]> git.proxmox.com Git - mirror_qemu.git/blob - hw/arm/virt.c
hw/arm/virt: Realize ARM_GICV2M sysbus device before accessing it
[mirror_qemu.git] / hw / arm / virt.c
1 /*
2 * ARM mach-virt emulation
3 *
4 * Copyright (c) 2013 Linaro Limited
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
17 *
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
29 */
30
31 #include "qemu/osdep.h"
32 #include "qemu/datadir.h"
33 #include "qemu/units.h"
34 #include "qemu/option.h"
35 #include "monitor/qdev.h"
36 #include "hw/sysbus.h"
37 #include "hw/arm/boot.h"
38 #include "hw/arm/primecell.h"
39 #include "hw/arm/virt.h"
40 #include "hw/block/flash.h"
41 #include "hw/vfio/vfio-calxeda-xgmac.h"
42 #include "hw/vfio/vfio-amd-xgbe.h"
43 #include "hw/display/ramfb.h"
44 #include "net/net.h"
45 #include "sysemu/device_tree.h"
46 #include "sysemu/numa.h"
47 #include "sysemu/runstate.h"
48 #include "sysemu/tpm.h"
49 #include "sysemu/tcg.h"
50 #include "sysemu/kvm.h"
51 #include "sysemu/hvf.h"
52 #include "sysemu/qtest.h"
53 #include "hw/loader.h"
54 #include "qapi/error.h"
55 #include "qemu/bitops.h"
56 #include "qemu/error-report.h"
57 #include "qemu/module.h"
58 #include "hw/pci-host/gpex.h"
59 #include "hw/virtio/virtio-pci.h"
60 #include "hw/core/sysbus-fdt.h"
61 #include "hw/platform-bus.h"
62 #include "hw/qdev-properties.h"
63 #include "hw/arm/fdt.h"
64 #include "hw/intc/arm_gic.h"
65 #include "hw/intc/arm_gicv3_common.h"
66 #include "hw/intc/arm_gicv3_its_common.h"
67 #include "hw/irq.h"
68 #include "kvm_arm.h"
69 #include "hw/firmware/smbios.h"
70 #include "qapi/visitor.h"
71 #include "qapi/qapi-visit-common.h"
72 #include "standard-headers/linux/input.h"
73 #include "hw/arm/smmuv3.h"
74 #include "hw/acpi/acpi.h"
75 #include "target/arm/internals.h"
76 #include "hw/mem/pc-dimm.h"
77 #include "hw/mem/nvdimm.h"
78 #include "hw/acpi/generic_event_device.h"
79 #include "hw/virtio/virtio-md-pci.h"
80 #include "hw/virtio/virtio-iommu.h"
81 #include "hw/char/pl011.h"
82 #include "qemu/guest-random.h"
83
84 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
85 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
86 void *data) \
87 { \
88 MachineClass *mc = MACHINE_CLASS(oc); \
89 virt_machine_##major##_##minor##_options(mc); \
90 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
91 if (latest) { \
92 mc->alias = "virt"; \
93 } \
94 } \
95 static const TypeInfo machvirt_##major##_##minor##_info = { \
96 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
97 .parent = TYPE_VIRT_MACHINE, \
98 .class_init = virt_##major##_##minor##_class_init, \
99 }; \
100 static void machvirt_machine_##major##_##minor##_init(void) \
101 { \
102 type_register_static(&machvirt_##major##_##minor##_info); \
103 } \
104 type_init(machvirt_machine_##major##_##minor##_init);
105
106 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
107 DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
108 #define DEFINE_VIRT_MACHINE(major, minor) \
109 DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
110
111
112 /* Number of external interrupt lines to configure the GIC with */
113 #define NUM_IRQS 256
114
115 #define PLATFORM_BUS_NUM_IRQS 64
116
117 /* Legacy RAM limit in GB (< version 4.0) */
118 #define LEGACY_RAMLIMIT_GB 255
119 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB)
120
121 /* Addresses and sizes of our components.
122 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
123 * 128MB..256MB is used for miscellaneous device I/O.
124 * 256MB..1GB is reserved for possible future PCI support (ie where the
125 * PCI memory window will go if we add a PCI host controller).
126 * 1GB and up is RAM (which may happily spill over into the
127 * high memory region beyond 4GB).
128 * This represents a compromise between how much RAM can be given to
129 * a 32 bit VM and leaving space for expansion and in particular for PCI.
130 * Note that devices should generally be placed at multiples of 0x10000,
131 * to accommodate guests using 64K pages.
132 */
133 static const MemMapEntry base_memmap[] = {
134 /* Space up to 0x8000000 is reserved for a boot ROM */
135 [VIRT_FLASH] = { 0, 0x08000000 },
136 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
137 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
138 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
139 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
140 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 },
141 [VIRT_GIC_HYP] = { 0x08030000, 0x00010000 },
142 [VIRT_GIC_VCPU] = { 0x08040000, 0x00010000 },
143 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
144 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 },
145 /* This redistributor space allows up to 2*64kB*123 CPUs */
146 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 },
147 [VIRT_UART] = { 0x09000000, 0x00001000 },
148 [VIRT_RTC] = { 0x09010000, 0x00001000 },
149 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 },
150 [VIRT_GPIO] = { 0x09030000, 0x00001000 },
151 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 },
152 [VIRT_SMMU] = { 0x09050000, 0x00020000 },
153 [VIRT_PCDIMM_ACPI] = { 0x09070000, MEMORY_HOTPLUG_IO_LEN },
154 [VIRT_ACPI_GED] = { 0x09080000, ACPI_GED_EVT_SEL_LEN },
155 [VIRT_NVDIMM_ACPI] = { 0x09090000, NVDIMM_ACPI_IO_LEN},
156 [VIRT_PVTIME] = { 0x090a0000, 0x00010000 },
157 [VIRT_SECURE_GPIO] = { 0x090b0000, 0x00001000 },
158 [VIRT_MMIO] = { 0x0a000000, 0x00000200 },
159 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
160 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 },
161 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 },
162 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 },
163 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 },
164 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 },
165 /* Actual RAM size depends on initial RAM and device memory settings */
166 [VIRT_MEM] = { GiB, LEGACY_RAMLIMIT_BYTES },
167 };
168
169 /*
170 * Highmem IO Regions: This memory map is floating, located after the RAM.
171 * Each MemMapEntry base (GPA) will be dynamically computed, depending on the
172 * top of the RAM, so that its base get the same alignment as the size,
173 * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is
174 * less than 256GiB of RAM, the floating area starts at the 256GiB mark.
175 * Note the extended_memmap is sized so that it eventually also includes the
176 * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last
177 * index of base_memmap).
178 *
179 * The memory map for these Highmem IO Regions can be in legacy or compact
180 * layout, depending on 'compact-highmem' property. With legacy layout, the
181 * PA space for one specific region is always reserved, even if the region
182 * has been disabled or doesn't fit into the PA space. However, the PA space
183 * for the region won't be reserved in these circumstances with compact layout.
184 */
185 static MemMapEntry extended_memmap[] = {
186 /* Additional 64 MB redist region (can contain up to 512 redistributors) */
187 [VIRT_HIGH_GIC_REDIST2] = { 0x0, 64 * MiB },
188 [VIRT_HIGH_PCIE_ECAM] = { 0x0, 256 * MiB },
189 /* Second PCIe window */
190 [VIRT_HIGH_PCIE_MMIO] = { 0x0, 512 * GiB },
191 };
192
193 static const int a15irqmap[] = {
194 [VIRT_UART] = 1,
195 [VIRT_RTC] = 2,
196 [VIRT_PCIE] = 3, /* ... to 6 */
197 [VIRT_GPIO] = 7,
198 [VIRT_SECURE_UART] = 8,
199 [VIRT_ACPI_GED] = 9,
200 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
201 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
202 [VIRT_SMMU] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */
203 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
204 };
205
206 static const char *valid_cpus[] = {
207 #ifdef CONFIG_TCG
208 ARM_CPU_TYPE_NAME("cortex-a7"),
209 ARM_CPU_TYPE_NAME("cortex-a15"),
210 ARM_CPU_TYPE_NAME("cortex-a35"),
211 ARM_CPU_TYPE_NAME("cortex-a55"),
212 ARM_CPU_TYPE_NAME("cortex-a72"),
213 ARM_CPU_TYPE_NAME("cortex-a76"),
214 ARM_CPU_TYPE_NAME("cortex-a710"),
215 ARM_CPU_TYPE_NAME("a64fx"),
216 ARM_CPU_TYPE_NAME("neoverse-n1"),
217 ARM_CPU_TYPE_NAME("neoverse-v1"),
218 #endif
219 ARM_CPU_TYPE_NAME("cortex-a53"),
220 ARM_CPU_TYPE_NAME("cortex-a57"),
221 ARM_CPU_TYPE_NAME("host"),
222 ARM_CPU_TYPE_NAME("max"),
223 };
224
225 static bool cpu_type_valid(const char *cpu)
226 {
227 int i;
228
229 for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
230 if (strcmp(cpu, valid_cpus[i]) == 0) {
231 return true;
232 }
233 }
234 return false;
235 }
236
237 static void create_randomness(MachineState *ms, const char *node)
238 {
239 struct {
240 uint64_t kaslr;
241 uint8_t rng[32];
242 } seed;
243
244 if (qemu_guest_getrandom(&seed, sizeof(seed), NULL)) {
245 return;
246 }
247 qemu_fdt_setprop_u64(ms->fdt, node, "kaslr-seed", seed.kaslr);
248 qemu_fdt_setprop(ms->fdt, node, "rng-seed", seed.rng, sizeof(seed.rng));
249 }
250
251 static void create_fdt(VirtMachineState *vms)
252 {
253 MachineState *ms = MACHINE(vms);
254 int nb_numa_nodes = ms->numa_state->num_nodes;
255 void *fdt = create_device_tree(&vms->fdt_size);
256
257 if (!fdt) {
258 error_report("create_device_tree() failed");
259 exit(1);
260 }
261
262 ms->fdt = fdt;
263
264 /* Header */
265 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
266 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
267 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
268 qemu_fdt_setprop_string(fdt, "/", "model", "linux,dummy-virt");
269
270 /* /chosen must exist for load_dtb to fill in necessary properties later */
271 qemu_fdt_add_subnode(fdt, "/chosen");
272 if (vms->dtb_randomness) {
273 create_randomness(ms, "/chosen");
274 }
275
276 if (vms->secure) {
277 qemu_fdt_add_subnode(fdt, "/secure-chosen");
278 if (vms->dtb_randomness) {
279 create_randomness(ms, "/secure-chosen");
280 }
281 }
282
283 /* Clock node, for the benefit of the UART. The kernel device tree
284 * binding documentation claims the PL011 node clock properties are
285 * optional but in practice if you omit them the kernel refuses to
286 * probe for the device.
287 */
288 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
289 qemu_fdt_add_subnode(fdt, "/apb-pclk");
290 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
291 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
292 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
293 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
294 "clk24mhz");
295 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
296
297 if (nb_numa_nodes > 0 && ms->numa_state->have_numa_distance) {
298 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
299 uint32_t *matrix = g_malloc0(size);
300 int idx, i, j;
301
302 for (i = 0; i < nb_numa_nodes; i++) {
303 for (j = 0; j < nb_numa_nodes; j++) {
304 idx = (i * nb_numa_nodes + j) * 3;
305 matrix[idx + 0] = cpu_to_be32(i);
306 matrix[idx + 1] = cpu_to_be32(j);
307 matrix[idx + 2] =
308 cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
309 }
310 }
311
312 qemu_fdt_add_subnode(fdt, "/distance-map");
313 qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
314 "numa-distance-map-v1");
315 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
316 matrix, size);
317 g_free(matrix);
318 }
319 }
320
321 static void fdt_add_timer_nodes(const VirtMachineState *vms)
322 {
323 /* On real hardware these interrupts are level-triggered.
324 * On KVM they were edge-triggered before host kernel version 4.4,
325 * and level-triggered afterwards.
326 * On emulated QEMU they are level-triggered.
327 *
328 * Getting the DTB info about them wrong is awkward for some
329 * guest kernels:
330 * pre-4.8 ignore the DT and leave the interrupt configured
331 * with whatever the GIC reset value (or the bootloader) left it at
332 * 4.8 before rc6 honour the incorrect data by programming it back
333 * into the GIC, causing problems
334 * 4.8rc6 and later ignore the DT and always write "level triggered"
335 * into the GIC
336 *
337 * For backwards-compatibility, virt-2.8 and earlier will continue
338 * to say these are edge-triggered, but later machines will report
339 * the correct information.
340 */
341 ARMCPU *armcpu;
342 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
343 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
344 MachineState *ms = MACHINE(vms);
345
346 if (vmc->claim_edge_triggered_timers) {
347 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
348 }
349
350 if (vms->gic_version == VIRT_GIC_VERSION_2) {
351 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
352 GIC_FDT_IRQ_PPI_CPU_WIDTH,
353 (1 << MACHINE(vms)->smp.cpus) - 1);
354 }
355
356 qemu_fdt_add_subnode(ms->fdt, "/timer");
357
358 armcpu = ARM_CPU(qemu_get_cpu(0));
359 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
360 const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
361 qemu_fdt_setprop(ms->fdt, "/timer", "compatible",
362 compat, sizeof(compat));
363 } else {
364 qemu_fdt_setprop_string(ms->fdt, "/timer", "compatible",
365 "arm,armv7-timer");
366 }
367 qemu_fdt_setprop(ms->fdt, "/timer", "always-on", NULL, 0);
368 qemu_fdt_setprop_cells(ms->fdt, "/timer", "interrupts",
369 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
370 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
371 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
372 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
373 }
374
375 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
376 {
377 int cpu;
378 int addr_cells = 1;
379 const MachineState *ms = MACHINE(vms);
380 const VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
381 int smp_cpus = ms->smp.cpus;
382
383 /*
384 * See Linux Documentation/devicetree/bindings/arm/cpus.yaml
385 * On ARM v8 64-bit systems value should be set to 2,
386 * that corresponds to the MPIDR_EL1 register size.
387 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
388 * in the system, #address-cells can be set to 1, since
389 * MPIDR_EL1[63:32] bits are not used for CPUs
390 * identification.
391 *
392 * Here we actually don't know whether our system is 32- or 64-bit one.
393 * The simplest way to go is to examine affinity IDs of all our CPUs. If
394 * at least one of them has Aff3 populated, we set #address-cells to 2.
395 */
396 for (cpu = 0; cpu < smp_cpus; cpu++) {
397 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
398
399 if (armcpu->mp_affinity & ARM_AFF3_MASK) {
400 addr_cells = 2;
401 break;
402 }
403 }
404
405 qemu_fdt_add_subnode(ms->fdt, "/cpus");
406 qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#address-cells", addr_cells);
407 qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#size-cells", 0x0);
408
409 for (cpu = smp_cpus - 1; cpu >= 0; cpu--) {
410 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
411 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
412 CPUState *cs = CPU(armcpu);
413
414 qemu_fdt_add_subnode(ms->fdt, nodename);
415 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "cpu");
416 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
417 armcpu->dtb_compatible);
418
419 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED && smp_cpus > 1) {
420 qemu_fdt_setprop_string(ms->fdt, nodename,
421 "enable-method", "psci");
422 }
423
424 if (addr_cells == 2) {
425 qemu_fdt_setprop_u64(ms->fdt, nodename, "reg",
426 armcpu->mp_affinity);
427 } else {
428 qemu_fdt_setprop_cell(ms->fdt, nodename, "reg",
429 armcpu->mp_affinity);
430 }
431
432 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
433 qemu_fdt_setprop_cell(ms->fdt, nodename, "numa-node-id",
434 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
435 }
436
437 if (!vmc->no_cpu_topology) {
438 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle",
439 qemu_fdt_alloc_phandle(ms->fdt));
440 }
441
442 g_free(nodename);
443 }
444
445 if (!vmc->no_cpu_topology) {
446 /*
447 * Add vCPU topology description through fdt node cpu-map.
448 *
449 * See Linux Documentation/devicetree/bindings/cpu/cpu-topology.txt
450 * In a SMP system, the hierarchy of CPUs can be defined through
451 * four entities that are used to describe the layout of CPUs in
452 * the system: socket/cluster/core/thread.
453 *
454 * A socket node represents the boundary of system physical package
455 * and its child nodes must be one or more cluster nodes. A system
456 * can contain several layers of clustering within a single physical
457 * package and cluster nodes can be contained in parent cluster nodes.
458 *
459 * Note: currently we only support one layer of clustering within
460 * each physical package.
461 */
462 qemu_fdt_add_subnode(ms->fdt, "/cpus/cpu-map");
463
464 for (cpu = smp_cpus - 1; cpu >= 0; cpu--) {
465 char *cpu_path = g_strdup_printf("/cpus/cpu@%d", cpu);
466 char *map_path;
467
468 if (ms->smp.threads > 1) {
469 map_path = g_strdup_printf(
470 "/cpus/cpu-map/socket%d/cluster%d/core%d/thread%d",
471 cpu / (ms->smp.clusters * ms->smp.cores * ms->smp.threads),
472 (cpu / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters,
473 (cpu / ms->smp.threads) % ms->smp.cores,
474 cpu % ms->smp.threads);
475 } else {
476 map_path = g_strdup_printf(
477 "/cpus/cpu-map/socket%d/cluster%d/core%d",
478 cpu / (ms->smp.clusters * ms->smp.cores),
479 (cpu / ms->smp.cores) % ms->smp.clusters,
480 cpu % ms->smp.cores);
481 }
482 qemu_fdt_add_path(ms->fdt, map_path);
483 qemu_fdt_setprop_phandle(ms->fdt, map_path, "cpu", cpu_path);
484
485 g_free(map_path);
486 g_free(cpu_path);
487 }
488 }
489 }
490
491 static void fdt_add_its_gic_node(VirtMachineState *vms)
492 {
493 char *nodename;
494 MachineState *ms = MACHINE(vms);
495
496 vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
497 nodename = g_strdup_printf("/intc/its@%" PRIx64,
498 vms->memmap[VIRT_GIC_ITS].base);
499 qemu_fdt_add_subnode(ms->fdt, nodename);
500 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
501 "arm,gic-v3-its");
502 qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
503 qemu_fdt_setprop_cell(ms->fdt, nodename, "#msi-cells", 1);
504 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
505 2, vms->memmap[VIRT_GIC_ITS].base,
506 2, vms->memmap[VIRT_GIC_ITS].size);
507 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
508 g_free(nodename);
509 }
510
511 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
512 {
513 MachineState *ms = MACHINE(vms);
514 char *nodename;
515
516 nodename = g_strdup_printf("/intc/v2m@%" PRIx64,
517 vms->memmap[VIRT_GIC_V2M].base);
518 vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
519 qemu_fdt_add_subnode(ms->fdt, nodename);
520 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
521 "arm,gic-v2m-frame");
522 qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
523 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
524 2, vms->memmap[VIRT_GIC_V2M].base,
525 2, vms->memmap[VIRT_GIC_V2M].size);
526 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
527 g_free(nodename);
528 }
529
530 static void fdt_add_gic_node(VirtMachineState *vms)
531 {
532 MachineState *ms = MACHINE(vms);
533 char *nodename;
534
535 vms->gic_phandle = qemu_fdt_alloc_phandle(ms->fdt);
536 qemu_fdt_setprop_cell(ms->fdt, "/", "interrupt-parent", vms->gic_phandle);
537
538 nodename = g_strdup_printf("/intc@%" PRIx64,
539 vms->memmap[VIRT_GIC_DIST].base);
540 qemu_fdt_add_subnode(ms->fdt, nodename);
541 qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 3);
542 qemu_fdt_setprop(ms->fdt, nodename, "interrupt-controller", NULL, 0);
543 qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 0x2);
544 qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 0x2);
545 qemu_fdt_setprop(ms->fdt, nodename, "ranges", NULL, 0);
546 if (vms->gic_version != VIRT_GIC_VERSION_2) {
547 int nb_redist_regions = virt_gicv3_redist_region_count(vms);
548
549 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
550 "arm,gic-v3");
551
552 qemu_fdt_setprop_cell(ms->fdt, nodename,
553 "#redistributor-regions", nb_redist_regions);
554
555 if (nb_redist_regions == 1) {
556 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
557 2, vms->memmap[VIRT_GIC_DIST].base,
558 2, vms->memmap[VIRT_GIC_DIST].size,
559 2, vms->memmap[VIRT_GIC_REDIST].base,
560 2, vms->memmap[VIRT_GIC_REDIST].size);
561 } else {
562 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
563 2, vms->memmap[VIRT_GIC_DIST].base,
564 2, vms->memmap[VIRT_GIC_DIST].size,
565 2, vms->memmap[VIRT_GIC_REDIST].base,
566 2, vms->memmap[VIRT_GIC_REDIST].size,
567 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base,
568 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size);
569 }
570
571 if (vms->virt) {
572 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
573 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
574 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
575 }
576 } else {
577 /* 'cortex-a15-gic' means 'GIC v2' */
578 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
579 "arm,cortex-a15-gic");
580 if (!vms->virt) {
581 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
582 2, vms->memmap[VIRT_GIC_DIST].base,
583 2, vms->memmap[VIRT_GIC_DIST].size,
584 2, vms->memmap[VIRT_GIC_CPU].base,
585 2, vms->memmap[VIRT_GIC_CPU].size);
586 } else {
587 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
588 2, vms->memmap[VIRT_GIC_DIST].base,
589 2, vms->memmap[VIRT_GIC_DIST].size,
590 2, vms->memmap[VIRT_GIC_CPU].base,
591 2, vms->memmap[VIRT_GIC_CPU].size,
592 2, vms->memmap[VIRT_GIC_HYP].base,
593 2, vms->memmap[VIRT_GIC_HYP].size,
594 2, vms->memmap[VIRT_GIC_VCPU].base,
595 2, vms->memmap[VIRT_GIC_VCPU].size);
596 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
597 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
598 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
599 }
600 }
601
602 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->gic_phandle);
603 g_free(nodename);
604 }
605
606 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
607 {
608 ARMCPU *armcpu = ARM_CPU(first_cpu);
609 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
610 MachineState *ms = MACHINE(vms);
611
612 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
613 assert(!object_property_get_bool(OBJECT(armcpu), "pmu", NULL));
614 return;
615 }
616
617 if (vms->gic_version == VIRT_GIC_VERSION_2) {
618 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
619 GIC_FDT_IRQ_PPI_CPU_WIDTH,
620 (1 << MACHINE(vms)->smp.cpus) - 1);
621 }
622
623 qemu_fdt_add_subnode(ms->fdt, "/pmu");
624 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
625 const char compat[] = "arm,armv8-pmuv3";
626 qemu_fdt_setprop(ms->fdt, "/pmu", "compatible",
627 compat, sizeof(compat));
628 qemu_fdt_setprop_cells(ms->fdt, "/pmu", "interrupts",
629 GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
630 }
631 }
632
633 static inline DeviceState *create_acpi_ged(VirtMachineState *vms)
634 {
635 DeviceState *dev;
636 MachineState *ms = MACHINE(vms);
637 int irq = vms->irqmap[VIRT_ACPI_GED];
638 uint32_t event = ACPI_GED_PWR_DOWN_EVT;
639
640 if (ms->ram_slots) {
641 event |= ACPI_GED_MEM_HOTPLUG_EVT;
642 }
643
644 if (ms->nvdimms_state->is_enabled) {
645 event |= ACPI_GED_NVDIMM_HOTPLUG_EVT;
646 }
647
648 dev = qdev_new(TYPE_ACPI_GED);
649 qdev_prop_set_uint32(dev, "ged-event", event);
650 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
651
652 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_ACPI_GED].base);
653 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, vms->memmap[VIRT_PCDIMM_ACPI].base);
654 sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(vms->gic, irq));
655
656 return dev;
657 }
658
659 static void create_its(VirtMachineState *vms)
660 {
661 const char *itsclass = its_class_name();
662 DeviceState *dev;
663
664 if (!strcmp(itsclass, "arm-gicv3-its")) {
665 if (!vms->tcg_its) {
666 itsclass = NULL;
667 }
668 }
669
670 if (!itsclass) {
671 /* Do nothing if not supported */
672 return;
673 }
674
675 dev = qdev_new(itsclass);
676
677 object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(vms->gic),
678 &error_abort);
679 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
680 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
681
682 fdt_add_its_gic_node(vms);
683 vms->msi_controller = VIRT_MSI_CTRL_ITS;
684 }
685
686 static void create_v2m(VirtMachineState *vms)
687 {
688 int i;
689 int irq = vms->irqmap[VIRT_GIC_V2M];
690 DeviceState *dev;
691
692 dev = qdev_new("arm-gicv2m");
693 qdev_prop_set_uint32(dev, "base-spi", irq);
694 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
695 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
696 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
697
698 for (i = 0; i < NUM_GICV2M_SPIS; i++) {
699 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
700 qdev_get_gpio_in(vms->gic, irq + i));
701 }
702
703 fdt_add_v2m_gic_node(vms);
704 vms->msi_controller = VIRT_MSI_CTRL_GICV2M;
705 }
706
707 static void create_gic(VirtMachineState *vms, MemoryRegion *mem)
708 {
709 MachineState *ms = MACHINE(vms);
710 /* We create a standalone GIC */
711 SysBusDevice *gicbusdev;
712 const char *gictype;
713 int i;
714 unsigned int smp_cpus = ms->smp.cpus;
715 uint32_t nb_redist_regions = 0;
716 int revision;
717
718 if (vms->gic_version == VIRT_GIC_VERSION_2) {
719 gictype = gic_class_name();
720 } else {
721 gictype = gicv3_class_name();
722 }
723
724 switch (vms->gic_version) {
725 case VIRT_GIC_VERSION_2:
726 revision = 2;
727 break;
728 case VIRT_GIC_VERSION_3:
729 revision = 3;
730 break;
731 case VIRT_GIC_VERSION_4:
732 revision = 4;
733 break;
734 default:
735 g_assert_not_reached();
736 }
737 vms->gic = qdev_new(gictype);
738 qdev_prop_set_uint32(vms->gic, "revision", revision);
739 qdev_prop_set_uint32(vms->gic, "num-cpu", smp_cpus);
740 /* Note that the num-irq property counts both internal and external
741 * interrupts; there are always 32 of the former (mandated by GIC spec).
742 */
743 qdev_prop_set_uint32(vms->gic, "num-irq", NUM_IRQS + 32);
744 if (!kvm_irqchip_in_kernel()) {
745 qdev_prop_set_bit(vms->gic, "has-security-extensions", vms->secure);
746 }
747
748 if (vms->gic_version != VIRT_GIC_VERSION_2) {
749 uint32_t redist0_capacity = virt_redist_capacity(vms, VIRT_GIC_REDIST);
750 uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
751
752 nb_redist_regions = virt_gicv3_redist_region_count(vms);
753
754 qdev_prop_set_uint32(vms->gic, "len-redist-region-count",
755 nb_redist_regions);
756 qdev_prop_set_uint32(vms->gic, "redist-region-count[0]", redist0_count);
757
758 if (!kvm_irqchip_in_kernel()) {
759 if (vms->tcg_its) {
760 object_property_set_link(OBJECT(vms->gic), "sysmem",
761 OBJECT(mem), &error_fatal);
762 qdev_prop_set_bit(vms->gic, "has-lpi", true);
763 }
764 }
765
766 if (nb_redist_regions == 2) {
767 uint32_t redist1_capacity =
768 virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2);
769
770 qdev_prop_set_uint32(vms->gic, "redist-region-count[1]",
771 MIN(smp_cpus - redist0_count, redist1_capacity));
772 }
773 } else {
774 if (!kvm_irqchip_in_kernel()) {
775 qdev_prop_set_bit(vms->gic, "has-virtualization-extensions",
776 vms->virt);
777 }
778 }
779 gicbusdev = SYS_BUS_DEVICE(vms->gic);
780 sysbus_realize_and_unref(gicbusdev, &error_fatal);
781 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
782 if (vms->gic_version != VIRT_GIC_VERSION_2) {
783 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
784 if (nb_redist_regions == 2) {
785 sysbus_mmio_map(gicbusdev, 2,
786 vms->memmap[VIRT_HIGH_GIC_REDIST2].base);
787 }
788 } else {
789 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
790 if (vms->virt) {
791 sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base);
792 sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base);
793 }
794 }
795
796 /* Wire the outputs from each CPU's generic timer and the GICv3
797 * maintenance interrupt signal to the appropriate GIC PPI inputs,
798 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
799 */
800 for (i = 0; i < smp_cpus; i++) {
801 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
802 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
803 /* Mapping from the output timer irq lines from the CPU to the
804 * GIC PPI inputs we use for the virt board.
805 */
806 const int timer_irq[] = {
807 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
808 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
809 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
810 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
811 };
812
813 for (unsigned irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
814 qdev_connect_gpio_out(cpudev, irq,
815 qdev_get_gpio_in(vms->gic,
816 ppibase + timer_irq[irq]));
817 }
818
819 if (vms->gic_version != VIRT_GIC_VERSION_2) {
820 qemu_irq irq = qdev_get_gpio_in(vms->gic,
821 ppibase + ARCH_GIC_MAINT_IRQ);
822 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt",
823 0, irq);
824 } else if (vms->virt) {
825 qemu_irq irq = qdev_get_gpio_in(vms->gic,
826 ppibase + ARCH_GIC_MAINT_IRQ);
827 sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq);
828 }
829
830 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
831 qdev_get_gpio_in(vms->gic, ppibase
832 + VIRTUAL_PMU_IRQ));
833
834 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
835 sysbus_connect_irq(gicbusdev, i + smp_cpus,
836 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
837 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
838 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
839 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
840 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
841 }
842
843 fdt_add_gic_node(vms);
844
845 if (vms->gic_version != VIRT_GIC_VERSION_2 && vms->its) {
846 create_its(vms);
847 } else if (vms->gic_version == VIRT_GIC_VERSION_2) {
848 create_v2m(vms);
849 }
850 }
851
852 static void create_uart(const VirtMachineState *vms, int uart,
853 MemoryRegion *mem, Chardev *chr)
854 {
855 char *nodename;
856 hwaddr base = vms->memmap[uart].base;
857 hwaddr size = vms->memmap[uart].size;
858 int irq = vms->irqmap[uart];
859 const char compat[] = "arm,pl011\0arm,primecell";
860 const char clocknames[] = "uartclk\0apb_pclk";
861 DeviceState *dev = qdev_new(TYPE_PL011);
862 SysBusDevice *s = SYS_BUS_DEVICE(dev);
863 MachineState *ms = MACHINE(vms);
864
865 qdev_prop_set_chr(dev, "chardev", chr);
866 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
867 memory_region_add_subregion(mem, base,
868 sysbus_mmio_get_region(s, 0));
869 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
870
871 nodename = g_strdup_printf("/pl011@%" PRIx64, base);
872 qemu_fdt_add_subnode(ms->fdt, nodename);
873 /* Note that we can't use setprop_string because of the embedded NUL */
874 qemu_fdt_setprop(ms->fdt, nodename, "compatible",
875 compat, sizeof(compat));
876 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
877 2, base, 2, size);
878 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
879 GIC_FDT_IRQ_TYPE_SPI, irq,
880 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
881 qemu_fdt_setprop_cells(ms->fdt, nodename, "clocks",
882 vms->clock_phandle, vms->clock_phandle);
883 qemu_fdt_setprop(ms->fdt, nodename, "clock-names",
884 clocknames, sizeof(clocknames));
885
886 if (uart == VIRT_UART) {
887 qemu_fdt_setprop_string(ms->fdt, "/chosen", "stdout-path", nodename);
888 } else {
889 /* Mark as not usable by the normal world */
890 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
891 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
892
893 qemu_fdt_setprop_string(ms->fdt, "/secure-chosen", "stdout-path",
894 nodename);
895 }
896
897 g_free(nodename);
898 }
899
900 static void create_rtc(const VirtMachineState *vms)
901 {
902 char *nodename;
903 hwaddr base = vms->memmap[VIRT_RTC].base;
904 hwaddr size = vms->memmap[VIRT_RTC].size;
905 int irq = vms->irqmap[VIRT_RTC];
906 const char compat[] = "arm,pl031\0arm,primecell";
907 MachineState *ms = MACHINE(vms);
908
909 sysbus_create_simple("pl031", base, qdev_get_gpio_in(vms->gic, irq));
910
911 nodename = g_strdup_printf("/pl031@%" PRIx64, base);
912 qemu_fdt_add_subnode(ms->fdt, nodename);
913 qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
914 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
915 2, base, 2, size);
916 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
917 GIC_FDT_IRQ_TYPE_SPI, irq,
918 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
919 qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
920 qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
921 g_free(nodename);
922 }
923
924 static DeviceState *gpio_key_dev;
925 static void virt_powerdown_req(Notifier *n, void *opaque)
926 {
927 VirtMachineState *s = container_of(n, VirtMachineState, powerdown_notifier);
928
929 if (s->acpi_dev) {
930 acpi_send_event(s->acpi_dev, ACPI_POWER_DOWN_STATUS);
931 } else {
932 /* use gpio Pin 3 for power button event */
933 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
934 }
935 }
936
937 static void create_gpio_keys(char *fdt, DeviceState *pl061_dev,
938 uint32_t phandle)
939 {
940 gpio_key_dev = sysbus_create_simple("gpio-key", -1,
941 qdev_get_gpio_in(pl061_dev, 3));
942
943 qemu_fdt_add_subnode(fdt, "/gpio-keys");
944 qemu_fdt_setprop_string(fdt, "/gpio-keys", "compatible", "gpio-keys");
945
946 qemu_fdt_add_subnode(fdt, "/gpio-keys/poweroff");
947 qemu_fdt_setprop_string(fdt, "/gpio-keys/poweroff",
948 "label", "GPIO Key Poweroff");
949 qemu_fdt_setprop_cell(fdt, "/gpio-keys/poweroff", "linux,code",
950 KEY_POWER);
951 qemu_fdt_setprop_cells(fdt, "/gpio-keys/poweroff",
952 "gpios", phandle, 3, 0);
953 }
954
955 #define SECURE_GPIO_POWEROFF 0
956 #define SECURE_GPIO_RESET 1
957
958 static void create_secure_gpio_pwr(char *fdt, DeviceState *pl061_dev,
959 uint32_t phandle)
960 {
961 DeviceState *gpio_pwr_dev;
962
963 /* gpio-pwr */
964 gpio_pwr_dev = sysbus_create_simple("gpio-pwr", -1, NULL);
965
966 /* connect secure pl061 to gpio-pwr */
967 qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_RESET,
968 qdev_get_gpio_in_named(gpio_pwr_dev, "reset", 0));
969 qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_POWEROFF,
970 qdev_get_gpio_in_named(gpio_pwr_dev, "shutdown", 0));
971
972 qemu_fdt_add_subnode(fdt, "/gpio-poweroff");
973 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "compatible",
974 "gpio-poweroff");
975 qemu_fdt_setprop_cells(fdt, "/gpio-poweroff",
976 "gpios", phandle, SECURE_GPIO_POWEROFF, 0);
977 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "status", "disabled");
978 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "secure-status",
979 "okay");
980
981 qemu_fdt_add_subnode(fdt, "/gpio-restart");
982 qemu_fdt_setprop_string(fdt, "/gpio-restart", "compatible",
983 "gpio-restart");
984 qemu_fdt_setprop_cells(fdt, "/gpio-restart",
985 "gpios", phandle, SECURE_GPIO_RESET, 0);
986 qemu_fdt_setprop_string(fdt, "/gpio-restart", "status", "disabled");
987 qemu_fdt_setprop_string(fdt, "/gpio-restart", "secure-status",
988 "okay");
989 }
990
991 static void create_gpio_devices(const VirtMachineState *vms, int gpio,
992 MemoryRegion *mem)
993 {
994 char *nodename;
995 DeviceState *pl061_dev;
996 hwaddr base = vms->memmap[gpio].base;
997 hwaddr size = vms->memmap[gpio].size;
998 int irq = vms->irqmap[gpio];
999 const char compat[] = "arm,pl061\0arm,primecell";
1000 SysBusDevice *s;
1001 MachineState *ms = MACHINE(vms);
1002
1003 pl061_dev = qdev_new("pl061");
1004 /* Pull lines down to 0 if not driven by the PL061 */
1005 qdev_prop_set_uint32(pl061_dev, "pullups", 0);
1006 qdev_prop_set_uint32(pl061_dev, "pulldowns", 0xff);
1007 s = SYS_BUS_DEVICE(pl061_dev);
1008 sysbus_realize_and_unref(s, &error_fatal);
1009 memory_region_add_subregion(mem, base, sysbus_mmio_get_region(s, 0));
1010 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
1011
1012 uint32_t phandle = qemu_fdt_alloc_phandle(ms->fdt);
1013 nodename = g_strdup_printf("/pl061@%" PRIx64, base);
1014 qemu_fdt_add_subnode(ms->fdt, nodename);
1015 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1016 2, base, 2, size);
1017 qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
1018 qemu_fdt_setprop_cell(ms->fdt, nodename, "#gpio-cells", 2);
1019 qemu_fdt_setprop(ms->fdt, nodename, "gpio-controller", NULL, 0);
1020 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
1021 GIC_FDT_IRQ_TYPE_SPI, irq,
1022 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
1023 qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
1024 qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
1025 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", phandle);
1026
1027 if (gpio != VIRT_GPIO) {
1028 /* Mark as not usable by the normal world */
1029 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1030 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1031 }
1032 g_free(nodename);
1033
1034 /* Child gpio devices */
1035 if (gpio == VIRT_GPIO) {
1036 create_gpio_keys(ms->fdt, pl061_dev, phandle);
1037 } else {
1038 create_secure_gpio_pwr(ms->fdt, pl061_dev, phandle);
1039 }
1040 }
1041
1042 static void create_virtio_devices(const VirtMachineState *vms)
1043 {
1044 int i;
1045 hwaddr size = vms->memmap[VIRT_MMIO].size;
1046 MachineState *ms = MACHINE(vms);
1047
1048 /* We create the transports in forwards order. Since qbus_realize()
1049 * prepends (not appends) new child buses, the incrementing loop below will
1050 * create a list of virtio-mmio buses with decreasing base addresses.
1051 *
1052 * When a -device option is processed from the command line,
1053 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
1054 * order. The upshot is that -device options in increasing command line
1055 * order are mapped to virtio-mmio buses with decreasing base addresses.
1056 *
1057 * When this code was originally written, that arrangement ensured that the
1058 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
1059 * the first -device on the command line. (The end-to-end order is a
1060 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
1061 * guest kernel's name-to-address assignment strategy.)
1062 *
1063 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
1064 * the message, if not necessarily the code, of commit 70161ff336.
1065 * Therefore the loop now establishes the inverse of the original intent.
1066 *
1067 * Unfortunately, we can't counteract the kernel change by reversing the
1068 * loop; it would break existing command lines.
1069 *
1070 * In any case, the kernel makes no guarantee about the stability of
1071 * enumeration order of virtio devices (as demonstrated by it changing
1072 * between kernel versions). For reliable and stable identification
1073 * of disks users must use UUIDs or similar mechanisms.
1074 */
1075 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
1076 int irq = vms->irqmap[VIRT_MMIO] + i;
1077 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
1078
1079 sysbus_create_simple("virtio-mmio", base,
1080 qdev_get_gpio_in(vms->gic, irq));
1081 }
1082
1083 /* We add dtb nodes in reverse order so that they appear in the finished
1084 * device tree lowest address first.
1085 *
1086 * Note that this mapping is independent of the loop above. The previous
1087 * loop influences virtio device to virtio transport assignment, whereas
1088 * this loop controls how virtio transports are laid out in the dtb.
1089 */
1090 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
1091 char *nodename;
1092 int irq = vms->irqmap[VIRT_MMIO] + i;
1093 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
1094
1095 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
1096 qemu_fdt_add_subnode(ms->fdt, nodename);
1097 qemu_fdt_setprop_string(ms->fdt, nodename,
1098 "compatible", "virtio,mmio");
1099 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1100 2, base, 2, size);
1101 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
1102 GIC_FDT_IRQ_TYPE_SPI, irq,
1103 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1104 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1105 g_free(nodename);
1106 }
1107 }
1108
1109 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
1110
1111 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms,
1112 const char *name,
1113 const char *alias_prop_name)
1114 {
1115 /*
1116 * Create a single flash device. We use the same parameters as
1117 * the flash devices on the Versatile Express board.
1118 */
1119 DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
1120
1121 qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
1122 qdev_prop_set_uint8(dev, "width", 4);
1123 qdev_prop_set_uint8(dev, "device-width", 2);
1124 qdev_prop_set_bit(dev, "big-endian", false);
1125 qdev_prop_set_uint16(dev, "id0", 0x89);
1126 qdev_prop_set_uint16(dev, "id1", 0x18);
1127 qdev_prop_set_uint16(dev, "id2", 0x00);
1128 qdev_prop_set_uint16(dev, "id3", 0x00);
1129 qdev_prop_set_string(dev, "name", name);
1130 object_property_add_child(OBJECT(vms), name, OBJECT(dev));
1131 object_property_add_alias(OBJECT(vms), alias_prop_name,
1132 OBJECT(dev), "drive");
1133 return PFLASH_CFI01(dev);
1134 }
1135
1136 static void virt_flash_create(VirtMachineState *vms)
1137 {
1138 vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0");
1139 vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1");
1140 }
1141
1142 static void virt_flash_map1(PFlashCFI01 *flash,
1143 hwaddr base, hwaddr size,
1144 MemoryRegion *sysmem)
1145 {
1146 DeviceState *dev = DEVICE(flash);
1147
1148 assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE));
1149 assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
1150 qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
1151 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1152
1153 memory_region_add_subregion(sysmem, base,
1154 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
1155 0));
1156 }
1157
1158 static void virt_flash_map(VirtMachineState *vms,
1159 MemoryRegion *sysmem,
1160 MemoryRegion *secure_sysmem)
1161 {
1162 /*
1163 * Map two flash devices to fill the VIRT_FLASH space in the memmap.
1164 * sysmem is the system memory space. secure_sysmem is the secure view
1165 * of the system, and the first flash device should be made visible only
1166 * there. The second flash device is visible to both secure and nonsecure.
1167 * If sysmem == secure_sysmem this means there is no separate Secure
1168 * address space and both flash devices are generally visible.
1169 */
1170 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1171 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1172
1173 virt_flash_map1(vms->flash[0], flashbase, flashsize,
1174 secure_sysmem);
1175 virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize,
1176 sysmem);
1177 }
1178
1179 static void virt_flash_fdt(VirtMachineState *vms,
1180 MemoryRegion *sysmem,
1181 MemoryRegion *secure_sysmem)
1182 {
1183 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1184 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1185 MachineState *ms = MACHINE(vms);
1186 char *nodename;
1187
1188 if (sysmem == secure_sysmem) {
1189 /* Report both flash devices as a single node in the DT */
1190 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
1191 qemu_fdt_add_subnode(ms->fdt, nodename);
1192 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1193 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1194 2, flashbase, 2, flashsize,
1195 2, flashbase + flashsize, 2, flashsize);
1196 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1197 g_free(nodename);
1198 } else {
1199 /*
1200 * Report the devices as separate nodes so we can mark one as
1201 * only visible to the secure world.
1202 */
1203 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
1204 qemu_fdt_add_subnode(ms->fdt, nodename);
1205 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1206 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1207 2, flashbase, 2, flashsize);
1208 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1209 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1210 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1211 g_free(nodename);
1212
1213 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase + flashsize);
1214 qemu_fdt_add_subnode(ms->fdt, nodename);
1215 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1216 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1217 2, flashbase + flashsize, 2, flashsize);
1218 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1219 g_free(nodename);
1220 }
1221 }
1222
1223 static bool virt_firmware_init(VirtMachineState *vms,
1224 MemoryRegion *sysmem,
1225 MemoryRegion *secure_sysmem)
1226 {
1227 int i;
1228 const char *bios_name;
1229 BlockBackend *pflash_blk0;
1230
1231 /* Map legacy -drive if=pflash to machine properties */
1232 for (i = 0; i < ARRAY_SIZE(vms->flash); i++) {
1233 pflash_cfi01_legacy_drive(vms->flash[i],
1234 drive_get(IF_PFLASH, 0, i));
1235 }
1236
1237 virt_flash_map(vms, sysmem, secure_sysmem);
1238
1239 pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]);
1240
1241 bios_name = MACHINE(vms)->firmware;
1242 if (bios_name) {
1243 char *fname;
1244 MemoryRegion *mr;
1245 int image_size;
1246
1247 if (pflash_blk0) {
1248 error_report("The contents of the first flash device may be "
1249 "specified with -bios or with -drive if=pflash... "
1250 "but you cannot use both options at once");
1251 exit(1);
1252 }
1253
1254 /* Fall back to -bios */
1255
1256 fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1257 if (!fname) {
1258 error_report("Could not find ROM image '%s'", bios_name);
1259 exit(1);
1260 }
1261 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0);
1262 image_size = load_image_mr(fname, mr);
1263 g_free(fname);
1264 if (image_size < 0) {
1265 error_report("Could not load ROM image '%s'", bios_name);
1266 exit(1);
1267 }
1268 }
1269
1270 return pflash_blk0 || bios_name;
1271 }
1272
1273 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
1274 {
1275 MachineState *ms = MACHINE(vms);
1276 hwaddr base = vms->memmap[VIRT_FW_CFG].base;
1277 hwaddr size = vms->memmap[VIRT_FW_CFG].size;
1278 FWCfgState *fw_cfg;
1279 char *nodename;
1280
1281 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
1282 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus);
1283
1284 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
1285 qemu_fdt_add_subnode(ms->fdt, nodename);
1286 qemu_fdt_setprop_string(ms->fdt, nodename,
1287 "compatible", "qemu,fw-cfg-mmio");
1288 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1289 2, base, 2, size);
1290 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1291 g_free(nodename);
1292 return fw_cfg;
1293 }
1294
1295 static void create_pcie_irq_map(const MachineState *ms,
1296 uint32_t gic_phandle,
1297 int first_irq, const char *nodename)
1298 {
1299 int devfn, pin;
1300 uint32_t full_irq_map[4 * 4 * 10] = { 0 };
1301 uint32_t *irq_map = full_irq_map;
1302
1303 for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
1304 for (pin = 0; pin < 4; pin++) {
1305 int irq_type = GIC_FDT_IRQ_TYPE_SPI;
1306 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
1307 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
1308 int i;
1309
1310 uint32_t map[] = {
1311 devfn << 8, 0, 0, /* devfn */
1312 pin + 1, /* PCI pin */
1313 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
1314
1315 /* Convert map to big endian */
1316 for (i = 0; i < 10; i++) {
1317 irq_map[i] = cpu_to_be32(map[i]);
1318 }
1319 irq_map += 10;
1320 }
1321 }
1322
1323 qemu_fdt_setprop(ms->fdt, nodename, "interrupt-map",
1324 full_irq_map, sizeof(full_irq_map));
1325
1326 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupt-map-mask",
1327 cpu_to_be16(PCI_DEVFN(3, 0)), /* Slot 3 */
1328 0, 0,
1329 0x7 /* PCI irq */);
1330 }
1331
1332 static void create_smmu(const VirtMachineState *vms,
1333 PCIBus *bus)
1334 {
1335 char *node;
1336 const char compat[] = "arm,smmu-v3";
1337 int irq = vms->irqmap[VIRT_SMMU];
1338 int i;
1339 hwaddr base = vms->memmap[VIRT_SMMU].base;
1340 hwaddr size = vms->memmap[VIRT_SMMU].size;
1341 const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
1342 DeviceState *dev;
1343 MachineState *ms = MACHINE(vms);
1344
1345 if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
1346 return;
1347 }
1348
1349 dev = qdev_new(TYPE_ARM_SMMUV3);
1350
1351 object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus),
1352 &error_abort);
1353 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1354 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
1355 for (i = 0; i < NUM_SMMU_IRQS; i++) {
1356 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1357 qdev_get_gpio_in(vms->gic, irq + i));
1358 }
1359
1360 node = g_strdup_printf("/smmuv3@%" PRIx64, base);
1361 qemu_fdt_add_subnode(ms->fdt, node);
1362 qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
1363 qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg", 2, base, 2, size);
1364
1365 qemu_fdt_setprop_cells(ms->fdt, node, "interrupts",
1366 GIC_FDT_IRQ_TYPE_SPI, irq , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1367 GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1368 GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1369 GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1370
1371 qemu_fdt_setprop(ms->fdt, node, "interrupt-names", irq_names,
1372 sizeof(irq_names));
1373
1374 qemu_fdt_setprop(ms->fdt, node, "dma-coherent", NULL, 0);
1375
1376 qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
1377
1378 qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
1379 g_free(node);
1380 }
1381
1382 static void create_virtio_iommu_dt_bindings(VirtMachineState *vms)
1383 {
1384 const char compat[] = "virtio,pci-iommu\0pci1af4,1057";
1385 uint16_t bdf = vms->virtio_iommu_bdf;
1386 MachineState *ms = MACHINE(vms);
1387 char *node;
1388
1389 vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
1390
1391 node = g_strdup_printf("%s/virtio_iommu@%x,%x", vms->pciehb_nodename,
1392 PCI_SLOT(bdf), PCI_FUNC(bdf));
1393 qemu_fdt_add_subnode(ms->fdt, node);
1394 qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
1395 qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg",
1396 1, bdf << 8, 1, 0, 1, 0,
1397 1, 0, 1, 0);
1398
1399 qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
1400 qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
1401 g_free(node);
1402
1403 qemu_fdt_setprop_cells(ms->fdt, vms->pciehb_nodename, "iommu-map",
1404 0x0, vms->iommu_phandle, 0x0, bdf,
1405 bdf + 1, vms->iommu_phandle, bdf + 1, 0xffff - bdf);
1406 }
1407
1408 static void create_pcie(VirtMachineState *vms)
1409 {
1410 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1411 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
1412 hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base;
1413 hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size;
1414 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1415 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
1416 hwaddr base_ecam, size_ecam;
1417 hwaddr base = base_mmio;
1418 int nr_pcie_buses;
1419 int irq = vms->irqmap[VIRT_PCIE];
1420 MemoryRegion *mmio_alias;
1421 MemoryRegion *mmio_reg;
1422 MemoryRegion *ecam_alias;
1423 MemoryRegion *ecam_reg;
1424 DeviceState *dev;
1425 char *nodename;
1426 int i, ecam_id;
1427 PCIHostState *pci;
1428 MachineState *ms = MACHINE(vms);
1429 MachineClass *mc = MACHINE_GET_CLASS(ms);
1430
1431 dev = qdev_new(TYPE_GPEX_HOST);
1432 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1433
1434 ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
1435 base_ecam = vms->memmap[ecam_id].base;
1436 size_ecam = vms->memmap[ecam_id].size;
1437 nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
1438 /* Map only the first size_ecam bytes of ECAM space */
1439 ecam_alias = g_new0(MemoryRegion, 1);
1440 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1441 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1442 ecam_reg, 0, size_ecam);
1443 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1444
1445 /* Map the MMIO window into system address space so as to expose
1446 * the section of PCI MMIO space which starts at the same base address
1447 * (ie 1:1 mapping for that part of PCI MMIO space visible through
1448 * the window).
1449 */
1450 mmio_alias = g_new0(MemoryRegion, 1);
1451 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1452 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1453 mmio_reg, base_mmio, size_mmio);
1454 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1455
1456 if (vms->highmem_mmio) {
1457 /* Map high MMIO space */
1458 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1459
1460 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1461 mmio_reg, base_mmio_high, size_mmio_high);
1462 memory_region_add_subregion(get_system_memory(), base_mmio_high,
1463 high_mmio_alias);
1464 }
1465
1466 /* Map IO port space */
1467 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1468
1469 for (i = 0; i < GPEX_NUM_IRQS; i++) {
1470 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1471 qdev_get_gpio_in(vms->gic, irq + i));
1472 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
1473 }
1474
1475 pci = PCI_HOST_BRIDGE(dev);
1476 pci->bypass_iommu = vms->default_bus_bypass_iommu;
1477 vms->bus = pci->bus;
1478 if (vms->bus) {
1479 for (i = 0; i < nb_nics; i++) {
1480 pci_nic_init_nofail(&nd_table[i], pci->bus, mc->default_nic, NULL);
1481 }
1482 }
1483
1484 nodename = vms->pciehb_nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1485 qemu_fdt_add_subnode(ms->fdt, nodename);
1486 qemu_fdt_setprop_string(ms->fdt, nodename,
1487 "compatible", "pci-host-ecam-generic");
1488 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "pci");
1489 qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 3);
1490 qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 2);
1491 qemu_fdt_setprop_cell(ms->fdt, nodename, "linux,pci-domain", 0);
1492 qemu_fdt_setprop_cells(ms->fdt, nodename, "bus-range", 0,
1493 nr_pcie_buses - 1);
1494 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1495
1496 if (vms->msi_phandle) {
1497 qemu_fdt_setprop_cells(ms->fdt, nodename, "msi-map",
1498 0, vms->msi_phandle, 0, 0x10000);
1499 }
1500
1501 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1502 2, base_ecam, 2, size_ecam);
1503
1504 if (vms->highmem_mmio) {
1505 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
1506 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1507 2, base_pio, 2, size_pio,
1508 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1509 2, base_mmio, 2, size_mmio,
1510 1, FDT_PCI_RANGE_MMIO_64BIT,
1511 2, base_mmio_high,
1512 2, base_mmio_high, 2, size_mmio_high);
1513 } else {
1514 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
1515 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1516 2, base_pio, 2, size_pio,
1517 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1518 2, base_mmio, 2, size_mmio);
1519 }
1520
1521 qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 1);
1522 create_pcie_irq_map(ms, vms->gic_phandle, irq, nodename);
1523
1524 if (vms->iommu) {
1525 vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
1526
1527 switch (vms->iommu) {
1528 case VIRT_IOMMU_SMMUV3:
1529 create_smmu(vms, vms->bus);
1530 qemu_fdt_setprop_cells(ms->fdt, nodename, "iommu-map",
1531 0x0, vms->iommu_phandle, 0x0, 0x10000);
1532 break;
1533 default:
1534 g_assert_not_reached();
1535 }
1536 }
1537 }
1538
1539 static void create_platform_bus(VirtMachineState *vms)
1540 {
1541 DeviceState *dev;
1542 SysBusDevice *s;
1543 int i;
1544 MemoryRegion *sysmem = get_system_memory();
1545
1546 dev = qdev_new(TYPE_PLATFORM_BUS_DEVICE);
1547 dev->id = g_strdup(TYPE_PLATFORM_BUS_DEVICE);
1548 qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
1549 qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
1550 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1551 vms->platform_bus_dev = dev;
1552
1553 s = SYS_BUS_DEVICE(dev);
1554 for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
1555 int irq = vms->irqmap[VIRT_PLATFORM_BUS] + i;
1556 sysbus_connect_irq(s, i, qdev_get_gpio_in(vms->gic, irq));
1557 }
1558
1559 memory_region_add_subregion(sysmem,
1560 vms->memmap[VIRT_PLATFORM_BUS].base,
1561 sysbus_mmio_get_region(s, 0));
1562 }
1563
1564 static void create_tag_ram(MemoryRegion *tag_sysmem,
1565 hwaddr base, hwaddr size,
1566 const char *name)
1567 {
1568 MemoryRegion *tagram = g_new(MemoryRegion, 1);
1569
1570 memory_region_init_ram(tagram, NULL, name, size / 32, &error_fatal);
1571 memory_region_add_subregion(tag_sysmem, base / 32, tagram);
1572 }
1573
1574 static void create_secure_ram(VirtMachineState *vms,
1575 MemoryRegion *secure_sysmem,
1576 MemoryRegion *secure_tag_sysmem)
1577 {
1578 MemoryRegion *secram = g_new(MemoryRegion, 1);
1579 char *nodename;
1580 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1581 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1582 MachineState *ms = MACHINE(vms);
1583
1584 memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1585 &error_fatal);
1586 memory_region_add_subregion(secure_sysmem, base, secram);
1587
1588 nodename = g_strdup_printf("/secram@%" PRIx64, base);
1589 qemu_fdt_add_subnode(ms->fdt, nodename);
1590 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "memory");
1591 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 2, base, 2, size);
1592 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1593 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1594
1595 if (secure_tag_sysmem) {
1596 create_tag_ram(secure_tag_sysmem, base, size, "mach-virt.secure-tag");
1597 }
1598
1599 g_free(nodename);
1600 }
1601
1602 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1603 {
1604 const VirtMachineState *board = container_of(binfo, VirtMachineState,
1605 bootinfo);
1606 MachineState *ms = MACHINE(board);
1607
1608
1609 *fdt_size = board->fdt_size;
1610 return ms->fdt;
1611 }
1612
1613 static void virt_build_smbios(VirtMachineState *vms)
1614 {
1615 MachineClass *mc = MACHINE_GET_CLASS(vms);
1616 MachineState *ms = MACHINE(vms);
1617 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1618 uint8_t *smbios_tables, *smbios_anchor;
1619 size_t smbios_tables_len, smbios_anchor_len;
1620 struct smbios_phys_mem_area mem_array;
1621 const char *product = "QEMU Virtual Machine";
1622
1623 if (kvm_enabled()) {
1624 product = "KVM Virtual Machine";
1625 }
1626
1627 smbios_set_defaults("QEMU", product,
1628 vmc->smbios_old_sys_ver ? "1.0" : mc->name, false,
1629 true, SMBIOS_ENTRY_POINT_TYPE_64);
1630
1631 /* build the array of physical mem area from base_memmap */
1632 mem_array.address = vms->memmap[VIRT_MEM].base;
1633 mem_array.length = ms->ram_size;
1634
1635 smbios_get_tables(ms, &mem_array, 1,
1636 &smbios_tables, &smbios_tables_len,
1637 &smbios_anchor, &smbios_anchor_len,
1638 &error_fatal);
1639
1640 if (smbios_anchor) {
1641 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1642 smbios_tables, smbios_tables_len);
1643 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1644 smbios_anchor, smbios_anchor_len);
1645 }
1646 }
1647
1648 static
1649 void virt_machine_done(Notifier *notifier, void *data)
1650 {
1651 VirtMachineState *vms = container_of(notifier, VirtMachineState,
1652 machine_done);
1653 MachineState *ms = MACHINE(vms);
1654 ARMCPU *cpu = ARM_CPU(first_cpu);
1655 struct arm_boot_info *info = &vms->bootinfo;
1656 AddressSpace *as = arm_boot_address_space(cpu, info);
1657
1658 /*
1659 * If the user provided a dtb, we assume the dynamic sysbus nodes
1660 * already are integrated there. This corresponds to a use case where
1661 * the dynamic sysbus nodes are complex and their generation is not yet
1662 * supported. In that case the user can take charge of the guest dt
1663 * while qemu takes charge of the qom stuff.
1664 */
1665 if (info->dtb_filename == NULL) {
1666 platform_bus_add_all_fdt_nodes(ms->fdt, "/intc",
1667 vms->memmap[VIRT_PLATFORM_BUS].base,
1668 vms->memmap[VIRT_PLATFORM_BUS].size,
1669 vms->irqmap[VIRT_PLATFORM_BUS]);
1670 }
1671 if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) {
1672 exit(1);
1673 }
1674
1675 fw_cfg_add_extra_pci_roots(vms->bus, vms->fw_cfg);
1676
1677 virt_acpi_setup(vms);
1678 virt_build_smbios(vms);
1679 }
1680
1681 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1682 {
1683 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1684 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1685
1686 if (!vmc->disallow_affinity_adjustment) {
1687 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1688 * GIC's target-list limitations. 32-bit KVM hosts currently
1689 * always create clusters of 4 CPUs, but that is expected to
1690 * change when they gain support for gicv3. When KVM is enabled
1691 * it will override the changes we make here, therefore our
1692 * purposes are to make TCG consistent (with 64-bit KVM hosts)
1693 * and to improve SGI efficiency.
1694 */
1695 if (vms->gic_version == VIRT_GIC_VERSION_2) {
1696 clustersz = GIC_TARGETLIST_BITS;
1697 } else {
1698 clustersz = GICV3_TARGETLIST_BITS;
1699 }
1700 }
1701 return arm_cpu_mp_affinity(idx, clustersz);
1702 }
1703
1704 static inline bool *virt_get_high_memmap_enabled(VirtMachineState *vms,
1705 int index)
1706 {
1707 bool *enabled_array[] = {
1708 &vms->highmem_redists,
1709 &vms->highmem_ecam,
1710 &vms->highmem_mmio,
1711 };
1712
1713 assert(ARRAY_SIZE(extended_memmap) - VIRT_LOWMEMMAP_LAST ==
1714 ARRAY_SIZE(enabled_array));
1715 assert(index - VIRT_LOWMEMMAP_LAST < ARRAY_SIZE(enabled_array));
1716
1717 return enabled_array[index - VIRT_LOWMEMMAP_LAST];
1718 }
1719
1720 static void virt_set_high_memmap(VirtMachineState *vms,
1721 hwaddr base, int pa_bits)
1722 {
1723 hwaddr region_base, region_size;
1724 bool *region_enabled, fits;
1725 int i;
1726
1727 for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) {
1728 region_enabled = virt_get_high_memmap_enabled(vms, i);
1729 region_base = ROUND_UP(base, extended_memmap[i].size);
1730 region_size = extended_memmap[i].size;
1731
1732 vms->memmap[i].base = region_base;
1733 vms->memmap[i].size = region_size;
1734
1735 /*
1736 * Check each device to see if it fits in the PA space,
1737 * moving highest_gpa as we go. For compatibility, move
1738 * highest_gpa for disabled fitting devices as well, if
1739 * the compact layout has been disabled.
1740 *
1741 * For each device that doesn't fit, disable it.
1742 */
1743 fits = (region_base + region_size) <= BIT_ULL(pa_bits);
1744 *region_enabled &= fits;
1745 if (vms->highmem_compact && !*region_enabled) {
1746 continue;
1747 }
1748
1749 base = region_base + region_size;
1750 if (fits) {
1751 vms->highest_gpa = base - 1;
1752 }
1753 }
1754 }
1755
1756 static void virt_set_memmap(VirtMachineState *vms, int pa_bits)
1757 {
1758 MachineState *ms = MACHINE(vms);
1759 hwaddr base, device_memory_base, device_memory_size, memtop;
1760 int i;
1761
1762 vms->memmap = extended_memmap;
1763
1764 for (i = 0; i < ARRAY_SIZE(base_memmap); i++) {
1765 vms->memmap[i] = base_memmap[i];
1766 }
1767
1768 if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) {
1769 error_report("unsupported number of memory slots: %"PRIu64,
1770 ms->ram_slots);
1771 exit(EXIT_FAILURE);
1772 }
1773
1774 /*
1775 * !highmem is exactly the same as limiting the PA space to 32bit,
1776 * irrespective of the underlying capabilities of the HW.
1777 */
1778 if (!vms->highmem) {
1779 pa_bits = 32;
1780 }
1781
1782 /*
1783 * We compute the base of the high IO region depending on the
1784 * amount of initial and device memory. The device memory start/size
1785 * is aligned on 1GiB. We never put the high IO region below 256GiB
1786 * so that if maxram_size is < 255GiB we keep the legacy memory map.
1787 * The device region size assumes 1GiB page max alignment per slot.
1788 */
1789 device_memory_base =
1790 ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB);
1791 device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB;
1792
1793 /* Base address of the high IO region */
1794 memtop = base = device_memory_base + ROUND_UP(device_memory_size, GiB);
1795 if (memtop > BIT_ULL(pa_bits)) {
1796 error_report("Addressing limited to %d bits, but memory exceeds it by %llu bytes\n",
1797 pa_bits, memtop - BIT_ULL(pa_bits));
1798 exit(EXIT_FAILURE);
1799 }
1800 if (base < device_memory_base) {
1801 error_report("maxmem/slots too huge");
1802 exit(EXIT_FAILURE);
1803 }
1804 if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) {
1805 base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES;
1806 }
1807
1808 /* We know for sure that at least the memory fits in the PA space */
1809 vms->highest_gpa = memtop - 1;
1810
1811 virt_set_high_memmap(vms, base, pa_bits);
1812
1813 if (device_memory_size > 0) {
1814 machine_memory_devices_init(ms, device_memory_base, device_memory_size);
1815 }
1816 }
1817
1818 static VirtGICType finalize_gic_version_do(const char *accel_name,
1819 VirtGICType gic_version,
1820 int gics_supported,
1821 unsigned int max_cpus)
1822 {
1823 /* Convert host/max/nosel to GIC version number */
1824 switch (gic_version) {
1825 case VIRT_GIC_VERSION_HOST:
1826 if (!kvm_enabled()) {
1827 error_report("gic-version=host requires KVM");
1828 exit(1);
1829 }
1830
1831 /* For KVM, gic-version=host means gic-version=max */
1832 return finalize_gic_version_do(accel_name, VIRT_GIC_VERSION_MAX,
1833 gics_supported, max_cpus);
1834 case VIRT_GIC_VERSION_MAX:
1835 if (gics_supported & VIRT_GIC_VERSION_4_MASK) {
1836 gic_version = VIRT_GIC_VERSION_4;
1837 } else if (gics_supported & VIRT_GIC_VERSION_3_MASK) {
1838 gic_version = VIRT_GIC_VERSION_3;
1839 } else {
1840 gic_version = VIRT_GIC_VERSION_2;
1841 }
1842 break;
1843 case VIRT_GIC_VERSION_NOSEL:
1844 if ((gics_supported & VIRT_GIC_VERSION_2_MASK) &&
1845 max_cpus <= GIC_NCPU) {
1846 gic_version = VIRT_GIC_VERSION_2;
1847 } else if (gics_supported & VIRT_GIC_VERSION_3_MASK) {
1848 /*
1849 * in case the host does not support v2 emulation or
1850 * the end-user requested more than 8 VCPUs we now default
1851 * to v3. In any case defaulting to v2 would be broken.
1852 */
1853 gic_version = VIRT_GIC_VERSION_3;
1854 } else if (max_cpus > GIC_NCPU) {
1855 error_report("%s only supports GICv2 emulation but more than 8 "
1856 "vcpus are requested", accel_name);
1857 exit(1);
1858 }
1859 break;
1860 case VIRT_GIC_VERSION_2:
1861 case VIRT_GIC_VERSION_3:
1862 case VIRT_GIC_VERSION_4:
1863 break;
1864 }
1865
1866 /* Check chosen version is effectively supported */
1867 switch (gic_version) {
1868 case VIRT_GIC_VERSION_2:
1869 if (!(gics_supported & VIRT_GIC_VERSION_2_MASK)) {
1870 error_report("%s does not support GICv2 emulation", accel_name);
1871 exit(1);
1872 }
1873 break;
1874 case VIRT_GIC_VERSION_3:
1875 if (!(gics_supported & VIRT_GIC_VERSION_3_MASK)) {
1876 error_report("%s does not support GICv3 emulation", accel_name);
1877 exit(1);
1878 }
1879 break;
1880 case VIRT_GIC_VERSION_4:
1881 if (!(gics_supported & VIRT_GIC_VERSION_4_MASK)) {
1882 error_report("%s does not support GICv4 emulation, is virtualization=on?",
1883 accel_name);
1884 exit(1);
1885 }
1886 break;
1887 default:
1888 error_report("logic error in finalize_gic_version");
1889 exit(1);
1890 break;
1891 }
1892
1893 return gic_version;
1894 }
1895
1896 /*
1897 * finalize_gic_version - Determines the final gic_version
1898 * according to the gic-version property
1899 *
1900 * Default GIC type is v2
1901 */
1902 static void finalize_gic_version(VirtMachineState *vms)
1903 {
1904 const char *accel_name = current_accel_name();
1905 unsigned int max_cpus = MACHINE(vms)->smp.max_cpus;
1906 int gics_supported = 0;
1907
1908 /* Determine which GIC versions the current environment supports */
1909 if (kvm_enabled() && kvm_irqchip_in_kernel()) {
1910 int probe_bitmap = kvm_arm_vgic_probe();
1911
1912 if (!probe_bitmap) {
1913 error_report("Unable to determine GIC version supported by host");
1914 exit(1);
1915 }
1916
1917 if (probe_bitmap & KVM_ARM_VGIC_V2) {
1918 gics_supported |= VIRT_GIC_VERSION_2_MASK;
1919 }
1920 if (probe_bitmap & KVM_ARM_VGIC_V3) {
1921 gics_supported |= VIRT_GIC_VERSION_3_MASK;
1922 }
1923 } else if (kvm_enabled() && !kvm_irqchip_in_kernel()) {
1924 /* KVM w/o kernel irqchip can only deal with GICv2 */
1925 gics_supported |= VIRT_GIC_VERSION_2_MASK;
1926 accel_name = "KVM with kernel-irqchip=off";
1927 } else if (tcg_enabled() || hvf_enabled() || qtest_enabled()) {
1928 gics_supported |= VIRT_GIC_VERSION_2_MASK;
1929 if (module_object_class_by_name("arm-gicv3")) {
1930 gics_supported |= VIRT_GIC_VERSION_3_MASK;
1931 if (vms->virt) {
1932 /* GICv4 only makes sense if CPU has EL2 */
1933 gics_supported |= VIRT_GIC_VERSION_4_MASK;
1934 }
1935 }
1936 } else {
1937 error_report("Unsupported accelerator, can not determine GIC support");
1938 exit(1);
1939 }
1940
1941 /*
1942 * Then convert helpers like host/max to concrete GIC versions and ensure
1943 * the desired version is supported
1944 */
1945 vms->gic_version = finalize_gic_version_do(accel_name, vms->gic_version,
1946 gics_supported, max_cpus);
1947 }
1948
1949 /*
1950 * virt_cpu_post_init() must be called after the CPUs have
1951 * been realized and the GIC has been created.
1952 */
1953 static void virt_cpu_post_init(VirtMachineState *vms, MemoryRegion *sysmem)
1954 {
1955 int max_cpus = MACHINE(vms)->smp.max_cpus;
1956 bool aarch64, pmu, steal_time;
1957 CPUState *cpu;
1958
1959 aarch64 = object_property_get_bool(OBJECT(first_cpu), "aarch64", NULL);
1960 pmu = object_property_get_bool(OBJECT(first_cpu), "pmu", NULL);
1961 steal_time = object_property_get_bool(OBJECT(first_cpu),
1962 "kvm-steal-time", NULL);
1963
1964 if (kvm_enabled()) {
1965 hwaddr pvtime_reg_base = vms->memmap[VIRT_PVTIME].base;
1966 hwaddr pvtime_reg_size = vms->memmap[VIRT_PVTIME].size;
1967
1968 if (steal_time) {
1969 MemoryRegion *pvtime = g_new(MemoryRegion, 1);
1970 hwaddr pvtime_size = max_cpus * PVTIME_SIZE_PER_CPU;
1971
1972 /* The memory region size must be a multiple of host page size. */
1973 pvtime_size = REAL_HOST_PAGE_ALIGN(pvtime_size);
1974
1975 if (pvtime_size > pvtime_reg_size) {
1976 error_report("pvtime requires a %" HWADDR_PRId
1977 " byte memory region for %d CPUs,"
1978 " but only %" HWADDR_PRId " has been reserved",
1979 pvtime_size, max_cpus, pvtime_reg_size);
1980 exit(1);
1981 }
1982
1983 memory_region_init_ram(pvtime, NULL, "pvtime", pvtime_size, NULL);
1984 memory_region_add_subregion(sysmem, pvtime_reg_base, pvtime);
1985 }
1986
1987 CPU_FOREACH(cpu) {
1988 if (pmu) {
1989 assert(arm_feature(&ARM_CPU(cpu)->env, ARM_FEATURE_PMU));
1990 if (kvm_irqchip_in_kernel()) {
1991 kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ));
1992 }
1993 kvm_arm_pmu_init(cpu);
1994 }
1995 if (steal_time) {
1996 kvm_arm_pvtime_init(cpu, pvtime_reg_base +
1997 cpu->cpu_index * PVTIME_SIZE_PER_CPU);
1998 }
1999 }
2000 } else {
2001 if (aarch64 && vms->highmem) {
2002 int requested_pa_size = 64 - clz64(vms->highest_gpa);
2003 int pamax = arm_pamax(ARM_CPU(first_cpu));
2004
2005 if (pamax < requested_pa_size) {
2006 error_report("VCPU supports less PA bits (%d) than "
2007 "requested by the memory map (%d)",
2008 pamax, requested_pa_size);
2009 exit(1);
2010 }
2011 }
2012 }
2013 }
2014
2015 static void machvirt_init(MachineState *machine)
2016 {
2017 VirtMachineState *vms = VIRT_MACHINE(machine);
2018 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
2019 MachineClass *mc = MACHINE_GET_CLASS(machine);
2020 const CPUArchIdList *possible_cpus;
2021 MemoryRegion *sysmem = get_system_memory();
2022 MemoryRegion *secure_sysmem = NULL;
2023 MemoryRegion *tag_sysmem = NULL;
2024 MemoryRegion *secure_tag_sysmem = NULL;
2025 int n, virt_max_cpus;
2026 bool firmware_loaded;
2027 bool aarch64 = true;
2028 bool has_ged = !vmc->no_ged;
2029 unsigned int smp_cpus = machine->smp.cpus;
2030 unsigned int max_cpus = machine->smp.max_cpus;
2031
2032 if (!cpu_type_valid(machine->cpu_type)) {
2033 error_report("mach-virt: CPU type %s not supported", machine->cpu_type);
2034 exit(1);
2035 }
2036
2037 possible_cpus = mc->possible_cpu_arch_ids(machine);
2038
2039 /*
2040 * In accelerated mode, the memory map is computed earlier in kvm_type()
2041 * to create a VM with the right number of IPA bits.
2042 */
2043 if (!vms->memmap) {
2044 Object *cpuobj;
2045 ARMCPU *armcpu;
2046 int pa_bits;
2047
2048 /*
2049 * Instantiate a temporary CPU object to find out about what
2050 * we are about to deal with. Once this is done, get rid of
2051 * the object.
2052 */
2053 cpuobj = object_new(possible_cpus->cpus[0].type);
2054 armcpu = ARM_CPU(cpuobj);
2055
2056 pa_bits = arm_pamax(armcpu);
2057
2058 object_unref(cpuobj);
2059
2060 virt_set_memmap(vms, pa_bits);
2061 }
2062
2063 /* We can probe only here because during property set
2064 * KVM is not available yet
2065 */
2066 finalize_gic_version(vms);
2067
2068 if (vms->secure) {
2069 /*
2070 * The Secure view of the world is the same as the NonSecure,
2071 * but with a few extra devices. Create it as a container region
2072 * containing the system memory at low priority; any secure-only
2073 * devices go in at higher priority and take precedence.
2074 */
2075 secure_sysmem = g_new(MemoryRegion, 1);
2076 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
2077 UINT64_MAX);
2078 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
2079 }
2080
2081 firmware_loaded = virt_firmware_init(vms, sysmem,
2082 secure_sysmem ?: sysmem);
2083
2084 /* If we have an EL3 boot ROM then the assumption is that it will
2085 * implement PSCI itself, so disable QEMU's internal implementation
2086 * so it doesn't get in the way. Instead of starting secondary
2087 * CPUs in PSCI powerdown state we will start them all running and
2088 * let the boot ROM sort them out.
2089 * The usual case is that we do use QEMU's PSCI implementation;
2090 * if the guest has EL2 then we will use SMC as the conduit,
2091 * and otherwise we will use HVC (for backwards compatibility and
2092 * because if we're using KVM then we must use HVC).
2093 */
2094 if (vms->secure && firmware_loaded) {
2095 vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
2096 } else if (vms->virt) {
2097 vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
2098 } else {
2099 vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
2100 }
2101
2102 /*
2103 * The maximum number of CPUs depends on the GIC version, or on how
2104 * many redistributors we can fit into the memory map (which in turn
2105 * depends on whether this is a GICv3 or v4).
2106 */
2107 if (vms->gic_version == VIRT_GIC_VERSION_2) {
2108 virt_max_cpus = GIC_NCPU;
2109 } else {
2110 virt_max_cpus = virt_redist_capacity(vms, VIRT_GIC_REDIST);
2111 if (vms->highmem_redists) {
2112 virt_max_cpus += virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2);
2113 }
2114 }
2115
2116 if (max_cpus > virt_max_cpus) {
2117 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
2118 "supported by machine 'mach-virt' (%d)",
2119 max_cpus, virt_max_cpus);
2120 if (vms->gic_version != VIRT_GIC_VERSION_2 && !vms->highmem_redists) {
2121 error_printf("Try 'highmem-redists=on' for more CPUs\n");
2122 }
2123
2124 exit(1);
2125 }
2126
2127 if (vms->secure && (kvm_enabled() || hvf_enabled())) {
2128 error_report("mach-virt: %s does not support providing "
2129 "Security extensions (TrustZone) to the guest CPU",
2130 current_accel_name());
2131 exit(1);
2132 }
2133
2134 if (vms->virt && (kvm_enabled() || hvf_enabled())) {
2135 error_report("mach-virt: %s does not support providing "
2136 "Virtualization extensions to the guest CPU",
2137 current_accel_name());
2138 exit(1);
2139 }
2140
2141 if (vms->mte && (kvm_enabled() || hvf_enabled())) {
2142 error_report("mach-virt: %s does not support providing "
2143 "MTE to the guest CPU",
2144 current_accel_name());
2145 exit(1);
2146 }
2147
2148 create_fdt(vms);
2149
2150 assert(possible_cpus->len == max_cpus);
2151 for (n = 0; n < possible_cpus->len; n++) {
2152 Object *cpuobj;
2153 CPUState *cs;
2154
2155 if (n >= smp_cpus) {
2156 break;
2157 }
2158
2159 cpuobj = object_new(possible_cpus->cpus[n].type);
2160 object_property_set_int(cpuobj, "mp-affinity",
2161 possible_cpus->cpus[n].arch_id, NULL);
2162
2163 cs = CPU(cpuobj);
2164 cs->cpu_index = n;
2165
2166 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
2167 &error_fatal);
2168
2169 aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
2170
2171 if (!vms->secure) {
2172 object_property_set_bool(cpuobj, "has_el3", false, NULL);
2173 }
2174
2175 if (!vms->virt && object_property_find(cpuobj, "has_el2")) {
2176 object_property_set_bool(cpuobj, "has_el2", false, NULL);
2177 }
2178
2179 if (vmc->kvm_no_adjvtime &&
2180 object_property_find(cpuobj, "kvm-no-adjvtime")) {
2181 object_property_set_bool(cpuobj, "kvm-no-adjvtime", true, NULL);
2182 }
2183
2184 if (vmc->no_kvm_steal_time &&
2185 object_property_find(cpuobj, "kvm-steal-time")) {
2186 object_property_set_bool(cpuobj, "kvm-steal-time", false, NULL);
2187 }
2188
2189 if (vmc->no_pmu && object_property_find(cpuobj, "pmu")) {
2190 object_property_set_bool(cpuobj, "pmu", false, NULL);
2191 }
2192
2193 if (vmc->no_tcg_lpa2 && object_property_find(cpuobj, "lpa2")) {
2194 object_property_set_bool(cpuobj, "lpa2", false, NULL);
2195 }
2196
2197 if (object_property_find(cpuobj, "reset-cbar")) {
2198 object_property_set_int(cpuobj, "reset-cbar",
2199 vms->memmap[VIRT_CPUPERIPHS].base,
2200 &error_abort);
2201 }
2202
2203 object_property_set_link(cpuobj, "memory", OBJECT(sysmem),
2204 &error_abort);
2205 if (vms->secure) {
2206 object_property_set_link(cpuobj, "secure-memory",
2207 OBJECT(secure_sysmem), &error_abort);
2208 }
2209
2210 if (vms->mte) {
2211 /* Create the memory region only once, but link to all cpus. */
2212 if (!tag_sysmem) {
2213 /*
2214 * The property exists only if MemTag is supported.
2215 * If it is, we must allocate the ram to back that up.
2216 */
2217 if (!object_property_find(cpuobj, "tag-memory")) {
2218 error_report("MTE requested, but not supported "
2219 "by the guest CPU");
2220 exit(1);
2221 }
2222
2223 tag_sysmem = g_new(MemoryRegion, 1);
2224 memory_region_init(tag_sysmem, OBJECT(machine),
2225 "tag-memory", UINT64_MAX / 32);
2226
2227 if (vms->secure) {
2228 secure_tag_sysmem = g_new(MemoryRegion, 1);
2229 memory_region_init(secure_tag_sysmem, OBJECT(machine),
2230 "secure-tag-memory", UINT64_MAX / 32);
2231
2232 /* As with ram, secure-tag takes precedence over tag. */
2233 memory_region_add_subregion_overlap(secure_tag_sysmem, 0,
2234 tag_sysmem, -1);
2235 }
2236 }
2237
2238 object_property_set_link(cpuobj, "tag-memory", OBJECT(tag_sysmem),
2239 &error_abort);
2240 if (vms->secure) {
2241 object_property_set_link(cpuobj, "secure-tag-memory",
2242 OBJECT(secure_tag_sysmem),
2243 &error_abort);
2244 }
2245 }
2246
2247 qdev_realize(DEVICE(cpuobj), NULL, &error_fatal);
2248 object_unref(cpuobj);
2249 }
2250 fdt_add_timer_nodes(vms);
2251 fdt_add_cpu_nodes(vms);
2252
2253 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base,
2254 machine->ram);
2255
2256 virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem);
2257
2258 create_gic(vms, sysmem);
2259
2260 virt_cpu_post_init(vms, sysmem);
2261
2262 fdt_add_pmu_nodes(vms);
2263
2264 create_uart(vms, VIRT_UART, sysmem, serial_hd(0));
2265
2266 if (vms->secure) {
2267 create_secure_ram(vms, secure_sysmem, secure_tag_sysmem);
2268 create_uart(vms, VIRT_SECURE_UART, secure_sysmem, serial_hd(1));
2269 }
2270
2271 if (tag_sysmem) {
2272 create_tag_ram(tag_sysmem, vms->memmap[VIRT_MEM].base,
2273 machine->ram_size, "mach-virt.tag");
2274 }
2275
2276 vms->highmem_ecam &= (!firmware_loaded || aarch64);
2277
2278 create_rtc(vms);
2279
2280 create_pcie(vms);
2281
2282 if (has_ged && aarch64 && firmware_loaded && virt_is_acpi_enabled(vms)) {
2283 vms->acpi_dev = create_acpi_ged(vms);
2284 } else {
2285 create_gpio_devices(vms, VIRT_GPIO, sysmem);
2286 }
2287
2288 if (vms->secure && !vmc->no_secure_gpio) {
2289 create_gpio_devices(vms, VIRT_SECURE_GPIO, secure_sysmem);
2290 }
2291
2292 /* connect powerdown request */
2293 vms->powerdown_notifier.notify = virt_powerdown_req;
2294 qemu_register_powerdown_notifier(&vms->powerdown_notifier);
2295
2296 /* Create mmio transports, so the user can create virtio backends
2297 * (which will be automatically plugged in to the transports). If
2298 * no backend is created the transport will just sit harmlessly idle.
2299 */
2300 create_virtio_devices(vms);
2301
2302 vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
2303 rom_set_fw(vms->fw_cfg);
2304
2305 create_platform_bus(vms);
2306
2307 if (machine->nvdimms_state->is_enabled) {
2308 const struct AcpiGenericAddress arm_virt_nvdimm_acpi_dsmio = {
2309 .space_id = AML_AS_SYSTEM_MEMORY,
2310 .address = vms->memmap[VIRT_NVDIMM_ACPI].base,
2311 .bit_width = NVDIMM_ACPI_IO_LEN << 3
2312 };
2313
2314 nvdimm_init_acpi_state(machine->nvdimms_state, sysmem,
2315 arm_virt_nvdimm_acpi_dsmio,
2316 vms->fw_cfg, OBJECT(vms));
2317 }
2318
2319 vms->bootinfo.ram_size = machine->ram_size;
2320 vms->bootinfo.board_id = -1;
2321 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
2322 vms->bootinfo.get_dtb = machvirt_dtb;
2323 vms->bootinfo.skip_dtb_autoload = true;
2324 vms->bootinfo.firmware_loaded = firmware_loaded;
2325 vms->bootinfo.psci_conduit = vms->psci_conduit;
2326 arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo);
2327
2328 vms->machine_done.notify = virt_machine_done;
2329 qemu_add_machine_init_done_notifier(&vms->machine_done);
2330 }
2331
2332 static bool virt_get_secure(Object *obj, Error **errp)
2333 {
2334 VirtMachineState *vms = VIRT_MACHINE(obj);
2335
2336 return vms->secure;
2337 }
2338
2339 static void virt_set_secure(Object *obj, bool value, Error **errp)
2340 {
2341 VirtMachineState *vms = VIRT_MACHINE(obj);
2342
2343 vms->secure = value;
2344 }
2345
2346 static bool virt_get_virt(Object *obj, Error **errp)
2347 {
2348 VirtMachineState *vms = VIRT_MACHINE(obj);
2349
2350 return vms->virt;
2351 }
2352
2353 static void virt_set_virt(Object *obj, bool value, Error **errp)
2354 {
2355 VirtMachineState *vms = VIRT_MACHINE(obj);
2356
2357 vms->virt = value;
2358 }
2359
2360 static bool virt_get_highmem(Object *obj, Error **errp)
2361 {
2362 VirtMachineState *vms = VIRT_MACHINE(obj);
2363
2364 return vms->highmem;
2365 }
2366
2367 static void virt_set_highmem(Object *obj, bool value, Error **errp)
2368 {
2369 VirtMachineState *vms = VIRT_MACHINE(obj);
2370
2371 vms->highmem = value;
2372 }
2373
2374 static bool virt_get_compact_highmem(Object *obj, Error **errp)
2375 {
2376 VirtMachineState *vms = VIRT_MACHINE(obj);
2377
2378 return vms->highmem_compact;
2379 }
2380
2381 static void virt_set_compact_highmem(Object *obj, bool value, Error **errp)
2382 {
2383 VirtMachineState *vms = VIRT_MACHINE(obj);
2384
2385 vms->highmem_compact = value;
2386 }
2387
2388 static bool virt_get_highmem_redists(Object *obj, Error **errp)
2389 {
2390 VirtMachineState *vms = VIRT_MACHINE(obj);
2391
2392 return vms->highmem_redists;
2393 }
2394
2395 static void virt_set_highmem_redists(Object *obj, bool value, Error **errp)
2396 {
2397 VirtMachineState *vms = VIRT_MACHINE(obj);
2398
2399 vms->highmem_redists = value;
2400 }
2401
2402 static bool virt_get_highmem_ecam(Object *obj, Error **errp)
2403 {
2404 VirtMachineState *vms = VIRT_MACHINE(obj);
2405
2406 return vms->highmem_ecam;
2407 }
2408
2409 static void virt_set_highmem_ecam(Object *obj, bool value, Error **errp)
2410 {
2411 VirtMachineState *vms = VIRT_MACHINE(obj);
2412
2413 vms->highmem_ecam = value;
2414 }
2415
2416 static bool virt_get_highmem_mmio(Object *obj, Error **errp)
2417 {
2418 VirtMachineState *vms = VIRT_MACHINE(obj);
2419
2420 return vms->highmem_mmio;
2421 }
2422
2423 static void virt_set_highmem_mmio(Object *obj, bool value, Error **errp)
2424 {
2425 VirtMachineState *vms = VIRT_MACHINE(obj);
2426
2427 vms->highmem_mmio = value;
2428 }
2429
2430
2431 static bool virt_get_its(Object *obj, Error **errp)
2432 {
2433 VirtMachineState *vms = VIRT_MACHINE(obj);
2434
2435 return vms->its;
2436 }
2437
2438 static void virt_set_its(Object *obj, bool value, Error **errp)
2439 {
2440 VirtMachineState *vms = VIRT_MACHINE(obj);
2441
2442 vms->its = value;
2443 }
2444
2445 static bool virt_get_dtb_randomness(Object *obj, Error **errp)
2446 {
2447 VirtMachineState *vms = VIRT_MACHINE(obj);
2448
2449 return vms->dtb_randomness;
2450 }
2451
2452 static void virt_set_dtb_randomness(Object *obj, bool value, Error **errp)
2453 {
2454 VirtMachineState *vms = VIRT_MACHINE(obj);
2455
2456 vms->dtb_randomness = value;
2457 }
2458
2459 static char *virt_get_oem_id(Object *obj, Error **errp)
2460 {
2461 VirtMachineState *vms = VIRT_MACHINE(obj);
2462
2463 return g_strdup(vms->oem_id);
2464 }
2465
2466 static void virt_set_oem_id(Object *obj, const char *value, Error **errp)
2467 {
2468 VirtMachineState *vms = VIRT_MACHINE(obj);
2469 size_t len = strlen(value);
2470
2471 if (len > 6) {
2472 error_setg(errp,
2473 "User specified oem-id value is bigger than 6 bytes in size");
2474 return;
2475 }
2476
2477 strncpy(vms->oem_id, value, 6);
2478 }
2479
2480 static char *virt_get_oem_table_id(Object *obj, Error **errp)
2481 {
2482 VirtMachineState *vms = VIRT_MACHINE(obj);
2483
2484 return g_strdup(vms->oem_table_id);
2485 }
2486
2487 static void virt_set_oem_table_id(Object *obj, const char *value,
2488 Error **errp)
2489 {
2490 VirtMachineState *vms = VIRT_MACHINE(obj);
2491 size_t len = strlen(value);
2492
2493 if (len > 8) {
2494 error_setg(errp,
2495 "User specified oem-table-id value is bigger than 8 bytes in size");
2496 return;
2497 }
2498 strncpy(vms->oem_table_id, value, 8);
2499 }
2500
2501
2502 bool virt_is_acpi_enabled(VirtMachineState *vms)
2503 {
2504 if (vms->acpi == ON_OFF_AUTO_OFF) {
2505 return false;
2506 }
2507 return true;
2508 }
2509
2510 static void virt_get_acpi(Object *obj, Visitor *v, const char *name,
2511 void *opaque, Error **errp)
2512 {
2513 VirtMachineState *vms = VIRT_MACHINE(obj);
2514 OnOffAuto acpi = vms->acpi;
2515
2516 visit_type_OnOffAuto(v, name, &acpi, errp);
2517 }
2518
2519 static void virt_set_acpi(Object *obj, Visitor *v, const char *name,
2520 void *opaque, Error **errp)
2521 {
2522 VirtMachineState *vms = VIRT_MACHINE(obj);
2523
2524 visit_type_OnOffAuto(v, name, &vms->acpi, errp);
2525 }
2526
2527 static bool virt_get_ras(Object *obj, Error **errp)
2528 {
2529 VirtMachineState *vms = VIRT_MACHINE(obj);
2530
2531 return vms->ras;
2532 }
2533
2534 static void virt_set_ras(Object *obj, bool value, Error **errp)
2535 {
2536 VirtMachineState *vms = VIRT_MACHINE(obj);
2537
2538 vms->ras = value;
2539 }
2540
2541 static bool virt_get_mte(Object *obj, Error **errp)
2542 {
2543 VirtMachineState *vms = VIRT_MACHINE(obj);
2544
2545 return vms->mte;
2546 }
2547
2548 static void virt_set_mte(Object *obj, bool value, Error **errp)
2549 {
2550 VirtMachineState *vms = VIRT_MACHINE(obj);
2551
2552 vms->mte = value;
2553 }
2554
2555 static char *virt_get_gic_version(Object *obj, Error **errp)
2556 {
2557 VirtMachineState *vms = VIRT_MACHINE(obj);
2558 const char *val;
2559
2560 switch (vms->gic_version) {
2561 case VIRT_GIC_VERSION_4:
2562 val = "4";
2563 break;
2564 case VIRT_GIC_VERSION_3:
2565 val = "3";
2566 break;
2567 default:
2568 val = "2";
2569 break;
2570 }
2571 return g_strdup(val);
2572 }
2573
2574 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
2575 {
2576 VirtMachineState *vms = VIRT_MACHINE(obj);
2577
2578 if (!strcmp(value, "4")) {
2579 vms->gic_version = VIRT_GIC_VERSION_4;
2580 } else if (!strcmp(value, "3")) {
2581 vms->gic_version = VIRT_GIC_VERSION_3;
2582 } else if (!strcmp(value, "2")) {
2583 vms->gic_version = VIRT_GIC_VERSION_2;
2584 } else if (!strcmp(value, "host")) {
2585 vms->gic_version = VIRT_GIC_VERSION_HOST; /* Will probe later */
2586 } else if (!strcmp(value, "max")) {
2587 vms->gic_version = VIRT_GIC_VERSION_MAX; /* Will probe later */
2588 } else {
2589 error_setg(errp, "Invalid gic-version value");
2590 error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
2591 }
2592 }
2593
2594 static char *virt_get_iommu(Object *obj, Error **errp)
2595 {
2596 VirtMachineState *vms = VIRT_MACHINE(obj);
2597
2598 switch (vms->iommu) {
2599 case VIRT_IOMMU_NONE:
2600 return g_strdup("none");
2601 case VIRT_IOMMU_SMMUV3:
2602 return g_strdup("smmuv3");
2603 default:
2604 g_assert_not_reached();
2605 }
2606 }
2607
2608 static void virt_set_iommu(Object *obj, const char *value, Error **errp)
2609 {
2610 VirtMachineState *vms = VIRT_MACHINE(obj);
2611
2612 if (!strcmp(value, "smmuv3")) {
2613 vms->iommu = VIRT_IOMMU_SMMUV3;
2614 } else if (!strcmp(value, "none")) {
2615 vms->iommu = VIRT_IOMMU_NONE;
2616 } else {
2617 error_setg(errp, "Invalid iommu value");
2618 error_append_hint(errp, "Valid values are none, smmuv3.\n");
2619 }
2620 }
2621
2622 static bool virt_get_default_bus_bypass_iommu(Object *obj, Error **errp)
2623 {
2624 VirtMachineState *vms = VIRT_MACHINE(obj);
2625
2626 return vms->default_bus_bypass_iommu;
2627 }
2628
2629 static void virt_set_default_bus_bypass_iommu(Object *obj, bool value,
2630 Error **errp)
2631 {
2632 VirtMachineState *vms = VIRT_MACHINE(obj);
2633
2634 vms->default_bus_bypass_iommu = value;
2635 }
2636
2637 static CpuInstanceProperties
2638 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2639 {
2640 MachineClass *mc = MACHINE_GET_CLASS(ms);
2641 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2642
2643 assert(cpu_index < possible_cpus->len);
2644 return possible_cpus->cpus[cpu_index].props;
2645 }
2646
2647 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
2648 {
2649 int64_t socket_id = ms->possible_cpus->cpus[idx].props.socket_id;
2650
2651 return socket_id % ms->numa_state->num_nodes;
2652 }
2653
2654 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
2655 {
2656 int n;
2657 unsigned int max_cpus = ms->smp.max_cpus;
2658 VirtMachineState *vms = VIRT_MACHINE(ms);
2659 MachineClass *mc = MACHINE_GET_CLASS(vms);
2660
2661 if (ms->possible_cpus) {
2662 assert(ms->possible_cpus->len == max_cpus);
2663 return ms->possible_cpus;
2664 }
2665
2666 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2667 sizeof(CPUArchId) * max_cpus);
2668 ms->possible_cpus->len = max_cpus;
2669 for (n = 0; n < ms->possible_cpus->len; n++) {
2670 ms->possible_cpus->cpus[n].type = ms->cpu_type;
2671 ms->possible_cpus->cpus[n].arch_id =
2672 virt_cpu_mp_affinity(vms, n);
2673
2674 assert(!mc->smp_props.dies_supported);
2675 ms->possible_cpus->cpus[n].props.has_socket_id = true;
2676 ms->possible_cpus->cpus[n].props.socket_id =
2677 n / (ms->smp.clusters * ms->smp.cores * ms->smp.threads);
2678 ms->possible_cpus->cpus[n].props.has_cluster_id = true;
2679 ms->possible_cpus->cpus[n].props.cluster_id =
2680 (n / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters;
2681 ms->possible_cpus->cpus[n].props.has_core_id = true;
2682 ms->possible_cpus->cpus[n].props.core_id =
2683 (n / ms->smp.threads) % ms->smp.cores;
2684 ms->possible_cpus->cpus[n].props.has_thread_id = true;
2685 ms->possible_cpus->cpus[n].props.thread_id =
2686 n % ms->smp.threads;
2687 }
2688 return ms->possible_cpus;
2689 }
2690
2691 static void virt_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2692 Error **errp)
2693 {
2694 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2695 const MachineState *ms = MACHINE(hotplug_dev);
2696 const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2697
2698 if (!vms->acpi_dev) {
2699 error_setg(errp,
2700 "memory hotplug is not enabled: missing acpi-ged device");
2701 return;
2702 }
2703
2704 if (vms->mte) {
2705 error_setg(errp, "memory hotplug is not enabled: MTE is enabled");
2706 return;
2707 }
2708
2709 if (is_nvdimm && !ms->nvdimms_state->is_enabled) {
2710 error_setg(errp, "nvdimm is not enabled: add 'nvdimm=on' to '-M'");
2711 return;
2712 }
2713
2714 pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), NULL, errp);
2715 }
2716
2717 static void virt_memory_plug(HotplugHandler *hotplug_dev,
2718 DeviceState *dev, Error **errp)
2719 {
2720 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2721 MachineState *ms = MACHINE(hotplug_dev);
2722 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2723
2724 pc_dimm_plug(PC_DIMM(dev), MACHINE(vms));
2725
2726 if (is_nvdimm) {
2727 nvdimm_plug(ms->nvdimms_state);
2728 }
2729
2730 hotplug_handler_plug(HOTPLUG_HANDLER(vms->acpi_dev),
2731 dev, &error_abort);
2732 }
2733
2734 static void virt_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2735 DeviceState *dev, Error **errp)
2736 {
2737 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2738
2739 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2740 virt_memory_pre_plug(hotplug_dev, dev, errp);
2741 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
2742 virtio_md_pci_pre_plug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp);
2743 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2744 hwaddr db_start = 0, db_end = 0;
2745 char *resv_prop_str;
2746
2747 if (vms->iommu != VIRT_IOMMU_NONE) {
2748 error_setg(errp, "virt machine does not support multiple IOMMUs");
2749 return;
2750 }
2751
2752 switch (vms->msi_controller) {
2753 case VIRT_MSI_CTRL_NONE:
2754 return;
2755 case VIRT_MSI_CTRL_ITS:
2756 /* GITS_TRANSLATER page */
2757 db_start = base_memmap[VIRT_GIC_ITS].base + 0x10000;
2758 db_end = base_memmap[VIRT_GIC_ITS].base +
2759 base_memmap[VIRT_GIC_ITS].size - 1;
2760 break;
2761 case VIRT_MSI_CTRL_GICV2M:
2762 /* MSI_SETSPI_NS page */
2763 db_start = base_memmap[VIRT_GIC_V2M].base;
2764 db_end = db_start + base_memmap[VIRT_GIC_V2M].size - 1;
2765 break;
2766 }
2767 resv_prop_str = g_strdup_printf("0x%"PRIx64":0x%"PRIx64":%u",
2768 db_start, db_end,
2769 VIRTIO_IOMMU_RESV_MEM_T_MSI);
2770
2771 object_property_set_uint(OBJECT(dev), "len-reserved-regions", 1, errp);
2772 object_property_set_str(OBJECT(dev), "reserved-regions[0]",
2773 resv_prop_str, errp);
2774 g_free(resv_prop_str);
2775 }
2776 }
2777
2778 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2779 DeviceState *dev, Error **errp)
2780 {
2781 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2782
2783 if (vms->platform_bus_dev) {
2784 MachineClass *mc = MACHINE_GET_CLASS(vms);
2785
2786 if (device_is_dynamic_sysbus(mc, dev)) {
2787 platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
2788 SYS_BUS_DEVICE(dev));
2789 }
2790 }
2791
2792 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2793 virt_memory_plug(hotplug_dev, dev, errp);
2794 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
2795 virtio_md_pci_plug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp);
2796 }
2797
2798 if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2799 PCIDevice *pdev = PCI_DEVICE(dev);
2800
2801 vms->iommu = VIRT_IOMMU_VIRTIO;
2802 vms->virtio_iommu_bdf = pci_get_bdf(pdev);
2803 create_virtio_iommu_dt_bindings(vms);
2804 }
2805 }
2806
2807 static void virt_dimm_unplug_request(HotplugHandler *hotplug_dev,
2808 DeviceState *dev, Error **errp)
2809 {
2810 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2811
2812 if (!vms->acpi_dev) {
2813 error_setg(errp,
2814 "memory hotplug is not enabled: missing acpi-ged device");
2815 return;
2816 }
2817
2818 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
2819 error_setg(errp, "nvdimm device hot unplug is not supported yet.");
2820 return;
2821 }
2822
2823 hotplug_handler_unplug_request(HOTPLUG_HANDLER(vms->acpi_dev), dev,
2824 errp);
2825 }
2826
2827 static void virt_dimm_unplug(HotplugHandler *hotplug_dev,
2828 DeviceState *dev, Error **errp)
2829 {
2830 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2831 Error *local_err = NULL;
2832
2833 hotplug_handler_unplug(HOTPLUG_HANDLER(vms->acpi_dev), dev, &local_err);
2834 if (local_err) {
2835 goto out;
2836 }
2837
2838 pc_dimm_unplug(PC_DIMM(dev), MACHINE(vms));
2839 qdev_unrealize(dev);
2840
2841 out:
2842 error_propagate(errp, local_err);
2843 }
2844
2845 static void virt_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2846 DeviceState *dev, Error **errp)
2847 {
2848 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2849 virt_dimm_unplug_request(hotplug_dev, dev, errp);
2850 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
2851 virtio_md_pci_unplug_request(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev),
2852 errp);
2853 } else {
2854 error_setg(errp, "device unplug request for unsupported device"
2855 " type: %s", object_get_typename(OBJECT(dev)));
2856 }
2857 }
2858
2859 static void virt_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2860 DeviceState *dev, Error **errp)
2861 {
2862 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2863 virt_dimm_unplug(hotplug_dev, dev, errp);
2864 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
2865 virtio_md_pci_unplug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp);
2866 } else {
2867 error_setg(errp, "virt: device unplug for unsupported device"
2868 " type: %s", object_get_typename(OBJECT(dev)));
2869 }
2870 }
2871
2872 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
2873 DeviceState *dev)
2874 {
2875 MachineClass *mc = MACHINE_GET_CLASS(machine);
2876
2877 if (device_is_dynamic_sysbus(mc, dev) ||
2878 object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2879 object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI) ||
2880 object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2881 return HOTPLUG_HANDLER(machine);
2882 }
2883 return NULL;
2884 }
2885
2886 /*
2887 * for arm64 kvm_type [7-0] encodes the requested number of bits
2888 * in the IPA address space
2889 */
2890 static int virt_kvm_type(MachineState *ms, const char *type_str)
2891 {
2892 VirtMachineState *vms = VIRT_MACHINE(ms);
2893 int max_vm_pa_size, requested_pa_size;
2894 bool fixed_ipa;
2895
2896 max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa);
2897
2898 /* we freeze the memory map to compute the highest gpa */
2899 virt_set_memmap(vms, max_vm_pa_size);
2900
2901 requested_pa_size = 64 - clz64(vms->highest_gpa);
2902
2903 /*
2904 * KVM requires the IPA size to be at least 32 bits.
2905 */
2906 if (requested_pa_size < 32) {
2907 requested_pa_size = 32;
2908 }
2909
2910 if (requested_pa_size > max_vm_pa_size) {
2911 error_report("-m and ,maxmem option values "
2912 "require an IPA range (%d bits) larger than "
2913 "the one supported by the host (%d bits)",
2914 requested_pa_size, max_vm_pa_size);
2915 return -1;
2916 }
2917 /*
2918 * We return the requested PA log size, unless KVM only supports
2919 * the implicit legacy 40b IPA setting, in which case the kvm_type
2920 * must be 0.
2921 */
2922 return fixed_ipa ? 0 : requested_pa_size;
2923 }
2924
2925 static void virt_machine_class_init(ObjectClass *oc, void *data)
2926 {
2927 MachineClass *mc = MACHINE_CLASS(oc);
2928 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2929
2930 mc->init = machvirt_init;
2931 /* Start with max_cpus set to 512, which is the maximum supported by KVM.
2932 * The value may be reduced later when we have more information about the
2933 * configuration of the particular instance.
2934 */
2935 mc->max_cpus = 512;
2936 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
2937 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
2938 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
2939 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM);
2940 #ifdef CONFIG_TPM
2941 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_TPM_TIS_SYSBUS);
2942 #endif
2943 mc->block_default_type = IF_VIRTIO;
2944 mc->no_cdrom = 1;
2945 mc->pci_allow_0_address = true;
2946 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
2947 mc->minimum_page_bits = 12;
2948 mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
2949 mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
2950 #ifdef CONFIG_TCG
2951 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
2952 #else
2953 mc->default_cpu_type = ARM_CPU_TYPE_NAME("max");
2954 #endif
2955 mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
2956 mc->kvm_type = virt_kvm_type;
2957 assert(!mc->get_hotplug_handler);
2958 mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
2959 hc->pre_plug = virt_machine_device_pre_plug_cb;
2960 hc->plug = virt_machine_device_plug_cb;
2961 hc->unplug_request = virt_machine_device_unplug_request_cb;
2962 hc->unplug = virt_machine_device_unplug_cb;
2963 mc->nvdimm_supported = true;
2964 mc->smp_props.clusters_supported = true;
2965 mc->auto_enable_numa_with_memhp = true;
2966 mc->auto_enable_numa_with_memdev = true;
2967 /* platform instead of architectural choice */
2968 mc->cpu_cluster_has_numa_boundary = true;
2969 mc->default_ram_id = "mach-virt.ram";
2970 mc->default_nic = "virtio-net-pci";
2971
2972 object_class_property_add(oc, "acpi", "OnOffAuto",
2973 virt_get_acpi, virt_set_acpi,
2974 NULL, NULL);
2975 object_class_property_set_description(oc, "acpi",
2976 "Enable ACPI");
2977 object_class_property_add_bool(oc, "secure", virt_get_secure,
2978 virt_set_secure);
2979 object_class_property_set_description(oc, "secure",
2980 "Set on/off to enable/disable the ARM "
2981 "Security Extensions (TrustZone)");
2982
2983 object_class_property_add_bool(oc, "virtualization", virt_get_virt,
2984 virt_set_virt);
2985 object_class_property_set_description(oc, "virtualization",
2986 "Set on/off to enable/disable emulating a "
2987 "guest CPU which implements the ARM "
2988 "Virtualization Extensions");
2989
2990 object_class_property_add_bool(oc, "highmem", virt_get_highmem,
2991 virt_set_highmem);
2992 object_class_property_set_description(oc, "highmem",
2993 "Set on/off to enable/disable using "
2994 "physical address space above 32 bits");
2995
2996 object_class_property_add_bool(oc, "compact-highmem",
2997 virt_get_compact_highmem,
2998 virt_set_compact_highmem);
2999 object_class_property_set_description(oc, "compact-highmem",
3000 "Set on/off to enable/disable compact "
3001 "layout for high memory regions");
3002
3003 object_class_property_add_bool(oc, "highmem-redists",
3004 virt_get_highmem_redists,
3005 virt_set_highmem_redists);
3006 object_class_property_set_description(oc, "highmem-redists",
3007 "Set on/off to enable/disable high "
3008 "memory region for GICv3 or GICv4 "
3009 "redistributor");
3010
3011 object_class_property_add_bool(oc, "highmem-ecam",
3012 virt_get_highmem_ecam,
3013 virt_set_highmem_ecam);
3014 object_class_property_set_description(oc, "highmem-ecam",
3015 "Set on/off to enable/disable high "
3016 "memory region for PCI ECAM");
3017
3018 object_class_property_add_bool(oc, "highmem-mmio",
3019 virt_get_highmem_mmio,
3020 virt_set_highmem_mmio);
3021 object_class_property_set_description(oc, "highmem-mmio",
3022 "Set on/off to enable/disable high "
3023 "memory region for PCI MMIO");
3024
3025 object_class_property_add_str(oc, "gic-version", virt_get_gic_version,
3026 virt_set_gic_version);
3027 object_class_property_set_description(oc, "gic-version",
3028 "Set GIC version. "
3029 "Valid values are 2, 3, 4, host and max");
3030
3031 object_class_property_add_str(oc, "iommu", virt_get_iommu, virt_set_iommu);
3032 object_class_property_set_description(oc, "iommu",
3033 "Set the IOMMU type. "
3034 "Valid values are none and smmuv3");
3035
3036 object_class_property_add_bool(oc, "default-bus-bypass-iommu",
3037 virt_get_default_bus_bypass_iommu,
3038 virt_set_default_bus_bypass_iommu);
3039 object_class_property_set_description(oc, "default-bus-bypass-iommu",
3040 "Set on/off to enable/disable "
3041 "bypass_iommu for default root bus");
3042
3043 object_class_property_add_bool(oc, "ras", virt_get_ras,
3044 virt_set_ras);
3045 object_class_property_set_description(oc, "ras",
3046 "Set on/off to enable/disable reporting host memory errors "
3047 "to a KVM guest using ACPI and guest external abort exceptions");
3048
3049 object_class_property_add_bool(oc, "mte", virt_get_mte, virt_set_mte);
3050 object_class_property_set_description(oc, "mte",
3051 "Set on/off to enable/disable emulating a "
3052 "guest CPU which implements the ARM "
3053 "Memory Tagging Extension");
3054
3055 object_class_property_add_bool(oc, "its", virt_get_its,
3056 virt_set_its);
3057 object_class_property_set_description(oc, "its",
3058 "Set on/off to enable/disable "
3059 "ITS instantiation");
3060
3061 object_class_property_add_bool(oc, "dtb-randomness",
3062 virt_get_dtb_randomness,
3063 virt_set_dtb_randomness);
3064 object_class_property_set_description(oc, "dtb-randomness",
3065 "Set off to disable passing random or "
3066 "non-deterministic dtb nodes to guest");
3067
3068 object_class_property_add_bool(oc, "dtb-kaslr-seed",
3069 virt_get_dtb_randomness,
3070 virt_set_dtb_randomness);
3071 object_class_property_set_description(oc, "dtb-kaslr-seed",
3072 "Deprecated synonym of dtb-randomness");
3073
3074 object_class_property_add_str(oc, "x-oem-id",
3075 virt_get_oem_id,
3076 virt_set_oem_id);
3077 object_class_property_set_description(oc, "x-oem-id",
3078 "Override the default value of field OEMID "
3079 "in ACPI table header."
3080 "The string may be up to 6 bytes in size");
3081
3082
3083 object_class_property_add_str(oc, "x-oem-table-id",
3084 virt_get_oem_table_id,
3085 virt_set_oem_table_id);
3086 object_class_property_set_description(oc, "x-oem-table-id",
3087 "Override the default value of field OEM Table ID "
3088 "in ACPI table header."
3089 "The string may be up to 8 bytes in size");
3090
3091 }
3092
3093 static void virt_instance_init(Object *obj)
3094 {
3095 VirtMachineState *vms = VIRT_MACHINE(obj);
3096 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
3097
3098 /* EL3 is disabled by default on virt: this makes us consistent
3099 * between KVM and TCG for this board, and it also allows us to
3100 * boot UEFI blobs which assume no TrustZone support.
3101 */
3102 vms->secure = false;
3103
3104 /* EL2 is also disabled by default, for similar reasons */
3105 vms->virt = false;
3106
3107 /* High memory is enabled by default */
3108 vms->highmem = true;
3109 vms->highmem_compact = !vmc->no_highmem_compact;
3110 vms->gic_version = VIRT_GIC_VERSION_NOSEL;
3111
3112 vms->highmem_ecam = !vmc->no_highmem_ecam;
3113 vms->highmem_mmio = true;
3114 vms->highmem_redists = true;
3115
3116 if (vmc->no_its) {
3117 vms->its = false;
3118 } else {
3119 /* Default allows ITS instantiation */
3120 vms->its = true;
3121
3122 if (vmc->no_tcg_its) {
3123 vms->tcg_its = false;
3124 } else {
3125 vms->tcg_its = true;
3126 }
3127 }
3128
3129 /* Default disallows iommu instantiation */
3130 vms->iommu = VIRT_IOMMU_NONE;
3131
3132 /* The default root bus is attached to iommu by default */
3133 vms->default_bus_bypass_iommu = false;
3134
3135 /* Default disallows RAS instantiation */
3136 vms->ras = false;
3137
3138 /* MTE is disabled by default. */
3139 vms->mte = false;
3140
3141 /* Supply kaslr-seed and rng-seed by default */
3142 vms->dtb_randomness = true;
3143
3144 vms->irqmap = a15irqmap;
3145
3146 virt_flash_create(vms);
3147
3148 vms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6);
3149 vms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8);
3150 }
3151
3152 static const TypeInfo virt_machine_info = {
3153 .name = TYPE_VIRT_MACHINE,
3154 .parent = TYPE_MACHINE,
3155 .abstract = true,
3156 .instance_size = sizeof(VirtMachineState),
3157 .class_size = sizeof(VirtMachineClass),
3158 .class_init = virt_machine_class_init,
3159 .instance_init = virt_instance_init,
3160 .interfaces = (InterfaceInfo[]) {
3161 { TYPE_HOTPLUG_HANDLER },
3162 { }
3163 },
3164 };
3165
3166 static void machvirt_machine_init(void)
3167 {
3168 type_register_static(&virt_machine_info);
3169 }
3170 type_init(machvirt_machine_init);
3171
3172 static void virt_machine_8_2_options(MachineClass *mc)
3173 {
3174 }
3175 DEFINE_VIRT_MACHINE_AS_LATEST(8, 2)
3176
3177 static void virt_machine_8_1_options(MachineClass *mc)
3178 {
3179 virt_machine_8_2_options(mc);
3180 compat_props_add(mc->compat_props, hw_compat_8_1, hw_compat_8_1_len);
3181 }
3182 DEFINE_VIRT_MACHINE(8, 1)
3183
3184 static void virt_machine_8_0_options(MachineClass *mc)
3185 {
3186 virt_machine_8_1_options(mc);
3187 compat_props_add(mc->compat_props, hw_compat_8_0, hw_compat_8_0_len);
3188 }
3189 DEFINE_VIRT_MACHINE(8, 0)
3190
3191 static void virt_machine_7_2_options(MachineClass *mc)
3192 {
3193 virt_machine_8_0_options(mc);
3194 compat_props_add(mc->compat_props, hw_compat_7_2, hw_compat_7_2_len);
3195 }
3196 DEFINE_VIRT_MACHINE(7, 2)
3197
3198 static void virt_machine_7_1_options(MachineClass *mc)
3199 {
3200 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3201
3202 virt_machine_7_2_options(mc);
3203 compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len);
3204 /* Compact layout for high memory regions was introduced with 7.2 */
3205 vmc->no_highmem_compact = true;
3206 }
3207 DEFINE_VIRT_MACHINE(7, 1)
3208
3209 static void virt_machine_7_0_options(MachineClass *mc)
3210 {
3211 virt_machine_7_1_options(mc);
3212 compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len);
3213 }
3214 DEFINE_VIRT_MACHINE(7, 0)
3215
3216 static void virt_machine_6_2_options(MachineClass *mc)
3217 {
3218 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3219
3220 virt_machine_7_0_options(mc);
3221 compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len);
3222 vmc->no_tcg_lpa2 = true;
3223 }
3224 DEFINE_VIRT_MACHINE(6, 2)
3225
3226 static void virt_machine_6_1_options(MachineClass *mc)
3227 {
3228 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3229
3230 virt_machine_6_2_options(mc);
3231 compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len);
3232 mc->smp_props.prefer_sockets = true;
3233 vmc->no_cpu_topology = true;
3234
3235 /* qemu ITS was introduced with 6.2 */
3236 vmc->no_tcg_its = true;
3237 }
3238 DEFINE_VIRT_MACHINE(6, 1)
3239
3240 static void virt_machine_6_0_options(MachineClass *mc)
3241 {
3242 virt_machine_6_1_options(mc);
3243 compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len);
3244 }
3245 DEFINE_VIRT_MACHINE(6, 0)
3246
3247 static void virt_machine_5_2_options(MachineClass *mc)
3248 {
3249 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3250
3251 virt_machine_6_0_options(mc);
3252 compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
3253 vmc->no_secure_gpio = true;
3254 }
3255 DEFINE_VIRT_MACHINE(5, 2)
3256
3257 static void virt_machine_5_1_options(MachineClass *mc)
3258 {
3259 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3260
3261 virt_machine_5_2_options(mc);
3262 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
3263 vmc->no_kvm_steal_time = true;
3264 }
3265 DEFINE_VIRT_MACHINE(5, 1)
3266
3267 static void virt_machine_5_0_options(MachineClass *mc)
3268 {
3269 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3270
3271 virt_machine_5_1_options(mc);
3272 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
3273 mc->numa_mem_supported = true;
3274 vmc->acpi_expose_flash = true;
3275 mc->auto_enable_numa_with_memdev = false;
3276 }
3277 DEFINE_VIRT_MACHINE(5, 0)
3278
3279 static void virt_machine_4_2_options(MachineClass *mc)
3280 {
3281 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3282
3283 virt_machine_5_0_options(mc);
3284 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
3285 vmc->kvm_no_adjvtime = true;
3286 }
3287 DEFINE_VIRT_MACHINE(4, 2)
3288
3289 static void virt_machine_4_1_options(MachineClass *mc)
3290 {
3291 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3292
3293 virt_machine_4_2_options(mc);
3294 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
3295 vmc->no_ged = true;
3296 mc->auto_enable_numa_with_memhp = false;
3297 }
3298 DEFINE_VIRT_MACHINE(4, 1)
3299
3300 static void virt_machine_4_0_options(MachineClass *mc)
3301 {
3302 virt_machine_4_1_options(mc);
3303 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
3304 }
3305 DEFINE_VIRT_MACHINE(4, 0)
3306
3307 static void virt_machine_3_1_options(MachineClass *mc)
3308 {
3309 virt_machine_4_0_options(mc);
3310 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
3311 }
3312 DEFINE_VIRT_MACHINE(3, 1)
3313
3314 static void virt_machine_3_0_options(MachineClass *mc)
3315 {
3316 virt_machine_3_1_options(mc);
3317 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
3318 }
3319 DEFINE_VIRT_MACHINE(3, 0)
3320
3321 static void virt_machine_2_12_options(MachineClass *mc)
3322 {
3323 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3324
3325 virt_machine_3_0_options(mc);
3326 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
3327 vmc->no_highmem_ecam = true;
3328 mc->max_cpus = 255;
3329 }
3330 DEFINE_VIRT_MACHINE(2, 12)
3331
3332 static void virt_machine_2_11_options(MachineClass *mc)
3333 {
3334 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3335
3336 virt_machine_2_12_options(mc);
3337 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
3338 vmc->smbios_old_sys_ver = true;
3339 }
3340 DEFINE_VIRT_MACHINE(2, 11)
3341
3342 static void virt_machine_2_10_options(MachineClass *mc)
3343 {
3344 virt_machine_2_11_options(mc);
3345 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
3346 /* before 2.11 we never faulted accesses to bad addresses */
3347 mc->ignore_memory_transaction_failures = true;
3348 }
3349 DEFINE_VIRT_MACHINE(2, 10)
3350
3351 static void virt_machine_2_9_options(MachineClass *mc)
3352 {
3353 virt_machine_2_10_options(mc);
3354 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
3355 }
3356 DEFINE_VIRT_MACHINE(2, 9)
3357
3358 static void virt_machine_2_8_options(MachineClass *mc)
3359 {
3360 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3361
3362 virt_machine_2_9_options(mc);
3363 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
3364 /* For 2.8 and earlier we falsely claimed in the DT that
3365 * our timers were edge-triggered, not level-triggered.
3366 */
3367 vmc->claim_edge_triggered_timers = true;
3368 }
3369 DEFINE_VIRT_MACHINE(2, 8)
3370
3371 static void virt_machine_2_7_options(MachineClass *mc)
3372 {
3373 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3374
3375 virt_machine_2_8_options(mc);
3376 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
3377 /* ITS was introduced with 2.8 */
3378 vmc->no_its = true;
3379 /* Stick with 1K pages for migration compatibility */
3380 mc->minimum_page_bits = 0;
3381 }
3382 DEFINE_VIRT_MACHINE(2, 7)
3383
3384 static void virt_machine_2_6_options(MachineClass *mc)
3385 {
3386 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3387
3388 virt_machine_2_7_options(mc);
3389 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
3390 vmc->disallow_affinity_adjustment = true;
3391 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
3392 vmc->no_pmu = true;
3393 }
3394 DEFINE_VIRT_MACHINE(2, 6)