]> git.proxmox.com Git - mirror_qemu.git/blob - hw/arm/virt.c
hw: Simplify calls to pci_nic_init_nofail()
[mirror_qemu.git] / hw / arm / virt.c
1 /*
2 * ARM mach-virt emulation
3 *
4 * Copyright (c) 2013 Linaro Limited
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
17 *
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
29 */
30
31 #include "qemu/osdep.h"
32 #include "qemu/datadir.h"
33 #include "qemu/units.h"
34 #include "qemu/option.h"
35 #include "monitor/qdev.h"
36 #include "hw/sysbus.h"
37 #include "hw/arm/boot.h"
38 #include "hw/arm/primecell.h"
39 #include "hw/arm/virt.h"
40 #include "hw/block/flash.h"
41 #include "hw/vfio/vfio-calxeda-xgmac.h"
42 #include "hw/vfio/vfio-amd-xgbe.h"
43 #include "hw/display/ramfb.h"
44 #include "net/net.h"
45 #include "sysemu/device_tree.h"
46 #include "sysemu/numa.h"
47 #include "sysemu/runstate.h"
48 #include "sysemu/tpm.h"
49 #include "sysemu/tcg.h"
50 #include "sysemu/kvm.h"
51 #include "sysemu/hvf.h"
52 #include "sysemu/qtest.h"
53 #include "hw/loader.h"
54 #include "qapi/error.h"
55 #include "qemu/bitops.h"
56 #include "qemu/error-report.h"
57 #include "qemu/module.h"
58 #include "hw/pci-host/gpex.h"
59 #include "hw/virtio/virtio-pci.h"
60 #include "hw/core/sysbus-fdt.h"
61 #include "hw/platform-bus.h"
62 #include "hw/qdev-properties.h"
63 #include "hw/arm/fdt.h"
64 #include "hw/intc/arm_gic.h"
65 #include "hw/intc/arm_gicv3_common.h"
66 #include "hw/intc/arm_gicv3_its_common.h"
67 #include "hw/irq.h"
68 #include "kvm_arm.h"
69 #include "hw/firmware/smbios.h"
70 #include "qapi/visitor.h"
71 #include "qapi/qapi-visit-common.h"
72 #include "standard-headers/linux/input.h"
73 #include "hw/arm/smmuv3.h"
74 #include "hw/acpi/acpi.h"
75 #include "target/arm/internals.h"
76 #include "hw/mem/memory-device.h"
77 #include "hw/mem/pc-dimm.h"
78 #include "hw/mem/nvdimm.h"
79 #include "hw/acpi/generic_event_device.h"
80 #include "hw/virtio/virtio-mem-pci.h"
81 #include "hw/virtio/virtio-iommu.h"
82 #include "hw/char/pl011.h"
83 #include "qemu/guest-random.h"
84
85 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
86 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
87 void *data) \
88 { \
89 MachineClass *mc = MACHINE_CLASS(oc); \
90 virt_machine_##major##_##minor##_options(mc); \
91 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
92 if (latest) { \
93 mc->alias = "virt"; \
94 } \
95 } \
96 static const TypeInfo machvirt_##major##_##minor##_info = { \
97 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
98 .parent = TYPE_VIRT_MACHINE, \
99 .class_init = virt_##major##_##minor##_class_init, \
100 }; \
101 static void machvirt_machine_##major##_##minor##_init(void) \
102 { \
103 type_register_static(&machvirt_##major##_##minor##_info); \
104 } \
105 type_init(machvirt_machine_##major##_##minor##_init);
106
107 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
108 DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
109 #define DEFINE_VIRT_MACHINE(major, minor) \
110 DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
111
112
113 /* Number of external interrupt lines to configure the GIC with */
114 #define NUM_IRQS 256
115
116 #define PLATFORM_BUS_NUM_IRQS 64
117
118 /* Legacy RAM limit in GB (< version 4.0) */
119 #define LEGACY_RAMLIMIT_GB 255
120 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB)
121
122 /* Addresses and sizes of our components.
123 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
124 * 128MB..256MB is used for miscellaneous device I/O.
125 * 256MB..1GB is reserved for possible future PCI support (ie where the
126 * PCI memory window will go if we add a PCI host controller).
127 * 1GB and up is RAM (which may happily spill over into the
128 * high memory region beyond 4GB).
129 * This represents a compromise between how much RAM can be given to
130 * a 32 bit VM and leaving space for expansion and in particular for PCI.
131 * Note that devices should generally be placed at multiples of 0x10000,
132 * to accommodate guests using 64K pages.
133 */
134 static const MemMapEntry base_memmap[] = {
135 /* Space up to 0x8000000 is reserved for a boot ROM */
136 [VIRT_FLASH] = { 0, 0x08000000 },
137 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
138 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
139 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
140 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
141 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 },
142 [VIRT_GIC_HYP] = { 0x08030000, 0x00010000 },
143 [VIRT_GIC_VCPU] = { 0x08040000, 0x00010000 },
144 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
145 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 },
146 /* This redistributor space allows up to 2*64kB*123 CPUs */
147 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 },
148 [VIRT_UART] = { 0x09000000, 0x00001000 },
149 [VIRT_RTC] = { 0x09010000, 0x00001000 },
150 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 },
151 [VIRT_GPIO] = { 0x09030000, 0x00001000 },
152 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 },
153 [VIRT_SMMU] = { 0x09050000, 0x00020000 },
154 [VIRT_PCDIMM_ACPI] = { 0x09070000, MEMORY_HOTPLUG_IO_LEN },
155 [VIRT_ACPI_GED] = { 0x09080000, ACPI_GED_EVT_SEL_LEN },
156 [VIRT_NVDIMM_ACPI] = { 0x09090000, NVDIMM_ACPI_IO_LEN},
157 [VIRT_PVTIME] = { 0x090a0000, 0x00010000 },
158 [VIRT_SECURE_GPIO] = { 0x090b0000, 0x00001000 },
159 [VIRT_MMIO] = { 0x0a000000, 0x00000200 },
160 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
161 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 },
162 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 },
163 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 },
164 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 },
165 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 },
166 /* Actual RAM size depends on initial RAM and device memory settings */
167 [VIRT_MEM] = { GiB, LEGACY_RAMLIMIT_BYTES },
168 };
169
170 /*
171 * Highmem IO Regions: This memory map is floating, located after the RAM.
172 * Each MemMapEntry base (GPA) will be dynamically computed, depending on the
173 * top of the RAM, so that its base get the same alignment as the size,
174 * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is
175 * less than 256GiB of RAM, the floating area starts at the 256GiB mark.
176 * Note the extended_memmap is sized so that it eventually also includes the
177 * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last
178 * index of base_memmap).
179 *
180 * The memory map for these Highmem IO Regions can be in legacy or compact
181 * layout, depending on 'compact-highmem' property. With legacy layout, the
182 * PA space for one specific region is always reserved, even if the region
183 * has been disabled or doesn't fit into the PA space. However, the PA space
184 * for the region won't be reserved in these circumstances with compact layout.
185 */
186 static MemMapEntry extended_memmap[] = {
187 /* Additional 64 MB redist region (can contain up to 512 redistributors) */
188 [VIRT_HIGH_GIC_REDIST2] = { 0x0, 64 * MiB },
189 [VIRT_HIGH_PCIE_ECAM] = { 0x0, 256 * MiB },
190 /* Second PCIe window */
191 [VIRT_HIGH_PCIE_MMIO] = { 0x0, 512 * GiB },
192 };
193
194 static const int a15irqmap[] = {
195 [VIRT_UART] = 1,
196 [VIRT_RTC] = 2,
197 [VIRT_PCIE] = 3, /* ... to 6 */
198 [VIRT_GPIO] = 7,
199 [VIRT_SECURE_UART] = 8,
200 [VIRT_ACPI_GED] = 9,
201 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
202 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
203 [VIRT_SMMU] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */
204 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
205 };
206
207 static const char *valid_cpus[] = {
208 #ifdef CONFIG_TCG
209 ARM_CPU_TYPE_NAME("cortex-a7"),
210 ARM_CPU_TYPE_NAME("cortex-a15"),
211 ARM_CPU_TYPE_NAME("cortex-a35"),
212 ARM_CPU_TYPE_NAME("cortex-a55"),
213 ARM_CPU_TYPE_NAME("cortex-a72"),
214 ARM_CPU_TYPE_NAME("cortex-a76"),
215 ARM_CPU_TYPE_NAME("a64fx"),
216 ARM_CPU_TYPE_NAME("neoverse-n1"),
217 ARM_CPU_TYPE_NAME("neoverse-v1"),
218 #endif
219 ARM_CPU_TYPE_NAME("cortex-a53"),
220 ARM_CPU_TYPE_NAME("cortex-a57"),
221 ARM_CPU_TYPE_NAME("host"),
222 ARM_CPU_TYPE_NAME("max"),
223 };
224
225 static bool cpu_type_valid(const char *cpu)
226 {
227 int i;
228
229 for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
230 if (strcmp(cpu, valid_cpus[i]) == 0) {
231 return true;
232 }
233 }
234 return false;
235 }
236
237 static void create_randomness(MachineState *ms, const char *node)
238 {
239 struct {
240 uint64_t kaslr;
241 uint8_t rng[32];
242 } seed;
243
244 if (qemu_guest_getrandom(&seed, sizeof(seed), NULL)) {
245 return;
246 }
247 qemu_fdt_setprop_u64(ms->fdt, node, "kaslr-seed", seed.kaslr);
248 qemu_fdt_setprop(ms->fdt, node, "rng-seed", seed.rng, sizeof(seed.rng));
249 }
250
251 static void create_fdt(VirtMachineState *vms)
252 {
253 MachineState *ms = MACHINE(vms);
254 int nb_numa_nodes = ms->numa_state->num_nodes;
255 void *fdt = create_device_tree(&vms->fdt_size);
256
257 if (!fdt) {
258 error_report("create_device_tree() failed");
259 exit(1);
260 }
261
262 ms->fdt = fdt;
263
264 /* Header */
265 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
266 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
267 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
268 qemu_fdt_setprop_string(fdt, "/", "model", "linux,dummy-virt");
269
270 /* /chosen must exist for load_dtb to fill in necessary properties later */
271 qemu_fdt_add_subnode(fdt, "/chosen");
272 if (vms->dtb_randomness) {
273 create_randomness(ms, "/chosen");
274 }
275
276 if (vms->secure) {
277 qemu_fdt_add_subnode(fdt, "/secure-chosen");
278 if (vms->dtb_randomness) {
279 create_randomness(ms, "/secure-chosen");
280 }
281 }
282
283 /* Clock node, for the benefit of the UART. The kernel device tree
284 * binding documentation claims the PL011 node clock properties are
285 * optional but in practice if you omit them the kernel refuses to
286 * probe for the device.
287 */
288 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
289 qemu_fdt_add_subnode(fdt, "/apb-pclk");
290 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
291 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
292 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
293 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
294 "clk24mhz");
295 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
296
297 if (nb_numa_nodes > 0 && ms->numa_state->have_numa_distance) {
298 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
299 uint32_t *matrix = g_malloc0(size);
300 int idx, i, j;
301
302 for (i = 0; i < nb_numa_nodes; i++) {
303 for (j = 0; j < nb_numa_nodes; j++) {
304 idx = (i * nb_numa_nodes + j) * 3;
305 matrix[idx + 0] = cpu_to_be32(i);
306 matrix[idx + 1] = cpu_to_be32(j);
307 matrix[idx + 2] =
308 cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
309 }
310 }
311
312 qemu_fdt_add_subnode(fdt, "/distance-map");
313 qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
314 "numa-distance-map-v1");
315 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
316 matrix, size);
317 g_free(matrix);
318 }
319 }
320
321 static void fdt_add_timer_nodes(const VirtMachineState *vms)
322 {
323 /* On real hardware these interrupts are level-triggered.
324 * On KVM they were edge-triggered before host kernel version 4.4,
325 * and level-triggered afterwards.
326 * On emulated QEMU they are level-triggered.
327 *
328 * Getting the DTB info about them wrong is awkward for some
329 * guest kernels:
330 * pre-4.8 ignore the DT and leave the interrupt configured
331 * with whatever the GIC reset value (or the bootloader) left it at
332 * 4.8 before rc6 honour the incorrect data by programming it back
333 * into the GIC, causing problems
334 * 4.8rc6 and later ignore the DT and always write "level triggered"
335 * into the GIC
336 *
337 * For backwards-compatibility, virt-2.8 and earlier will continue
338 * to say these are edge-triggered, but later machines will report
339 * the correct information.
340 */
341 ARMCPU *armcpu;
342 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
343 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
344 MachineState *ms = MACHINE(vms);
345
346 if (vmc->claim_edge_triggered_timers) {
347 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
348 }
349
350 if (vms->gic_version == VIRT_GIC_VERSION_2) {
351 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
352 GIC_FDT_IRQ_PPI_CPU_WIDTH,
353 (1 << MACHINE(vms)->smp.cpus) - 1);
354 }
355
356 qemu_fdt_add_subnode(ms->fdt, "/timer");
357
358 armcpu = ARM_CPU(qemu_get_cpu(0));
359 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
360 const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
361 qemu_fdt_setprop(ms->fdt, "/timer", "compatible",
362 compat, sizeof(compat));
363 } else {
364 qemu_fdt_setprop_string(ms->fdt, "/timer", "compatible",
365 "arm,armv7-timer");
366 }
367 qemu_fdt_setprop(ms->fdt, "/timer", "always-on", NULL, 0);
368 qemu_fdt_setprop_cells(ms->fdt, "/timer", "interrupts",
369 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
370 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
371 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
372 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
373 }
374
375 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
376 {
377 int cpu;
378 int addr_cells = 1;
379 const MachineState *ms = MACHINE(vms);
380 const VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
381 int smp_cpus = ms->smp.cpus;
382
383 /*
384 * See Linux Documentation/devicetree/bindings/arm/cpus.yaml
385 * On ARM v8 64-bit systems value should be set to 2,
386 * that corresponds to the MPIDR_EL1 register size.
387 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
388 * in the system, #address-cells can be set to 1, since
389 * MPIDR_EL1[63:32] bits are not used for CPUs
390 * identification.
391 *
392 * Here we actually don't know whether our system is 32- or 64-bit one.
393 * The simplest way to go is to examine affinity IDs of all our CPUs. If
394 * at least one of them has Aff3 populated, we set #address-cells to 2.
395 */
396 for (cpu = 0; cpu < smp_cpus; cpu++) {
397 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
398
399 if (armcpu->mp_affinity & ARM_AFF3_MASK) {
400 addr_cells = 2;
401 break;
402 }
403 }
404
405 qemu_fdt_add_subnode(ms->fdt, "/cpus");
406 qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#address-cells", addr_cells);
407 qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#size-cells", 0x0);
408
409 for (cpu = smp_cpus - 1; cpu >= 0; cpu--) {
410 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
411 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
412 CPUState *cs = CPU(armcpu);
413
414 qemu_fdt_add_subnode(ms->fdt, nodename);
415 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "cpu");
416 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
417 armcpu->dtb_compatible);
418
419 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED && smp_cpus > 1) {
420 qemu_fdt_setprop_string(ms->fdt, nodename,
421 "enable-method", "psci");
422 }
423
424 if (addr_cells == 2) {
425 qemu_fdt_setprop_u64(ms->fdt, nodename, "reg",
426 armcpu->mp_affinity);
427 } else {
428 qemu_fdt_setprop_cell(ms->fdt, nodename, "reg",
429 armcpu->mp_affinity);
430 }
431
432 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
433 qemu_fdt_setprop_cell(ms->fdt, nodename, "numa-node-id",
434 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
435 }
436
437 if (!vmc->no_cpu_topology) {
438 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle",
439 qemu_fdt_alloc_phandle(ms->fdt));
440 }
441
442 g_free(nodename);
443 }
444
445 if (!vmc->no_cpu_topology) {
446 /*
447 * Add vCPU topology description through fdt node cpu-map.
448 *
449 * See Linux Documentation/devicetree/bindings/cpu/cpu-topology.txt
450 * In a SMP system, the hierarchy of CPUs can be defined through
451 * four entities that are used to describe the layout of CPUs in
452 * the system: socket/cluster/core/thread.
453 *
454 * A socket node represents the boundary of system physical package
455 * and its child nodes must be one or more cluster nodes. A system
456 * can contain several layers of clustering within a single physical
457 * package and cluster nodes can be contained in parent cluster nodes.
458 *
459 * Note: currently we only support one layer of clustering within
460 * each physical package.
461 */
462 qemu_fdt_add_subnode(ms->fdt, "/cpus/cpu-map");
463
464 for (cpu = smp_cpus - 1; cpu >= 0; cpu--) {
465 char *cpu_path = g_strdup_printf("/cpus/cpu@%d", cpu);
466 char *map_path;
467
468 if (ms->smp.threads > 1) {
469 map_path = g_strdup_printf(
470 "/cpus/cpu-map/socket%d/cluster%d/core%d/thread%d",
471 cpu / (ms->smp.clusters * ms->smp.cores * ms->smp.threads),
472 (cpu / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters,
473 (cpu / ms->smp.threads) % ms->smp.cores,
474 cpu % ms->smp.threads);
475 } else {
476 map_path = g_strdup_printf(
477 "/cpus/cpu-map/socket%d/cluster%d/core%d",
478 cpu / (ms->smp.clusters * ms->smp.cores),
479 (cpu / ms->smp.cores) % ms->smp.clusters,
480 cpu % ms->smp.cores);
481 }
482 qemu_fdt_add_path(ms->fdt, map_path);
483 qemu_fdt_setprop_phandle(ms->fdt, map_path, "cpu", cpu_path);
484
485 g_free(map_path);
486 g_free(cpu_path);
487 }
488 }
489 }
490
491 static void fdt_add_its_gic_node(VirtMachineState *vms)
492 {
493 char *nodename;
494 MachineState *ms = MACHINE(vms);
495
496 vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
497 nodename = g_strdup_printf("/intc/its@%" PRIx64,
498 vms->memmap[VIRT_GIC_ITS].base);
499 qemu_fdt_add_subnode(ms->fdt, nodename);
500 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
501 "arm,gic-v3-its");
502 qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
503 qemu_fdt_setprop_cell(ms->fdt, nodename, "#msi-cells", 1);
504 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
505 2, vms->memmap[VIRT_GIC_ITS].base,
506 2, vms->memmap[VIRT_GIC_ITS].size);
507 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
508 g_free(nodename);
509 }
510
511 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
512 {
513 MachineState *ms = MACHINE(vms);
514 char *nodename;
515
516 nodename = g_strdup_printf("/intc/v2m@%" PRIx64,
517 vms->memmap[VIRT_GIC_V2M].base);
518 vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
519 qemu_fdt_add_subnode(ms->fdt, nodename);
520 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
521 "arm,gic-v2m-frame");
522 qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
523 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
524 2, vms->memmap[VIRT_GIC_V2M].base,
525 2, vms->memmap[VIRT_GIC_V2M].size);
526 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
527 g_free(nodename);
528 }
529
530 static void fdt_add_gic_node(VirtMachineState *vms)
531 {
532 MachineState *ms = MACHINE(vms);
533 char *nodename;
534
535 vms->gic_phandle = qemu_fdt_alloc_phandle(ms->fdt);
536 qemu_fdt_setprop_cell(ms->fdt, "/", "interrupt-parent", vms->gic_phandle);
537
538 nodename = g_strdup_printf("/intc@%" PRIx64,
539 vms->memmap[VIRT_GIC_DIST].base);
540 qemu_fdt_add_subnode(ms->fdt, nodename);
541 qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 3);
542 qemu_fdt_setprop(ms->fdt, nodename, "interrupt-controller", NULL, 0);
543 qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 0x2);
544 qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 0x2);
545 qemu_fdt_setprop(ms->fdt, nodename, "ranges", NULL, 0);
546 if (vms->gic_version != VIRT_GIC_VERSION_2) {
547 int nb_redist_regions = virt_gicv3_redist_region_count(vms);
548
549 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
550 "arm,gic-v3");
551
552 qemu_fdt_setprop_cell(ms->fdt, nodename,
553 "#redistributor-regions", nb_redist_regions);
554
555 if (nb_redist_regions == 1) {
556 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
557 2, vms->memmap[VIRT_GIC_DIST].base,
558 2, vms->memmap[VIRT_GIC_DIST].size,
559 2, vms->memmap[VIRT_GIC_REDIST].base,
560 2, vms->memmap[VIRT_GIC_REDIST].size);
561 } else {
562 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
563 2, vms->memmap[VIRT_GIC_DIST].base,
564 2, vms->memmap[VIRT_GIC_DIST].size,
565 2, vms->memmap[VIRT_GIC_REDIST].base,
566 2, vms->memmap[VIRT_GIC_REDIST].size,
567 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base,
568 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size);
569 }
570
571 if (vms->virt) {
572 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
573 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
574 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
575 }
576 } else {
577 /* 'cortex-a15-gic' means 'GIC v2' */
578 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
579 "arm,cortex-a15-gic");
580 if (!vms->virt) {
581 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
582 2, vms->memmap[VIRT_GIC_DIST].base,
583 2, vms->memmap[VIRT_GIC_DIST].size,
584 2, vms->memmap[VIRT_GIC_CPU].base,
585 2, vms->memmap[VIRT_GIC_CPU].size);
586 } else {
587 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
588 2, vms->memmap[VIRT_GIC_DIST].base,
589 2, vms->memmap[VIRT_GIC_DIST].size,
590 2, vms->memmap[VIRT_GIC_CPU].base,
591 2, vms->memmap[VIRT_GIC_CPU].size,
592 2, vms->memmap[VIRT_GIC_HYP].base,
593 2, vms->memmap[VIRT_GIC_HYP].size,
594 2, vms->memmap[VIRT_GIC_VCPU].base,
595 2, vms->memmap[VIRT_GIC_VCPU].size);
596 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
597 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
598 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
599 }
600 }
601
602 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->gic_phandle);
603 g_free(nodename);
604 }
605
606 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
607 {
608 ARMCPU *armcpu = ARM_CPU(first_cpu);
609 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
610 MachineState *ms = MACHINE(vms);
611
612 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
613 assert(!object_property_get_bool(OBJECT(armcpu), "pmu", NULL));
614 return;
615 }
616
617 if (vms->gic_version == VIRT_GIC_VERSION_2) {
618 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
619 GIC_FDT_IRQ_PPI_CPU_WIDTH,
620 (1 << MACHINE(vms)->smp.cpus) - 1);
621 }
622
623 qemu_fdt_add_subnode(ms->fdt, "/pmu");
624 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
625 const char compat[] = "arm,armv8-pmuv3";
626 qemu_fdt_setprop(ms->fdt, "/pmu", "compatible",
627 compat, sizeof(compat));
628 qemu_fdt_setprop_cells(ms->fdt, "/pmu", "interrupts",
629 GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
630 }
631 }
632
633 static inline DeviceState *create_acpi_ged(VirtMachineState *vms)
634 {
635 DeviceState *dev;
636 MachineState *ms = MACHINE(vms);
637 int irq = vms->irqmap[VIRT_ACPI_GED];
638 uint32_t event = ACPI_GED_PWR_DOWN_EVT;
639
640 if (ms->ram_slots) {
641 event |= ACPI_GED_MEM_HOTPLUG_EVT;
642 }
643
644 if (ms->nvdimms_state->is_enabled) {
645 event |= ACPI_GED_NVDIMM_HOTPLUG_EVT;
646 }
647
648 dev = qdev_new(TYPE_ACPI_GED);
649 qdev_prop_set_uint32(dev, "ged-event", event);
650
651 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_ACPI_GED].base);
652 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, vms->memmap[VIRT_PCDIMM_ACPI].base);
653 sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(vms->gic, irq));
654
655 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
656
657 return dev;
658 }
659
660 static void create_its(VirtMachineState *vms)
661 {
662 const char *itsclass = its_class_name();
663 DeviceState *dev;
664
665 if (!strcmp(itsclass, "arm-gicv3-its")) {
666 if (!vms->tcg_its) {
667 itsclass = NULL;
668 }
669 }
670
671 if (!itsclass) {
672 /* Do nothing if not supported */
673 return;
674 }
675
676 dev = qdev_new(itsclass);
677
678 object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(vms->gic),
679 &error_abort);
680 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
681 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
682
683 fdt_add_its_gic_node(vms);
684 vms->msi_controller = VIRT_MSI_CTRL_ITS;
685 }
686
687 static void create_v2m(VirtMachineState *vms)
688 {
689 int i;
690 int irq = vms->irqmap[VIRT_GIC_V2M];
691 DeviceState *dev;
692
693 dev = qdev_new("arm-gicv2m");
694 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
695 qdev_prop_set_uint32(dev, "base-spi", irq);
696 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
697 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
698
699 for (i = 0; i < NUM_GICV2M_SPIS; i++) {
700 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
701 qdev_get_gpio_in(vms->gic, irq + i));
702 }
703
704 fdt_add_v2m_gic_node(vms);
705 vms->msi_controller = VIRT_MSI_CTRL_GICV2M;
706 }
707
708 static void create_gic(VirtMachineState *vms, MemoryRegion *mem)
709 {
710 MachineState *ms = MACHINE(vms);
711 /* We create a standalone GIC */
712 SysBusDevice *gicbusdev;
713 const char *gictype;
714 int i;
715 unsigned int smp_cpus = ms->smp.cpus;
716 uint32_t nb_redist_regions = 0;
717 int revision;
718
719 if (vms->gic_version == VIRT_GIC_VERSION_2) {
720 gictype = gic_class_name();
721 } else {
722 gictype = gicv3_class_name();
723 }
724
725 switch (vms->gic_version) {
726 case VIRT_GIC_VERSION_2:
727 revision = 2;
728 break;
729 case VIRT_GIC_VERSION_3:
730 revision = 3;
731 break;
732 case VIRT_GIC_VERSION_4:
733 revision = 4;
734 break;
735 default:
736 g_assert_not_reached();
737 }
738 vms->gic = qdev_new(gictype);
739 qdev_prop_set_uint32(vms->gic, "revision", revision);
740 qdev_prop_set_uint32(vms->gic, "num-cpu", smp_cpus);
741 /* Note that the num-irq property counts both internal and external
742 * interrupts; there are always 32 of the former (mandated by GIC spec).
743 */
744 qdev_prop_set_uint32(vms->gic, "num-irq", NUM_IRQS + 32);
745 if (!kvm_irqchip_in_kernel()) {
746 qdev_prop_set_bit(vms->gic, "has-security-extensions", vms->secure);
747 }
748
749 if (vms->gic_version != VIRT_GIC_VERSION_2) {
750 uint32_t redist0_capacity = virt_redist_capacity(vms, VIRT_GIC_REDIST);
751 uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
752
753 nb_redist_regions = virt_gicv3_redist_region_count(vms);
754
755 qdev_prop_set_uint32(vms->gic, "len-redist-region-count",
756 nb_redist_regions);
757 qdev_prop_set_uint32(vms->gic, "redist-region-count[0]", redist0_count);
758
759 if (!kvm_irqchip_in_kernel()) {
760 if (vms->tcg_its) {
761 object_property_set_link(OBJECT(vms->gic), "sysmem",
762 OBJECT(mem), &error_fatal);
763 qdev_prop_set_bit(vms->gic, "has-lpi", true);
764 }
765 }
766
767 if (nb_redist_regions == 2) {
768 uint32_t redist1_capacity =
769 virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2);
770
771 qdev_prop_set_uint32(vms->gic, "redist-region-count[1]",
772 MIN(smp_cpus - redist0_count, redist1_capacity));
773 }
774 } else {
775 if (!kvm_irqchip_in_kernel()) {
776 qdev_prop_set_bit(vms->gic, "has-virtualization-extensions",
777 vms->virt);
778 }
779 }
780 gicbusdev = SYS_BUS_DEVICE(vms->gic);
781 sysbus_realize_and_unref(gicbusdev, &error_fatal);
782 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
783 if (vms->gic_version != VIRT_GIC_VERSION_2) {
784 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
785 if (nb_redist_regions == 2) {
786 sysbus_mmio_map(gicbusdev, 2,
787 vms->memmap[VIRT_HIGH_GIC_REDIST2].base);
788 }
789 } else {
790 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
791 if (vms->virt) {
792 sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base);
793 sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base);
794 }
795 }
796
797 /* Wire the outputs from each CPU's generic timer and the GICv3
798 * maintenance interrupt signal to the appropriate GIC PPI inputs,
799 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
800 */
801 for (i = 0; i < smp_cpus; i++) {
802 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
803 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
804 int irq;
805 /* Mapping from the output timer irq lines from the CPU to the
806 * GIC PPI inputs we use for the virt board.
807 */
808 const int timer_irq[] = {
809 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
810 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
811 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
812 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
813 };
814
815 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
816 qdev_connect_gpio_out(cpudev, irq,
817 qdev_get_gpio_in(vms->gic,
818 ppibase + timer_irq[irq]));
819 }
820
821 if (vms->gic_version != VIRT_GIC_VERSION_2) {
822 qemu_irq irq = qdev_get_gpio_in(vms->gic,
823 ppibase + ARCH_GIC_MAINT_IRQ);
824 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt",
825 0, irq);
826 } else if (vms->virt) {
827 qemu_irq irq = qdev_get_gpio_in(vms->gic,
828 ppibase + ARCH_GIC_MAINT_IRQ);
829 sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq);
830 }
831
832 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
833 qdev_get_gpio_in(vms->gic, ppibase
834 + VIRTUAL_PMU_IRQ));
835
836 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
837 sysbus_connect_irq(gicbusdev, i + smp_cpus,
838 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
839 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
840 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
841 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
842 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
843 }
844
845 fdt_add_gic_node(vms);
846
847 if (vms->gic_version != VIRT_GIC_VERSION_2 && vms->its) {
848 create_its(vms);
849 } else if (vms->gic_version == VIRT_GIC_VERSION_2) {
850 create_v2m(vms);
851 }
852 }
853
854 static void create_uart(const VirtMachineState *vms, int uart,
855 MemoryRegion *mem, Chardev *chr)
856 {
857 char *nodename;
858 hwaddr base = vms->memmap[uart].base;
859 hwaddr size = vms->memmap[uart].size;
860 int irq = vms->irqmap[uart];
861 const char compat[] = "arm,pl011\0arm,primecell";
862 const char clocknames[] = "uartclk\0apb_pclk";
863 DeviceState *dev = qdev_new(TYPE_PL011);
864 SysBusDevice *s = SYS_BUS_DEVICE(dev);
865 MachineState *ms = MACHINE(vms);
866
867 qdev_prop_set_chr(dev, "chardev", chr);
868 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
869 memory_region_add_subregion(mem, base,
870 sysbus_mmio_get_region(s, 0));
871 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
872
873 nodename = g_strdup_printf("/pl011@%" PRIx64, base);
874 qemu_fdt_add_subnode(ms->fdt, nodename);
875 /* Note that we can't use setprop_string because of the embedded NUL */
876 qemu_fdt_setprop(ms->fdt, nodename, "compatible",
877 compat, sizeof(compat));
878 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
879 2, base, 2, size);
880 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
881 GIC_FDT_IRQ_TYPE_SPI, irq,
882 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
883 qemu_fdt_setprop_cells(ms->fdt, nodename, "clocks",
884 vms->clock_phandle, vms->clock_phandle);
885 qemu_fdt_setprop(ms->fdt, nodename, "clock-names",
886 clocknames, sizeof(clocknames));
887
888 if (uart == VIRT_UART) {
889 qemu_fdt_setprop_string(ms->fdt, "/chosen", "stdout-path", nodename);
890 } else {
891 /* Mark as not usable by the normal world */
892 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
893 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
894
895 qemu_fdt_setprop_string(ms->fdt, "/secure-chosen", "stdout-path",
896 nodename);
897 }
898
899 g_free(nodename);
900 }
901
902 static void create_rtc(const VirtMachineState *vms)
903 {
904 char *nodename;
905 hwaddr base = vms->memmap[VIRT_RTC].base;
906 hwaddr size = vms->memmap[VIRT_RTC].size;
907 int irq = vms->irqmap[VIRT_RTC];
908 const char compat[] = "arm,pl031\0arm,primecell";
909 MachineState *ms = MACHINE(vms);
910
911 sysbus_create_simple("pl031", base, qdev_get_gpio_in(vms->gic, irq));
912
913 nodename = g_strdup_printf("/pl031@%" PRIx64, base);
914 qemu_fdt_add_subnode(ms->fdt, nodename);
915 qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
916 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
917 2, base, 2, size);
918 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
919 GIC_FDT_IRQ_TYPE_SPI, irq,
920 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
921 qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
922 qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
923 g_free(nodename);
924 }
925
926 static DeviceState *gpio_key_dev;
927 static void virt_powerdown_req(Notifier *n, void *opaque)
928 {
929 VirtMachineState *s = container_of(n, VirtMachineState, powerdown_notifier);
930
931 if (s->acpi_dev) {
932 acpi_send_event(s->acpi_dev, ACPI_POWER_DOWN_STATUS);
933 } else {
934 /* use gpio Pin 3 for power button event */
935 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
936 }
937 }
938
939 static void create_gpio_keys(char *fdt, DeviceState *pl061_dev,
940 uint32_t phandle)
941 {
942 gpio_key_dev = sysbus_create_simple("gpio-key", -1,
943 qdev_get_gpio_in(pl061_dev, 3));
944
945 qemu_fdt_add_subnode(fdt, "/gpio-keys");
946 qemu_fdt_setprop_string(fdt, "/gpio-keys", "compatible", "gpio-keys");
947
948 qemu_fdt_add_subnode(fdt, "/gpio-keys/poweroff");
949 qemu_fdt_setprop_string(fdt, "/gpio-keys/poweroff",
950 "label", "GPIO Key Poweroff");
951 qemu_fdt_setprop_cell(fdt, "/gpio-keys/poweroff", "linux,code",
952 KEY_POWER);
953 qemu_fdt_setprop_cells(fdt, "/gpio-keys/poweroff",
954 "gpios", phandle, 3, 0);
955 }
956
957 #define SECURE_GPIO_POWEROFF 0
958 #define SECURE_GPIO_RESET 1
959
960 static void create_secure_gpio_pwr(char *fdt, DeviceState *pl061_dev,
961 uint32_t phandle)
962 {
963 DeviceState *gpio_pwr_dev;
964
965 /* gpio-pwr */
966 gpio_pwr_dev = sysbus_create_simple("gpio-pwr", -1, NULL);
967
968 /* connect secure pl061 to gpio-pwr */
969 qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_RESET,
970 qdev_get_gpio_in_named(gpio_pwr_dev, "reset", 0));
971 qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_POWEROFF,
972 qdev_get_gpio_in_named(gpio_pwr_dev, "shutdown", 0));
973
974 qemu_fdt_add_subnode(fdt, "/gpio-poweroff");
975 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "compatible",
976 "gpio-poweroff");
977 qemu_fdt_setprop_cells(fdt, "/gpio-poweroff",
978 "gpios", phandle, SECURE_GPIO_POWEROFF, 0);
979 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "status", "disabled");
980 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "secure-status",
981 "okay");
982
983 qemu_fdt_add_subnode(fdt, "/gpio-restart");
984 qemu_fdt_setprop_string(fdt, "/gpio-restart", "compatible",
985 "gpio-restart");
986 qemu_fdt_setprop_cells(fdt, "/gpio-restart",
987 "gpios", phandle, SECURE_GPIO_RESET, 0);
988 qemu_fdt_setprop_string(fdt, "/gpio-restart", "status", "disabled");
989 qemu_fdt_setprop_string(fdt, "/gpio-restart", "secure-status",
990 "okay");
991 }
992
993 static void create_gpio_devices(const VirtMachineState *vms, int gpio,
994 MemoryRegion *mem)
995 {
996 char *nodename;
997 DeviceState *pl061_dev;
998 hwaddr base = vms->memmap[gpio].base;
999 hwaddr size = vms->memmap[gpio].size;
1000 int irq = vms->irqmap[gpio];
1001 const char compat[] = "arm,pl061\0arm,primecell";
1002 SysBusDevice *s;
1003 MachineState *ms = MACHINE(vms);
1004
1005 pl061_dev = qdev_new("pl061");
1006 /* Pull lines down to 0 if not driven by the PL061 */
1007 qdev_prop_set_uint32(pl061_dev, "pullups", 0);
1008 qdev_prop_set_uint32(pl061_dev, "pulldowns", 0xff);
1009 s = SYS_BUS_DEVICE(pl061_dev);
1010 sysbus_realize_and_unref(s, &error_fatal);
1011 memory_region_add_subregion(mem, base, sysbus_mmio_get_region(s, 0));
1012 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
1013
1014 uint32_t phandle = qemu_fdt_alloc_phandle(ms->fdt);
1015 nodename = g_strdup_printf("/pl061@%" PRIx64, base);
1016 qemu_fdt_add_subnode(ms->fdt, nodename);
1017 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1018 2, base, 2, size);
1019 qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
1020 qemu_fdt_setprop_cell(ms->fdt, nodename, "#gpio-cells", 2);
1021 qemu_fdt_setprop(ms->fdt, nodename, "gpio-controller", NULL, 0);
1022 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
1023 GIC_FDT_IRQ_TYPE_SPI, irq,
1024 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
1025 qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
1026 qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
1027 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", phandle);
1028
1029 if (gpio != VIRT_GPIO) {
1030 /* Mark as not usable by the normal world */
1031 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1032 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1033 }
1034 g_free(nodename);
1035
1036 /* Child gpio devices */
1037 if (gpio == VIRT_GPIO) {
1038 create_gpio_keys(ms->fdt, pl061_dev, phandle);
1039 } else {
1040 create_secure_gpio_pwr(ms->fdt, pl061_dev, phandle);
1041 }
1042 }
1043
1044 static void create_virtio_devices(const VirtMachineState *vms)
1045 {
1046 int i;
1047 hwaddr size = vms->memmap[VIRT_MMIO].size;
1048 MachineState *ms = MACHINE(vms);
1049
1050 /* We create the transports in forwards order. Since qbus_realize()
1051 * prepends (not appends) new child buses, the incrementing loop below will
1052 * create a list of virtio-mmio buses with decreasing base addresses.
1053 *
1054 * When a -device option is processed from the command line,
1055 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
1056 * order. The upshot is that -device options in increasing command line
1057 * order are mapped to virtio-mmio buses with decreasing base addresses.
1058 *
1059 * When this code was originally written, that arrangement ensured that the
1060 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
1061 * the first -device on the command line. (The end-to-end order is a
1062 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
1063 * guest kernel's name-to-address assignment strategy.)
1064 *
1065 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
1066 * the message, if not necessarily the code, of commit 70161ff336.
1067 * Therefore the loop now establishes the inverse of the original intent.
1068 *
1069 * Unfortunately, we can't counteract the kernel change by reversing the
1070 * loop; it would break existing command lines.
1071 *
1072 * In any case, the kernel makes no guarantee about the stability of
1073 * enumeration order of virtio devices (as demonstrated by it changing
1074 * between kernel versions). For reliable and stable identification
1075 * of disks users must use UUIDs or similar mechanisms.
1076 */
1077 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
1078 int irq = vms->irqmap[VIRT_MMIO] + i;
1079 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
1080
1081 sysbus_create_simple("virtio-mmio", base,
1082 qdev_get_gpio_in(vms->gic, irq));
1083 }
1084
1085 /* We add dtb nodes in reverse order so that they appear in the finished
1086 * device tree lowest address first.
1087 *
1088 * Note that this mapping is independent of the loop above. The previous
1089 * loop influences virtio device to virtio transport assignment, whereas
1090 * this loop controls how virtio transports are laid out in the dtb.
1091 */
1092 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
1093 char *nodename;
1094 int irq = vms->irqmap[VIRT_MMIO] + i;
1095 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
1096
1097 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
1098 qemu_fdt_add_subnode(ms->fdt, nodename);
1099 qemu_fdt_setprop_string(ms->fdt, nodename,
1100 "compatible", "virtio,mmio");
1101 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1102 2, base, 2, size);
1103 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
1104 GIC_FDT_IRQ_TYPE_SPI, irq,
1105 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1106 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1107 g_free(nodename);
1108 }
1109 }
1110
1111 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
1112
1113 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms,
1114 const char *name,
1115 const char *alias_prop_name)
1116 {
1117 /*
1118 * Create a single flash device. We use the same parameters as
1119 * the flash devices on the Versatile Express board.
1120 */
1121 DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
1122
1123 qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
1124 qdev_prop_set_uint8(dev, "width", 4);
1125 qdev_prop_set_uint8(dev, "device-width", 2);
1126 qdev_prop_set_bit(dev, "big-endian", false);
1127 qdev_prop_set_uint16(dev, "id0", 0x89);
1128 qdev_prop_set_uint16(dev, "id1", 0x18);
1129 qdev_prop_set_uint16(dev, "id2", 0x00);
1130 qdev_prop_set_uint16(dev, "id3", 0x00);
1131 qdev_prop_set_string(dev, "name", name);
1132 object_property_add_child(OBJECT(vms), name, OBJECT(dev));
1133 object_property_add_alias(OBJECT(vms), alias_prop_name,
1134 OBJECT(dev), "drive");
1135 return PFLASH_CFI01(dev);
1136 }
1137
1138 static void virt_flash_create(VirtMachineState *vms)
1139 {
1140 vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0");
1141 vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1");
1142 }
1143
1144 static void virt_flash_map1(PFlashCFI01 *flash,
1145 hwaddr base, hwaddr size,
1146 MemoryRegion *sysmem)
1147 {
1148 DeviceState *dev = DEVICE(flash);
1149
1150 assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE));
1151 assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
1152 qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
1153 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1154
1155 memory_region_add_subregion(sysmem, base,
1156 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
1157 0));
1158 }
1159
1160 static void virt_flash_map(VirtMachineState *vms,
1161 MemoryRegion *sysmem,
1162 MemoryRegion *secure_sysmem)
1163 {
1164 /*
1165 * Map two flash devices to fill the VIRT_FLASH space in the memmap.
1166 * sysmem is the system memory space. secure_sysmem is the secure view
1167 * of the system, and the first flash device should be made visible only
1168 * there. The second flash device is visible to both secure and nonsecure.
1169 * If sysmem == secure_sysmem this means there is no separate Secure
1170 * address space and both flash devices are generally visible.
1171 */
1172 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1173 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1174
1175 virt_flash_map1(vms->flash[0], flashbase, flashsize,
1176 secure_sysmem);
1177 virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize,
1178 sysmem);
1179 }
1180
1181 static void virt_flash_fdt(VirtMachineState *vms,
1182 MemoryRegion *sysmem,
1183 MemoryRegion *secure_sysmem)
1184 {
1185 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1186 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1187 MachineState *ms = MACHINE(vms);
1188 char *nodename;
1189
1190 if (sysmem == secure_sysmem) {
1191 /* Report both flash devices as a single node in the DT */
1192 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
1193 qemu_fdt_add_subnode(ms->fdt, nodename);
1194 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1195 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1196 2, flashbase, 2, flashsize,
1197 2, flashbase + flashsize, 2, flashsize);
1198 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1199 g_free(nodename);
1200 } else {
1201 /*
1202 * Report the devices as separate nodes so we can mark one as
1203 * only visible to the secure world.
1204 */
1205 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
1206 qemu_fdt_add_subnode(ms->fdt, nodename);
1207 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1208 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1209 2, flashbase, 2, flashsize);
1210 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1211 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1212 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1213 g_free(nodename);
1214
1215 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase + flashsize);
1216 qemu_fdt_add_subnode(ms->fdt, nodename);
1217 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1218 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1219 2, flashbase + flashsize, 2, flashsize);
1220 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1221 g_free(nodename);
1222 }
1223 }
1224
1225 static bool virt_firmware_init(VirtMachineState *vms,
1226 MemoryRegion *sysmem,
1227 MemoryRegion *secure_sysmem)
1228 {
1229 int i;
1230 const char *bios_name;
1231 BlockBackend *pflash_blk0;
1232
1233 /* Map legacy -drive if=pflash to machine properties */
1234 for (i = 0; i < ARRAY_SIZE(vms->flash); i++) {
1235 pflash_cfi01_legacy_drive(vms->flash[i],
1236 drive_get(IF_PFLASH, 0, i));
1237 }
1238
1239 virt_flash_map(vms, sysmem, secure_sysmem);
1240
1241 pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]);
1242
1243 bios_name = MACHINE(vms)->firmware;
1244 if (bios_name) {
1245 char *fname;
1246 MemoryRegion *mr;
1247 int image_size;
1248
1249 if (pflash_blk0) {
1250 error_report("The contents of the first flash device may be "
1251 "specified with -bios or with -drive if=pflash... "
1252 "but you cannot use both options at once");
1253 exit(1);
1254 }
1255
1256 /* Fall back to -bios */
1257
1258 fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1259 if (!fname) {
1260 error_report("Could not find ROM image '%s'", bios_name);
1261 exit(1);
1262 }
1263 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0);
1264 image_size = load_image_mr(fname, mr);
1265 g_free(fname);
1266 if (image_size < 0) {
1267 error_report("Could not load ROM image '%s'", bios_name);
1268 exit(1);
1269 }
1270 }
1271
1272 return pflash_blk0 || bios_name;
1273 }
1274
1275 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
1276 {
1277 MachineState *ms = MACHINE(vms);
1278 hwaddr base = vms->memmap[VIRT_FW_CFG].base;
1279 hwaddr size = vms->memmap[VIRT_FW_CFG].size;
1280 FWCfgState *fw_cfg;
1281 char *nodename;
1282
1283 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
1284 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus);
1285
1286 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
1287 qemu_fdt_add_subnode(ms->fdt, nodename);
1288 qemu_fdt_setprop_string(ms->fdt, nodename,
1289 "compatible", "qemu,fw-cfg-mmio");
1290 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1291 2, base, 2, size);
1292 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1293 g_free(nodename);
1294 return fw_cfg;
1295 }
1296
1297 static void create_pcie_irq_map(const MachineState *ms,
1298 uint32_t gic_phandle,
1299 int first_irq, const char *nodename)
1300 {
1301 int devfn, pin;
1302 uint32_t full_irq_map[4 * 4 * 10] = { 0 };
1303 uint32_t *irq_map = full_irq_map;
1304
1305 for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
1306 for (pin = 0; pin < 4; pin++) {
1307 int irq_type = GIC_FDT_IRQ_TYPE_SPI;
1308 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
1309 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
1310 int i;
1311
1312 uint32_t map[] = {
1313 devfn << 8, 0, 0, /* devfn */
1314 pin + 1, /* PCI pin */
1315 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
1316
1317 /* Convert map to big endian */
1318 for (i = 0; i < 10; i++) {
1319 irq_map[i] = cpu_to_be32(map[i]);
1320 }
1321 irq_map += 10;
1322 }
1323 }
1324
1325 qemu_fdt_setprop(ms->fdt, nodename, "interrupt-map",
1326 full_irq_map, sizeof(full_irq_map));
1327
1328 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupt-map-mask",
1329 cpu_to_be16(PCI_DEVFN(3, 0)), /* Slot 3 */
1330 0, 0,
1331 0x7 /* PCI irq */);
1332 }
1333
1334 static void create_smmu(const VirtMachineState *vms,
1335 PCIBus *bus)
1336 {
1337 char *node;
1338 const char compat[] = "arm,smmu-v3";
1339 int irq = vms->irqmap[VIRT_SMMU];
1340 int i;
1341 hwaddr base = vms->memmap[VIRT_SMMU].base;
1342 hwaddr size = vms->memmap[VIRT_SMMU].size;
1343 const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
1344 DeviceState *dev;
1345 MachineState *ms = MACHINE(vms);
1346
1347 if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
1348 return;
1349 }
1350
1351 dev = qdev_new(TYPE_ARM_SMMUV3);
1352
1353 object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus),
1354 &error_abort);
1355 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1356 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
1357 for (i = 0; i < NUM_SMMU_IRQS; i++) {
1358 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1359 qdev_get_gpio_in(vms->gic, irq + i));
1360 }
1361
1362 node = g_strdup_printf("/smmuv3@%" PRIx64, base);
1363 qemu_fdt_add_subnode(ms->fdt, node);
1364 qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
1365 qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg", 2, base, 2, size);
1366
1367 qemu_fdt_setprop_cells(ms->fdt, node, "interrupts",
1368 GIC_FDT_IRQ_TYPE_SPI, irq , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1369 GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1370 GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1371 GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1372
1373 qemu_fdt_setprop(ms->fdt, node, "interrupt-names", irq_names,
1374 sizeof(irq_names));
1375
1376 qemu_fdt_setprop(ms->fdt, node, "dma-coherent", NULL, 0);
1377
1378 qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
1379
1380 qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
1381 g_free(node);
1382 }
1383
1384 static void create_virtio_iommu_dt_bindings(VirtMachineState *vms)
1385 {
1386 const char compat[] = "virtio,pci-iommu\0pci1af4,1057";
1387 uint16_t bdf = vms->virtio_iommu_bdf;
1388 MachineState *ms = MACHINE(vms);
1389 char *node;
1390
1391 vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
1392
1393 node = g_strdup_printf("%s/virtio_iommu@%x,%x", vms->pciehb_nodename,
1394 PCI_SLOT(bdf), PCI_FUNC(bdf));
1395 qemu_fdt_add_subnode(ms->fdt, node);
1396 qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
1397 qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg",
1398 1, bdf << 8, 1, 0, 1, 0,
1399 1, 0, 1, 0);
1400
1401 qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
1402 qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
1403 g_free(node);
1404
1405 qemu_fdt_setprop_cells(ms->fdt, vms->pciehb_nodename, "iommu-map",
1406 0x0, vms->iommu_phandle, 0x0, bdf,
1407 bdf + 1, vms->iommu_phandle, bdf + 1, 0xffff - bdf);
1408 }
1409
1410 static void create_pcie(VirtMachineState *vms)
1411 {
1412 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1413 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
1414 hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base;
1415 hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size;
1416 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1417 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
1418 hwaddr base_ecam, size_ecam;
1419 hwaddr base = base_mmio;
1420 int nr_pcie_buses;
1421 int irq = vms->irqmap[VIRT_PCIE];
1422 MemoryRegion *mmio_alias;
1423 MemoryRegion *mmio_reg;
1424 MemoryRegion *ecam_alias;
1425 MemoryRegion *ecam_reg;
1426 DeviceState *dev;
1427 char *nodename;
1428 int i, ecam_id;
1429 PCIHostState *pci;
1430 MachineState *ms = MACHINE(vms);
1431 MachineClass *mc = MACHINE_GET_CLASS(ms);
1432
1433 dev = qdev_new(TYPE_GPEX_HOST);
1434 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1435
1436 ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
1437 base_ecam = vms->memmap[ecam_id].base;
1438 size_ecam = vms->memmap[ecam_id].size;
1439 nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
1440 /* Map only the first size_ecam bytes of ECAM space */
1441 ecam_alias = g_new0(MemoryRegion, 1);
1442 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1443 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1444 ecam_reg, 0, size_ecam);
1445 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1446
1447 /* Map the MMIO window into system address space so as to expose
1448 * the section of PCI MMIO space which starts at the same base address
1449 * (ie 1:1 mapping for that part of PCI MMIO space visible through
1450 * the window).
1451 */
1452 mmio_alias = g_new0(MemoryRegion, 1);
1453 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1454 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1455 mmio_reg, base_mmio, size_mmio);
1456 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1457
1458 if (vms->highmem_mmio) {
1459 /* Map high MMIO space */
1460 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1461
1462 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1463 mmio_reg, base_mmio_high, size_mmio_high);
1464 memory_region_add_subregion(get_system_memory(), base_mmio_high,
1465 high_mmio_alias);
1466 }
1467
1468 /* Map IO port space */
1469 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1470
1471 for (i = 0; i < GPEX_NUM_IRQS; i++) {
1472 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1473 qdev_get_gpio_in(vms->gic, irq + i));
1474 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
1475 }
1476
1477 pci = PCI_HOST_BRIDGE(dev);
1478 pci->bypass_iommu = vms->default_bus_bypass_iommu;
1479 vms->bus = pci->bus;
1480 if (vms->bus) {
1481 for (i = 0; i < nb_nics; i++) {
1482 pci_nic_init_nofail(&nd_table[i], pci->bus, mc->default_nic, NULL);
1483 }
1484 }
1485
1486 nodename = vms->pciehb_nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1487 qemu_fdt_add_subnode(ms->fdt, nodename);
1488 qemu_fdt_setprop_string(ms->fdt, nodename,
1489 "compatible", "pci-host-ecam-generic");
1490 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "pci");
1491 qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 3);
1492 qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 2);
1493 qemu_fdt_setprop_cell(ms->fdt, nodename, "linux,pci-domain", 0);
1494 qemu_fdt_setprop_cells(ms->fdt, nodename, "bus-range", 0,
1495 nr_pcie_buses - 1);
1496 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1497
1498 if (vms->msi_phandle) {
1499 qemu_fdt_setprop_cells(ms->fdt, nodename, "msi-map",
1500 0, vms->msi_phandle, 0, 0x10000);
1501 }
1502
1503 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1504 2, base_ecam, 2, size_ecam);
1505
1506 if (vms->highmem_mmio) {
1507 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
1508 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1509 2, base_pio, 2, size_pio,
1510 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1511 2, base_mmio, 2, size_mmio,
1512 1, FDT_PCI_RANGE_MMIO_64BIT,
1513 2, base_mmio_high,
1514 2, base_mmio_high, 2, size_mmio_high);
1515 } else {
1516 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
1517 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1518 2, base_pio, 2, size_pio,
1519 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1520 2, base_mmio, 2, size_mmio);
1521 }
1522
1523 qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 1);
1524 create_pcie_irq_map(ms, vms->gic_phandle, irq, nodename);
1525
1526 if (vms->iommu) {
1527 vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
1528
1529 switch (vms->iommu) {
1530 case VIRT_IOMMU_SMMUV3:
1531 create_smmu(vms, vms->bus);
1532 qemu_fdt_setprop_cells(ms->fdt, nodename, "iommu-map",
1533 0x0, vms->iommu_phandle, 0x0, 0x10000);
1534 break;
1535 default:
1536 g_assert_not_reached();
1537 }
1538 }
1539 }
1540
1541 static void create_platform_bus(VirtMachineState *vms)
1542 {
1543 DeviceState *dev;
1544 SysBusDevice *s;
1545 int i;
1546 MemoryRegion *sysmem = get_system_memory();
1547
1548 dev = qdev_new(TYPE_PLATFORM_BUS_DEVICE);
1549 dev->id = g_strdup(TYPE_PLATFORM_BUS_DEVICE);
1550 qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
1551 qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
1552 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1553 vms->platform_bus_dev = dev;
1554
1555 s = SYS_BUS_DEVICE(dev);
1556 for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
1557 int irq = vms->irqmap[VIRT_PLATFORM_BUS] + i;
1558 sysbus_connect_irq(s, i, qdev_get_gpio_in(vms->gic, irq));
1559 }
1560
1561 memory_region_add_subregion(sysmem,
1562 vms->memmap[VIRT_PLATFORM_BUS].base,
1563 sysbus_mmio_get_region(s, 0));
1564 }
1565
1566 static void create_tag_ram(MemoryRegion *tag_sysmem,
1567 hwaddr base, hwaddr size,
1568 const char *name)
1569 {
1570 MemoryRegion *tagram = g_new(MemoryRegion, 1);
1571
1572 memory_region_init_ram(tagram, NULL, name, size / 32, &error_fatal);
1573 memory_region_add_subregion(tag_sysmem, base / 32, tagram);
1574 }
1575
1576 static void create_secure_ram(VirtMachineState *vms,
1577 MemoryRegion *secure_sysmem,
1578 MemoryRegion *secure_tag_sysmem)
1579 {
1580 MemoryRegion *secram = g_new(MemoryRegion, 1);
1581 char *nodename;
1582 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1583 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1584 MachineState *ms = MACHINE(vms);
1585
1586 memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1587 &error_fatal);
1588 memory_region_add_subregion(secure_sysmem, base, secram);
1589
1590 nodename = g_strdup_printf("/secram@%" PRIx64, base);
1591 qemu_fdt_add_subnode(ms->fdt, nodename);
1592 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "memory");
1593 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 2, base, 2, size);
1594 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1595 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1596
1597 if (secure_tag_sysmem) {
1598 create_tag_ram(secure_tag_sysmem, base, size, "mach-virt.secure-tag");
1599 }
1600
1601 g_free(nodename);
1602 }
1603
1604 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1605 {
1606 const VirtMachineState *board = container_of(binfo, VirtMachineState,
1607 bootinfo);
1608 MachineState *ms = MACHINE(board);
1609
1610
1611 *fdt_size = board->fdt_size;
1612 return ms->fdt;
1613 }
1614
1615 static void virt_build_smbios(VirtMachineState *vms)
1616 {
1617 MachineClass *mc = MACHINE_GET_CLASS(vms);
1618 MachineState *ms = MACHINE(vms);
1619 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1620 uint8_t *smbios_tables, *smbios_anchor;
1621 size_t smbios_tables_len, smbios_anchor_len;
1622 struct smbios_phys_mem_area mem_array;
1623 const char *product = "QEMU Virtual Machine";
1624
1625 if (kvm_enabled()) {
1626 product = "KVM Virtual Machine";
1627 }
1628
1629 smbios_set_defaults("QEMU", product,
1630 vmc->smbios_old_sys_ver ? "1.0" : mc->name, false,
1631 true, SMBIOS_ENTRY_POINT_TYPE_64);
1632
1633 /* build the array of physical mem area from base_memmap */
1634 mem_array.address = vms->memmap[VIRT_MEM].base;
1635 mem_array.length = ms->ram_size;
1636
1637 smbios_get_tables(ms, &mem_array, 1,
1638 &smbios_tables, &smbios_tables_len,
1639 &smbios_anchor, &smbios_anchor_len,
1640 &error_fatal);
1641
1642 if (smbios_anchor) {
1643 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1644 smbios_tables, smbios_tables_len);
1645 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1646 smbios_anchor, smbios_anchor_len);
1647 }
1648 }
1649
1650 static
1651 void virt_machine_done(Notifier *notifier, void *data)
1652 {
1653 VirtMachineState *vms = container_of(notifier, VirtMachineState,
1654 machine_done);
1655 MachineState *ms = MACHINE(vms);
1656 ARMCPU *cpu = ARM_CPU(first_cpu);
1657 struct arm_boot_info *info = &vms->bootinfo;
1658 AddressSpace *as = arm_boot_address_space(cpu, info);
1659
1660 /*
1661 * If the user provided a dtb, we assume the dynamic sysbus nodes
1662 * already are integrated there. This corresponds to a use case where
1663 * the dynamic sysbus nodes are complex and their generation is not yet
1664 * supported. In that case the user can take charge of the guest dt
1665 * while qemu takes charge of the qom stuff.
1666 */
1667 if (info->dtb_filename == NULL) {
1668 platform_bus_add_all_fdt_nodes(ms->fdt, "/intc",
1669 vms->memmap[VIRT_PLATFORM_BUS].base,
1670 vms->memmap[VIRT_PLATFORM_BUS].size,
1671 vms->irqmap[VIRT_PLATFORM_BUS]);
1672 }
1673 if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) {
1674 exit(1);
1675 }
1676
1677 fw_cfg_add_extra_pci_roots(vms->bus, vms->fw_cfg);
1678
1679 virt_acpi_setup(vms);
1680 virt_build_smbios(vms);
1681 }
1682
1683 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1684 {
1685 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1686 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1687
1688 if (!vmc->disallow_affinity_adjustment) {
1689 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1690 * GIC's target-list limitations. 32-bit KVM hosts currently
1691 * always create clusters of 4 CPUs, but that is expected to
1692 * change when they gain support for gicv3. When KVM is enabled
1693 * it will override the changes we make here, therefore our
1694 * purposes are to make TCG consistent (with 64-bit KVM hosts)
1695 * and to improve SGI efficiency.
1696 */
1697 if (vms->gic_version == VIRT_GIC_VERSION_2) {
1698 clustersz = GIC_TARGETLIST_BITS;
1699 } else {
1700 clustersz = GICV3_TARGETLIST_BITS;
1701 }
1702 }
1703 return arm_cpu_mp_affinity(idx, clustersz);
1704 }
1705
1706 static inline bool *virt_get_high_memmap_enabled(VirtMachineState *vms,
1707 int index)
1708 {
1709 bool *enabled_array[] = {
1710 &vms->highmem_redists,
1711 &vms->highmem_ecam,
1712 &vms->highmem_mmio,
1713 };
1714
1715 assert(ARRAY_SIZE(extended_memmap) - VIRT_LOWMEMMAP_LAST ==
1716 ARRAY_SIZE(enabled_array));
1717 assert(index - VIRT_LOWMEMMAP_LAST < ARRAY_SIZE(enabled_array));
1718
1719 return enabled_array[index - VIRT_LOWMEMMAP_LAST];
1720 }
1721
1722 static void virt_set_high_memmap(VirtMachineState *vms,
1723 hwaddr base, int pa_bits)
1724 {
1725 hwaddr region_base, region_size;
1726 bool *region_enabled, fits;
1727 int i;
1728
1729 for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) {
1730 region_enabled = virt_get_high_memmap_enabled(vms, i);
1731 region_base = ROUND_UP(base, extended_memmap[i].size);
1732 region_size = extended_memmap[i].size;
1733
1734 vms->memmap[i].base = region_base;
1735 vms->memmap[i].size = region_size;
1736
1737 /*
1738 * Check each device to see if it fits in the PA space,
1739 * moving highest_gpa as we go. For compatibility, move
1740 * highest_gpa for disabled fitting devices as well, if
1741 * the compact layout has been disabled.
1742 *
1743 * For each device that doesn't fit, disable it.
1744 */
1745 fits = (region_base + region_size) <= BIT_ULL(pa_bits);
1746 *region_enabled &= fits;
1747 if (vms->highmem_compact && !*region_enabled) {
1748 continue;
1749 }
1750
1751 base = region_base + region_size;
1752 if (fits) {
1753 vms->highest_gpa = base - 1;
1754 }
1755 }
1756 }
1757
1758 static void virt_set_memmap(VirtMachineState *vms, int pa_bits)
1759 {
1760 MachineState *ms = MACHINE(vms);
1761 hwaddr base, device_memory_base, device_memory_size, memtop;
1762 int i;
1763
1764 vms->memmap = extended_memmap;
1765
1766 for (i = 0; i < ARRAY_SIZE(base_memmap); i++) {
1767 vms->memmap[i] = base_memmap[i];
1768 }
1769
1770 if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) {
1771 error_report("unsupported number of memory slots: %"PRIu64,
1772 ms->ram_slots);
1773 exit(EXIT_FAILURE);
1774 }
1775
1776 /*
1777 * !highmem is exactly the same as limiting the PA space to 32bit,
1778 * irrespective of the underlying capabilities of the HW.
1779 */
1780 if (!vms->highmem) {
1781 pa_bits = 32;
1782 }
1783
1784 /*
1785 * We compute the base of the high IO region depending on the
1786 * amount of initial and device memory. The device memory start/size
1787 * is aligned on 1GiB. We never put the high IO region below 256GiB
1788 * so that if maxram_size is < 255GiB we keep the legacy memory map.
1789 * The device region size assumes 1GiB page max alignment per slot.
1790 */
1791 device_memory_base =
1792 ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB);
1793 device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB;
1794
1795 /* Base address of the high IO region */
1796 memtop = base = device_memory_base + ROUND_UP(device_memory_size, GiB);
1797 if (memtop > BIT_ULL(pa_bits)) {
1798 error_report("Addressing limited to %d bits, but memory exceeds it by %llu bytes\n",
1799 pa_bits, memtop - BIT_ULL(pa_bits));
1800 exit(EXIT_FAILURE);
1801 }
1802 if (base < device_memory_base) {
1803 error_report("maxmem/slots too huge");
1804 exit(EXIT_FAILURE);
1805 }
1806 if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) {
1807 base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES;
1808 }
1809
1810 /* We know for sure that at least the memory fits in the PA space */
1811 vms->highest_gpa = memtop - 1;
1812
1813 virt_set_high_memmap(vms, base, pa_bits);
1814
1815 if (device_memory_size > 0) {
1816 ms->device_memory = g_malloc0(sizeof(*ms->device_memory));
1817 ms->device_memory->base = device_memory_base;
1818 memory_region_init(&ms->device_memory->mr, OBJECT(vms),
1819 "device-memory", device_memory_size);
1820 }
1821 }
1822
1823 static VirtGICType finalize_gic_version_do(const char *accel_name,
1824 VirtGICType gic_version,
1825 int gics_supported,
1826 unsigned int max_cpus)
1827 {
1828 /* Convert host/max/nosel to GIC version number */
1829 switch (gic_version) {
1830 case VIRT_GIC_VERSION_HOST:
1831 if (!kvm_enabled()) {
1832 error_report("gic-version=host requires KVM");
1833 exit(1);
1834 }
1835
1836 /* For KVM, gic-version=host means gic-version=max */
1837 return finalize_gic_version_do(accel_name, VIRT_GIC_VERSION_MAX,
1838 gics_supported, max_cpus);
1839 case VIRT_GIC_VERSION_MAX:
1840 if (gics_supported & VIRT_GIC_VERSION_4_MASK) {
1841 gic_version = VIRT_GIC_VERSION_4;
1842 } else if (gics_supported & VIRT_GIC_VERSION_3_MASK) {
1843 gic_version = VIRT_GIC_VERSION_3;
1844 } else {
1845 gic_version = VIRT_GIC_VERSION_2;
1846 }
1847 break;
1848 case VIRT_GIC_VERSION_NOSEL:
1849 if ((gics_supported & VIRT_GIC_VERSION_2_MASK) &&
1850 max_cpus <= GIC_NCPU) {
1851 gic_version = VIRT_GIC_VERSION_2;
1852 } else if (gics_supported & VIRT_GIC_VERSION_3_MASK) {
1853 /*
1854 * in case the host does not support v2 emulation or
1855 * the end-user requested more than 8 VCPUs we now default
1856 * to v3. In any case defaulting to v2 would be broken.
1857 */
1858 gic_version = VIRT_GIC_VERSION_3;
1859 } else if (max_cpus > GIC_NCPU) {
1860 error_report("%s only supports GICv2 emulation but more than 8 "
1861 "vcpus are requested", accel_name);
1862 exit(1);
1863 }
1864 break;
1865 case VIRT_GIC_VERSION_2:
1866 case VIRT_GIC_VERSION_3:
1867 case VIRT_GIC_VERSION_4:
1868 break;
1869 }
1870
1871 /* Check chosen version is effectively supported */
1872 switch (gic_version) {
1873 case VIRT_GIC_VERSION_2:
1874 if (!(gics_supported & VIRT_GIC_VERSION_2_MASK)) {
1875 error_report("%s does not support GICv2 emulation", accel_name);
1876 exit(1);
1877 }
1878 break;
1879 case VIRT_GIC_VERSION_3:
1880 if (!(gics_supported & VIRT_GIC_VERSION_3_MASK)) {
1881 error_report("%s does not support GICv3 emulation", accel_name);
1882 exit(1);
1883 }
1884 break;
1885 case VIRT_GIC_VERSION_4:
1886 if (!(gics_supported & VIRT_GIC_VERSION_4_MASK)) {
1887 error_report("%s does not support GICv4 emulation, is virtualization=on?",
1888 accel_name);
1889 exit(1);
1890 }
1891 break;
1892 default:
1893 error_report("logic error in finalize_gic_version");
1894 exit(1);
1895 break;
1896 }
1897
1898 return gic_version;
1899 }
1900
1901 /*
1902 * finalize_gic_version - Determines the final gic_version
1903 * according to the gic-version property
1904 *
1905 * Default GIC type is v2
1906 */
1907 static void finalize_gic_version(VirtMachineState *vms)
1908 {
1909 const char *accel_name = current_accel_name();
1910 unsigned int max_cpus = MACHINE(vms)->smp.max_cpus;
1911 int gics_supported = 0;
1912
1913 /* Determine which GIC versions the current environment supports */
1914 if (kvm_enabled() && kvm_irqchip_in_kernel()) {
1915 int probe_bitmap = kvm_arm_vgic_probe();
1916
1917 if (!probe_bitmap) {
1918 error_report("Unable to determine GIC version supported by host");
1919 exit(1);
1920 }
1921
1922 if (probe_bitmap & KVM_ARM_VGIC_V2) {
1923 gics_supported |= VIRT_GIC_VERSION_2_MASK;
1924 }
1925 if (probe_bitmap & KVM_ARM_VGIC_V3) {
1926 gics_supported |= VIRT_GIC_VERSION_3_MASK;
1927 }
1928 } else if (kvm_enabled() && !kvm_irqchip_in_kernel()) {
1929 /* KVM w/o kernel irqchip can only deal with GICv2 */
1930 gics_supported |= VIRT_GIC_VERSION_2_MASK;
1931 accel_name = "KVM with kernel-irqchip=off";
1932 } else if (tcg_enabled() || hvf_enabled() || qtest_enabled()) {
1933 gics_supported |= VIRT_GIC_VERSION_2_MASK;
1934 if (module_object_class_by_name("arm-gicv3")) {
1935 gics_supported |= VIRT_GIC_VERSION_3_MASK;
1936 if (vms->virt) {
1937 /* GICv4 only makes sense if CPU has EL2 */
1938 gics_supported |= VIRT_GIC_VERSION_4_MASK;
1939 }
1940 }
1941 } else {
1942 error_report("Unsupported accelerator, can not determine GIC support");
1943 exit(1);
1944 }
1945
1946 /*
1947 * Then convert helpers like host/max to concrete GIC versions and ensure
1948 * the desired version is supported
1949 */
1950 vms->gic_version = finalize_gic_version_do(accel_name, vms->gic_version,
1951 gics_supported, max_cpus);
1952 }
1953
1954 /*
1955 * virt_cpu_post_init() must be called after the CPUs have
1956 * been realized and the GIC has been created.
1957 */
1958 static void virt_cpu_post_init(VirtMachineState *vms, MemoryRegion *sysmem)
1959 {
1960 int max_cpus = MACHINE(vms)->smp.max_cpus;
1961 bool aarch64, pmu, steal_time;
1962 CPUState *cpu;
1963
1964 aarch64 = object_property_get_bool(OBJECT(first_cpu), "aarch64", NULL);
1965 pmu = object_property_get_bool(OBJECT(first_cpu), "pmu", NULL);
1966 steal_time = object_property_get_bool(OBJECT(first_cpu),
1967 "kvm-steal-time", NULL);
1968
1969 if (kvm_enabled()) {
1970 hwaddr pvtime_reg_base = vms->memmap[VIRT_PVTIME].base;
1971 hwaddr pvtime_reg_size = vms->memmap[VIRT_PVTIME].size;
1972
1973 if (steal_time) {
1974 MemoryRegion *pvtime = g_new(MemoryRegion, 1);
1975 hwaddr pvtime_size = max_cpus * PVTIME_SIZE_PER_CPU;
1976
1977 /* The memory region size must be a multiple of host page size. */
1978 pvtime_size = REAL_HOST_PAGE_ALIGN(pvtime_size);
1979
1980 if (pvtime_size > pvtime_reg_size) {
1981 error_report("pvtime requires a %" HWADDR_PRId
1982 " byte memory region for %d CPUs,"
1983 " but only %" HWADDR_PRId " has been reserved",
1984 pvtime_size, max_cpus, pvtime_reg_size);
1985 exit(1);
1986 }
1987
1988 memory_region_init_ram(pvtime, NULL, "pvtime", pvtime_size, NULL);
1989 memory_region_add_subregion(sysmem, pvtime_reg_base, pvtime);
1990 }
1991
1992 CPU_FOREACH(cpu) {
1993 if (pmu) {
1994 assert(arm_feature(&ARM_CPU(cpu)->env, ARM_FEATURE_PMU));
1995 if (kvm_irqchip_in_kernel()) {
1996 kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ));
1997 }
1998 kvm_arm_pmu_init(cpu);
1999 }
2000 if (steal_time) {
2001 kvm_arm_pvtime_init(cpu, pvtime_reg_base +
2002 cpu->cpu_index * PVTIME_SIZE_PER_CPU);
2003 }
2004 }
2005 } else {
2006 if (aarch64 && vms->highmem) {
2007 int requested_pa_size = 64 - clz64(vms->highest_gpa);
2008 int pamax = arm_pamax(ARM_CPU(first_cpu));
2009
2010 if (pamax < requested_pa_size) {
2011 error_report("VCPU supports less PA bits (%d) than "
2012 "requested by the memory map (%d)",
2013 pamax, requested_pa_size);
2014 exit(1);
2015 }
2016 }
2017 }
2018 }
2019
2020 static void machvirt_init(MachineState *machine)
2021 {
2022 VirtMachineState *vms = VIRT_MACHINE(machine);
2023 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
2024 MachineClass *mc = MACHINE_GET_CLASS(machine);
2025 const CPUArchIdList *possible_cpus;
2026 MemoryRegion *sysmem = get_system_memory();
2027 MemoryRegion *secure_sysmem = NULL;
2028 MemoryRegion *tag_sysmem = NULL;
2029 MemoryRegion *secure_tag_sysmem = NULL;
2030 int n, virt_max_cpus;
2031 bool firmware_loaded;
2032 bool aarch64 = true;
2033 bool has_ged = !vmc->no_ged;
2034 unsigned int smp_cpus = machine->smp.cpus;
2035 unsigned int max_cpus = machine->smp.max_cpus;
2036
2037 if (!cpu_type_valid(machine->cpu_type)) {
2038 error_report("mach-virt: CPU type %s not supported", machine->cpu_type);
2039 exit(1);
2040 }
2041
2042 possible_cpus = mc->possible_cpu_arch_ids(machine);
2043
2044 /*
2045 * In accelerated mode, the memory map is computed earlier in kvm_type()
2046 * to create a VM with the right number of IPA bits.
2047 */
2048 if (!vms->memmap) {
2049 Object *cpuobj;
2050 ARMCPU *armcpu;
2051 int pa_bits;
2052
2053 /*
2054 * Instantiate a temporary CPU object to find out about what
2055 * we are about to deal with. Once this is done, get rid of
2056 * the object.
2057 */
2058 cpuobj = object_new(possible_cpus->cpus[0].type);
2059 armcpu = ARM_CPU(cpuobj);
2060
2061 pa_bits = arm_pamax(armcpu);
2062
2063 object_unref(cpuobj);
2064
2065 virt_set_memmap(vms, pa_bits);
2066 }
2067
2068 /* We can probe only here because during property set
2069 * KVM is not available yet
2070 */
2071 finalize_gic_version(vms);
2072
2073 if (vms->secure) {
2074 /*
2075 * The Secure view of the world is the same as the NonSecure,
2076 * but with a few extra devices. Create it as a container region
2077 * containing the system memory at low priority; any secure-only
2078 * devices go in at higher priority and take precedence.
2079 */
2080 secure_sysmem = g_new(MemoryRegion, 1);
2081 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
2082 UINT64_MAX);
2083 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
2084 }
2085
2086 firmware_loaded = virt_firmware_init(vms, sysmem,
2087 secure_sysmem ?: sysmem);
2088
2089 /* If we have an EL3 boot ROM then the assumption is that it will
2090 * implement PSCI itself, so disable QEMU's internal implementation
2091 * so it doesn't get in the way. Instead of starting secondary
2092 * CPUs in PSCI powerdown state we will start them all running and
2093 * let the boot ROM sort them out.
2094 * The usual case is that we do use QEMU's PSCI implementation;
2095 * if the guest has EL2 then we will use SMC as the conduit,
2096 * and otherwise we will use HVC (for backwards compatibility and
2097 * because if we're using KVM then we must use HVC).
2098 */
2099 if (vms->secure && firmware_loaded) {
2100 vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
2101 } else if (vms->virt) {
2102 vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
2103 } else {
2104 vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
2105 }
2106
2107 /*
2108 * The maximum number of CPUs depends on the GIC version, or on how
2109 * many redistributors we can fit into the memory map (which in turn
2110 * depends on whether this is a GICv3 or v4).
2111 */
2112 if (vms->gic_version == VIRT_GIC_VERSION_2) {
2113 virt_max_cpus = GIC_NCPU;
2114 } else {
2115 virt_max_cpus = virt_redist_capacity(vms, VIRT_GIC_REDIST);
2116 if (vms->highmem_redists) {
2117 virt_max_cpus += virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2);
2118 }
2119 }
2120
2121 if (max_cpus > virt_max_cpus) {
2122 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
2123 "supported by machine 'mach-virt' (%d)",
2124 max_cpus, virt_max_cpus);
2125 if (vms->gic_version != VIRT_GIC_VERSION_2 && !vms->highmem_redists) {
2126 error_printf("Try 'highmem-redists=on' for more CPUs\n");
2127 }
2128
2129 exit(1);
2130 }
2131
2132 if (vms->secure && (kvm_enabled() || hvf_enabled())) {
2133 error_report("mach-virt: %s does not support providing "
2134 "Security extensions (TrustZone) to the guest CPU",
2135 current_accel_name());
2136 exit(1);
2137 }
2138
2139 if (vms->virt && (kvm_enabled() || hvf_enabled())) {
2140 error_report("mach-virt: %s does not support providing "
2141 "Virtualization extensions to the guest CPU",
2142 current_accel_name());
2143 exit(1);
2144 }
2145
2146 if (vms->mte && (kvm_enabled() || hvf_enabled())) {
2147 error_report("mach-virt: %s does not support providing "
2148 "MTE to the guest CPU",
2149 current_accel_name());
2150 exit(1);
2151 }
2152
2153 create_fdt(vms);
2154
2155 assert(possible_cpus->len == max_cpus);
2156 for (n = 0; n < possible_cpus->len; n++) {
2157 Object *cpuobj;
2158 CPUState *cs;
2159
2160 if (n >= smp_cpus) {
2161 break;
2162 }
2163
2164 cpuobj = object_new(possible_cpus->cpus[n].type);
2165 object_property_set_int(cpuobj, "mp-affinity",
2166 possible_cpus->cpus[n].arch_id, NULL);
2167
2168 cs = CPU(cpuobj);
2169 cs->cpu_index = n;
2170
2171 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
2172 &error_fatal);
2173
2174 aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
2175
2176 if (!vms->secure) {
2177 object_property_set_bool(cpuobj, "has_el3", false, NULL);
2178 }
2179
2180 if (!vms->virt && object_property_find(cpuobj, "has_el2")) {
2181 object_property_set_bool(cpuobj, "has_el2", false, NULL);
2182 }
2183
2184 if (vmc->kvm_no_adjvtime &&
2185 object_property_find(cpuobj, "kvm-no-adjvtime")) {
2186 object_property_set_bool(cpuobj, "kvm-no-adjvtime", true, NULL);
2187 }
2188
2189 if (vmc->no_kvm_steal_time &&
2190 object_property_find(cpuobj, "kvm-steal-time")) {
2191 object_property_set_bool(cpuobj, "kvm-steal-time", false, NULL);
2192 }
2193
2194 if (vmc->no_pmu && object_property_find(cpuobj, "pmu")) {
2195 object_property_set_bool(cpuobj, "pmu", false, NULL);
2196 }
2197
2198 if (vmc->no_tcg_lpa2 && object_property_find(cpuobj, "lpa2")) {
2199 object_property_set_bool(cpuobj, "lpa2", false, NULL);
2200 }
2201
2202 if (object_property_find(cpuobj, "reset-cbar")) {
2203 object_property_set_int(cpuobj, "reset-cbar",
2204 vms->memmap[VIRT_CPUPERIPHS].base,
2205 &error_abort);
2206 }
2207
2208 object_property_set_link(cpuobj, "memory", OBJECT(sysmem),
2209 &error_abort);
2210 if (vms->secure) {
2211 object_property_set_link(cpuobj, "secure-memory",
2212 OBJECT(secure_sysmem), &error_abort);
2213 }
2214
2215 if (vms->mte) {
2216 /* Create the memory region only once, but link to all cpus. */
2217 if (!tag_sysmem) {
2218 /*
2219 * The property exists only if MemTag is supported.
2220 * If it is, we must allocate the ram to back that up.
2221 */
2222 if (!object_property_find(cpuobj, "tag-memory")) {
2223 error_report("MTE requested, but not supported "
2224 "by the guest CPU");
2225 exit(1);
2226 }
2227
2228 tag_sysmem = g_new(MemoryRegion, 1);
2229 memory_region_init(tag_sysmem, OBJECT(machine),
2230 "tag-memory", UINT64_MAX / 32);
2231
2232 if (vms->secure) {
2233 secure_tag_sysmem = g_new(MemoryRegion, 1);
2234 memory_region_init(secure_tag_sysmem, OBJECT(machine),
2235 "secure-tag-memory", UINT64_MAX / 32);
2236
2237 /* As with ram, secure-tag takes precedence over tag. */
2238 memory_region_add_subregion_overlap(secure_tag_sysmem, 0,
2239 tag_sysmem, -1);
2240 }
2241 }
2242
2243 object_property_set_link(cpuobj, "tag-memory", OBJECT(tag_sysmem),
2244 &error_abort);
2245 if (vms->secure) {
2246 object_property_set_link(cpuobj, "secure-tag-memory",
2247 OBJECT(secure_tag_sysmem),
2248 &error_abort);
2249 }
2250 }
2251
2252 qdev_realize(DEVICE(cpuobj), NULL, &error_fatal);
2253 object_unref(cpuobj);
2254 }
2255 fdt_add_timer_nodes(vms);
2256 fdt_add_cpu_nodes(vms);
2257
2258 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base,
2259 machine->ram);
2260 if (machine->device_memory) {
2261 memory_region_add_subregion(sysmem, machine->device_memory->base,
2262 &machine->device_memory->mr);
2263 }
2264
2265 virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem);
2266
2267 create_gic(vms, sysmem);
2268
2269 virt_cpu_post_init(vms, sysmem);
2270
2271 fdt_add_pmu_nodes(vms);
2272
2273 create_uart(vms, VIRT_UART, sysmem, serial_hd(0));
2274
2275 if (vms->secure) {
2276 create_secure_ram(vms, secure_sysmem, secure_tag_sysmem);
2277 create_uart(vms, VIRT_SECURE_UART, secure_sysmem, serial_hd(1));
2278 }
2279
2280 if (tag_sysmem) {
2281 create_tag_ram(tag_sysmem, vms->memmap[VIRT_MEM].base,
2282 machine->ram_size, "mach-virt.tag");
2283 }
2284
2285 vms->highmem_ecam &= (!firmware_loaded || aarch64);
2286
2287 create_rtc(vms);
2288
2289 create_pcie(vms);
2290
2291 if (has_ged && aarch64 && firmware_loaded && virt_is_acpi_enabled(vms)) {
2292 vms->acpi_dev = create_acpi_ged(vms);
2293 } else {
2294 create_gpio_devices(vms, VIRT_GPIO, sysmem);
2295 }
2296
2297 if (vms->secure && !vmc->no_secure_gpio) {
2298 create_gpio_devices(vms, VIRT_SECURE_GPIO, secure_sysmem);
2299 }
2300
2301 /* connect powerdown request */
2302 vms->powerdown_notifier.notify = virt_powerdown_req;
2303 qemu_register_powerdown_notifier(&vms->powerdown_notifier);
2304
2305 /* Create mmio transports, so the user can create virtio backends
2306 * (which will be automatically plugged in to the transports). If
2307 * no backend is created the transport will just sit harmlessly idle.
2308 */
2309 create_virtio_devices(vms);
2310
2311 vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
2312 rom_set_fw(vms->fw_cfg);
2313
2314 create_platform_bus(vms);
2315
2316 if (machine->nvdimms_state->is_enabled) {
2317 const struct AcpiGenericAddress arm_virt_nvdimm_acpi_dsmio = {
2318 .space_id = AML_AS_SYSTEM_MEMORY,
2319 .address = vms->memmap[VIRT_NVDIMM_ACPI].base,
2320 .bit_width = NVDIMM_ACPI_IO_LEN << 3
2321 };
2322
2323 nvdimm_init_acpi_state(machine->nvdimms_state, sysmem,
2324 arm_virt_nvdimm_acpi_dsmio,
2325 vms->fw_cfg, OBJECT(vms));
2326 }
2327
2328 vms->bootinfo.ram_size = machine->ram_size;
2329 vms->bootinfo.board_id = -1;
2330 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
2331 vms->bootinfo.get_dtb = machvirt_dtb;
2332 vms->bootinfo.skip_dtb_autoload = true;
2333 vms->bootinfo.firmware_loaded = firmware_loaded;
2334 vms->bootinfo.psci_conduit = vms->psci_conduit;
2335 arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo);
2336
2337 vms->machine_done.notify = virt_machine_done;
2338 qemu_add_machine_init_done_notifier(&vms->machine_done);
2339 }
2340
2341 static bool virt_get_secure(Object *obj, Error **errp)
2342 {
2343 VirtMachineState *vms = VIRT_MACHINE(obj);
2344
2345 return vms->secure;
2346 }
2347
2348 static void virt_set_secure(Object *obj, bool value, Error **errp)
2349 {
2350 VirtMachineState *vms = VIRT_MACHINE(obj);
2351
2352 vms->secure = value;
2353 }
2354
2355 static bool virt_get_virt(Object *obj, Error **errp)
2356 {
2357 VirtMachineState *vms = VIRT_MACHINE(obj);
2358
2359 return vms->virt;
2360 }
2361
2362 static void virt_set_virt(Object *obj, bool value, Error **errp)
2363 {
2364 VirtMachineState *vms = VIRT_MACHINE(obj);
2365
2366 vms->virt = value;
2367 }
2368
2369 static bool virt_get_highmem(Object *obj, Error **errp)
2370 {
2371 VirtMachineState *vms = VIRT_MACHINE(obj);
2372
2373 return vms->highmem;
2374 }
2375
2376 static void virt_set_highmem(Object *obj, bool value, Error **errp)
2377 {
2378 VirtMachineState *vms = VIRT_MACHINE(obj);
2379
2380 vms->highmem = value;
2381 }
2382
2383 static bool virt_get_compact_highmem(Object *obj, Error **errp)
2384 {
2385 VirtMachineState *vms = VIRT_MACHINE(obj);
2386
2387 return vms->highmem_compact;
2388 }
2389
2390 static void virt_set_compact_highmem(Object *obj, bool value, Error **errp)
2391 {
2392 VirtMachineState *vms = VIRT_MACHINE(obj);
2393
2394 vms->highmem_compact = value;
2395 }
2396
2397 static bool virt_get_highmem_redists(Object *obj, Error **errp)
2398 {
2399 VirtMachineState *vms = VIRT_MACHINE(obj);
2400
2401 return vms->highmem_redists;
2402 }
2403
2404 static void virt_set_highmem_redists(Object *obj, bool value, Error **errp)
2405 {
2406 VirtMachineState *vms = VIRT_MACHINE(obj);
2407
2408 vms->highmem_redists = value;
2409 }
2410
2411 static bool virt_get_highmem_ecam(Object *obj, Error **errp)
2412 {
2413 VirtMachineState *vms = VIRT_MACHINE(obj);
2414
2415 return vms->highmem_ecam;
2416 }
2417
2418 static void virt_set_highmem_ecam(Object *obj, bool value, Error **errp)
2419 {
2420 VirtMachineState *vms = VIRT_MACHINE(obj);
2421
2422 vms->highmem_ecam = value;
2423 }
2424
2425 static bool virt_get_highmem_mmio(Object *obj, Error **errp)
2426 {
2427 VirtMachineState *vms = VIRT_MACHINE(obj);
2428
2429 return vms->highmem_mmio;
2430 }
2431
2432 static void virt_set_highmem_mmio(Object *obj, bool value, Error **errp)
2433 {
2434 VirtMachineState *vms = VIRT_MACHINE(obj);
2435
2436 vms->highmem_mmio = value;
2437 }
2438
2439
2440 static bool virt_get_its(Object *obj, Error **errp)
2441 {
2442 VirtMachineState *vms = VIRT_MACHINE(obj);
2443
2444 return vms->its;
2445 }
2446
2447 static void virt_set_its(Object *obj, bool value, Error **errp)
2448 {
2449 VirtMachineState *vms = VIRT_MACHINE(obj);
2450
2451 vms->its = value;
2452 }
2453
2454 static bool virt_get_dtb_randomness(Object *obj, Error **errp)
2455 {
2456 VirtMachineState *vms = VIRT_MACHINE(obj);
2457
2458 return vms->dtb_randomness;
2459 }
2460
2461 static void virt_set_dtb_randomness(Object *obj, bool value, Error **errp)
2462 {
2463 VirtMachineState *vms = VIRT_MACHINE(obj);
2464
2465 vms->dtb_randomness = value;
2466 }
2467
2468 static char *virt_get_oem_id(Object *obj, Error **errp)
2469 {
2470 VirtMachineState *vms = VIRT_MACHINE(obj);
2471
2472 return g_strdup(vms->oem_id);
2473 }
2474
2475 static void virt_set_oem_id(Object *obj, const char *value, Error **errp)
2476 {
2477 VirtMachineState *vms = VIRT_MACHINE(obj);
2478 size_t len = strlen(value);
2479
2480 if (len > 6) {
2481 error_setg(errp,
2482 "User specified oem-id value is bigger than 6 bytes in size");
2483 return;
2484 }
2485
2486 strncpy(vms->oem_id, value, 6);
2487 }
2488
2489 static char *virt_get_oem_table_id(Object *obj, Error **errp)
2490 {
2491 VirtMachineState *vms = VIRT_MACHINE(obj);
2492
2493 return g_strdup(vms->oem_table_id);
2494 }
2495
2496 static void virt_set_oem_table_id(Object *obj, const char *value,
2497 Error **errp)
2498 {
2499 VirtMachineState *vms = VIRT_MACHINE(obj);
2500 size_t len = strlen(value);
2501
2502 if (len > 8) {
2503 error_setg(errp,
2504 "User specified oem-table-id value is bigger than 8 bytes in size");
2505 return;
2506 }
2507 strncpy(vms->oem_table_id, value, 8);
2508 }
2509
2510
2511 bool virt_is_acpi_enabled(VirtMachineState *vms)
2512 {
2513 if (vms->acpi == ON_OFF_AUTO_OFF) {
2514 return false;
2515 }
2516 return true;
2517 }
2518
2519 static void virt_get_acpi(Object *obj, Visitor *v, const char *name,
2520 void *opaque, Error **errp)
2521 {
2522 VirtMachineState *vms = VIRT_MACHINE(obj);
2523 OnOffAuto acpi = vms->acpi;
2524
2525 visit_type_OnOffAuto(v, name, &acpi, errp);
2526 }
2527
2528 static void virt_set_acpi(Object *obj, Visitor *v, const char *name,
2529 void *opaque, Error **errp)
2530 {
2531 VirtMachineState *vms = VIRT_MACHINE(obj);
2532
2533 visit_type_OnOffAuto(v, name, &vms->acpi, errp);
2534 }
2535
2536 static bool virt_get_ras(Object *obj, Error **errp)
2537 {
2538 VirtMachineState *vms = VIRT_MACHINE(obj);
2539
2540 return vms->ras;
2541 }
2542
2543 static void virt_set_ras(Object *obj, bool value, Error **errp)
2544 {
2545 VirtMachineState *vms = VIRT_MACHINE(obj);
2546
2547 vms->ras = value;
2548 }
2549
2550 static bool virt_get_mte(Object *obj, Error **errp)
2551 {
2552 VirtMachineState *vms = VIRT_MACHINE(obj);
2553
2554 return vms->mte;
2555 }
2556
2557 static void virt_set_mte(Object *obj, bool value, Error **errp)
2558 {
2559 VirtMachineState *vms = VIRT_MACHINE(obj);
2560
2561 vms->mte = value;
2562 }
2563
2564 static char *virt_get_gic_version(Object *obj, Error **errp)
2565 {
2566 VirtMachineState *vms = VIRT_MACHINE(obj);
2567 const char *val;
2568
2569 switch (vms->gic_version) {
2570 case VIRT_GIC_VERSION_4:
2571 val = "4";
2572 break;
2573 case VIRT_GIC_VERSION_3:
2574 val = "3";
2575 break;
2576 default:
2577 val = "2";
2578 break;
2579 }
2580 return g_strdup(val);
2581 }
2582
2583 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
2584 {
2585 VirtMachineState *vms = VIRT_MACHINE(obj);
2586
2587 if (!strcmp(value, "4")) {
2588 vms->gic_version = VIRT_GIC_VERSION_4;
2589 } else if (!strcmp(value, "3")) {
2590 vms->gic_version = VIRT_GIC_VERSION_3;
2591 } else if (!strcmp(value, "2")) {
2592 vms->gic_version = VIRT_GIC_VERSION_2;
2593 } else if (!strcmp(value, "host")) {
2594 vms->gic_version = VIRT_GIC_VERSION_HOST; /* Will probe later */
2595 } else if (!strcmp(value, "max")) {
2596 vms->gic_version = VIRT_GIC_VERSION_MAX; /* Will probe later */
2597 } else {
2598 error_setg(errp, "Invalid gic-version value");
2599 error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
2600 }
2601 }
2602
2603 static char *virt_get_iommu(Object *obj, Error **errp)
2604 {
2605 VirtMachineState *vms = VIRT_MACHINE(obj);
2606
2607 switch (vms->iommu) {
2608 case VIRT_IOMMU_NONE:
2609 return g_strdup("none");
2610 case VIRT_IOMMU_SMMUV3:
2611 return g_strdup("smmuv3");
2612 default:
2613 g_assert_not_reached();
2614 }
2615 }
2616
2617 static void virt_set_iommu(Object *obj, const char *value, Error **errp)
2618 {
2619 VirtMachineState *vms = VIRT_MACHINE(obj);
2620
2621 if (!strcmp(value, "smmuv3")) {
2622 vms->iommu = VIRT_IOMMU_SMMUV3;
2623 } else if (!strcmp(value, "none")) {
2624 vms->iommu = VIRT_IOMMU_NONE;
2625 } else {
2626 error_setg(errp, "Invalid iommu value");
2627 error_append_hint(errp, "Valid values are none, smmuv3.\n");
2628 }
2629 }
2630
2631 static bool virt_get_default_bus_bypass_iommu(Object *obj, Error **errp)
2632 {
2633 VirtMachineState *vms = VIRT_MACHINE(obj);
2634
2635 return vms->default_bus_bypass_iommu;
2636 }
2637
2638 static void virt_set_default_bus_bypass_iommu(Object *obj, bool value,
2639 Error **errp)
2640 {
2641 VirtMachineState *vms = VIRT_MACHINE(obj);
2642
2643 vms->default_bus_bypass_iommu = value;
2644 }
2645
2646 static CpuInstanceProperties
2647 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2648 {
2649 MachineClass *mc = MACHINE_GET_CLASS(ms);
2650 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2651
2652 assert(cpu_index < possible_cpus->len);
2653 return possible_cpus->cpus[cpu_index].props;
2654 }
2655
2656 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
2657 {
2658 int64_t socket_id = ms->possible_cpus->cpus[idx].props.socket_id;
2659
2660 return socket_id % ms->numa_state->num_nodes;
2661 }
2662
2663 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
2664 {
2665 int n;
2666 unsigned int max_cpus = ms->smp.max_cpus;
2667 VirtMachineState *vms = VIRT_MACHINE(ms);
2668 MachineClass *mc = MACHINE_GET_CLASS(vms);
2669
2670 if (ms->possible_cpus) {
2671 assert(ms->possible_cpus->len == max_cpus);
2672 return ms->possible_cpus;
2673 }
2674
2675 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2676 sizeof(CPUArchId) * max_cpus);
2677 ms->possible_cpus->len = max_cpus;
2678 for (n = 0; n < ms->possible_cpus->len; n++) {
2679 ms->possible_cpus->cpus[n].type = ms->cpu_type;
2680 ms->possible_cpus->cpus[n].arch_id =
2681 virt_cpu_mp_affinity(vms, n);
2682
2683 assert(!mc->smp_props.dies_supported);
2684 ms->possible_cpus->cpus[n].props.has_socket_id = true;
2685 ms->possible_cpus->cpus[n].props.socket_id =
2686 n / (ms->smp.clusters * ms->smp.cores * ms->smp.threads);
2687 ms->possible_cpus->cpus[n].props.has_cluster_id = true;
2688 ms->possible_cpus->cpus[n].props.cluster_id =
2689 (n / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters;
2690 ms->possible_cpus->cpus[n].props.has_core_id = true;
2691 ms->possible_cpus->cpus[n].props.core_id =
2692 (n / ms->smp.threads) % ms->smp.cores;
2693 ms->possible_cpus->cpus[n].props.has_thread_id = true;
2694 ms->possible_cpus->cpus[n].props.thread_id =
2695 n % ms->smp.threads;
2696 }
2697 return ms->possible_cpus;
2698 }
2699
2700 static void virt_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2701 Error **errp)
2702 {
2703 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2704 const MachineState *ms = MACHINE(hotplug_dev);
2705 const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2706
2707 if (!vms->acpi_dev) {
2708 error_setg(errp,
2709 "memory hotplug is not enabled: missing acpi-ged device");
2710 return;
2711 }
2712
2713 if (vms->mte) {
2714 error_setg(errp, "memory hotplug is not enabled: MTE is enabled");
2715 return;
2716 }
2717
2718 if (is_nvdimm && !ms->nvdimms_state->is_enabled) {
2719 error_setg(errp, "nvdimm is not enabled: add 'nvdimm=on' to '-M'");
2720 return;
2721 }
2722
2723 pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), NULL, errp);
2724 }
2725
2726 static void virt_memory_plug(HotplugHandler *hotplug_dev,
2727 DeviceState *dev, Error **errp)
2728 {
2729 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2730 MachineState *ms = MACHINE(hotplug_dev);
2731 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2732
2733 pc_dimm_plug(PC_DIMM(dev), MACHINE(vms));
2734
2735 if (is_nvdimm) {
2736 nvdimm_plug(ms->nvdimms_state);
2737 }
2738
2739 hotplug_handler_plug(HOTPLUG_HANDLER(vms->acpi_dev),
2740 dev, &error_abort);
2741 }
2742
2743 static void virt_virtio_md_pci_pre_plug(HotplugHandler *hotplug_dev,
2744 DeviceState *dev, Error **errp)
2745 {
2746 HotplugHandler *hotplug_dev2 = qdev_get_bus_hotplug_handler(dev);
2747 Error *local_err = NULL;
2748
2749 if (!hotplug_dev2 && dev->hotplugged) {
2750 /*
2751 * Without a bus hotplug handler, we cannot control the plug/unplug
2752 * order. We should never reach this point when hotplugging on ARM.
2753 * However, it's nice to add a safety net, similar to what we have
2754 * on x86.
2755 */
2756 error_setg(errp, "hotplug of virtio based memory devices not supported"
2757 " on this bus.");
2758 return;
2759 }
2760 /*
2761 * First, see if we can plug this memory device at all. If that
2762 * succeeds, branch of to the actual hotplug handler.
2763 */
2764 memory_device_pre_plug(MEMORY_DEVICE(dev), MACHINE(hotplug_dev), NULL,
2765 &local_err);
2766 if (!local_err && hotplug_dev2) {
2767 hotplug_handler_pre_plug(hotplug_dev2, dev, &local_err);
2768 }
2769 error_propagate(errp, local_err);
2770 }
2771
2772 static void virt_virtio_md_pci_plug(HotplugHandler *hotplug_dev,
2773 DeviceState *dev, Error **errp)
2774 {
2775 HotplugHandler *hotplug_dev2 = qdev_get_bus_hotplug_handler(dev);
2776 Error *local_err = NULL;
2777
2778 /*
2779 * Plug the memory device first and then branch off to the actual
2780 * hotplug handler. If that one fails, we can easily undo the memory
2781 * device bits.
2782 */
2783 memory_device_plug(MEMORY_DEVICE(dev), MACHINE(hotplug_dev));
2784 if (hotplug_dev2) {
2785 hotplug_handler_plug(hotplug_dev2, dev, &local_err);
2786 if (local_err) {
2787 memory_device_unplug(MEMORY_DEVICE(dev), MACHINE(hotplug_dev));
2788 }
2789 }
2790 error_propagate(errp, local_err);
2791 }
2792
2793 static void virt_virtio_md_pci_unplug_request(HotplugHandler *hotplug_dev,
2794 DeviceState *dev, Error **errp)
2795 {
2796 /* We don't support hot unplug of virtio based memory devices */
2797 error_setg(errp, "virtio based memory devices cannot be unplugged.");
2798 }
2799
2800
2801 static void virt_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2802 DeviceState *dev, Error **errp)
2803 {
2804 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2805
2806 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2807 virt_memory_pre_plug(hotplug_dev, dev, errp);
2808 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MEM_PCI)) {
2809 virt_virtio_md_pci_pre_plug(hotplug_dev, dev, errp);
2810 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2811 hwaddr db_start = 0, db_end = 0;
2812 char *resv_prop_str;
2813
2814 if (vms->iommu != VIRT_IOMMU_NONE) {
2815 error_setg(errp, "virt machine does not support multiple IOMMUs");
2816 return;
2817 }
2818
2819 switch (vms->msi_controller) {
2820 case VIRT_MSI_CTRL_NONE:
2821 return;
2822 case VIRT_MSI_CTRL_ITS:
2823 /* GITS_TRANSLATER page */
2824 db_start = base_memmap[VIRT_GIC_ITS].base + 0x10000;
2825 db_end = base_memmap[VIRT_GIC_ITS].base +
2826 base_memmap[VIRT_GIC_ITS].size - 1;
2827 break;
2828 case VIRT_MSI_CTRL_GICV2M:
2829 /* MSI_SETSPI_NS page */
2830 db_start = base_memmap[VIRT_GIC_V2M].base;
2831 db_end = db_start + base_memmap[VIRT_GIC_V2M].size - 1;
2832 break;
2833 }
2834 resv_prop_str = g_strdup_printf("0x%"PRIx64":0x%"PRIx64":%u",
2835 db_start, db_end,
2836 VIRTIO_IOMMU_RESV_MEM_T_MSI);
2837
2838 object_property_set_uint(OBJECT(dev), "len-reserved-regions", 1, errp);
2839 object_property_set_str(OBJECT(dev), "reserved-regions[0]",
2840 resv_prop_str, errp);
2841 g_free(resv_prop_str);
2842 }
2843 }
2844
2845 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2846 DeviceState *dev, Error **errp)
2847 {
2848 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2849
2850 if (vms->platform_bus_dev) {
2851 MachineClass *mc = MACHINE_GET_CLASS(vms);
2852
2853 if (device_is_dynamic_sysbus(mc, dev)) {
2854 platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
2855 SYS_BUS_DEVICE(dev));
2856 }
2857 }
2858 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2859 virt_memory_plug(hotplug_dev, dev, errp);
2860 }
2861
2862 if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MEM_PCI)) {
2863 virt_virtio_md_pci_plug(hotplug_dev, dev, errp);
2864 }
2865
2866 if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2867 PCIDevice *pdev = PCI_DEVICE(dev);
2868
2869 vms->iommu = VIRT_IOMMU_VIRTIO;
2870 vms->virtio_iommu_bdf = pci_get_bdf(pdev);
2871 create_virtio_iommu_dt_bindings(vms);
2872 }
2873 }
2874
2875 static void virt_dimm_unplug_request(HotplugHandler *hotplug_dev,
2876 DeviceState *dev, Error **errp)
2877 {
2878 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2879
2880 if (!vms->acpi_dev) {
2881 error_setg(errp,
2882 "memory hotplug is not enabled: missing acpi-ged device");
2883 return;
2884 }
2885
2886 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
2887 error_setg(errp, "nvdimm device hot unplug is not supported yet.");
2888 return;
2889 }
2890
2891 hotplug_handler_unplug_request(HOTPLUG_HANDLER(vms->acpi_dev), dev,
2892 errp);
2893 }
2894
2895 static void virt_dimm_unplug(HotplugHandler *hotplug_dev,
2896 DeviceState *dev, Error **errp)
2897 {
2898 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2899 Error *local_err = NULL;
2900
2901 hotplug_handler_unplug(HOTPLUG_HANDLER(vms->acpi_dev), dev, &local_err);
2902 if (local_err) {
2903 goto out;
2904 }
2905
2906 pc_dimm_unplug(PC_DIMM(dev), MACHINE(vms));
2907 qdev_unrealize(dev);
2908
2909 out:
2910 error_propagate(errp, local_err);
2911 }
2912
2913 static void virt_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2914 DeviceState *dev, Error **errp)
2915 {
2916 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2917 virt_dimm_unplug_request(hotplug_dev, dev, errp);
2918 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MEM_PCI)) {
2919 virt_virtio_md_pci_unplug_request(hotplug_dev, dev, errp);
2920 } else {
2921 error_setg(errp, "device unplug request for unsupported device"
2922 " type: %s", object_get_typename(OBJECT(dev)));
2923 }
2924 }
2925
2926 static void virt_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2927 DeviceState *dev, Error **errp)
2928 {
2929 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2930 virt_dimm_unplug(hotplug_dev, dev, errp);
2931 } else {
2932 error_setg(errp, "virt: device unplug for unsupported device"
2933 " type: %s", object_get_typename(OBJECT(dev)));
2934 }
2935 }
2936
2937 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
2938 DeviceState *dev)
2939 {
2940 MachineClass *mc = MACHINE_GET_CLASS(machine);
2941
2942 if (device_is_dynamic_sysbus(mc, dev) ||
2943 object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2944 object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MEM_PCI) ||
2945 object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2946 return HOTPLUG_HANDLER(machine);
2947 }
2948 return NULL;
2949 }
2950
2951 /*
2952 * for arm64 kvm_type [7-0] encodes the requested number of bits
2953 * in the IPA address space
2954 */
2955 static int virt_kvm_type(MachineState *ms, const char *type_str)
2956 {
2957 VirtMachineState *vms = VIRT_MACHINE(ms);
2958 int max_vm_pa_size, requested_pa_size;
2959 bool fixed_ipa;
2960
2961 max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa);
2962
2963 /* we freeze the memory map to compute the highest gpa */
2964 virt_set_memmap(vms, max_vm_pa_size);
2965
2966 requested_pa_size = 64 - clz64(vms->highest_gpa);
2967
2968 /*
2969 * KVM requires the IPA size to be at least 32 bits.
2970 */
2971 if (requested_pa_size < 32) {
2972 requested_pa_size = 32;
2973 }
2974
2975 if (requested_pa_size > max_vm_pa_size) {
2976 error_report("-m and ,maxmem option values "
2977 "require an IPA range (%d bits) larger than "
2978 "the one supported by the host (%d bits)",
2979 requested_pa_size, max_vm_pa_size);
2980 exit(1);
2981 }
2982 /*
2983 * We return the requested PA log size, unless KVM only supports
2984 * the implicit legacy 40b IPA setting, in which case the kvm_type
2985 * must be 0.
2986 */
2987 return fixed_ipa ? 0 : requested_pa_size;
2988 }
2989
2990 static void virt_machine_class_init(ObjectClass *oc, void *data)
2991 {
2992 MachineClass *mc = MACHINE_CLASS(oc);
2993 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2994
2995 mc->init = machvirt_init;
2996 /* Start with max_cpus set to 512, which is the maximum supported by KVM.
2997 * The value may be reduced later when we have more information about the
2998 * configuration of the particular instance.
2999 */
3000 mc->max_cpus = 512;
3001 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
3002 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
3003 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
3004 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM);
3005 #ifdef CONFIG_TPM
3006 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_TPM_TIS_SYSBUS);
3007 #endif
3008 mc->block_default_type = IF_VIRTIO;
3009 mc->no_cdrom = 1;
3010 mc->pci_allow_0_address = true;
3011 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
3012 mc->minimum_page_bits = 12;
3013 mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
3014 mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
3015 #ifdef CONFIG_TCG
3016 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
3017 #else
3018 mc->default_cpu_type = ARM_CPU_TYPE_NAME("max");
3019 #endif
3020 mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
3021 mc->kvm_type = virt_kvm_type;
3022 assert(!mc->get_hotplug_handler);
3023 mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
3024 hc->pre_plug = virt_machine_device_pre_plug_cb;
3025 hc->plug = virt_machine_device_plug_cb;
3026 hc->unplug_request = virt_machine_device_unplug_request_cb;
3027 hc->unplug = virt_machine_device_unplug_cb;
3028 mc->nvdimm_supported = true;
3029 mc->smp_props.clusters_supported = true;
3030 mc->auto_enable_numa_with_memhp = true;
3031 mc->auto_enable_numa_with_memdev = true;
3032 /* platform instead of architectural choice */
3033 mc->cpu_cluster_has_numa_boundary = true;
3034 mc->default_ram_id = "mach-virt.ram";
3035 mc->default_nic = "virtio-net-pci";
3036
3037 object_class_property_add(oc, "acpi", "OnOffAuto",
3038 virt_get_acpi, virt_set_acpi,
3039 NULL, NULL);
3040 object_class_property_set_description(oc, "acpi",
3041 "Enable ACPI");
3042 object_class_property_add_bool(oc, "secure", virt_get_secure,
3043 virt_set_secure);
3044 object_class_property_set_description(oc, "secure",
3045 "Set on/off to enable/disable the ARM "
3046 "Security Extensions (TrustZone)");
3047
3048 object_class_property_add_bool(oc, "virtualization", virt_get_virt,
3049 virt_set_virt);
3050 object_class_property_set_description(oc, "virtualization",
3051 "Set on/off to enable/disable emulating a "
3052 "guest CPU which implements the ARM "
3053 "Virtualization Extensions");
3054
3055 object_class_property_add_bool(oc, "highmem", virt_get_highmem,
3056 virt_set_highmem);
3057 object_class_property_set_description(oc, "highmem",
3058 "Set on/off to enable/disable using "
3059 "physical address space above 32 bits");
3060
3061 object_class_property_add_bool(oc, "compact-highmem",
3062 virt_get_compact_highmem,
3063 virt_set_compact_highmem);
3064 object_class_property_set_description(oc, "compact-highmem",
3065 "Set on/off to enable/disable compact "
3066 "layout for high memory regions");
3067
3068 object_class_property_add_bool(oc, "highmem-redists",
3069 virt_get_highmem_redists,
3070 virt_set_highmem_redists);
3071 object_class_property_set_description(oc, "highmem-redists",
3072 "Set on/off to enable/disable high "
3073 "memory region for GICv3 or GICv4 "
3074 "redistributor");
3075
3076 object_class_property_add_bool(oc, "highmem-ecam",
3077 virt_get_highmem_ecam,
3078 virt_set_highmem_ecam);
3079 object_class_property_set_description(oc, "highmem-ecam",
3080 "Set on/off to enable/disable high "
3081 "memory region for PCI ECAM");
3082
3083 object_class_property_add_bool(oc, "highmem-mmio",
3084 virt_get_highmem_mmio,
3085 virt_set_highmem_mmio);
3086 object_class_property_set_description(oc, "highmem-mmio",
3087 "Set on/off to enable/disable high "
3088 "memory region for PCI MMIO");
3089
3090 object_class_property_add_str(oc, "gic-version", virt_get_gic_version,
3091 virt_set_gic_version);
3092 object_class_property_set_description(oc, "gic-version",
3093 "Set GIC version. "
3094 "Valid values are 2, 3, 4, host and max");
3095
3096 object_class_property_add_str(oc, "iommu", virt_get_iommu, virt_set_iommu);
3097 object_class_property_set_description(oc, "iommu",
3098 "Set the IOMMU type. "
3099 "Valid values are none and smmuv3");
3100
3101 object_class_property_add_bool(oc, "default-bus-bypass-iommu",
3102 virt_get_default_bus_bypass_iommu,
3103 virt_set_default_bus_bypass_iommu);
3104 object_class_property_set_description(oc, "default-bus-bypass-iommu",
3105 "Set on/off to enable/disable "
3106 "bypass_iommu for default root bus");
3107
3108 object_class_property_add_bool(oc, "ras", virt_get_ras,
3109 virt_set_ras);
3110 object_class_property_set_description(oc, "ras",
3111 "Set on/off to enable/disable reporting host memory errors "
3112 "to a KVM guest using ACPI and guest external abort exceptions");
3113
3114 object_class_property_add_bool(oc, "mte", virt_get_mte, virt_set_mte);
3115 object_class_property_set_description(oc, "mte",
3116 "Set on/off to enable/disable emulating a "
3117 "guest CPU which implements the ARM "
3118 "Memory Tagging Extension");
3119
3120 object_class_property_add_bool(oc, "its", virt_get_its,
3121 virt_set_its);
3122 object_class_property_set_description(oc, "its",
3123 "Set on/off to enable/disable "
3124 "ITS instantiation");
3125
3126 object_class_property_add_bool(oc, "dtb-randomness",
3127 virt_get_dtb_randomness,
3128 virt_set_dtb_randomness);
3129 object_class_property_set_description(oc, "dtb-randomness",
3130 "Set off to disable passing random or "
3131 "non-deterministic dtb nodes to guest");
3132
3133 object_class_property_add_bool(oc, "dtb-kaslr-seed",
3134 virt_get_dtb_randomness,
3135 virt_set_dtb_randomness);
3136 object_class_property_set_description(oc, "dtb-kaslr-seed",
3137 "Deprecated synonym of dtb-randomness");
3138
3139 object_class_property_add_str(oc, "x-oem-id",
3140 virt_get_oem_id,
3141 virt_set_oem_id);
3142 object_class_property_set_description(oc, "x-oem-id",
3143 "Override the default value of field OEMID "
3144 "in ACPI table header."
3145 "The string may be up to 6 bytes in size");
3146
3147
3148 object_class_property_add_str(oc, "x-oem-table-id",
3149 virt_get_oem_table_id,
3150 virt_set_oem_table_id);
3151 object_class_property_set_description(oc, "x-oem-table-id",
3152 "Override the default value of field OEM Table ID "
3153 "in ACPI table header."
3154 "The string may be up to 8 bytes in size");
3155
3156 }
3157
3158 static void virt_instance_init(Object *obj)
3159 {
3160 VirtMachineState *vms = VIRT_MACHINE(obj);
3161 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
3162
3163 /* EL3 is disabled by default on virt: this makes us consistent
3164 * between KVM and TCG for this board, and it also allows us to
3165 * boot UEFI blobs which assume no TrustZone support.
3166 */
3167 vms->secure = false;
3168
3169 /* EL2 is also disabled by default, for similar reasons */
3170 vms->virt = false;
3171
3172 /* High memory is enabled by default */
3173 vms->highmem = true;
3174 vms->highmem_compact = !vmc->no_highmem_compact;
3175 vms->gic_version = VIRT_GIC_VERSION_NOSEL;
3176
3177 vms->highmem_ecam = !vmc->no_highmem_ecam;
3178 vms->highmem_mmio = true;
3179 vms->highmem_redists = true;
3180
3181 if (vmc->no_its) {
3182 vms->its = false;
3183 } else {
3184 /* Default allows ITS instantiation */
3185 vms->its = true;
3186
3187 if (vmc->no_tcg_its) {
3188 vms->tcg_its = false;
3189 } else {
3190 vms->tcg_its = true;
3191 }
3192 }
3193
3194 /* Default disallows iommu instantiation */
3195 vms->iommu = VIRT_IOMMU_NONE;
3196
3197 /* The default root bus is attached to iommu by default */
3198 vms->default_bus_bypass_iommu = false;
3199
3200 /* Default disallows RAS instantiation */
3201 vms->ras = false;
3202
3203 /* MTE is disabled by default. */
3204 vms->mte = false;
3205
3206 /* Supply kaslr-seed and rng-seed by default */
3207 vms->dtb_randomness = true;
3208
3209 vms->irqmap = a15irqmap;
3210
3211 virt_flash_create(vms);
3212
3213 vms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6);
3214 vms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8);
3215 }
3216
3217 static const TypeInfo virt_machine_info = {
3218 .name = TYPE_VIRT_MACHINE,
3219 .parent = TYPE_MACHINE,
3220 .abstract = true,
3221 .instance_size = sizeof(VirtMachineState),
3222 .class_size = sizeof(VirtMachineClass),
3223 .class_init = virt_machine_class_init,
3224 .instance_init = virt_instance_init,
3225 .interfaces = (InterfaceInfo[]) {
3226 { TYPE_HOTPLUG_HANDLER },
3227 { }
3228 },
3229 };
3230
3231 static void machvirt_machine_init(void)
3232 {
3233 type_register_static(&virt_machine_info);
3234 }
3235 type_init(machvirt_machine_init);
3236
3237 static void virt_machine_8_1_options(MachineClass *mc)
3238 {
3239 }
3240 DEFINE_VIRT_MACHINE_AS_LATEST(8, 1)
3241
3242 static void virt_machine_8_0_options(MachineClass *mc)
3243 {
3244 virt_machine_8_1_options(mc);
3245 compat_props_add(mc->compat_props, hw_compat_8_0, hw_compat_8_0_len);
3246 }
3247 DEFINE_VIRT_MACHINE(8, 0)
3248
3249 static void virt_machine_7_2_options(MachineClass *mc)
3250 {
3251 virt_machine_8_0_options(mc);
3252 compat_props_add(mc->compat_props, hw_compat_7_2, hw_compat_7_2_len);
3253 }
3254 DEFINE_VIRT_MACHINE(7, 2)
3255
3256 static void virt_machine_7_1_options(MachineClass *mc)
3257 {
3258 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3259
3260 virt_machine_7_2_options(mc);
3261 compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len);
3262 /* Compact layout for high memory regions was introduced with 7.2 */
3263 vmc->no_highmem_compact = true;
3264 }
3265 DEFINE_VIRT_MACHINE(7, 1)
3266
3267 static void virt_machine_7_0_options(MachineClass *mc)
3268 {
3269 virt_machine_7_1_options(mc);
3270 compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len);
3271 }
3272 DEFINE_VIRT_MACHINE(7, 0)
3273
3274 static void virt_machine_6_2_options(MachineClass *mc)
3275 {
3276 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3277
3278 virt_machine_7_0_options(mc);
3279 compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len);
3280 vmc->no_tcg_lpa2 = true;
3281 }
3282 DEFINE_VIRT_MACHINE(6, 2)
3283
3284 static void virt_machine_6_1_options(MachineClass *mc)
3285 {
3286 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3287
3288 virt_machine_6_2_options(mc);
3289 compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len);
3290 mc->smp_props.prefer_sockets = true;
3291 vmc->no_cpu_topology = true;
3292
3293 /* qemu ITS was introduced with 6.2 */
3294 vmc->no_tcg_its = true;
3295 }
3296 DEFINE_VIRT_MACHINE(6, 1)
3297
3298 static void virt_machine_6_0_options(MachineClass *mc)
3299 {
3300 virt_machine_6_1_options(mc);
3301 compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len);
3302 }
3303 DEFINE_VIRT_MACHINE(6, 0)
3304
3305 static void virt_machine_5_2_options(MachineClass *mc)
3306 {
3307 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3308
3309 virt_machine_6_0_options(mc);
3310 compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
3311 vmc->no_secure_gpio = true;
3312 }
3313 DEFINE_VIRT_MACHINE(5, 2)
3314
3315 static void virt_machine_5_1_options(MachineClass *mc)
3316 {
3317 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3318
3319 virt_machine_5_2_options(mc);
3320 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
3321 vmc->no_kvm_steal_time = true;
3322 }
3323 DEFINE_VIRT_MACHINE(5, 1)
3324
3325 static void virt_machine_5_0_options(MachineClass *mc)
3326 {
3327 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3328
3329 virt_machine_5_1_options(mc);
3330 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
3331 mc->numa_mem_supported = true;
3332 vmc->acpi_expose_flash = true;
3333 mc->auto_enable_numa_with_memdev = false;
3334 }
3335 DEFINE_VIRT_MACHINE(5, 0)
3336
3337 static void virt_machine_4_2_options(MachineClass *mc)
3338 {
3339 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3340
3341 virt_machine_5_0_options(mc);
3342 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
3343 vmc->kvm_no_adjvtime = true;
3344 }
3345 DEFINE_VIRT_MACHINE(4, 2)
3346
3347 static void virt_machine_4_1_options(MachineClass *mc)
3348 {
3349 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3350
3351 virt_machine_4_2_options(mc);
3352 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
3353 vmc->no_ged = true;
3354 mc->auto_enable_numa_with_memhp = false;
3355 }
3356 DEFINE_VIRT_MACHINE(4, 1)
3357
3358 static void virt_machine_4_0_options(MachineClass *mc)
3359 {
3360 virt_machine_4_1_options(mc);
3361 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
3362 }
3363 DEFINE_VIRT_MACHINE(4, 0)
3364
3365 static void virt_machine_3_1_options(MachineClass *mc)
3366 {
3367 virt_machine_4_0_options(mc);
3368 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
3369 }
3370 DEFINE_VIRT_MACHINE(3, 1)
3371
3372 static void virt_machine_3_0_options(MachineClass *mc)
3373 {
3374 virt_machine_3_1_options(mc);
3375 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
3376 }
3377 DEFINE_VIRT_MACHINE(3, 0)
3378
3379 static void virt_machine_2_12_options(MachineClass *mc)
3380 {
3381 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3382
3383 virt_machine_3_0_options(mc);
3384 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
3385 vmc->no_highmem_ecam = true;
3386 mc->max_cpus = 255;
3387 }
3388 DEFINE_VIRT_MACHINE(2, 12)
3389
3390 static void virt_machine_2_11_options(MachineClass *mc)
3391 {
3392 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3393
3394 virt_machine_2_12_options(mc);
3395 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
3396 vmc->smbios_old_sys_ver = true;
3397 }
3398 DEFINE_VIRT_MACHINE(2, 11)
3399
3400 static void virt_machine_2_10_options(MachineClass *mc)
3401 {
3402 virt_machine_2_11_options(mc);
3403 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
3404 /* before 2.11 we never faulted accesses to bad addresses */
3405 mc->ignore_memory_transaction_failures = true;
3406 }
3407 DEFINE_VIRT_MACHINE(2, 10)
3408
3409 static void virt_machine_2_9_options(MachineClass *mc)
3410 {
3411 virt_machine_2_10_options(mc);
3412 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
3413 }
3414 DEFINE_VIRT_MACHINE(2, 9)
3415
3416 static void virt_machine_2_8_options(MachineClass *mc)
3417 {
3418 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3419
3420 virt_machine_2_9_options(mc);
3421 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
3422 /* For 2.8 and earlier we falsely claimed in the DT that
3423 * our timers were edge-triggered, not level-triggered.
3424 */
3425 vmc->claim_edge_triggered_timers = true;
3426 }
3427 DEFINE_VIRT_MACHINE(2, 8)
3428
3429 static void virt_machine_2_7_options(MachineClass *mc)
3430 {
3431 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3432
3433 virt_machine_2_8_options(mc);
3434 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
3435 /* ITS was introduced with 2.8 */
3436 vmc->no_its = true;
3437 /* Stick with 1K pages for migration compatibility */
3438 mc->minimum_page_bits = 0;
3439 }
3440 DEFINE_VIRT_MACHINE(2, 7)
3441
3442 static void virt_machine_2_6_options(MachineClass *mc)
3443 {
3444 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3445
3446 virt_machine_2_7_options(mc);
3447 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
3448 vmc->disallow_affinity_adjustment = true;
3449 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
3450 vmc->no_pmu = true;
3451 }
3452 DEFINE_VIRT_MACHINE(2, 6)