]> git.proxmox.com Git - mirror_qemu.git/blob - hw/arm/virt.c
arm/virt: use memdev for RAM
[mirror_qemu.git] / hw / arm / virt.c
1 /*
2 * ARM mach-virt emulation
3 *
4 * Copyright (c) 2013 Linaro Limited
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
17 *
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
29 */
30
31 #include "qemu/osdep.h"
32 #include "qemu-common.h"
33 #include "qemu/units.h"
34 #include "qemu/option.h"
35 #include "qapi/error.h"
36 #include "hw/sysbus.h"
37 #include "hw/boards.h"
38 #include "hw/arm/boot.h"
39 #include "hw/arm/primecell.h"
40 #include "hw/arm/virt.h"
41 #include "hw/block/flash.h"
42 #include "hw/vfio/vfio-calxeda-xgmac.h"
43 #include "hw/vfio/vfio-amd-xgbe.h"
44 #include "hw/display/ramfb.h"
45 #include "net/net.h"
46 #include "sysemu/device_tree.h"
47 #include "sysemu/numa.h"
48 #include "sysemu/runstate.h"
49 #include "sysemu/sysemu.h"
50 #include "sysemu/kvm.h"
51 #include "hw/loader.h"
52 #include "exec/address-spaces.h"
53 #include "qemu/bitops.h"
54 #include "qemu/error-report.h"
55 #include "qemu/module.h"
56 #include "hw/pci-host/gpex.h"
57 #include "hw/arm/sysbus-fdt.h"
58 #include "hw/platform-bus.h"
59 #include "hw/qdev-properties.h"
60 #include "hw/arm/fdt.h"
61 #include "hw/intc/arm_gic.h"
62 #include "hw/intc/arm_gicv3_common.h"
63 #include "hw/irq.h"
64 #include "kvm_arm.h"
65 #include "hw/firmware/smbios.h"
66 #include "qapi/visitor.h"
67 #include "standard-headers/linux/input.h"
68 #include "hw/arm/smmuv3.h"
69 #include "hw/acpi/acpi.h"
70 #include "target/arm/internals.h"
71 #include "hw/mem/pc-dimm.h"
72 #include "hw/mem/nvdimm.h"
73 #include "hw/acpi/generic_event_device.h"
74
75 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
76 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
77 void *data) \
78 { \
79 MachineClass *mc = MACHINE_CLASS(oc); \
80 virt_machine_##major##_##minor##_options(mc); \
81 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
82 if (latest) { \
83 mc->alias = "virt"; \
84 } \
85 } \
86 static const TypeInfo machvirt_##major##_##minor##_info = { \
87 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
88 .parent = TYPE_VIRT_MACHINE, \
89 .class_init = virt_##major##_##minor##_class_init, \
90 }; \
91 static void machvirt_machine_##major##_##minor##_init(void) \
92 { \
93 type_register_static(&machvirt_##major##_##minor##_info); \
94 } \
95 type_init(machvirt_machine_##major##_##minor##_init);
96
97 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
98 DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
99 #define DEFINE_VIRT_MACHINE(major, minor) \
100 DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
101
102
103 /* Number of external interrupt lines to configure the GIC with */
104 #define NUM_IRQS 256
105
106 #define PLATFORM_BUS_NUM_IRQS 64
107
108 /* Legacy RAM limit in GB (< version 4.0) */
109 #define LEGACY_RAMLIMIT_GB 255
110 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB)
111
112 /* Addresses and sizes of our components.
113 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
114 * 128MB..256MB is used for miscellaneous device I/O.
115 * 256MB..1GB is reserved for possible future PCI support (ie where the
116 * PCI memory window will go if we add a PCI host controller).
117 * 1GB and up is RAM (which may happily spill over into the
118 * high memory region beyond 4GB).
119 * This represents a compromise between how much RAM can be given to
120 * a 32 bit VM and leaving space for expansion and in particular for PCI.
121 * Note that devices should generally be placed at multiples of 0x10000,
122 * to accommodate guests using 64K pages.
123 */
124 static const MemMapEntry base_memmap[] = {
125 /* Space up to 0x8000000 is reserved for a boot ROM */
126 [VIRT_FLASH] = { 0, 0x08000000 },
127 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
128 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
129 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
130 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
131 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 },
132 [VIRT_GIC_HYP] = { 0x08030000, 0x00010000 },
133 [VIRT_GIC_VCPU] = { 0x08040000, 0x00010000 },
134 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
135 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 },
136 /* This redistributor space allows up to 2*64kB*123 CPUs */
137 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 },
138 [VIRT_UART] = { 0x09000000, 0x00001000 },
139 [VIRT_RTC] = { 0x09010000, 0x00001000 },
140 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 },
141 [VIRT_GPIO] = { 0x09030000, 0x00001000 },
142 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 },
143 [VIRT_SMMU] = { 0x09050000, 0x00020000 },
144 [VIRT_PCDIMM_ACPI] = { 0x09070000, MEMORY_HOTPLUG_IO_LEN },
145 [VIRT_ACPI_GED] = { 0x09080000, ACPI_GED_EVT_SEL_LEN },
146 [VIRT_MMIO] = { 0x0a000000, 0x00000200 },
147 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
148 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 },
149 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 },
150 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 },
151 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 },
152 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 },
153 /* Actual RAM size depends on initial RAM and device memory settings */
154 [VIRT_MEM] = { GiB, LEGACY_RAMLIMIT_BYTES },
155 };
156
157 /*
158 * Highmem IO Regions: This memory map is floating, located after the RAM.
159 * Each MemMapEntry base (GPA) will be dynamically computed, depending on the
160 * top of the RAM, so that its base get the same alignment as the size,
161 * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is
162 * less than 256GiB of RAM, the floating area starts at the 256GiB mark.
163 * Note the extended_memmap is sized so that it eventually also includes the
164 * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last
165 * index of base_memmap).
166 */
167 static MemMapEntry extended_memmap[] = {
168 /* Additional 64 MB redist region (can contain up to 512 redistributors) */
169 [VIRT_HIGH_GIC_REDIST2] = { 0x0, 64 * MiB },
170 [VIRT_HIGH_PCIE_ECAM] = { 0x0, 256 * MiB },
171 /* Second PCIe window */
172 [VIRT_HIGH_PCIE_MMIO] = { 0x0, 512 * GiB },
173 };
174
175 static const int a15irqmap[] = {
176 [VIRT_UART] = 1,
177 [VIRT_RTC] = 2,
178 [VIRT_PCIE] = 3, /* ... to 6 */
179 [VIRT_GPIO] = 7,
180 [VIRT_SECURE_UART] = 8,
181 [VIRT_ACPI_GED] = 9,
182 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
183 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
184 [VIRT_SMMU] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */
185 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
186 };
187
188 static const char *valid_cpus[] = {
189 ARM_CPU_TYPE_NAME("cortex-a7"),
190 ARM_CPU_TYPE_NAME("cortex-a15"),
191 ARM_CPU_TYPE_NAME("cortex-a53"),
192 ARM_CPU_TYPE_NAME("cortex-a57"),
193 ARM_CPU_TYPE_NAME("cortex-a72"),
194 ARM_CPU_TYPE_NAME("host"),
195 ARM_CPU_TYPE_NAME("max"),
196 };
197
198 static bool cpu_type_valid(const char *cpu)
199 {
200 int i;
201
202 for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
203 if (strcmp(cpu, valid_cpus[i]) == 0) {
204 return true;
205 }
206 }
207 return false;
208 }
209
210 static void create_fdt(VirtMachineState *vms)
211 {
212 MachineState *ms = MACHINE(vms);
213 int nb_numa_nodes = ms->numa_state->num_nodes;
214 void *fdt = create_device_tree(&vms->fdt_size);
215
216 if (!fdt) {
217 error_report("create_device_tree() failed");
218 exit(1);
219 }
220
221 vms->fdt = fdt;
222
223 /* Header */
224 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
225 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
226 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
227
228 /* /chosen must exist for load_dtb to fill in necessary properties later */
229 qemu_fdt_add_subnode(fdt, "/chosen");
230
231 /* Clock node, for the benefit of the UART. The kernel device tree
232 * binding documentation claims the PL011 node clock properties are
233 * optional but in practice if you omit them the kernel refuses to
234 * probe for the device.
235 */
236 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
237 qemu_fdt_add_subnode(fdt, "/apb-pclk");
238 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
239 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
240 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
241 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
242 "clk24mhz");
243 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
244
245 if (nb_numa_nodes > 0 && ms->numa_state->have_numa_distance) {
246 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
247 uint32_t *matrix = g_malloc0(size);
248 int idx, i, j;
249
250 for (i = 0; i < nb_numa_nodes; i++) {
251 for (j = 0; j < nb_numa_nodes; j++) {
252 idx = (i * nb_numa_nodes + j) * 3;
253 matrix[idx + 0] = cpu_to_be32(i);
254 matrix[idx + 1] = cpu_to_be32(j);
255 matrix[idx + 2] =
256 cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
257 }
258 }
259
260 qemu_fdt_add_subnode(fdt, "/distance-map");
261 qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
262 "numa-distance-map-v1");
263 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
264 matrix, size);
265 g_free(matrix);
266 }
267 }
268
269 static void fdt_add_timer_nodes(const VirtMachineState *vms)
270 {
271 /* On real hardware these interrupts are level-triggered.
272 * On KVM they were edge-triggered before host kernel version 4.4,
273 * and level-triggered afterwards.
274 * On emulated QEMU they are level-triggered.
275 *
276 * Getting the DTB info about them wrong is awkward for some
277 * guest kernels:
278 * pre-4.8 ignore the DT and leave the interrupt configured
279 * with whatever the GIC reset value (or the bootloader) left it at
280 * 4.8 before rc6 honour the incorrect data by programming it back
281 * into the GIC, causing problems
282 * 4.8rc6 and later ignore the DT and always write "level triggered"
283 * into the GIC
284 *
285 * For backwards-compatibility, virt-2.8 and earlier will continue
286 * to say these are edge-triggered, but later machines will report
287 * the correct information.
288 */
289 ARMCPU *armcpu;
290 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
291 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
292
293 if (vmc->claim_edge_triggered_timers) {
294 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
295 }
296
297 if (vms->gic_version == 2) {
298 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
299 GIC_FDT_IRQ_PPI_CPU_WIDTH,
300 (1 << vms->smp_cpus) - 1);
301 }
302
303 qemu_fdt_add_subnode(vms->fdt, "/timer");
304
305 armcpu = ARM_CPU(qemu_get_cpu(0));
306 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
307 const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
308 qemu_fdt_setprop(vms->fdt, "/timer", "compatible",
309 compat, sizeof(compat));
310 } else {
311 qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible",
312 "arm,armv7-timer");
313 }
314 qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0);
315 qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts",
316 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
317 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
318 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
319 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
320 }
321
322 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
323 {
324 int cpu;
325 int addr_cells = 1;
326 const MachineState *ms = MACHINE(vms);
327
328 /*
329 * From Documentation/devicetree/bindings/arm/cpus.txt
330 * On ARM v8 64-bit systems value should be set to 2,
331 * that corresponds to the MPIDR_EL1 register size.
332 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
333 * in the system, #address-cells can be set to 1, since
334 * MPIDR_EL1[63:32] bits are not used for CPUs
335 * identification.
336 *
337 * Here we actually don't know whether our system is 32- or 64-bit one.
338 * The simplest way to go is to examine affinity IDs of all our CPUs. If
339 * at least one of them has Aff3 populated, we set #address-cells to 2.
340 */
341 for (cpu = 0; cpu < vms->smp_cpus; cpu++) {
342 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
343
344 if (armcpu->mp_affinity & ARM_AFF3_MASK) {
345 addr_cells = 2;
346 break;
347 }
348 }
349
350 qemu_fdt_add_subnode(vms->fdt, "/cpus");
351 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells);
352 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0);
353
354 for (cpu = vms->smp_cpus - 1; cpu >= 0; cpu--) {
355 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
356 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
357 CPUState *cs = CPU(armcpu);
358
359 qemu_fdt_add_subnode(vms->fdt, nodename);
360 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu");
361 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
362 armcpu->dtb_compatible);
363
364 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED
365 && vms->smp_cpus > 1) {
366 qemu_fdt_setprop_string(vms->fdt, nodename,
367 "enable-method", "psci");
368 }
369
370 if (addr_cells == 2) {
371 qemu_fdt_setprop_u64(vms->fdt, nodename, "reg",
372 armcpu->mp_affinity);
373 } else {
374 qemu_fdt_setprop_cell(vms->fdt, nodename, "reg",
375 armcpu->mp_affinity);
376 }
377
378 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
379 qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id",
380 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
381 }
382
383 g_free(nodename);
384 }
385 }
386
387 static void fdt_add_its_gic_node(VirtMachineState *vms)
388 {
389 char *nodename;
390
391 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
392 nodename = g_strdup_printf("/intc/its@%" PRIx64,
393 vms->memmap[VIRT_GIC_ITS].base);
394 qemu_fdt_add_subnode(vms->fdt, nodename);
395 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
396 "arm,gic-v3-its");
397 qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0);
398 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
399 2, vms->memmap[VIRT_GIC_ITS].base,
400 2, vms->memmap[VIRT_GIC_ITS].size);
401 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle);
402 g_free(nodename);
403 }
404
405 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
406 {
407 char *nodename;
408
409 nodename = g_strdup_printf("/intc/v2m@%" PRIx64,
410 vms->memmap[VIRT_GIC_V2M].base);
411 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
412 qemu_fdt_add_subnode(vms->fdt, nodename);
413 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
414 "arm,gic-v2m-frame");
415 qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0);
416 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
417 2, vms->memmap[VIRT_GIC_V2M].base,
418 2, vms->memmap[VIRT_GIC_V2M].size);
419 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle);
420 g_free(nodename);
421 }
422
423 static void fdt_add_gic_node(VirtMachineState *vms)
424 {
425 char *nodename;
426
427 vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt);
428 qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle);
429
430 nodename = g_strdup_printf("/intc@%" PRIx64,
431 vms->memmap[VIRT_GIC_DIST].base);
432 qemu_fdt_add_subnode(vms->fdt, nodename);
433 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 3);
434 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-controller", NULL, 0);
435 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 0x2);
436 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 0x2);
437 qemu_fdt_setprop(vms->fdt, nodename, "ranges", NULL, 0);
438 if (vms->gic_version == 3) {
439 int nb_redist_regions = virt_gicv3_redist_region_count(vms);
440
441 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
442 "arm,gic-v3");
443
444 qemu_fdt_setprop_cell(vms->fdt, nodename,
445 "#redistributor-regions", nb_redist_regions);
446
447 if (nb_redist_regions == 1) {
448 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
449 2, vms->memmap[VIRT_GIC_DIST].base,
450 2, vms->memmap[VIRT_GIC_DIST].size,
451 2, vms->memmap[VIRT_GIC_REDIST].base,
452 2, vms->memmap[VIRT_GIC_REDIST].size);
453 } else {
454 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
455 2, vms->memmap[VIRT_GIC_DIST].base,
456 2, vms->memmap[VIRT_GIC_DIST].size,
457 2, vms->memmap[VIRT_GIC_REDIST].base,
458 2, vms->memmap[VIRT_GIC_REDIST].size,
459 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base,
460 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size);
461 }
462
463 if (vms->virt) {
464 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
465 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
466 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
467 }
468 } else {
469 /* 'cortex-a15-gic' means 'GIC v2' */
470 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
471 "arm,cortex-a15-gic");
472 if (!vms->virt) {
473 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
474 2, vms->memmap[VIRT_GIC_DIST].base,
475 2, vms->memmap[VIRT_GIC_DIST].size,
476 2, vms->memmap[VIRT_GIC_CPU].base,
477 2, vms->memmap[VIRT_GIC_CPU].size);
478 } else {
479 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
480 2, vms->memmap[VIRT_GIC_DIST].base,
481 2, vms->memmap[VIRT_GIC_DIST].size,
482 2, vms->memmap[VIRT_GIC_CPU].base,
483 2, vms->memmap[VIRT_GIC_CPU].size,
484 2, vms->memmap[VIRT_GIC_HYP].base,
485 2, vms->memmap[VIRT_GIC_HYP].size,
486 2, vms->memmap[VIRT_GIC_VCPU].base,
487 2, vms->memmap[VIRT_GIC_VCPU].size);
488 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
489 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
490 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
491 }
492 }
493
494 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->gic_phandle);
495 g_free(nodename);
496 }
497
498 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
499 {
500 CPUState *cpu;
501 ARMCPU *armcpu;
502 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
503
504 CPU_FOREACH(cpu) {
505 armcpu = ARM_CPU(cpu);
506 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
507 return;
508 }
509 if (kvm_enabled()) {
510 if (kvm_irqchip_in_kernel()) {
511 kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ));
512 }
513 kvm_arm_pmu_init(cpu);
514 }
515 }
516
517 if (vms->gic_version == 2) {
518 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
519 GIC_FDT_IRQ_PPI_CPU_WIDTH,
520 (1 << vms->smp_cpus) - 1);
521 }
522
523 armcpu = ARM_CPU(qemu_get_cpu(0));
524 qemu_fdt_add_subnode(vms->fdt, "/pmu");
525 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
526 const char compat[] = "arm,armv8-pmuv3";
527 qemu_fdt_setprop(vms->fdt, "/pmu", "compatible",
528 compat, sizeof(compat));
529 qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts",
530 GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
531 }
532 }
533
534 static inline DeviceState *create_acpi_ged(VirtMachineState *vms)
535 {
536 DeviceState *dev;
537 MachineState *ms = MACHINE(vms);
538 int irq = vms->irqmap[VIRT_ACPI_GED];
539 uint32_t event = ACPI_GED_PWR_DOWN_EVT;
540
541 if (ms->ram_slots) {
542 event |= ACPI_GED_MEM_HOTPLUG_EVT;
543 }
544
545 dev = qdev_create(NULL, TYPE_ACPI_GED);
546 qdev_prop_set_uint32(dev, "ged-event", event);
547
548 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_ACPI_GED].base);
549 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, vms->memmap[VIRT_PCDIMM_ACPI].base);
550 sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(vms->gic, irq));
551
552 qdev_init_nofail(dev);
553
554 return dev;
555 }
556
557 static void create_its(VirtMachineState *vms)
558 {
559 const char *itsclass = its_class_name();
560 DeviceState *dev;
561
562 if (!itsclass) {
563 /* Do nothing if not supported */
564 return;
565 }
566
567 dev = qdev_create(NULL, itsclass);
568
569 object_property_set_link(OBJECT(dev), OBJECT(vms->gic), "parent-gicv3",
570 &error_abort);
571 qdev_init_nofail(dev);
572 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
573
574 fdt_add_its_gic_node(vms);
575 }
576
577 static void create_v2m(VirtMachineState *vms)
578 {
579 int i;
580 int irq = vms->irqmap[VIRT_GIC_V2M];
581 DeviceState *dev;
582
583 dev = qdev_create(NULL, "arm-gicv2m");
584 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
585 qdev_prop_set_uint32(dev, "base-spi", irq);
586 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
587 qdev_init_nofail(dev);
588
589 for (i = 0; i < NUM_GICV2M_SPIS; i++) {
590 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
591 qdev_get_gpio_in(vms->gic, irq + i));
592 }
593
594 fdt_add_v2m_gic_node(vms);
595 }
596
597 static void create_gic(VirtMachineState *vms)
598 {
599 MachineState *ms = MACHINE(vms);
600 /* We create a standalone GIC */
601 SysBusDevice *gicbusdev;
602 const char *gictype;
603 int type = vms->gic_version, i;
604 unsigned int smp_cpus = ms->smp.cpus;
605 uint32_t nb_redist_regions = 0;
606
607 gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
608
609 vms->gic = qdev_create(NULL, gictype);
610 qdev_prop_set_uint32(vms->gic, "revision", type);
611 qdev_prop_set_uint32(vms->gic, "num-cpu", smp_cpus);
612 /* Note that the num-irq property counts both internal and external
613 * interrupts; there are always 32 of the former (mandated by GIC spec).
614 */
615 qdev_prop_set_uint32(vms->gic, "num-irq", NUM_IRQS + 32);
616 if (!kvm_irqchip_in_kernel()) {
617 qdev_prop_set_bit(vms->gic, "has-security-extensions", vms->secure);
618 }
619
620 if (type == 3) {
621 uint32_t redist0_capacity =
622 vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
623 uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
624
625 nb_redist_regions = virt_gicv3_redist_region_count(vms);
626
627 qdev_prop_set_uint32(vms->gic, "len-redist-region-count",
628 nb_redist_regions);
629 qdev_prop_set_uint32(vms->gic, "redist-region-count[0]", redist0_count);
630
631 if (nb_redist_regions == 2) {
632 uint32_t redist1_capacity =
633 vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE;
634
635 qdev_prop_set_uint32(vms->gic, "redist-region-count[1]",
636 MIN(smp_cpus - redist0_count, redist1_capacity));
637 }
638 } else {
639 if (!kvm_irqchip_in_kernel()) {
640 qdev_prop_set_bit(vms->gic, "has-virtualization-extensions",
641 vms->virt);
642 }
643 }
644 qdev_init_nofail(vms->gic);
645 gicbusdev = SYS_BUS_DEVICE(vms->gic);
646 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
647 if (type == 3) {
648 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
649 if (nb_redist_regions == 2) {
650 sysbus_mmio_map(gicbusdev, 2,
651 vms->memmap[VIRT_HIGH_GIC_REDIST2].base);
652 }
653 } else {
654 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
655 if (vms->virt) {
656 sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base);
657 sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base);
658 }
659 }
660
661 /* Wire the outputs from each CPU's generic timer and the GICv3
662 * maintenance interrupt signal to the appropriate GIC PPI inputs,
663 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
664 */
665 for (i = 0; i < smp_cpus; i++) {
666 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
667 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
668 int irq;
669 /* Mapping from the output timer irq lines from the CPU to the
670 * GIC PPI inputs we use for the virt board.
671 */
672 const int timer_irq[] = {
673 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
674 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
675 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
676 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
677 };
678
679 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
680 qdev_connect_gpio_out(cpudev, irq,
681 qdev_get_gpio_in(vms->gic,
682 ppibase + timer_irq[irq]));
683 }
684
685 if (type == 3) {
686 qemu_irq irq = qdev_get_gpio_in(vms->gic,
687 ppibase + ARCH_GIC_MAINT_IRQ);
688 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt",
689 0, irq);
690 } else if (vms->virt) {
691 qemu_irq irq = qdev_get_gpio_in(vms->gic,
692 ppibase + ARCH_GIC_MAINT_IRQ);
693 sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq);
694 }
695
696 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
697 qdev_get_gpio_in(vms->gic, ppibase
698 + VIRTUAL_PMU_IRQ));
699
700 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
701 sysbus_connect_irq(gicbusdev, i + smp_cpus,
702 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
703 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
704 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
705 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
706 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
707 }
708
709 fdt_add_gic_node(vms);
710
711 if (type == 3 && vms->its) {
712 create_its(vms);
713 } else if (type == 2) {
714 create_v2m(vms);
715 }
716 }
717
718 static void create_uart(const VirtMachineState *vms, int uart,
719 MemoryRegion *mem, Chardev *chr)
720 {
721 char *nodename;
722 hwaddr base = vms->memmap[uart].base;
723 hwaddr size = vms->memmap[uart].size;
724 int irq = vms->irqmap[uart];
725 const char compat[] = "arm,pl011\0arm,primecell";
726 const char clocknames[] = "uartclk\0apb_pclk";
727 DeviceState *dev = qdev_create(NULL, "pl011");
728 SysBusDevice *s = SYS_BUS_DEVICE(dev);
729
730 qdev_prop_set_chr(dev, "chardev", chr);
731 qdev_init_nofail(dev);
732 memory_region_add_subregion(mem, base,
733 sysbus_mmio_get_region(s, 0));
734 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
735
736 nodename = g_strdup_printf("/pl011@%" PRIx64, base);
737 qemu_fdt_add_subnode(vms->fdt, nodename);
738 /* Note that we can't use setprop_string because of the embedded NUL */
739 qemu_fdt_setprop(vms->fdt, nodename, "compatible",
740 compat, sizeof(compat));
741 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
742 2, base, 2, size);
743 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
744 GIC_FDT_IRQ_TYPE_SPI, irq,
745 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
746 qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks",
747 vms->clock_phandle, vms->clock_phandle);
748 qemu_fdt_setprop(vms->fdt, nodename, "clock-names",
749 clocknames, sizeof(clocknames));
750
751 if (uart == VIRT_UART) {
752 qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename);
753 } else {
754 /* Mark as not usable by the normal world */
755 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
756 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
757
758 qemu_fdt_add_subnode(vms->fdt, "/secure-chosen");
759 qemu_fdt_setprop_string(vms->fdt, "/secure-chosen", "stdout-path",
760 nodename);
761 }
762
763 g_free(nodename);
764 }
765
766 static void create_rtc(const VirtMachineState *vms)
767 {
768 char *nodename;
769 hwaddr base = vms->memmap[VIRT_RTC].base;
770 hwaddr size = vms->memmap[VIRT_RTC].size;
771 int irq = vms->irqmap[VIRT_RTC];
772 const char compat[] = "arm,pl031\0arm,primecell";
773
774 sysbus_create_simple("pl031", base, qdev_get_gpio_in(vms->gic, irq));
775
776 nodename = g_strdup_printf("/pl031@%" PRIx64, base);
777 qemu_fdt_add_subnode(vms->fdt, nodename);
778 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
779 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
780 2, base, 2, size);
781 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
782 GIC_FDT_IRQ_TYPE_SPI, irq,
783 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
784 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
785 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
786 g_free(nodename);
787 }
788
789 static DeviceState *gpio_key_dev;
790 static void virt_powerdown_req(Notifier *n, void *opaque)
791 {
792 VirtMachineState *s = container_of(n, VirtMachineState, powerdown_notifier);
793
794 if (s->acpi_dev) {
795 acpi_send_event(s->acpi_dev, ACPI_POWER_DOWN_STATUS);
796 } else {
797 /* use gpio Pin 3 for power button event */
798 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
799 }
800 }
801
802 static void create_gpio(const VirtMachineState *vms)
803 {
804 char *nodename;
805 DeviceState *pl061_dev;
806 hwaddr base = vms->memmap[VIRT_GPIO].base;
807 hwaddr size = vms->memmap[VIRT_GPIO].size;
808 int irq = vms->irqmap[VIRT_GPIO];
809 const char compat[] = "arm,pl061\0arm,primecell";
810
811 pl061_dev = sysbus_create_simple("pl061", base,
812 qdev_get_gpio_in(vms->gic, irq));
813
814 uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt);
815 nodename = g_strdup_printf("/pl061@%" PRIx64, base);
816 qemu_fdt_add_subnode(vms->fdt, nodename);
817 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
818 2, base, 2, size);
819 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
820 qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2);
821 qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0);
822 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
823 GIC_FDT_IRQ_TYPE_SPI, irq,
824 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
825 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
826 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
827 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle);
828
829 gpio_key_dev = sysbus_create_simple("gpio-key", -1,
830 qdev_get_gpio_in(pl061_dev, 3));
831 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys");
832 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys");
833 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0);
834 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1);
835
836 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff");
837 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff",
838 "label", "GPIO Key Poweroff");
839 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code",
840 KEY_POWER);
841 qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff",
842 "gpios", phandle, 3, 0);
843 g_free(nodename);
844 }
845
846 static void create_virtio_devices(const VirtMachineState *vms)
847 {
848 int i;
849 hwaddr size = vms->memmap[VIRT_MMIO].size;
850
851 /* We create the transports in forwards order. Since qbus_realize()
852 * prepends (not appends) new child buses, the incrementing loop below will
853 * create a list of virtio-mmio buses with decreasing base addresses.
854 *
855 * When a -device option is processed from the command line,
856 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
857 * order. The upshot is that -device options in increasing command line
858 * order are mapped to virtio-mmio buses with decreasing base addresses.
859 *
860 * When this code was originally written, that arrangement ensured that the
861 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
862 * the first -device on the command line. (The end-to-end order is a
863 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
864 * guest kernel's name-to-address assignment strategy.)
865 *
866 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
867 * the message, if not necessarily the code, of commit 70161ff336.
868 * Therefore the loop now establishes the inverse of the original intent.
869 *
870 * Unfortunately, we can't counteract the kernel change by reversing the
871 * loop; it would break existing command lines.
872 *
873 * In any case, the kernel makes no guarantee about the stability of
874 * enumeration order of virtio devices (as demonstrated by it changing
875 * between kernel versions). For reliable and stable identification
876 * of disks users must use UUIDs or similar mechanisms.
877 */
878 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
879 int irq = vms->irqmap[VIRT_MMIO] + i;
880 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
881
882 sysbus_create_simple("virtio-mmio", base,
883 qdev_get_gpio_in(vms->gic, irq));
884 }
885
886 /* We add dtb nodes in reverse order so that they appear in the finished
887 * device tree lowest address first.
888 *
889 * Note that this mapping is independent of the loop above. The previous
890 * loop influences virtio device to virtio transport assignment, whereas
891 * this loop controls how virtio transports are laid out in the dtb.
892 */
893 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
894 char *nodename;
895 int irq = vms->irqmap[VIRT_MMIO] + i;
896 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
897
898 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
899 qemu_fdt_add_subnode(vms->fdt, nodename);
900 qemu_fdt_setprop_string(vms->fdt, nodename,
901 "compatible", "virtio,mmio");
902 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
903 2, base, 2, size);
904 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
905 GIC_FDT_IRQ_TYPE_SPI, irq,
906 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
907 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
908 g_free(nodename);
909 }
910 }
911
912 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
913
914 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms,
915 const char *name,
916 const char *alias_prop_name)
917 {
918 /*
919 * Create a single flash device. We use the same parameters as
920 * the flash devices on the Versatile Express board.
921 */
922 DeviceState *dev = qdev_create(NULL, TYPE_PFLASH_CFI01);
923
924 qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
925 qdev_prop_set_uint8(dev, "width", 4);
926 qdev_prop_set_uint8(dev, "device-width", 2);
927 qdev_prop_set_bit(dev, "big-endian", false);
928 qdev_prop_set_uint16(dev, "id0", 0x89);
929 qdev_prop_set_uint16(dev, "id1", 0x18);
930 qdev_prop_set_uint16(dev, "id2", 0x00);
931 qdev_prop_set_uint16(dev, "id3", 0x00);
932 qdev_prop_set_string(dev, "name", name);
933 object_property_add_child(OBJECT(vms), name, OBJECT(dev),
934 &error_abort);
935 object_property_add_alias(OBJECT(vms), alias_prop_name,
936 OBJECT(dev), "drive", &error_abort);
937 return PFLASH_CFI01(dev);
938 }
939
940 static void virt_flash_create(VirtMachineState *vms)
941 {
942 vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0");
943 vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1");
944 }
945
946 static void virt_flash_map1(PFlashCFI01 *flash,
947 hwaddr base, hwaddr size,
948 MemoryRegion *sysmem)
949 {
950 DeviceState *dev = DEVICE(flash);
951
952 assert(size % VIRT_FLASH_SECTOR_SIZE == 0);
953 assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
954 qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
955 qdev_init_nofail(dev);
956
957 memory_region_add_subregion(sysmem, base,
958 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
959 0));
960 }
961
962 static void virt_flash_map(VirtMachineState *vms,
963 MemoryRegion *sysmem,
964 MemoryRegion *secure_sysmem)
965 {
966 /*
967 * Map two flash devices to fill the VIRT_FLASH space in the memmap.
968 * sysmem is the system memory space. secure_sysmem is the secure view
969 * of the system, and the first flash device should be made visible only
970 * there. The second flash device is visible to both secure and nonsecure.
971 * If sysmem == secure_sysmem this means there is no separate Secure
972 * address space and both flash devices are generally visible.
973 */
974 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
975 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
976
977 virt_flash_map1(vms->flash[0], flashbase, flashsize,
978 secure_sysmem);
979 virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize,
980 sysmem);
981 }
982
983 static void virt_flash_fdt(VirtMachineState *vms,
984 MemoryRegion *sysmem,
985 MemoryRegion *secure_sysmem)
986 {
987 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
988 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
989 char *nodename;
990
991 if (sysmem == secure_sysmem) {
992 /* Report both flash devices as a single node in the DT */
993 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
994 qemu_fdt_add_subnode(vms->fdt, nodename);
995 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
996 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
997 2, flashbase, 2, flashsize,
998 2, flashbase + flashsize, 2, flashsize);
999 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
1000 g_free(nodename);
1001 } else {
1002 /*
1003 * Report the devices as separate nodes so we can mark one as
1004 * only visible to the secure world.
1005 */
1006 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
1007 qemu_fdt_add_subnode(vms->fdt, nodename);
1008 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
1009 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1010 2, flashbase, 2, flashsize);
1011 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
1012 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
1013 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
1014 g_free(nodename);
1015
1016 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
1017 qemu_fdt_add_subnode(vms->fdt, nodename);
1018 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
1019 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1020 2, flashbase + flashsize, 2, flashsize);
1021 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
1022 g_free(nodename);
1023 }
1024 }
1025
1026 static bool virt_firmware_init(VirtMachineState *vms,
1027 MemoryRegion *sysmem,
1028 MemoryRegion *secure_sysmem)
1029 {
1030 int i;
1031 BlockBackend *pflash_blk0;
1032
1033 /* Map legacy -drive if=pflash to machine properties */
1034 for (i = 0; i < ARRAY_SIZE(vms->flash); i++) {
1035 pflash_cfi01_legacy_drive(vms->flash[i],
1036 drive_get(IF_PFLASH, 0, i));
1037 }
1038
1039 virt_flash_map(vms, sysmem, secure_sysmem);
1040
1041 pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]);
1042
1043 if (bios_name) {
1044 char *fname;
1045 MemoryRegion *mr;
1046 int image_size;
1047
1048 if (pflash_blk0) {
1049 error_report("The contents of the first flash device may be "
1050 "specified with -bios or with -drive if=pflash... "
1051 "but you cannot use both options at once");
1052 exit(1);
1053 }
1054
1055 /* Fall back to -bios */
1056
1057 fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1058 if (!fname) {
1059 error_report("Could not find ROM image '%s'", bios_name);
1060 exit(1);
1061 }
1062 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0);
1063 image_size = load_image_mr(fname, mr);
1064 g_free(fname);
1065 if (image_size < 0) {
1066 error_report("Could not load ROM image '%s'", bios_name);
1067 exit(1);
1068 }
1069 }
1070
1071 return pflash_blk0 || bios_name;
1072 }
1073
1074 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
1075 {
1076 MachineState *ms = MACHINE(vms);
1077 hwaddr base = vms->memmap[VIRT_FW_CFG].base;
1078 hwaddr size = vms->memmap[VIRT_FW_CFG].size;
1079 FWCfgState *fw_cfg;
1080 char *nodename;
1081
1082 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
1083 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus);
1084
1085 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
1086 qemu_fdt_add_subnode(vms->fdt, nodename);
1087 qemu_fdt_setprop_string(vms->fdt, nodename,
1088 "compatible", "qemu,fw-cfg-mmio");
1089 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1090 2, base, 2, size);
1091 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1092 g_free(nodename);
1093 return fw_cfg;
1094 }
1095
1096 static void create_pcie_irq_map(const VirtMachineState *vms,
1097 uint32_t gic_phandle,
1098 int first_irq, const char *nodename)
1099 {
1100 int devfn, pin;
1101 uint32_t full_irq_map[4 * 4 * 10] = { 0 };
1102 uint32_t *irq_map = full_irq_map;
1103
1104 for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
1105 for (pin = 0; pin < 4; pin++) {
1106 int irq_type = GIC_FDT_IRQ_TYPE_SPI;
1107 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
1108 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
1109 int i;
1110
1111 uint32_t map[] = {
1112 devfn << 8, 0, 0, /* devfn */
1113 pin + 1, /* PCI pin */
1114 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
1115
1116 /* Convert map to big endian */
1117 for (i = 0; i < 10; i++) {
1118 irq_map[i] = cpu_to_be32(map[i]);
1119 }
1120 irq_map += 10;
1121 }
1122 }
1123
1124 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map",
1125 full_irq_map, sizeof(full_irq_map));
1126
1127 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask",
1128 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
1129 0x7 /* PCI irq */);
1130 }
1131
1132 static void create_smmu(const VirtMachineState *vms,
1133 PCIBus *bus)
1134 {
1135 char *node;
1136 const char compat[] = "arm,smmu-v3";
1137 int irq = vms->irqmap[VIRT_SMMU];
1138 int i;
1139 hwaddr base = vms->memmap[VIRT_SMMU].base;
1140 hwaddr size = vms->memmap[VIRT_SMMU].size;
1141 const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
1142 DeviceState *dev;
1143
1144 if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
1145 return;
1146 }
1147
1148 dev = qdev_create(NULL, "arm-smmuv3");
1149
1150 object_property_set_link(OBJECT(dev), OBJECT(bus), "primary-bus",
1151 &error_abort);
1152 qdev_init_nofail(dev);
1153 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
1154 for (i = 0; i < NUM_SMMU_IRQS; i++) {
1155 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1156 qdev_get_gpio_in(vms->gic, irq + i));
1157 }
1158
1159 node = g_strdup_printf("/smmuv3@%" PRIx64, base);
1160 qemu_fdt_add_subnode(vms->fdt, node);
1161 qemu_fdt_setprop(vms->fdt, node, "compatible", compat, sizeof(compat));
1162 qemu_fdt_setprop_sized_cells(vms->fdt, node, "reg", 2, base, 2, size);
1163
1164 qemu_fdt_setprop_cells(vms->fdt, node, "interrupts",
1165 GIC_FDT_IRQ_TYPE_SPI, irq , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1166 GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1167 GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1168 GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1169
1170 qemu_fdt_setprop(vms->fdt, node, "interrupt-names", irq_names,
1171 sizeof(irq_names));
1172
1173 qemu_fdt_setprop_cell(vms->fdt, node, "clocks", vms->clock_phandle);
1174 qemu_fdt_setprop_string(vms->fdt, node, "clock-names", "apb_pclk");
1175 qemu_fdt_setprop(vms->fdt, node, "dma-coherent", NULL, 0);
1176
1177 qemu_fdt_setprop_cell(vms->fdt, node, "#iommu-cells", 1);
1178
1179 qemu_fdt_setprop_cell(vms->fdt, node, "phandle", vms->iommu_phandle);
1180 g_free(node);
1181 }
1182
1183 static void create_pcie(VirtMachineState *vms)
1184 {
1185 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1186 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
1187 hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base;
1188 hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size;
1189 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1190 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
1191 hwaddr base_ecam, size_ecam;
1192 hwaddr base = base_mmio;
1193 int nr_pcie_buses;
1194 int irq = vms->irqmap[VIRT_PCIE];
1195 MemoryRegion *mmio_alias;
1196 MemoryRegion *mmio_reg;
1197 MemoryRegion *ecam_alias;
1198 MemoryRegion *ecam_reg;
1199 DeviceState *dev;
1200 char *nodename;
1201 int i, ecam_id;
1202 PCIHostState *pci;
1203
1204 dev = qdev_create(NULL, TYPE_GPEX_HOST);
1205 qdev_init_nofail(dev);
1206
1207 ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
1208 base_ecam = vms->memmap[ecam_id].base;
1209 size_ecam = vms->memmap[ecam_id].size;
1210 nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
1211 /* Map only the first size_ecam bytes of ECAM space */
1212 ecam_alias = g_new0(MemoryRegion, 1);
1213 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1214 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1215 ecam_reg, 0, size_ecam);
1216 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1217
1218 /* Map the MMIO window into system address space so as to expose
1219 * the section of PCI MMIO space which starts at the same base address
1220 * (ie 1:1 mapping for that part of PCI MMIO space visible through
1221 * the window).
1222 */
1223 mmio_alias = g_new0(MemoryRegion, 1);
1224 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1225 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1226 mmio_reg, base_mmio, size_mmio);
1227 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1228
1229 if (vms->highmem) {
1230 /* Map high MMIO space */
1231 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1232
1233 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1234 mmio_reg, base_mmio_high, size_mmio_high);
1235 memory_region_add_subregion(get_system_memory(), base_mmio_high,
1236 high_mmio_alias);
1237 }
1238
1239 /* Map IO port space */
1240 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1241
1242 for (i = 0; i < GPEX_NUM_IRQS; i++) {
1243 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1244 qdev_get_gpio_in(vms->gic, irq + i));
1245 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
1246 }
1247
1248 pci = PCI_HOST_BRIDGE(dev);
1249 if (pci->bus) {
1250 for (i = 0; i < nb_nics; i++) {
1251 NICInfo *nd = &nd_table[i];
1252
1253 if (!nd->model) {
1254 nd->model = g_strdup("virtio");
1255 }
1256
1257 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1258 }
1259 }
1260
1261 nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1262 qemu_fdt_add_subnode(vms->fdt, nodename);
1263 qemu_fdt_setprop_string(vms->fdt, nodename,
1264 "compatible", "pci-host-ecam-generic");
1265 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci");
1266 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3);
1267 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2);
1268 qemu_fdt_setprop_cell(vms->fdt, nodename, "linux,pci-domain", 0);
1269 qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0,
1270 nr_pcie_buses - 1);
1271 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1272
1273 if (vms->msi_phandle) {
1274 qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent",
1275 vms->msi_phandle);
1276 }
1277
1278 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1279 2, base_ecam, 2, size_ecam);
1280
1281 if (vms->highmem) {
1282 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1283 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1284 2, base_pio, 2, size_pio,
1285 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1286 2, base_mmio, 2, size_mmio,
1287 1, FDT_PCI_RANGE_MMIO_64BIT,
1288 2, base_mmio_high,
1289 2, base_mmio_high, 2, size_mmio_high);
1290 } else {
1291 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1292 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1293 2, base_pio, 2, size_pio,
1294 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1295 2, base_mmio, 2, size_mmio);
1296 }
1297
1298 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1);
1299 create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename);
1300
1301 if (vms->iommu) {
1302 vms->iommu_phandle = qemu_fdt_alloc_phandle(vms->fdt);
1303
1304 create_smmu(vms, pci->bus);
1305
1306 qemu_fdt_setprop_cells(vms->fdt, nodename, "iommu-map",
1307 0x0, vms->iommu_phandle, 0x0, 0x10000);
1308 }
1309
1310 g_free(nodename);
1311 }
1312
1313 static void create_platform_bus(VirtMachineState *vms)
1314 {
1315 DeviceState *dev;
1316 SysBusDevice *s;
1317 int i;
1318 MemoryRegion *sysmem = get_system_memory();
1319
1320 dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
1321 dev->id = TYPE_PLATFORM_BUS_DEVICE;
1322 qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
1323 qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
1324 qdev_init_nofail(dev);
1325 vms->platform_bus_dev = dev;
1326
1327 s = SYS_BUS_DEVICE(dev);
1328 for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
1329 int irq = vms->irqmap[VIRT_PLATFORM_BUS] + i;
1330 sysbus_connect_irq(s, i, qdev_get_gpio_in(vms->gic, irq));
1331 }
1332
1333 memory_region_add_subregion(sysmem,
1334 vms->memmap[VIRT_PLATFORM_BUS].base,
1335 sysbus_mmio_get_region(s, 0));
1336 }
1337
1338 static void create_secure_ram(VirtMachineState *vms,
1339 MemoryRegion *secure_sysmem)
1340 {
1341 MemoryRegion *secram = g_new(MemoryRegion, 1);
1342 char *nodename;
1343 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1344 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1345
1346 memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1347 &error_fatal);
1348 memory_region_add_subregion(secure_sysmem, base, secram);
1349
1350 nodename = g_strdup_printf("/secram@%" PRIx64, base);
1351 qemu_fdt_add_subnode(vms->fdt, nodename);
1352 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory");
1353 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size);
1354 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
1355 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
1356
1357 g_free(nodename);
1358 }
1359
1360 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1361 {
1362 const VirtMachineState *board = container_of(binfo, VirtMachineState,
1363 bootinfo);
1364
1365 *fdt_size = board->fdt_size;
1366 return board->fdt;
1367 }
1368
1369 static void virt_build_smbios(VirtMachineState *vms)
1370 {
1371 MachineClass *mc = MACHINE_GET_CLASS(vms);
1372 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1373 uint8_t *smbios_tables, *smbios_anchor;
1374 size_t smbios_tables_len, smbios_anchor_len;
1375 const char *product = "QEMU Virtual Machine";
1376
1377 if (kvm_enabled()) {
1378 product = "KVM Virtual Machine";
1379 }
1380
1381 smbios_set_defaults("QEMU", product,
1382 vmc->smbios_old_sys_ver ? "1.0" : mc->name, false,
1383 true, SMBIOS_ENTRY_POINT_30);
1384
1385 smbios_get_tables(MACHINE(vms), NULL, 0, &smbios_tables, &smbios_tables_len,
1386 &smbios_anchor, &smbios_anchor_len);
1387
1388 if (smbios_anchor) {
1389 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1390 smbios_tables, smbios_tables_len);
1391 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1392 smbios_anchor, smbios_anchor_len);
1393 }
1394 }
1395
1396 static
1397 void virt_machine_done(Notifier *notifier, void *data)
1398 {
1399 VirtMachineState *vms = container_of(notifier, VirtMachineState,
1400 machine_done);
1401 MachineState *ms = MACHINE(vms);
1402 ARMCPU *cpu = ARM_CPU(first_cpu);
1403 struct arm_boot_info *info = &vms->bootinfo;
1404 AddressSpace *as = arm_boot_address_space(cpu, info);
1405
1406 /*
1407 * If the user provided a dtb, we assume the dynamic sysbus nodes
1408 * already are integrated there. This corresponds to a use case where
1409 * the dynamic sysbus nodes are complex and their generation is not yet
1410 * supported. In that case the user can take charge of the guest dt
1411 * while qemu takes charge of the qom stuff.
1412 */
1413 if (info->dtb_filename == NULL) {
1414 platform_bus_add_all_fdt_nodes(vms->fdt, "/intc",
1415 vms->memmap[VIRT_PLATFORM_BUS].base,
1416 vms->memmap[VIRT_PLATFORM_BUS].size,
1417 vms->irqmap[VIRT_PLATFORM_BUS]);
1418 }
1419 if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) {
1420 exit(1);
1421 }
1422
1423 virt_acpi_setup(vms);
1424 virt_build_smbios(vms);
1425 }
1426
1427 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1428 {
1429 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1430 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1431
1432 if (!vmc->disallow_affinity_adjustment) {
1433 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1434 * GIC's target-list limitations. 32-bit KVM hosts currently
1435 * always create clusters of 4 CPUs, but that is expected to
1436 * change when they gain support for gicv3. When KVM is enabled
1437 * it will override the changes we make here, therefore our
1438 * purposes are to make TCG consistent (with 64-bit KVM hosts)
1439 * and to improve SGI efficiency.
1440 */
1441 if (vms->gic_version == 3) {
1442 clustersz = GICV3_TARGETLIST_BITS;
1443 } else {
1444 clustersz = GIC_TARGETLIST_BITS;
1445 }
1446 }
1447 return arm_cpu_mp_affinity(idx, clustersz);
1448 }
1449
1450 static void virt_set_memmap(VirtMachineState *vms)
1451 {
1452 MachineState *ms = MACHINE(vms);
1453 hwaddr base, device_memory_base, device_memory_size;
1454 int i;
1455
1456 vms->memmap = extended_memmap;
1457
1458 for (i = 0; i < ARRAY_SIZE(base_memmap); i++) {
1459 vms->memmap[i] = base_memmap[i];
1460 }
1461
1462 if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) {
1463 error_report("unsupported number of memory slots: %"PRIu64,
1464 ms->ram_slots);
1465 exit(EXIT_FAILURE);
1466 }
1467
1468 /*
1469 * We compute the base of the high IO region depending on the
1470 * amount of initial and device memory. The device memory start/size
1471 * is aligned on 1GiB. We never put the high IO region below 256GiB
1472 * so that if maxram_size is < 255GiB we keep the legacy memory map.
1473 * The device region size assumes 1GiB page max alignment per slot.
1474 */
1475 device_memory_base =
1476 ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB);
1477 device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB;
1478
1479 /* Base address of the high IO region */
1480 base = device_memory_base + ROUND_UP(device_memory_size, GiB);
1481 if (base < device_memory_base) {
1482 error_report("maxmem/slots too huge");
1483 exit(EXIT_FAILURE);
1484 }
1485 if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) {
1486 base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES;
1487 }
1488
1489 for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) {
1490 hwaddr size = extended_memmap[i].size;
1491
1492 base = ROUND_UP(base, size);
1493 vms->memmap[i].base = base;
1494 vms->memmap[i].size = size;
1495 base += size;
1496 }
1497 vms->highest_gpa = base - 1;
1498 if (device_memory_size > 0) {
1499 ms->device_memory = g_malloc0(sizeof(*ms->device_memory));
1500 ms->device_memory->base = device_memory_base;
1501 memory_region_init(&ms->device_memory->mr, OBJECT(vms),
1502 "device-memory", device_memory_size);
1503 }
1504 }
1505
1506 static void machvirt_init(MachineState *machine)
1507 {
1508 VirtMachineState *vms = VIRT_MACHINE(machine);
1509 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
1510 MachineClass *mc = MACHINE_GET_CLASS(machine);
1511 const CPUArchIdList *possible_cpus;
1512 MemoryRegion *sysmem = get_system_memory();
1513 MemoryRegion *secure_sysmem = NULL;
1514 int n, virt_max_cpus;
1515 bool firmware_loaded;
1516 bool aarch64 = true;
1517 bool has_ged = !vmc->no_ged;
1518 unsigned int smp_cpus = machine->smp.cpus;
1519 unsigned int max_cpus = machine->smp.max_cpus;
1520
1521 /*
1522 * In accelerated mode, the memory map is computed earlier in kvm_type()
1523 * to create a VM with the right number of IPA bits.
1524 */
1525 if (!vms->memmap) {
1526 virt_set_memmap(vms);
1527 }
1528
1529 /* We can probe only here because during property set
1530 * KVM is not available yet
1531 */
1532 if (vms->gic_version <= 0) {
1533 /* "host" or "max" */
1534 if (!kvm_enabled()) {
1535 if (vms->gic_version == 0) {
1536 error_report("gic-version=host requires KVM");
1537 exit(1);
1538 } else {
1539 /* "max": currently means 3 for TCG */
1540 vms->gic_version = 3;
1541 }
1542 } else {
1543 vms->gic_version = kvm_arm_vgic_probe();
1544 if (!vms->gic_version) {
1545 error_report(
1546 "Unable to determine GIC version supported by host");
1547 exit(1);
1548 }
1549 }
1550 }
1551
1552 if (!cpu_type_valid(machine->cpu_type)) {
1553 error_report("mach-virt: CPU type %s not supported", machine->cpu_type);
1554 exit(1);
1555 }
1556
1557 if (vms->secure) {
1558 if (kvm_enabled()) {
1559 error_report("mach-virt: KVM does not support Security extensions");
1560 exit(1);
1561 }
1562
1563 /*
1564 * The Secure view of the world is the same as the NonSecure,
1565 * but with a few extra devices. Create it as a container region
1566 * containing the system memory at low priority; any secure-only
1567 * devices go in at higher priority and take precedence.
1568 */
1569 secure_sysmem = g_new(MemoryRegion, 1);
1570 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1571 UINT64_MAX);
1572 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1573 }
1574
1575 firmware_loaded = virt_firmware_init(vms, sysmem,
1576 secure_sysmem ?: sysmem);
1577
1578 /* If we have an EL3 boot ROM then the assumption is that it will
1579 * implement PSCI itself, so disable QEMU's internal implementation
1580 * so it doesn't get in the way. Instead of starting secondary
1581 * CPUs in PSCI powerdown state we will start them all running and
1582 * let the boot ROM sort them out.
1583 * The usual case is that we do use QEMU's PSCI implementation;
1584 * if the guest has EL2 then we will use SMC as the conduit,
1585 * and otherwise we will use HVC (for backwards compatibility and
1586 * because if we're using KVM then we must use HVC).
1587 */
1588 if (vms->secure && firmware_loaded) {
1589 vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
1590 } else if (vms->virt) {
1591 vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
1592 } else {
1593 vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
1594 }
1595
1596 /* The maximum number of CPUs depends on the GIC version, or on how
1597 * many redistributors we can fit into the memory map.
1598 */
1599 if (vms->gic_version == 3) {
1600 virt_max_cpus =
1601 vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
1602 virt_max_cpus +=
1603 vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE;
1604 } else {
1605 virt_max_cpus = GIC_NCPU;
1606 }
1607
1608 if (max_cpus > virt_max_cpus) {
1609 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1610 "supported by machine 'mach-virt' (%d)",
1611 max_cpus, virt_max_cpus);
1612 exit(1);
1613 }
1614
1615 vms->smp_cpus = smp_cpus;
1616
1617 if (vms->virt && kvm_enabled()) {
1618 error_report("mach-virt: KVM does not support providing "
1619 "Virtualization extensions to the guest CPU");
1620 exit(1);
1621 }
1622
1623 create_fdt(vms);
1624
1625 possible_cpus = mc->possible_cpu_arch_ids(machine);
1626 for (n = 0; n < possible_cpus->len; n++) {
1627 Object *cpuobj;
1628 CPUState *cs;
1629
1630 if (n >= smp_cpus) {
1631 break;
1632 }
1633
1634 cpuobj = object_new(possible_cpus->cpus[n].type);
1635 object_property_set_int(cpuobj, possible_cpus->cpus[n].arch_id,
1636 "mp-affinity", NULL);
1637
1638 cs = CPU(cpuobj);
1639 cs->cpu_index = n;
1640
1641 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
1642 &error_fatal);
1643
1644 aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
1645
1646 if (!vms->secure) {
1647 object_property_set_bool(cpuobj, false, "has_el3", NULL);
1648 }
1649
1650 if (!vms->virt && object_property_find(cpuobj, "has_el2", NULL)) {
1651 object_property_set_bool(cpuobj, false, "has_el2", NULL);
1652 }
1653
1654 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
1655 object_property_set_int(cpuobj, vms->psci_conduit,
1656 "psci-conduit", NULL);
1657
1658 /* Secondary CPUs start in PSCI powered-down state */
1659 if (n > 0) {
1660 object_property_set_bool(cpuobj, true,
1661 "start-powered-off", NULL);
1662 }
1663 }
1664
1665 if (vmc->kvm_no_adjvtime &&
1666 object_property_find(cpuobj, "kvm-no-adjvtime", NULL)) {
1667 object_property_set_bool(cpuobj, true, "kvm-no-adjvtime", NULL);
1668 }
1669
1670 if (vmc->no_pmu && object_property_find(cpuobj, "pmu", NULL)) {
1671 object_property_set_bool(cpuobj, false, "pmu", NULL);
1672 }
1673
1674 if (object_property_find(cpuobj, "reset-cbar", NULL)) {
1675 object_property_set_int(cpuobj, vms->memmap[VIRT_CPUPERIPHS].base,
1676 "reset-cbar", &error_abort);
1677 }
1678
1679 object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
1680 &error_abort);
1681 if (vms->secure) {
1682 object_property_set_link(cpuobj, OBJECT(secure_sysmem),
1683 "secure-memory", &error_abort);
1684 }
1685
1686 object_property_set_bool(cpuobj, true, "realized", &error_fatal);
1687 object_unref(cpuobj);
1688 }
1689 fdt_add_timer_nodes(vms);
1690 fdt_add_cpu_nodes(vms);
1691
1692 if (!kvm_enabled()) {
1693 ARMCPU *cpu = ARM_CPU(first_cpu);
1694 bool aarch64 = object_property_get_bool(OBJECT(cpu), "aarch64", NULL);
1695
1696 if (aarch64 && vms->highmem) {
1697 int requested_pa_size, pamax = arm_pamax(cpu);
1698
1699 requested_pa_size = 64 - clz64(vms->highest_gpa);
1700 if (pamax < requested_pa_size) {
1701 error_report("VCPU supports less PA bits (%d) than requested "
1702 "by the memory map (%d)", pamax, requested_pa_size);
1703 exit(1);
1704 }
1705 }
1706 }
1707
1708 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base,
1709 machine->ram);
1710 if (machine->device_memory) {
1711 memory_region_add_subregion(sysmem, machine->device_memory->base,
1712 &machine->device_memory->mr);
1713 }
1714
1715 virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem);
1716
1717 create_gic(vms);
1718
1719 fdt_add_pmu_nodes(vms);
1720
1721 create_uart(vms, VIRT_UART, sysmem, serial_hd(0));
1722
1723 if (vms->secure) {
1724 create_secure_ram(vms, secure_sysmem);
1725 create_uart(vms, VIRT_SECURE_UART, secure_sysmem, serial_hd(1));
1726 }
1727
1728 vms->highmem_ecam &= vms->highmem && (!firmware_loaded || aarch64);
1729
1730 create_rtc(vms);
1731
1732 create_pcie(vms);
1733
1734 if (has_ged && aarch64 && firmware_loaded && acpi_enabled) {
1735 vms->acpi_dev = create_acpi_ged(vms);
1736 } else {
1737 create_gpio(vms);
1738 }
1739
1740 /* connect powerdown request */
1741 vms->powerdown_notifier.notify = virt_powerdown_req;
1742 qemu_register_powerdown_notifier(&vms->powerdown_notifier);
1743
1744 /* Create mmio transports, so the user can create virtio backends
1745 * (which will be automatically plugged in to the transports). If
1746 * no backend is created the transport will just sit harmlessly idle.
1747 */
1748 create_virtio_devices(vms);
1749
1750 vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
1751 rom_set_fw(vms->fw_cfg);
1752
1753 create_platform_bus(vms);
1754
1755 vms->bootinfo.ram_size = machine->ram_size;
1756 vms->bootinfo.nb_cpus = smp_cpus;
1757 vms->bootinfo.board_id = -1;
1758 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
1759 vms->bootinfo.get_dtb = machvirt_dtb;
1760 vms->bootinfo.skip_dtb_autoload = true;
1761 vms->bootinfo.firmware_loaded = firmware_loaded;
1762 arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo);
1763
1764 vms->machine_done.notify = virt_machine_done;
1765 qemu_add_machine_init_done_notifier(&vms->machine_done);
1766 }
1767
1768 static bool virt_get_secure(Object *obj, Error **errp)
1769 {
1770 VirtMachineState *vms = VIRT_MACHINE(obj);
1771
1772 return vms->secure;
1773 }
1774
1775 static void virt_set_secure(Object *obj, bool value, Error **errp)
1776 {
1777 VirtMachineState *vms = VIRT_MACHINE(obj);
1778
1779 vms->secure = value;
1780 }
1781
1782 static bool virt_get_virt(Object *obj, Error **errp)
1783 {
1784 VirtMachineState *vms = VIRT_MACHINE(obj);
1785
1786 return vms->virt;
1787 }
1788
1789 static void virt_set_virt(Object *obj, bool value, Error **errp)
1790 {
1791 VirtMachineState *vms = VIRT_MACHINE(obj);
1792
1793 vms->virt = value;
1794 }
1795
1796 static bool virt_get_highmem(Object *obj, Error **errp)
1797 {
1798 VirtMachineState *vms = VIRT_MACHINE(obj);
1799
1800 return vms->highmem;
1801 }
1802
1803 static void virt_set_highmem(Object *obj, bool value, Error **errp)
1804 {
1805 VirtMachineState *vms = VIRT_MACHINE(obj);
1806
1807 vms->highmem = value;
1808 }
1809
1810 static bool virt_get_its(Object *obj, Error **errp)
1811 {
1812 VirtMachineState *vms = VIRT_MACHINE(obj);
1813
1814 return vms->its;
1815 }
1816
1817 static void virt_set_its(Object *obj, bool value, Error **errp)
1818 {
1819 VirtMachineState *vms = VIRT_MACHINE(obj);
1820
1821 vms->its = value;
1822 }
1823
1824 static char *virt_get_gic_version(Object *obj, Error **errp)
1825 {
1826 VirtMachineState *vms = VIRT_MACHINE(obj);
1827 const char *val = vms->gic_version == 3 ? "3" : "2";
1828
1829 return g_strdup(val);
1830 }
1831
1832 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
1833 {
1834 VirtMachineState *vms = VIRT_MACHINE(obj);
1835
1836 if (!strcmp(value, "3")) {
1837 vms->gic_version = 3;
1838 } else if (!strcmp(value, "2")) {
1839 vms->gic_version = 2;
1840 } else if (!strcmp(value, "host")) {
1841 vms->gic_version = 0; /* Will probe later */
1842 } else if (!strcmp(value, "max")) {
1843 vms->gic_version = -1; /* Will probe later */
1844 } else {
1845 error_setg(errp, "Invalid gic-version value");
1846 error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
1847 }
1848 }
1849
1850 static char *virt_get_iommu(Object *obj, Error **errp)
1851 {
1852 VirtMachineState *vms = VIRT_MACHINE(obj);
1853
1854 switch (vms->iommu) {
1855 case VIRT_IOMMU_NONE:
1856 return g_strdup("none");
1857 case VIRT_IOMMU_SMMUV3:
1858 return g_strdup("smmuv3");
1859 default:
1860 g_assert_not_reached();
1861 }
1862 }
1863
1864 static void virt_set_iommu(Object *obj, const char *value, Error **errp)
1865 {
1866 VirtMachineState *vms = VIRT_MACHINE(obj);
1867
1868 if (!strcmp(value, "smmuv3")) {
1869 vms->iommu = VIRT_IOMMU_SMMUV3;
1870 } else if (!strcmp(value, "none")) {
1871 vms->iommu = VIRT_IOMMU_NONE;
1872 } else {
1873 error_setg(errp, "Invalid iommu value");
1874 error_append_hint(errp, "Valid values are none, smmuv3.\n");
1875 }
1876 }
1877
1878 static CpuInstanceProperties
1879 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
1880 {
1881 MachineClass *mc = MACHINE_GET_CLASS(ms);
1882 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
1883
1884 assert(cpu_index < possible_cpus->len);
1885 return possible_cpus->cpus[cpu_index].props;
1886 }
1887
1888 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
1889 {
1890 return idx % ms->numa_state->num_nodes;
1891 }
1892
1893 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
1894 {
1895 int n;
1896 unsigned int max_cpus = ms->smp.max_cpus;
1897 VirtMachineState *vms = VIRT_MACHINE(ms);
1898
1899 if (ms->possible_cpus) {
1900 assert(ms->possible_cpus->len == max_cpus);
1901 return ms->possible_cpus;
1902 }
1903
1904 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
1905 sizeof(CPUArchId) * max_cpus);
1906 ms->possible_cpus->len = max_cpus;
1907 for (n = 0; n < ms->possible_cpus->len; n++) {
1908 ms->possible_cpus->cpus[n].type = ms->cpu_type;
1909 ms->possible_cpus->cpus[n].arch_id =
1910 virt_cpu_mp_affinity(vms, n);
1911 ms->possible_cpus->cpus[n].props.has_thread_id = true;
1912 ms->possible_cpus->cpus[n].props.thread_id = n;
1913 }
1914 return ms->possible_cpus;
1915 }
1916
1917 static void virt_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
1918 Error **errp)
1919 {
1920 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
1921 const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
1922
1923 if (is_nvdimm) {
1924 error_setg(errp, "nvdimm is not yet supported");
1925 return;
1926 }
1927
1928 if (!vms->acpi_dev) {
1929 error_setg(errp,
1930 "memory hotplug is not enabled: missing acpi-ged device");
1931 return;
1932 }
1933
1934 pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), NULL, errp);
1935 }
1936
1937 static void virt_memory_plug(HotplugHandler *hotplug_dev,
1938 DeviceState *dev, Error **errp)
1939 {
1940 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
1941 Error *local_err = NULL;
1942
1943 pc_dimm_plug(PC_DIMM(dev), MACHINE(vms), &local_err);
1944 if (local_err) {
1945 goto out;
1946 }
1947
1948 hotplug_handler_plug(HOTPLUG_HANDLER(vms->acpi_dev),
1949 dev, &error_abort);
1950
1951 out:
1952 error_propagate(errp, local_err);
1953 }
1954
1955 static void virt_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
1956 DeviceState *dev, Error **errp)
1957 {
1958 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1959 virt_memory_pre_plug(hotplug_dev, dev, errp);
1960 }
1961 }
1962
1963 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
1964 DeviceState *dev, Error **errp)
1965 {
1966 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
1967
1968 if (vms->platform_bus_dev) {
1969 if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) {
1970 platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
1971 SYS_BUS_DEVICE(dev));
1972 }
1973 }
1974 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1975 virt_memory_plug(hotplug_dev, dev, errp);
1976 }
1977 }
1978
1979 static void virt_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
1980 DeviceState *dev, Error **errp)
1981 {
1982 error_setg(errp, "device unplug request for unsupported device"
1983 " type: %s", object_get_typename(OBJECT(dev)));
1984 }
1985
1986 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
1987 DeviceState *dev)
1988 {
1989 if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE) ||
1990 (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM))) {
1991 return HOTPLUG_HANDLER(machine);
1992 }
1993
1994 return NULL;
1995 }
1996
1997 /*
1998 * for arm64 kvm_type [7-0] encodes the requested number of bits
1999 * in the IPA address space
2000 */
2001 static int virt_kvm_type(MachineState *ms, const char *type_str)
2002 {
2003 VirtMachineState *vms = VIRT_MACHINE(ms);
2004 int max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms);
2005 int requested_pa_size;
2006
2007 /* we freeze the memory map to compute the highest gpa */
2008 virt_set_memmap(vms);
2009
2010 requested_pa_size = 64 - clz64(vms->highest_gpa);
2011
2012 if (requested_pa_size > max_vm_pa_size) {
2013 error_report("-m and ,maxmem option values "
2014 "require an IPA range (%d bits) larger than "
2015 "the one supported by the host (%d bits)",
2016 requested_pa_size, max_vm_pa_size);
2017 exit(1);
2018 }
2019 /*
2020 * By default we return 0 which corresponds to an implicit legacy
2021 * 40b IPA setting. Otherwise we return the actual requested PA
2022 * logsize
2023 */
2024 return requested_pa_size > 40 ? requested_pa_size : 0;
2025 }
2026
2027 static void virt_machine_class_init(ObjectClass *oc, void *data)
2028 {
2029 MachineClass *mc = MACHINE_CLASS(oc);
2030 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2031
2032 mc->init = machvirt_init;
2033 /* Start with max_cpus set to 512, which is the maximum supported by KVM.
2034 * The value may be reduced later when we have more information about the
2035 * configuration of the particular instance.
2036 */
2037 mc->max_cpus = 512;
2038 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
2039 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
2040 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
2041 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM);
2042 mc->block_default_type = IF_VIRTIO;
2043 mc->no_cdrom = 1;
2044 mc->pci_allow_0_address = true;
2045 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
2046 mc->minimum_page_bits = 12;
2047 mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
2048 mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
2049 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
2050 mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
2051 mc->kvm_type = virt_kvm_type;
2052 assert(!mc->get_hotplug_handler);
2053 mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
2054 hc->pre_plug = virt_machine_device_pre_plug_cb;
2055 hc->plug = virt_machine_device_plug_cb;
2056 hc->unplug_request = virt_machine_device_unplug_request_cb;
2057 mc->numa_mem_supported = true;
2058 mc->auto_enable_numa_with_memhp = true;
2059 mc->default_ram_id = "mach-virt.ram";
2060 }
2061
2062 static void virt_instance_init(Object *obj)
2063 {
2064 VirtMachineState *vms = VIRT_MACHINE(obj);
2065 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
2066
2067 /* EL3 is disabled by default on virt: this makes us consistent
2068 * between KVM and TCG for this board, and it also allows us to
2069 * boot UEFI blobs which assume no TrustZone support.
2070 */
2071 vms->secure = false;
2072 object_property_add_bool(obj, "secure", virt_get_secure,
2073 virt_set_secure, NULL);
2074 object_property_set_description(obj, "secure",
2075 "Set on/off to enable/disable the ARM "
2076 "Security Extensions (TrustZone)",
2077 NULL);
2078
2079 /* EL2 is also disabled by default, for similar reasons */
2080 vms->virt = false;
2081 object_property_add_bool(obj, "virtualization", virt_get_virt,
2082 virt_set_virt, NULL);
2083 object_property_set_description(obj, "virtualization",
2084 "Set on/off to enable/disable emulating a "
2085 "guest CPU which implements the ARM "
2086 "Virtualization Extensions",
2087 NULL);
2088
2089 /* High memory is enabled by default */
2090 vms->highmem = true;
2091 object_property_add_bool(obj, "highmem", virt_get_highmem,
2092 virt_set_highmem, NULL);
2093 object_property_set_description(obj, "highmem",
2094 "Set on/off to enable/disable using "
2095 "physical address space above 32 bits",
2096 NULL);
2097 /* Default GIC type is v2 */
2098 vms->gic_version = 2;
2099 object_property_add_str(obj, "gic-version", virt_get_gic_version,
2100 virt_set_gic_version, NULL);
2101 object_property_set_description(obj, "gic-version",
2102 "Set GIC version. "
2103 "Valid values are 2, 3 and host", NULL);
2104
2105 vms->highmem_ecam = !vmc->no_highmem_ecam;
2106
2107 if (vmc->no_its) {
2108 vms->its = false;
2109 } else {
2110 /* Default allows ITS instantiation */
2111 vms->its = true;
2112 object_property_add_bool(obj, "its", virt_get_its,
2113 virt_set_its, NULL);
2114 object_property_set_description(obj, "its",
2115 "Set on/off to enable/disable "
2116 "ITS instantiation",
2117 NULL);
2118 }
2119
2120 /* Default disallows iommu instantiation */
2121 vms->iommu = VIRT_IOMMU_NONE;
2122 object_property_add_str(obj, "iommu", virt_get_iommu, virt_set_iommu, NULL);
2123 object_property_set_description(obj, "iommu",
2124 "Set the IOMMU type. "
2125 "Valid values are none and smmuv3",
2126 NULL);
2127
2128 vms->irqmap = a15irqmap;
2129
2130 virt_flash_create(vms);
2131 }
2132
2133 static const TypeInfo virt_machine_info = {
2134 .name = TYPE_VIRT_MACHINE,
2135 .parent = TYPE_MACHINE,
2136 .abstract = true,
2137 .instance_size = sizeof(VirtMachineState),
2138 .class_size = sizeof(VirtMachineClass),
2139 .class_init = virt_machine_class_init,
2140 .instance_init = virt_instance_init,
2141 .interfaces = (InterfaceInfo[]) {
2142 { TYPE_HOTPLUG_HANDLER },
2143 { }
2144 },
2145 };
2146
2147 static void machvirt_machine_init(void)
2148 {
2149 type_register_static(&virt_machine_info);
2150 }
2151 type_init(machvirt_machine_init);
2152
2153 static void virt_machine_5_0_options(MachineClass *mc)
2154 {
2155 }
2156 DEFINE_VIRT_MACHINE_AS_LATEST(5, 0)
2157
2158 static void virt_machine_4_2_options(MachineClass *mc)
2159 {
2160 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2161
2162 virt_machine_5_0_options(mc);
2163 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
2164 vmc->kvm_no_adjvtime = true;
2165 }
2166 DEFINE_VIRT_MACHINE(4, 2)
2167
2168 static void virt_machine_4_1_options(MachineClass *mc)
2169 {
2170 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2171
2172 virt_machine_4_2_options(mc);
2173 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
2174 vmc->no_ged = true;
2175 mc->auto_enable_numa_with_memhp = false;
2176 }
2177 DEFINE_VIRT_MACHINE(4, 1)
2178
2179 static void virt_machine_4_0_options(MachineClass *mc)
2180 {
2181 virt_machine_4_1_options(mc);
2182 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
2183 }
2184 DEFINE_VIRT_MACHINE(4, 0)
2185
2186 static void virt_machine_3_1_options(MachineClass *mc)
2187 {
2188 virt_machine_4_0_options(mc);
2189 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
2190 }
2191 DEFINE_VIRT_MACHINE(3, 1)
2192
2193 static void virt_machine_3_0_options(MachineClass *mc)
2194 {
2195 virt_machine_3_1_options(mc);
2196 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
2197 }
2198 DEFINE_VIRT_MACHINE(3, 0)
2199
2200 static void virt_machine_2_12_options(MachineClass *mc)
2201 {
2202 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2203
2204 virt_machine_3_0_options(mc);
2205 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
2206 vmc->no_highmem_ecam = true;
2207 mc->max_cpus = 255;
2208 }
2209 DEFINE_VIRT_MACHINE(2, 12)
2210
2211 static void virt_machine_2_11_options(MachineClass *mc)
2212 {
2213 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2214
2215 virt_machine_2_12_options(mc);
2216 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
2217 vmc->smbios_old_sys_ver = true;
2218 }
2219 DEFINE_VIRT_MACHINE(2, 11)
2220
2221 static void virt_machine_2_10_options(MachineClass *mc)
2222 {
2223 virt_machine_2_11_options(mc);
2224 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
2225 /* before 2.11 we never faulted accesses to bad addresses */
2226 mc->ignore_memory_transaction_failures = true;
2227 }
2228 DEFINE_VIRT_MACHINE(2, 10)
2229
2230 static void virt_machine_2_9_options(MachineClass *mc)
2231 {
2232 virt_machine_2_10_options(mc);
2233 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
2234 }
2235 DEFINE_VIRT_MACHINE(2, 9)
2236
2237 static void virt_machine_2_8_options(MachineClass *mc)
2238 {
2239 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2240
2241 virt_machine_2_9_options(mc);
2242 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
2243 /* For 2.8 and earlier we falsely claimed in the DT that
2244 * our timers were edge-triggered, not level-triggered.
2245 */
2246 vmc->claim_edge_triggered_timers = true;
2247 }
2248 DEFINE_VIRT_MACHINE(2, 8)
2249
2250 static void virt_machine_2_7_options(MachineClass *mc)
2251 {
2252 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2253
2254 virt_machine_2_8_options(mc);
2255 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
2256 /* ITS was introduced with 2.8 */
2257 vmc->no_its = true;
2258 /* Stick with 1K pages for migration compatibility */
2259 mc->minimum_page_bits = 0;
2260 }
2261 DEFINE_VIRT_MACHINE(2, 7)
2262
2263 static void virt_machine_2_6_options(MachineClass *mc)
2264 {
2265 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2266
2267 virt_machine_2_7_options(mc);
2268 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
2269 vmc->disallow_affinity_adjustment = true;
2270 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
2271 vmc->no_pmu = true;
2272 }
2273 DEFINE_VIRT_MACHINE(2, 6)