061 * the object.
2062 */
2063 cpuobj = object_new(possible_cpus->cpus[0].type);
2064 armcpu = ARM_CPU(cpuobj);
2065
2066 pa_bits = arm_pamax(armcpu);
2067
2068 object_unref(cpuobj);
2069
2070 virt_set_memmap(vms, pa_bits);
2071 }
2072
2073 /* We can probe only here because during property set
2074 * KVM is not available yet
2075 */
2076 finalize_gic_version(vms);
2077
2078 if (vms->secure) {
2079 /*
2080 * The Secure view of the world is the same as the NonSecure,
2081 * but with a few extra devices. Create it as a container region
2082 * containing the system memory at low priority; any secure-only
2083 * devices go in at higher priority and take precedence.
2084 */
2085 secure_sysmem = g_new(MemoryRegion, 1);
2086 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
2087 UINT64_MAX);
2088 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
2089 }
2090
2091 firmware_loaded = virt_firmware_init(vms, sysmem,
2092 secure_sysmem ?: sysmem);
2093
2094 /* If we have an EL3 boot ROM then the assumption is that it will
2095 * implement PSCI itself, so disable QEMU's internal implementation
2096 * so it doesn't get in the way. Instead of starting secondary
2097 * CPUs in PSCI powerdown state we will start them all running and
2098 * let the boot ROM sort them out.
2099 * The usual case is that we do use QEMU's PSCI implementation;
2100 * if the guest has EL2 then we will use SMC as the conduit,
2101 * and otherwise we will use HVC (for backwards compatibility and
2102 * because if we're using KVM then we must use HVC).
2103 */
2104 if (vms->secure && firmware_loaded) {
2105 vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
2106 } else if (vms->virt) {
2107 vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
2108 } else {
2109 vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
2110 }
2111
2112 /*
2113 * The maximum number of CPUs depends on the GIC version, or on how
2114 * many redistributors we can fit into the memory map (which in turn
2115 * depends on whether this is a GICv3 or v4).
2116 */
2117 if (vms->gic_version == VIRT_GIC_VERSION_2) {
2118 virt_max_cpus = GIC_NCPU;
2119 } else {
2120 virt_max_cpus = virt_redist_capacity(vms, VIRT_GIC_REDIST);
2121 if (vms->highmem_redists) {
2122 virt_max_cpus += virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2);
2123 }
2124 }
2125
2126 if (max_cpus > virt_max_cpus) {
2127 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
2128 "supported by machine 'mach-virt' (%d)",
2129 max_cpus, virt_max_cpus);
2130 if (vms->gic_version != VIRT_GIC_VERSION_2 && !vms->highmem_redists) {
2131 error_printf("Try 'highmem-redists=on' for more CPUs\n");
2132 }
2133
2134 exit(1);
2135 }
2136
2137 if (vms->secure && (kvm_enabled() || hvf_enabled())) {
2138 error_report("mach-virt: %s does not support providing "
2139 "Security extensions (TrustZone) to the guest CPU",
2140 current_accel_name());
2141 exit(1);
2142 }
2143
2144 if (vms->virt && (kvm_enabled() || hvf_enabled())) {
2145 error_report("mach-virt: %s does not support providing "
2146 "Virtualization extensions to the guest CPU",
2147 current_accel_name());
2148 exit(1);
2149 }
2150
2151 if (vms->mte && (kvm_enabled() || hvf_enabled())) {
2152 error_report("mach-virt: %s does not support providing "
2153 "MTE to the guest CPU",
2154 current_accel_name());
2155 exit(1);
2156 }
2157
2158 create_fdt(vms);
2159
2160 assert(possible_cpus->len == max_cpus);
2161 for (n = 0; n < possible_cpus->len; n++) {
2162 Object *cpuobj;
2163 CPUState *cs;
2164
2165 if (n >= smp_cpus) {
2166 break;
2167 }
2168
2169 cpuobj = object_new(possible_cpus->cpus[n].type);
2170 object_property_set_int(cpuobj, "mp-affinity",
2171 possible_cpus->cpus[n].arch_id, NULL);
2172
2173 cs = CPU(cpuobj);
2174 cs->cpu_index = n;
2175
2176 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
2177 &error_fatal);
2178
2179 aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
2180
2181 if (!vms->secure) {
2182 object_property_set_bool(cpuobj, "has_el3", false, NULL);
2183 }
2184
2185 if (!vms->virt && object_property_find(cpuobj, "has_el2")) {
2186 object_property_set_bool(cpuobj, "has_el2", false, NULL);
2187 }
2188
2189 if (vmc->kvm_no_adjvtime &&
2190 object_property_find(cpuobj, "kvm-no-adjvtime")) {
2191 object_property_set_bool(cpuobj, "kvm-no-adjvtime", true, NULL);
2192 }
2193
2194 if (vmc->no_kvm_steal_time &&
2195 object_property_find(cpuobj, "kvm-steal-time")) {
2196 object_property_set_bool(cpuobj, "kvm-steal-time", false, NULL);
2197 }
2198
2199 if (vmc->no_pmu && object_property_find(cpuobj, "pmu")) {
2200 object_property_set_bool(cpuobj, "pmu", false, NULL);
2201 }
2202
2203 if (vmc->no_tcg_lpa2 && object_property_find(cpuobj, "lpa2")) {
2204 object_property_set_bool(cpuobj, "lpa2", false, NULL);
2205 }
2206
2207 if (object_property_find(cpuobj, "reset-cbar")) {
2208 object_property_set_int(cpuobj, "reset-cbar",
2209 vms->memmap[VIRT_CPUPERIPHS].base,
2210 &error_abort);
2211 }
2212
2213 object_property_set_link(cpuobj, "memory", OBJECT(sysmem),
2214 &error_abort);
2215 if (vms->secure) {
2216 object_property_set_link(cpuobj, "secure-memory",
2217 OBJECT(secure_sysmem), &error_abort);
2218 }
2219
2220 if (vms->mte) {
2221 /* Create the memory region only once, but link to all cpus. */
2222 if (!tag_sysmem) {
2223 /*
2224 * The property exists only if MemTag is supported.
2225 * If it is, we must allocate the ram to back that up.
2226 */
2227 if (!object_property_find(cpuobj, "tag-memory")) {
2228 error_report("MTE requested, but not supported "
2229 "by the guest CPU");
2230 exit(1);
2231 }
2232
2233 tag_sysmem = g_new(MemoryRegion, 1);
2234 memory_region_init(tag_sysmem, OBJECT(machine),
2235 "tag-memory", UINT64_MAX / 32);
2236
2237 if (vms->secure) {
2238 secure_tag_sysmem = g_new(MemoryRegion, 1);
2239 memory_region_init(secure_tag_sysmem, OBJECT(machine),
2240 "secure-tag-memory", UINT64_MAX / 32);
2241
2242 /* As with ram, secure-tag takes precedence over tag. */
2243 memory_region_add_subregion_overlap(secure_tag_sysmem, 0,
2244 tag_sysmem, -1);
2245 }
2246 }
2247
2248 object_property_set_link(cpuobj, "tag-memory", OBJECT(tag_sysmem),
2249 &error_abort);
2250 if (vms->secure) {
2251 object_property_set_link(cpuobj, "secure-tag-memory",
2252 OBJECT(secure_tag_sysmem),
2253 &error_abort);
2254 }
2255 }
2256
2257 qdev_realize(DEVICE(cpuobj), NULL, &error_fatal);
2258 object_unref(cpuobj);
2259 }
2260 fdt_add_timer_nodes(vms);
2261 fdt_add_cpu_nodes(vms);
2262
2263 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base,
2264 machine->ram);
2265
2266 virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem);
2267
2268 create_gic(vms, sysmem);
2269
2270 virt_cpu_post_init(vms, sysmem);
2271
2272 fdt_add_pmu_nodes(vms);
2273
2274 create_uart(vms, VIRT_UART, sysmem, serial_hd(0));
2275
2276 if (vms->secure) {
2277 create_secure_ram(vms, secure_sysmem, secure_tag_sysmem);
2278 create_uart(vms, VIRT_SECURE_UART, secure_sysmem, serial_hd(1));
2279 }
2280
2281 if (tag_sysmem) {
2282 create_tag_ram(tag_sysmem, vms->memmap[VIRT_MEM].base,
2283 machine->ram_size, "mach-virt.tag");
2284 }
2285
2286 vms->highmem_ecam &= (!firmware_loaded || aarch64);
2287
2288 create_rtc(vms);
2289
2290 create_pcie(vms);
2291
2292 if (has_ged && aarch64 && firmware_loaded && virt_is_acpi_enabled(vms)) {
2293 vms->acpi_dev = create_acpi_ged(vms);
2294 } else {
2295 create_gpio_devices(vms, VIRT_GPIO, sysmem);
2296 }
2297
2298 if (vms->secure && !vmc->no_secure_gpio) {
2299 create_gpio_devices(vms, VIRT_SECURE_GPIO, secure_sysmem);
2300 }
2301
2302 /* connect powerdown request */
2303 vms->powerdown_notifier.notify = virt_powerdown_req;
2304 qemu_register_powerdown_notifier(&vms->powerdown_notifier);
2305
2306 /* Create mmio transports, so the user can create virtio backends
2307 * (which will be automatically plugged in to the transports). If
2308 * no backend is created the transport will just sit harmlessly idle.
2309 */
2310 create_virtio_devices(vms);
2311
2312 vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
2313 rom_set_fw(vms->fw_cfg);
2314
2315 create_platform_bus(vms);
2316
2317 if (machine->nvdimms_state->is_enabled) {
2318 const struct AcpiGenericAddress arm_virt_nvdimm_acpi_dsmio = {
2319 .space_id = AML_AS_SYSTEM_MEMORY,
2320 .address = vms->memmap[VIRT_NVDIMM_ACPI].base,
2321 .bit_width = NVDIMM_ACPI_IO_LEN << 3
2322 };
2323
2324 nvdimm_init_acpi_state(machine->nvdimms_state, sysmem,
2325 arm_virt_nvdimm_acpi_dsmio,
2326 vms->fw_cfg, OBJECT(vms));
2327 }
2328
2329 vms->bootinfo.ram_size = machine->ram_size;
2330 vms->bootinfo.board_id = -1;
2331 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
2332 vms->bootinfo.get_dtb = machvirt_dtb;
2333 vms->bootinfo.skip_dtb_autoload = true;
2334 vms->bootinfo.firmware_loaded = firmware_loaded;
2335 vms->bootinfo.psci_conduit = vms->psci_conduit;
2336 arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo);
2337
2338 vms->machine_done.notify = virt_machine_done;
2339 qemu_add_machine_init_done_notifier(&vms->machine_done);
2340 }
2341
2342 static bool virt_get_secure(Object *obj, Error **errp)
2343 {
2344 VirtMachineState *vms = VIRT_MACHINE(obj);
2345
2346 return vms->secure;
2347 }
2348
2349 static void virt_set_secure(Object *obj, bool value, Error **errp)
2350 {
2351 VirtMachineState *vms = VIRT_MACHINE(obj);
2352
2353 vms->secure = value;
2354 }
2355
2356 static bool virt_get_virt(Object *obj, Error **errp)
2357 {
2358 VirtMachineState *vms = VIRT_MACHINE(obj);
2359
2360 return vms->virt;
2361 }
2362
2363 static void virt_set_virt(Object *obj, bool value, Error **errp)
2364 {
2365 VirtMachineState *vms = VIRT_MACHINE(obj);
2366
2367 vms->virt = value;
2368 }
2369
2370 static bool virt_get_highmem(Object *obj, Error **errp)
2371 {
2372 VirtMachineState *vms = VIRT_MACHINE(obj);
2373
2374 return vms->highmem;
2375 }
2376
2377 static void virt_set_highmem(Object *obj, bool value, Error **errp)
2378 {
2379 VirtMachineState *vms = VIRT_MACHINE(obj);
2380
2381 vms->highmem = value;
2382 }
2383
2384 static bool virt_get_compact_highmem(Object *obj, Error **errp)
2385 {
2386 VirtMachineState *vms = VIRT_MACHINE(obj);
2387
2388 return vms->highmem_compact;
2389 }
2390
2391 static void virt_set_compact_highmem(Object *obj, bool value, Error **errp)
2392 {
2393 VirtMachineState *vms = VIRT_MACHINE(obj);
2394
2395 vms->highmem_compact = value;
2396 }
2397
2398 static bool virt_get_highmem_redists(Object *obj, Error **errp)
2399 {
2400 VirtMachineState *vms = VIRT_MACHINE(obj);
2401
2402 return vms->highmem_redists;
2403 }
2404
2405 static void virt_set_highmem_redists(Object *obj, bool value, Error **errp)
2406 {
2407 VirtMachineState *vms = VIRT_MACHINE(obj);
2408
2409 vms->highmem_redists = value;
2410 }
2411
2412 static bool virt_get_highmem_ecam(Object *obj, Error **errp)
2413 {
2414 VirtMachineState *vms = VIRT_MACHINE(obj);
2415
2416 return vms->highmem_ecam;
2417 }
2418
2419 static void virt_set_highmem_ecam(Object *obj, bool value, Error **errp)
2420 {
2421 VirtMachineState *vms = VIRT_MACHINE(obj);
2422
2423 vms->highmem_ecam = value;
2424 }
2425
2426 static bool virt_get_highmem_mmio(Object *obj, Error **errp)
2427 {
2428 VirtMachineState *vms = VIRT_MACHINE(obj);
2429
2430 return vms->highmem_mmio;
2431 }
2432
2433 static void virt_set_highmem_mmio(Object *obj, bool value, Error **errp)
2434 {
2435 VirtMachineState *vms = VIRT_MACHINE(obj);
2436
2437 vms->highmem_mmio = value;
2438 }
2439
2440
2441 static bool virt_get_its(Object *obj, Error **errp)
2442 {
2443 VirtMachineState *vms = VIRT_MACHINE(obj);
2444
2445 return vms->its;
2446 }
2447
2448 static void virt_set_its(Object *obj, bool value, Error **errp)
2449 {
2450 VirtMachineState *vms = VIRT_MACHINE(obj);
2451
2452 vms->its = value;
2453 }
2454
2455 static bool virt_get_dtb_randomness(Object *obj, Error **errp)
2456 {
2457 VirtMachineState *vms = VIRT_MACHINE(obj);
2458
2459 return vms->dtb_randomness;
2460 }
2461
2462 static void virt_set_dtb_randomness(Object *obj, bool value, Error **errp)
2463 {
2464 VirtMachineState *vms = VIRT_MACHINE(obj);
2465
2466 vms->dtb_randomness = value;
2467 }
2468
2469 static char *virt_get_oem_id(Object *obj, Error **errp)
2470 {
2471 VirtMachineState *vms = VIRT_MACHINE(obj);
2472
2473 return g_strdup(vms->oem_id);
2474 }
2475
2476 static void virt_set_oem_id(Object *obj, const char *value, Error **errp)
2477 {
2478 VirtMachineState *vms = VIRT_MACHINE(obj);
2479 size_t len = strlen(value);
2480
2481 if (len > 6) {
2482 error_setg(errp,
2483 "User specified oem-id value is bigger than 6 bytes in size");
2484 return;
2485 }
2486
2487 strncpy(vms->oem_id, value, 6);
2488 }
2489
2490 static char *virt_get_oem_table_id(Object *obj, Error **errp)
2491 {
2492 VirtMachineState *vms = VIRT_MACHINE(obj);
2493
2494 return g_strdup(vms->oem_table_id);
2495 }
2496
2497 static void virt_set_oem_table_id(Object *obj, const char *value,
2498 Error **errp)
2499 {
2500 VirtMachineState *vms = VIRT_MACHINE(obj);
2501 size_t len = strlen(value);
2502
2503 if (len > 8) {
2504 error_setg(errp,
2505 "User specified oem-table-id value is bigger than 8 bytes in size");
2506 return;
2507 }
2508 strncpy(vms->oem_table_id, value, 8);
2509 }
2510
2511
2512 bool virt_is_acpi_enabled(VirtMachineState *vms)
2513 {
2514 if (vms->acpi == ON_OFF_AUTO_OFF) {
2515 return false;
2516 }
2517 return true;
2518 }
2519
2520 static void virt_get_acpi(Object *obj, Visitor *v, const char *name,
2521 void *opaque, Error **errp)
2522 {
2523 VirtMachineState *vms = VIRT_MACHINE(obj);
2524 OnOffAuto acpi = vms->acpi;
2525
2526 visit_type_OnOffAuto(v, name, &acpi, errp);
2527 }
2528
2529 static void virt_set_acpi(Object *obj, Visitor *v, const char *name,
2530 void *opaque, Error **errp)
2531 {
2532 VirtMachineState *vms = VIRT_MACHINE(obj);
2533
2534 visit_type_OnOffAuto(v, name, &vms->acpi, errp);
2535 }
2536
2537 static bool virt_get_ras(Object *obj, Error **errp)
2538 {
2539 VirtMachineState *vms = VIRT_MACHINE(obj);
2540
2541 return vms->ras;
2542 }
2543
2544 static void virt_set_ras(Object *obj, bool value, Error **errp)
2545 {
2546 VirtMachineState *vms = VIRT_MACHINE(obj);
2547
2548 vms->ras = value;
2549 }
2550
2551 static bool virt_get_mte(Object *obj, Error **errp)
2552 {
2553 VirtMachineState *vms = VIRT_MACHINE(obj);
2554
2555 return vms->mte;
2556 }
2557
2558 static void virt_set_mte(Object *obj, bool value, Error **errp)
2559 {
2560 VirtMachineState *vms = VIRT_MACHINE(obj);
2561
2562 vms->mte = value;
2563 }
2564
2565 static char *virt_get_gic_version(Object *obj, Error **errp)
2566 {
2567 VirtMachineState *vms = VIRT_MACHINE(obj);
2568 const char *val;
2569
2570 switch (vms->gic_version) {
2571 case VIRT_GIC_VERSION_4:
2572 val = "4";
2573 break;
2574 case VIRT_GIC_VERSION_3:
2575 val = "3";
2576 break;
2577 default:
2578 val = "2";
2579 break;
2580 }
2581 return g_strdup(val);
2582 }
2583
2584 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
2585 {
2586 VirtMachineState *vms = VIRT_MACHINE(obj);
2587
2588 if (!strcmp(value, "4")) {
2589 vms->gic_version = VIRT_GIC_VERSION_4;
2590 } else if (!strcmp(value, "3")) {
2591 vms->gic_version = VIRT_GIC_VERSION_3;
2592 } else if (!strcmp(value, "2")) {
2593 vms->gic_version = VIRT_GIC_VERSION_2;
2594 } else if (!strcmp(value, "host")) {
2595 vms->gic_version = VIRT_GIC_VERSION_HOST; /* Will probe later */
2596 } else if (!strcmp(value, "max")) {
2597 vms->gic_version = VIRT_GIC_VERSION_MAX; /* Will probe later */
2598 } else {
2599 error_setg(errp, "Invalid gic-version value");
2600 error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
2601 }
2602 }
2603
2604 static char *virt_get_iommu(Object *obj, Error **errp)
2605 {
2606 VirtMachineState *vms = VIRT_MACHINE(obj);
2607
2608 switch (vms->iommu) {
2609 case VIRT_IOMMU_NONE:
2610 return g_strdup("none");
2611 case VIRT_IOMMU_SMMUV3:
2612 return g_strdup("smmuv3");
2613 default:
2614 g_assert_not_reached();
2615 }
2616 }
2617
2618 static void virt_set_iommu(Object *obj, const char *value, Error **errp)
2619 {
2620 VirtMachineState *vms = VIRT_MACHINE(obj);
2621
2622 if (!strcmp(value, "smmuv3")) {
2623 vms->iommu = VIRT_IOMMU_SMMUV3;
2624 } else if (!strcmp(value, "none")) {
2625 vms->iommu = VIRT_IOMMU_NONE;
2626 } else {
2627 error_setg(errp, "Invalid iommu value");
2628 error_append_hint(errp, "Valid values are none, smmuv3.\n");
2629 }
2630 }
2631
2632 static bool virt_get_default_bus_bypass_iommu(Object *obj, Error **errp)
2633 {
2634 VirtMachineState *vms = VIRT_MACHINE(obj);
2635
2636 return vms->default_bus_bypass_iommu;
2637 }
2638
2639 static void virt_set_default_bus_bypass_iommu(Object *obj, bool value,
2640 Error **errp)
2641 {
2642 VirtMachineState *vms = VIRT_MACHINE(obj);
2643
2644 vms->default_bus_bypass_iommu = value;
2645 }
2646
2647 static CpuInstanceProperties
2648 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2649 {
2650 MachineClass *mc = MACHINE_GET_CLASS(ms);
2651 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2652
2653 assert(cpu_index < possible_cpus->len);
2654 return possible_cpus->cpus[cpu_index].props;
2655 }
2656
2657 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
2658 {
2659 int64_t socket_id = ms->possible_cpus->cpus[idx].props.socket_id;
2660
2661 return socket_id % ms->numa_state->num_nodes;
2662 }
2663
2664 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
2665 {
2666 int n;
2667 unsigned int max_cpus = ms->smp.max_cpus;
2668 VirtMachineState *vms = VIRT_MACHINE(ms);
2669 MachineClass *mc = MACHINE_GET_CLASS(vms);
2670
2671 if (ms->possible_cpus) {
2672 assert(ms->possible_cpus->len == max_cpus);
2673 return ms->possible_cpus;
2674 }
2675
2676 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2677 sizeof(CPUArchId) * max_cpus);
2678 ms->possible_cpus->len = max_cpus;
2679 for (n = 0; n < ms->possible_cpus->len; n++) {
2680 ms->possible_cpus->cpus[n].type = ms->cpu_type;
2681 ms->possible_cpus->cpus[n].arch_id =
2682 virt_cpu_mp_affinity(vms, n);
2683
2684 assert(!mc->smp_props.dies_supported);
2685 ms->possible_cpus->cpus[n].props.has_socket_id = true;
2686 ms->possible_cpus->cpus[n].props.socket_id =
2687 n / (ms->smp.clusters * ms->smp.cores * ms->smp.threads);
2688 ms->possible_cpus->cpus[n].props.has_cluster_id = true;
2689 ms->possible_cpus->cpus[n].props.cluster_id =
2690 (n / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters;
2691 ms->possible_cpus->cpus[n].props.has_core_id = true;
2692 ms->possible_cpus->cpus[n].props.core_id =
2693 (n / ms->smp.threads) % ms->smp.cores;
2694 ms->possible_cpus->cpus[n].props.has_thread_id = true;
2695 ms->possible_cpus->cpus[n].props.thread_id =
2696 n % ms->smp.threads;
2697 }
2698 return ms->possible_cpus;
2699 }
2700
2701 static void virt_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2702 Error **errp)
2703 {
2704 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2705 const MachineState *ms = MACHINE(hotplug_dev);
2706 const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2707
2708 if (!vms->acpi_dev) {
2709 error_setg(errp,
2710 "memory hotplug is not enabled: missing acpi-ged device");
2711 return;
2712 }
2713
2714 if (vms->mte) {
2715 error_setg(errp, "memory hotplug is not enabled: MTE is enabled");
2716 return;
2717 }
2718
2719 if (is_nvdimm && !ms->nvdimms_state->is_enabled) {
2720 error_setg(errp, "nvdimm is not enabled: add 'nvdimm=on' to '-M'");
2721 return;
2722 }
2723
2724 pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), NULL, errp);
2725 }
2726
2727 static void virt_memory_plug(HotplugHandler *hotplug_dev,
2728 DeviceState *dev, Error **errp)
2729 {
2730 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2731 MachineState *ms = MACHINE(hotplug_dev);
2732 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2733
2734 pc_dimm_plug(PC_DIMM(dev), MACHINE(vms));
2735
2736 if (is_nvdimm) {
2737 nvdimm_plug(ms->nvdimms_state);
2738 }
2739
2740 hotplug_handler_plug(HOTPLUG_HANDLER(vms->acpi_dev),
2741 dev, &error_abort);
2742 }
2743
2744 static void virt_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2745 DeviceState *dev, Error **errp)
2746 {
2747 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2748
2749 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2750 virt_memory_pre_plug(hotplug_dev, dev, errp);
2751 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
2752 virtio_md_pci_pre_plug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp);
2753 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2754 hwaddr db_start = 0, db_end = 0;
2755 QList *reserved_regions;
2756 char *resv_prop_str;
2757
2758 if (vms->iommu != VIRT_IOMMU_NONE) {
2759 error_setg(errp, "virt machine does not support multiple IOMMUs");
2760 return;
2761 }
2762
2763 switch (vms->msi_controller) {
2764 case VIRT_MSI_CTRL_NONE:
2765 return;
2766 case VIRT_MSI_CTRL_ITS:
2767 /* GITS_TRANSLATER page */
2768 db_start = base_memmap[VIRT_GIC_ITS].base + 0x10000;
2769 db_end = base_memmap[VIRT_GIC_ITS].base +
2770 base_memmap[VIRT_GIC_ITS].size - 1;
2771 break;
2772 case VIRT_MSI_CTRL_GICV2M:
2773 /* MSI_SETSPI_NS page */
2774 db_start = base_memmap[VIRT_GIC_V2M].base;
2775 db_end = db_start + base_memmap[VIRT_GIC_V2M].size - 1;
2776 break;
2777 }
2778 resv_prop_str = g_strdup_printf("0x%"PRIx64":0x%"PRIx64":%u",
2779 db_start, db_end,
2780 VIRTIO_IOMMU_RESV_MEM_T_MSI);
2781
2782 reserved_regions = qlist_new();
2783 qlist_append_str(reserved_regions, resv_prop_str);
2784 qdev_prop_set_array(dev, "reserved-regions", reserved_regions);
2785 g_free(resv_prop_str);
2786 }
2787 }
2788
2789 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2790 DeviceState *dev, Error **errp)
2791 {
2792 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2793
2794 if (vms->platform_bus_dev) {
2795 MachineClass *mc = MACHINE_GET_CLASS(vms);
2796
2797 if (device_is_dynamic_sysbus(mc, dev)) {
2798 platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
2799 SYS_BUS_DEVICE(dev));
2800 }
2801 }
2802
2803 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2804 virt_memory_plug(hotplug_dev, dev, errp);
2805 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
2806 virtio_md_pci_plug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp);
2807 }
2808
2809 if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2810 PCIDevice *pdev = PCI_DEVICE(dev);
2811
2812 vms->iommu = VIRT_IOMMU_VIRTIO;
2813 vms->virtio_iommu_bdf = pci_get_bdf(pdev);
2814 create_virtio_iommu_dt_bindings(vms);
2815 }
2816 }
2817
2818 static void virt_dimm_unplug_request(HotplugHandler *hotplug_dev,
2819 DeviceState *dev, Error **errp)
2820 {
2821 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2822
2823 if (!vms->acpi_dev) {
2824 error_setg(errp,
2825 "memory hotplug is not enabled: missing acpi-ged device");
2826 return;
2827 }
2828
2829 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
2830 error_setg(errp, "nvdimm device hot unplug is not supported yet.");
2831 return;
2832 }
2833
2834 hotplug_handler_unplug_request(HOTPLUG_HANDLER(vms->acpi_dev), dev,
2835 errp);
2836 }
2837
2838 static void virt_dimm_unplug(HotplugHandler *hotplug_dev,
2839 DeviceState *dev, Error **errp)
2840 {
2841 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2842 Error *local_err = NULL;
2843
2844 hotplug_handler_unplug(HOTPLUG_HANDLER(vms->acpi_dev), dev, &local_err);
2845 if (local_err) {
2846 goto out;
2847 }
2848
2849 pc_dimm_unplug(PC_DIMM(dev), MACHINE(vms));
2850 qdev_unrealize(dev);
2851
2852 out:
2853 error_propagate(errp, local_err);
2854 }
2855
2856 static void virt_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2857 DeviceState *dev, Error **errp)
2858 {
2859 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2860 virt_dimm_unplug_request(hotplug_dev, dev, errp);
2861 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
2862 virtio_md_pci_unplug_request(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev),
2863 errp);
2864 } else {
2865 error_setg(errp, "device unplug request for unsupported device"
2866 " type: %s", object_get_typename(OBJECT(dev)));
2867 }
2868 }
2869
2870 static void virt_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2871 DeviceState *dev, Error **errp)
2872 {
2873 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2874 virt_dimm_unplug(hotplug_dev, dev, errp);
2875 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
2876 virtio_md_pci_unplug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp);
2877 } else {
2878 error_setg(errp, "virt: device unplug for unsupported device"
2879 " type: %s", object_get_typename(OBJECT(dev)));
2880 }
2881 }
2882
2883 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
2884 DeviceState *dev)
2885 {
2886 MachineClass *mc = MACHINE_GET_CLASS(machine);
2887
2888 if (device_is_dynamic_sysbus(mc, dev) ||
2889 object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2890 object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI) ||
2891 object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2892 return HOTPLUG_HANDLER(machine);
2893 }
2894 return NULL;
2895 }
2896
2897 /*
2898 * for arm64 kvm_type [7-0] encodes the requested number of bits
2899 * in the IPA address space
2900 */
2901 static int virt_kvm_type(MachineState *ms, const char *type_str)
2902 {
2903 VirtMachineState *vms = VIRT_MACHINE(ms);
2904 int max_vm_pa_size, requested_pa_size;
2905 bool fixed_ipa;
2906
2907 max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa);
2908
2909 /* we freeze the memory map to compute the highest gpa */
2910 virt_set_memmap(vms, max_vm_pa_size);
2911
2912 requested_pa_size = 64 - clz64(vms->highest_gpa);
2913
2914 /*
2915 * KVM requires the IPA size to be at least 32 bits.
2916 */
2917 if (requested_pa_size < 32) {
2918 requested_pa_size = 32;
2919 }
2920
2921 if (requested_pa_size > max_vm_pa_size) {
2922 error_report("-m and ,maxmem option values "
2923 "require an IPA range (%d bits) larger than "
2924 "the one supported by the host (%d bits)",
2925 requested_pa_size, max_vm_pa_size);
2926 return -1;
2927 }
2928 /*
2929 * We return the requested PA log size, unless KVM only supports
2930 * the implicit legacy 40b IPA setting, in which case the kvm_type
2931 * must be 0.
2932 */
2933 return fixed_ipa ? 0 : requested_pa_size;
2934 }
2935
2936 static void virt_machine_class_init(ObjectClass *oc, void *data)
2937 {
2938 MachineClass *mc = MACHINE_CLASS(oc);
2939 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2940
2941 mc->init = machvirt_init;
2942 /* Start with max_cpus set to 512, which is the maximum supported by KVM.
2943 * The value may be reduced later when we have more information about the
2944 * configuration of the particular instance.
2945 */
2946 mc->max_cpus = 512;
2947 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
2948 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
2949 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
2950 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM);
2951 #ifdef CONFIG_TPM
2952 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_TPM_TIS_SYSBUS);
2953 #endif
2954 mc->block_default_type = IF_VIRTIO;
2955 mc->no_cdrom = 1;
2956 mc->pci_allow_0_address = true;
2957 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
2958 mc->minimum_page_bits = 12;
2959 mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
2960 mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
2961 #ifdef CONFIG_TCG
2962 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
2963 #else
2964 mc->default_cpu_type = ARM_CPU_TYPE_NAME("max");
2965 #endif
2966 mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
2967 mc->kvm_type = virt_kvm_type;
2968 assert(!mc->get_hotplug_handler);
2969 mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
2970 hc->pre_plug = virt_machine_device_pre_plug_cb;
2971 hc->plug = virt_machine_device_plug_cb;
2972 hc->unplug_request = virt_machine_device_unplug_request_cb;
2973 hc->unplug = virt_machine_device_unplug_cb;
2974 mc->nvdimm_supported = true;
2975 mc->smp_props.clusters_supported = true;
2976 mc->auto_enable_numa_with_memhp = true;
2977 mc->auto_enable_numa_with_memdev = true;
2978 /* platform instead of architectural choice */
2979 mc->cpu_cluster_has_numa_boundary = true;
2980 mc->default_ram_id = "mach-virt.ram";
2981 mc->default_nic = "virtio-net-pci";
2982
2983 object_class_property_add(oc, "acpi", "OnOffAuto",
2984 virt_get_acpi, virt_set_acpi,
2985 NULL, NULL);
2986 object_class_property_set_description(oc, "acpi",
2987 "Enable ACPI");
2988 object_class_property_add_bool(oc, "secure", virt_get_secure,
2989 virt_set_secure);
2990 object_class_property_set_description(oc, "secure",
2991 "Set on/off to enable/disable the ARM "
2992 "Security Extensions (TrustZone)");
2993
2994 object_class_property_add_bool(oc, "virtualization", virt_get_virt,
2995 virt_set_virt);
2996 object_class_property_set_description(oc, "virtualization",
2997 "Set on/off to enable/disable emulating a "
2998 "guest CPU which implements the ARM "
2999 "Virtualization Extensions");
3000
3001 object_class_property_add_bool(oc, "highmem", virt_get_highmem,
3002 virt_set_highmem);
3003 object_class_property_set_description(oc, "highmem",
3004 "Set on/off to enable/disable using "
3005 "physical address space above 32 bits");
3006
3007 object_class_property_add_bool(oc, "compact-highmem",
3008 virt_get_compact_highmem,
3009 virt_set_compact_highmem);
3010 object_class_property_set_description(oc, "compact-highmem",
3011 "Set on/off to enable/disable compact "
3012 "layout for high memory regions");
3013
3014 object_class_property_add_bool(oc, "highmem-redists",
3015 virt_get_highmem_redists,
3016 virt_set_highmem_redists);
3017 object_class_property_set_description(oc, "highmem-redists",
3018 "Set on/off to enable/disable high "
3019 "memory region for GICv3 or GICv4 "
3020 "redistributor");
3021
3022 object_class_property_add_bool(oc, "highmem-ecam",
3023 virt_get_highmem_ecam,
3024 virt_set_highmem_ecam);
3025 object_class_property_set_description(oc, "highmem-ecam",
3026 "Set on/off to enable/disable high "
3027 "memory region for PCI ECAM");
3028
3029 object_class_property_add_bool(oc, "highmem-mmio",
3030 virt_get_highmem_mmio,
3031 virt_set_highmem_mmio);
3032 object_class_property_set_description(oc, "highmem-mmio",
3033 "Set on/off to enable/disable high "
3034 "memory region for PCI MMIO");
3035
3036 object_class_property_add_str(oc, "gic-version", virt_get_gic_version,
3037 virt_set_gic_version);
3038 object_class_property_set_description(oc, "gic-version",
3039 "Set GIC version. "
3040 "Valid values are 2, 3, 4, host and max");
3041
3042 object_class_property_add_str(oc, "iommu", virt_get_iommu, virt_set_iommu);
3043 object_class_property_set_description(oc, "iommu",
3044 "Set the IOMMU type. "
3045 "Valid values are none and smmuv3");
3046
3047 object_class_property_add_bool(oc, "default-bus-bypass-iommu",
3048 virt_get_default_bus_bypass_iommu,
3049 virt_set_default_bus_bypass_iommu);
3050 object_class_property_set_description(oc, "default-bus-bypass-iommu",
3051 "Set on/off to enable/disable "
3052 "bypass_iommu for default root bus");
3053
3054 object_class_property_add_bool(oc, "ras", virt_get_ras,
3055 virt_set_ras);
3056 object_class_property_set_description(oc, "ras",
3057 "Set on/off to enable/disable reporting host memory errors "
3058 "to a KVM guest using ACPI and guest external abort exceptions");
3059
3060 object_class_property_add_bool(oc, "mte", virt_get_mte, virt_set_mte);
3061 object_class_property_set_description(oc, "mte",
3062 "Set on/off to enable/disable emulating a "
3063 "guest CPU which implements the ARM "
3064 "Memory Tagging Extension");
3065
3066 object_class_property_add_bool(oc, "its", virt_get_its,
3067 virt_set_its);
3068 object_class_property_set_description(oc, "its",
3069 "Set on/off to enable/disable "
3070 "ITS instantiation");
3071
3072 object_class_property_add_bool(oc, "dtb-randomness",
3073 virt_get_dtb_randomness,
3074 virt_set_dtb_randomness);
3075 object_class_property_set_description(oc, "dtb-randomness",
3076 "Set off to disable passing random or "
3077 "non-deterministic dtb nodes to guest");
3078
3079 object_class_property_add_bool(oc, "dtb-kaslr-seed",
3080 virt_get_dtb_randomness,
3081 virt_set_dtb_randomness);
3082 object_class_property_set_description(oc, "dtb-kaslr-seed",
3083 "Deprecated synonym of dtb-randomness");
3084
3085 object_class_property_add_str(oc, "x-oem-id",
3086 virt_get_oem_id,
3087 virt_set_oem_id);
3088 object_class_property_set_description(oc, "x-oem-id",
3089 "Override the default value of field OEMID "
3090 "in ACPI table header."
3091 "The string may be up to 6 bytes in size");
3092
3093
3094 object_class_property_add_str(oc, "x-oem-table-id",
3095 virt_get_oem_table_id,
3096 virt_set_oem_table_id);
3097 object_class_property_set_description(oc, "x-oem-table-id",
3098 "Override the default value of field OEM Table ID "
3099 "in ACPI table header."
3100 "The string may be up to 8 bytes in size");
3101
3102 }
3103
3104 static void virt_instance_init(Object *obj)
3105 {
3106 VirtMachineState *vms = VIRT_MACHINE(obj);
3107 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
3108
3109 /* EL3 is disabled by default on virt: this makes us consistent
3110 * between KVM and TCG for this board, and it also allows us to
3111 * boot UEFI blobs which assume no TrustZone support.
3112 */
3113 vms->secure = false;
3114
3115 /* EL2 is also disabled by default, for similar reasons */
3116 vms->virt = false;
3117
3118 /* High memory is enabled by default */
3119 vms->highmem = true;
3120 vms->highmem_compact = !vmc->no_highmem_compact;
3121 vms->gic_version = VIRT_GIC_VERSION_NOSEL;
3122
3123 vms->highmem_ecam = !vmc->no_highmem_ecam;
3124 vms->highmem_mmio = true;
3125 vms->highmem_redists = true;
3126
3127 if (vmc->no_its) {
3128 vms->its = false;
3129 } else {
3130 /* Default allows ITS instantiation */
3131 vms->its = true;
3132
3133 if (vmc->no_tcg_its) {
3134 vms->tcg_its = false;
3135 } else {
3136 vms->tcg_its = true;
3137 }
3138 }
3139
3140 /* Default disallows iommu instantiation */
3141 vms->iommu = VIRT_IOMMU_NONE;
3142
3143 /* The default root bus is attached to iommu by default */
3144 vms->default_bus_bypass_iommu = false;
3145
3146 /* Default disallows RAS instantiation */
3147 vms->ras = false;
3148
3149 /* MTE is disabled by default. */
3150 vms->mte = false;
3151
3152 /* Supply kaslr-seed and rng-seed by default */
3153 vms->dtb_randomness = true;
3154
3155 vms->irqmap = a15irqmap;
3156
3157 virt_flash_create(vms);
3158
3159 vms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6);
3160 vms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8);
3161 }
3162
3163 static const TypeInfo virt_machine_info = {
3164 .name = TYPE_VIRT_MACHINE,
3165 .parent = TYPE_MACHINE,
3166 .abstract = true,
3167 .instance_size = sizeof(VirtMachineState),
3168 .class_size = sizeof(VirtMachineClass),
3169 .class_init = virt_machine_class_init,
3170 .instance_init = virt_instance_init,
3171 .interfaces = (InterfaceInfo[]) {
3172 { TYPE_HOTPLUG_HANDLER },
3173 { }
3174 },
3175 };
3176
3177 static void machvirt_machine_init(void)
3178 {
3179 type_register_static(&virt_machine_info);
3180 }
3181 type_init(machvirt_machine_init);
3182
3183 static void virt_machine_8_2_options(MachineClass *mc)
3184 {
3185 }
3186 DEFINE_VIRT_MACHINE_AS_LATEST(8, 2)
3187
3188 static void virt_machine_8_1_options(MachineClass *mc)
3189 {
3190 virt_machine_8_2_options(mc);
3191 compat_props_add(mc->compat_props, hw_compat_8_1, hw_compat_8_1_len);
3192 }
3193 DEFINE_VIRT_MACHINE(8, 1)
3194
3195 static void virt_machine_8_0_options(MachineClass *mc)
3196 {
3197 virt_machine_8_1_options(mc);
3198 compat_props_add(mc->compat_props, hw_compat_8_0, hw_compat_8_0_len);
3199 }
3200 DEFINE_VIRT_MACHINE(8, 0)
3201
3202 static void virt_machine_7_2_options(MachineClass *mc)
3203 {
3204 virt_machine_8_0_options(mc);
3205 compat_props_add(mc->compat_props, hw_compat_7_2, hw_compat_7_2_len);
3206 }
3207 DEFINE_VIRT_MACHINE(7, 2)
3208
3209 static void virt_machine_7_1_options(MachineClass *mc)
3210 {
3211 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3212
3213 virt_machine_7_2_options(mc);
3214 compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len);
3215 /* Compact layout for high memory regions was introduced with 7.2 */
3216 vmc->no_highmem_compact = true;
3217 }
3218 DEFINE_VIRT_MACHINE(7, 1)
3219
3220 static void virt_machine_7_0_options(MachineClass *mc)
3221 {
3222 virt_machine_7_1_options(mc);
3223 compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len);
3224 }
3225 DEFINE_VIRT_MACHINE(7, 0)
3226
3227 static void virt_machine_6_2_options(MachineClass *mc)
3228 {
3229 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3230
3231 virt_machine_7_0_options(mc);
3232 compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len);
3233 vmc->no_tcg_lpa2 = true;
3234 }
3235 DEFINE_VIRT_MACHINE(6, 2)
3236
3237 static void virt_machine_6_1_options(MachineClass *mc)
3238 {
3239 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3240
3241 virt_machine_6_2_options(mc);
3242 compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len);
3243 mc->smp_props.prefer_sockets = true;
3244 vmc->no_cpu_topology = true;
3245
3246 /* qemu ITS was introduced with 6.2 */
3247 vmc->no_tcg_its = true;
3248 }
3249 DEFINE_VIRT_MACHINE(6, 1)
3250
3251 static void virt_machine_6_0_options(MachineClass *mc)
3252 {
3253 virt_machine_6_1_options(mc);
3254 compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len);
3255 }
3256 DEFINE_VIRT_MACHINE(6, 0)
3257
3258 static void virt_machine_5_2_options(MachineClass *mc)
3259 {
3260 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3261
3262 virt_machine_6_0_options(mc);
3263 compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
3264 vmc->no_secure_gpio = true;
3265 }
3266 DEFINE_VIRT_MACHINE(5, 2)
3267
3268 static void virt_machine_5_1_options(MachineClass *mc)
3269 {
3270 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3271
3272 virt_machine_5_2_options(mc);
3273 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
3274 vmc->no_kvm_steal_time = true;
3275 }
3276 DEFINE_VIRT_MACHINE(5, 1)
3277
3278 static void virt_machine_5_0_options(MachineClass *mc)
3279 {
3280 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3281
3282 virt_machine_5_1_options(mc);
3283 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
3284 mc->numa_mem_supported = true;
3285 vmc->acpi_expose_flash = true;
3286 mc->auto_enable_numa_with_memdev = false;
3287 }
3288 DEFINE_VIRT_MACHINE(5, 0)
3289
3290 static void virt_machine_4_2_options(MachineClass *mc)
3291 {
3292 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3293
3294 virt_machine_5_0_options(mc);
3295 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
3296 vmc->kvm_no_adjvtime = true;
3297 }
3298 DEFINE_VIRT_MACHINE(4, 2)
3299
3300 static void virt_machine_4_1_options(MachineClass *mc)
3301 {
3302 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3303
3304 virt_machine_4_2_options(mc);
3305 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
3306 vmc->no_ged = true;
3307 mc->auto_enable_numa_with_memhp = false;
3308 }
3309 DEFINE_VIRT_MACHINE(4, 1)
3310
3311 static void virt_machine_4_0_options(MachineClass *mc)
3312 {
3313 virt_machine_4_1_options(mc);
3314 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
3315 }
3316 DEFINE_VIRT_MACHINE(4, 0)
3317
3318 static void virt_machine_3_1_options(MachineClass *mc)
3319 {
3320 virt_machine_4_0_options(mc);
3321 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
3322 }
3323 DEFINE_VIRT_MACHINE(3, 1)
3324
3325 static void virt_machine_3_0_options(MachineClass *mc)
3326 {
3327 virt_machine_3_1_options(mc);
3328 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
3329 }
3330 DEFINE_VIRT_MACHINE(3, 0)
3331
3332 static void virt_machine_2_12_options(MachineClass *mc)
3333 {
3334 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3335
3336 virt_machine_3_0_options(mc);
3337 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
3338 vmc->no_highmem_ecam = true;
3339 mc->max_cpus = 255;
3340 }
3341 DEFINE_VIRT_MACHINE(2, 12)
3342
3343 static void virt_machine_2_11_options(MachineClass *mc)
3344 {
3345 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3346
3347 virt_machine_2_12_options(mc);
3348 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
3349 vmc->smbios_old_sys_ver = true;
3350 }
3351 DEFINE_VIRT_MACHINE(2, 11)
3352
3353 static void virt_machine_2_10_options(MachineClass *mc)
3354 {
3355 virt_machine_2_11_options(mc);
3356 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
3357 /* before 2.11 we never faulted accesses to bad addresses */
3358 mc->ignore_memory_transaction_failures = true;
3359 }
3360 DEFINE_VIRT_MACHINE(2, 10)
3361
3362 static void virt_machine_2_9_options(MachineClass *mc)
3363 {
3364 virt_machine_2_10_options(mc);
3365 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
3366 }
3367 DEFINE_VIRT_MACHINE(2, 9)
3368
3369 static void virt_machine_2_8_options(MachineClass *mc)
3370 {
3371 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3372
3373 virt_machine_2_9_options(mc);
3374 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
3375 /* For 2.8 and earlier we falsely claimed in the DT that
3376 * our timers were edge-triggered, not level-triggered.
3377 */
3378 vmc->claim_edge_triggered_timers = true;
3379 }
3380 DEFINE_VIRT_MACHINE(2, 8)
3381
3382 static void virt_machine_2_7_options(MachineClass *mc)
3383 {
3384 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3385
3386 virt_machine_2_8_options(mc);
3387 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
3388 /* ITS was introduced with 2.8 */
3389 vmc->no_its = true;
3390 /* Stick with 1K pages for migration compatibility */
3391 mc->minimum_page_bits = 0;
3392 }
3393 DEFINE_VIRT_MACHINE(2, 7)
3394
3395 static void virt_machine_2_6_options(MachineClass *mc)
3396 {
3397 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3398
3399 virt_machine_2_7_options(mc);
3400 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
3401 vmc->disallow_affinity_adjustment = true;
3402 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
3403 vmc->no_pmu = true;
3404 }
3405 DEFINE_VIRT_MACHINE(2, 6)