]> git.proxmox.com Git - mirror_qemu.git/blob - hw/arm/virt.c
Merge remote-tracking branch 'remotes/stefanha/tags/tracing-pull-request' into staging
[mirror_qemu.git] / hw / arm / virt.c
1 /*
2 * ARM mach-virt emulation
3 *
4 * Copyright (c) 2013 Linaro Limited
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
17 *
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
29 */
30
31 #include "qemu/osdep.h"
32 #include "qapi/error.h"
33 #include "hw/sysbus.h"
34 #include "hw/arm/arm.h"
35 #include "hw/arm/primecell.h"
36 #include "hw/arm/virt.h"
37 #include "hw/vfio/vfio-calxeda-xgmac.h"
38 #include "hw/vfio/vfio-amd-xgbe.h"
39 #include "hw/display/ramfb.h"
40 #include "hw/devices.h"
41 #include "net/net.h"
42 #include "sysemu/device_tree.h"
43 #include "sysemu/numa.h"
44 #include "sysemu/sysemu.h"
45 #include "sysemu/kvm.h"
46 #include "hw/compat.h"
47 #include "hw/loader.h"
48 #include "exec/address-spaces.h"
49 #include "qemu/bitops.h"
50 #include "qemu/error-report.h"
51 #include "hw/pci-host/gpex.h"
52 #include "hw/arm/sysbus-fdt.h"
53 #include "hw/platform-bus.h"
54 #include "hw/arm/fdt.h"
55 #include "hw/intc/arm_gic.h"
56 #include "hw/intc/arm_gicv3_common.h"
57 #include "kvm_arm.h"
58 #include "hw/smbios/smbios.h"
59 #include "qapi/visitor.h"
60 #include "standard-headers/linux/input.h"
61 #include "hw/arm/smmuv3.h"
62
63 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
64 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
65 void *data) \
66 { \
67 MachineClass *mc = MACHINE_CLASS(oc); \
68 virt_machine_##major##_##minor##_options(mc); \
69 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
70 if (latest) { \
71 mc->alias = "virt"; \
72 } \
73 } \
74 static const TypeInfo machvirt_##major##_##minor##_info = { \
75 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
76 .parent = TYPE_VIRT_MACHINE, \
77 .instance_init = virt_##major##_##minor##_instance_init, \
78 .class_init = virt_##major##_##minor##_class_init, \
79 }; \
80 static void machvirt_machine_##major##_##minor##_init(void) \
81 { \
82 type_register_static(&machvirt_##major##_##minor##_info); \
83 } \
84 type_init(machvirt_machine_##major##_##minor##_init);
85
86 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
87 DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
88 #define DEFINE_VIRT_MACHINE(major, minor) \
89 DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
90
91
92 /* Number of external interrupt lines to configure the GIC with */
93 #define NUM_IRQS 256
94
95 #define PLATFORM_BUS_NUM_IRQS 64
96
97 /* RAM limit in GB. Since VIRT_MEM starts at the 1GB mark, this means
98 * RAM can go up to the 256GB mark, leaving 256GB of the physical
99 * address space unallocated and free for future use between 256G and 512G.
100 * If we need to provide more RAM to VMs in the future then we need to:
101 * * allocate a second bank of RAM starting at 2TB and working up
102 * * fix the DT and ACPI table generation code in QEMU to correctly
103 * report two split lumps of RAM to the guest
104 * * fix KVM in the host kernel to allow guests with >40 bit address spaces
105 * (We don't want to fill all the way up to 512GB with RAM because
106 * we might want it for non-RAM purposes later. Conversely it seems
107 * reasonable to assume that anybody configuring a VM with a quarter
108 * of a terabyte of RAM will be doing it on a host with more than a
109 * terabyte of physical address space.)
110 */
111 #define RAMLIMIT_GB 255
112 #define RAMLIMIT_BYTES (RAMLIMIT_GB * 1024ULL * 1024 * 1024)
113
114 /* Addresses and sizes of our components.
115 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
116 * 128MB..256MB is used for miscellaneous device I/O.
117 * 256MB..1GB is reserved for possible future PCI support (ie where the
118 * PCI memory window will go if we add a PCI host controller).
119 * 1GB and up is RAM (which may happily spill over into the
120 * high memory region beyond 4GB).
121 * This represents a compromise between how much RAM can be given to
122 * a 32 bit VM and leaving space for expansion and in particular for PCI.
123 * Note that devices should generally be placed at multiples of 0x10000,
124 * to accommodate guests using 64K pages.
125 */
126 static const MemMapEntry a15memmap[] = {
127 /* Space up to 0x8000000 is reserved for a boot ROM */
128 [VIRT_FLASH] = { 0, 0x08000000 },
129 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
130 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
131 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
132 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
133 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 },
134 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
135 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 },
136 /* This redistributor space allows up to 2*64kB*123 CPUs */
137 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 },
138 [VIRT_UART] = { 0x09000000, 0x00001000 },
139 [VIRT_RTC] = { 0x09010000, 0x00001000 },
140 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 },
141 [VIRT_GPIO] = { 0x09030000, 0x00001000 },
142 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 },
143 [VIRT_SMMU] = { 0x09050000, 0x00020000 },
144 [VIRT_MMIO] = { 0x0a000000, 0x00000200 },
145 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
146 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 },
147 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 },
148 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 },
149 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 },
150 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 },
151 [VIRT_MEM] = { 0x40000000, RAMLIMIT_BYTES },
152 /* Additional 64 MB redist region (can contain up to 512 redistributors) */
153 [VIRT_GIC_REDIST2] = { 0x4000000000ULL, 0x4000000 },
154 [VIRT_PCIE_ECAM_HIGH] = { 0x4010000000ULL, 0x10000000 },
155 /* Second PCIe window, 512GB wide at the 512GB boundary */
156 [VIRT_PCIE_MMIO_HIGH] = { 0x8000000000ULL, 0x8000000000ULL },
157 };
158
159 static const int a15irqmap[] = {
160 [VIRT_UART] = 1,
161 [VIRT_RTC] = 2,
162 [VIRT_PCIE] = 3, /* ... to 6 */
163 [VIRT_GPIO] = 7,
164 [VIRT_SECURE_UART] = 8,
165 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
166 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
167 [VIRT_SMMU] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */
168 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
169 };
170
171 static const char *valid_cpus[] = {
172 ARM_CPU_TYPE_NAME("cortex-a15"),
173 ARM_CPU_TYPE_NAME("cortex-a53"),
174 ARM_CPU_TYPE_NAME("cortex-a57"),
175 ARM_CPU_TYPE_NAME("host"),
176 ARM_CPU_TYPE_NAME("max"),
177 };
178
179 static bool cpu_type_valid(const char *cpu)
180 {
181 int i;
182
183 for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
184 if (strcmp(cpu, valid_cpus[i]) == 0) {
185 return true;
186 }
187 }
188 return false;
189 }
190
191 static void create_fdt(VirtMachineState *vms)
192 {
193 void *fdt = create_device_tree(&vms->fdt_size);
194
195 if (!fdt) {
196 error_report("create_device_tree() failed");
197 exit(1);
198 }
199
200 vms->fdt = fdt;
201
202 /* Header */
203 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
204 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
205 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
206
207 /* /chosen must exist for load_dtb to fill in necessary properties later */
208 qemu_fdt_add_subnode(fdt, "/chosen");
209
210 /* Clock node, for the benefit of the UART. The kernel device tree
211 * binding documentation claims the PL011 node clock properties are
212 * optional but in practice if you omit them the kernel refuses to
213 * probe for the device.
214 */
215 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
216 qemu_fdt_add_subnode(fdt, "/apb-pclk");
217 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
218 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
219 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
220 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
221 "clk24mhz");
222 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
223
224 if (have_numa_distance) {
225 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
226 uint32_t *matrix = g_malloc0(size);
227 int idx, i, j;
228
229 for (i = 0; i < nb_numa_nodes; i++) {
230 for (j = 0; j < nb_numa_nodes; j++) {
231 idx = (i * nb_numa_nodes + j) * 3;
232 matrix[idx + 0] = cpu_to_be32(i);
233 matrix[idx + 1] = cpu_to_be32(j);
234 matrix[idx + 2] = cpu_to_be32(numa_info[i].distance[j]);
235 }
236 }
237
238 qemu_fdt_add_subnode(fdt, "/distance-map");
239 qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
240 "numa-distance-map-v1");
241 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
242 matrix, size);
243 g_free(matrix);
244 }
245 }
246
247 static void fdt_add_timer_nodes(const VirtMachineState *vms)
248 {
249 /* On real hardware these interrupts are level-triggered.
250 * On KVM they were edge-triggered before host kernel version 4.4,
251 * and level-triggered afterwards.
252 * On emulated QEMU they are level-triggered.
253 *
254 * Getting the DTB info about them wrong is awkward for some
255 * guest kernels:
256 * pre-4.8 ignore the DT and leave the interrupt configured
257 * with whatever the GIC reset value (or the bootloader) left it at
258 * 4.8 before rc6 honour the incorrect data by programming it back
259 * into the GIC, causing problems
260 * 4.8rc6 and later ignore the DT and always write "level triggered"
261 * into the GIC
262 *
263 * For backwards-compatibility, virt-2.8 and earlier will continue
264 * to say these are edge-triggered, but later machines will report
265 * the correct information.
266 */
267 ARMCPU *armcpu;
268 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
269 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
270
271 if (vmc->claim_edge_triggered_timers) {
272 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
273 }
274
275 if (vms->gic_version == 2) {
276 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
277 GIC_FDT_IRQ_PPI_CPU_WIDTH,
278 (1 << vms->smp_cpus) - 1);
279 }
280
281 qemu_fdt_add_subnode(vms->fdt, "/timer");
282
283 armcpu = ARM_CPU(qemu_get_cpu(0));
284 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
285 const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
286 qemu_fdt_setprop(vms->fdt, "/timer", "compatible",
287 compat, sizeof(compat));
288 } else {
289 qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible",
290 "arm,armv7-timer");
291 }
292 qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0);
293 qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts",
294 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
295 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
296 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
297 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
298 }
299
300 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
301 {
302 int cpu;
303 int addr_cells = 1;
304 const MachineState *ms = MACHINE(vms);
305
306 /*
307 * From Documentation/devicetree/bindings/arm/cpus.txt
308 * On ARM v8 64-bit systems value should be set to 2,
309 * that corresponds to the MPIDR_EL1 register size.
310 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
311 * in the system, #address-cells can be set to 1, since
312 * MPIDR_EL1[63:32] bits are not used for CPUs
313 * identification.
314 *
315 * Here we actually don't know whether our system is 32- or 64-bit one.
316 * The simplest way to go is to examine affinity IDs of all our CPUs. If
317 * at least one of them has Aff3 populated, we set #address-cells to 2.
318 */
319 for (cpu = 0; cpu < vms->smp_cpus; cpu++) {
320 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
321
322 if (armcpu->mp_affinity & ARM_AFF3_MASK) {
323 addr_cells = 2;
324 break;
325 }
326 }
327
328 qemu_fdt_add_subnode(vms->fdt, "/cpus");
329 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells);
330 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0);
331
332 for (cpu = vms->smp_cpus - 1; cpu >= 0; cpu--) {
333 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
334 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
335 CPUState *cs = CPU(armcpu);
336
337 qemu_fdt_add_subnode(vms->fdt, nodename);
338 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu");
339 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
340 armcpu->dtb_compatible);
341
342 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED
343 && vms->smp_cpus > 1) {
344 qemu_fdt_setprop_string(vms->fdt, nodename,
345 "enable-method", "psci");
346 }
347
348 if (addr_cells == 2) {
349 qemu_fdt_setprop_u64(vms->fdt, nodename, "reg",
350 armcpu->mp_affinity);
351 } else {
352 qemu_fdt_setprop_cell(vms->fdt, nodename, "reg",
353 armcpu->mp_affinity);
354 }
355
356 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
357 qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id",
358 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
359 }
360
361 g_free(nodename);
362 }
363 }
364
365 static void fdt_add_its_gic_node(VirtMachineState *vms)
366 {
367 char *nodename;
368
369 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
370 nodename = g_strdup_printf("/intc/its@%" PRIx64,
371 vms->memmap[VIRT_GIC_ITS].base);
372 qemu_fdt_add_subnode(vms->fdt, nodename);
373 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
374 "arm,gic-v3-its");
375 qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0);
376 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
377 2, vms->memmap[VIRT_GIC_ITS].base,
378 2, vms->memmap[VIRT_GIC_ITS].size);
379 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle);
380 g_free(nodename);
381 }
382
383 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
384 {
385 char *nodename;
386
387 nodename = g_strdup_printf("/intc/v2m@%" PRIx64,
388 vms->memmap[VIRT_GIC_V2M].base);
389 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
390 qemu_fdt_add_subnode(vms->fdt, nodename);
391 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
392 "arm,gic-v2m-frame");
393 qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0);
394 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
395 2, vms->memmap[VIRT_GIC_V2M].base,
396 2, vms->memmap[VIRT_GIC_V2M].size);
397 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle);
398 g_free(nodename);
399 }
400
401 static void fdt_add_gic_node(VirtMachineState *vms)
402 {
403 char *nodename;
404
405 vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt);
406 qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle);
407
408 nodename = g_strdup_printf("/intc@%" PRIx64,
409 vms->memmap[VIRT_GIC_DIST].base);
410 qemu_fdt_add_subnode(vms->fdt, nodename);
411 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 3);
412 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-controller", NULL, 0);
413 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 0x2);
414 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 0x2);
415 qemu_fdt_setprop(vms->fdt, nodename, "ranges", NULL, 0);
416 if (vms->gic_version == 3) {
417 int nb_redist_regions = virt_gicv3_redist_region_count(vms);
418
419 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
420 "arm,gic-v3");
421
422 qemu_fdt_setprop_cell(vms->fdt, nodename,
423 "#redistributor-regions", nb_redist_regions);
424
425 if (nb_redist_regions == 1) {
426 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
427 2, vms->memmap[VIRT_GIC_DIST].base,
428 2, vms->memmap[VIRT_GIC_DIST].size,
429 2, vms->memmap[VIRT_GIC_REDIST].base,
430 2, vms->memmap[VIRT_GIC_REDIST].size);
431 } else {
432 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
433 2, vms->memmap[VIRT_GIC_DIST].base,
434 2, vms->memmap[VIRT_GIC_DIST].size,
435 2, vms->memmap[VIRT_GIC_REDIST].base,
436 2, vms->memmap[VIRT_GIC_REDIST].size,
437 2, vms->memmap[VIRT_GIC_REDIST2].base,
438 2, vms->memmap[VIRT_GIC_REDIST2].size);
439 }
440
441 if (vms->virt) {
442 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
443 GIC_FDT_IRQ_TYPE_PPI, ARCH_GICV3_MAINT_IRQ,
444 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
445 }
446 } else {
447 /* 'cortex-a15-gic' means 'GIC v2' */
448 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
449 "arm,cortex-a15-gic");
450 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
451 2, vms->memmap[VIRT_GIC_DIST].base,
452 2, vms->memmap[VIRT_GIC_DIST].size,
453 2, vms->memmap[VIRT_GIC_CPU].base,
454 2, vms->memmap[VIRT_GIC_CPU].size);
455 }
456
457 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->gic_phandle);
458 g_free(nodename);
459 }
460
461 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
462 {
463 CPUState *cpu;
464 ARMCPU *armcpu;
465 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
466
467 CPU_FOREACH(cpu) {
468 armcpu = ARM_CPU(cpu);
469 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
470 return;
471 }
472 if (kvm_enabled()) {
473 if (kvm_irqchip_in_kernel()) {
474 kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ));
475 }
476 kvm_arm_pmu_init(cpu);
477 }
478 }
479
480 if (vms->gic_version == 2) {
481 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
482 GIC_FDT_IRQ_PPI_CPU_WIDTH,
483 (1 << vms->smp_cpus) - 1);
484 }
485
486 armcpu = ARM_CPU(qemu_get_cpu(0));
487 qemu_fdt_add_subnode(vms->fdt, "/pmu");
488 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
489 const char compat[] = "arm,armv8-pmuv3";
490 qemu_fdt_setprop(vms->fdt, "/pmu", "compatible",
491 compat, sizeof(compat));
492 qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts",
493 GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
494 }
495 }
496
497 static void create_its(VirtMachineState *vms, DeviceState *gicdev)
498 {
499 const char *itsclass = its_class_name();
500 DeviceState *dev;
501
502 if (!itsclass) {
503 /* Do nothing if not supported */
504 return;
505 }
506
507 dev = qdev_create(NULL, itsclass);
508
509 object_property_set_link(OBJECT(dev), OBJECT(gicdev), "parent-gicv3",
510 &error_abort);
511 qdev_init_nofail(dev);
512 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
513
514 fdt_add_its_gic_node(vms);
515 }
516
517 static void create_v2m(VirtMachineState *vms, qemu_irq *pic)
518 {
519 int i;
520 int irq = vms->irqmap[VIRT_GIC_V2M];
521 DeviceState *dev;
522
523 dev = qdev_create(NULL, "arm-gicv2m");
524 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
525 qdev_prop_set_uint32(dev, "base-spi", irq);
526 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
527 qdev_init_nofail(dev);
528
529 for (i = 0; i < NUM_GICV2M_SPIS; i++) {
530 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
531 }
532
533 fdt_add_v2m_gic_node(vms);
534 }
535
536 static void create_gic(VirtMachineState *vms, qemu_irq *pic)
537 {
538 /* We create a standalone GIC */
539 DeviceState *gicdev;
540 SysBusDevice *gicbusdev;
541 const char *gictype;
542 int type = vms->gic_version, i;
543 uint32_t nb_redist_regions = 0;
544
545 gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
546
547 gicdev = qdev_create(NULL, gictype);
548 qdev_prop_set_uint32(gicdev, "revision", type);
549 qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
550 /* Note that the num-irq property counts both internal and external
551 * interrupts; there are always 32 of the former (mandated by GIC spec).
552 */
553 qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
554 if (!kvm_irqchip_in_kernel()) {
555 qdev_prop_set_bit(gicdev, "has-security-extensions", vms->secure);
556 }
557
558 if (type == 3) {
559 uint32_t redist0_capacity =
560 vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
561 uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
562
563 nb_redist_regions = virt_gicv3_redist_region_count(vms);
564
565 qdev_prop_set_uint32(gicdev, "len-redist-region-count",
566 nb_redist_regions);
567 qdev_prop_set_uint32(gicdev, "redist-region-count[0]", redist0_count);
568
569 if (nb_redist_regions == 2) {
570 uint32_t redist1_capacity =
571 vms->memmap[VIRT_GIC_REDIST2].size / GICV3_REDIST_SIZE;
572
573 qdev_prop_set_uint32(gicdev, "redist-region-count[1]",
574 MIN(smp_cpus - redist0_count, redist1_capacity));
575 }
576 }
577 qdev_init_nofail(gicdev);
578 gicbusdev = SYS_BUS_DEVICE(gicdev);
579 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
580 if (type == 3) {
581 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
582 if (nb_redist_regions == 2) {
583 sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_REDIST2].base);
584 }
585 } else {
586 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
587 }
588
589 /* Wire the outputs from each CPU's generic timer and the GICv3
590 * maintenance interrupt signal to the appropriate GIC PPI inputs,
591 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
592 */
593 for (i = 0; i < smp_cpus; i++) {
594 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
595 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
596 int irq;
597 /* Mapping from the output timer irq lines from the CPU to the
598 * GIC PPI inputs we use for the virt board.
599 */
600 const int timer_irq[] = {
601 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
602 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
603 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
604 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
605 };
606
607 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
608 qdev_connect_gpio_out(cpudev, irq,
609 qdev_get_gpio_in(gicdev,
610 ppibase + timer_irq[irq]));
611 }
612
613 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 0,
614 qdev_get_gpio_in(gicdev, ppibase
615 + ARCH_GICV3_MAINT_IRQ));
616 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
617 qdev_get_gpio_in(gicdev, ppibase
618 + VIRTUAL_PMU_IRQ));
619
620 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
621 sysbus_connect_irq(gicbusdev, i + smp_cpus,
622 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
623 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
624 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
625 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
626 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
627 }
628
629 for (i = 0; i < NUM_IRQS; i++) {
630 pic[i] = qdev_get_gpio_in(gicdev, i);
631 }
632
633 fdt_add_gic_node(vms);
634
635 if (type == 3 && vms->its) {
636 create_its(vms, gicdev);
637 } else if (type == 2) {
638 create_v2m(vms, pic);
639 }
640 }
641
642 static void create_uart(const VirtMachineState *vms, qemu_irq *pic, int uart,
643 MemoryRegion *mem, Chardev *chr)
644 {
645 char *nodename;
646 hwaddr base = vms->memmap[uart].base;
647 hwaddr size = vms->memmap[uart].size;
648 int irq = vms->irqmap[uart];
649 const char compat[] = "arm,pl011\0arm,primecell";
650 const char clocknames[] = "uartclk\0apb_pclk";
651 DeviceState *dev = qdev_create(NULL, "pl011");
652 SysBusDevice *s = SYS_BUS_DEVICE(dev);
653
654 qdev_prop_set_chr(dev, "chardev", chr);
655 qdev_init_nofail(dev);
656 memory_region_add_subregion(mem, base,
657 sysbus_mmio_get_region(s, 0));
658 sysbus_connect_irq(s, 0, pic[irq]);
659
660 nodename = g_strdup_printf("/pl011@%" PRIx64, base);
661 qemu_fdt_add_subnode(vms->fdt, nodename);
662 /* Note that we can't use setprop_string because of the embedded NUL */
663 qemu_fdt_setprop(vms->fdt, nodename, "compatible",
664 compat, sizeof(compat));
665 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
666 2, base, 2, size);
667 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
668 GIC_FDT_IRQ_TYPE_SPI, irq,
669 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
670 qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks",
671 vms->clock_phandle, vms->clock_phandle);
672 qemu_fdt_setprop(vms->fdt, nodename, "clock-names",
673 clocknames, sizeof(clocknames));
674
675 if (uart == VIRT_UART) {
676 qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename);
677 } else {
678 /* Mark as not usable by the normal world */
679 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
680 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
681 }
682
683 g_free(nodename);
684 }
685
686 static void create_rtc(const VirtMachineState *vms, qemu_irq *pic)
687 {
688 char *nodename;
689 hwaddr base = vms->memmap[VIRT_RTC].base;
690 hwaddr size = vms->memmap[VIRT_RTC].size;
691 int irq = vms->irqmap[VIRT_RTC];
692 const char compat[] = "arm,pl031\0arm,primecell";
693
694 sysbus_create_simple("pl031", base, pic[irq]);
695
696 nodename = g_strdup_printf("/pl031@%" PRIx64, base);
697 qemu_fdt_add_subnode(vms->fdt, nodename);
698 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
699 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
700 2, base, 2, size);
701 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
702 GIC_FDT_IRQ_TYPE_SPI, irq,
703 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
704 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
705 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
706 g_free(nodename);
707 }
708
709 static DeviceState *gpio_key_dev;
710 static void virt_powerdown_req(Notifier *n, void *opaque)
711 {
712 /* use gpio Pin 3 for power button event */
713 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
714 }
715
716 static Notifier virt_system_powerdown_notifier = {
717 .notify = virt_powerdown_req
718 };
719
720 static void create_gpio(const VirtMachineState *vms, qemu_irq *pic)
721 {
722 char *nodename;
723 DeviceState *pl061_dev;
724 hwaddr base = vms->memmap[VIRT_GPIO].base;
725 hwaddr size = vms->memmap[VIRT_GPIO].size;
726 int irq = vms->irqmap[VIRT_GPIO];
727 const char compat[] = "arm,pl061\0arm,primecell";
728
729 pl061_dev = sysbus_create_simple("pl061", base, pic[irq]);
730
731 uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt);
732 nodename = g_strdup_printf("/pl061@%" PRIx64, base);
733 qemu_fdt_add_subnode(vms->fdt, nodename);
734 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
735 2, base, 2, size);
736 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
737 qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2);
738 qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0);
739 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
740 GIC_FDT_IRQ_TYPE_SPI, irq,
741 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
742 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
743 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
744 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle);
745
746 gpio_key_dev = sysbus_create_simple("gpio-key", -1,
747 qdev_get_gpio_in(pl061_dev, 3));
748 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys");
749 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys");
750 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0);
751 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1);
752
753 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff");
754 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff",
755 "label", "GPIO Key Poweroff");
756 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code",
757 KEY_POWER);
758 qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff",
759 "gpios", phandle, 3, 0);
760
761 /* connect powerdown request */
762 qemu_register_powerdown_notifier(&virt_system_powerdown_notifier);
763
764 g_free(nodename);
765 }
766
767 static void create_virtio_devices(const VirtMachineState *vms, qemu_irq *pic)
768 {
769 int i;
770 hwaddr size = vms->memmap[VIRT_MMIO].size;
771
772 /* We create the transports in forwards order. Since qbus_realize()
773 * prepends (not appends) new child buses, the incrementing loop below will
774 * create a list of virtio-mmio buses with decreasing base addresses.
775 *
776 * When a -device option is processed from the command line,
777 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
778 * order. The upshot is that -device options in increasing command line
779 * order are mapped to virtio-mmio buses with decreasing base addresses.
780 *
781 * When this code was originally written, that arrangement ensured that the
782 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
783 * the first -device on the command line. (The end-to-end order is a
784 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
785 * guest kernel's name-to-address assignment strategy.)
786 *
787 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
788 * the message, if not necessarily the code, of commit 70161ff336.
789 * Therefore the loop now establishes the inverse of the original intent.
790 *
791 * Unfortunately, we can't counteract the kernel change by reversing the
792 * loop; it would break existing command lines.
793 *
794 * In any case, the kernel makes no guarantee about the stability of
795 * enumeration order of virtio devices (as demonstrated by it changing
796 * between kernel versions). For reliable and stable identification
797 * of disks users must use UUIDs or similar mechanisms.
798 */
799 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
800 int irq = vms->irqmap[VIRT_MMIO] + i;
801 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
802
803 sysbus_create_simple("virtio-mmio", base, pic[irq]);
804 }
805
806 /* We add dtb nodes in reverse order so that they appear in the finished
807 * device tree lowest address first.
808 *
809 * Note that this mapping is independent of the loop above. The previous
810 * loop influences virtio device to virtio transport assignment, whereas
811 * this loop controls how virtio transports are laid out in the dtb.
812 */
813 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
814 char *nodename;
815 int irq = vms->irqmap[VIRT_MMIO] + i;
816 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
817
818 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
819 qemu_fdt_add_subnode(vms->fdt, nodename);
820 qemu_fdt_setprop_string(vms->fdt, nodename,
821 "compatible", "virtio,mmio");
822 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
823 2, base, 2, size);
824 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
825 GIC_FDT_IRQ_TYPE_SPI, irq,
826 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
827 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
828 g_free(nodename);
829 }
830 }
831
832 static void create_one_flash(const char *name, hwaddr flashbase,
833 hwaddr flashsize, const char *file,
834 MemoryRegion *sysmem)
835 {
836 /* Create and map a single flash device. We use the same
837 * parameters as the flash devices on the Versatile Express board.
838 */
839 DriveInfo *dinfo = drive_get_next(IF_PFLASH);
840 DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
841 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
842 const uint64_t sectorlength = 256 * 1024;
843
844 if (dinfo) {
845 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
846 &error_abort);
847 }
848
849 qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
850 qdev_prop_set_uint64(dev, "sector-length", sectorlength);
851 qdev_prop_set_uint8(dev, "width", 4);
852 qdev_prop_set_uint8(dev, "device-width", 2);
853 qdev_prop_set_bit(dev, "big-endian", false);
854 qdev_prop_set_uint16(dev, "id0", 0x89);
855 qdev_prop_set_uint16(dev, "id1", 0x18);
856 qdev_prop_set_uint16(dev, "id2", 0x00);
857 qdev_prop_set_uint16(dev, "id3", 0x00);
858 qdev_prop_set_string(dev, "name", name);
859 qdev_init_nofail(dev);
860
861 memory_region_add_subregion(sysmem, flashbase,
862 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0));
863
864 if (file) {
865 char *fn;
866 int image_size;
867
868 if (drive_get(IF_PFLASH, 0, 0)) {
869 error_report("The contents of the first flash device may be "
870 "specified with -bios or with -drive if=pflash... "
871 "but you cannot use both options at once");
872 exit(1);
873 }
874 fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, file);
875 if (!fn) {
876 error_report("Could not find ROM image '%s'", file);
877 exit(1);
878 }
879 image_size = load_image_mr(fn, sysbus_mmio_get_region(sbd, 0));
880 g_free(fn);
881 if (image_size < 0) {
882 error_report("Could not load ROM image '%s'", file);
883 exit(1);
884 }
885 }
886 }
887
888 static void create_flash(const VirtMachineState *vms,
889 MemoryRegion *sysmem,
890 MemoryRegion *secure_sysmem)
891 {
892 /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
893 * Any file passed via -bios goes in the first of these.
894 * sysmem is the system memory space. secure_sysmem is the secure view
895 * of the system, and the first flash device should be made visible only
896 * there. The second flash device is visible to both secure and nonsecure.
897 * If sysmem == secure_sysmem this means there is no separate Secure
898 * address space and both flash devices are generally visible.
899 */
900 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
901 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
902 char *nodename;
903
904 create_one_flash("virt.flash0", flashbase, flashsize,
905 bios_name, secure_sysmem);
906 create_one_flash("virt.flash1", flashbase + flashsize, flashsize,
907 NULL, sysmem);
908
909 if (sysmem == secure_sysmem) {
910 /* Report both flash devices as a single node in the DT */
911 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
912 qemu_fdt_add_subnode(vms->fdt, nodename);
913 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
914 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
915 2, flashbase, 2, flashsize,
916 2, flashbase + flashsize, 2, flashsize);
917 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
918 g_free(nodename);
919 } else {
920 /* Report the devices as separate nodes so we can mark one as
921 * only visible to the secure world.
922 */
923 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
924 qemu_fdt_add_subnode(vms->fdt, nodename);
925 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
926 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
927 2, flashbase, 2, flashsize);
928 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
929 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
930 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
931 g_free(nodename);
932
933 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
934 qemu_fdt_add_subnode(vms->fdt, nodename);
935 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
936 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
937 2, flashbase + flashsize, 2, flashsize);
938 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
939 g_free(nodename);
940 }
941 }
942
943 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
944 {
945 hwaddr base = vms->memmap[VIRT_FW_CFG].base;
946 hwaddr size = vms->memmap[VIRT_FW_CFG].size;
947 FWCfgState *fw_cfg;
948 char *nodename;
949
950 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
951 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus);
952
953 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
954 qemu_fdt_add_subnode(vms->fdt, nodename);
955 qemu_fdt_setprop_string(vms->fdt, nodename,
956 "compatible", "qemu,fw-cfg-mmio");
957 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
958 2, base, 2, size);
959 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
960 g_free(nodename);
961 return fw_cfg;
962 }
963
964 static void create_pcie_irq_map(const VirtMachineState *vms,
965 uint32_t gic_phandle,
966 int first_irq, const char *nodename)
967 {
968 int devfn, pin;
969 uint32_t full_irq_map[4 * 4 * 10] = { 0 };
970 uint32_t *irq_map = full_irq_map;
971
972 for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
973 for (pin = 0; pin < 4; pin++) {
974 int irq_type = GIC_FDT_IRQ_TYPE_SPI;
975 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
976 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
977 int i;
978
979 uint32_t map[] = {
980 devfn << 8, 0, 0, /* devfn */
981 pin + 1, /* PCI pin */
982 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
983
984 /* Convert map to big endian */
985 for (i = 0; i < 10; i++) {
986 irq_map[i] = cpu_to_be32(map[i]);
987 }
988 irq_map += 10;
989 }
990 }
991
992 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map",
993 full_irq_map, sizeof(full_irq_map));
994
995 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask",
996 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
997 0x7 /* PCI irq */);
998 }
999
1000 static void create_smmu(const VirtMachineState *vms, qemu_irq *pic,
1001 PCIBus *bus)
1002 {
1003 char *node;
1004 const char compat[] = "arm,smmu-v3";
1005 int irq = vms->irqmap[VIRT_SMMU];
1006 int i;
1007 hwaddr base = vms->memmap[VIRT_SMMU].base;
1008 hwaddr size = vms->memmap[VIRT_SMMU].size;
1009 const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
1010 DeviceState *dev;
1011
1012 if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
1013 return;
1014 }
1015
1016 dev = qdev_create(NULL, "arm-smmuv3");
1017
1018 object_property_set_link(OBJECT(dev), OBJECT(bus), "primary-bus",
1019 &error_abort);
1020 qdev_init_nofail(dev);
1021 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
1022 for (i = 0; i < NUM_SMMU_IRQS; i++) {
1023 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1024 }
1025
1026 node = g_strdup_printf("/smmuv3@%" PRIx64, base);
1027 qemu_fdt_add_subnode(vms->fdt, node);
1028 qemu_fdt_setprop(vms->fdt, node, "compatible", compat, sizeof(compat));
1029 qemu_fdt_setprop_sized_cells(vms->fdt, node, "reg", 2, base, 2, size);
1030
1031 qemu_fdt_setprop_cells(vms->fdt, node, "interrupts",
1032 GIC_FDT_IRQ_TYPE_SPI, irq , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1033 GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1034 GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1035 GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1036
1037 qemu_fdt_setprop(vms->fdt, node, "interrupt-names", irq_names,
1038 sizeof(irq_names));
1039
1040 qemu_fdt_setprop_cell(vms->fdt, node, "clocks", vms->clock_phandle);
1041 qemu_fdt_setprop_string(vms->fdt, node, "clock-names", "apb_pclk");
1042 qemu_fdt_setprop(vms->fdt, node, "dma-coherent", NULL, 0);
1043
1044 qemu_fdt_setprop_cell(vms->fdt, node, "#iommu-cells", 1);
1045
1046 qemu_fdt_setprop_cell(vms->fdt, node, "phandle", vms->iommu_phandle);
1047 g_free(node);
1048 }
1049
1050 static void create_pcie(VirtMachineState *vms, qemu_irq *pic)
1051 {
1052 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1053 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
1054 hwaddr base_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].base;
1055 hwaddr size_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].size;
1056 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1057 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
1058 hwaddr base_ecam, size_ecam;
1059 hwaddr base = base_mmio;
1060 int nr_pcie_buses;
1061 int irq = vms->irqmap[VIRT_PCIE];
1062 MemoryRegion *mmio_alias;
1063 MemoryRegion *mmio_reg;
1064 MemoryRegion *ecam_alias;
1065 MemoryRegion *ecam_reg;
1066 DeviceState *dev;
1067 char *nodename;
1068 int i, ecam_id;
1069 PCIHostState *pci;
1070
1071 dev = qdev_create(NULL, TYPE_GPEX_HOST);
1072 qdev_init_nofail(dev);
1073
1074 ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
1075 base_ecam = vms->memmap[ecam_id].base;
1076 size_ecam = vms->memmap[ecam_id].size;
1077 nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
1078 /* Map only the first size_ecam bytes of ECAM space */
1079 ecam_alias = g_new0(MemoryRegion, 1);
1080 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1081 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1082 ecam_reg, 0, size_ecam);
1083 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1084
1085 /* Map the MMIO window into system address space so as to expose
1086 * the section of PCI MMIO space which starts at the same base address
1087 * (ie 1:1 mapping for that part of PCI MMIO space visible through
1088 * the window).
1089 */
1090 mmio_alias = g_new0(MemoryRegion, 1);
1091 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1092 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1093 mmio_reg, base_mmio, size_mmio);
1094 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1095
1096 if (vms->highmem) {
1097 /* Map high MMIO space */
1098 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1099
1100 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1101 mmio_reg, base_mmio_high, size_mmio_high);
1102 memory_region_add_subregion(get_system_memory(), base_mmio_high,
1103 high_mmio_alias);
1104 }
1105
1106 /* Map IO port space */
1107 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1108
1109 for (i = 0; i < GPEX_NUM_IRQS; i++) {
1110 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1111 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
1112 }
1113
1114 pci = PCI_HOST_BRIDGE(dev);
1115 if (pci->bus) {
1116 for (i = 0; i < nb_nics; i++) {
1117 NICInfo *nd = &nd_table[i];
1118
1119 if (!nd->model) {
1120 nd->model = g_strdup("virtio");
1121 }
1122
1123 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1124 }
1125 }
1126
1127 nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1128 qemu_fdt_add_subnode(vms->fdt, nodename);
1129 qemu_fdt_setprop_string(vms->fdt, nodename,
1130 "compatible", "pci-host-ecam-generic");
1131 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci");
1132 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3);
1133 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2);
1134 qemu_fdt_setprop_cell(vms->fdt, nodename, "linux,pci-domain", 0);
1135 qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0,
1136 nr_pcie_buses - 1);
1137 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1138
1139 if (vms->msi_phandle) {
1140 qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent",
1141 vms->msi_phandle);
1142 }
1143
1144 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1145 2, base_ecam, 2, size_ecam);
1146
1147 if (vms->highmem) {
1148 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1149 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1150 2, base_pio, 2, size_pio,
1151 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1152 2, base_mmio, 2, size_mmio,
1153 1, FDT_PCI_RANGE_MMIO_64BIT,
1154 2, base_mmio_high,
1155 2, base_mmio_high, 2, size_mmio_high);
1156 } else {
1157 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1158 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1159 2, base_pio, 2, size_pio,
1160 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1161 2, base_mmio, 2, size_mmio);
1162 }
1163
1164 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1);
1165 create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename);
1166
1167 if (vms->iommu) {
1168 vms->iommu_phandle = qemu_fdt_alloc_phandle(vms->fdt);
1169
1170 create_smmu(vms, pic, pci->bus);
1171
1172 qemu_fdt_setprop_cells(vms->fdt, nodename, "iommu-map",
1173 0x0, vms->iommu_phandle, 0x0, 0x10000);
1174 }
1175
1176 g_free(nodename);
1177 }
1178
1179 static void create_platform_bus(VirtMachineState *vms, qemu_irq *pic)
1180 {
1181 DeviceState *dev;
1182 SysBusDevice *s;
1183 int i;
1184 MemoryRegion *sysmem = get_system_memory();
1185
1186 dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
1187 dev->id = TYPE_PLATFORM_BUS_DEVICE;
1188 qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
1189 qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
1190 qdev_init_nofail(dev);
1191 vms->platform_bus_dev = dev;
1192
1193 s = SYS_BUS_DEVICE(dev);
1194 for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
1195 int irqn = vms->irqmap[VIRT_PLATFORM_BUS] + i;
1196 sysbus_connect_irq(s, i, pic[irqn]);
1197 }
1198
1199 memory_region_add_subregion(sysmem,
1200 vms->memmap[VIRT_PLATFORM_BUS].base,
1201 sysbus_mmio_get_region(s, 0));
1202 }
1203
1204 static void create_secure_ram(VirtMachineState *vms,
1205 MemoryRegion *secure_sysmem)
1206 {
1207 MemoryRegion *secram = g_new(MemoryRegion, 1);
1208 char *nodename;
1209 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1210 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1211
1212 memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1213 &error_fatal);
1214 memory_region_add_subregion(secure_sysmem, base, secram);
1215
1216 nodename = g_strdup_printf("/secram@%" PRIx64, base);
1217 qemu_fdt_add_subnode(vms->fdt, nodename);
1218 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory");
1219 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size);
1220 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
1221 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
1222
1223 g_free(nodename);
1224 }
1225
1226 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1227 {
1228 const VirtMachineState *board = container_of(binfo, VirtMachineState,
1229 bootinfo);
1230
1231 *fdt_size = board->fdt_size;
1232 return board->fdt;
1233 }
1234
1235 static void virt_build_smbios(VirtMachineState *vms)
1236 {
1237 MachineClass *mc = MACHINE_GET_CLASS(vms);
1238 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1239 uint8_t *smbios_tables, *smbios_anchor;
1240 size_t smbios_tables_len, smbios_anchor_len;
1241 const char *product = "QEMU Virtual Machine";
1242
1243 if (!vms->fw_cfg) {
1244 return;
1245 }
1246
1247 if (kvm_enabled()) {
1248 product = "KVM Virtual Machine";
1249 }
1250
1251 smbios_set_defaults("QEMU", product,
1252 vmc->smbios_old_sys_ver ? "1.0" : mc->name, false,
1253 true, SMBIOS_ENTRY_POINT_30);
1254
1255 smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len,
1256 &smbios_anchor, &smbios_anchor_len);
1257
1258 if (smbios_anchor) {
1259 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1260 smbios_tables, smbios_tables_len);
1261 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1262 smbios_anchor, smbios_anchor_len);
1263 }
1264 }
1265
1266 static
1267 void virt_machine_done(Notifier *notifier, void *data)
1268 {
1269 VirtMachineState *vms = container_of(notifier, VirtMachineState,
1270 machine_done);
1271 ARMCPU *cpu = ARM_CPU(first_cpu);
1272 struct arm_boot_info *info = &vms->bootinfo;
1273 AddressSpace *as = arm_boot_address_space(cpu, info);
1274
1275 /*
1276 * If the user provided a dtb, we assume the dynamic sysbus nodes
1277 * already are integrated there. This corresponds to a use case where
1278 * the dynamic sysbus nodes are complex and their generation is not yet
1279 * supported. In that case the user can take charge of the guest dt
1280 * while qemu takes charge of the qom stuff.
1281 */
1282 if (info->dtb_filename == NULL) {
1283 platform_bus_add_all_fdt_nodes(vms->fdt, "/intc",
1284 vms->memmap[VIRT_PLATFORM_BUS].base,
1285 vms->memmap[VIRT_PLATFORM_BUS].size,
1286 vms->irqmap[VIRT_PLATFORM_BUS]);
1287 }
1288 if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as) < 0) {
1289 exit(1);
1290 }
1291
1292 virt_acpi_setup(vms);
1293 virt_build_smbios(vms);
1294 }
1295
1296 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1297 {
1298 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1299 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1300
1301 if (!vmc->disallow_affinity_adjustment) {
1302 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1303 * GIC's target-list limitations. 32-bit KVM hosts currently
1304 * always create clusters of 4 CPUs, but that is expected to
1305 * change when they gain support for gicv3. When KVM is enabled
1306 * it will override the changes we make here, therefore our
1307 * purposes are to make TCG consistent (with 64-bit KVM hosts)
1308 * and to improve SGI efficiency.
1309 */
1310 if (vms->gic_version == 3) {
1311 clustersz = GICV3_TARGETLIST_BITS;
1312 } else {
1313 clustersz = GIC_TARGETLIST_BITS;
1314 }
1315 }
1316 return arm_cpu_mp_affinity(idx, clustersz);
1317 }
1318
1319 static void machvirt_init(MachineState *machine)
1320 {
1321 VirtMachineState *vms = VIRT_MACHINE(machine);
1322 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
1323 MachineClass *mc = MACHINE_GET_CLASS(machine);
1324 const CPUArchIdList *possible_cpus;
1325 qemu_irq pic[NUM_IRQS];
1326 MemoryRegion *sysmem = get_system_memory();
1327 MemoryRegion *secure_sysmem = NULL;
1328 int n, virt_max_cpus;
1329 MemoryRegion *ram = g_new(MemoryRegion, 1);
1330 bool firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0);
1331 bool aarch64 = true;
1332
1333 /* We can probe only here because during property set
1334 * KVM is not available yet
1335 */
1336 if (vms->gic_version <= 0) {
1337 /* "host" or "max" */
1338 if (!kvm_enabled()) {
1339 if (vms->gic_version == 0) {
1340 error_report("gic-version=host requires KVM");
1341 exit(1);
1342 } else {
1343 /* "max": currently means 3 for TCG */
1344 vms->gic_version = 3;
1345 }
1346 } else {
1347 vms->gic_version = kvm_arm_vgic_probe();
1348 if (!vms->gic_version) {
1349 error_report(
1350 "Unable to determine GIC version supported by host");
1351 exit(1);
1352 }
1353 }
1354 }
1355
1356 if (!cpu_type_valid(machine->cpu_type)) {
1357 error_report("mach-virt: CPU type %s not supported", machine->cpu_type);
1358 exit(1);
1359 }
1360
1361 /* If we have an EL3 boot ROM then the assumption is that it will
1362 * implement PSCI itself, so disable QEMU's internal implementation
1363 * so it doesn't get in the way. Instead of starting secondary
1364 * CPUs in PSCI powerdown state we will start them all running and
1365 * let the boot ROM sort them out.
1366 * The usual case is that we do use QEMU's PSCI implementation;
1367 * if the guest has EL2 then we will use SMC as the conduit,
1368 * and otherwise we will use HVC (for backwards compatibility and
1369 * because if we're using KVM then we must use HVC).
1370 */
1371 if (vms->secure && firmware_loaded) {
1372 vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
1373 } else if (vms->virt) {
1374 vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
1375 } else {
1376 vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
1377 }
1378
1379 /* The maximum number of CPUs depends on the GIC version, or on how
1380 * many redistributors we can fit into the memory map.
1381 */
1382 if (vms->gic_version == 3) {
1383 virt_max_cpus = vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
1384 virt_max_cpus += vms->memmap[VIRT_GIC_REDIST2].size / GICV3_REDIST_SIZE;
1385 } else {
1386 virt_max_cpus = GIC_NCPU;
1387 }
1388
1389 if (max_cpus > virt_max_cpus) {
1390 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1391 "supported by machine 'mach-virt' (%d)",
1392 max_cpus, virt_max_cpus);
1393 exit(1);
1394 }
1395
1396 vms->smp_cpus = smp_cpus;
1397
1398 if (machine->ram_size > vms->memmap[VIRT_MEM].size) {
1399 error_report("mach-virt: cannot model more than %dGB RAM", RAMLIMIT_GB);
1400 exit(1);
1401 }
1402
1403 if (vms->virt && kvm_enabled()) {
1404 error_report("mach-virt: KVM does not support providing "
1405 "Virtualization extensions to the guest CPU");
1406 exit(1);
1407 }
1408
1409 if (vms->secure) {
1410 if (kvm_enabled()) {
1411 error_report("mach-virt: KVM does not support Security extensions");
1412 exit(1);
1413 }
1414
1415 /* The Secure view of the world is the same as the NonSecure,
1416 * but with a few extra devices. Create it as a container region
1417 * containing the system memory at low priority; any secure-only
1418 * devices go in at higher priority and take precedence.
1419 */
1420 secure_sysmem = g_new(MemoryRegion, 1);
1421 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1422 UINT64_MAX);
1423 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1424 }
1425
1426 create_fdt(vms);
1427
1428 possible_cpus = mc->possible_cpu_arch_ids(machine);
1429 for (n = 0; n < possible_cpus->len; n++) {
1430 Object *cpuobj;
1431 CPUState *cs;
1432
1433 if (n >= smp_cpus) {
1434 break;
1435 }
1436
1437 cpuobj = object_new(possible_cpus->cpus[n].type);
1438 object_property_set_int(cpuobj, possible_cpus->cpus[n].arch_id,
1439 "mp-affinity", NULL);
1440
1441 cs = CPU(cpuobj);
1442 cs->cpu_index = n;
1443
1444 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
1445 &error_fatal);
1446
1447 aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
1448
1449 if (!vms->secure) {
1450 object_property_set_bool(cpuobj, false, "has_el3", NULL);
1451 }
1452
1453 if (!vms->virt && object_property_find(cpuobj, "has_el2", NULL)) {
1454 object_property_set_bool(cpuobj, false, "has_el2", NULL);
1455 }
1456
1457 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
1458 object_property_set_int(cpuobj, vms->psci_conduit,
1459 "psci-conduit", NULL);
1460
1461 /* Secondary CPUs start in PSCI powered-down state */
1462 if (n > 0) {
1463 object_property_set_bool(cpuobj, true,
1464 "start-powered-off", NULL);
1465 }
1466 }
1467
1468 if (vmc->no_pmu && object_property_find(cpuobj, "pmu", NULL)) {
1469 object_property_set_bool(cpuobj, false, "pmu", NULL);
1470 }
1471
1472 if (object_property_find(cpuobj, "reset-cbar", NULL)) {
1473 object_property_set_int(cpuobj, vms->memmap[VIRT_CPUPERIPHS].base,
1474 "reset-cbar", &error_abort);
1475 }
1476
1477 object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
1478 &error_abort);
1479 if (vms->secure) {
1480 object_property_set_link(cpuobj, OBJECT(secure_sysmem),
1481 "secure-memory", &error_abort);
1482 }
1483
1484 object_property_set_bool(cpuobj, true, "realized", &error_fatal);
1485 object_unref(cpuobj);
1486 }
1487 fdt_add_timer_nodes(vms);
1488 fdt_add_cpu_nodes(vms);
1489
1490 memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
1491 machine->ram_size);
1492 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, ram);
1493
1494 create_flash(vms, sysmem, secure_sysmem ? secure_sysmem : sysmem);
1495
1496 create_gic(vms, pic);
1497
1498 fdt_add_pmu_nodes(vms);
1499
1500 create_uart(vms, pic, VIRT_UART, sysmem, serial_hd(0));
1501
1502 if (vms->secure) {
1503 create_secure_ram(vms, secure_sysmem);
1504 create_uart(vms, pic, VIRT_SECURE_UART, secure_sysmem, serial_hd(1));
1505 }
1506
1507 vms->highmem_ecam &= vms->highmem && (!firmware_loaded || aarch64);
1508
1509 create_rtc(vms, pic);
1510
1511 create_pcie(vms, pic);
1512
1513 create_gpio(vms, pic);
1514
1515 /* Create mmio transports, so the user can create virtio backends
1516 * (which will be automatically plugged in to the transports). If
1517 * no backend is created the transport will just sit harmlessly idle.
1518 */
1519 create_virtio_devices(vms, pic);
1520
1521 vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
1522 rom_set_fw(vms->fw_cfg);
1523
1524 create_platform_bus(vms, pic);
1525
1526 vms->bootinfo.ram_size = machine->ram_size;
1527 vms->bootinfo.kernel_filename = machine->kernel_filename;
1528 vms->bootinfo.kernel_cmdline = machine->kernel_cmdline;
1529 vms->bootinfo.initrd_filename = machine->initrd_filename;
1530 vms->bootinfo.nb_cpus = smp_cpus;
1531 vms->bootinfo.board_id = -1;
1532 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
1533 vms->bootinfo.get_dtb = machvirt_dtb;
1534 vms->bootinfo.skip_dtb_autoload = true;
1535 vms->bootinfo.firmware_loaded = firmware_loaded;
1536 arm_load_kernel(ARM_CPU(first_cpu), &vms->bootinfo);
1537
1538 vms->machine_done.notify = virt_machine_done;
1539 qemu_add_machine_init_done_notifier(&vms->machine_done);
1540 }
1541
1542 static bool virt_get_secure(Object *obj, Error **errp)
1543 {
1544 VirtMachineState *vms = VIRT_MACHINE(obj);
1545
1546 return vms->secure;
1547 }
1548
1549 static void virt_set_secure(Object *obj, bool value, Error **errp)
1550 {
1551 VirtMachineState *vms = VIRT_MACHINE(obj);
1552
1553 vms->secure = value;
1554 }
1555
1556 static bool virt_get_virt(Object *obj, Error **errp)
1557 {
1558 VirtMachineState *vms = VIRT_MACHINE(obj);
1559
1560 return vms->virt;
1561 }
1562
1563 static void virt_set_virt(Object *obj, bool value, Error **errp)
1564 {
1565 VirtMachineState *vms = VIRT_MACHINE(obj);
1566
1567 vms->virt = value;
1568 }
1569
1570 static bool virt_get_highmem(Object *obj, Error **errp)
1571 {
1572 VirtMachineState *vms = VIRT_MACHINE(obj);
1573
1574 return vms->highmem;
1575 }
1576
1577 static void virt_set_highmem(Object *obj, bool value, Error **errp)
1578 {
1579 VirtMachineState *vms = VIRT_MACHINE(obj);
1580
1581 vms->highmem = value;
1582 }
1583
1584 static bool virt_get_its(Object *obj, Error **errp)
1585 {
1586 VirtMachineState *vms = VIRT_MACHINE(obj);
1587
1588 return vms->its;
1589 }
1590
1591 static void virt_set_its(Object *obj, bool value, Error **errp)
1592 {
1593 VirtMachineState *vms = VIRT_MACHINE(obj);
1594
1595 vms->its = value;
1596 }
1597
1598 static char *virt_get_gic_version(Object *obj, Error **errp)
1599 {
1600 VirtMachineState *vms = VIRT_MACHINE(obj);
1601 const char *val = vms->gic_version == 3 ? "3" : "2";
1602
1603 return g_strdup(val);
1604 }
1605
1606 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
1607 {
1608 VirtMachineState *vms = VIRT_MACHINE(obj);
1609
1610 if (!strcmp(value, "3")) {
1611 vms->gic_version = 3;
1612 } else if (!strcmp(value, "2")) {
1613 vms->gic_version = 2;
1614 } else if (!strcmp(value, "host")) {
1615 vms->gic_version = 0; /* Will probe later */
1616 } else if (!strcmp(value, "max")) {
1617 vms->gic_version = -1; /* Will probe later */
1618 } else {
1619 error_setg(errp, "Invalid gic-version value");
1620 error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
1621 }
1622 }
1623
1624 static char *virt_get_iommu(Object *obj, Error **errp)
1625 {
1626 VirtMachineState *vms = VIRT_MACHINE(obj);
1627
1628 switch (vms->iommu) {
1629 case VIRT_IOMMU_NONE:
1630 return g_strdup("none");
1631 case VIRT_IOMMU_SMMUV3:
1632 return g_strdup("smmuv3");
1633 default:
1634 g_assert_not_reached();
1635 }
1636 }
1637
1638 static void virt_set_iommu(Object *obj, const char *value, Error **errp)
1639 {
1640 VirtMachineState *vms = VIRT_MACHINE(obj);
1641
1642 if (!strcmp(value, "smmuv3")) {
1643 vms->iommu = VIRT_IOMMU_SMMUV3;
1644 } else if (!strcmp(value, "none")) {
1645 vms->iommu = VIRT_IOMMU_NONE;
1646 } else {
1647 error_setg(errp, "Invalid iommu value");
1648 error_append_hint(errp, "Valid values are none, smmuv3.\n");
1649 }
1650 }
1651
1652 static CpuInstanceProperties
1653 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
1654 {
1655 MachineClass *mc = MACHINE_GET_CLASS(ms);
1656 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
1657
1658 assert(cpu_index < possible_cpus->len);
1659 return possible_cpus->cpus[cpu_index].props;
1660 }
1661
1662 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
1663 {
1664 return idx % nb_numa_nodes;
1665 }
1666
1667 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
1668 {
1669 int n;
1670 VirtMachineState *vms = VIRT_MACHINE(ms);
1671
1672 if (ms->possible_cpus) {
1673 assert(ms->possible_cpus->len == max_cpus);
1674 return ms->possible_cpus;
1675 }
1676
1677 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
1678 sizeof(CPUArchId) * max_cpus);
1679 ms->possible_cpus->len = max_cpus;
1680 for (n = 0; n < ms->possible_cpus->len; n++) {
1681 ms->possible_cpus->cpus[n].type = ms->cpu_type;
1682 ms->possible_cpus->cpus[n].arch_id =
1683 virt_cpu_mp_affinity(vms, n);
1684 ms->possible_cpus->cpus[n].props.has_thread_id = true;
1685 ms->possible_cpus->cpus[n].props.thread_id = n;
1686 }
1687 return ms->possible_cpus;
1688 }
1689
1690 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
1691 DeviceState *dev, Error **errp)
1692 {
1693 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
1694
1695 if (vms->platform_bus_dev) {
1696 if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) {
1697 platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
1698 SYS_BUS_DEVICE(dev));
1699 }
1700 }
1701 }
1702
1703 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
1704 DeviceState *dev)
1705 {
1706 if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) {
1707 return HOTPLUG_HANDLER(machine);
1708 }
1709
1710 return NULL;
1711 }
1712
1713 static void virt_machine_class_init(ObjectClass *oc, void *data)
1714 {
1715 MachineClass *mc = MACHINE_CLASS(oc);
1716 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
1717
1718 mc->init = machvirt_init;
1719 /* Start with max_cpus set to 512, which is the maximum supported by KVM.
1720 * The value may be reduced later when we have more information about the
1721 * configuration of the particular instance.
1722 */
1723 mc->max_cpus = 512;
1724 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
1725 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
1726 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
1727 mc->block_default_type = IF_VIRTIO;
1728 mc->no_cdrom = 1;
1729 mc->pci_allow_0_address = true;
1730 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
1731 mc->minimum_page_bits = 12;
1732 mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
1733 mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
1734 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
1735 mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
1736 assert(!mc->get_hotplug_handler);
1737 mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
1738 hc->plug = virt_machine_device_plug_cb;
1739 }
1740
1741 static const TypeInfo virt_machine_info = {
1742 .name = TYPE_VIRT_MACHINE,
1743 .parent = TYPE_MACHINE,
1744 .abstract = true,
1745 .instance_size = sizeof(VirtMachineState),
1746 .class_size = sizeof(VirtMachineClass),
1747 .class_init = virt_machine_class_init,
1748 .interfaces = (InterfaceInfo[]) {
1749 { TYPE_HOTPLUG_HANDLER },
1750 { }
1751 },
1752 };
1753
1754 static void machvirt_machine_init(void)
1755 {
1756 type_register_static(&virt_machine_info);
1757 }
1758 type_init(machvirt_machine_init);
1759
1760 #define VIRT_COMPAT_2_12 \
1761 HW_COMPAT_2_12
1762
1763 static void virt_3_0_instance_init(Object *obj)
1764 {
1765 VirtMachineState *vms = VIRT_MACHINE(obj);
1766 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1767
1768 /* EL3 is disabled by default on virt: this makes us consistent
1769 * between KVM and TCG for this board, and it also allows us to
1770 * boot UEFI blobs which assume no TrustZone support.
1771 */
1772 vms->secure = false;
1773 object_property_add_bool(obj, "secure", virt_get_secure,
1774 virt_set_secure, NULL);
1775 object_property_set_description(obj, "secure",
1776 "Set on/off to enable/disable the ARM "
1777 "Security Extensions (TrustZone)",
1778 NULL);
1779
1780 /* EL2 is also disabled by default, for similar reasons */
1781 vms->virt = false;
1782 object_property_add_bool(obj, "virtualization", virt_get_virt,
1783 virt_set_virt, NULL);
1784 object_property_set_description(obj, "virtualization",
1785 "Set on/off to enable/disable emulating a "
1786 "guest CPU which implements the ARM "
1787 "Virtualization Extensions",
1788 NULL);
1789
1790 /* High memory is enabled by default */
1791 vms->highmem = true;
1792 object_property_add_bool(obj, "highmem", virt_get_highmem,
1793 virt_set_highmem, NULL);
1794 object_property_set_description(obj, "highmem",
1795 "Set on/off to enable/disable using "
1796 "physical address space above 32 bits",
1797 NULL);
1798 /* Default GIC type is v2 */
1799 vms->gic_version = 2;
1800 object_property_add_str(obj, "gic-version", virt_get_gic_version,
1801 virt_set_gic_version, NULL);
1802 object_property_set_description(obj, "gic-version",
1803 "Set GIC version. "
1804 "Valid values are 2, 3 and host", NULL);
1805
1806 vms->highmem_ecam = !vmc->no_highmem_ecam;
1807
1808 if (vmc->no_its) {
1809 vms->its = false;
1810 } else {
1811 /* Default allows ITS instantiation */
1812 vms->its = true;
1813 object_property_add_bool(obj, "its", virt_get_its,
1814 virt_set_its, NULL);
1815 object_property_set_description(obj, "its",
1816 "Set on/off to enable/disable "
1817 "ITS instantiation",
1818 NULL);
1819 }
1820
1821 /* Default disallows iommu instantiation */
1822 vms->iommu = VIRT_IOMMU_NONE;
1823 object_property_add_str(obj, "iommu", virt_get_iommu, virt_set_iommu, NULL);
1824 object_property_set_description(obj, "iommu",
1825 "Set the IOMMU type. "
1826 "Valid values are none and smmuv3",
1827 NULL);
1828
1829 vms->memmap = a15memmap;
1830 vms->irqmap = a15irqmap;
1831 }
1832
1833 static void virt_machine_3_0_options(MachineClass *mc)
1834 {
1835 }
1836 DEFINE_VIRT_MACHINE_AS_LATEST(3, 0)
1837
1838 static void virt_2_12_instance_init(Object *obj)
1839 {
1840 virt_3_0_instance_init(obj);
1841 }
1842
1843 static void virt_machine_2_12_options(MachineClass *mc)
1844 {
1845 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1846
1847 virt_machine_3_0_options(mc);
1848 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_12);
1849 vmc->no_highmem_ecam = true;
1850 mc->max_cpus = 255;
1851 }
1852 DEFINE_VIRT_MACHINE(2, 12)
1853
1854 #define VIRT_COMPAT_2_11 \
1855 HW_COMPAT_2_11
1856
1857 static void virt_2_11_instance_init(Object *obj)
1858 {
1859 virt_2_12_instance_init(obj);
1860 }
1861
1862 static void virt_machine_2_11_options(MachineClass *mc)
1863 {
1864 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1865
1866 virt_machine_2_12_options(mc);
1867 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_11);
1868 vmc->smbios_old_sys_ver = true;
1869 }
1870 DEFINE_VIRT_MACHINE(2, 11)
1871
1872 #define VIRT_COMPAT_2_10 \
1873 HW_COMPAT_2_10
1874
1875 static void virt_2_10_instance_init(Object *obj)
1876 {
1877 virt_2_11_instance_init(obj);
1878 }
1879
1880 static void virt_machine_2_10_options(MachineClass *mc)
1881 {
1882 virt_machine_2_11_options(mc);
1883 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_10);
1884 }
1885 DEFINE_VIRT_MACHINE(2, 10)
1886
1887 #define VIRT_COMPAT_2_9 \
1888 HW_COMPAT_2_9
1889
1890 static void virt_2_9_instance_init(Object *obj)
1891 {
1892 virt_2_10_instance_init(obj);
1893 }
1894
1895 static void virt_machine_2_9_options(MachineClass *mc)
1896 {
1897 virt_machine_2_10_options(mc);
1898 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_9);
1899 }
1900 DEFINE_VIRT_MACHINE(2, 9)
1901
1902 #define VIRT_COMPAT_2_8 \
1903 HW_COMPAT_2_8
1904
1905 static void virt_2_8_instance_init(Object *obj)
1906 {
1907 virt_2_9_instance_init(obj);
1908 }
1909
1910 static void virt_machine_2_8_options(MachineClass *mc)
1911 {
1912 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1913
1914 virt_machine_2_9_options(mc);
1915 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_8);
1916 /* For 2.8 and earlier we falsely claimed in the DT that
1917 * our timers were edge-triggered, not level-triggered.
1918 */
1919 vmc->claim_edge_triggered_timers = true;
1920 }
1921 DEFINE_VIRT_MACHINE(2, 8)
1922
1923 #define VIRT_COMPAT_2_7 \
1924 HW_COMPAT_2_7
1925
1926 static void virt_2_7_instance_init(Object *obj)
1927 {
1928 virt_2_8_instance_init(obj);
1929 }
1930
1931 static void virt_machine_2_7_options(MachineClass *mc)
1932 {
1933 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1934
1935 virt_machine_2_8_options(mc);
1936 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_7);
1937 /* ITS was introduced with 2.8 */
1938 vmc->no_its = true;
1939 /* Stick with 1K pages for migration compatibility */
1940 mc->minimum_page_bits = 0;
1941 }
1942 DEFINE_VIRT_MACHINE(2, 7)
1943
1944 #define VIRT_COMPAT_2_6 \
1945 HW_COMPAT_2_6
1946
1947 static void virt_2_6_instance_init(Object *obj)
1948 {
1949 virt_2_7_instance_init(obj);
1950 }
1951
1952 static void virt_machine_2_6_options(MachineClass *mc)
1953 {
1954 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1955
1956 virt_machine_2_7_options(mc);
1957 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_6);
1958 vmc->disallow_affinity_adjustment = true;
1959 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
1960 vmc->no_pmu = true;
1961 }
1962 DEFINE_VIRT_MACHINE(2, 6)