]> git.proxmox.com Git - mirror_qemu.git/blob - hw/arm/virt.c
Merge remote-tracking branch 'remotes/kraxel/tags/audio-20180625-pull-request' into...
[mirror_qemu.git] / hw / arm / virt.c
1 /*
2 * ARM mach-virt emulation
3 *
4 * Copyright (c) 2013 Linaro Limited
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
17 *
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
29 */
30
31 #include "qemu/osdep.h"
32 #include "qapi/error.h"
33 #include "hw/sysbus.h"
34 #include "hw/arm/arm.h"
35 #include "hw/arm/primecell.h"
36 #include "hw/arm/virt.h"
37 #include "hw/vfio/vfio-calxeda-xgmac.h"
38 #include "hw/vfio/vfio-amd-xgbe.h"
39 #include "hw/display/ramfb.h"
40 #include "hw/devices.h"
41 #include "net/net.h"
42 #include "sysemu/device_tree.h"
43 #include "sysemu/numa.h"
44 #include "sysemu/sysemu.h"
45 #include "sysemu/kvm.h"
46 #include "hw/compat.h"
47 #include "hw/loader.h"
48 #include "exec/address-spaces.h"
49 #include "qemu/bitops.h"
50 #include "qemu/error-report.h"
51 #include "hw/pci-host/gpex.h"
52 #include "hw/arm/sysbus-fdt.h"
53 #include "hw/platform-bus.h"
54 #include "hw/arm/fdt.h"
55 #include "hw/intc/arm_gic.h"
56 #include "hw/intc/arm_gicv3_common.h"
57 #include "kvm_arm.h"
58 #include "hw/smbios/smbios.h"
59 #include "qapi/visitor.h"
60 #include "standard-headers/linux/input.h"
61 #include "hw/arm/smmuv3.h"
62
63 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
64 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
65 void *data) \
66 { \
67 MachineClass *mc = MACHINE_CLASS(oc); \
68 virt_machine_##major##_##minor##_options(mc); \
69 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
70 if (latest) { \
71 mc->alias = "virt"; \
72 } \
73 } \
74 static const TypeInfo machvirt_##major##_##minor##_info = { \
75 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
76 .parent = TYPE_VIRT_MACHINE, \
77 .instance_init = virt_##major##_##minor##_instance_init, \
78 .class_init = virt_##major##_##minor##_class_init, \
79 }; \
80 static void machvirt_machine_##major##_##minor##_init(void) \
81 { \
82 type_register_static(&machvirt_##major##_##minor##_info); \
83 } \
84 type_init(machvirt_machine_##major##_##minor##_init);
85
86 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
87 DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
88 #define DEFINE_VIRT_MACHINE(major, minor) \
89 DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
90
91
92 /* Number of external interrupt lines to configure the GIC with */
93 #define NUM_IRQS 256
94
95 #define PLATFORM_BUS_NUM_IRQS 64
96
97 /* RAM limit in GB. Since VIRT_MEM starts at the 1GB mark, this means
98 * RAM can go up to the 256GB mark, leaving 256GB of the physical
99 * address space unallocated and free for future use between 256G and 512G.
100 * If we need to provide more RAM to VMs in the future then we need to:
101 * * allocate a second bank of RAM starting at 2TB and working up
102 * * fix the DT and ACPI table generation code in QEMU to correctly
103 * report two split lumps of RAM to the guest
104 * * fix KVM in the host kernel to allow guests with >40 bit address spaces
105 * (We don't want to fill all the way up to 512GB with RAM because
106 * we might want it for non-RAM purposes later. Conversely it seems
107 * reasonable to assume that anybody configuring a VM with a quarter
108 * of a terabyte of RAM will be doing it on a host with more than a
109 * terabyte of physical address space.)
110 */
111 #define RAMLIMIT_GB 255
112 #define RAMLIMIT_BYTES (RAMLIMIT_GB * 1024ULL * 1024 * 1024)
113
114 /* Addresses and sizes of our components.
115 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
116 * 128MB..256MB is used for miscellaneous device I/O.
117 * 256MB..1GB is reserved for possible future PCI support (ie where the
118 * PCI memory window will go if we add a PCI host controller).
119 * 1GB and up is RAM (which may happily spill over into the
120 * high memory region beyond 4GB).
121 * This represents a compromise between how much RAM can be given to
122 * a 32 bit VM and leaving space for expansion and in particular for PCI.
123 * Note that devices should generally be placed at multiples of 0x10000,
124 * to accommodate guests using 64K pages.
125 */
126 static const MemMapEntry a15memmap[] = {
127 /* Space up to 0x8000000 is reserved for a boot ROM */
128 [VIRT_FLASH] = { 0, 0x08000000 },
129 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
130 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
131 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
132 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
133 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 },
134 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
135 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 },
136 /* This redistributor space allows up to 2*64kB*123 CPUs */
137 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 },
138 [VIRT_UART] = { 0x09000000, 0x00001000 },
139 [VIRT_RTC] = { 0x09010000, 0x00001000 },
140 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 },
141 [VIRT_GPIO] = { 0x09030000, 0x00001000 },
142 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 },
143 [VIRT_SMMU] = { 0x09050000, 0x00020000 },
144 [VIRT_MMIO] = { 0x0a000000, 0x00000200 },
145 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
146 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 },
147 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 },
148 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 },
149 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 },
150 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 },
151 [VIRT_MEM] = { 0x40000000, RAMLIMIT_BYTES },
152 /* Additional 64 MB redist region (can contain up to 512 redistributors) */
153 [VIRT_GIC_REDIST2] = { 0x4000000000ULL, 0x4000000 },
154 [VIRT_PCIE_ECAM_HIGH] = { 0x4010000000ULL, 0x10000000 },
155 /* Second PCIe window, 512GB wide at the 512GB boundary */
156 [VIRT_PCIE_MMIO_HIGH] = { 0x8000000000ULL, 0x8000000000ULL },
157 };
158
159 static const int a15irqmap[] = {
160 [VIRT_UART] = 1,
161 [VIRT_RTC] = 2,
162 [VIRT_PCIE] = 3, /* ... to 6 */
163 [VIRT_GPIO] = 7,
164 [VIRT_SECURE_UART] = 8,
165 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
166 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
167 [VIRT_SMMU] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */
168 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
169 };
170
171 static const char *valid_cpus[] = {
172 ARM_CPU_TYPE_NAME("cortex-a15"),
173 ARM_CPU_TYPE_NAME("cortex-a53"),
174 ARM_CPU_TYPE_NAME("cortex-a57"),
175 ARM_CPU_TYPE_NAME("host"),
176 ARM_CPU_TYPE_NAME("max"),
177 };
178
179 static bool cpu_type_valid(const char *cpu)
180 {
181 int i;
182
183 for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
184 if (strcmp(cpu, valid_cpus[i]) == 0) {
185 return true;
186 }
187 }
188 return false;
189 }
190
191 static void create_fdt(VirtMachineState *vms)
192 {
193 void *fdt = create_device_tree(&vms->fdt_size);
194
195 if (!fdt) {
196 error_report("create_device_tree() failed");
197 exit(1);
198 }
199
200 vms->fdt = fdt;
201
202 /* Header */
203 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
204 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
205 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
206
207 /*
208 * /chosen and /memory nodes must exist for load_dtb
209 * to fill in necessary properties later
210 */
211 qemu_fdt_add_subnode(fdt, "/chosen");
212 qemu_fdt_add_subnode(fdt, "/memory");
213 qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
214
215 /* Clock node, for the benefit of the UART. The kernel device tree
216 * binding documentation claims the PL011 node clock properties are
217 * optional but in practice if you omit them the kernel refuses to
218 * probe for the device.
219 */
220 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
221 qemu_fdt_add_subnode(fdt, "/apb-pclk");
222 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
223 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
224 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
225 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
226 "clk24mhz");
227 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
228
229 if (have_numa_distance) {
230 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
231 uint32_t *matrix = g_malloc0(size);
232 int idx, i, j;
233
234 for (i = 0; i < nb_numa_nodes; i++) {
235 for (j = 0; j < nb_numa_nodes; j++) {
236 idx = (i * nb_numa_nodes + j) * 3;
237 matrix[idx + 0] = cpu_to_be32(i);
238 matrix[idx + 1] = cpu_to_be32(j);
239 matrix[idx + 2] = cpu_to_be32(numa_info[i].distance[j]);
240 }
241 }
242
243 qemu_fdt_add_subnode(fdt, "/distance-map");
244 qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
245 "numa-distance-map-v1");
246 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
247 matrix, size);
248 g_free(matrix);
249 }
250 }
251
252 static void fdt_add_timer_nodes(const VirtMachineState *vms)
253 {
254 /* On real hardware these interrupts are level-triggered.
255 * On KVM they were edge-triggered before host kernel version 4.4,
256 * and level-triggered afterwards.
257 * On emulated QEMU they are level-triggered.
258 *
259 * Getting the DTB info about them wrong is awkward for some
260 * guest kernels:
261 * pre-4.8 ignore the DT and leave the interrupt configured
262 * with whatever the GIC reset value (or the bootloader) left it at
263 * 4.8 before rc6 honour the incorrect data by programming it back
264 * into the GIC, causing problems
265 * 4.8rc6 and later ignore the DT and always write "level triggered"
266 * into the GIC
267 *
268 * For backwards-compatibility, virt-2.8 and earlier will continue
269 * to say these are edge-triggered, but later machines will report
270 * the correct information.
271 */
272 ARMCPU *armcpu;
273 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
274 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
275
276 if (vmc->claim_edge_triggered_timers) {
277 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
278 }
279
280 if (vms->gic_version == 2) {
281 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
282 GIC_FDT_IRQ_PPI_CPU_WIDTH,
283 (1 << vms->smp_cpus) - 1);
284 }
285
286 qemu_fdt_add_subnode(vms->fdt, "/timer");
287
288 armcpu = ARM_CPU(qemu_get_cpu(0));
289 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
290 const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
291 qemu_fdt_setprop(vms->fdt, "/timer", "compatible",
292 compat, sizeof(compat));
293 } else {
294 qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible",
295 "arm,armv7-timer");
296 }
297 qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0);
298 qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts",
299 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
300 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
301 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
302 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
303 }
304
305 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
306 {
307 int cpu;
308 int addr_cells = 1;
309 const MachineState *ms = MACHINE(vms);
310
311 /*
312 * From Documentation/devicetree/bindings/arm/cpus.txt
313 * On ARM v8 64-bit systems value should be set to 2,
314 * that corresponds to the MPIDR_EL1 register size.
315 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
316 * in the system, #address-cells can be set to 1, since
317 * MPIDR_EL1[63:32] bits are not used for CPUs
318 * identification.
319 *
320 * Here we actually don't know whether our system is 32- or 64-bit one.
321 * The simplest way to go is to examine affinity IDs of all our CPUs. If
322 * at least one of them has Aff3 populated, we set #address-cells to 2.
323 */
324 for (cpu = 0; cpu < vms->smp_cpus; cpu++) {
325 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
326
327 if (armcpu->mp_affinity & ARM_AFF3_MASK) {
328 addr_cells = 2;
329 break;
330 }
331 }
332
333 qemu_fdt_add_subnode(vms->fdt, "/cpus");
334 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells);
335 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0);
336
337 for (cpu = vms->smp_cpus - 1; cpu >= 0; cpu--) {
338 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
339 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
340 CPUState *cs = CPU(armcpu);
341
342 qemu_fdt_add_subnode(vms->fdt, nodename);
343 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu");
344 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
345 armcpu->dtb_compatible);
346
347 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED
348 && vms->smp_cpus > 1) {
349 qemu_fdt_setprop_string(vms->fdt, nodename,
350 "enable-method", "psci");
351 }
352
353 if (addr_cells == 2) {
354 qemu_fdt_setprop_u64(vms->fdt, nodename, "reg",
355 armcpu->mp_affinity);
356 } else {
357 qemu_fdt_setprop_cell(vms->fdt, nodename, "reg",
358 armcpu->mp_affinity);
359 }
360
361 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
362 qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id",
363 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
364 }
365
366 g_free(nodename);
367 }
368 }
369
370 static void fdt_add_its_gic_node(VirtMachineState *vms)
371 {
372 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
373 qemu_fdt_add_subnode(vms->fdt, "/intc/its");
374 qemu_fdt_setprop_string(vms->fdt, "/intc/its", "compatible",
375 "arm,gic-v3-its");
376 qemu_fdt_setprop(vms->fdt, "/intc/its", "msi-controller", NULL, 0);
377 qemu_fdt_setprop_sized_cells(vms->fdt, "/intc/its", "reg",
378 2, vms->memmap[VIRT_GIC_ITS].base,
379 2, vms->memmap[VIRT_GIC_ITS].size);
380 qemu_fdt_setprop_cell(vms->fdt, "/intc/its", "phandle", vms->msi_phandle);
381 }
382
383 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
384 {
385 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
386 qemu_fdt_add_subnode(vms->fdt, "/intc/v2m");
387 qemu_fdt_setprop_string(vms->fdt, "/intc/v2m", "compatible",
388 "arm,gic-v2m-frame");
389 qemu_fdt_setprop(vms->fdt, "/intc/v2m", "msi-controller", NULL, 0);
390 qemu_fdt_setprop_sized_cells(vms->fdt, "/intc/v2m", "reg",
391 2, vms->memmap[VIRT_GIC_V2M].base,
392 2, vms->memmap[VIRT_GIC_V2M].size);
393 qemu_fdt_setprop_cell(vms->fdt, "/intc/v2m", "phandle", vms->msi_phandle);
394 }
395
396 static void fdt_add_gic_node(VirtMachineState *vms)
397 {
398 vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt);
399 qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle);
400
401 qemu_fdt_add_subnode(vms->fdt, "/intc");
402 qemu_fdt_setprop_cell(vms->fdt, "/intc", "#interrupt-cells", 3);
403 qemu_fdt_setprop(vms->fdt, "/intc", "interrupt-controller", NULL, 0);
404 qemu_fdt_setprop_cell(vms->fdt, "/intc", "#address-cells", 0x2);
405 qemu_fdt_setprop_cell(vms->fdt, "/intc", "#size-cells", 0x2);
406 qemu_fdt_setprop(vms->fdt, "/intc", "ranges", NULL, 0);
407 if (vms->gic_version == 3) {
408 int nb_redist_regions = virt_gicv3_redist_region_count(vms);
409
410 qemu_fdt_setprop_string(vms->fdt, "/intc", "compatible",
411 "arm,gic-v3");
412
413 qemu_fdt_setprop_cell(vms->fdt, "/intc",
414 "#redistributor-regions", nb_redist_regions);
415
416 if (nb_redist_regions == 1) {
417 qemu_fdt_setprop_sized_cells(vms->fdt, "/intc", "reg",
418 2, vms->memmap[VIRT_GIC_DIST].base,
419 2, vms->memmap[VIRT_GIC_DIST].size,
420 2, vms->memmap[VIRT_GIC_REDIST].base,
421 2, vms->memmap[VIRT_GIC_REDIST].size);
422 } else {
423 qemu_fdt_setprop_sized_cells(vms->fdt, "/intc", "reg",
424 2, vms->memmap[VIRT_GIC_DIST].base,
425 2, vms->memmap[VIRT_GIC_DIST].size,
426 2, vms->memmap[VIRT_GIC_REDIST].base,
427 2, vms->memmap[VIRT_GIC_REDIST].size,
428 2, vms->memmap[VIRT_GIC_REDIST2].base,
429 2, vms->memmap[VIRT_GIC_REDIST2].size);
430 }
431
432 if (vms->virt) {
433 qemu_fdt_setprop_cells(vms->fdt, "/intc", "interrupts",
434 GIC_FDT_IRQ_TYPE_PPI, ARCH_GICV3_MAINT_IRQ,
435 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
436 }
437 } else {
438 /* 'cortex-a15-gic' means 'GIC v2' */
439 qemu_fdt_setprop_string(vms->fdt, "/intc", "compatible",
440 "arm,cortex-a15-gic");
441 qemu_fdt_setprop_sized_cells(vms->fdt, "/intc", "reg",
442 2, vms->memmap[VIRT_GIC_DIST].base,
443 2, vms->memmap[VIRT_GIC_DIST].size,
444 2, vms->memmap[VIRT_GIC_CPU].base,
445 2, vms->memmap[VIRT_GIC_CPU].size);
446 }
447
448 qemu_fdt_setprop_cell(vms->fdt, "/intc", "phandle", vms->gic_phandle);
449 }
450
451 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
452 {
453 CPUState *cpu;
454 ARMCPU *armcpu;
455 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
456
457 CPU_FOREACH(cpu) {
458 armcpu = ARM_CPU(cpu);
459 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
460 return;
461 }
462 if (kvm_enabled()) {
463 if (kvm_irqchip_in_kernel()) {
464 kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ));
465 }
466 kvm_arm_pmu_init(cpu);
467 }
468 }
469
470 if (vms->gic_version == 2) {
471 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
472 GIC_FDT_IRQ_PPI_CPU_WIDTH,
473 (1 << vms->smp_cpus) - 1);
474 }
475
476 armcpu = ARM_CPU(qemu_get_cpu(0));
477 qemu_fdt_add_subnode(vms->fdt, "/pmu");
478 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
479 const char compat[] = "arm,armv8-pmuv3";
480 qemu_fdt_setprop(vms->fdt, "/pmu", "compatible",
481 compat, sizeof(compat));
482 qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts",
483 GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
484 }
485 }
486
487 static void create_its(VirtMachineState *vms, DeviceState *gicdev)
488 {
489 const char *itsclass = its_class_name();
490 DeviceState *dev;
491
492 if (!itsclass) {
493 /* Do nothing if not supported */
494 return;
495 }
496
497 dev = qdev_create(NULL, itsclass);
498
499 object_property_set_link(OBJECT(dev), OBJECT(gicdev), "parent-gicv3",
500 &error_abort);
501 qdev_init_nofail(dev);
502 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
503
504 fdt_add_its_gic_node(vms);
505 }
506
507 static void create_v2m(VirtMachineState *vms, qemu_irq *pic)
508 {
509 int i;
510 int irq = vms->irqmap[VIRT_GIC_V2M];
511 DeviceState *dev;
512
513 dev = qdev_create(NULL, "arm-gicv2m");
514 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
515 qdev_prop_set_uint32(dev, "base-spi", irq);
516 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
517 qdev_init_nofail(dev);
518
519 for (i = 0; i < NUM_GICV2M_SPIS; i++) {
520 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
521 }
522
523 fdt_add_v2m_gic_node(vms);
524 }
525
526 static void create_gic(VirtMachineState *vms, qemu_irq *pic)
527 {
528 /* We create a standalone GIC */
529 DeviceState *gicdev;
530 SysBusDevice *gicbusdev;
531 const char *gictype;
532 int type = vms->gic_version, i;
533 uint32_t nb_redist_regions = 0;
534
535 gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
536
537 gicdev = qdev_create(NULL, gictype);
538 qdev_prop_set_uint32(gicdev, "revision", type);
539 qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
540 /* Note that the num-irq property counts both internal and external
541 * interrupts; there are always 32 of the former (mandated by GIC spec).
542 */
543 qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
544 if (!kvm_irqchip_in_kernel()) {
545 qdev_prop_set_bit(gicdev, "has-security-extensions", vms->secure);
546 }
547
548 if (type == 3) {
549 uint32_t redist0_capacity =
550 vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
551 uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
552
553 nb_redist_regions = virt_gicv3_redist_region_count(vms);
554
555 qdev_prop_set_uint32(gicdev, "len-redist-region-count",
556 nb_redist_regions);
557 qdev_prop_set_uint32(gicdev, "redist-region-count[0]", redist0_count);
558
559 if (nb_redist_regions == 2) {
560 uint32_t redist1_capacity =
561 vms->memmap[VIRT_GIC_REDIST2].size / GICV3_REDIST_SIZE;
562
563 qdev_prop_set_uint32(gicdev, "redist-region-count[1]",
564 MIN(smp_cpus - redist0_count, redist1_capacity));
565 }
566 }
567 qdev_init_nofail(gicdev);
568 gicbusdev = SYS_BUS_DEVICE(gicdev);
569 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
570 if (type == 3) {
571 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
572 if (nb_redist_regions == 2) {
573 sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_REDIST2].base);
574 }
575 } else {
576 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
577 }
578
579 /* Wire the outputs from each CPU's generic timer and the GICv3
580 * maintenance interrupt signal to the appropriate GIC PPI inputs,
581 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
582 */
583 for (i = 0; i < smp_cpus; i++) {
584 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
585 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
586 int irq;
587 /* Mapping from the output timer irq lines from the CPU to the
588 * GIC PPI inputs we use for the virt board.
589 */
590 const int timer_irq[] = {
591 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
592 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
593 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
594 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
595 };
596
597 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
598 qdev_connect_gpio_out(cpudev, irq,
599 qdev_get_gpio_in(gicdev,
600 ppibase + timer_irq[irq]));
601 }
602
603 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 0,
604 qdev_get_gpio_in(gicdev, ppibase
605 + ARCH_GICV3_MAINT_IRQ));
606 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
607 qdev_get_gpio_in(gicdev, ppibase
608 + VIRTUAL_PMU_IRQ));
609
610 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
611 sysbus_connect_irq(gicbusdev, i + smp_cpus,
612 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
613 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
614 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
615 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
616 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
617 }
618
619 for (i = 0; i < NUM_IRQS; i++) {
620 pic[i] = qdev_get_gpio_in(gicdev, i);
621 }
622
623 fdt_add_gic_node(vms);
624
625 if (type == 3 && vms->its) {
626 create_its(vms, gicdev);
627 } else if (type == 2) {
628 create_v2m(vms, pic);
629 }
630 }
631
632 static void create_uart(const VirtMachineState *vms, qemu_irq *pic, int uart,
633 MemoryRegion *mem, Chardev *chr)
634 {
635 char *nodename;
636 hwaddr base = vms->memmap[uart].base;
637 hwaddr size = vms->memmap[uart].size;
638 int irq = vms->irqmap[uart];
639 const char compat[] = "arm,pl011\0arm,primecell";
640 const char clocknames[] = "uartclk\0apb_pclk";
641 DeviceState *dev = qdev_create(NULL, "pl011");
642 SysBusDevice *s = SYS_BUS_DEVICE(dev);
643
644 qdev_prop_set_chr(dev, "chardev", chr);
645 qdev_init_nofail(dev);
646 memory_region_add_subregion(mem, base,
647 sysbus_mmio_get_region(s, 0));
648 sysbus_connect_irq(s, 0, pic[irq]);
649
650 nodename = g_strdup_printf("/pl011@%" PRIx64, base);
651 qemu_fdt_add_subnode(vms->fdt, nodename);
652 /* Note that we can't use setprop_string because of the embedded NUL */
653 qemu_fdt_setprop(vms->fdt, nodename, "compatible",
654 compat, sizeof(compat));
655 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
656 2, base, 2, size);
657 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
658 GIC_FDT_IRQ_TYPE_SPI, irq,
659 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
660 qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks",
661 vms->clock_phandle, vms->clock_phandle);
662 qemu_fdt_setprop(vms->fdt, nodename, "clock-names",
663 clocknames, sizeof(clocknames));
664
665 if (uart == VIRT_UART) {
666 qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename);
667 } else {
668 /* Mark as not usable by the normal world */
669 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
670 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
671 }
672
673 g_free(nodename);
674 }
675
676 static void create_rtc(const VirtMachineState *vms, qemu_irq *pic)
677 {
678 char *nodename;
679 hwaddr base = vms->memmap[VIRT_RTC].base;
680 hwaddr size = vms->memmap[VIRT_RTC].size;
681 int irq = vms->irqmap[VIRT_RTC];
682 const char compat[] = "arm,pl031\0arm,primecell";
683
684 sysbus_create_simple("pl031", base, pic[irq]);
685
686 nodename = g_strdup_printf("/pl031@%" PRIx64, base);
687 qemu_fdt_add_subnode(vms->fdt, nodename);
688 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
689 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
690 2, base, 2, size);
691 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
692 GIC_FDT_IRQ_TYPE_SPI, irq,
693 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
694 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
695 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
696 g_free(nodename);
697 }
698
699 static DeviceState *gpio_key_dev;
700 static void virt_powerdown_req(Notifier *n, void *opaque)
701 {
702 /* use gpio Pin 3 for power button event */
703 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
704 }
705
706 static Notifier virt_system_powerdown_notifier = {
707 .notify = virt_powerdown_req
708 };
709
710 static void create_gpio(const VirtMachineState *vms, qemu_irq *pic)
711 {
712 char *nodename;
713 DeviceState *pl061_dev;
714 hwaddr base = vms->memmap[VIRT_GPIO].base;
715 hwaddr size = vms->memmap[VIRT_GPIO].size;
716 int irq = vms->irqmap[VIRT_GPIO];
717 const char compat[] = "arm,pl061\0arm,primecell";
718
719 pl061_dev = sysbus_create_simple("pl061", base, pic[irq]);
720
721 uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt);
722 nodename = g_strdup_printf("/pl061@%" PRIx64, base);
723 qemu_fdt_add_subnode(vms->fdt, nodename);
724 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
725 2, base, 2, size);
726 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
727 qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2);
728 qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0);
729 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
730 GIC_FDT_IRQ_TYPE_SPI, irq,
731 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
732 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
733 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
734 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle);
735
736 gpio_key_dev = sysbus_create_simple("gpio-key", -1,
737 qdev_get_gpio_in(pl061_dev, 3));
738 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys");
739 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys");
740 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0);
741 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1);
742
743 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff");
744 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff",
745 "label", "GPIO Key Poweroff");
746 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code",
747 KEY_POWER);
748 qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff",
749 "gpios", phandle, 3, 0);
750
751 /* connect powerdown request */
752 qemu_register_powerdown_notifier(&virt_system_powerdown_notifier);
753
754 g_free(nodename);
755 }
756
757 static void create_virtio_devices(const VirtMachineState *vms, qemu_irq *pic)
758 {
759 int i;
760 hwaddr size = vms->memmap[VIRT_MMIO].size;
761
762 /* We create the transports in forwards order. Since qbus_realize()
763 * prepends (not appends) new child buses, the incrementing loop below will
764 * create a list of virtio-mmio buses with decreasing base addresses.
765 *
766 * When a -device option is processed from the command line,
767 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
768 * order. The upshot is that -device options in increasing command line
769 * order are mapped to virtio-mmio buses with decreasing base addresses.
770 *
771 * When this code was originally written, that arrangement ensured that the
772 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
773 * the first -device on the command line. (The end-to-end order is a
774 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
775 * guest kernel's name-to-address assignment strategy.)
776 *
777 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
778 * the message, if not necessarily the code, of commit 70161ff336.
779 * Therefore the loop now establishes the inverse of the original intent.
780 *
781 * Unfortunately, we can't counteract the kernel change by reversing the
782 * loop; it would break existing command lines.
783 *
784 * In any case, the kernel makes no guarantee about the stability of
785 * enumeration order of virtio devices (as demonstrated by it changing
786 * between kernel versions). For reliable and stable identification
787 * of disks users must use UUIDs or similar mechanisms.
788 */
789 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
790 int irq = vms->irqmap[VIRT_MMIO] + i;
791 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
792
793 sysbus_create_simple("virtio-mmio", base, pic[irq]);
794 }
795
796 /* We add dtb nodes in reverse order so that they appear in the finished
797 * device tree lowest address first.
798 *
799 * Note that this mapping is independent of the loop above. The previous
800 * loop influences virtio device to virtio transport assignment, whereas
801 * this loop controls how virtio transports are laid out in the dtb.
802 */
803 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
804 char *nodename;
805 int irq = vms->irqmap[VIRT_MMIO] + i;
806 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
807
808 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
809 qemu_fdt_add_subnode(vms->fdt, nodename);
810 qemu_fdt_setprop_string(vms->fdt, nodename,
811 "compatible", "virtio,mmio");
812 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
813 2, base, 2, size);
814 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
815 GIC_FDT_IRQ_TYPE_SPI, irq,
816 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
817 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
818 g_free(nodename);
819 }
820 }
821
822 static void create_one_flash(const char *name, hwaddr flashbase,
823 hwaddr flashsize, const char *file,
824 MemoryRegion *sysmem)
825 {
826 /* Create and map a single flash device. We use the same
827 * parameters as the flash devices on the Versatile Express board.
828 */
829 DriveInfo *dinfo = drive_get_next(IF_PFLASH);
830 DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
831 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
832 const uint64_t sectorlength = 256 * 1024;
833
834 if (dinfo) {
835 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
836 &error_abort);
837 }
838
839 qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
840 qdev_prop_set_uint64(dev, "sector-length", sectorlength);
841 qdev_prop_set_uint8(dev, "width", 4);
842 qdev_prop_set_uint8(dev, "device-width", 2);
843 qdev_prop_set_bit(dev, "big-endian", false);
844 qdev_prop_set_uint16(dev, "id0", 0x89);
845 qdev_prop_set_uint16(dev, "id1", 0x18);
846 qdev_prop_set_uint16(dev, "id2", 0x00);
847 qdev_prop_set_uint16(dev, "id3", 0x00);
848 qdev_prop_set_string(dev, "name", name);
849 qdev_init_nofail(dev);
850
851 memory_region_add_subregion(sysmem, flashbase,
852 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0));
853
854 if (file) {
855 char *fn;
856 int image_size;
857
858 if (drive_get(IF_PFLASH, 0, 0)) {
859 error_report("The contents of the first flash device may be "
860 "specified with -bios or with -drive if=pflash... "
861 "but you cannot use both options at once");
862 exit(1);
863 }
864 fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, file);
865 if (!fn) {
866 error_report("Could not find ROM image '%s'", file);
867 exit(1);
868 }
869 image_size = load_image_mr(fn, sysbus_mmio_get_region(sbd, 0));
870 g_free(fn);
871 if (image_size < 0) {
872 error_report("Could not load ROM image '%s'", file);
873 exit(1);
874 }
875 }
876 }
877
878 static void create_flash(const VirtMachineState *vms,
879 MemoryRegion *sysmem,
880 MemoryRegion *secure_sysmem)
881 {
882 /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
883 * Any file passed via -bios goes in the first of these.
884 * sysmem is the system memory space. secure_sysmem is the secure view
885 * of the system, and the first flash device should be made visible only
886 * there. The second flash device is visible to both secure and nonsecure.
887 * If sysmem == secure_sysmem this means there is no separate Secure
888 * address space and both flash devices are generally visible.
889 */
890 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
891 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
892 char *nodename;
893
894 create_one_flash("virt.flash0", flashbase, flashsize,
895 bios_name, secure_sysmem);
896 create_one_flash("virt.flash1", flashbase + flashsize, flashsize,
897 NULL, sysmem);
898
899 if (sysmem == secure_sysmem) {
900 /* Report both flash devices as a single node in the DT */
901 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
902 qemu_fdt_add_subnode(vms->fdt, nodename);
903 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
904 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
905 2, flashbase, 2, flashsize,
906 2, flashbase + flashsize, 2, flashsize);
907 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
908 g_free(nodename);
909 } else {
910 /* Report the devices as separate nodes so we can mark one as
911 * only visible to the secure world.
912 */
913 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
914 qemu_fdt_add_subnode(vms->fdt, nodename);
915 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
916 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
917 2, flashbase, 2, flashsize);
918 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
919 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
920 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
921 g_free(nodename);
922
923 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
924 qemu_fdt_add_subnode(vms->fdt, nodename);
925 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
926 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
927 2, flashbase + flashsize, 2, flashsize);
928 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
929 g_free(nodename);
930 }
931 }
932
933 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
934 {
935 hwaddr base = vms->memmap[VIRT_FW_CFG].base;
936 hwaddr size = vms->memmap[VIRT_FW_CFG].size;
937 FWCfgState *fw_cfg;
938 char *nodename;
939
940 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
941 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus);
942
943 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
944 qemu_fdt_add_subnode(vms->fdt, nodename);
945 qemu_fdt_setprop_string(vms->fdt, nodename,
946 "compatible", "qemu,fw-cfg-mmio");
947 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
948 2, base, 2, size);
949 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
950 g_free(nodename);
951 return fw_cfg;
952 }
953
954 static void create_pcie_irq_map(const VirtMachineState *vms,
955 uint32_t gic_phandle,
956 int first_irq, const char *nodename)
957 {
958 int devfn, pin;
959 uint32_t full_irq_map[4 * 4 * 10] = { 0 };
960 uint32_t *irq_map = full_irq_map;
961
962 for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
963 for (pin = 0; pin < 4; pin++) {
964 int irq_type = GIC_FDT_IRQ_TYPE_SPI;
965 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
966 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
967 int i;
968
969 uint32_t map[] = {
970 devfn << 8, 0, 0, /* devfn */
971 pin + 1, /* PCI pin */
972 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
973
974 /* Convert map to big endian */
975 for (i = 0; i < 10; i++) {
976 irq_map[i] = cpu_to_be32(map[i]);
977 }
978 irq_map += 10;
979 }
980 }
981
982 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map",
983 full_irq_map, sizeof(full_irq_map));
984
985 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask",
986 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
987 0x7 /* PCI irq */);
988 }
989
990 static void create_smmu(const VirtMachineState *vms, qemu_irq *pic,
991 PCIBus *bus)
992 {
993 char *node;
994 const char compat[] = "arm,smmu-v3";
995 int irq = vms->irqmap[VIRT_SMMU];
996 int i;
997 hwaddr base = vms->memmap[VIRT_SMMU].base;
998 hwaddr size = vms->memmap[VIRT_SMMU].size;
999 const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
1000 DeviceState *dev;
1001
1002 if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
1003 return;
1004 }
1005
1006 dev = qdev_create(NULL, "arm-smmuv3");
1007
1008 object_property_set_link(OBJECT(dev), OBJECT(bus), "primary-bus",
1009 &error_abort);
1010 qdev_init_nofail(dev);
1011 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
1012 for (i = 0; i < NUM_SMMU_IRQS; i++) {
1013 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1014 }
1015
1016 node = g_strdup_printf("/smmuv3@%" PRIx64, base);
1017 qemu_fdt_add_subnode(vms->fdt, node);
1018 qemu_fdt_setprop(vms->fdt, node, "compatible", compat, sizeof(compat));
1019 qemu_fdt_setprop_sized_cells(vms->fdt, node, "reg", 2, base, 2, size);
1020
1021 qemu_fdt_setprop_cells(vms->fdt, node, "interrupts",
1022 GIC_FDT_IRQ_TYPE_SPI, irq , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1023 GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1024 GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1025 GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1026
1027 qemu_fdt_setprop(vms->fdt, node, "interrupt-names", irq_names,
1028 sizeof(irq_names));
1029
1030 qemu_fdt_setprop_cell(vms->fdt, node, "clocks", vms->clock_phandle);
1031 qemu_fdt_setprop_string(vms->fdt, node, "clock-names", "apb_pclk");
1032 qemu_fdt_setprop(vms->fdt, node, "dma-coherent", NULL, 0);
1033
1034 qemu_fdt_setprop_cell(vms->fdt, node, "#iommu-cells", 1);
1035
1036 qemu_fdt_setprop_cell(vms->fdt, node, "phandle", vms->iommu_phandle);
1037 g_free(node);
1038 }
1039
1040 static void create_pcie(VirtMachineState *vms, qemu_irq *pic)
1041 {
1042 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1043 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
1044 hwaddr base_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].base;
1045 hwaddr size_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].size;
1046 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1047 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
1048 hwaddr base_ecam, size_ecam;
1049 hwaddr base = base_mmio;
1050 int nr_pcie_buses;
1051 int irq = vms->irqmap[VIRT_PCIE];
1052 MemoryRegion *mmio_alias;
1053 MemoryRegion *mmio_reg;
1054 MemoryRegion *ecam_alias;
1055 MemoryRegion *ecam_reg;
1056 DeviceState *dev;
1057 char *nodename;
1058 int i, ecam_id;
1059 PCIHostState *pci;
1060
1061 dev = qdev_create(NULL, TYPE_GPEX_HOST);
1062 qdev_init_nofail(dev);
1063
1064 ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
1065 base_ecam = vms->memmap[ecam_id].base;
1066 size_ecam = vms->memmap[ecam_id].size;
1067 nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
1068 /* Map only the first size_ecam bytes of ECAM space */
1069 ecam_alias = g_new0(MemoryRegion, 1);
1070 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1071 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1072 ecam_reg, 0, size_ecam);
1073 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1074
1075 /* Map the MMIO window into system address space so as to expose
1076 * the section of PCI MMIO space which starts at the same base address
1077 * (ie 1:1 mapping for that part of PCI MMIO space visible through
1078 * the window).
1079 */
1080 mmio_alias = g_new0(MemoryRegion, 1);
1081 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1082 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1083 mmio_reg, base_mmio, size_mmio);
1084 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1085
1086 if (vms->highmem) {
1087 /* Map high MMIO space */
1088 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1089
1090 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1091 mmio_reg, base_mmio_high, size_mmio_high);
1092 memory_region_add_subregion(get_system_memory(), base_mmio_high,
1093 high_mmio_alias);
1094 }
1095
1096 /* Map IO port space */
1097 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1098
1099 for (i = 0; i < GPEX_NUM_IRQS; i++) {
1100 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1101 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
1102 }
1103
1104 pci = PCI_HOST_BRIDGE(dev);
1105 if (pci->bus) {
1106 for (i = 0; i < nb_nics; i++) {
1107 NICInfo *nd = &nd_table[i];
1108
1109 if (!nd->model) {
1110 nd->model = g_strdup("virtio");
1111 }
1112
1113 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1114 }
1115 }
1116
1117 nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1118 qemu_fdt_add_subnode(vms->fdt, nodename);
1119 qemu_fdt_setprop_string(vms->fdt, nodename,
1120 "compatible", "pci-host-ecam-generic");
1121 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci");
1122 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3);
1123 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2);
1124 qemu_fdt_setprop_cell(vms->fdt, nodename, "linux,pci-domain", 0);
1125 qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0,
1126 nr_pcie_buses - 1);
1127 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1128
1129 if (vms->msi_phandle) {
1130 qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent",
1131 vms->msi_phandle);
1132 }
1133
1134 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1135 2, base_ecam, 2, size_ecam);
1136
1137 if (vms->highmem) {
1138 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1139 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1140 2, base_pio, 2, size_pio,
1141 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1142 2, base_mmio, 2, size_mmio,
1143 1, FDT_PCI_RANGE_MMIO_64BIT,
1144 2, base_mmio_high,
1145 2, base_mmio_high, 2, size_mmio_high);
1146 } else {
1147 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1148 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1149 2, base_pio, 2, size_pio,
1150 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1151 2, base_mmio, 2, size_mmio);
1152 }
1153
1154 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1);
1155 create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename);
1156
1157 if (vms->iommu) {
1158 vms->iommu_phandle = qemu_fdt_alloc_phandle(vms->fdt);
1159
1160 create_smmu(vms, pic, pci->bus);
1161
1162 qemu_fdt_setprop_cells(vms->fdt, nodename, "iommu-map",
1163 0x0, vms->iommu_phandle, 0x0, 0x10000);
1164 }
1165
1166 g_free(nodename);
1167 }
1168
1169 static void create_platform_bus(VirtMachineState *vms, qemu_irq *pic)
1170 {
1171 DeviceState *dev;
1172 SysBusDevice *s;
1173 int i;
1174 MemoryRegion *sysmem = get_system_memory();
1175
1176 dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
1177 dev->id = TYPE_PLATFORM_BUS_DEVICE;
1178 qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
1179 qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
1180 qdev_init_nofail(dev);
1181 vms->platform_bus_dev = dev;
1182
1183 s = SYS_BUS_DEVICE(dev);
1184 for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
1185 int irqn = vms->irqmap[VIRT_PLATFORM_BUS] + i;
1186 sysbus_connect_irq(s, i, pic[irqn]);
1187 }
1188
1189 memory_region_add_subregion(sysmem,
1190 vms->memmap[VIRT_PLATFORM_BUS].base,
1191 sysbus_mmio_get_region(s, 0));
1192 }
1193
1194 static void create_secure_ram(VirtMachineState *vms,
1195 MemoryRegion *secure_sysmem)
1196 {
1197 MemoryRegion *secram = g_new(MemoryRegion, 1);
1198 char *nodename;
1199 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1200 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1201
1202 memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1203 &error_fatal);
1204 memory_region_add_subregion(secure_sysmem, base, secram);
1205
1206 nodename = g_strdup_printf("/secram@%" PRIx64, base);
1207 qemu_fdt_add_subnode(vms->fdt, nodename);
1208 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory");
1209 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size);
1210 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
1211 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
1212
1213 g_free(nodename);
1214 }
1215
1216 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1217 {
1218 const VirtMachineState *board = container_of(binfo, VirtMachineState,
1219 bootinfo);
1220
1221 *fdt_size = board->fdt_size;
1222 return board->fdt;
1223 }
1224
1225 static void virt_build_smbios(VirtMachineState *vms)
1226 {
1227 MachineClass *mc = MACHINE_GET_CLASS(vms);
1228 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1229 uint8_t *smbios_tables, *smbios_anchor;
1230 size_t smbios_tables_len, smbios_anchor_len;
1231 const char *product = "QEMU Virtual Machine";
1232
1233 if (!vms->fw_cfg) {
1234 return;
1235 }
1236
1237 if (kvm_enabled()) {
1238 product = "KVM Virtual Machine";
1239 }
1240
1241 smbios_set_defaults("QEMU", product,
1242 vmc->smbios_old_sys_ver ? "1.0" : mc->name, false,
1243 true, SMBIOS_ENTRY_POINT_30);
1244
1245 smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len,
1246 &smbios_anchor, &smbios_anchor_len);
1247
1248 if (smbios_anchor) {
1249 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1250 smbios_tables, smbios_tables_len);
1251 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1252 smbios_anchor, smbios_anchor_len);
1253 }
1254 }
1255
1256 static
1257 void virt_machine_done(Notifier *notifier, void *data)
1258 {
1259 VirtMachineState *vms = container_of(notifier, VirtMachineState,
1260 machine_done);
1261 ARMCPU *cpu = ARM_CPU(first_cpu);
1262 struct arm_boot_info *info = &vms->bootinfo;
1263 AddressSpace *as = arm_boot_address_space(cpu, info);
1264
1265 /*
1266 * If the user provided a dtb, we assume the dynamic sysbus nodes
1267 * already are integrated there. This corresponds to a use case where
1268 * the dynamic sysbus nodes are complex and their generation is not yet
1269 * supported. In that case the user can take charge of the guest dt
1270 * while qemu takes charge of the qom stuff.
1271 */
1272 if (info->dtb_filename == NULL) {
1273 platform_bus_add_all_fdt_nodes(vms->fdt, "/intc",
1274 vms->memmap[VIRT_PLATFORM_BUS].base,
1275 vms->memmap[VIRT_PLATFORM_BUS].size,
1276 vms->irqmap[VIRT_PLATFORM_BUS]);
1277 }
1278 if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as) < 0) {
1279 exit(1);
1280 }
1281
1282 virt_acpi_setup(vms);
1283 virt_build_smbios(vms);
1284 }
1285
1286 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1287 {
1288 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1289 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1290
1291 if (!vmc->disallow_affinity_adjustment) {
1292 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1293 * GIC's target-list limitations. 32-bit KVM hosts currently
1294 * always create clusters of 4 CPUs, but that is expected to
1295 * change when they gain support for gicv3. When KVM is enabled
1296 * it will override the changes we make here, therefore our
1297 * purposes are to make TCG consistent (with 64-bit KVM hosts)
1298 * and to improve SGI efficiency.
1299 */
1300 if (vms->gic_version == 3) {
1301 clustersz = GICV3_TARGETLIST_BITS;
1302 } else {
1303 clustersz = GIC_TARGETLIST_BITS;
1304 }
1305 }
1306 return arm_cpu_mp_affinity(idx, clustersz);
1307 }
1308
1309 static void machvirt_init(MachineState *machine)
1310 {
1311 VirtMachineState *vms = VIRT_MACHINE(machine);
1312 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
1313 MachineClass *mc = MACHINE_GET_CLASS(machine);
1314 const CPUArchIdList *possible_cpus;
1315 qemu_irq pic[NUM_IRQS];
1316 MemoryRegion *sysmem = get_system_memory();
1317 MemoryRegion *secure_sysmem = NULL;
1318 int n, virt_max_cpus;
1319 MemoryRegion *ram = g_new(MemoryRegion, 1);
1320 bool firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0);
1321 bool aarch64 = true;
1322
1323 /* We can probe only here because during property set
1324 * KVM is not available yet
1325 */
1326 if (vms->gic_version <= 0) {
1327 /* "host" or "max" */
1328 if (!kvm_enabled()) {
1329 if (vms->gic_version == 0) {
1330 error_report("gic-version=host requires KVM");
1331 exit(1);
1332 } else {
1333 /* "max": currently means 3 for TCG */
1334 vms->gic_version = 3;
1335 }
1336 } else {
1337 vms->gic_version = kvm_arm_vgic_probe();
1338 if (!vms->gic_version) {
1339 error_report(
1340 "Unable to determine GIC version supported by host");
1341 exit(1);
1342 }
1343 }
1344 }
1345
1346 if (!cpu_type_valid(machine->cpu_type)) {
1347 error_report("mach-virt: CPU type %s not supported", machine->cpu_type);
1348 exit(1);
1349 }
1350
1351 /* If we have an EL3 boot ROM then the assumption is that it will
1352 * implement PSCI itself, so disable QEMU's internal implementation
1353 * so it doesn't get in the way. Instead of starting secondary
1354 * CPUs in PSCI powerdown state we will start them all running and
1355 * let the boot ROM sort them out.
1356 * The usual case is that we do use QEMU's PSCI implementation;
1357 * if the guest has EL2 then we will use SMC as the conduit,
1358 * and otherwise we will use HVC (for backwards compatibility and
1359 * because if we're using KVM then we must use HVC).
1360 */
1361 if (vms->secure && firmware_loaded) {
1362 vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
1363 } else if (vms->virt) {
1364 vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
1365 } else {
1366 vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
1367 }
1368
1369 /* The maximum number of CPUs depends on the GIC version, or on how
1370 * many redistributors we can fit into the memory map.
1371 */
1372 if (vms->gic_version == 3) {
1373 virt_max_cpus = vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
1374 virt_max_cpus += vms->memmap[VIRT_GIC_REDIST2].size / GICV3_REDIST_SIZE;
1375 } else {
1376 virt_max_cpus = GIC_NCPU;
1377 }
1378
1379 if (max_cpus > virt_max_cpus) {
1380 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1381 "supported by machine 'mach-virt' (%d)",
1382 max_cpus, virt_max_cpus);
1383 exit(1);
1384 }
1385
1386 vms->smp_cpus = smp_cpus;
1387
1388 if (machine->ram_size > vms->memmap[VIRT_MEM].size) {
1389 error_report("mach-virt: cannot model more than %dGB RAM", RAMLIMIT_GB);
1390 exit(1);
1391 }
1392
1393 if (vms->virt && kvm_enabled()) {
1394 error_report("mach-virt: KVM does not support providing "
1395 "Virtualization extensions to the guest CPU");
1396 exit(1);
1397 }
1398
1399 if (vms->secure) {
1400 if (kvm_enabled()) {
1401 error_report("mach-virt: KVM does not support Security extensions");
1402 exit(1);
1403 }
1404
1405 /* The Secure view of the world is the same as the NonSecure,
1406 * but with a few extra devices. Create it as a container region
1407 * containing the system memory at low priority; any secure-only
1408 * devices go in at higher priority and take precedence.
1409 */
1410 secure_sysmem = g_new(MemoryRegion, 1);
1411 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1412 UINT64_MAX);
1413 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1414 }
1415
1416 create_fdt(vms);
1417
1418 possible_cpus = mc->possible_cpu_arch_ids(machine);
1419 for (n = 0; n < possible_cpus->len; n++) {
1420 Object *cpuobj;
1421 CPUState *cs;
1422
1423 if (n >= smp_cpus) {
1424 break;
1425 }
1426
1427 cpuobj = object_new(possible_cpus->cpus[n].type);
1428 object_property_set_int(cpuobj, possible_cpus->cpus[n].arch_id,
1429 "mp-affinity", NULL);
1430
1431 cs = CPU(cpuobj);
1432 cs->cpu_index = n;
1433
1434 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
1435 &error_fatal);
1436
1437 aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
1438
1439 if (!vms->secure) {
1440 object_property_set_bool(cpuobj, false, "has_el3", NULL);
1441 }
1442
1443 if (!vms->virt && object_property_find(cpuobj, "has_el2", NULL)) {
1444 object_property_set_bool(cpuobj, false, "has_el2", NULL);
1445 }
1446
1447 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
1448 object_property_set_int(cpuobj, vms->psci_conduit,
1449 "psci-conduit", NULL);
1450
1451 /* Secondary CPUs start in PSCI powered-down state */
1452 if (n > 0) {
1453 object_property_set_bool(cpuobj, true,
1454 "start-powered-off", NULL);
1455 }
1456 }
1457
1458 if (vmc->no_pmu && object_property_find(cpuobj, "pmu", NULL)) {
1459 object_property_set_bool(cpuobj, false, "pmu", NULL);
1460 }
1461
1462 if (object_property_find(cpuobj, "reset-cbar", NULL)) {
1463 object_property_set_int(cpuobj, vms->memmap[VIRT_CPUPERIPHS].base,
1464 "reset-cbar", &error_abort);
1465 }
1466
1467 object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
1468 &error_abort);
1469 if (vms->secure) {
1470 object_property_set_link(cpuobj, OBJECT(secure_sysmem),
1471 "secure-memory", &error_abort);
1472 }
1473
1474 object_property_set_bool(cpuobj, true, "realized", &error_fatal);
1475 object_unref(cpuobj);
1476 }
1477 fdt_add_timer_nodes(vms);
1478 fdt_add_cpu_nodes(vms);
1479
1480 memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
1481 machine->ram_size);
1482 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, ram);
1483
1484 create_flash(vms, sysmem, secure_sysmem ? secure_sysmem : sysmem);
1485
1486 create_gic(vms, pic);
1487
1488 fdt_add_pmu_nodes(vms);
1489
1490 create_uart(vms, pic, VIRT_UART, sysmem, serial_hd(0));
1491
1492 if (vms->secure) {
1493 create_secure_ram(vms, secure_sysmem);
1494 create_uart(vms, pic, VIRT_SECURE_UART, secure_sysmem, serial_hd(1));
1495 }
1496
1497 vms->highmem_ecam &= vms->highmem && (!firmware_loaded || aarch64);
1498
1499 create_rtc(vms, pic);
1500
1501 create_pcie(vms, pic);
1502
1503 create_gpio(vms, pic);
1504
1505 /* Create mmio transports, so the user can create virtio backends
1506 * (which will be automatically plugged in to the transports). If
1507 * no backend is created the transport will just sit harmlessly idle.
1508 */
1509 create_virtio_devices(vms, pic);
1510
1511 vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
1512 rom_set_fw(vms->fw_cfg);
1513
1514 create_platform_bus(vms, pic);
1515
1516 vms->bootinfo.ram_size = machine->ram_size;
1517 vms->bootinfo.kernel_filename = machine->kernel_filename;
1518 vms->bootinfo.kernel_cmdline = machine->kernel_cmdline;
1519 vms->bootinfo.initrd_filename = machine->initrd_filename;
1520 vms->bootinfo.nb_cpus = smp_cpus;
1521 vms->bootinfo.board_id = -1;
1522 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
1523 vms->bootinfo.get_dtb = machvirt_dtb;
1524 vms->bootinfo.skip_dtb_autoload = true;
1525 vms->bootinfo.firmware_loaded = firmware_loaded;
1526 arm_load_kernel(ARM_CPU(first_cpu), &vms->bootinfo);
1527
1528 vms->machine_done.notify = virt_machine_done;
1529 qemu_add_machine_init_done_notifier(&vms->machine_done);
1530 }
1531
1532 static bool virt_get_secure(Object *obj, Error **errp)
1533 {
1534 VirtMachineState *vms = VIRT_MACHINE(obj);
1535
1536 return vms->secure;
1537 }
1538
1539 static void virt_set_secure(Object *obj, bool value, Error **errp)
1540 {
1541 VirtMachineState *vms = VIRT_MACHINE(obj);
1542
1543 vms->secure = value;
1544 }
1545
1546 static bool virt_get_virt(Object *obj, Error **errp)
1547 {
1548 VirtMachineState *vms = VIRT_MACHINE(obj);
1549
1550 return vms->virt;
1551 }
1552
1553 static void virt_set_virt(Object *obj, bool value, Error **errp)
1554 {
1555 VirtMachineState *vms = VIRT_MACHINE(obj);
1556
1557 vms->virt = value;
1558 }
1559
1560 static bool virt_get_highmem(Object *obj, Error **errp)
1561 {
1562 VirtMachineState *vms = VIRT_MACHINE(obj);
1563
1564 return vms->highmem;
1565 }
1566
1567 static void virt_set_highmem(Object *obj, bool value, Error **errp)
1568 {
1569 VirtMachineState *vms = VIRT_MACHINE(obj);
1570
1571 vms->highmem = value;
1572 }
1573
1574 static bool virt_get_its(Object *obj, Error **errp)
1575 {
1576 VirtMachineState *vms = VIRT_MACHINE(obj);
1577
1578 return vms->its;
1579 }
1580
1581 static void virt_set_its(Object *obj, bool value, Error **errp)
1582 {
1583 VirtMachineState *vms = VIRT_MACHINE(obj);
1584
1585 vms->its = value;
1586 }
1587
1588 static char *virt_get_gic_version(Object *obj, Error **errp)
1589 {
1590 VirtMachineState *vms = VIRT_MACHINE(obj);
1591 const char *val = vms->gic_version == 3 ? "3" : "2";
1592
1593 return g_strdup(val);
1594 }
1595
1596 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
1597 {
1598 VirtMachineState *vms = VIRT_MACHINE(obj);
1599
1600 if (!strcmp(value, "3")) {
1601 vms->gic_version = 3;
1602 } else if (!strcmp(value, "2")) {
1603 vms->gic_version = 2;
1604 } else if (!strcmp(value, "host")) {
1605 vms->gic_version = 0; /* Will probe later */
1606 } else if (!strcmp(value, "max")) {
1607 vms->gic_version = -1; /* Will probe later */
1608 } else {
1609 error_setg(errp, "Invalid gic-version value");
1610 error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
1611 }
1612 }
1613
1614 static char *virt_get_iommu(Object *obj, Error **errp)
1615 {
1616 VirtMachineState *vms = VIRT_MACHINE(obj);
1617
1618 switch (vms->iommu) {
1619 case VIRT_IOMMU_NONE:
1620 return g_strdup("none");
1621 case VIRT_IOMMU_SMMUV3:
1622 return g_strdup("smmuv3");
1623 default:
1624 g_assert_not_reached();
1625 }
1626 }
1627
1628 static void virt_set_iommu(Object *obj, const char *value, Error **errp)
1629 {
1630 VirtMachineState *vms = VIRT_MACHINE(obj);
1631
1632 if (!strcmp(value, "smmuv3")) {
1633 vms->iommu = VIRT_IOMMU_SMMUV3;
1634 } else if (!strcmp(value, "none")) {
1635 vms->iommu = VIRT_IOMMU_NONE;
1636 } else {
1637 error_setg(errp, "Invalid iommu value");
1638 error_append_hint(errp, "Valid values are none, smmuv3.\n");
1639 }
1640 }
1641
1642 static CpuInstanceProperties
1643 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
1644 {
1645 MachineClass *mc = MACHINE_GET_CLASS(ms);
1646 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
1647
1648 assert(cpu_index < possible_cpus->len);
1649 return possible_cpus->cpus[cpu_index].props;
1650 }
1651
1652 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
1653 {
1654 return idx % nb_numa_nodes;
1655 }
1656
1657 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
1658 {
1659 int n;
1660 VirtMachineState *vms = VIRT_MACHINE(ms);
1661
1662 if (ms->possible_cpus) {
1663 assert(ms->possible_cpus->len == max_cpus);
1664 return ms->possible_cpus;
1665 }
1666
1667 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
1668 sizeof(CPUArchId) * max_cpus);
1669 ms->possible_cpus->len = max_cpus;
1670 for (n = 0; n < ms->possible_cpus->len; n++) {
1671 ms->possible_cpus->cpus[n].type = ms->cpu_type;
1672 ms->possible_cpus->cpus[n].arch_id =
1673 virt_cpu_mp_affinity(vms, n);
1674 ms->possible_cpus->cpus[n].props.has_thread_id = true;
1675 ms->possible_cpus->cpus[n].props.thread_id = n;
1676 }
1677 return ms->possible_cpus;
1678 }
1679
1680 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
1681 DeviceState *dev, Error **errp)
1682 {
1683 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
1684
1685 if (vms->platform_bus_dev) {
1686 if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) {
1687 platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
1688 SYS_BUS_DEVICE(dev));
1689 }
1690 }
1691 }
1692
1693 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
1694 DeviceState *dev)
1695 {
1696 if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) {
1697 return HOTPLUG_HANDLER(machine);
1698 }
1699
1700 return NULL;
1701 }
1702
1703 static void virt_machine_class_init(ObjectClass *oc, void *data)
1704 {
1705 MachineClass *mc = MACHINE_CLASS(oc);
1706 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
1707
1708 mc->init = machvirt_init;
1709 /* Start with max_cpus set to 512, which is the maximum supported by KVM.
1710 * The value may be reduced later when we have more information about the
1711 * configuration of the particular instance.
1712 */
1713 mc->max_cpus = 512;
1714 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
1715 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
1716 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
1717 mc->block_default_type = IF_VIRTIO;
1718 mc->no_cdrom = 1;
1719 mc->pci_allow_0_address = true;
1720 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
1721 mc->minimum_page_bits = 12;
1722 mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
1723 mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
1724 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
1725 mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
1726 assert(!mc->get_hotplug_handler);
1727 mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
1728 hc->plug = virt_machine_device_plug_cb;
1729 }
1730
1731 static const TypeInfo virt_machine_info = {
1732 .name = TYPE_VIRT_MACHINE,
1733 .parent = TYPE_MACHINE,
1734 .abstract = true,
1735 .instance_size = sizeof(VirtMachineState),
1736 .class_size = sizeof(VirtMachineClass),
1737 .class_init = virt_machine_class_init,
1738 .interfaces = (InterfaceInfo[]) {
1739 { TYPE_HOTPLUG_HANDLER },
1740 { }
1741 },
1742 };
1743
1744 static void machvirt_machine_init(void)
1745 {
1746 type_register_static(&virt_machine_info);
1747 }
1748 type_init(machvirt_machine_init);
1749
1750 #define VIRT_COMPAT_2_12 \
1751 HW_COMPAT_2_12
1752
1753 static void virt_3_0_instance_init(Object *obj)
1754 {
1755 VirtMachineState *vms = VIRT_MACHINE(obj);
1756 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1757
1758 /* EL3 is disabled by default on virt: this makes us consistent
1759 * between KVM and TCG for this board, and it also allows us to
1760 * boot UEFI blobs which assume no TrustZone support.
1761 */
1762 vms->secure = false;
1763 object_property_add_bool(obj, "secure", virt_get_secure,
1764 virt_set_secure, NULL);
1765 object_property_set_description(obj, "secure",
1766 "Set on/off to enable/disable the ARM "
1767 "Security Extensions (TrustZone)",
1768 NULL);
1769
1770 /* EL2 is also disabled by default, for similar reasons */
1771 vms->virt = false;
1772 object_property_add_bool(obj, "virtualization", virt_get_virt,
1773 virt_set_virt, NULL);
1774 object_property_set_description(obj, "virtualization",
1775 "Set on/off to enable/disable emulating a "
1776 "guest CPU which implements the ARM "
1777 "Virtualization Extensions",
1778 NULL);
1779
1780 /* High memory is enabled by default */
1781 vms->highmem = true;
1782 object_property_add_bool(obj, "highmem", virt_get_highmem,
1783 virt_set_highmem, NULL);
1784 object_property_set_description(obj, "highmem",
1785 "Set on/off to enable/disable using "
1786 "physical address space above 32 bits",
1787 NULL);
1788 /* Default GIC type is v2 */
1789 vms->gic_version = 2;
1790 object_property_add_str(obj, "gic-version", virt_get_gic_version,
1791 virt_set_gic_version, NULL);
1792 object_property_set_description(obj, "gic-version",
1793 "Set GIC version. "
1794 "Valid values are 2, 3 and host", NULL);
1795
1796 vms->highmem_ecam = !vmc->no_highmem_ecam;
1797
1798 if (vmc->no_its) {
1799 vms->its = false;
1800 } else {
1801 /* Default allows ITS instantiation */
1802 vms->its = true;
1803 object_property_add_bool(obj, "its", virt_get_its,
1804 virt_set_its, NULL);
1805 object_property_set_description(obj, "its",
1806 "Set on/off to enable/disable "
1807 "ITS instantiation",
1808 NULL);
1809 }
1810
1811 /* Default disallows iommu instantiation */
1812 vms->iommu = VIRT_IOMMU_NONE;
1813 object_property_add_str(obj, "iommu", virt_get_iommu, virt_set_iommu, NULL);
1814 object_property_set_description(obj, "iommu",
1815 "Set the IOMMU type. "
1816 "Valid values are none and smmuv3",
1817 NULL);
1818
1819 vms->memmap = a15memmap;
1820 vms->irqmap = a15irqmap;
1821 }
1822
1823 static void virt_machine_3_0_options(MachineClass *mc)
1824 {
1825 }
1826 DEFINE_VIRT_MACHINE_AS_LATEST(3, 0)
1827
1828 static void virt_2_12_instance_init(Object *obj)
1829 {
1830 virt_3_0_instance_init(obj);
1831 }
1832
1833 static void virt_machine_2_12_options(MachineClass *mc)
1834 {
1835 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1836
1837 virt_machine_3_0_options(mc);
1838 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_12);
1839 vmc->no_highmem_ecam = true;
1840 mc->max_cpus = 255;
1841 }
1842 DEFINE_VIRT_MACHINE(2, 12)
1843
1844 #define VIRT_COMPAT_2_11 \
1845 HW_COMPAT_2_11
1846
1847 static void virt_2_11_instance_init(Object *obj)
1848 {
1849 virt_2_12_instance_init(obj);
1850 }
1851
1852 static void virt_machine_2_11_options(MachineClass *mc)
1853 {
1854 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1855
1856 virt_machine_2_12_options(mc);
1857 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_11);
1858 vmc->smbios_old_sys_ver = true;
1859 }
1860 DEFINE_VIRT_MACHINE(2, 11)
1861
1862 #define VIRT_COMPAT_2_10 \
1863 HW_COMPAT_2_10
1864
1865 static void virt_2_10_instance_init(Object *obj)
1866 {
1867 virt_2_11_instance_init(obj);
1868 }
1869
1870 static void virt_machine_2_10_options(MachineClass *mc)
1871 {
1872 virt_machine_2_11_options(mc);
1873 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_10);
1874 }
1875 DEFINE_VIRT_MACHINE(2, 10)
1876
1877 #define VIRT_COMPAT_2_9 \
1878 HW_COMPAT_2_9
1879
1880 static void virt_2_9_instance_init(Object *obj)
1881 {
1882 virt_2_10_instance_init(obj);
1883 }
1884
1885 static void virt_machine_2_9_options(MachineClass *mc)
1886 {
1887 virt_machine_2_10_options(mc);
1888 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_9);
1889 }
1890 DEFINE_VIRT_MACHINE(2, 9)
1891
1892 #define VIRT_COMPAT_2_8 \
1893 HW_COMPAT_2_8
1894
1895 static void virt_2_8_instance_init(Object *obj)
1896 {
1897 virt_2_9_instance_init(obj);
1898 }
1899
1900 static void virt_machine_2_8_options(MachineClass *mc)
1901 {
1902 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1903
1904 virt_machine_2_9_options(mc);
1905 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_8);
1906 /* For 2.8 and earlier we falsely claimed in the DT that
1907 * our timers were edge-triggered, not level-triggered.
1908 */
1909 vmc->claim_edge_triggered_timers = true;
1910 }
1911 DEFINE_VIRT_MACHINE(2, 8)
1912
1913 #define VIRT_COMPAT_2_7 \
1914 HW_COMPAT_2_7
1915
1916 static void virt_2_7_instance_init(Object *obj)
1917 {
1918 virt_2_8_instance_init(obj);
1919 }
1920
1921 static void virt_machine_2_7_options(MachineClass *mc)
1922 {
1923 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1924
1925 virt_machine_2_8_options(mc);
1926 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_7);
1927 /* ITS was introduced with 2.8 */
1928 vmc->no_its = true;
1929 /* Stick with 1K pages for migration compatibility */
1930 mc->minimum_page_bits = 0;
1931 }
1932 DEFINE_VIRT_MACHINE(2, 7)
1933
1934 #define VIRT_COMPAT_2_6 \
1935 HW_COMPAT_2_6
1936
1937 static void virt_2_6_instance_init(Object *obj)
1938 {
1939 virt_2_7_instance_init(obj);
1940 }
1941
1942 static void virt_machine_2_6_options(MachineClass *mc)
1943 {
1944 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1945
1946 virt_machine_2_7_options(mc);
1947 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_6);
1948 vmc->disallow_affinity_adjustment = true;
1949 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
1950 vmc->no_pmu = true;
1951 }
1952 DEFINE_VIRT_MACHINE(2, 6)