]> git.proxmox.com Git - mirror_qemu.git/blob - hw/arm/virt.c
Merge tag 'migration-20231002-pull-request' of https://gitlab.com/juan.quintela/qemu...
[mirror_qemu.git] / hw / arm / virt.c
1 /*
2 * ARM mach-virt emulation
3 *
4 * Copyright (c) 2013 Linaro Limited
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
17 *
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
29 */
30
31 #include "qemu/osdep.h"
32 #include "qemu/datadir.h"
33 #include "qemu/units.h"
34 #include "qemu/option.h"
35 #include "monitor/qdev.h"
36 #include "hw/sysbus.h"
37 #include "hw/arm/boot.h"
38 #include "hw/arm/primecell.h"
39 #include "hw/arm/virt.h"
40 #include "hw/block/flash.h"
41 #include "hw/vfio/vfio-calxeda-xgmac.h"
42 #include "hw/vfio/vfio-amd-xgbe.h"
43 #include "hw/display/ramfb.h"
44 #include "net/net.h"
45 #include "sysemu/device_tree.h"
46 #include "sysemu/numa.h"
47 #include "sysemu/runstate.h"
48 #include "sysemu/tpm.h"
49 #include "sysemu/tcg.h"
50 #include "sysemu/kvm.h"
51 #include "sysemu/hvf.h"
52 #include "sysemu/qtest.h"
53 #include "hw/loader.h"
54 #include "qapi/error.h"
55 #include "qemu/bitops.h"
56 #include "qemu/error-report.h"
57 #include "qemu/module.h"
58 #include "hw/pci-host/gpex.h"
59 #include "hw/virtio/virtio-pci.h"
60 #include "hw/core/sysbus-fdt.h"
61 #include "hw/platform-bus.h"
62 #include "hw/qdev-properties.h"
63 #include "hw/arm/fdt.h"
64 #include "hw/intc/arm_gic.h"
65 #include "hw/intc/arm_gicv3_common.h"
66 #include "hw/intc/arm_gicv3_its_common.h"
67 #include "hw/irq.h"
68 #include "kvm_arm.h"
69 #include "hw/firmware/smbios.h"
70 #include "qapi/visitor.h"
71 #include "qapi/qapi-visit-common.h"
72 #include "standard-headers/linux/input.h"
73 #include "hw/arm/smmuv3.h"
74 #include "hw/acpi/acpi.h"
75 #include "target/arm/internals.h"
76 #include "hw/mem/pc-dimm.h"
77 #include "hw/mem/nvdimm.h"
78 #include "hw/acpi/generic_event_device.h"
79 #include "hw/virtio/virtio-md-pci.h"
80 #include "hw/virtio/virtio-iommu.h"
81 #include "hw/char/pl011.h"
82 #include "qemu/guest-random.h"
83
84 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
85 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
86 void *data) \
87 { \
88 MachineClass *mc = MACHINE_CLASS(oc); \
89 virt_machine_##major##_##minor##_options(mc); \
90 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
91 if (latest) { \
92 mc->alias = "virt"; \
93 } \
94 } \
95 static const TypeInfo machvirt_##major##_##minor##_info = { \
96 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
97 .parent = TYPE_VIRT_MACHINE, \
98 .class_init = virt_##major##_##minor##_class_init, \
99 }; \
100 static void machvirt_machine_##major##_##minor##_init(void) \
101 { \
102 type_register_static(&machvirt_##major##_##minor##_info); \
103 } \
104 type_init(machvirt_machine_##major##_##minor##_init);
105
106 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
107 DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
108 #define DEFINE_VIRT_MACHINE(major, minor) \
109 DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
110
111
112 /* Number of external interrupt lines to configure the GIC with */
113 #define NUM_IRQS 256
114
115 #define PLATFORM_BUS_NUM_IRQS 64
116
117 /* Legacy RAM limit in GB (< version 4.0) */
118 #define LEGACY_RAMLIMIT_GB 255
119 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB)
120
121 /* Addresses and sizes of our components.
122 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
123 * 128MB..256MB is used for miscellaneous device I/O.
124 * 256MB..1GB is reserved for possible future PCI support (ie where the
125 * PCI memory window will go if we add a PCI host controller).
126 * 1GB and up is RAM (which may happily spill over into the
127 * high memory region beyond 4GB).
128 * This represents a compromise between how much RAM can be given to
129 * a 32 bit VM and leaving space for expansion and in particular for PCI.
130 * Note that devices should generally be placed at multiples of 0x10000,
131 * to accommodate guests using 64K pages.
132 */
133 static const MemMapEntry base_memmap[] = {
134 /* Space up to 0x8000000 is reserved for a boot ROM */
135 [VIRT_FLASH] = { 0, 0x08000000 },
136 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
137 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
138 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
139 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
140 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 },
141 [VIRT_GIC_HYP] = { 0x08030000, 0x00010000 },
142 [VIRT_GIC_VCPU] = { 0x08040000, 0x00010000 },
143 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
144 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 },
145 /* This redistributor space allows up to 2*64kB*123 CPUs */
146 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 },
147 [VIRT_UART] = { 0x09000000, 0x00001000 },
148 [VIRT_RTC] = { 0x09010000, 0x00001000 },
149 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 },
150 [VIRT_GPIO] = { 0x09030000, 0x00001000 },
151 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 },
152 [VIRT_SMMU] = { 0x09050000, 0x00020000 },
153 [VIRT_PCDIMM_ACPI] = { 0x09070000, MEMORY_HOTPLUG_IO_LEN },
154 [VIRT_ACPI_GED] = { 0x09080000, ACPI_GED_EVT_SEL_LEN },
155 [VIRT_NVDIMM_ACPI] = { 0x09090000, NVDIMM_ACPI_IO_LEN},
156 [VIRT_PVTIME] = { 0x090a0000, 0x00010000 },
157 [VIRT_SECURE_GPIO] = { 0x090b0000, 0x00001000 },
158 [VIRT_MMIO] = { 0x0a000000, 0x00000200 },
159 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
160 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 },
161 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 },
162 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 },
163 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 },
164 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 },
165 /* Actual RAM size depends on initial RAM and device memory settings */
166 [VIRT_MEM] = { GiB, LEGACY_RAMLIMIT_BYTES },
167 };
168
169 /*
170 * Highmem IO Regions: This memory map is floating, located after the RAM.
171 * Each MemMapEntry base (GPA) will be dynamically computed, depending on the
172 * top of the RAM, so that its base get the same alignment as the size,
173 * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is
174 * less than 256GiB of RAM, the floating area starts at the 256GiB mark.
175 * Note the extended_memmap is sized so that it eventually also includes the
176 * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last
177 * index of base_memmap).
178 *
179 * The memory map for these Highmem IO Regions can be in legacy or compact
180 * layout, depending on 'compact-highmem' property. With legacy layout, the
181 * PA space for one specific region is always reserved, even if the region
182 * has been disabled or doesn't fit into the PA space. However, the PA space
183 * for the region won't be reserved in these circumstances with compact layout.
184 */
185 static MemMapEntry extended_memmap[] = {
186 /* Additional 64 MB redist region (can contain up to 512 redistributors) */
187 [VIRT_HIGH_GIC_REDIST2] = { 0x0, 64 * MiB },
188 [VIRT_HIGH_PCIE_ECAM] = { 0x0, 256 * MiB },
189 /* Second PCIe window */
190 [VIRT_HIGH_PCIE_MMIO] = { 0x0, 512 * GiB },
191 };
192
193 static const int a15irqmap[] = {
194 [VIRT_UART] = 1,
195 [VIRT_RTC] = 2,
196 [VIRT_PCIE] = 3, /* ... to 6 */
197 [VIRT_GPIO] = 7,
198 [VIRT_SECURE_UART] = 8,
199 [VIRT_ACPI_GED] = 9,
200 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
201 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
202 [VIRT_SMMU] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */
203 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
204 };
205
206 static const char *valid_cpus[] = {
207 #ifdef CONFIG_TCG
208 ARM_CPU_TYPE_NAME("cortex-a7"),
209 ARM_CPU_TYPE_NAME("cortex-a15"),
210 ARM_CPU_TYPE_NAME("cortex-a35"),
211 ARM_CPU_TYPE_NAME("cortex-a55"),
212 ARM_CPU_TYPE_NAME("cortex-a72"),
213 ARM_CPU_TYPE_NAME("cortex-a76"),
214 ARM_CPU_TYPE_NAME("cortex-a710"),
215 ARM_CPU_TYPE_NAME("a64fx"),
216 ARM_CPU_TYPE_NAME("neoverse-n1"),
217 ARM_CPU_TYPE_NAME("neoverse-v1"),
218 #endif
219 ARM_CPU_TYPE_NAME("cortex-a53"),
220 ARM_CPU_TYPE_NAME("cortex-a57"),
221 ARM_CPU_TYPE_NAME("host"),
222 ARM_CPU_TYPE_NAME("max"),
223 };
224
225 static bool cpu_type_valid(const char *cpu)
226 {
227 int i;
228
229 for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
230 if (strcmp(cpu, valid_cpus[i]) == 0) {
231 return true;
232 }
233 }
234 return false;
235 }
236
237 static void create_randomness(MachineState *ms, const char *node)
238 {
239 struct {
240 uint64_t kaslr;
241 uint8_t rng[32];
242 } seed;
243
244 if (qemu_guest_getrandom(&seed, sizeof(seed), NULL)) {
245 return;
246 }
247 qemu_fdt_setprop_u64(ms->fdt, node, "kaslr-seed", seed.kaslr);
248 qemu_fdt_setprop(ms->fdt, node, "rng-seed", seed.rng, sizeof(seed.rng));
249 }
250
251 static void create_fdt(VirtMachineState *vms)
252 {
253 MachineState *ms = MACHINE(vms);
254 int nb_numa_nodes = ms->numa_state->num_nodes;
255 void *fdt = create_device_tree(&vms->fdt_size);
256
257 if (!fdt) {
258 error_report("create_device_tree() failed");
259 exit(1);
260 }
261
262 ms->fdt = fdt;
263
264 /* Header */
265 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
266 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
267 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
268 qemu_fdt_setprop_string(fdt, "/", "model", "linux,dummy-virt");
269
270 /* /chosen must exist for load_dtb to fill in necessary properties later */
271 qemu_fdt_add_subnode(fdt, "/chosen");
272 if (vms->dtb_randomness) {
273 create_randomness(ms, "/chosen");
274 }
275
276 if (vms->secure) {
277 qemu_fdt_add_subnode(fdt, "/secure-chosen");
278 if (vms->dtb_randomness) {
279 create_randomness(ms, "/secure-chosen");
280 }
281 }
282
283 /* Clock node, for the benefit of the UART. The kernel device tree
284 * binding documentation claims the PL011 node clock properties are
285 * optional but in practice if you omit them the kernel refuses to
286 * probe for the device.
287 */
288 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
289 qemu_fdt_add_subnode(fdt, "/apb-pclk");
290 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
291 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
292 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
293 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
294 "clk24mhz");
295 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
296
297 if (nb_numa_nodes > 0 && ms->numa_state->have_numa_distance) {
298 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
299 uint32_t *matrix = g_malloc0(size);
300 int idx, i, j;
301
302 for (i = 0; i < nb_numa_nodes; i++) {
303 for (j = 0; j < nb_numa_nodes; j++) {
304 idx = (i * nb_numa_nodes + j) * 3;
305 matrix[idx + 0] = cpu_to_be32(i);
306 matrix[idx + 1] = cpu_to_be32(j);
307 matrix[idx + 2] =
308 cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
309 }
310 }
311
312 qemu_fdt_add_subnode(fdt, "/distance-map");
313 qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
314 "numa-distance-map-v1");
315 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
316 matrix, size);
317 g_free(matrix);
318 }
319 }
320
321 static void fdt_add_timer_nodes(const VirtMachineState *vms)
322 {
323 /* On real hardware these interrupts are level-triggered.
324 * On KVM they were edge-triggered before host kernel version 4.4,
325 * and level-triggered afterwards.
326 * On emulated QEMU they are level-triggered.
327 *
328 * Getting the DTB info about them wrong is awkward for some
329 * guest kernels:
330 * pre-4.8 ignore the DT and leave the interrupt configured
331 * with whatever the GIC reset value (or the bootloader) left it at
332 * 4.8 before rc6 honour the incorrect data by programming it back
333 * into the GIC, causing problems
334 * 4.8rc6 and later ignore the DT and always write "level triggered"
335 * into the GIC
336 *
337 * For backwards-compatibility, virt-2.8 and earlier will continue
338 * to say these are edge-triggered, but later machines will report
339 * the correct information.
340 */
341 ARMCPU *armcpu;
342 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
343 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
344 MachineState *ms = MACHINE(vms);
345
346 if (vmc->claim_edge_triggered_timers) {
347 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
348 }
349
350 if (vms->gic_version == VIRT_GIC_VERSION_2) {
351 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
352 GIC_FDT_IRQ_PPI_CPU_WIDTH,
353 (1 << MACHINE(vms)->smp.cpus) - 1);
354 }
355
356 qemu_fdt_add_subnode(ms->fdt, "/timer");
357
358 armcpu = ARM_CPU(qemu_get_cpu(0));
359 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
360 const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
361 qemu_fdt_setprop(ms->fdt, "/timer", "compatible",
362 compat, sizeof(compat));
363 } else {
364 qemu_fdt_setprop_string(ms->fdt, "/timer", "compatible",
365 "arm,armv7-timer");
366 }
367 qemu_fdt_setprop(ms->fdt, "/timer", "always-on", NULL, 0);
368 qemu_fdt_setprop_cells(ms->fdt, "/timer", "interrupts",
369 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
370 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
371 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
372 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
373 }
374
375 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
376 {
377 int cpu;
378 int addr_cells = 1;
379 const MachineState *ms = MACHINE(vms);
380 const VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
381 int smp_cpus = ms->smp.cpus;
382
383 /*
384 * See Linux Documentation/devicetree/bindings/arm/cpus.yaml
385 * On ARM v8 64-bit systems value should be set to 2,
386 * that corresponds to the MPIDR_EL1 register size.
387 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
388 * in the system, #address-cells can be set to 1, since
389 * MPIDR_EL1[63:32] bits are not used for CPUs
390 * identification.
391 *
392 * Here we actually don't know whether our system is 32- or 64-bit one.
393 * The simplest way to go is to examine affinity IDs of all our CPUs. If
394 * at least one of them has Aff3 populated, we set #address-cells to 2.
395 */
396 for (cpu = 0; cpu < smp_cpus; cpu++) {
397 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
398
399 if (armcpu->mp_affinity & ARM_AFF3_MASK) {
400 addr_cells = 2;
401 break;
402 }
403 }
404
405 qemu_fdt_add_subnode(ms->fdt, "/cpus");
406 qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#address-cells", addr_cells);
407 qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#size-cells", 0x0);
408
409 for (cpu = smp_cpus - 1; cpu >= 0; cpu--) {
410 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
411 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
412 CPUState *cs = CPU(armcpu);
413
414 qemu_fdt_add_subnode(ms->fdt, nodename);
415 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "cpu");
416 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
417 armcpu->dtb_compatible);
418
419 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED && smp_cpus > 1) {
420 qemu_fdt_setprop_string(ms->fdt, nodename,
421 "enable-method", "psci");
422 }
423
424 if (addr_cells == 2) {
425 qemu_fdt_setprop_u64(ms->fdt, nodename, "reg",
426 armcpu->mp_affinity);
427 } else {
428 qemu_fdt_setprop_cell(ms->fdt, nodename, "reg",
429 armcpu->mp_affinity);
430 }
431
432 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
433 qemu_fdt_setprop_cell(ms->fdt, nodename, "numa-node-id",
434 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
435 }
436
437 if (!vmc->no_cpu_topology) {
438 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle",
439 qemu_fdt_alloc_phandle(ms->fdt));
440 }
441
442 g_free(nodename);
443 }
444
445 if (!vmc->no_cpu_topology) {
446 /*
447 * Add vCPU topology description through fdt node cpu-map.
448 *
449 * See Linux Documentation/devicetree/bindings/cpu/cpu-topology.txt
450 * In a SMP system, the hierarchy of CPUs can be defined through
451 * four entities that are used to describe the layout of CPUs in
452 * the system: socket/cluster/core/thread.
453 *
454 * A socket node represents the boundary of system physical package
455 * and its child nodes must be one or more cluster nodes. A system
456 * can contain several layers of clustering within a single physical
457 * package and cluster nodes can be contained in parent cluster nodes.
458 *
459 * Note: currently we only support one layer of clustering within
460 * each physical package.
461 */
462 qemu_fdt_add_subnode(ms->fdt, "/cpus/cpu-map");
463
464 for (cpu = smp_cpus - 1; cpu >= 0; cpu--) {
465 char *cpu_path = g_strdup_printf("/cpus/cpu@%d", cpu);
466 char *map_path;
467
468 if (ms->smp.threads > 1) {
469 map_path = g_strdup_printf(
470 "/cpus/cpu-map/socket%d/cluster%d/core%d/thread%d",
471 cpu / (ms->smp.clusters * ms->smp.cores * ms->smp.threads),
472 (cpu / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters,
473 (cpu / ms->smp.threads) % ms->smp.cores,
474 cpu % ms->smp.threads);
475 } else {
476 map_path = g_strdup_printf(
477 "/cpus/cpu-map/socket%d/cluster%d/core%d",
478 cpu / (ms->smp.clusters * ms->smp.cores),
479 (cpu / ms->smp.cores) % ms->smp.clusters,
480 cpu % ms->smp.cores);
481 }
482 qemu_fdt_add_path(ms->fdt, map_path);
483 qemu_fdt_setprop_phandle(ms->fdt, map_path, "cpu", cpu_path);
484
485 g_free(map_path);
486 g_free(cpu_path);
487 }
488 }
489 }
490
491 static void fdt_add_its_gic_node(VirtMachineState *vms)
492 {
493 char *nodename;
494 MachineState *ms = MACHINE(vms);
495
496 vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
497 nodename = g_strdup_printf("/intc/its@%" PRIx64,
498 vms->memmap[VIRT_GIC_ITS].base);
499 qemu_fdt_add_subnode(ms->fdt, nodename);
500 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
501 "arm,gic-v3-its");
502 qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
503 qemu_fdt_setprop_cell(ms->fdt, nodename, "#msi-cells", 1);
504 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
505 2, vms->memmap[VIRT_GIC_ITS].base,
506 2, vms->memmap[VIRT_GIC_ITS].size);
507 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
508 g_free(nodename);
509 }
510
511 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
512 {
513 MachineState *ms = MACHINE(vms);
514 char *nodename;
515
516 nodename = g_strdup_printf("/intc/v2m@%" PRIx64,
517 vms->memmap[VIRT_GIC_V2M].base);
518 vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
519 qemu_fdt_add_subnode(ms->fdt, nodename);
520 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
521 "arm,gic-v2m-frame");
522 qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
523 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
524 2, vms->memmap[VIRT_GIC_V2M].base,
525 2, vms->memmap[VIRT_GIC_V2M].size);
526 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
527 g_free(nodename);
528 }
529
530 static void fdt_add_gic_node(VirtMachineState *vms)
531 {
532 MachineState *ms = MACHINE(vms);
533 char *nodename;
534
535 vms->gic_phandle = qemu_fdt_alloc_phandle(ms->fdt);
536 qemu_fdt_setprop_cell(ms->fdt, "/", "interrupt-parent", vms->gic_phandle);
537
538 nodename = g_strdup_printf("/intc@%" PRIx64,
539 vms->memmap[VIRT_GIC_DIST].base);
540 qemu_fdt_add_subnode(ms->fdt, nodename);
541 qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 3);
542 qemu_fdt_setprop(ms->fdt, nodename, "interrupt-controller", NULL, 0);
543 qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 0x2);
544 qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 0x2);
545 qemu_fdt_setprop(ms->fdt, nodename, "ranges", NULL, 0);
546 if (vms->gic_version != VIRT_GIC_VERSION_2) {
547 int nb_redist_regions = virt_gicv3_redist_region_count(vms);
548
549 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
550 "arm,gic-v3");
551
552 qemu_fdt_setprop_cell(ms->fdt, nodename,
553 "#redistributor-regions", nb_redist_regions);
554
555 if (nb_redist_regions == 1) {
556 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
557 2, vms->memmap[VIRT_GIC_DIST].base,
558 2, vms->memmap[VIRT_GIC_DIST].size,
559 2, vms->memmap[VIRT_GIC_REDIST].base,
560 2, vms->memmap[VIRT_GIC_REDIST].size);
561 } else {
562 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
563 2, vms->memmap[VIRT_GIC_DIST].base,
564 2, vms->memmap[VIRT_GIC_DIST].size,
565 2, vms->memmap[VIRT_GIC_REDIST].base,
566 2, vms->memmap[VIRT_GIC_REDIST].size,
567 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base,
568 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size);
569 }
570
571 if (vms->virt) {
572 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
573 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
574 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
575 }
576 } else {
577 /* 'cortex-a15-gic' means 'GIC v2' */
578 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
579 "arm,cortex-a15-gic");
580 if (!vms->virt) {
581 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
582 2, vms->memmap[VIRT_GIC_DIST].base,
583 2, vms->memmap[VIRT_GIC_DIST].size,
584 2, vms->memmap[VIRT_GIC_CPU].base,
585 2, vms->memmap[VIRT_GIC_CPU].size);
586 } else {
587 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
588 2, vms->memmap[VIRT_GIC_DIST].base,
589 2, vms->memmap[VIRT_GIC_DIST].size,
590 2, vms->memmap[VIRT_GIC_CPU].base,
591 2, vms->memmap[VIRT_GIC_CPU].size,
592 2, vms->memmap[VIRT_GIC_HYP].base,
593 2, vms->memmap[VIRT_GIC_HYP].size,
594 2, vms->memmap[VIRT_GIC_VCPU].base,
595 2, vms->memmap[VIRT_GIC_VCPU].size);
596 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
597 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
598 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
599 }
600 }
601
602 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->gic_phandle);
603 g_free(nodename);
604 }
605
606 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
607 {
608 ARMCPU *armcpu = ARM_CPU(first_cpu);
609 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
610 MachineState *ms = MACHINE(vms);
611
612 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
613 assert(!object_property_get_bool(OBJECT(armcpu), "pmu", NULL));
614 return;
615 }
616
617 if (vms->gic_version == VIRT_GIC_VERSION_2) {
618 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
619 GIC_FDT_IRQ_PPI_CPU_WIDTH,
620 (1 << MACHINE(vms)->smp.cpus) - 1);
621 }
622
623 qemu_fdt_add_subnode(ms->fdt, "/pmu");
624 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
625 const char compat[] = "arm,armv8-pmuv3";
626 qemu_fdt_setprop(ms->fdt, "/pmu", "compatible",
627 compat, sizeof(compat));
628 qemu_fdt_setprop_cells(ms->fdt, "/pmu", "interrupts",
629 GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
630 }
631 }
632
633 static inline DeviceState *create_acpi_ged(VirtMachineState *vms)
634 {
635 DeviceState *dev;
636 MachineState *ms = MACHINE(vms);
637 int irq = vms->irqmap[VIRT_ACPI_GED];
638 uint32_t event = ACPI_GED_PWR_DOWN_EVT;
639
640 if (ms->ram_slots) {
641 event |= ACPI_GED_MEM_HOTPLUG_EVT;
642 }
643
644 if (ms->nvdimms_state->is_enabled) {
645 event |= ACPI_GED_NVDIMM_HOTPLUG_EVT;
646 }
647
648 dev = qdev_new(TYPE_ACPI_GED);
649 qdev_prop_set_uint32(dev, "ged-event", event);
650
651 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_ACPI_GED].base);
652 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, vms->memmap[VIRT_PCDIMM_ACPI].base);
653 sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(vms->gic, irq));
654
655 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
656
657 return dev;
658 }
659
660 static void create_its(VirtMachineState *vms)
661 {
662 const char *itsclass = its_class_name();
663 DeviceState *dev;
664
665 if (!strcmp(itsclass, "arm-gicv3-its")) {
666 if (!vms->tcg_its) {
667 itsclass = NULL;
668 }
669 }
670
671 if (!itsclass) {
672 /* Do nothing if not supported */
673 return;
674 }
675
676 dev = qdev_new(itsclass);
677
678 object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(vms->gic),
679 &error_abort);
680 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
681 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
682
683 fdt_add_its_gic_node(vms);
684 vms->msi_controller = VIRT_MSI_CTRL_ITS;
685 }
686
687 static void create_v2m(VirtMachineState *vms)
688 {
689 int i;
690 int irq = vms->irqmap[VIRT_GIC_V2M];
691 DeviceState *dev;
692
693 dev = qdev_new("arm-gicv2m");
694 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
695 qdev_prop_set_uint32(dev, "base-spi", irq);
696 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
697 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
698
699 for (i = 0; i < NUM_GICV2M_SPIS; i++) {
700 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
701 qdev_get_gpio_in(vms->gic, irq + i));
702 }
703
704 fdt_add_v2m_gic_node(vms);
705 vms->msi_controller = VIRT_MSI_CTRL_GICV2M;
706 }
707
708 static void create_gic(VirtMachineState *vms, MemoryRegion *mem)
709 {
710 MachineState *ms = MACHINE(vms);
711 /* We create a standalone GIC */
712 SysBusDevice *gicbusdev;
713 const char *gictype;
714 int i;
715 unsigned int smp_cpus = ms->smp.cpus;
716 uint32_t nb_redist_regions = 0;
717 int revision;
718
719 if (vms->gic_version == VIRT_GIC_VERSION_2) {
720 gictype = gic_class_name();
721 } else {
722 gictype = gicv3_class_name();
723 }
724
725 switch (vms->gic_version) {
726 case VIRT_GIC_VERSION_2:
727 revision = 2;
728 break;
729 case VIRT_GIC_VERSION_3:
730 revision = 3;
731 break;
732 case VIRT_GIC_VERSION_4:
733 revision = 4;
734 break;
735 default:
736 g_assert_not_reached();
737 }
738 vms->gic = qdev_new(gictype);
739 qdev_prop_set_uint32(vms->gic, "revision", revision);
740 qdev_prop_set_uint32(vms->gic, "num-cpu", smp_cpus);
741 /* Note that the num-irq property counts both internal and external
742 * interrupts; there are always 32 of the former (mandated by GIC spec).
743 */
744 qdev_prop_set_uint32(vms->gic, "num-irq", NUM_IRQS + 32);
745 if (!kvm_irqchip_in_kernel()) {
746 qdev_prop_set_bit(vms->gic, "has-security-extensions", vms->secure);
747 }
748
749 if (vms->gic_version != VIRT_GIC_VERSION_2) {
750 uint32_t redist0_capacity = virt_redist_capacity(vms, VIRT_GIC_REDIST);
751 uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
752
753 nb_redist_regions = virt_gicv3_redist_region_count(vms);
754
755 qdev_prop_set_uint32(vms->gic, "len-redist-region-count",
756 nb_redist_regions);
757 qdev_prop_set_uint32(vms->gic, "redist-region-count[0]", redist0_count);
758
759 if (!kvm_irqchip_in_kernel()) {
760 if (vms->tcg_its) {
761 object_property_set_link(OBJECT(vms->gic), "sysmem",
762 OBJECT(mem), &error_fatal);
763 qdev_prop_set_bit(vms->gic, "has-lpi", true);
764 }
765 }
766
767 if (nb_redist_regions == 2) {
768 uint32_t redist1_capacity =
769 virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2);
770
771 qdev_prop_set_uint32(vms->gic, "redist-region-count[1]",
772 MIN(smp_cpus - redist0_count, redist1_capacity));
773 }
774 } else {
775 if (!kvm_irqchip_in_kernel()) {
776 qdev_prop_set_bit(vms->gic, "has-virtualization-extensions",
777 vms->virt);
778 }
779 }
780 gicbusdev = SYS_BUS_DEVICE(vms->gic);
781 sysbus_realize_and_unref(gicbusdev, &error_fatal);
782 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
783 if (vms->gic_version != VIRT_GIC_VERSION_2) {
784 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
785 if (nb_redist_regions == 2) {
786 sysbus_mmio_map(gicbusdev, 2,
787 vms->memmap[VIRT_HIGH_GIC_REDIST2].base);
788 }
789 } else {
790 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
791 if (vms->virt) {
792 sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base);
793 sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base);
794 }
795 }
796
797 /* Wire the outputs from each CPU's generic timer and the GICv3
798 * maintenance interrupt signal to the appropriate GIC PPI inputs,
799 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
800 */
801 for (i = 0; i < smp_cpus; i++) {
802 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
803 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
804 /* Mapping from the output timer irq lines from the CPU to the
805 * GIC PPI inputs we use for the virt board.
806 */
807 const int timer_irq[] = {
808 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
809 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
810 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
811 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
812 };
813
814 for (unsigned irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
815 qdev_connect_gpio_out(cpudev, irq,
816 qdev_get_gpio_in(vms->gic,
817 ppibase + timer_irq[irq]));
818 }
819
820 if (vms->gic_version != VIRT_GIC_VERSION_2) {
821 qemu_irq irq = qdev_get_gpio_in(vms->gic,
822 ppibase + ARCH_GIC_MAINT_IRQ);
823 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt",
824 0, irq);
825 } else if (vms->virt) {
826 qemu_irq irq = qdev_get_gpio_in(vms->gic,
827 ppibase + ARCH_GIC_MAINT_IRQ);
828 sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq);
829 }
830
831 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
832 qdev_get_gpio_in(vms->gic, ppibase
833 + VIRTUAL_PMU_IRQ));
834
835 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
836 sysbus_connect_irq(gicbusdev, i + smp_cpus,
837 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
838 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
839 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
840 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
841 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
842 }
843
844 fdt_add_gic_node(vms);
845
846 if (vms->gic_version != VIRT_GIC_VERSION_2 && vms->its) {
847 create_its(vms);
848 } else if (vms->gic_version == VIRT_GIC_VERSION_2) {
849 create_v2m(vms);
850 }
851 }
852
853 static void create_uart(const VirtMachineState *vms, int uart,
854 MemoryRegion *mem, Chardev *chr)
855 {
856 char *nodename;
857 hwaddr base = vms->memmap[uart].base;
858 hwaddr size = vms->memmap[uart].size;
859 int irq = vms->irqmap[uart];
860 const char compat[] = "arm,pl011\0arm,primecell";
861 const char clocknames[] = "uartclk\0apb_pclk";
862 DeviceState *dev = qdev_new(TYPE_PL011);
863 SysBusDevice *s = SYS_BUS_DEVICE(dev);
864 MachineState *ms = MACHINE(vms);
865
866 qdev_prop_set_chr(dev, "chardev", chr);
867 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
868 memory_region_add_subregion(mem, base,
869 sysbus_mmio_get_region(s, 0));
870 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
871
872 nodename = g_strdup_printf("/pl011@%" PRIx64, base);
873 qemu_fdt_add_subnode(ms->fdt, nodename);
874 /* Note that we can't use setprop_string because of the embedded NUL */
875 qemu_fdt_setprop(ms->fdt, nodename, "compatible",
876 compat, sizeof(compat));
877 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
878 2, base, 2, size);
879 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
880 GIC_FDT_IRQ_TYPE_SPI, irq,
881 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
882 qemu_fdt_setprop_cells(ms->fdt, nodename, "clocks",
883 vms->clock_phandle, vms->clock_phandle);
884 qemu_fdt_setprop(ms->fdt, nodename, "clock-names",
885 clocknames, sizeof(clocknames));
886
887 if (uart == VIRT_UART) {
888 qemu_fdt_setprop_string(ms->fdt, "/chosen", "stdout-path", nodename);
889 } else {
890 /* Mark as not usable by the normal world */
891 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
892 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
893
894 qemu_fdt_setprop_string(ms->fdt, "/secure-chosen", "stdout-path",
895 nodename);
896 }
897
898 g_free(nodename);
899 }
900
901 static void create_rtc(const VirtMachineState *vms)
902 {
903 char *nodename;
904 hwaddr base = vms->memmap[VIRT_RTC].base;
905 hwaddr size = vms->memmap[VIRT_RTC].size;
906 int irq = vms->irqmap[VIRT_RTC];
907 const char compat[] = "arm,pl031\0arm,primecell";
908 MachineState *ms = MACHINE(vms);
909
910 sysbus_create_simple("pl031", base, qdev_get_gpio_in(vms->gic, irq));
911
912 nodename = g_strdup_printf("/pl031@%" PRIx64, base);
913 qemu_fdt_add_subnode(ms->fdt, nodename);
914 qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
915 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
916 2, base, 2, size);
917 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
918 GIC_FDT_IRQ_TYPE_SPI, irq,
919 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
920 qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
921 qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
922 g_free(nodename);
923 }
924
925 static DeviceState *gpio_key_dev;
926 static void virt_powerdown_req(Notifier *n, void *opaque)
927 {
928 VirtMachineState *s = container_of(n, VirtMachineState, powerdown_notifier);
929
930 if (s->acpi_dev) {
931 acpi_send_event(s->acpi_dev, ACPI_POWER_DOWN_STATUS);
932 } else {
933 /* use gpio Pin 3 for power button event */
934 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
935 }
936 }
937
938 static void create_gpio_keys(char *fdt, DeviceState *pl061_dev,
939 uint32_t phandle)
940 {
941 gpio_key_dev = sysbus_create_simple("gpio-key", -1,
942 qdev_get_gpio_in(pl061_dev, 3));
943
944 qemu_fdt_add_subnode(fdt, "/gpio-keys");
945 qemu_fdt_setprop_string(fdt, "/gpio-keys", "compatible", "gpio-keys");
946
947 qemu_fdt_add_subnode(fdt, "/gpio-keys/poweroff");
948 qemu_fdt_setprop_string(fdt, "/gpio-keys/poweroff",
949 "label", "GPIO Key Poweroff");
950 qemu_fdt_setprop_cell(fdt, "/gpio-keys/poweroff", "linux,code",
951 KEY_POWER);
952 qemu_fdt_setprop_cells(fdt, "/gpio-keys/poweroff",
953 "gpios", phandle, 3, 0);
954 }
955
956 #define SECURE_GPIO_POWEROFF 0
957 #define SECURE_GPIO_RESET 1
958
959 static void create_secure_gpio_pwr(char *fdt, DeviceState *pl061_dev,
960 uint32_t phandle)
961 {
962 DeviceState *gpio_pwr_dev;
963
964 /* gpio-pwr */
965 gpio_pwr_dev = sysbus_create_simple("gpio-pwr", -1, NULL);
966
967 /* connect secure pl061 to gpio-pwr */
968 qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_RESET,
969 qdev_get_gpio_in_named(gpio_pwr_dev, "reset", 0));
970 qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_POWEROFF,
971 qdev_get_gpio_in_named(gpio_pwr_dev, "shutdown", 0));
972
973 qemu_fdt_add_subnode(fdt, "/gpio-poweroff");
974 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "compatible",
975 "gpio-poweroff");
976 qemu_fdt_setprop_cells(fdt, "/gpio-poweroff",
977 "gpios", phandle, SECURE_GPIO_POWEROFF, 0);
978 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "status", "disabled");
979 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "secure-status",
980 "okay");
981
982 qemu_fdt_add_subnode(fdt, "/gpio-restart");
983 qemu_fdt_setprop_string(fdt, "/gpio-restart", "compatible",
984 "gpio-restart");
985 qemu_fdt_setprop_cells(fdt, "/gpio-restart",
986 "gpios", phandle, SECURE_GPIO_RESET, 0);
987 qemu_fdt_setprop_string(fdt, "/gpio-restart", "status", "disabled");
988 qemu_fdt_setprop_string(fdt, "/gpio-restart", "secure-status",
989 "okay");
990 }
991
992 static void create_gpio_devices(const VirtMachineState *vms, int gpio,
993 MemoryRegion *mem)
994 {
995 char *nodename;
996 DeviceState *pl061_dev;
997 hwaddr base = vms->memmap[gpio].base;
998 hwaddr size = vms->memmap[gpio].size;
999 int irq = vms->irqmap[gpio];
1000 const char compat[] = "arm,pl061\0arm,primecell";
1001 SysBusDevice *s;
1002 MachineState *ms = MACHINE(vms);
1003
1004 pl061_dev = qdev_new("pl061");
1005 /* Pull lines down to 0 if not driven by the PL061 */
1006 qdev_prop_set_uint32(pl061_dev, "pullups", 0);
1007 qdev_prop_set_uint32(pl061_dev, "pulldowns", 0xff);
1008 s = SYS_BUS_DEVICE(pl061_dev);
1009 sysbus_realize_and_unref(s, &error_fatal);
1010 memory_region_add_subregion(mem, base, sysbus_mmio_get_region(s, 0));
1011 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
1012
1013 uint32_t phandle = qemu_fdt_alloc_phandle(ms->fdt);
1014 nodename = g_strdup_printf("/pl061@%" PRIx64, base);
1015 qemu_fdt_add_subnode(ms->fdt, nodename);
1016 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1017 2, base, 2, size);
1018 qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
1019 qemu_fdt_setprop_cell(ms->fdt, nodename, "#gpio-cells", 2);
1020 qemu_fdt_setprop(ms->fdt, nodename, "gpio-controller", NULL, 0);
1021 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
1022 GIC_FDT_IRQ_TYPE_SPI, irq,
1023 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
1024 qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
1025 qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
1026 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", phandle);
1027
1028 if (gpio != VIRT_GPIO) {
1029 /* Mark as not usable by the normal world */
1030 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1031 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1032 }
1033 g_free(nodename);
1034
1035 /* Child gpio devices */
1036 if (gpio == VIRT_GPIO) {
1037 create_gpio_keys(ms->fdt, pl061_dev, phandle);
1038 } else {
1039 create_secure_gpio_pwr(ms->fdt, pl061_dev, phandle);
1040 }
1041 }
1042
1043 static void create_virtio_devices(const VirtMachineState *vms)
1044 {
1045 int i;
1046 hwaddr size = vms->memmap[VIRT_MMIO].size;
1047 MachineState *ms = MACHINE(vms);
1048
1049 /* We create the transports in forwards order. Since qbus_realize()
1050 * prepends (not appends) new child buses, the incrementing loop below will
1051 * create a list of virtio-mmio buses with decreasing base addresses.
1052 *
1053 * When a -device option is processed from the command line,
1054 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
1055 * order. The upshot is that -device options in increasing command line
1056 * order are mapped to virtio-mmio buses with decreasing base addresses.
1057 *
1058 * When this code was originally written, that arrangement ensured that the
1059 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
1060 * the first -device on the command line. (The end-to-end order is a
1061 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
1062 * guest kernel's name-to-address assignment strategy.)
1063 *
1064 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
1065 * the message, if not necessarily the code, of commit 70161ff336.
1066 * Therefore the loop now establishes the inverse of the original intent.
1067 *
1068 * Unfortunately, we can't counteract the kernel change by reversing the
1069 * loop; it would break existing command lines.
1070 *
1071 * In any case, the kernel makes no guarantee about the stability of
1072 * enumeration order of virtio devices (as demonstrated by it changing
1073 * between kernel versions). For reliable and stable identification
1074 * of disks users must use UUIDs or similar mechanisms.
1075 */
1076 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
1077 int irq = vms->irqmap[VIRT_MMIO] + i;
1078 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
1079
1080 sysbus_create_simple("virtio-mmio", base,
1081 qdev_get_gpio_in(vms->gic, irq));
1082 }
1083
1084 /* We add dtb nodes in reverse order so that they appear in the finished
1085 * device tree lowest address first.
1086 *
1087 * Note that this mapping is independent of the loop above. The previous
1088 * loop influences virtio device to virtio transport assignment, whereas
1089 * this loop controls how virtio transports are laid out in the dtb.
1090 */
1091 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
1092 char *nodename;
1093 int irq = vms->irqmap[VIRT_MMIO] + i;
1094 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
1095
1096 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
1097 qemu_fdt_add_subnode(ms->fdt, nodename);
1098 qemu_fdt_setprop_string(ms->fdt, nodename,
1099 "compatible", "virtio,mmio");
1100 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1101 2, base, 2, size);
1102 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
1103 GIC_FDT_IRQ_TYPE_SPI, irq,
1104 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1105 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1106 g_free(nodename);
1107 }
1108 }
1109
1110 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
1111
1112 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms,
1113 const char *name,
1114 const char *alias_prop_name)
1115 {
1116 /*
1117 * Create a single flash device. We use the same parameters as
1118 * the flash devices on the Versatile Express board.
1119 */
1120 DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
1121
1122 qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
1123 qdev_prop_set_uint8(dev, "width", 4);
1124 qdev_prop_set_uint8(dev, "device-width", 2);
1125 qdev_prop_set_bit(dev, "big-endian", false);
1126 qdev_prop_set_uint16(dev, "id0", 0x89);
1127 qdev_prop_set_uint16(dev, "id1", 0x18);
1128 qdev_prop_set_uint16(dev, "id2", 0x00);
1129 qdev_prop_set_uint16(dev, "id3", 0x00);
1130 qdev_prop_set_string(dev, "name", name);
1131 object_property_add_child(OBJECT(vms), name, OBJECT(dev));
1132 object_property_add_alias(OBJECT(vms), alias_prop_name,
1133 OBJECT(dev), "drive");
1134 return PFLASH_CFI01(dev);
1135 }
1136
1137 static void virt_flash_create(VirtMachineState *vms)
1138 {
1139 vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0");
1140 vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1");
1141 }
1142
1143 static void virt_flash_map1(PFlashCFI01 *flash,
1144 hwaddr base, hwaddr size,
1145 MemoryRegion *sysmem)
1146 {
1147 DeviceState *dev = DEVICE(flash);
1148
1149 assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE));
1150 assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
1151 qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
1152 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1153
1154 memory_region_add_subregion(sysmem, base,
1155 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
1156 0));
1157 }
1158
1159 static void virt_flash_map(VirtMachineState *vms,
1160 MemoryRegion *sysmem,
1161 MemoryRegion *secure_sysmem)
1162 {
1163 /*
1164 * Map two flash devices to fill the VIRT_FLASH space in the memmap.
1165 * sysmem is the system memory space. secure_sysmem is the secure view
1166 * of the system, and the first flash device should be made visible only
1167 * there. The second flash device is visible to both secure and nonsecure.
1168 * If sysmem == secure_sysmem this means there is no separate Secure
1169 * address space and both flash devices are generally visible.
1170 */
1171 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1172 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1173
1174 virt_flash_map1(vms->flash[0], flashbase, flashsize,
1175 secure_sysmem);
1176 virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize,
1177 sysmem);
1178 }
1179
1180 static void virt_flash_fdt(VirtMachineState *vms,
1181 MemoryRegion *sysmem,
1182 MemoryRegion *secure_sysmem)
1183 {
1184 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1185 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1186 MachineState *ms = MACHINE(vms);
1187 char *nodename;
1188
1189 if (sysmem == secure_sysmem) {
1190 /* Report both flash devices as a single node in the DT */
1191 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
1192 qemu_fdt_add_subnode(ms->fdt, nodename);
1193 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1194 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1195 2, flashbase, 2, flashsize,
1196 2, flashbase + flashsize, 2, flashsize);
1197 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1198 g_free(nodename);
1199 } else {
1200 /*
1201 * Report the devices as separate nodes so we can mark one as
1202 * only visible to the secure world.
1203 */
1204 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
1205 qemu_fdt_add_subnode(ms->fdt, nodename);
1206 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1207 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1208 2, flashbase, 2, flashsize);
1209 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1210 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1211 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1212 g_free(nodename);
1213
1214 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase + flashsize);
1215 qemu_fdt_add_subnode(ms->fdt, nodename);
1216 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1217 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1218 2, flashbase + flashsize, 2, flashsize);
1219 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1220 g_free(nodename);
1221 }
1222 }
1223
1224 static bool virt_firmware_init(VirtMachineState *vms,
1225 MemoryRegion *sysmem,
1226 MemoryRegion *secure_sysmem)
1227 {
1228 int i;
1229 const char *bios_name;
1230 BlockBackend *pflash_blk0;
1231
1232 /* Map legacy -drive if=pflash to machine properties */
1233 for (i = 0; i < ARRAY_SIZE(vms->flash); i++) {
1234 pflash_cfi01_legacy_drive(vms->flash[i],
1235 drive_get(IF_PFLASH, 0, i));
1236 }
1237
1238 virt_flash_map(vms, sysmem, secure_sysmem);
1239
1240 pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]);
1241
1242 bios_name = MACHINE(vms)->firmware;
1243 if (bios_name) {
1244 char *fname;
1245 MemoryRegion *mr;
1246 int image_size;
1247
1248 if (pflash_blk0) {
1249 error_report("The contents of the first flash device may be "
1250 "specified with -bios or with -drive if=pflash... "
1251 "but you cannot use both options at once");
1252 exit(1);
1253 }
1254
1255 /* Fall back to -bios */
1256
1257 fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1258 if (!fname) {
1259 error_report("Could not find ROM image '%s'", bios_name);
1260 exit(1);
1261 }
1262 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0);
1263 image_size = load_image_mr(fname, mr);
1264 g_free(fname);
1265 if (image_size < 0) {
1266 error_report("Could not load ROM image '%s'", bios_name);
1267 exit(1);
1268 }
1269 }
1270
1271 return pflash_blk0 || bios_name;
1272 }
1273
1274 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
1275 {
1276 MachineState *ms = MACHINE(vms);
1277 hwaddr base = vms->memmap[VIRT_FW_CFG].base;
1278 hwaddr size = vms->memmap[VIRT_FW_CFG].size;
1279 FWCfgState *fw_cfg;
1280 char *nodename;
1281
1282 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
1283 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus);
1284
1285 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
1286 qemu_fdt_add_subnode(ms->fdt, nodename);
1287 qemu_fdt_setprop_string(ms->fdt, nodename,
1288 "compatible", "qemu,fw-cfg-mmio");
1289 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1290 2, base, 2, size);
1291 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1292 g_free(nodename);
1293 return fw_cfg;
1294 }
1295
1296 static void create_pcie_irq_map(const MachineState *ms,
1297 uint32_t gic_phandle,
1298 int first_irq, const char *nodename)
1299 {
1300 int devfn, pin;
1301 uint32_t full_irq_map[4 * 4 * 10] = { 0 };
1302 uint32_t *irq_map = full_irq_map;
1303
1304 for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
1305 for (pin = 0; pin < 4; pin++) {
1306 int irq_type = GIC_FDT_IRQ_TYPE_SPI;
1307 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
1308 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
1309 int i;
1310
1311 uint32_t map[] = {
1312 devfn << 8, 0, 0, /* devfn */
1313 pin + 1, /* PCI pin */
1314 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
1315
1316 /* Convert map to big endian */
1317 for (i = 0; i < 10; i++) {
1318 irq_map[i] = cpu_to_be32(map[i]);
1319 }
1320 irq_map += 10;
1321 }
1322 }
1323
1324 qemu_fdt_setprop(ms->fdt, nodename, "interrupt-map",
1325 full_irq_map, sizeof(full_irq_map));
1326
1327 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupt-map-mask",
1328 cpu_to_be16(PCI_DEVFN(3, 0)), /* Slot 3 */
1329 0, 0,
1330 0x7 /* PCI irq */);
1331 }
1332
1333 static void create_smmu(const VirtMachineState *vms,
1334 PCIBus *bus)
1335 {
1336 char *node;
1337 const char compat[] = "arm,smmu-v3";
1338 int irq = vms->irqmap[VIRT_SMMU];
1339 int i;
1340 hwaddr base = vms->memmap[VIRT_SMMU].base;
1341 hwaddr size = vms->memmap[VIRT_SMMU].size;
1342 const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
1343 DeviceState *dev;
1344 MachineState *ms = MACHINE(vms);
1345
1346 if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
1347 return;
1348 }
1349
1350 dev = qdev_new(TYPE_ARM_SMMUV3);
1351
1352 object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus),
1353 &error_abort);
1354 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1355 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
1356 for (i = 0; i < NUM_SMMU_IRQS; i++) {
1357 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1358 qdev_get_gpio_in(vms->gic, irq + i));
1359 }
1360
1361 node = g_strdup_printf("/smmuv3@%" PRIx64, base);
1362 qemu_fdt_add_subnode(ms->fdt, node);
1363 qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
1364 qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg", 2, base, 2, size);
1365
1366 qemu_fdt_setprop_cells(ms->fdt, node, "interrupts",
1367 GIC_FDT_IRQ_TYPE_SPI, irq , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1368 GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1369 GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1370 GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1371
1372 qemu_fdt_setprop(ms->fdt, node, "interrupt-names", irq_names,
1373 sizeof(irq_names));
1374
1375 qemu_fdt_setprop(ms->fdt, node, "dma-coherent", NULL, 0);
1376
1377 qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
1378
1379 qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
1380 g_free(node);
1381 }
1382
1383 static void create_virtio_iommu_dt_bindings(VirtMachineState *vms)
1384 {
1385 const char compat[] = "virtio,pci-iommu\0pci1af4,1057";
1386 uint16_t bdf = vms->virtio_iommu_bdf;
1387 MachineState *ms = MACHINE(vms);
1388 char *node;
1389
1390 vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
1391
1392 node = g_strdup_printf("%s/virtio_iommu@%x,%x", vms->pciehb_nodename,
1393 PCI_SLOT(bdf), PCI_FUNC(bdf));
1394 qemu_fdt_add_subnode(ms->fdt, node);
1395 qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
1396 qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg",
1397 1, bdf << 8, 1, 0, 1, 0,
1398 1, 0, 1, 0);
1399
1400 qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
1401 qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
1402 g_free(node);
1403
1404 qemu_fdt_setprop_cells(ms->fdt, vms->pciehb_nodename, "iommu-map",
1405 0x0, vms->iommu_phandle, 0x0, bdf,
1406 bdf + 1, vms->iommu_phandle, bdf + 1, 0xffff - bdf);
1407 }
1408
1409 static void create_pcie(VirtMachineState *vms)
1410 {
1411 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1412 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
1413 hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base;
1414 hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size;
1415 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1416 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
1417 hwaddr base_ecam, size_ecam;
1418 hwaddr base = base_mmio;
1419 int nr_pcie_buses;
1420 int irq = vms->irqmap[VIRT_PCIE];
1421 MemoryRegion *mmio_alias;
1422 MemoryRegion *mmio_reg;
1423 MemoryRegion *ecam_alias;
1424 MemoryRegion *ecam_reg;
1425 DeviceState *dev;
1426 char *nodename;
1427 int i, ecam_id;
1428 PCIHostState *pci;
1429 MachineState *ms = MACHINE(vms);
1430 MachineClass *mc = MACHINE_GET_CLASS(ms);
1431
1432 dev = qdev_new(TYPE_GPEX_HOST);
1433 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1434
1435 ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
1436 base_ecam = vms->memmap[ecam_id].base;
1437 size_ecam = vms->memmap[ecam_id].size;
1438 nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
1439 /* Map only the first size_ecam bytes of ECAM space */
1440 ecam_alias = g_new0(MemoryRegion, 1);
1441 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1442 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1443 ecam_reg, 0, size_ecam);
1444 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1445
1446 /* Map the MMIO window into system address space so as to expose
1447 * the section of PCI MMIO space which starts at the same base address
1448 * (ie 1:1 mapping for that part of PCI MMIO space visible through
1449 * the window).
1450 */
1451 mmio_alias = g_new0(MemoryRegion, 1);
1452 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1453 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1454 mmio_reg, base_mmio, size_mmio);
1455 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1456
1457 if (vms->highmem_mmio) {
1458 /* Map high MMIO space */
1459 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1460
1461 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1462 mmio_reg, base_mmio_high, size_mmio_high);
1463 memory_region_add_subregion(get_system_memory(), base_mmio_high,
1464 high_mmio_alias);
1465 }
1466
1467 /* Map IO port space */
1468 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1469
1470 for (i = 0; i < GPEX_NUM_IRQS; i++) {
1471 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1472 qdev_get_gpio_in(vms->gic, irq + i));
1473 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
1474 }
1475
1476 pci = PCI_HOST_BRIDGE(dev);
1477 pci->bypass_iommu = vms->default_bus_bypass_iommu;
1478 vms->bus = pci->bus;
1479 if (vms->bus) {
1480 for (i = 0; i < nb_nics; i++) {
1481 pci_nic_init_nofail(&nd_table[i], pci->bus, mc->default_nic, NULL);
1482 }
1483 }
1484
1485 nodename = vms->pciehb_nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1486 qemu_fdt_add_subnode(ms->fdt, nodename);
1487 qemu_fdt_setprop_string(ms->fdt, nodename,
1488 "compatible", "pci-host-ecam-generic");
1489 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "pci");
1490 qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 3);
1491 qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 2);
1492 qemu_fdt_setprop_cell(ms->fdt, nodename, "linux,pci-domain", 0);
1493 qemu_fdt_setprop_cells(ms->fdt, nodename, "bus-range", 0,
1494 nr_pcie_buses - 1);
1495 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1496
1497 if (vms->msi_phandle) {
1498 qemu_fdt_setprop_cells(ms->fdt, nodename, "msi-map",
1499 0, vms->msi_phandle, 0, 0x10000);
1500 }
1501
1502 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1503 2, base_ecam, 2, size_ecam);
1504
1505 if (vms->highmem_mmio) {
1506 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
1507 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1508 2, base_pio, 2, size_pio,
1509 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1510 2, base_mmio, 2, size_mmio,
1511 1, FDT_PCI_RANGE_MMIO_64BIT,
1512 2, base_mmio_high,
1513 2, base_mmio_high, 2, size_mmio_high);
1514 } else {
1515 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
1516 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1517 2, base_pio, 2, size_pio,
1518 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1519 2, base_mmio, 2, size_mmio);
1520 }
1521
1522 qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 1);
1523 create_pcie_irq_map(ms, vms->gic_phandle, irq, nodename);
1524
1525 if (vms->iommu) {
1526 vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
1527
1528 switch (vms->iommu) {
1529 case VIRT_IOMMU_SMMUV3:
1530 create_smmu(vms, vms->bus);
1531 qemu_fdt_setprop_cells(ms->fdt, nodename, "iommu-map",
1532 0x0, vms->iommu_phandle, 0x0, 0x10000);
1533 break;
1534 default:
1535 g_assert_not_reached();
1536 }
1537 }
1538 }
1539
1540 static void create_platform_bus(VirtMachineState *vms)
1541 {
1542 DeviceState *dev;
1543 SysBusDevice *s;
1544 int i;
1545 MemoryRegion *sysmem = get_system_memory();
1546
1547 dev = qdev_new(TYPE_PLATFORM_BUS_DEVICE);
1548 dev->id = g_strdup(TYPE_PLATFORM_BUS_DEVICE);
1549 qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
1550 qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
1551 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1552 vms->platform_bus_dev = dev;
1553
1554 s = SYS_BUS_DEVICE(dev);
1555 for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
1556 int irq = vms->irqmap[VIRT_PLATFORM_BUS] + i;
1557 sysbus_connect_irq(s, i, qdev_get_gpio_in(vms->gic, irq));
1558 }
1559
1560 memory_region_add_subregion(sysmem,
1561 vms->memmap[VIRT_PLATFORM_BUS].base,
1562 sysbus_mmio_get_region(s, 0));
1563 }
1564
1565 static void create_tag_ram(MemoryRegion *tag_sysmem,
1566 hwaddr base, hwaddr size,
1567 const char *name)
1568 {
1569 MemoryRegion *tagram = g_new(MemoryRegion, 1);
1570
1571 memory_region_init_ram(tagram, NULL, name, size / 32, &error_fatal);
1572 memory_region_add_subregion(tag_sysmem, base / 32, tagram);
1573 }
1574
1575 static void create_secure_ram(VirtMachineState *vms,
1576 MemoryRegion *secure_sysmem,
1577 MemoryRegion *secure_tag_sysmem)
1578 {
1579 MemoryRegion *secram = g_new(MemoryRegion, 1);
1580 char *nodename;
1581 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1582 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1583 MachineState *ms = MACHINE(vms);
1584
1585 memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1586 &error_fatal);
1587 memory_region_add_subregion(secure_sysmem, base, secram);
1588
1589 nodename = g_strdup_printf("/secram@%" PRIx64, base);
1590 qemu_fdt_add_subnode(ms->fdt, nodename);
1591 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "memory");
1592 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 2, base, 2, size);
1593 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1594 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1595
1596 if (secure_tag_sysmem) {
1597 create_tag_ram(secure_tag_sysmem, base, size, "mach-virt.secure-tag");
1598 }
1599
1600 g_free(nodename);
1601 }
1602
1603 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1604 {
1605 const VirtMachineState *board = container_of(binfo, VirtMachineState,
1606 bootinfo);
1607 MachineState *ms = MACHINE(board);
1608
1609
1610 *fdt_size = board->fdt_size;
1611 return ms->fdt;
1612 }
1613
1614 static void virt_build_smbios(VirtMachineState *vms)
1615 {
1616 MachineClass *mc = MACHINE_GET_CLASS(vms);
1617 MachineState *ms = MACHINE(vms);
1618 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1619 uint8_t *smbios_tables, *smbios_anchor;
1620 size_t smbios_tables_len, smbios_anchor_len;
1621 struct smbios_phys_mem_area mem_array;
1622 const char *product = "QEMU Virtual Machine";
1623
1624 if (kvm_enabled()) {
1625 product = "KVM Virtual Machine";
1626 }
1627
1628 smbios_set_defaults("QEMU", product,
1629 vmc->smbios_old_sys_ver ? "1.0" : mc->name, false,
1630 true, SMBIOS_ENTRY_POINT_TYPE_64);
1631
1632 /* build the array of physical mem area from base_memmap */
1633 mem_array.address = vms->memmap[VIRT_MEM].base;
1634 mem_array.length = ms->ram_size;
1635
1636 smbios_get_tables(ms, &mem_array, 1,
1637 &smbios_tables, &smbios_tables_len,
1638 &smbios_anchor, &smbios_anchor_len,
1639 &error_fatal);
1640
1641 if (smbios_anchor) {
1642 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1643 smbios_tables, smbios_tables_len);
1644 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1645 smbios_anchor, smbios_anchor_len);
1646 }
1647 }
1648
1649 static
1650 void virt_machine_done(Notifier *notifier, void *data)
1651 {
1652 VirtMachineState *vms = container_of(notifier, VirtMachineState,
1653 machine_done);
1654 MachineState *ms = MACHINE(vms);
1655 ARMCPU *cpu = ARM_CPU(first_cpu);
1656 struct arm_boot_info *info = &vms->bootinfo;
1657 AddressSpace *as = arm_boot_address_space(cpu, info);
1658
1659 /*
1660 * If the user provided a dtb, we assume the dynamic sysbus nodes
1661 * already are integrated there. This corresponds to a use case where
1662 * the dynamic sysbus nodes are complex and their generation is not yet
1663 * supported. In that case the user can take charge of the guest dt
1664 * while qemu takes charge of the qom stuff.
1665 */
1666 if (info->dtb_filename == NULL) {
1667 platform_bus_add_all_fdt_nodes(ms->fdt, "/intc",
1668 vms->memmap[VIRT_PLATFORM_BUS].base,
1669 vms->memmap[VIRT_PLATFORM_BUS].size,
1670 vms->irqmap[VIRT_PLATFORM_BUS]);
1671 }
1672 if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) {
1673 exit(1);
1674 }
1675
1676 fw_cfg_add_extra_pci_roots(vms->bus, vms->fw_cfg);
1677
1678 virt_acpi_setup(vms);
1679 virt_build_smbios(vms);
1680 }
1681
1682 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1683 {
1684 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1685 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1686
1687 if (!vmc->disallow_affinity_adjustment) {
1688 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1689 * GIC's target-list limitations. 32-bit KVM hosts currently
1690 * always create clusters of 4 CPUs, but that is expected to
1691 * change when they gain support for gicv3. When KVM is enabled
1692 * it will override the changes we make here, therefore our
1693 * purposes are to make TCG consistent (with 64-bit KVM hosts)
1694 * and to improve SGI efficiency.
1695 */
1696 if (vms->gic_version == VIRT_GIC_VERSION_2) {
1697 clustersz = GIC_TARGETLIST_BITS;
1698 } else {
1699 clustersz = GICV3_TARGETLIST_BITS;
1700 }
1701 }
1702 return arm_cpu_mp_affinity(idx, clustersz);
1703 }
1704
1705 static inline bool *virt_get_high_memmap_enabled(VirtMachineState *vms,
1706 int index)
1707 {
1708 bool *enabled_array[] = {
1709 &vms->highmem_redists,
1710 &vms->highmem_ecam,
1711 &vms->highmem_mmio,
1712 };
1713
1714 assert(ARRAY_SIZE(extended_memmap) - VIRT_LOWMEMMAP_LAST ==
1715 ARRAY_SIZE(enabled_array));
1716 assert(index - VIRT_LOWMEMMAP_LAST < ARRAY_SIZE(enabled_array));
1717
1718 return enabled_array[index - VIRT_LOWMEMMAP_LAST];
1719 }
1720
1721 static void virt_set_high_memmap(VirtMachineState *vms,
1722 hwaddr base, int pa_bits)
1723 {
1724 hwaddr region_base, region_size;
1725 bool *region_enabled, fits;
1726 int i;
1727
1728 for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) {
1729 region_enabled = virt_get_high_memmap_enabled(vms, i);
1730 region_base = ROUND_UP(base, extended_memmap[i].size);
1731 region_size = extended_memmap[i].size;
1732
1733 vms->memmap[i].base = region_base;
1734 vms->memmap[i].size = region_size;
1735
1736 /*
1737 * Check each device to see if it fits in the PA space,
1738 * moving highest_gpa as we go. For compatibility, move
1739 * highest_gpa for disabled fitting devices as well, if
1740 * the compact layout has been disabled.
1741 *
1742 * For each device that doesn't fit, disable it.
1743 */
1744 fits = (region_base + region_size) <= BIT_ULL(pa_bits);
1745 *region_enabled &= fits;
1746 if (vms->highmem_compact && !*region_enabled) {
1747 continue;
1748 }
1749
1750 base = region_base + region_size;
1751 if (fits) {
1752 vms->highest_gpa = base - 1;
1753 }
1754 }
1755 }
1756
1757 static void virt_set_memmap(VirtMachineState *vms, int pa_bits)
1758 {
1759 MachineState *ms = MACHINE(vms);
1760 hwaddr base, device_memory_base, device_memory_size, memtop;
1761 int i;
1762
1763 vms->memmap = extended_memmap;
1764
1765 for (i = 0; i < ARRAY_SIZE(base_memmap); i++) {
1766 vms->memmap[i] = base_memmap[i];
1767 }
1768
1769 if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) {
1770 error_report("unsupported number of memory slots: %"PRIu64,
1771 ms->ram_slots);
1772 exit(EXIT_FAILURE);
1773 }
1774
1775 /*
1776 * !highmem is exactly the same as limiting the PA space to 32bit,
1777 * irrespective of the underlying capabilities of the HW.
1778 */
1779 if (!vms->highmem) {
1780 pa_bits = 32;
1781 }
1782
1783 /*
1784 * We compute the base of the high IO region depending on the
1785 * amount of initial and device memory. The device memory start/size
1786 * is aligned on 1GiB. We never put the high IO region below 256GiB
1787 * so that if maxram_size is < 255GiB we keep the legacy memory map.
1788 * The device region size assumes 1GiB page max alignment per slot.
1789 */
1790 device_memory_base =
1791 ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB);
1792 device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB;
1793
1794 /* Base address of the high IO region */
1795 memtop = base = device_memory_base + ROUND_UP(device_memory_size, GiB);
1796 if (memtop > BIT_ULL(pa_bits)) {
1797 error_report("Addressing limited to %d bits, but memory exceeds it by %llu bytes\n",
1798 pa_bits, memtop - BIT_ULL(pa_bits));
1799 exit(EXIT_FAILURE);
1800 }
1801 if (base < device_memory_base) {
1802 error_report("maxmem/slots too huge");
1803 exit(EXIT_FAILURE);
1804 }
1805 if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) {
1806 base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES;
1807 }
1808
1809 /* We know for sure that at least the memory fits in the PA space */
1810 vms->highest_gpa = memtop - 1;
1811
1812 virt_set_high_memmap(vms, base, pa_bits);
1813
1814 if (device_memory_size > 0) {
1815 machine_memory_devices_init(ms, device_memory_base, device_memory_size);
1816 }
1817 }
1818
1819 static VirtGICType finalize_gic_version_do(const char *accel_name,
1820 VirtGICType gic_version,
1821 int gics_supported,
1822 unsigned int max_cpus)
1823 {
1824 /* Convert host/max/nosel to GIC version number */
1825 switch (gic_version) {
1826 case VIRT_GIC_VERSION_HOST:
1827 if (!kvm_enabled()) {
1828 error_report("gic-version=host requires KVM");
1829 exit(1);
1830 }
1831
1832 /* For KVM, gic-version=host means gic-version=max */
1833 return finalize_gic_version_do(accel_name, VIRT_GIC_VERSION_MAX,
1834 gics_supported, max_cpus);
1835 case VIRT_GIC_VERSION_MAX:
1836 if (gics_supported & VIRT_GIC_VERSION_4_MASK) {
1837 gic_version = VIRT_GIC_VERSION_4;
1838 } else if (gics_supported & VIRT_GIC_VERSION_3_MASK) {
1839 gic_version = VIRT_GIC_VERSION_3;
1840 } else {
1841 gic_version = VIRT_GIC_VERSION_2;
1842 }
1843 break;
1844 case VIRT_GIC_VERSION_NOSEL:
1845 if ((gics_supported & VIRT_GIC_VERSION_2_MASK) &&
1846 max_cpus <= GIC_NCPU) {
1847 gic_version = VIRT_GIC_VERSION_2;
1848 } else if (gics_supported & VIRT_GIC_VERSION_3_MASK) {
1849 /*
1850 * in case the host does not support v2 emulation or
1851 * the end-user requested more than 8 VCPUs we now default
1852 * to v3. In any case defaulting to v2 would be broken.
1853 */
1854 gic_version = VIRT_GIC_VERSION_3;
1855 } else if (max_cpus > GIC_NCPU) {
1856 error_report("%s only supports GICv2 emulation but more than 8 "
1857 "vcpus are requested", accel_name);
1858 exit(1);
1859 }
1860 break;
1861 case VIRT_GIC_VERSION_2:
1862 case VIRT_GIC_VERSION_3:
1863 case VIRT_GIC_VERSION_4:
1864 break;
1865 }
1866
1867 /* Check chosen version is effectively supported */
1868 switch (gic_version) {
1869 case VIRT_GIC_VERSION_2:
1870 if (!(gics_supported & VIRT_GIC_VERSION_2_MASK)) {
1871 error_report("%s does not support GICv2 emulation", accel_name);
1872 exit(1);
1873 }
1874 break;
1875 case VIRT_GIC_VERSION_3:
1876 if (!(gics_supported & VIRT_GIC_VERSION_3_MASK)) {
1877 error_report("%s does not support GICv3 emulation", accel_name);
1878 exit(1);
1879 }
1880 break;
1881 case VIRT_GIC_VERSION_4:
1882 if (!(gics_supported & VIRT_GIC_VERSION_4_MASK)) {
1883 error_report("%s does not support GICv4 emulation, is virtualization=on?",
1884 accel_name);
1885 exit(1);
1886 }
1887 break;
1888 default:
1889 error_report("logic error in finalize_gic_version");
1890 exit(1);
1891 break;
1892 }
1893
1894 return gic_version;
1895 }
1896
1897 /*
1898 * finalize_gic_version - Determines the final gic_version
1899 * according to the gic-version property
1900 *
1901 * Default GIC type is v2
1902 */
1903 static void finalize_gic_version(VirtMachineState *vms)
1904 {
1905 const char *accel_name = current_accel_name();
1906 unsigned int max_cpus = MACHINE(vms)->smp.max_cpus;
1907 int gics_supported = 0;
1908
1909 /* Determine which GIC versions the current environment supports */
1910 if (kvm_enabled() && kvm_irqchip_in_kernel()) {
1911 int probe_bitmap = kvm_arm_vgic_probe();
1912
1913 if (!probe_bitmap) {
1914 error_report("Unable to determine GIC version supported by host");
1915 exit(1);
1916 }
1917
1918 if (probe_bitmap & KVM_ARM_VGIC_V2) {
1919 gics_supported |= VIRT_GIC_VERSION_2_MASK;
1920 }
1921 if (probe_bitmap & KVM_ARM_VGIC_V3) {
1922 gics_supported |= VIRT_GIC_VERSION_3_MASK;
1923 }
1924 } else if (kvm_enabled() && !kvm_irqchip_in_kernel()) {
1925 /* KVM w/o kernel irqchip can only deal with GICv2 */
1926 gics_supported |= VIRT_GIC_VERSION_2_MASK;
1927 accel_name = "KVM with kernel-irqchip=off";
1928 } else if (tcg_enabled() || hvf_enabled() || qtest_enabled()) {
1929 gics_supported |= VIRT_GIC_VERSION_2_MASK;
1930 if (module_object_class_by_name("arm-gicv3")) {
1931 gics_supported |= VIRT_GIC_VERSION_3_MASK;
1932 if (vms->virt) {
1933 /* GICv4 only makes sense if CPU has EL2 */
1934 gics_supported |= VIRT_GIC_VERSION_4_MASK;
1935 }
1936 }
1937 } else {
1938 error_report("Unsupported accelerator, can not determine GIC support");
1939 exit(1);
1940 }
1941
1942 /*
1943 * Then convert helpers like host/max to concrete GIC versions and ensure
1944 * the desired version is supported
1945 */
1946 vms->gic_version = finalize_gic_version_do(accel_name, vms->gic_version,
1947 gics_supported, max_cpus);
1948 }
1949
1950 /*
1951 * virt_cpu_post_init() must be called after the CPUs have
1952 * been realized and the GIC has been created.
1953 */
1954 static void virt_cpu_post_init(VirtMachineState *vms, MemoryRegion *sysmem)
1955 {
1956 int max_cpus = MACHINE(vms)->smp.max_cpus;
1957 bool aarch64, pmu, steal_time;
1958 CPUState *cpu;
1959
1960 aarch64 = object_property_get_bool(OBJECT(first_cpu), "aarch64", NULL);
1961 pmu = object_property_get_bool(OBJECT(first_cpu), "pmu", NULL);
1962 steal_time = object_property_get_bool(OBJECT(first_cpu),
1963 "kvm-steal-time", NULL);
1964
1965 if (kvm_enabled()) {
1966 hwaddr pvtime_reg_base = vms->memmap[VIRT_PVTIME].base;
1967 hwaddr pvtime_reg_size = vms->memmap[VIRT_PVTIME].size;
1968
1969 if (steal_time) {
1970 MemoryRegion *pvtime = g_new(MemoryRegion, 1);
1971 hwaddr pvtime_size = max_cpus * PVTIME_SIZE_PER_CPU;
1972
1973 /* The memory region size must be a multiple of host page size. */
1974 pvtime_size = REAL_HOST_PAGE_ALIGN(pvtime_size);
1975
1976 if (pvtime_size > pvtime_reg_size) {
1977 error_report("pvtime requires a %" HWADDR_PRId
1978 " byte memory region for %d CPUs,"
1979 " but only %" HWADDR_PRId " has been reserved",
1980 pvtime_size, max_cpus, pvtime_reg_size);
1981 exit(1);
1982 }
1983
1984 memory_region_init_ram(pvtime, NULL, "pvtime", pvtime_size, NULL);
1985 memory_region_add_subregion(sysmem, pvtime_reg_base, pvtime);
1986 }
1987
1988 CPU_FOREACH(cpu) {
1989 if (pmu) {
1990 assert(arm_feature(&ARM_CPU(cpu)->env, ARM_FEATURE_PMU));
1991 if (kvm_irqchip_in_kernel()) {
1992 kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ));
1993 }
1994 kvm_arm_pmu_init(cpu);
1995 }
1996 if (steal_time) {
1997 kvm_arm_pvtime_init(cpu, pvtime_reg_base +
1998 cpu->cpu_index * PVTIME_SIZE_PER_CPU);
1999 }
2000 }
2001 } else {
2002 if (aarch64 && vms->highmem) {
2003 int requested_pa_size = 64 - clz64(vms->highest_gpa);
2004 int pamax = arm_pamax(ARM_CPU(first_cpu));
2005
2006 if (pamax < requested_pa_size) {
2007 error_report("VCPU supports less PA bits (%d) than "
2008 "requested by the memory map (%d)",
2009 pamax, requested_pa_size);
2010 exit(1);
2011 }
2012 }
2013 }
2014 }
2015
2016 static void machvirt_init(MachineState *machine)
2017 {
2018 VirtMachineState *vms = VIRT_MACHINE(machine);
2019 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
2020 MachineClass *mc = MACHINE_GET_CLASS(machine);
2021 const CPUArchIdList *possible_cpus;
2022 MemoryRegion *sysmem = get_system_memory();
2023 MemoryRegion *secure_sysmem = NULL;
2024 MemoryRegion *tag_sysmem = NULL;
2025 MemoryRegion *secure_tag_sysmem = NULL;
2026 int n, virt_max_cpus;
2027 bool firmware_loaded;
2028 bool aarch64 = true;
2029 bool has_ged = !vmc->no_ged;
2030 unsigned int smp_cpus = machine->smp.cpus;
2031 unsigned int max_cpus = machine->smp.max_cpus;
2032
2033 if (!cpu_type_valid(machine->cpu_type)) {
2034 error_report("mach-virt: CPU type %s not supported", machine->cpu_type);
2035 exit(1);
2036 }
2037
2038 possible_cpus = mc->possible_cpu_arch_ids(machine);
2039
2040 /*
2041 * In accelerated mode, the memory map is computed earlier in kvm_type()
2042 * to create a VM with the right number of IPA bits.
2043 */
2044 if (!vms->memmap) {
2045 Object *cpuobj;
2046 ARMCPU *armcpu;
2047 int pa_bits;
2048
2049 /*
2050 * Instantiate a temporary CPU object to find out about what
2051 * we are about to deal with. Once this is done, get rid of
2052 * the object.
2053 */
2054 cpuobj = object_new(possible_cpus->cpus[0].type);
2055 armcpu = ARM_CPU(cpuobj);
2056
2057 pa_bits = arm_pamax(armcpu);
2058
2059 object_unref(cpuobj);
2060
2061 virt_set_memmap(vms, pa_bits);
2062 }
2063
2064 /* We can probe only here because during property set
2065 * KVM is not available yet
2066 */
2067 finalize_gic_version(vms);
2068
2069 if (vms->secure) {
2070 /*
2071 * The Secure view of the world is the same as the NonSecure,
2072 * but with a few extra devices. Create it as a container region
2073 * containing the system memory at low priority; any secure-only
2074 * devices go in at higher priority and take precedence.
2075 */
2076 secure_sysmem = g_new(MemoryRegion, 1);
2077 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
2078 UINT64_MAX);
2079 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
2080 }
2081
2082 firmware_loaded = virt_firmware_init(vms, sysmem,
2083 secure_sysmem ?: sysmem);
2084
2085 /* If we have an EL3 boot ROM then the assumption is that it will
2086 * implement PSCI itself, so disable QEMU's internal implementation
2087 * so it doesn't get in the way. Instead of starting secondary
2088 * CPUs in PSCI powerdown state we will start them all running and
2089 * let the boot ROM sort them out.
2090 * The usual case is that we do use QEMU's PSCI implementation;
2091 * if the guest has EL2 then we will use SMC as the conduit,
2092 * and otherwise we will use HVC (for backwards compatibility and
2093 * because if we're using KVM then we must use HVC).
2094 */
2095 if (vms->secure && firmware_loaded) {
2096 vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
2097 } else if (vms->virt) {
2098 vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
2099 } else {
2100 vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
2101 }
2102
2103 /*
2104 * The maximum number of CPUs depends on the GIC version, or on how
2105 * many redistributors we can fit into the memory map (which in turn
2106 * depends on whether this is a GICv3 or v4).
2107 */
2108 if (vms->gic_version == VIRT_GIC_VERSION_2) {
2109 virt_max_cpus = GIC_NCPU;
2110 } else {
2111 virt_max_cpus = virt_redist_capacity(vms, VIRT_GIC_REDIST);
2112 if (vms->highmem_redists) {
2113 virt_max_cpus += virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2);
2114 }
2115 }
2116
2117 if (max_cpus > virt_max_cpus) {
2118 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
2119 "supported by machine 'mach-virt' (%d)",
2120 max_cpus, virt_max_cpus);
2121 if (vms->gic_version != VIRT_GIC_VERSION_2 && !vms->highmem_redists) {
2122 error_printf("Try 'highmem-redists=on' for more CPUs\n");
2123 }
2124
2125 exit(1);
2126 }
2127
2128 if (vms->secure && (kvm_enabled() || hvf_enabled())) {
2129 error_report("mach-virt: %s does not support providing "
2130 "Security extensions (TrustZone) to the guest CPU",
2131 current_accel_name());
2132 exit(1);
2133 }
2134
2135 if (vms->virt && (kvm_enabled() || hvf_enabled())) {
2136 error_report("mach-virt: %s does not support providing "
2137 "Virtualization extensions to the guest CPU",
2138 current_accel_name());
2139 exit(1);
2140 }
2141
2142 if (vms->mte && (kvm_enabled() || hvf_enabled())) {
2143 error_report("mach-virt: %s does not support providing "
2144 "MTE to the guest CPU",
2145 current_accel_name());
2146 exit(1);
2147 }
2148
2149 create_fdt(vms);
2150
2151 assert(possible_cpus->len == max_cpus);
2152 for (n = 0; n < possible_cpus->len; n++) {
2153 Object *cpuobj;
2154 CPUState *cs;
2155
2156 if (n >= smp_cpus) {
2157 break;
2158 }
2159
2160 cpuobj = object_new(possible_cpus->cpus[n].type);
2161 object_property_set_int(cpuobj, "mp-affinity",
2162 possible_cpus->cpus[n].arch_id, NULL);
2163
2164 cs = CPU(cpuobj);
2165 cs->cpu_index = n;
2166
2167 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
2168 &error_fatal);
2169
2170 aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
2171
2172 if (!vms->secure) {
2173 object_property_set_bool(cpuobj, "has_el3", false, NULL);
2174 }
2175
2176 if (!vms->virt && object_property_find(cpuobj, "has_el2")) {
2177 object_property_set_bool(cpuobj, "has_el2", false, NULL);
2178 }
2179
2180 if (vmc->kvm_no_adjvtime &&
2181 object_property_find(cpuobj, "kvm-no-adjvtime")) {
2182 object_property_set_bool(cpuobj, "kvm-no-adjvtime", true, NULL);
2183 }
2184
2185 if (vmc->no_kvm_steal_time &&
2186 object_property_find(cpuobj, "kvm-steal-time")) {
2187 object_property_set_bool(cpuobj, "kvm-steal-time", false, NULL);
2188 }
2189
2190 if (vmc->no_pmu && object_property_find(cpuobj, "pmu")) {
2191 object_property_set_bool(cpuobj, "pmu", false, NULL);
2192 }
2193
2194 if (vmc->no_tcg_lpa2 && object_property_find(cpuobj, "lpa2")) {
2195 object_property_set_bool(cpuobj, "lpa2", false, NULL);
2196 }
2197
2198 if (object_property_find(cpuobj, "reset-cbar")) {
2199 object_property_set_int(cpuobj, "reset-cbar",
2200 vms->memmap[VIRT_CPUPERIPHS].base,
2201 &error_abort);
2202 }
2203
2204 object_property_set_link(cpuobj, "memory", OBJECT(sysmem),
2205 &error_abort);
2206 if (vms->secure) {
2207 object_property_set_link(cpuobj, "secure-memory",
2208 OBJECT(secure_sysmem), &error_abort);
2209 }
2210
2211 if (vms->mte) {
2212 /* Create the memory region only once, but link to all cpus. */
2213 if (!tag_sysmem) {
2214 /*
2215 * The property exists only if MemTag is supported.
2216 * If it is, we must allocate the ram to back that up.
2217 */
2218 if (!object_property_find(cpuobj, "tag-memory")) {
2219 error_report("MTE requested, but not supported "
2220 "by the guest CPU");
2221 exit(1);
2222 }
2223
2224 tag_sysmem = g_new(MemoryRegion, 1);
2225 memory_region_init(tag_sysmem, OBJECT(machine),
2226 "tag-memory", UINT64_MAX / 32);
2227
2228 if (vms->secure) {
2229 secure_tag_sysmem = g_new(MemoryRegion, 1);
2230 memory_region_init(secure_tag_sysmem, OBJECT(machine),
2231 "secure-tag-memory", UINT64_MAX / 32);
2232
2233 /* As with ram, secure-tag takes precedence over tag. */
2234 memory_region_add_subregion_overlap(secure_tag_sysmem, 0,
2235 tag_sysmem, -1);
2236 }
2237 }
2238
2239 object_property_set_link(cpuobj, "tag-memory", OBJECT(tag_sysmem),
2240 &error_abort);
2241 if (vms->secure) {
2242 object_property_set_link(cpuobj, "secure-tag-memory",
2243 OBJECT(secure_tag_sysmem),
2244 &error_abort);
2245 }
2246 }
2247
2248 qdev_realize(DEVICE(cpuobj), NULL, &error_fatal);
2249 object_unref(cpuobj);
2250 }
2251 fdt_add_timer_nodes(vms);
2252 fdt_add_cpu_nodes(vms);
2253
2254 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base,
2255 machine->ram);
2256
2257 virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem);
2258
2259 create_gic(vms, sysmem);
2260
2261 virt_cpu_post_init(vms, sysmem);
2262
2263 fdt_add_pmu_nodes(vms);
2264
2265 create_uart(vms, VIRT_UART, sysmem, serial_hd(0));
2266
2267 if (vms->secure) {
2268 create_secure_ram(vms, secure_sysmem, secure_tag_sysmem);
2269 create_uart(vms, VIRT_SECURE_UART, secure_sysmem, serial_hd(1));
2270 }
2271
2272 if (tag_sysmem) {
2273 create_tag_ram(tag_sysmem, vms->memmap[VIRT_MEM].base,
2274 machine->ram_size, "mach-virt.tag");
2275 }
2276
2277 vms->highmem_ecam &= (!firmware_loaded || aarch64);
2278
2279 create_rtc(vms);
2280
2281 create_pcie(vms);
2282
2283 if (has_ged && aarch64 && firmware_loaded && virt_is_acpi_enabled(vms)) {
2284 vms->acpi_dev = create_acpi_ged(vms);
2285 } else {
2286 create_gpio_devices(vms, VIRT_GPIO, sysmem);
2287 }
2288
2289 if (vms->secure && !vmc->no_secure_gpio) {
2290 create_gpio_devices(vms, VIRT_SECURE_GPIO, secure_sysmem);
2291 }
2292
2293 /* connect powerdown request */
2294 vms->powerdown_notifier.notify = virt_powerdown_req;
2295 qemu_register_powerdown_notifier(&vms->powerdown_notifier);
2296
2297 /* Create mmio transports, so the user can create virtio backends
2298 * (which will be automatically plugged in to the transports). If
2299 * no backend is created the transport will just sit harmlessly idle.
2300 */
2301 create_virtio_devices(vms);
2302
2303 vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
2304 rom_set_fw(vms->fw_cfg);
2305
2306 create_platform_bus(vms);
2307
2308 if (machine->nvdimms_state->is_enabled) {
2309 const struct AcpiGenericAddress arm_virt_nvdimm_acpi_dsmio = {
2310 .space_id = AML_AS_SYSTEM_MEMORY,
2311 .address = vms->memmap[VIRT_NVDIMM_ACPI].base,
2312 .bit_width = NVDIMM_ACPI_IO_LEN << 3
2313 };
2314
2315 nvdimm_init_acpi_state(machine->nvdimms_state, sysmem,
2316 arm_virt_nvdimm_acpi_dsmio,
2317 vms->fw_cfg, OBJECT(vms));
2318 }
2319
2320 vms->bootinfo.ram_size = machine->ram_size;
2321 vms->bootinfo.board_id = -1;
2322 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
2323 vms->bootinfo.get_dtb = machvirt_dtb;
2324 vms->bootinfo.skip_dtb_autoload = true;
2325 vms->bootinfo.firmware_loaded = firmware_loaded;
2326 vms->bootinfo.psci_conduit = vms->psci_conduit;
2327 arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo);
2328
2329 vms->machine_done.notify = virt_machine_done;
2330 qemu_add_machine_init_done_notifier(&vms->machine_done);
2331 }
2332
2333 static bool virt_get_secure(Object *obj, Error **errp)
2334 {
2335 VirtMachineState *vms = VIRT_MACHINE(obj);
2336
2337 return vms->secure;
2338 }
2339
2340 static void virt_set_secure(Object *obj, bool value, Error **errp)
2341 {
2342 VirtMachineState *vms = VIRT_MACHINE(obj);
2343
2344 vms->secure = value;
2345 }
2346
2347 static bool virt_get_virt(Object *obj, Error **errp)
2348 {
2349 VirtMachineState *vms = VIRT_MACHINE(obj);
2350
2351 return vms->virt;
2352 }
2353
2354 static void virt_set_virt(Object *obj, bool value, Error **errp)
2355 {
2356 VirtMachineState *vms = VIRT_MACHINE(obj);
2357
2358 vms->virt = value;
2359 }
2360
2361 static bool virt_get_highmem(Object *obj, Error **errp)
2362 {
2363 VirtMachineState *vms = VIRT_MACHINE(obj);
2364
2365 return vms->highmem;
2366 }
2367
2368 static void virt_set_highmem(Object *obj, bool value, Error **errp)
2369 {
2370 VirtMachineState *vms = VIRT_MACHINE(obj);
2371
2372 vms->highmem = value;
2373 }
2374
2375 static bool virt_get_compact_highmem(Object *obj, Error **errp)
2376 {
2377 VirtMachineState *vms = VIRT_MACHINE(obj);
2378
2379 return vms->highmem_compact;
2380 }
2381
2382 static void virt_set_compact_highmem(Object *obj, bool value, Error **errp)
2383 {
2384 VirtMachineState *vms = VIRT_MACHINE(obj);
2385
2386 vms->highmem_compact = value;
2387 }
2388
2389 static bool virt_get_highmem_redists(Object *obj, Error **errp)
2390 {
2391 VirtMachineState *vms = VIRT_MACHINE(obj);
2392
2393 return vms->highmem_redists;
2394 }
2395
2396 static void virt_set_highmem_redists(Object *obj, bool value, Error **errp)
2397 {
2398 VirtMachineState *vms = VIRT_MACHINE(obj);
2399
2400 vms->highmem_redists = value;
2401 }
2402
2403 static bool virt_get_highmem_ecam(Object *obj, Error **errp)
2404 {
2405 VirtMachineState *vms = VIRT_MACHINE(obj);
2406
2407 return vms->highmem_ecam;
2408 }
2409
2410 static void virt_set_highmem_ecam(Object *obj, bool value, Error **errp)
2411 {
2412 VirtMachineState *vms = VIRT_MACHINE(obj);
2413
2414 vms->highmem_ecam = value;
2415 }
2416
2417 static bool virt_get_highmem_mmio(Object *obj, Error **errp)
2418 {
2419 VirtMachineState *vms = VIRT_MACHINE(obj);
2420
2421 return vms->highmem_mmio;
2422 }
2423
2424 static void virt_set_highmem_mmio(Object *obj, bool value, Error **errp)
2425 {
2426 VirtMachineState *vms = VIRT_MACHINE(obj);
2427
2428 vms->highmem_mmio = value;
2429 }
2430
2431
2432 static bool virt_get_its(Object *obj, Error **errp)
2433 {
2434 VirtMachineState *vms = VIRT_MACHINE(obj);
2435
2436 return vms->its;
2437 }
2438
2439 static void virt_set_its(Object *obj, bool value, Error **errp)
2440 {
2441 VirtMachineState *vms = VIRT_MACHINE(obj);
2442
2443 vms->its = value;
2444 }
2445
2446 static bool virt_get_dtb_randomness(Object *obj, Error **errp)
2447 {
2448 VirtMachineState *vms = VIRT_MACHINE(obj);
2449
2450 return vms->dtb_randomness;
2451 }
2452
2453 static void virt_set_dtb_randomness(Object *obj, bool value, Error **errp)
2454 {
2455 VirtMachineState *vms = VIRT_MACHINE(obj);
2456
2457 vms->dtb_randomness = value;
2458 }
2459
2460 static char *virt_get_oem_id(Object *obj, Error **errp)
2461 {
2462 VirtMachineState *vms = VIRT_MACHINE(obj);
2463
2464 return g_strdup(vms->oem_id);
2465 }
2466
2467 static void virt_set_oem_id(Object *obj, const char *value, Error **errp)
2468 {
2469 VirtMachineState *vms = VIRT_MACHINE(obj);
2470 size_t len = strlen(value);
2471
2472 if (len > 6) {
2473 error_setg(errp,
2474 "User specified oem-id value is bigger than 6 bytes in size");
2475 return;
2476 }
2477
2478 strncpy(vms->oem_id, value, 6);
2479 }
2480
2481 static char *virt_get_oem_table_id(Object *obj, Error **errp)
2482 {
2483 VirtMachineState *vms = VIRT_MACHINE(obj);
2484
2485 return g_strdup(vms->oem_table_id);
2486 }
2487
2488 static void virt_set_oem_table_id(Object *obj, const char *value,
2489 Error **errp)
2490 {
2491 VirtMachineState *vms = VIRT_MACHINE(obj);
2492 size_t len = strlen(value);
2493
2494 if (len > 8) {
2495 error_setg(errp,
2496 "User specified oem-table-id value is bigger than 8 bytes in size");
2497 return;
2498 }
2499 strncpy(vms->oem_table_id, value, 8);
2500 }
2501
2502
2503 bool virt_is_acpi_enabled(VirtMachineState *vms)
2504 {
2505 if (vms->acpi == ON_OFF_AUTO_OFF) {
2506 return false;
2507 }
2508 return true;
2509 }
2510
2511 static void virt_get_acpi(Object *obj, Visitor *v, const char *name,
2512 void *opaque, Error **errp)
2513 {
2514 VirtMachineState *vms = VIRT_MACHINE(obj);
2515 OnOffAuto acpi = vms->acpi;
2516
2517 visit_type_OnOffAuto(v, name, &acpi, errp);
2518 }
2519
2520 static void virt_set_acpi(Object *obj, Visitor *v, const char *name,
2521 void *opaque, Error **errp)
2522 {
2523 VirtMachineState *vms = VIRT_MACHINE(obj);
2524
2525 visit_type_OnOffAuto(v, name, &vms->acpi, errp);
2526 }
2527
2528 static bool virt_get_ras(Object *obj, Error **errp)
2529 {
2530 VirtMachineState *vms = VIRT_MACHINE(obj);
2531
2532 return vms->ras;
2533 }
2534
2535 static void virt_set_ras(Object *obj, bool value, Error **errp)
2536 {
2537 VirtMachineState *vms = VIRT_MACHINE(obj);
2538
2539 vms->ras = value;
2540 }
2541
2542 static bool virt_get_mte(Object *obj, Error **errp)
2543 {
2544 VirtMachineState *vms = VIRT_MACHINE(obj);
2545
2546 return vms->mte;
2547 }
2548
2549 static void virt_set_mte(Object *obj, bool value, Error **errp)
2550 {
2551 VirtMachineState *vms = VIRT_MACHINE(obj);
2552
2553 vms->mte = value;
2554 }
2555
2556 static char *virt_get_gic_version(Object *obj, Error **errp)
2557 {
2558 VirtMachineState *vms = VIRT_MACHINE(obj);
2559 const char *val;
2560
2561 switch (vms->gic_version) {
2562 case VIRT_GIC_VERSION_4:
2563 val = "4";
2564 break;
2565 case VIRT_GIC_VERSION_3:
2566 val = "3";
2567 break;
2568 default:
2569 val = "2";
2570 break;
2571 }
2572 return g_strdup(val);
2573 }
2574
2575 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
2576 {
2577 VirtMachineState *vms = VIRT_MACHINE(obj);
2578
2579 if (!strcmp(value, "4")) {
2580 vms->gic_version = VIRT_GIC_VERSION_4;
2581 } else if (!strcmp(value, "3")) {
2582 vms->gic_version = VIRT_GIC_VERSION_3;
2583 } else if (!strcmp(value, "2")) {
2584 vms->gic_version = VIRT_GIC_VERSION_2;
2585 } else if (!strcmp(value, "host")) {
2586 vms->gic_version = VIRT_GIC_VERSION_HOST; /* Will probe later */
2587 } else if (!strcmp(value, "max")) {
2588 vms->gic_version = VIRT_GIC_VERSION_MAX; /* Will probe later */
2589 } else {
2590 error_setg(errp, "Invalid gic-version value");
2591 error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
2592 }
2593 }
2594
2595 static char *virt_get_iommu(Object *obj, Error **errp)
2596 {
2597 VirtMachineState *vms = VIRT_MACHINE(obj);
2598
2599 switch (vms->iommu) {
2600 case VIRT_IOMMU_NONE:
2601 return g_strdup("none");
2602 case VIRT_IOMMU_SMMUV3:
2603 return g_strdup("smmuv3");
2604 default:
2605 g_assert_not_reached();
2606 }
2607 }
2608
2609 static void virt_set_iommu(Object *obj, const char *value, Error **errp)
2610 {
2611 VirtMachineState *vms = VIRT_MACHINE(obj);
2612
2613 if (!strcmp(value, "smmuv3")) {
2614 vms->iommu = VIRT_IOMMU_SMMUV3;
2615 } else if (!strcmp(value, "none")) {
2616 vms->iommu = VIRT_IOMMU_NONE;
2617 } else {
2618 error_setg(errp, "Invalid iommu value");
2619 error_append_hint(errp, "Valid values are none, smmuv3.\n");
2620 }
2621 }
2622
2623 static bool virt_get_default_bus_bypass_iommu(Object *obj, Error **errp)
2624 {
2625 VirtMachineState *vms = VIRT_MACHINE(obj);
2626
2627 return vms->default_bus_bypass_iommu;
2628 }
2629
2630 static void virt_set_default_bus_bypass_iommu(Object *obj, bool value,
2631 Error **errp)
2632 {
2633 VirtMachineState *vms = VIRT_MACHINE(obj);
2634
2635 vms->default_bus_bypass_iommu = value;
2636 }
2637
2638 static CpuInstanceProperties
2639 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2640 {
2641 MachineClass *mc = MACHINE_GET_CLASS(ms);
2642 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2643
2644 assert(cpu_index < possible_cpus->len);
2645 return possible_cpus->cpus[cpu_index].props;
2646 }
2647
2648 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
2649 {
2650 int64_t socket_id = ms->possible_cpus->cpus[idx].props.socket_id;
2651
2652 return socket_id % ms->numa_state->num_nodes;
2653 }
2654
2655 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
2656 {
2657 int n;
2658 unsigned int max_cpus = ms->smp.max_cpus;
2659 VirtMachineState *vms = VIRT_MACHINE(ms);
2660 MachineClass *mc = MACHINE_GET_CLASS(vms);
2661
2662 if (ms->possible_cpus) {
2663 assert(ms->possible_cpus->len == max_cpus);
2664 return ms->possible_cpus;
2665 }
2666
2667 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2668 sizeof(CPUArchId) * max_cpus);
2669 ms->possible_cpus->len = max_cpus;
2670 for (n = 0; n < ms->possible_cpus->len; n++) {
2671 ms->possible_cpus->cpus[n].type = ms->cpu_type;
2672 ms->possible_cpus->cpus[n].arch_id =
2673 virt_cpu_mp_affinity(vms, n);
2674
2675 assert(!mc->smp_props.dies_supported);
2676 ms->possible_cpus->cpus[n].props.has_socket_id = true;
2677 ms->possible_cpus->cpus[n].props.socket_id =
2678 n / (ms->smp.clusters * ms->smp.cores * ms->smp.threads);
2679 ms->possible_cpus->cpus[n].props.has_cluster_id = true;
2680 ms->possible_cpus->cpus[n].props.cluster_id =
2681 (n / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters;
2682 ms->possible_cpus->cpus[n].props.has_core_id = true;
2683 ms->possible_cpus->cpus[n].props.core_id =
2684 (n / ms->smp.threads) % ms->smp.cores;
2685 ms->possible_cpus->cpus[n].props.has_thread_id = true;
2686 ms->possible_cpus->cpus[n].props.thread_id =
2687 n % ms->smp.threads;
2688 }
2689 return ms->possible_cpus;
2690 }
2691
2692 static void virt_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2693 Error **errp)
2694 {
2695 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2696 const MachineState *ms = MACHINE(hotplug_dev);
2697 const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2698
2699 if (!vms->acpi_dev) {
2700 error_setg(errp,
2701 "memory hotplug is not enabled: missing acpi-ged device");
2702 return;
2703 }
2704
2705 if (vms->mte) {
2706 error_setg(errp, "memory hotplug is not enabled: MTE is enabled");
2707 return;
2708 }
2709
2710 if (is_nvdimm && !ms->nvdimms_state->is_enabled) {
2711 error_setg(errp, "nvdimm is not enabled: add 'nvdimm=on' to '-M'");
2712 return;
2713 }
2714
2715 pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), NULL, errp);
2716 }
2717
2718 static void virt_memory_plug(HotplugHandler *hotplug_dev,
2719 DeviceState *dev, Error **errp)
2720 {
2721 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2722 MachineState *ms = MACHINE(hotplug_dev);
2723 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2724
2725 pc_dimm_plug(PC_DIMM(dev), MACHINE(vms));
2726
2727 if (is_nvdimm) {
2728 nvdimm_plug(ms->nvdimms_state);
2729 }
2730
2731 hotplug_handler_plug(HOTPLUG_HANDLER(vms->acpi_dev),
2732 dev, &error_abort);
2733 }
2734
2735 static void virt_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2736 DeviceState *dev, Error **errp)
2737 {
2738 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2739
2740 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2741 virt_memory_pre_plug(hotplug_dev, dev, errp);
2742 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
2743 virtio_md_pci_pre_plug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp);
2744 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2745 hwaddr db_start = 0, db_end = 0;
2746 char *resv_prop_str;
2747
2748 if (vms->iommu != VIRT_IOMMU_NONE) {
2749 error_setg(errp, "virt machine does not support multiple IOMMUs");
2750 return;
2751 }
2752
2753 switch (vms->msi_controller) {
2754 case VIRT_MSI_CTRL_NONE:
2755 return;
2756 case VIRT_MSI_CTRL_ITS:
2757 /* GITS_TRANSLATER page */
2758 db_start = base_memmap[VIRT_GIC_ITS].base + 0x10000;
2759 db_end = base_memmap[VIRT_GIC_ITS].base +
2760 base_memmap[VIRT_GIC_ITS].size - 1;
2761 break;
2762 case VIRT_MSI_CTRL_GICV2M:
2763 /* MSI_SETSPI_NS page */
2764 db_start = base_memmap[VIRT_GIC_V2M].base;
2765 db_end = db_start + base_memmap[VIRT_GIC_V2M].size - 1;
2766 break;
2767 }
2768 resv_prop_str = g_strdup_printf("0x%"PRIx64":0x%"PRIx64":%u",
2769 db_start, db_end,
2770 VIRTIO_IOMMU_RESV_MEM_T_MSI);
2771
2772 object_property_set_uint(OBJECT(dev), "len-reserved-regions", 1, errp);
2773 object_property_set_str(OBJECT(dev), "reserved-regions[0]",
2774 resv_prop_str, errp);
2775 g_free(resv_prop_str);
2776 }
2777 }
2778
2779 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2780 DeviceState *dev, Error **errp)
2781 {
2782 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2783
2784 if (vms->platform_bus_dev) {
2785 MachineClass *mc = MACHINE_GET_CLASS(vms);
2786
2787 if (device_is_dynamic_sysbus(mc, dev)) {
2788 platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
2789 SYS_BUS_DEVICE(dev));
2790 }
2791 }
2792
2793 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2794 virt_memory_plug(hotplug_dev, dev, errp);
2795 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
2796 virtio_md_pci_plug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp);
2797 }
2798
2799 if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2800 PCIDevice *pdev = PCI_DEVICE(dev);
2801
2802 vms->iommu = VIRT_IOMMU_VIRTIO;
2803 vms->virtio_iommu_bdf = pci_get_bdf(pdev);
2804 create_virtio_iommu_dt_bindings(vms);
2805 }
2806 }
2807
2808 static void virt_dimm_unplug_request(HotplugHandler *hotplug_dev,
2809 DeviceState *dev, Error **errp)
2810 {
2811 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2812
2813 if (!vms->acpi_dev) {
2814 error_setg(errp,
2815 "memory hotplug is not enabled: missing acpi-ged device");
2816 return;
2817 }
2818
2819 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
2820 error_setg(errp, "nvdimm device hot unplug is not supported yet.");
2821 return;
2822 }
2823
2824 hotplug_handler_unplug_request(HOTPLUG_HANDLER(vms->acpi_dev), dev,
2825 errp);
2826 }
2827
2828 static void virt_dimm_unplug(HotplugHandler *hotplug_dev,
2829 DeviceState *dev, Error **errp)
2830 {
2831 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2832 Error *local_err = NULL;
2833
2834 hotplug_handler_unplug(HOTPLUG_HANDLER(vms->acpi_dev), dev, &local_err);
2835 if (local_err) {
2836 goto out;
2837 }
2838
2839 pc_dimm_unplug(PC_DIMM(dev), MACHINE(vms));
2840 qdev_unrealize(dev);
2841
2842 out:
2843 error_propagate(errp, local_err);
2844 }
2845
2846 static void virt_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2847 DeviceState *dev, Error **errp)
2848 {
2849 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2850 virt_dimm_unplug_request(hotplug_dev, dev, errp);
2851 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
2852 virtio_md_pci_unplug_request(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev),
2853 errp);
2854 } else {
2855 error_setg(errp, "device unplug request for unsupported device"
2856 " type: %s", object_get_typename(OBJECT(dev)));
2857 }
2858 }
2859
2860 static void virt_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2861 DeviceState *dev, Error **errp)
2862 {
2863 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2864 virt_dimm_unplug(hotplug_dev, dev, errp);
2865 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
2866 virtio_md_pci_unplug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp);
2867 } else {
2868 error_setg(errp, "virt: device unplug for unsupported device"
2869 " type: %s", object_get_typename(OBJECT(dev)));
2870 }
2871 }
2872
2873 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
2874 DeviceState *dev)
2875 {
2876 MachineClass *mc = MACHINE_GET_CLASS(machine);
2877
2878 if (device_is_dynamic_sysbus(mc, dev) ||
2879 object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2880 object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI) ||
2881 object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2882 return HOTPLUG_HANDLER(machine);
2883 }
2884 return NULL;
2885 }
2886
2887 /*
2888 * for arm64 kvm_type [7-0] encodes the requested number of bits
2889 * in the IPA address space
2890 */
2891 static int virt_kvm_type(MachineState *ms, const char *type_str)
2892 {
2893 VirtMachineState *vms = VIRT_MACHINE(ms);
2894 int max_vm_pa_size, requested_pa_size;
2895 bool fixed_ipa;
2896
2897 max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa);
2898
2899 /* we freeze the memory map to compute the highest gpa */
2900 virt_set_memmap(vms, max_vm_pa_size);
2901
2902 requested_pa_size = 64 - clz64(vms->highest_gpa);
2903
2904 /*
2905 * KVM requires the IPA size to be at least 32 bits.
2906 */
2907 if (requested_pa_size < 32) {
2908 requested_pa_size = 32;
2909 }
2910
2911 if (requested_pa_size > max_vm_pa_size) {
2912 error_report("-m and ,maxmem option values "
2913 "require an IPA range (%d bits) larger than "
2914 "the one supported by the host (%d bits)",
2915 requested_pa_size, max_vm_pa_size);
2916 return -1;
2917 }
2918 /*
2919 * We return the requested PA log size, unless KVM only supports
2920 * the implicit legacy 40b IPA setting, in which case the kvm_type
2921 * must be 0.
2922 */
2923 return fixed_ipa ? 0 : requested_pa_size;
2924 }
2925
2926 static void virt_machine_class_init(ObjectClass *oc, void *data)
2927 {
2928 MachineClass *mc = MACHINE_CLASS(oc);
2929 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2930
2931 mc->init = machvirt_init;
2932 /* Start with max_cpus set to 512, which is the maximum supported by KVM.
2933 * The value may be reduced later when we have more information about the
2934 * configuration of the particular instance.
2935 */
2936 mc->max_cpus = 512;
2937 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
2938 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
2939 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
2940 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM);
2941 #ifdef CONFIG_TPM
2942 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_TPM_TIS_SYSBUS);
2943 #endif
2944 mc->block_default_type = IF_VIRTIO;
2945 mc->no_cdrom = 1;
2946 mc->pci_allow_0_address = true;
2947 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
2948 mc->minimum_page_bits = 12;
2949 mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
2950 mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
2951 #ifdef CONFIG_TCG
2952 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
2953 #else
2954 mc->default_cpu_type = ARM_CPU_TYPE_NAME("max");
2955 #endif
2956 mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
2957 mc->kvm_type = virt_kvm_type;
2958 assert(!mc->get_hotplug_handler);
2959 mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
2960 hc->pre_plug = virt_machine_device_pre_plug_cb;
2961 hc->plug = virt_machine_device_plug_cb;
2962 hc->unplug_request = virt_machine_device_unplug_request_cb;
2963 hc->unplug = virt_machine_device_unplug_cb;
2964 mc->nvdimm_supported = true;
2965 mc->smp_props.clusters_supported = true;
2966 mc->auto_enable_numa_with_memhp = true;
2967 mc->auto_enable_numa_with_memdev = true;
2968 /* platform instead of architectural choice */
2969 mc->cpu_cluster_has_numa_boundary = true;
2970 mc->default_ram_id = "mach-virt.ram";
2971 mc->default_nic = "virtio-net-pci";
2972
2973 object_class_property_add(oc, "acpi", "OnOffAuto",
2974 virt_get_acpi, virt_set_acpi,
2975 NULL, NULL);
2976 object_class_property_set_description(oc, "acpi",
2977 "Enable ACPI");
2978 object_class_property_add_bool(oc, "secure", virt_get_secure,
2979 virt_set_secure);
2980 object_class_property_set_description(oc, "secure",
2981 "Set on/off to enable/disable the ARM "
2982 "Security Extensions (TrustZone)");
2983
2984 object_class_property_add_bool(oc, "virtualization", virt_get_virt,
2985 virt_set_virt);
2986 object_class_property_set_description(oc, "virtualization",
2987 "Set on/off to enable/disable emulating a "
2988 "guest CPU which implements the ARM "
2989 "Virtualization Extensions");
2990
2991 object_class_property_add_bool(oc, "highmem", virt_get_highmem,
2992 virt_set_highmem);
2993 object_class_property_set_description(oc, "highmem",
2994 "Set on/off to enable/disable using "
2995 "physical address space above 32 bits");
2996
2997 object_class_property_add_bool(oc, "compact-highmem",
2998 virt_get_compact_highmem,
2999 virt_set_compact_highmem);
3000 object_class_property_set_description(oc, "compact-highmem",
3001 "Set on/off to enable/disable compact "
3002 "layout for high memory regions");
3003
3004 object_class_property_add_bool(oc, "highmem-redists",
3005 virt_get_highmem_redists,
3006 virt_set_highmem_redists);
3007 object_class_property_set_description(oc, "highmem-redists",
3008 "Set on/off to enable/disable high "
3009 "memory region for GICv3 or GICv4 "
3010 "redistributor");
3011
3012 object_class_property_add_bool(oc, "highmem-ecam",
3013 virt_get_highmem_ecam,
3014 virt_set_highmem_ecam);
3015 object_class_property_set_description(oc, "highmem-ecam",
3016 "Set on/off to enable/disable high "
3017 "memory region for PCI ECAM");
3018
3019 object_class_property_add_bool(oc, "highmem-mmio",
3020 virt_get_highmem_mmio,
3021 virt_set_highmem_mmio);
3022 object_class_property_set_description(oc, "highmem-mmio",
3023 "Set on/off to enable/disable high "
3024 "memory region for PCI MMIO");
3025
3026 object_class_property_add_str(oc, "gic-version", virt_get_gic_version,
3027 virt_set_gic_version);
3028 object_class_property_set_description(oc, "gic-version",
3029 "Set GIC version. "
3030 "Valid values are 2, 3, 4, host and max");
3031
3032 object_class_property_add_str(oc, "iommu", virt_get_iommu, virt_set_iommu);
3033 object_class_property_set_description(oc, "iommu",
3034 "Set the IOMMU type. "
3035 "Valid values are none and smmuv3");
3036
3037 object_class_property_add_bool(oc, "default-bus-bypass-iommu",
3038 virt_get_default_bus_bypass_iommu,
3039 virt_set_default_bus_bypass_iommu);
3040 object_class_property_set_description(oc, "default-bus-bypass-iommu",
3041 "Set on/off to enable/disable "
3042 "bypass_iommu for default root bus");
3043
3044 object_class_property_add_bool(oc, "ras", virt_get_ras,
3045 virt_set_ras);
3046 object_class_property_set_description(oc, "ras",
3047 "Set on/off to enable/disable reporting host memory errors "
3048 "to a KVM guest using ACPI and guest external abort exceptions");
3049
3050 object_class_property_add_bool(oc, "mte", virt_get_mte, virt_set_mte);
3051 object_class_property_set_description(oc, "mte",
3052 "Set on/off to enable/disable emulating a "
3053 "guest CPU which implements the ARM "
3054 "Memory Tagging Extension");
3055
3056 object_class_property_add_bool(oc, "its", virt_get_its,
3057 virt_set_its);
3058 object_class_property_set_description(oc, "its",
3059 "Set on/off to enable/disable "
3060 "ITS instantiation");
3061
3062 object_class_property_add_bool(oc, "dtb-randomness",
3063 virt_get_dtb_randomness,
3064 virt_set_dtb_randomness);
3065 object_class_property_set_description(oc, "dtb-randomness",
3066 "Set off to disable passing random or "
3067 "non-deterministic dtb nodes to guest");
3068
3069 object_class_property_add_bool(oc, "dtb-kaslr-seed",
3070 virt_get_dtb_randomness,
3071 virt_set_dtb_randomness);
3072 object_class_property_set_description(oc, "dtb-kaslr-seed",
3073 "Deprecated synonym of dtb-randomness");
3074
3075 object_class_property_add_str(oc, "x-oem-id",
3076 virt_get_oem_id,
3077 virt_set_oem_id);
3078 object_class_property_set_description(oc, "x-oem-id",
3079 "Override the default value of field OEMID "
3080 "in ACPI table header."
3081 "The string may be up to 6 bytes in size");
3082
3083
3084 object_class_property_add_str(oc, "x-oem-table-id",
3085 virt_get_oem_table_id,
3086 virt_set_oem_table_id);
3087 object_class_property_set_description(oc, "x-oem-table-id",
3088 "Override the default value of field OEM Table ID "
3089 "in ACPI table header."
3090 "The string may be up to 8 bytes in size");
3091
3092 }
3093
3094 static void virt_instance_init(Object *obj)
3095 {
3096 VirtMachineState *vms = VIRT_MACHINE(obj);
3097 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
3098
3099 /* EL3 is disabled by default on virt: this makes us consistent
3100 * between KVM and TCG for this board, and it also allows us to
3101 * boot UEFI blobs which assume no TrustZone support.
3102 */
3103 vms->secure = false;
3104
3105 /* EL2 is also disabled by default, for similar reasons */
3106 vms->virt = false;
3107
3108 /* High memory is enabled by default */
3109 vms->highmem = true;
3110 vms->highmem_compact = !vmc->no_highmem_compact;
3111 vms->gic_version = VIRT_GIC_VERSION_NOSEL;
3112
3113 vms->highmem_ecam = !vmc->no_highmem_ecam;
3114 vms->highmem_mmio = true;
3115 vms->highmem_redists = true;
3116
3117 if (vmc->no_its) {
3118 vms->its = false;
3119 } else {
3120 /* Default allows ITS instantiation */
3121 vms->its = true;
3122
3123 if (vmc->no_tcg_its) {
3124 vms->tcg_its = false;
3125 } else {
3126 vms->tcg_its = true;
3127 }
3128 }
3129
3130 /* Default disallows iommu instantiation */
3131 vms->iommu = VIRT_IOMMU_NONE;
3132
3133 /* The default root bus is attached to iommu by default */
3134 vms->default_bus_bypass_iommu = false;
3135
3136 /* Default disallows RAS instantiation */
3137 vms->ras = false;
3138
3139 /* MTE is disabled by default. */
3140 vms->mte = false;
3141
3142 /* Supply kaslr-seed and rng-seed by default */
3143 vms->dtb_randomness = true;
3144
3145 vms->irqmap = a15irqmap;
3146
3147 virt_flash_create(vms);
3148
3149 vms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6);
3150 vms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8);
3151 }
3152
3153 static const TypeInfo virt_machine_info = {
3154 .name = TYPE_VIRT_MACHINE,
3155 .parent = TYPE_MACHINE,
3156 .abstract = true,
3157 .instance_size = sizeof(VirtMachineState),
3158 .class_size = sizeof(VirtMachineClass),
3159 .class_init = virt_machine_class_init,
3160 .instance_init = virt_instance_init,
3161 .interfaces = (InterfaceInfo[]) {
3162 { TYPE_HOTPLUG_HANDLER },
3163 { }
3164 },
3165 };
3166
3167 static void machvirt_machine_init(void)
3168 {
3169 type_register_static(&virt_machine_info);
3170 }
3171 type_init(machvirt_machine_init);
3172
3173 static void virt_machine_8_2_options(MachineClass *mc)
3174 {
3175 }
3176 DEFINE_VIRT_MACHINE_AS_LATEST(8, 2)
3177
3178 static void virt_machine_8_1_options(MachineClass *mc)
3179 {
3180 virt_machine_8_2_options(mc);
3181 compat_props_add(mc->compat_props, hw_compat_8_1, hw_compat_8_1_len);
3182 }
3183 DEFINE_VIRT_MACHINE(8, 1)
3184
3185 static void virt_machine_8_0_options(MachineClass *mc)
3186 {
3187 virt_machine_8_1_options(mc);
3188 compat_props_add(mc->compat_props, hw_compat_8_0, hw_compat_8_0_len);
3189 }
3190 DEFINE_VIRT_MACHINE(8, 0)
3191
3192 static void virt_machine_7_2_options(MachineClass *mc)
3193 {
3194 virt_machine_8_0_options(mc);
3195 compat_props_add(mc->compat_props, hw_compat_7_2, hw_compat_7_2_len);
3196 }
3197 DEFINE_VIRT_MACHINE(7, 2)
3198
3199 static void virt_machine_7_1_options(MachineClass *mc)
3200 {
3201 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3202
3203 virt_machine_7_2_options(mc);
3204 compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len);
3205 /* Compact layout for high memory regions was introduced with 7.2 */
3206 vmc->no_highmem_compact = true;
3207 }
3208 DEFINE_VIRT_MACHINE(7, 1)
3209
3210 static void virt_machine_7_0_options(MachineClass *mc)
3211 {
3212 virt_machine_7_1_options(mc);
3213 compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len);
3214 }
3215 DEFINE_VIRT_MACHINE(7, 0)
3216
3217 static void virt_machine_6_2_options(MachineClass *mc)
3218 {
3219 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3220
3221 virt_machine_7_0_options(mc);
3222 compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len);
3223 vmc->no_tcg_lpa2 = true;
3224 }
3225 DEFINE_VIRT_MACHINE(6, 2)
3226
3227 static void virt_machine_6_1_options(MachineClass *mc)
3228 {
3229 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3230
3231 virt_machine_6_2_options(mc);
3232 compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len);
3233 mc->smp_props.prefer_sockets = true;
3234 vmc->no_cpu_topology = true;
3235
3236 /* qemu ITS was introduced with 6.2 */
3237 vmc->no_tcg_its = true;
3238 }
3239 DEFINE_VIRT_MACHINE(6, 1)
3240
3241 static void virt_machine_6_0_options(MachineClass *mc)
3242 {
3243 virt_machine_6_1_options(mc);
3244 compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len);
3245 }
3246 DEFINE_VIRT_MACHINE(6, 0)
3247
3248 static void virt_machine_5_2_options(MachineClass *mc)
3249 {
3250 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3251
3252 virt_machine_6_0_options(mc);
3253 compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
3254 vmc->no_secure_gpio = true;
3255 }
3256 DEFINE_VIRT_MACHINE(5, 2)
3257
3258 static void virt_machine_5_1_options(MachineClass *mc)
3259 {
3260 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3261
3262 virt_machine_5_2_options(mc);
3263 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
3264 vmc->no_kvm_steal_time = true;
3265 }
3266 DEFINE_VIRT_MACHINE(5, 1)
3267
3268 static void virt_machine_5_0_options(MachineClass *mc)
3269 {
3270 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3271
3272 virt_machine_5_1_options(mc);
3273 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
3274 mc->numa_mem_supported = true;
3275 vmc->acpi_expose_flash = true;
3276 mc->auto_enable_numa_with_memdev = false;
3277 }
3278 DEFINE_VIRT_MACHINE(5, 0)
3279
3280 static void virt_machine_4_2_options(MachineClass *mc)
3281 {
3282 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3283
3284 virt_machine_5_0_options(mc);
3285 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
3286 vmc->kvm_no_adjvtime = true;
3287 }
3288 DEFINE_VIRT_MACHINE(4, 2)
3289
3290 static void virt_machine_4_1_options(MachineClass *mc)
3291 {
3292 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3293
3294 virt_machine_4_2_options(mc);
3295 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
3296 vmc->no_ged = true;
3297 mc->auto_enable_numa_with_memhp = false;
3298 }
3299 DEFINE_VIRT_MACHINE(4, 1)
3300
3301 static void virt_machine_4_0_options(MachineClass *mc)
3302 {
3303 virt_machine_4_1_options(mc);
3304 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
3305 }
3306 DEFINE_VIRT_MACHINE(4, 0)
3307
3308 static void virt_machine_3_1_options(MachineClass *mc)
3309 {
3310 virt_machine_4_0_options(mc);
3311 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
3312 }
3313 DEFINE_VIRT_MACHINE(3, 1)
3314
3315 static void virt_machine_3_0_options(MachineClass *mc)
3316 {
3317 virt_machine_3_1_options(mc);
3318 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
3319 }
3320 DEFINE_VIRT_MACHINE(3, 0)
3321
3322 static void virt_machine_2_12_options(MachineClass *mc)
3323 {
3324 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3325
3326 virt_machine_3_0_options(mc);
3327 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
3328 vmc->no_highmem_ecam = true;
3329 mc->max_cpus = 255;
3330 }
3331 DEFINE_VIRT_MACHINE(2, 12)
3332
3333 static void virt_machine_2_11_options(MachineClass *mc)
3334 {
3335 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3336
3337 virt_machine_2_12_options(mc);
3338 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
3339 vmc->smbios_old_sys_ver = true;
3340 }
3341 DEFINE_VIRT_MACHINE(2, 11)
3342
3343 static void virt_machine_2_10_options(MachineClass *mc)
3344 {
3345 virt_machine_2_11_options(mc);
3346 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
3347 /* before 2.11 we never faulted accesses to bad addresses */
3348 mc->ignore_memory_transaction_failures = true;
3349 }
3350 DEFINE_VIRT_MACHINE(2, 10)
3351
3352 static void virt_machine_2_9_options(MachineClass *mc)
3353 {
3354 virt_machine_2_10_options(mc);
3355 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
3356 }
3357 DEFINE_VIRT_MACHINE(2, 9)
3358
3359 static void virt_machine_2_8_options(MachineClass *mc)
3360 {
3361 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3362
3363 virt_machine_2_9_options(mc);
3364 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
3365 /* For 2.8 and earlier we falsely claimed in the DT that
3366 * our timers were edge-triggered, not level-triggered.
3367 */
3368 vmc->claim_edge_triggered_timers = true;
3369 }
3370 DEFINE_VIRT_MACHINE(2, 8)
3371
3372 static void virt_machine_2_7_options(MachineClass *mc)
3373 {
3374 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3375
3376 virt_machine_2_8_options(mc);
3377 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
3378 /* ITS was introduced with 2.8 */
3379 vmc->no_its = true;
3380 /* Stick with 1K pages for migration compatibility */
3381 mc->minimum_page_bits = 0;
3382 }
3383 DEFINE_VIRT_MACHINE(2, 7)
3384
3385 static void virt_machine_2_6_options(MachineClass *mc)
3386 {
3387 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3388
3389 virt_machine_2_7_options(mc);
3390 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
3391 vmc->disallow_affinity_adjustment = true;
3392 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
3393 vmc->no_pmu = true;
3394 }
3395 DEFINE_VIRT_MACHINE(2, 6)