]> git.proxmox.com Git - mirror_qemu.git/blob - hw/arm/virt.c
Merge remote-tracking branch 'remotes/vivier2/tags/linux-user-for-2.12-pull-request...
[mirror_qemu.git] / hw / arm / virt.c
1 /*
2 * ARM mach-virt emulation
3 *
4 * Copyright (c) 2013 Linaro Limited
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
17 *
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
29 */
30
31 #include "qemu/osdep.h"
32 #include "qapi/error.h"
33 #include "hw/sysbus.h"
34 #include "hw/arm/arm.h"
35 #include "hw/arm/primecell.h"
36 #include "hw/arm/virt.h"
37 #include "hw/vfio/vfio-calxeda-xgmac.h"
38 #include "hw/vfio/vfio-amd-xgbe.h"
39 #include "hw/devices.h"
40 #include "net/net.h"
41 #include "sysemu/block-backend.h"
42 #include "sysemu/device_tree.h"
43 #include "sysemu/numa.h"
44 #include "sysemu/sysemu.h"
45 #include "sysemu/kvm.h"
46 #include "hw/compat.h"
47 #include "hw/loader.h"
48 #include "exec/address-spaces.h"
49 #include "qemu/bitops.h"
50 #include "qemu/error-report.h"
51 #include "hw/pci-host/gpex.h"
52 #include "hw/arm/sysbus-fdt.h"
53 #include "hw/platform-bus.h"
54 #include "hw/arm/fdt.h"
55 #include "hw/intc/arm_gic.h"
56 #include "hw/intc/arm_gicv3_common.h"
57 #include "kvm_arm.h"
58 #include "hw/smbios/smbios.h"
59 #include "qapi/visitor.h"
60 #include "standard-headers/linux/input.h"
61
62 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
63 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
64 void *data) \
65 { \
66 MachineClass *mc = MACHINE_CLASS(oc); \
67 virt_machine_##major##_##minor##_options(mc); \
68 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
69 if (latest) { \
70 mc->alias = "virt"; \
71 } \
72 } \
73 static const TypeInfo machvirt_##major##_##minor##_info = { \
74 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
75 .parent = TYPE_VIRT_MACHINE, \
76 .instance_init = virt_##major##_##minor##_instance_init, \
77 .class_init = virt_##major##_##minor##_class_init, \
78 }; \
79 static void machvirt_machine_##major##_##minor##_init(void) \
80 { \
81 type_register_static(&machvirt_##major##_##minor##_info); \
82 } \
83 type_init(machvirt_machine_##major##_##minor##_init);
84
85 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
86 DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
87 #define DEFINE_VIRT_MACHINE(major, minor) \
88 DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
89
90
91 /* Number of external interrupt lines to configure the GIC with */
92 #define NUM_IRQS 256
93
94 #define PLATFORM_BUS_NUM_IRQS 64
95
96 static ARMPlatformBusSystemParams platform_bus_params;
97
98 /* RAM limit in GB. Since VIRT_MEM starts at the 1GB mark, this means
99 * RAM can go up to the 256GB mark, leaving 256GB of the physical
100 * address space unallocated and free for future use between 256G and 512G.
101 * If we need to provide more RAM to VMs in the future then we need to:
102 * * allocate a second bank of RAM starting at 2TB and working up
103 * * fix the DT and ACPI table generation code in QEMU to correctly
104 * report two split lumps of RAM to the guest
105 * * fix KVM in the host kernel to allow guests with >40 bit address spaces
106 * (We don't want to fill all the way up to 512GB with RAM because
107 * we might want it for non-RAM purposes later. Conversely it seems
108 * reasonable to assume that anybody configuring a VM with a quarter
109 * of a terabyte of RAM will be doing it on a host with more than a
110 * terabyte of physical address space.)
111 */
112 #define RAMLIMIT_GB 255
113 #define RAMLIMIT_BYTES (RAMLIMIT_GB * 1024ULL * 1024 * 1024)
114
115 /* Addresses and sizes of our components.
116 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
117 * 128MB..256MB is used for miscellaneous device I/O.
118 * 256MB..1GB is reserved for possible future PCI support (ie where the
119 * PCI memory window will go if we add a PCI host controller).
120 * 1GB and up is RAM (which may happily spill over into the
121 * high memory region beyond 4GB).
122 * This represents a compromise between how much RAM can be given to
123 * a 32 bit VM and leaving space for expansion and in particular for PCI.
124 * Note that devices should generally be placed at multiples of 0x10000,
125 * to accommodate guests using 64K pages.
126 */
127 static const MemMapEntry a15memmap[] = {
128 /* Space up to 0x8000000 is reserved for a boot ROM */
129 [VIRT_FLASH] = { 0, 0x08000000 },
130 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
131 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
132 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
133 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
134 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 },
135 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
136 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 },
137 /* This redistributor space allows up to 2*64kB*123 CPUs */
138 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 },
139 [VIRT_UART] = { 0x09000000, 0x00001000 },
140 [VIRT_RTC] = { 0x09010000, 0x00001000 },
141 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 },
142 [VIRT_GPIO] = { 0x09030000, 0x00001000 },
143 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 },
144 [VIRT_MMIO] = { 0x0a000000, 0x00000200 },
145 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
146 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 },
147 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 },
148 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 },
149 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 },
150 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 },
151 [VIRT_MEM] = { 0x40000000, RAMLIMIT_BYTES },
152 /* Second PCIe window, 512GB wide at the 512GB boundary */
153 [VIRT_PCIE_MMIO_HIGH] = { 0x8000000000ULL, 0x8000000000ULL },
154 };
155
156 static const int a15irqmap[] = {
157 [VIRT_UART] = 1,
158 [VIRT_RTC] = 2,
159 [VIRT_PCIE] = 3, /* ... to 6 */
160 [VIRT_GPIO] = 7,
161 [VIRT_SECURE_UART] = 8,
162 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
163 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
164 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
165 };
166
167 static const char *valid_cpus[] = {
168 ARM_CPU_TYPE_NAME("cortex-a15"),
169 ARM_CPU_TYPE_NAME("cortex-a53"),
170 ARM_CPU_TYPE_NAME("cortex-a57"),
171 ARM_CPU_TYPE_NAME("host"),
172 ARM_CPU_TYPE_NAME("max"),
173 };
174
175 static bool cpu_type_valid(const char *cpu)
176 {
177 int i;
178
179 for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
180 if (strcmp(cpu, valid_cpus[i]) == 0) {
181 return true;
182 }
183 }
184 return false;
185 }
186
187 static void create_fdt(VirtMachineState *vms)
188 {
189 void *fdt = create_device_tree(&vms->fdt_size);
190
191 if (!fdt) {
192 error_report("create_device_tree() failed");
193 exit(1);
194 }
195
196 vms->fdt = fdt;
197
198 /* Header */
199 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
200 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
201 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
202
203 /*
204 * /chosen and /memory nodes must exist for load_dtb
205 * to fill in necessary properties later
206 */
207 qemu_fdt_add_subnode(fdt, "/chosen");
208 qemu_fdt_add_subnode(fdt, "/memory");
209 qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
210
211 /* Clock node, for the benefit of the UART. The kernel device tree
212 * binding documentation claims the PL011 node clock properties are
213 * optional but in practice if you omit them the kernel refuses to
214 * probe for the device.
215 */
216 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
217 qemu_fdt_add_subnode(fdt, "/apb-pclk");
218 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
219 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
220 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
221 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
222 "clk24mhz");
223 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
224
225 if (have_numa_distance) {
226 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
227 uint32_t *matrix = g_malloc0(size);
228 int idx, i, j;
229
230 for (i = 0; i < nb_numa_nodes; i++) {
231 for (j = 0; j < nb_numa_nodes; j++) {
232 idx = (i * nb_numa_nodes + j) * 3;
233 matrix[idx + 0] = cpu_to_be32(i);
234 matrix[idx + 1] = cpu_to_be32(j);
235 matrix[idx + 2] = cpu_to_be32(numa_info[i].distance[j]);
236 }
237 }
238
239 qemu_fdt_add_subnode(fdt, "/distance-map");
240 qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
241 "numa-distance-map-v1");
242 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
243 matrix, size);
244 g_free(matrix);
245 }
246 }
247
248 static void fdt_add_timer_nodes(const VirtMachineState *vms)
249 {
250 /* On real hardware these interrupts are level-triggered.
251 * On KVM they were edge-triggered before host kernel version 4.4,
252 * and level-triggered afterwards.
253 * On emulated QEMU they are level-triggered.
254 *
255 * Getting the DTB info about them wrong is awkward for some
256 * guest kernels:
257 * pre-4.8 ignore the DT and leave the interrupt configured
258 * with whatever the GIC reset value (or the bootloader) left it at
259 * 4.8 before rc6 honour the incorrect data by programming it back
260 * into the GIC, causing problems
261 * 4.8rc6 and later ignore the DT and always write "level triggered"
262 * into the GIC
263 *
264 * For backwards-compatibility, virt-2.8 and earlier will continue
265 * to say these are edge-triggered, but later machines will report
266 * the correct information.
267 */
268 ARMCPU *armcpu;
269 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
270 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
271
272 if (vmc->claim_edge_triggered_timers) {
273 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
274 }
275
276 if (vms->gic_version == 2) {
277 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
278 GIC_FDT_IRQ_PPI_CPU_WIDTH,
279 (1 << vms->smp_cpus) - 1);
280 }
281
282 qemu_fdt_add_subnode(vms->fdt, "/timer");
283
284 armcpu = ARM_CPU(qemu_get_cpu(0));
285 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
286 const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
287 qemu_fdt_setprop(vms->fdt, "/timer", "compatible",
288 compat, sizeof(compat));
289 } else {
290 qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible",
291 "arm,armv7-timer");
292 }
293 qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0);
294 qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts",
295 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
296 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
297 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
298 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
299 }
300
301 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
302 {
303 int cpu;
304 int addr_cells = 1;
305 const MachineState *ms = MACHINE(vms);
306
307 /*
308 * From Documentation/devicetree/bindings/arm/cpus.txt
309 * On ARM v8 64-bit systems value should be set to 2,
310 * that corresponds to the MPIDR_EL1 register size.
311 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
312 * in the system, #address-cells can be set to 1, since
313 * MPIDR_EL1[63:32] bits are not used for CPUs
314 * identification.
315 *
316 * Here we actually don't know whether our system is 32- or 64-bit one.
317 * The simplest way to go is to examine affinity IDs of all our CPUs. If
318 * at least one of them has Aff3 populated, we set #address-cells to 2.
319 */
320 for (cpu = 0; cpu < vms->smp_cpus; cpu++) {
321 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
322
323 if (armcpu->mp_affinity & ARM_AFF3_MASK) {
324 addr_cells = 2;
325 break;
326 }
327 }
328
329 qemu_fdt_add_subnode(vms->fdt, "/cpus");
330 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells);
331 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0);
332
333 for (cpu = vms->smp_cpus - 1; cpu >= 0; cpu--) {
334 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
335 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
336 CPUState *cs = CPU(armcpu);
337
338 qemu_fdt_add_subnode(vms->fdt, nodename);
339 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu");
340 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
341 armcpu->dtb_compatible);
342
343 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED
344 && vms->smp_cpus > 1) {
345 qemu_fdt_setprop_string(vms->fdt, nodename,
346 "enable-method", "psci");
347 }
348
349 if (addr_cells == 2) {
350 qemu_fdt_setprop_u64(vms->fdt, nodename, "reg",
351 armcpu->mp_affinity);
352 } else {
353 qemu_fdt_setprop_cell(vms->fdt, nodename, "reg",
354 armcpu->mp_affinity);
355 }
356
357 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
358 qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id",
359 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
360 }
361
362 g_free(nodename);
363 }
364 }
365
366 static void fdt_add_its_gic_node(VirtMachineState *vms)
367 {
368 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
369 qemu_fdt_add_subnode(vms->fdt, "/intc/its");
370 qemu_fdt_setprop_string(vms->fdt, "/intc/its", "compatible",
371 "arm,gic-v3-its");
372 qemu_fdt_setprop(vms->fdt, "/intc/its", "msi-controller", NULL, 0);
373 qemu_fdt_setprop_sized_cells(vms->fdt, "/intc/its", "reg",
374 2, vms->memmap[VIRT_GIC_ITS].base,
375 2, vms->memmap[VIRT_GIC_ITS].size);
376 qemu_fdt_setprop_cell(vms->fdt, "/intc/its", "phandle", vms->msi_phandle);
377 }
378
379 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
380 {
381 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
382 qemu_fdt_add_subnode(vms->fdt, "/intc/v2m");
383 qemu_fdt_setprop_string(vms->fdt, "/intc/v2m", "compatible",
384 "arm,gic-v2m-frame");
385 qemu_fdt_setprop(vms->fdt, "/intc/v2m", "msi-controller", NULL, 0);
386 qemu_fdt_setprop_sized_cells(vms->fdt, "/intc/v2m", "reg",
387 2, vms->memmap[VIRT_GIC_V2M].base,
388 2, vms->memmap[VIRT_GIC_V2M].size);
389 qemu_fdt_setprop_cell(vms->fdt, "/intc/v2m", "phandle", vms->msi_phandle);
390 }
391
392 static void fdt_add_gic_node(VirtMachineState *vms)
393 {
394 vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt);
395 qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle);
396
397 qemu_fdt_add_subnode(vms->fdt, "/intc");
398 qemu_fdt_setprop_cell(vms->fdt, "/intc", "#interrupt-cells", 3);
399 qemu_fdt_setprop(vms->fdt, "/intc", "interrupt-controller", NULL, 0);
400 qemu_fdt_setprop_cell(vms->fdt, "/intc", "#address-cells", 0x2);
401 qemu_fdt_setprop_cell(vms->fdt, "/intc", "#size-cells", 0x2);
402 qemu_fdt_setprop(vms->fdt, "/intc", "ranges", NULL, 0);
403 if (vms->gic_version == 3) {
404 qemu_fdt_setprop_string(vms->fdt, "/intc", "compatible",
405 "arm,gic-v3");
406 qemu_fdt_setprop_sized_cells(vms->fdt, "/intc", "reg",
407 2, vms->memmap[VIRT_GIC_DIST].base,
408 2, vms->memmap[VIRT_GIC_DIST].size,
409 2, vms->memmap[VIRT_GIC_REDIST].base,
410 2, vms->memmap[VIRT_GIC_REDIST].size);
411 if (vms->virt) {
412 qemu_fdt_setprop_cells(vms->fdt, "/intc", "interrupts",
413 GIC_FDT_IRQ_TYPE_PPI, ARCH_GICV3_MAINT_IRQ,
414 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
415 }
416 } else {
417 /* 'cortex-a15-gic' means 'GIC v2' */
418 qemu_fdt_setprop_string(vms->fdt, "/intc", "compatible",
419 "arm,cortex-a15-gic");
420 qemu_fdt_setprop_sized_cells(vms->fdt, "/intc", "reg",
421 2, vms->memmap[VIRT_GIC_DIST].base,
422 2, vms->memmap[VIRT_GIC_DIST].size,
423 2, vms->memmap[VIRT_GIC_CPU].base,
424 2, vms->memmap[VIRT_GIC_CPU].size);
425 }
426
427 qemu_fdt_setprop_cell(vms->fdt, "/intc", "phandle", vms->gic_phandle);
428 }
429
430 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
431 {
432 CPUState *cpu;
433 ARMCPU *armcpu;
434 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
435
436 CPU_FOREACH(cpu) {
437 armcpu = ARM_CPU(cpu);
438 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
439 return;
440 }
441 if (kvm_enabled()) {
442 if (kvm_irqchip_in_kernel()) {
443 kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ));
444 }
445 kvm_arm_pmu_init(cpu);
446 }
447 }
448
449 if (vms->gic_version == 2) {
450 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
451 GIC_FDT_IRQ_PPI_CPU_WIDTH,
452 (1 << vms->smp_cpus) - 1);
453 }
454
455 armcpu = ARM_CPU(qemu_get_cpu(0));
456 qemu_fdt_add_subnode(vms->fdt, "/pmu");
457 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
458 const char compat[] = "arm,armv8-pmuv3";
459 qemu_fdt_setprop(vms->fdt, "/pmu", "compatible",
460 compat, sizeof(compat));
461 qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts",
462 GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
463 }
464 }
465
466 static void create_its(VirtMachineState *vms, DeviceState *gicdev)
467 {
468 const char *itsclass = its_class_name();
469 DeviceState *dev;
470
471 if (!itsclass) {
472 /* Do nothing if not supported */
473 return;
474 }
475
476 dev = qdev_create(NULL, itsclass);
477
478 object_property_set_link(OBJECT(dev), OBJECT(gicdev), "parent-gicv3",
479 &error_abort);
480 qdev_init_nofail(dev);
481 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
482
483 fdt_add_its_gic_node(vms);
484 }
485
486 static void create_v2m(VirtMachineState *vms, qemu_irq *pic)
487 {
488 int i;
489 int irq = vms->irqmap[VIRT_GIC_V2M];
490 DeviceState *dev;
491
492 dev = qdev_create(NULL, "arm-gicv2m");
493 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
494 qdev_prop_set_uint32(dev, "base-spi", irq);
495 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
496 qdev_init_nofail(dev);
497
498 for (i = 0; i < NUM_GICV2M_SPIS; i++) {
499 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
500 }
501
502 fdt_add_v2m_gic_node(vms);
503 }
504
505 static void create_gic(VirtMachineState *vms, qemu_irq *pic)
506 {
507 /* We create a standalone GIC */
508 DeviceState *gicdev;
509 SysBusDevice *gicbusdev;
510 const char *gictype;
511 int type = vms->gic_version, i;
512
513 gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
514
515 gicdev = qdev_create(NULL, gictype);
516 qdev_prop_set_uint32(gicdev, "revision", type);
517 qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
518 /* Note that the num-irq property counts both internal and external
519 * interrupts; there are always 32 of the former (mandated by GIC spec).
520 */
521 qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
522 if (!kvm_irqchip_in_kernel()) {
523 qdev_prop_set_bit(gicdev, "has-security-extensions", vms->secure);
524 }
525 qdev_init_nofail(gicdev);
526 gicbusdev = SYS_BUS_DEVICE(gicdev);
527 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
528 if (type == 3) {
529 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
530 } else {
531 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
532 }
533
534 /* Wire the outputs from each CPU's generic timer and the GICv3
535 * maintenance interrupt signal to the appropriate GIC PPI inputs,
536 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
537 */
538 for (i = 0; i < smp_cpus; i++) {
539 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
540 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
541 int irq;
542 /* Mapping from the output timer irq lines from the CPU to the
543 * GIC PPI inputs we use for the virt board.
544 */
545 const int timer_irq[] = {
546 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
547 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
548 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
549 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
550 };
551
552 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
553 qdev_connect_gpio_out(cpudev, irq,
554 qdev_get_gpio_in(gicdev,
555 ppibase + timer_irq[irq]));
556 }
557
558 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 0,
559 qdev_get_gpio_in(gicdev, ppibase
560 + ARCH_GICV3_MAINT_IRQ));
561 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
562 qdev_get_gpio_in(gicdev, ppibase
563 + VIRTUAL_PMU_IRQ));
564
565 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
566 sysbus_connect_irq(gicbusdev, i + smp_cpus,
567 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
568 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
569 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
570 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
571 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
572 }
573
574 for (i = 0; i < NUM_IRQS; i++) {
575 pic[i] = qdev_get_gpio_in(gicdev, i);
576 }
577
578 fdt_add_gic_node(vms);
579
580 if (type == 3 && vms->its) {
581 create_its(vms, gicdev);
582 } else if (type == 2) {
583 create_v2m(vms, pic);
584 }
585 }
586
587 static void create_uart(const VirtMachineState *vms, qemu_irq *pic, int uart,
588 MemoryRegion *mem, Chardev *chr)
589 {
590 char *nodename;
591 hwaddr base = vms->memmap[uart].base;
592 hwaddr size = vms->memmap[uart].size;
593 int irq = vms->irqmap[uart];
594 const char compat[] = "arm,pl011\0arm,primecell";
595 const char clocknames[] = "uartclk\0apb_pclk";
596 DeviceState *dev = qdev_create(NULL, "pl011");
597 SysBusDevice *s = SYS_BUS_DEVICE(dev);
598
599 qdev_prop_set_chr(dev, "chardev", chr);
600 qdev_init_nofail(dev);
601 memory_region_add_subregion(mem, base,
602 sysbus_mmio_get_region(s, 0));
603 sysbus_connect_irq(s, 0, pic[irq]);
604
605 nodename = g_strdup_printf("/pl011@%" PRIx64, base);
606 qemu_fdt_add_subnode(vms->fdt, nodename);
607 /* Note that we can't use setprop_string because of the embedded NUL */
608 qemu_fdt_setprop(vms->fdt, nodename, "compatible",
609 compat, sizeof(compat));
610 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
611 2, base, 2, size);
612 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
613 GIC_FDT_IRQ_TYPE_SPI, irq,
614 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
615 qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks",
616 vms->clock_phandle, vms->clock_phandle);
617 qemu_fdt_setprop(vms->fdt, nodename, "clock-names",
618 clocknames, sizeof(clocknames));
619
620 if (uart == VIRT_UART) {
621 qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename);
622 } else {
623 /* Mark as not usable by the normal world */
624 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
625 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
626 }
627
628 g_free(nodename);
629 }
630
631 static void create_rtc(const VirtMachineState *vms, qemu_irq *pic)
632 {
633 char *nodename;
634 hwaddr base = vms->memmap[VIRT_RTC].base;
635 hwaddr size = vms->memmap[VIRT_RTC].size;
636 int irq = vms->irqmap[VIRT_RTC];
637 const char compat[] = "arm,pl031\0arm,primecell";
638
639 sysbus_create_simple("pl031", base, pic[irq]);
640
641 nodename = g_strdup_printf("/pl031@%" PRIx64, base);
642 qemu_fdt_add_subnode(vms->fdt, nodename);
643 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
644 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
645 2, base, 2, size);
646 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
647 GIC_FDT_IRQ_TYPE_SPI, irq,
648 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
649 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
650 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
651 g_free(nodename);
652 }
653
654 static DeviceState *gpio_key_dev;
655 static void virt_powerdown_req(Notifier *n, void *opaque)
656 {
657 /* use gpio Pin 3 for power button event */
658 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
659 }
660
661 static Notifier virt_system_powerdown_notifier = {
662 .notify = virt_powerdown_req
663 };
664
665 static void create_gpio(const VirtMachineState *vms, qemu_irq *pic)
666 {
667 char *nodename;
668 DeviceState *pl061_dev;
669 hwaddr base = vms->memmap[VIRT_GPIO].base;
670 hwaddr size = vms->memmap[VIRT_GPIO].size;
671 int irq = vms->irqmap[VIRT_GPIO];
672 const char compat[] = "arm,pl061\0arm,primecell";
673
674 pl061_dev = sysbus_create_simple("pl061", base, pic[irq]);
675
676 uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt);
677 nodename = g_strdup_printf("/pl061@%" PRIx64, base);
678 qemu_fdt_add_subnode(vms->fdt, nodename);
679 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
680 2, base, 2, size);
681 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
682 qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2);
683 qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0);
684 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
685 GIC_FDT_IRQ_TYPE_SPI, irq,
686 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
687 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
688 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
689 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle);
690
691 gpio_key_dev = sysbus_create_simple("gpio-key", -1,
692 qdev_get_gpio_in(pl061_dev, 3));
693 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys");
694 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys");
695 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0);
696 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1);
697
698 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff");
699 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff",
700 "label", "GPIO Key Poweroff");
701 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code",
702 KEY_POWER);
703 qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff",
704 "gpios", phandle, 3, 0);
705
706 /* connect powerdown request */
707 qemu_register_powerdown_notifier(&virt_system_powerdown_notifier);
708
709 g_free(nodename);
710 }
711
712 static void create_virtio_devices(const VirtMachineState *vms, qemu_irq *pic)
713 {
714 int i;
715 hwaddr size = vms->memmap[VIRT_MMIO].size;
716
717 /* We create the transports in forwards order. Since qbus_realize()
718 * prepends (not appends) new child buses, the incrementing loop below will
719 * create a list of virtio-mmio buses with decreasing base addresses.
720 *
721 * When a -device option is processed from the command line,
722 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
723 * order. The upshot is that -device options in increasing command line
724 * order are mapped to virtio-mmio buses with decreasing base addresses.
725 *
726 * When this code was originally written, that arrangement ensured that the
727 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
728 * the first -device on the command line. (The end-to-end order is a
729 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
730 * guest kernel's name-to-address assignment strategy.)
731 *
732 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
733 * the message, if not necessarily the code, of commit 70161ff336.
734 * Therefore the loop now establishes the inverse of the original intent.
735 *
736 * Unfortunately, we can't counteract the kernel change by reversing the
737 * loop; it would break existing command lines.
738 *
739 * In any case, the kernel makes no guarantee about the stability of
740 * enumeration order of virtio devices (as demonstrated by it changing
741 * between kernel versions). For reliable and stable identification
742 * of disks users must use UUIDs or similar mechanisms.
743 */
744 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
745 int irq = vms->irqmap[VIRT_MMIO] + i;
746 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
747
748 sysbus_create_simple("virtio-mmio", base, pic[irq]);
749 }
750
751 /* We add dtb nodes in reverse order so that they appear in the finished
752 * device tree lowest address first.
753 *
754 * Note that this mapping is independent of the loop above. The previous
755 * loop influences virtio device to virtio transport assignment, whereas
756 * this loop controls how virtio transports are laid out in the dtb.
757 */
758 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
759 char *nodename;
760 int irq = vms->irqmap[VIRT_MMIO] + i;
761 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
762
763 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
764 qemu_fdt_add_subnode(vms->fdt, nodename);
765 qemu_fdt_setprop_string(vms->fdt, nodename,
766 "compatible", "virtio,mmio");
767 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
768 2, base, 2, size);
769 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
770 GIC_FDT_IRQ_TYPE_SPI, irq,
771 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
772 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
773 g_free(nodename);
774 }
775 }
776
777 static void create_one_flash(const char *name, hwaddr flashbase,
778 hwaddr flashsize, const char *file,
779 MemoryRegion *sysmem)
780 {
781 /* Create and map a single flash device. We use the same
782 * parameters as the flash devices on the Versatile Express board.
783 */
784 DriveInfo *dinfo = drive_get_next(IF_PFLASH);
785 DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
786 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
787 const uint64_t sectorlength = 256 * 1024;
788
789 if (dinfo) {
790 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
791 &error_abort);
792 }
793
794 qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
795 qdev_prop_set_uint64(dev, "sector-length", sectorlength);
796 qdev_prop_set_uint8(dev, "width", 4);
797 qdev_prop_set_uint8(dev, "device-width", 2);
798 qdev_prop_set_bit(dev, "big-endian", false);
799 qdev_prop_set_uint16(dev, "id0", 0x89);
800 qdev_prop_set_uint16(dev, "id1", 0x18);
801 qdev_prop_set_uint16(dev, "id2", 0x00);
802 qdev_prop_set_uint16(dev, "id3", 0x00);
803 qdev_prop_set_string(dev, "name", name);
804 qdev_init_nofail(dev);
805
806 memory_region_add_subregion(sysmem, flashbase,
807 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0));
808
809 if (file) {
810 char *fn;
811 int image_size;
812
813 if (drive_get(IF_PFLASH, 0, 0)) {
814 error_report("The contents of the first flash device may be "
815 "specified with -bios or with -drive if=pflash... "
816 "but you cannot use both options at once");
817 exit(1);
818 }
819 fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, file);
820 if (!fn) {
821 error_report("Could not find ROM image '%s'", file);
822 exit(1);
823 }
824 image_size = load_image_mr(fn, sysbus_mmio_get_region(sbd, 0));
825 g_free(fn);
826 if (image_size < 0) {
827 error_report("Could not load ROM image '%s'", file);
828 exit(1);
829 }
830 }
831 }
832
833 static void create_flash(const VirtMachineState *vms,
834 MemoryRegion *sysmem,
835 MemoryRegion *secure_sysmem)
836 {
837 /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
838 * Any file passed via -bios goes in the first of these.
839 * sysmem is the system memory space. secure_sysmem is the secure view
840 * of the system, and the first flash device should be made visible only
841 * there. The second flash device is visible to both secure and nonsecure.
842 * If sysmem == secure_sysmem this means there is no separate Secure
843 * address space and both flash devices are generally visible.
844 */
845 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
846 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
847 char *nodename;
848
849 create_one_flash("virt.flash0", flashbase, flashsize,
850 bios_name, secure_sysmem);
851 create_one_flash("virt.flash1", flashbase + flashsize, flashsize,
852 NULL, sysmem);
853
854 if (sysmem == secure_sysmem) {
855 /* Report both flash devices as a single node in the DT */
856 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
857 qemu_fdt_add_subnode(vms->fdt, nodename);
858 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
859 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
860 2, flashbase, 2, flashsize,
861 2, flashbase + flashsize, 2, flashsize);
862 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
863 g_free(nodename);
864 } else {
865 /* Report the devices as separate nodes so we can mark one as
866 * only visible to the secure world.
867 */
868 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
869 qemu_fdt_add_subnode(vms->fdt, nodename);
870 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
871 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
872 2, flashbase, 2, flashsize);
873 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
874 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
875 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
876 g_free(nodename);
877
878 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
879 qemu_fdt_add_subnode(vms->fdt, nodename);
880 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
881 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
882 2, flashbase + flashsize, 2, flashsize);
883 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
884 g_free(nodename);
885 }
886 }
887
888 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
889 {
890 hwaddr base = vms->memmap[VIRT_FW_CFG].base;
891 hwaddr size = vms->memmap[VIRT_FW_CFG].size;
892 FWCfgState *fw_cfg;
893 char *nodename;
894
895 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
896 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus);
897
898 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
899 qemu_fdt_add_subnode(vms->fdt, nodename);
900 qemu_fdt_setprop_string(vms->fdt, nodename,
901 "compatible", "qemu,fw-cfg-mmio");
902 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
903 2, base, 2, size);
904 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
905 g_free(nodename);
906 return fw_cfg;
907 }
908
909 static void create_pcie_irq_map(const VirtMachineState *vms,
910 uint32_t gic_phandle,
911 int first_irq, const char *nodename)
912 {
913 int devfn, pin;
914 uint32_t full_irq_map[4 * 4 * 10] = { 0 };
915 uint32_t *irq_map = full_irq_map;
916
917 for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
918 for (pin = 0; pin < 4; pin++) {
919 int irq_type = GIC_FDT_IRQ_TYPE_SPI;
920 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
921 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
922 int i;
923
924 uint32_t map[] = {
925 devfn << 8, 0, 0, /* devfn */
926 pin + 1, /* PCI pin */
927 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
928
929 /* Convert map to big endian */
930 for (i = 0; i < 10; i++) {
931 irq_map[i] = cpu_to_be32(map[i]);
932 }
933 irq_map += 10;
934 }
935 }
936
937 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map",
938 full_irq_map, sizeof(full_irq_map));
939
940 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask",
941 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
942 0x7 /* PCI irq */);
943 }
944
945 static void create_pcie(const VirtMachineState *vms, qemu_irq *pic)
946 {
947 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
948 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
949 hwaddr base_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].base;
950 hwaddr size_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].size;
951 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
952 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
953 hwaddr base_ecam = vms->memmap[VIRT_PCIE_ECAM].base;
954 hwaddr size_ecam = vms->memmap[VIRT_PCIE_ECAM].size;
955 hwaddr base = base_mmio;
956 int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
957 int irq = vms->irqmap[VIRT_PCIE];
958 MemoryRegion *mmio_alias;
959 MemoryRegion *mmio_reg;
960 MemoryRegion *ecam_alias;
961 MemoryRegion *ecam_reg;
962 DeviceState *dev;
963 char *nodename;
964 int i;
965 PCIHostState *pci;
966
967 dev = qdev_create(NULL, TYPE_GPEX_HOST);
968 qdev_init_nofail(dev);
969
970 /* Map only the first size_ecam bytes of ECAM space */
971 ecam_alias = g_new0(MemoryRegion, 1);
972 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
973 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
974 ecam_reg, 0, size_ecam);
975 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
976
977 /* Map the MMIO window into system address space so as to expose
978 * the section of PCI MMIO space which starts at the same base address
979 * (ie 1:1 mapping for that part of PCI MMIO space visible through
980 * the window).
981 */
982 mmio_alias = g_new0(MemoryRegion, 1);
983 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
984 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
985 mmio_reg, base_mmio, size_mmio);
986 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
987
988 if (vms->highmem) {
989 /* Map high MMIO space */
990 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
991
992 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
993 mmio_reg, base_mmio_high, size_mmio_high);
994 memory_region_add_subregion(get_system_memory(), base_mmio_high,
995 high_mmio_alias);
996 }
997
998 /* Map IO port space */
999 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1000
1001 for (i = 0; i < GPEX_NUM_IRQS; i++) {
1002 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1003 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
1004 }
1005
1006 pci = PCI_HOST_BRIDGE(dev);
1007 if (pci->bus) {
1008 for (i = 0; i < nb_nics; i++) {
1009 NICInfo *nd = &nd_table[i];
1010
1011 if (!nd->model) {
1012 nd->model = g_strdup("virtio");
1013 }
1014
1015 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1016 }
1017 }
1018
1019 nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1020 qemu_fdt_add_subnode(vms->fdt, nodename);
1021 qemu_fdt_setprop_string(vms->fdt, nodename,
1022 "compatible", "pci-host-ecam-generic");
1023 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci");
1024 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3);
1025 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2);
1026 qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0,
1027 nr_pcie_buses - 1);
1028 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1029
1030 if (vms->msi_phandle) {
1031 qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent",
1032 vms->msi_phandle);
1033 }
1034
1035 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1036 2, base_ecam, 2, size_ecam);
1037
1038 if (vms->highmem) {
1039 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1040 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1041 2, base_pio, 2, size_pio,
1042 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1043 2, base_mmio, 2, size_mmio,
1044 1, FDT_PCI_RANGE_MMIO_64BIT,
1045 2, base_mmio_high,
1046 2, base_mmio_high, 2, size_mmio_high);
1047 } else {
1048 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1049 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1050 2, base_pio, 2, size_pio,
1051 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1052 2, base_mmio, 2, size_mmio);
1053 }
1054
1055 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1);
1056 create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename);
1057
1058 g_free(nodename);
1059 }
1060
1061 static void create_platform_bus(VirtMachineState *vms, qemu_irq *pic)
1062 {
1063 DeviceState *dev;
1064 SysBusDevice *s;
1065 int i;
1066 ARMPlatformBusFDTParams *fdt_params = g_new(ARMPlatformBusFDTParams, 1);
1067 MemoryRegion *sysmem = get_system_memory();
1068
1069 platform_bus_params.platform_bus_base = vms->memmap[VIRT_PLATFORM_BUS].base;
1070 platform_bus_params.platform_bus_size = vms->memmap[VIRT_PLATFORM_BUS].size;
1071 platform_bus_params.platform_bus_first_irq = vms->irqmap[VIRT_PLATFORM_BUS];
1072 platform_bus_params.platform_bus_num_irqs = PLATFORM_BUS_NUM_IRQS;
1073
1074 fdt_params->system_params = &platform_bus_params;
1075 fdt_params->binfo = &vms->bootinfo;
1076 fdt_params->intc = "/intc";
1077 /*
1078 * register a machine init done notifier that creates the device tree
1079 * nodes of the platform bus and its children dynamic sysbus devices
1080 */
1081 arm_register_platform_bus_fdt_creator(fdt_params);
1082
1083 dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
1084 dev->id = TYPE_PLATFORM_BUS_DEVICE;
1085 qdev_prop_set_uint32(dev, "num_irqs",
1086 platform_bus_params.platform_bus_num_irqs);
1087 qdev_prop_set_uint32(dev, "mmio_size",
1088 platform_bus_params.platform_bus_size);
1089 qdev_init_nofail(dev);
1090 s = SYS_BUS_DEVICE(dev);
1091
1092 for (i = 0; i < platform_bus_params.platform_bus_num_irqs; i++) {
1093 int irqn = platform_bus_params.platform_bus_first_irq + i;
1094 sysbus_connect_irq(s, i, pic[irqn]);
1095 }
1096
1097 memory_region_add_subregion(sysmem,
1098 platform_bus_params.platform_bus_base,
1099 sysbus_mmio_get_region(s, 0));
1100 }
1101
1102 static void create_secure_ram(VirtMachineState *vms,
1103 MemoryRegion *secure_sysmem)
1104 {
1105 MemoryRegion *secram = g_new(MemoryRegion, 1);
1106 char *nodename;
1107 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1108 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1109
1110 memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1111 &error_fatal);
1112 memory_region_add_subregion(secure_sysmem, base, secram);
1113
1114 nodename = g_strdup_printf("/secram@%" PRIx64, base);
1115 qemu_fdt_add_subnode(vms->fdt, nodename);
1116 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory");
1117 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size);
1118 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
1119 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
1120
1121 g_free(nodename);
1122 }
1123
1124 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1125 {
1126 const VirtMachineState *board = container_of(binfo, VirtMachineState,
1127 bootinfo);
1128
1129 *fdt_size = board->fdt_size;
1130 return board->fdt;
1131 }
1132
1133 static void virt_build_smbios(VirtMachineState *vms)
1134 {
1135 uint8_t *smbios_tables, *smbios_anchor;
1136 size_t smbios_tables_len, smbios_anchor_len;
1137 const char *product = "QEMU Virtual Machine";
1138
1139 if (!vms->fw_cfg) {
1140 return;
1141 }
1142
1143 if (kvm_enabled()) {
1144 product = "KVM Virtual Machine";
1145 }
1146
1147 smbios_set_defaults("QEMU", product,
1148 "1.0", false, true, SMBIOS_ENTRY_POINT_30);
1149
1150 smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len,
1151 &smbios_anchor, &smbios_anchor_len);
1152
1153 if (smbios_anchor) {
1154 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1155 smbios_tables, smbios_tables_len);
1156 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1157 smbios_anchor, smbios_anchor_len);
1158 }
1159 }
1160
1161 static
1162 void virt_machine_done(Notifier *notifier, void *data)
1163 {
1164 VirtMachineState *vms = container_of(notifier, VirtMachineState,
1165 machine_done);
1166
1167 virt_acpi_setup(vms);
1168 virt_build_smbios(vms);
1169 }
1170
1171 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1172 {
1173 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1174 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1175
1176 if (!vmc->disallow_affinity_adjustment) {
1177 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1178 * GIC's target-list limitations. 32-bit KVM hosts currently
1179 * always create clusters of 4 CPUs, but that is expected to
1180 * change when they gain support for gicv3. When KVM is enabled
1181 * it will override the changes we make here, therefore our
1182 * purposes are to make TCG consistent (with 64-bit KVM hosts)
1183 * and to improve SGI efficiency.
1184 */
1185 if (vms->gic_version == 3) {
1186 clustersz = GICV3_TARGETLIST_BITS;
1187 } else {
1188 clustersz = GIC_TARGETLIST_BITS;
1189 }
1190 }
1191 return arm_cpu_mp_affinity(idx, clustersz);
1192 }
1193
1194 static void machvirt_init(MachineState *machine)
1195 {
1196 VirtMachineState *vms = VIRT_MACHINE(machine);
1197 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
1198 MachineClass *mc = MACHINE_GET_CLASS(machine);
1199 const CPUArchIdList *possible_cpus;
1200 qemu_irq pic[NUM_IRQS];
1201 MemoryRegion *sysmem = get_system_memory();
1202 MemoryRegion *secure_sysmem = NULL;
1203 int n, virt_max_cpus;
1204 MemoryRegion *ram = g_new(MemoryRegion, 1);
1205 bool firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0);
1206
1207 /* We can probe only here because during property set
1208 * KVM is not available yet
1209 */
1210 if (vms->gic_version <= 0) {
1211 /* "host" or "max" */
1212 if (!kvm_enabled()) {
1213 if (vms->gic_version == 0) {
1214 error_report("gic-version=host requires KVM");
1215 exit(1);
1216 } else {
1217 /* "max": currently means 3 for TCG */
1218 vms->gic_version = 3;
1219 }
1220 } else {
1221 vms->gic_version = kvm_arm_vgic_probe();
1222 if (!vms->gic_version) {
1223 error_report(
1224 "Unable to determine GIC version supported by host");
1225 exit(1);
1226 }
1227 }
1228 }
1229
1230 if (!cpu_type_valid(machine->cpu_type)) {
1231 error_report("mach-virt: CPU type %s not supported", machine->cpu_type);
1232 exit(1);
1233 }
1234
1235 /* If we have an EL3 boot ROM then the assumption is that it will
1236 * implement PSCI itself, so disable QEMU's internal implementation
1237 * so it doesn't get in the way. Instead of starting secondary
1238 * CPUs in PSCI powerdown state we will start them all running and
1239 * let the boot ROM sort them out.
1240 * The usual case is that we do use QEMU's PSCI implementation;
1241 * if the guest has EL2 then we will use SMC as the conduit,
1242 * and otherwise we will use HVC (for backwards compatibility and
1243 * because if we're using KVM then we must use HVC).
1244 */
1245 if (vms->secure && firmware_loaded) {
1246 vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
1247 } else if (vms->virt) {
1248 vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
1249 } else {
1250 vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
1251 }
1252
1253 /* The maximum number of CPUs depends on the GIC version, or on how
1254 * many redistributors we can fit into the memory map.
1255 */
1256 if (vms->gic_version == 3) {
1257 virt_max_cpus = vms->memmap[VIRT_GIC_REDIST].size / 0x20000;
1258 } else {
1259 virt_max_cpus = GIC_NCPU;
1260 }
1261
1262 if (max_cpus > virt_max_cpus) {
1263 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1264 "supported by machine 'mach-virt' (%d)",
1265 max_cpus, virt_max_cpus);
1266 exit(1);
1267 }
1268
1269 vms->smp_cpus = smp_cpus;
1270
1271 if (machine->ram_size > vms->memmap[VIRT_MEM].size) {
1272 error_report("mach-virt: cannot model more than %dGB RAM", RAMLIMIT_GB);
1273 exit(1);
1274 }
1275
1276 if (vms->virt && kvm_enabled()) {
1277 error_report("mach-virt: KVM does not support providing "
1278 "Virtualization extensions to the guest CPU");
1279 exit(1);
1280 }
1281
1282 if (vms->secure) {
1283 if (kvm_enabled()) {
1284 error_report("mach-virt: KVM does not support Security extensions");
1285 exit(1);
1286 }
1287
1288 /* The Secure view of the world is the same as the NonSecure,
1289 * but with a few extra devices. Create it as a container region
1290 * containing the system memory at low priority; any secure-only
1291 * devices go in at higher priority and take precedence.
1292 */
1293 secure_sysmem = g_new(MemoryRegion, 1);
1294 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1295 UINT64_MAX);
1296 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1297 }
1298
1299 create_fdt(vms);
1300
1301 possible_cpus = mc->possible_cpu_arch_ids(machine);
1302 for (n = 0; n < possible_cpus->len; n++) {
1303 Object *cpuobj;
1304 CPUState *cs;
1305
1306 if (n >= smp_cpus) {
1307 break;
1308 }
1309
1310 cpuobj = object_new(possible_cpus->cpus[n].type);
1311 object_property_set_int(cpuobj, possible_cpus->cpus[n].arch_id,
1312 "mp-affinity", NULL);
1313
1314 cs = CPU(cpuobj);
1315 cs->cpu_index = n;
1316
1317 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
1318 &error_fatal);
1319
1320 if (!vms->secure) {
1321 object_property_set_bool(cpuobj, false, "has_el3", NULL);
1322 }
1323
1324 if (!vms->virt && object_property_find(cpuobj, "has_el2", NULL)) {
1325 object_property_set_bool(cpuobj, false, "has_el2", NULL);
1326 }
1327
1328 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
1329 object_property_set_int(cpuobj, vms->psci_conduit,
1330 "psci-conduit", NULL);
1331
1332 /* Secondary CPUs start in PSCI powered-down state */
1333 if (n > 0) {
1334 object_property_set_bool(cpuobj, true,
1335 "start-powered-off", NULL);
1336 }
1337 }
1338
1339 if (vmc->no_pmu && object_property_find(cpuobj, "pmu", NULL)) {
1340 object_property_set_bool(cpuobj, false, "pmu", NULL);
1341 }
1342
1343 if (object_property_find(cpuobj, "reset-cbar", NULL)) {
1344 object_property_set_int(cpuobj, vms->memmap[VIRT_CPUPERIPHS].base,
1345 "reset-cbar", &error_abort);
1346 }
1347
1348 object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
1349 &error_abort);
1350 if (vms->secure) {
1351 object_property_set_link(cpuobj, OBJECT(secure_sysmem),
1352 "secure-memory", &error_abort);
1353 }
1354
1355 object_property_set_bool(cpuobj, true, "realized", &error_fatal);
1356 object_unref(cpuobj);
1357 }
1358 fdt_add_timer_nodes(vms);
1359 fdt_add_cpu_nodes(vms);
1360
1361 memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
1362 machine->ram_size);
1363 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, ram);
1364
1365 create_flash(vms, sysmem, secure_sysmem ? secure_sysmem : sysmem);
1366
1367 create_gic(vms, pic);
1368
1369 fdt_add_pmu_nodes(vms);
1370
1371 create_uart(vms, pic, VIRT_UART, sysmem, serial_hds[0]);
1372
1373 if (vms->secure) {
1374 create_secure_ram(vms, secure_sysmem);
1375 create_uart(vms, pic, VIRT_SECURE_UART, secure_sysmem, serial_hds[1]);
1376 }
1377
1378 create_rtc(vms, pic);
1379
1380 create_pcie(vms, pic);
1381
1382 create_gpio(vms, pic);
1383
1384 /* Create mmio transports, so the user can create virtio backends
1385 * (which will be automatically plugged in to the transports). If
1386 * no backend is created the transport will just sit harmlessly idle.
1387 */
1388 create_virtio_devices(vms, pic);
1389
1390 vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
1391 rom_set_fw(vms->fw_cfg);
1392
1393 vms->machine_done.notify = virt_machine_done;
1394 qemu_add_machine_init_done_notifier(&vms->machine_done);
1395
1396 vms->bootinfo.ram_size = machine->ram_size;
1397 vms->bootinfo.kernel_filename = machine->kernel_filename;
1398 vms->bootinfo.kernel_cmdline = machine->kernel_cmdline;
1399 vms->bootinfo.initrd_filename = machine->initrd_filename;
1400 vms->bootinfo.nb_cpus = smp_cpus;
1401 vms->bootinfo.board_id = -1;
1402 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
1403 vms->bootinfo.get_dtb = machvirt_dtb;
1404 vms->bootinfo.firmware_loaded = firmware_loaded;
1405 arm_load_kernel(ARM_CPU(first_cpu), &vms->bootinfo);
1406
1407 /*
1408 * arm_load_kernel machine init done notifier registration must
1409 * happen before the platform_bus_create call. In this latter,
1410 * another notifier is registered which adds platform bus nodes.
1411 * Notifiers are executed in registration reverse order.
1412 */
1413 create_platform_bus(vms, pic);
1414 }
1415
1416 static bool virt_get_secure(Object *obj, Error **errp)
1417 {
1418 VirtMachineState *vms = VIRT_MACHINE(obj);
1419
1420 return vms->secure;
1421 }
1422
1423 static void virt_set_secure(Object *obj, bool value, Error **errp)
1424 {
1425 VirtMachineState *vms = VIRT_MACHINE(obj);
1426
1427 vms->secure = value;
1428 }
1429
1430 static bool virt_get_virt(Object *obj, Error **errp)
1431 {
1432 VirtMachineState *vms = VIRT_MACHINE(obj);
1433
1434 return vms->virt;
1435 }
1436
1437 static void virt_set_virt(Object *obj, bool value, Error **errp)
1438 {
1439 VirtMachineState *vms = VIRT_MACHINE(obj);
1440
1441 vms->virt = value;
1442 }
1443
1444 static bool virt_get_highmem(Object *obj, Error **errp)
1445 {
1446 VirtMachineState *vms = VIRT_MACHINE(obj);
1447
1448 return vms->highmem;
1449 }
1450
1451 static void virt_set_highmem(Object *obj, bool value, Error **errp)
1452 {
1453 VirtMachineState *vms = VIRT_MACHINE(obj);
1454
1455 vms->highmem = value;
1456 }
1457
1458 static bool virt_get_its(Object *obj, Error **errp)
1459 {
1460 VirtMachineState *vms = VIRT_MACHINE(obj);
1461
1462 return vms->its;
1463 }
1464
1465 static void virt_set_its(Object *obj, bool value, Error **errp)
1466 {
1467 VirtMachineState *vms = VIRT_MACHINE(obj);
1468
1469 vms->its = value;
1470 }
1471
1472 static char *virt_get_gic_version(Object *obj, Error **errp)
1473 {
1474 VirtMachineState *vms = VIRT_MACHINE(obj);
1475 const char *val = vms->gic_version == 3 ? "3" : "2";
1476
1477 return g_strdup(val);
1478 }
1479
1480 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
1481 {
1482 VirtMachineState *vms = VIRT_MACHINE(obj);
1483
1484 if (!strcmp(value, "3")) {
1485 vms->gic_version = 3;
1486 } else if (!strcmp(value, "2")) {
1487 vms->gic_version = 2;
1488 } else if (!strcmp(value, "host")) {
1489 vms->gic_version = 0; /* Will probe later */
1490 } else if (!strcmp(value, "max")) {
1491 vms->gic_version = -1; /* Will probe later */
1492 } else {
1493 error_setg(errp, "Invalid gic-version value");
1494 error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
1495 }
1496 }
1497
1498 static CpuInstanceProperties
1499 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
1500 {
1501 MachineClass *mc = MACHINE_GET_CLASS(ms);
1502 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
1503
1504 assert(cpu_index < possible_cpus->len);
1505 return possible_cpus->cpus[cpu_index].props;
1506 }
1507
1508 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
1509 {
1510 return idx % nb_numa_nodes;
1511 }
1512
1513 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
1514 {
1515 int n;
1516 VirtMachineState *vms = VIRT_MACHINE(ms);
1517
1518 if (ms->possible_cpus) {
1519 assert(ms->possible_cpus->len == max_cpus);
1520 return ms->possible_cpus;
1521 }
1522
1523 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
1524 sizeof(CPUArchId) * max_cpus);
1525 ms->possible_cpus->len = max_cpus;
1526 for (n = 0; n < ms->possible_cpus->len; n++) {
1527 ms->possible_cpus->cpus[n].type = ms->cpu_type;
1528 ms->possible_cpus->cpus[n].arch_id =
1529 virt_cpu_mp_affinity(vms, n);
1530 ms->possible_cpus->cpus[n].props.has_thread_id = true;
1531 ms->possible_cpus->cpus[n].props.thread_id = n;
1532 }
1533 return ms->possible_cpus;
1534 }
1535
1536 static void virt_machine_class_init(ObjectClass *oc, void *data)
1537 {
1538 MachineClass *mc = MACHINE_CLASS(oc);
1539
1540 mc->init = machvirt_init;
1541 /* Start max_cpus at the maximum QEMU supports. We'll further restrict
1542 * it later in machvirt_init, where we have more information about the
1543 * configuration of the particular instance.
1544 */
1545 mc->max_cpus = 255;
1546 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
1547 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
1548 mc->block_default_type = IF_VIRTIO;
1549 mc->no_cdrom = 1;
1550 mc->pci_allow_0_address = true;
1551 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
1552 mc->minimum_page_bits = 12;
1553 mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
1554 mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
1555 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
1556 mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
1557 }
1558
1559 static const TypeInfo virt_machine_info = {
1560 .name = TYPE_VIRT_MACHINE,
1561 .parent = TYPE_MACHINE,
1562 .abstract = true,
1563 .instance_size = sizeof(VirtMachineState),
1564 .class_size = sizeof(VirtMachineClass),
1565 .class_init = virt_machine_class_init,
1566 };
1567
1568 static void machvirt_machine_init(void)
1569 {
1570 type_register_static(&virt_machine_info);
1571 }
1572 type_init(machvirt_machine_init);
1573
1574 static void virt_2_12_instance_init(Object *obj)
1575 {
1576 VirtMachineState *vms = VIRT_MACHINE(obj);
1577 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1578
1579 /* EL3 is disabled by default on virt: this makes us consistent
1580 * between KVM and TCG for this board, and it also allows us to
1581 * boot UEFI blobs which assume no TrustZone support.
1582 */
1583 vms->secure = false;
1584 object_property_add_bool(obj, "secure", virt_get_secure,
1585 virt_set_secure, NULL);
1586 object_property_set_description(obj, "secure",
1587 "Set on/off to enable/disable the ARM "
1588 "Security Extensions (TrustZone)",
1589 NULL);
1590
1591 /* EL2 is also disabled by default, for similar reasons */
1592 vms->virt = false;
1593 object_property_add_bool(obj, "virtualization", virt_get_virt,
1594 virt_set_virt, NULL);
1595 object_property_set_description(obj, "virtualization",
1596 "Set on/off to enable/disable emulating a "
1597 "guest CPU which implements the ARM "
1598 "Virtualization Extensions",
1599 NULL);
1600
1601 /* High memory is enabled by default */
1602 vms->highmem = true;
1603 object_property_add_bool(obj, "highmem", virt_get_highmem,
1604 virt_set_highmem, NULL);
1605 object_property_set_description(obj, "highmem",
1606 "Set on/off to enable/disable using "
1607 "physical address space above 32 bits",
1608 NULL);
1609 /* Default GIC type is v2 */
1610 vms->gic_version = 2;
1611 object_property_add_str(obj, "gic-version", virt_get_gic_version,
1612 virt_set_gic_version, NULL);
1613 object_property_set_description(obj, "gic-version",
1614 "Set GIC version. "
1615 "Valid values are 2, 3 and host", NULL);
1616
1617 if (vmc->no_its) {
1618 vms->its = false;
1619 } else {
1620 /* Default allows ITS instantiation */
1621 vms->its = true;
1622 object_property_add_bool(obj, "its", virt_get_its,
1623 virt_set_its, NULL);
1624 object_property_set_description(obj, "its",
1625 "Set on/off to enable/disable "
1626 "ITS instantiation",
1627 NULL);
1628 }
1629
1630 vms->memmap = a15memmap;
1631 vms->irqmap = a15irqmap;
1632 }
1633
1634 static void virt_machine_2_12_options(MachineClass *mc)
1635 {
1636 }
1637 DEFINE_VIRT_MACHINE_AS_LATEST(2, 12)
1638
1639 #define VIRT_COMPAT_2_11 \
1640 HW_COMPAT_2_11
1641
1642 static void virt_2_11_instance_init(Object *obj)
1643 {
1644 virt_2_12_instance_init(obj);
1645 }
1646
1647 static void virt_machine_2_11_options(MachineClass *mc)
1648 {
1649 virt_machine_2_12_options(mc);
1650 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_11);
1651 }
1652 DEFINE_VIRT_MACHINE(2, 11)
1653
1654 #define VIRT_COMPAT_2_10 \
1655 HW_COMPAT_2_10
1656
1657 static void virt_2_10_instance_init(Object *obj)
1658 {
1659 virt_2_11_instance_init(obj);
1660 }
1661
1662 static void virt_machine_2_10_options(MachineClass *mc)
1663 {
1664 virt_machine_2_11_options(mc);
1665 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_10);
1666 }
1667 DEFINE_VIRT_MACHINE(2, 10)
1668
1669 #define VIRT_COMPAT_2_9 \
1670 HW_COMPAT_2_9
1671
1672 static void virt_2_9_instance_init(Object *obj)
1673 {
1674 virt_2_10_instance_init(obj);
1675 }
1676
1677 static void virt_machine_2_9_options(MachineClass *mc)
1678 {
1679 virt_machine_2_10_options(mc);
1680 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_9);
1681 }
1682 DEFINE_VIRT_MACHINE(2, 9)
1683
1684 #define VIRT_COMPAT_2_8 \
1685 HW_COMPAT_2_8
1686
1687 static void virt_2_8_instance_init(Object *obj)
1688 {
1689 virt_2_9_instance_init(obj);
1690 }
1691
1692 static void virt_machine_2_8_options(MachineClass *mc)
1693 {
1694 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1695
1696 virt_machine_2_9_options(mc);
1697 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_8);
1698 /* For 2.8 and earlier we falsely claimed in the DT that
1699 * our timers were edge-triggered, not level-triggered.
1700 */
1701 vmc->claim_edge_triggered_timers = true;
1702 }
1703 DEFINE_VIRT_MACHINE(2, 8)
1704
1705 #define VIRT_COMPAT_2_7 \
1706 HW_COMPAT_2_7
1707
1708 static void virt_2_7_instance_init(Object *obj)
1709 {
1710 virt_2_8_instance_init(obj);
1711 }
1712
1713 static void virt_machine_2_7_options(MachineClass *mc)
1714 {
1715 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1716
1717 virt_machine_2_8_options(mc);
1718 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_7);
1719 /* ITS was introduced with 2.8 */
1720 vmc->no_its = true;
1721 /* Stick with 1K pages for migration compatibility */
1722 mc->minimum_page_bits = 0;
1723 }
1724 DEFINE_VIRT_MACHINE(2, 7)
1725
1726 #define VIRT_COMPAT_2_6 \
1727 HW_COMPAT_2_6
1728
1729 static void virt_2_6_instance_init(Object *obj)
1730 {
1731 virt_2_7_instance_init(obj);
1732 }
1733
1734 static void virt_machine_2_6_options(MachineClass *mc)
1735 {
1736 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1737
1738 virt_machine_2_7_options(mc);
1739 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_6);
1740 vmc->disallow_affinity_adjustment = true;
1741 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
1742 vmc->no_pmu = true;
1743 }
1744 DEFINE_VIRT_MACHINE(2, 6)