]> git.proxmox.com Git - mirror_qemu.git/blob - hw/arm/virt.c
hw/arm: Factor out powerdown notifier from GPIO
[mirror_qemu.git] / hw / arm / virt.c
1 /*
2 * ARM mach-virt emulation
3 *
4 * Copyright (c) 2013 Linaro Limited
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
17 *
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
29 */
30
31 #include "qemu/osdep.h"
32 #include "qemu-common.h"
33 #include "qemu/units.h"
34 #include "qemu/option.h"
35 #include "qapi/error.h"
36 #include "hw/sysbus.h"
37 #include "hw/boards.h"
38 #include "hw/arm/boot.h"
39 #include "hw/arm/primecell.h"
40 #include "hw/arm/virt.h"
41 #include "hw/block/flash.h"
42 #include "hw/vfio/vfio-calxeda-xgmac.h"
43 #include "hw/vfio/vfio-amd-xgbe.h"
44 #include "hw/display/ramfb.h"
45 #include "net/net.h"
46 #include "sysemu/device_tree.h"
47 #include "sysemu/numa.h"
48 #include "sysemu/runstate.h"
49 #include "sysemu/sysemu.h"
50 #include "sysemu/kvm.h"
51 #include "hw/loader.h"
52 #include "exec/address-spaces.h"
53 #include "qemu/bitops.h"
54 #include "qemu/error-report.h"
55 #include "qemu/module.h"
56 #include "hw/pci-host/gpex.h"
57 #include "hw/arm/sysbus-fdt.h"
58 #include "hw/platform-bus.h"
59 #include "hw/qdev-properties.h"
60 #include "hw/arm/fdt.h"
61 #include "hw/intc/arm_gic.h"
62 #include "hw/intc/arm_gicv3_common.h"
63 #include "hw/irq.h"
64 #include "kvm_arm.h"
65 #include "hw/firmware/smbios.h"
66 #include "qapi/visitor.h"
67 #include "standard-headers/linux/input.h"
68 #include "hw/arm/smmuv3.h"
69 #include "hw/acpi/acpi.h"
70 #include "target/arm/internals.h"
71 #include "hw/mem/pc-dimm.h"
72 #include "hw/mem/nvdimm.h"
73 #include "hw/acpi/generic_event_device.h"
74
75 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
76 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
77 void *data) \
78 { \
79 MachineClass *mc = MACHINE_CLASS(oc); \
80 virt_machine_##major##_##minor##_options(mc); \
81 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
82 if (latest) { \
83 mc->alias = "virt"; \
84 } \
85 } \
86 static const TypeInfo machvirt_##major##_##minor##_info = { \
87 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
88 .parent = TYPE_VIRT_MACHINE, \
89 .class_init = virt_##major##_##minor##_class_init, \
90 }; \
91 static void machvirt_machine_##major##_##minor##_init(void) \
92 { \
93 type_register_static(&machvirt_##major##_##minor##_info); \
94 } \
95 type_init(machvirt_machine_##major##_##minor##_init);
96
97 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
98 DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
99 #define DEFINE_VIRT_MACHINE(major, minor) \
100 DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
101
102
103 /* Number of external interrupt lines to configure the GIC with */
104 #define NUM_IRQS 256
105
106 #define PLATFORM_BUS_NUM_IRQS 64
107
108 /* Legacy RAM limit in GB (< version 4.0) */
109 #define LEGACY_RAMLIMIT_GB 255
110 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB)
111
112 /* Addresses and sizes of our components.
113 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
114 * 128MB..256MB is used for miscellaneous device I/O.
115 * 256MB..1GB is reserved for possible future PCI support (ie where the
116 * PCI memory window will go if we add a PCI host controller).
117 * 1GB and up is RAM (which may happily spill over into the
118 * high memory region beyond 4GB).
119 * This represents a compromise between how much RAM can be given to
120 * a 32 bit VM and leaving space for expansion and in particular for PCI.
121 * Note that devices should generally be placed at multiples of 0x10000,
122 * to accommodate guests using 64K pages.
123 */
124 static const MemMapEntry base_memmap[] = {
125 /* Space up to 0x8000000 is reserved for a boot ROM */
126 [VIRT_FLASH] = { 0, 0x08000000 },
127 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
128 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
129 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
130 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
131 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 },
132 [VIRT_GIC_HYP] = { 0x08030000, 0x00010000 },
133 [VIRT_GIC_VCPU] = { 0x08040000, 0x00010000 },
134 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
135 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 },
136 /* This redistributor space allows up to 2*64kB*123 CPUs */
137 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 },
138 [VIRT_UART] = { 0x09000000, 0x00001000 },
139 [VIRT_RTC] = { 0x09010000, 0x00001000 },
140 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 },
141 [VIRT_GPIO] = { 0x09030000, 0x00001000 },
142 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 },
143 [VIRT_SMMU] = { 0x09050000, 0x00020000 },
144 [VIRT_PCDIMM_ACPI] = { 0x09070000, MEMORY_HOTPLUG_IO_LEN },
145 [VIRT_ACPI_GED] = { 0x09080000, ACPI_GED_EVT_SEL_LEN },
146 [VIRT_MMIO] = { 0x0a000000, 0x00000200 },
147 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
148 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 },
149 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 },
150 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 },
151 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 },
152 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 },
153 /* Actual RAM size depends on initial RAM and device memory settings */
154 [VIRT_MEM] = { GiB, LEGACY_RAMLIMIT_BYTES },
155 };
156
157 /*
158 * Highmem IO Regions: This memory map is floating, located after the RAM.
159 * Each MemMapEntry base (GPA) will be dynamically computed, depending on the
160 * top of the RAM, so that its base get the same alignment as the size,
161 * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is
162 * less than 256GiB of RAM, the floating area starts at the 256GiB mark.
163 * Note the extended_memmap is sized so that it eventually also includes the
164 * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last
165 * index of base_memmap).
166 */
167 static MemMapEntry extended_memmap[] = {
168 /* Additional 64 MB redist region (can contain up to 512 redistributors) */
169 [VIRT_HIGH_GIC_REDIST2] = { 0x0, 64 * MiB },
170 [VIRT_HIGH_PCIE_ECAM] = { 0x0, 256 * MiB },
171 /* Second PCIe window */
172 [VIRT_HIGH_PCIE_MMIO] = { 0x0, 512 * GiB },
173 };
174
175 static const int a15irqmap[] = {
176 [VIRT_UART] = 1,
177 [VIRT_RTC] = 2,
178 [VIRT_PCIE] = 3, /* ... to 6 */
179 [VIRT_GPIO] = 7,
180 [VIRT_SECURE_UART] = 8,
181 [VIRT_ACPI_GED] = 9,
182 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
183 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
184 [VIRT_SMMU] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */
185 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
186 };
187
188 static const char *valid_cpus[] = {
189 ARM_CPU_TYPE_NAME("cortex-a7"),
190 ARM_CPU_TYPE_NAME("cortex-a15"),
191 ARM_CPU_TYPE_NAME("cortex-a53"),
192 ARM_CPU_TYPE_NAME("cortex-a57"),
193 ARM_CPU_TYPE_NAME("cortex-a72"),
194 ARM_CPU_TYPE_NAME("host"),
195 ARM_CPU_TYPE_NAME("max"),
196 };
197
198 static bool cpu_type_valid(const char *cpu)
199 {
200 int i;
201
202 for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
203 if (strcmp(cpu, valid_cpus[i]) == 0) {
204 return true;
205 }
206 }
207 return false;
208 }
209
210 static void create_fdt(VirtMachineState *vms)
211 {
212 MachineState *ms = MACHINE(vms);
213 int nb_numa_nodes = ms->numa_state->num_nodes;
214 void *fdt = create_device_tree(&vms->fdt_size);
215
216 if (!fdt) {
217 error_report("create_device_tree() failed");
218 exit(1);
219 }
220
221 vms->fdt = fdt;
222
223 /* Header */
224 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
225 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
226 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
227
228 /* /chosen must exist for load_dtb to fill in necessary properties later */
229 qemu_fdt_add_subnode(fdt, "/chosen");
230
231 /* Clock node, for the benefit of the UART. The kernel device tree
232 * binding documentation claims the PL011 node clock properties are
233 * optional but in practice if you omit them the kernel refuses to
234 * probe for the device.
235 */
236 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
237 qemu_fdt_add_subnode(fdt, "/apb-pclk");
238 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
239 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
240 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
241 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
242 "clk24mhz");
243 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
244
245 if (nb_numa_nodes > 0 && ms->numa_state->have_numa_distance) {
246 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
247 uint32_t *matrix = g_malloc0(size);
248 int idx, i, j;
249
250 for (i = 0; i < nb_numa_nodes; i++) {
251 for (j = 0; j < nb_numa_nodes; j++) {
252 idx = (i * nb_numa_nodes + j) * 3;
253 matrix[idx + 0] = cpu_to_be32(i);
254 matrix[idx + 1] = cpu_to_be32(j);
255 matrix[idx + 2] =
256 cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
257 }
258 }
259
260 qemu_fdt_add_subnode(fdt, "/distance-map");
261 qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
262 "numa-distance-map-v1");
263 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
264 matrix, size);
265 g_free(matrix);
266 }
267 }
268
269 static void fdt_add_timer_nodes(const VirtMachineState *vms)
270 {
271 /* On real hardware these interrupts are level-triggered.
272 * On KVM they were edge-triggered before host kernel version 4.4,
273 * and level-triggered afterwards.
274 * On emulated QEMU they are level-triggered.
275 *
276 * Getting the DTB info about them wrong is awkward for some
277 * guest kernels:
278 * pre-4.8 ignore the DT and leave the interrupt configured
279 * with whatever the GIC reset value (or the bootloader) left it at
280 * 4.8 before rc6 honour the incorrect data by programming it back
281 * into the GIC, causing problems
282 * 4.8rc6 and later ignore the DT and always write "level triggered"
283 * into the GIC
284 *
285 * For backwards-compatibility, virt-2.8 and earlier will continue
286 * to say these are edge-triggered, but later machines will report
287 * the correct information.
288 */
289 ARMCPU *armcpu;
290 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
291 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
292
293 if (vmc->claim_edge_triggered_timers) {
294 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
295 }
296
297 if (vms->gic_version == 2) {
298 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
299 GIC_FDT_IRQ_PPI_CPU_WIDTH,
300 (1 << vms->smp_cpus) - 1);
301 }
302
303 qemu_fdt_add_subnode(vms->fdt, "/timer");
304
305 armcpu = ARM_CPU(qemu_get_cpu(0));
306 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
307 const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
308 qemu_fdt_setprop(vms->fdt, "/timer", "compatible",
309 compat, sizeof(compat));
310 } else {
311 qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible",
312 "arm,armv7-timer");
313 }
314 qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0);
315 qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts",
316 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
317 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
318 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
319 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
320 }
321
322 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
323 {
324 int cpu;
325 int addr_cells = 1;
326 const MachineState *ms = MACHINE(vms);
327
328 /*
329 * From Documentation/devicetree/bindings/arm/cpus.txt
330 * On ARM v8 64-bit systems value should be set to 2,
331 * that corresponds to the MPIDR_EL1 register size.
332 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
333 * in the system, #address-cells can be set to 1, since
334 * MPIDR_EL1[63:32] bits are not used for CPUs
335 * identification.
336 *
337 * Here we actually don't know whether our system is 32- or 64-bit one.
338 * The simplest way to go is to examine affinity IDs of all our CPUs. If
339 * at least one of them has Aff3 populated, we set #address-cells to 2.
340 */
341 for (cpu = 0; cpu < vms->smp_cpus; cpu++) {
342 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
343
344 if (armcpu->mp_affinity & ARM_AFF3_MASK) {
345 addr_cells = 2;
346 break;
347 }
348 }
349
350 qemu_fdt_add_subnode(vms->fdt, "/cpus");
351 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells);
352 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0);
353
354 for (cpu = vms->smp_cpus - 1; cpu >= 0; cpu--) {
355 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
356 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
357 CPUState *cs = CPU(armcpu);
358
359 qemu_fdt_add_subnode(vms->fdt, nodename);
360 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu");
361 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
362 armcpu->dtb_compatible);
363
364 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED
365 && vms->smp_cpus > 1) {
366 qemu_fdt_setprop_string(vms->fdt, nodename,
367 "enable-method", "psci");
368 }
369
370 if (addr_cells == 2) {
371 qemu_fdt_setprop_u64(vms->fdt, nodename, "reg",
372 armcpu->mp_affinity);
373 } else {
374 qemu_fdt_setprop_cell(vms->fdt, nodename, "reg",
375 armcpu->mp_affinity);
376 }
377
378 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
379 qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id",
380 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
381 }
382
383 g_free(nodename);
384 }
385 }
386
387 static void fdt_add_its_gic_node(VirtMachineState *vms)
388 {
389 char *nodename;
390
391 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
392 nodename = g_strdup_printf("/intc/its@%" PRIx64,
393 vms->memmap[VIRT_GIC_ITS].base);
394 qemu_fdt_add_subnode(vms->fdt, nodename);
395 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
396 "arm,gic-v3-its");
397 qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0);
398 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
399 2, vms->memmap[VIRT_GIC_ITS].base,
400 2, vms->memmap[VIRT_GIC_ITS].size);
401 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle);
402 g_free(nodename);
403 }
404
405 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
406 {
407 char *nodename;
408
409 nodename = g_strdup_printf("/intc/v2m@%" PRIx64,
410 vms->memmap[VIRT_GIC_V2M].base);
411 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
412 qemu_fdt_add_subnode(vms->fdt, nodename);
413 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
414 "arm,gic-v2m-frame");
415 qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0);
416 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
417 2, vms->memmap[VIRT_GIC_V2M].base,
418 2, vms->memmap[VIRT_GIC_V2M].size);
419 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle);
420 g_free(nodename);
421 }
422
423 static void fdt_add_gic_node(VirtMachineState *vms)
424 {
425 char *nodename;
426
427 vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt);
428 qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle);
429
430 nodename = g_strdup_printf("/intc@%" PRIx64,
431 vms->memmap[VIRT_GIC_DIST].base);
432 qemu_fdt_add_subnode(vms->fdt, nodename);
433 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 3);
434 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-controller", NULL, 0);
435 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 0x2);
436 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 0x2);
437 qemu_fdt_setprop(vms->fdt, nodename, "ranges", NULL, 0);
438 if (vms->gic_version == 3) {
439 int nb_redist_regions = virt_gicv3_redist_region_count(vms);
440
441 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
442 "arm,gic-v3");
443
444 qemu_fdt_setprop_cell(vms->fdt, nodename,
445 "#redistributor-regions", nb_redist_regions);
446
447 if (nb_redist_regions == 1) {
448 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
449 2, vms->memmap[VIRT_GIC_DIST].base,
450 2, vms->memmap[VIRT_GIC_DIST].size,
451 2, vms->memmap[VIRT_GIC_REDIST].base,
452 2, vms->memmap[VIRT_GIC_REDIST].size);
453 } else {
454 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
455 2, vms->memmap[VIRT_GIC_DIST].base,
456 2, vms->memmap[VIRT_GIC_DIST].size,
457 2, vms->memmap[VIRT_GIC_REDIST].base,
458 2, vms->memmap[VIRT_GIC_REDIST].size,
459 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base,
460 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size);
461 }
462
463 if (vms->virt) {
464 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
465 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
466 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
467 }
468 } else {
469 /* 'cortex-a15-gic' means 'GIC v2' */
470 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
471 "arm,cortex-a15-gic");
472 if (!vms->virt) {
473 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
474 2, vms->memmap[VIRT_GIC_DIST].base,
475 2, vms->memmap[VIRT_GIC_DIST].size,
476 2, vms->memmap[VIRT_GIC_CPU].base,
477 2, vms->memmap[VIRT_GIC_CPU].size);
478 } else {
479 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
480 2, vms->memmap[VIRT_GIC_DIST].base,
481 2, vms->memmap[VIRT_GIC_DIST].size,
482 2, vms->memmap[VIRT_GIC_CPU].base,
483 2, vms->memmap[VIRT_GIC_CPU].size,
484 2, vms->memmap[VIRT_GIC_HYP].base,
485 2, vms->memmap[VIRT_GIC_HYP].size,
486 2, vms->memmap[VIRT_GIC_VCPU].base,
487 2, vms->memmap[VIRT_GIC_VCPU].size);
488 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
489 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
490 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
491 }
492 }
493
494 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->gic_phandle);
495 g_free(nodename);
496 }
497
498 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
499 {
500 CPUState *cpu;
501 ARMCPU *armcpu;
502 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
503
504 CPU_FOREACH(cpu) {
505 armcpu = ARM_CPU(cpu);
506 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
507 return;
508 }
509 if (kvm_enabled()) {
510 if (kvm_irqchip_in_kernel()) {
511 kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ));
512 }
513 kvm_arm_pmu_init(cpu);
514 }
515 }
516
517 if (vms->gic_version == 2) {
518 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
519 GIC_FDT_IRQ_PPI_CPU_WIDTH,
520 (1 << vms->smp_cpus) - 1);
521 }
522
523 armcpu = ARM_CPU(qemu_get_cpu(0));
524 qemu_fdt_add_subnode(vms->fdt, "/pmu");
525 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
526 const char compat[] = "arm,armv8-pmuv3";
527 qemu_fdt_setprop(vms->fdt, "/pmu", "compatible",
528 compat, sizeof(compat));
529 qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts",
530 GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
531 }
532 }
533
534 static inline DeviceState *create_acpi_ged(VirtMachineState *vms, qemu_irq *pic)
535 {
536 DeviceState *dev;
537 MachineState *ms = MACHINE(vms);
538 int irq = vms->irqmap[VIRT_ACPI_GED];
539 uint32_t event = 0;
540
541 if (ms->ram_slots) {
542 event = ACPI_GED_MEM_HOTPLUG_EVT;
543 }
544
545 dev = qdev_create(NULL, TYPE_ACPI_GED);
546 qdev_prop_set_uint32(dev, "ged-event", event);
547
548 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_ACPI_GED].base);
549 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, vms->memmap[VIRT_PCDIMM_ACPI].base);
550 sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, pic[irq]);
551
552 qdev_init_nofail(dev);
553
554 return dev;
555 }
556
557 static void create_its(VirtMachineState *vms, DeviceState *gicdev)
558 {
559 const char *itsclass = its_class_name();
560 DeviceState *dev;
561
562 if (!itsclass) {
563 /* Do nothing if not supported */
564 return;
565 }
566
567 dev = qdev_create(NULL, itsclass);
568
569 object_property_set_link(OBJECT(dev), OBJECT(gicdev), "parent-gicv3",
570 &error_abort);
571 qdev_init_nofail(dev);
572 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
573
574 fdt_add_its_gic_node(vms);
575 }
576
577 static void create_v2m(VirtMachineState *vms, qemu_irq *pic)
578 {
579 int i;
580 int irq = vms->irqmap[VIRT_GIC_V2M];
581 DeviceState *dev;
582
583 dev = qdev_create(NULL, "arm-gicv2m");
584 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
585 qdev_prop_set_uint32(dev, "base-spi", irq);
586 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
587 qdev_init_nofail(dev);
588
589 for (i = 0; i < NUM_GICV2M_SPIS; i++) {
590 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
591 }
592
593 fdt_add_v2m_gic_node(vms);
594 }
595
596 static void create_gic(VirtMachineState *vms, qemu_irq *pic)
597 {
598 MachineState *ms = MACHINE(vms);
599 /* We create a standalone GIC */
600 DeviceState *gicdev;
601 SysBusDevice *gicbusdev;
602 const char *gictype;
603 int type = vms->gic_version, i;
604 unsigned int smp_cpus = ms->smp.cpus;
605 uint32_t nb_redist_regions = 0;
606
607 gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
608
609 gicdev = qdev_create(NULL, gictype);
610 qdev_prop_set_uint32(gicdev, "revision", type);
611 qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
612 /* Note that the num-irq property counts both internal and external
613 * interrupts; there are always 32 of the former (mandated by GIC spec).
614 */
615 qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
616 if (!kvm_irqchip_in_kernel()) {
617 qdev_prop_set_bit(gicdev, "has-security-extensions", vms->secure);
618 }
619
620 if (type == 3) {
621 uint32_t redist0_capacity =
622 vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
623 uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
624
625 nb_redist_regions = virt_gicv3_redist_region_count(vms);
626
627 qdev_prop_set_uint32(gicdev, "len-redist-region-count",
628 nb_redist_regions);
629 qdev_prop_set_uint32(gicdev, "redist-region-count[0]", redist0_count);
630
631 if (nb_redist_regions == 2) {
632 uint32_t redist1_capacity =
633 vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE;
634
635 qdev_prop_set_uint32(gicdev, "redist-region-count[1]",
636 MIN(smp_cpus - redist0_count, redist1_capacity));
637 }
638 } else {
639 if (!kvm_irqchip_in_kernel()) {
640 qdev_prop_set_bit(gicdev, "has-virtualization-extensions",
641 vms->virt);
642 }
643 }
644 qdev_init_nofail(gicdev);
645 gicbusdev = SYS_BUS_DEVICE(gicdev);
646 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
647 if (type == 3) {
648 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
649 if (nb_redist_regions == 2) {
650 sysbus_mmio_map(gicbusdev, 2,
651 vms->memmap[VIRT_HIGH_GIC_REDIST2].base);
652 }
653 } else {
654 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
655 if (vms->virt) {
656 sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base);
657 sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base);
658 }
659 }
660
661 /* Wire the outputs from each CPU's generic timer and the GICv3
662 * maintenance interrupt signal to the appropriate GIC PPI inputs,
663 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
664 */
665 for (i = 0; i < smp_cpus; i++) {
666 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
667 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
668 int irq;
669 /* Mapping from the output timer irq lines from the CPU to the
670 * GIC PPI inputs we use for the virt board.
671 */
672 const int timer_irq[] = {
673 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
674 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
675 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
676 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
677 };
678
679 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
680 qdev_connect_gpio_out(cpudev, irq,
681 qdev_get_gpio_in(gicdev,
682 ppibase + timer_irq[irq]));
683 }
684
685 if (type == 3) {
686 qemu_irq irq = qdev_get_gpio_in(gicdev,
687 ppibase + ARCH_GIC_MAINT_IRQ);
688 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt",
689 0, irq);
690 } else if (vms->virt) {
691 qemu_irq irq = qdev_get_gpio_in(gicdev,
692 ppibase + ARCH_GIC_MAINT_IRQ);
693 sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq);
694 }
695
696 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
697 qdev_get_gpio_in(gicdev, ppibase
698 + VIRTUAL_PMU_IRQ));
699
700 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
701 sysbus_connect_irq(gicbusdev, i + smp_cpus,
702 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
703 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
704 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
705 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
706 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
707 }
708
709 for (i = 0; i < NUM_IRQS; i++) {
710 pic[i] = qdev_get_gpio_in(gicdev, i);
711 }
712
713 fdt_add_gic_node(vms);
714
715 if (type == 3 && vms->its) {
716 create_its(vms, gicdev);
717 } else if (type == 2) {
718 create_v2m(vms, pic);
719 }
720 }
721
722 static void create_uart(const VirtMachineState *vms, qemu_irq *pic, int uart,
723 MemoryRegion *mem, Chardev *chr)
724 {
725 char *nodename;
726 hwaddr base = vms->memmap[uart].base;
727 hwaddr size = vms->memmap[uart].size;
728 int irq = vms->irqmap[uart];
729 const char compat[] = "arm,pl011\0arm,primecell";
730 const char clocknames[] = "uartclk\0apb_pclk";
731 DeviceState *dev = qdev_create(NULL, "pl011");
732 SysBusDevice *s = SYS_BUS_DEVICE(dev);
733
734 qdev_prop_set_chr(dev, "chardev", chr);
735 qdev_init_nofail(dev);
736 memory_region_add_subregion(mem, base,
737 sysbus_mmio_get_region(s, 0));
738 sysbus_connect_irq(s, 0, pic[irq]);
739
740 nodename = g_strdup_printf("/pl011@%" PRIx64, base);
741 qemu_fdt_add_subnode(vms->fdt, nodename);
742 /* Note that we can't use setprop_string because of the embedded NUL */
743 qemu_fdt_setprop(vms->fdt, nodename, "compatible",
744 compat, sizeof(compat));
745 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
746 2, base, 2, size);
747 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
748 GIC_FDT_IRQ_TYPE_SPI, irq,
749 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
750 qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks",
751 vms->clock_phandle, vms->clock_phandle);
752 qemu_fdt_setprop(vms->fdt, nodename, "clock-names",
753 clocknames, sizeof(clocknames));
754
755 if (uart == VIRT_UART) {
756 qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename);
757 } else {
758 /* Mark as not usable by the normal world */
759 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
760 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
761
762 qemu_fdt_add_subnode(vms->fdt, "/secure-chosen");
763 qemu_fdt_setprop_string(vms->fdt, "/secure-chosen", "stdout-path",
764 nodename);
765 }
766
767 g_free(nodename);
768 }
769
770 static void create_rtc(const VirtMachineState *vms, qemu_irq *pic)
771 {
772 char *nodename;
773 hwaddr base = vms->memmap[VIRT_RTC].base;
774 hwaddr size = vms->memmap[VIRT_RTC].size;
775 int irq = vms->irqmap[VIRT_RTC];
776 const char compat[] = "arm,pl031\0arm,primecell";
777
778 sysbus_create_simple("pl031", base, pic[irq]);
779
780 nodename = g_strdup_printf("/pl031@%" PRIx64, base);
781 qemu_fdt_add_subnode(vms->fdt, nodename);
782 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
783 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
784 2, base, 2, size);
785 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
786 GIC_FDT_IRQ_TYPE_SPI, irq,
787 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
788 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
789 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
790 g_free(nodename);
791 }
792
793 static DeviceState *gpio_key_dev;
794 static void virt_powerdown_req(Notifier *n, void *opaque)
795 {
796 /* use gpio Pin 3 for power button event */
797 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
798 }
799
800 static void create_gpio(const VirtMachineState *vms, qemu_irq *pic)
801 {
802 char *nodename;
803 DeviceState *pl061_dev;
804 hwaddr base = vms->memmap[VIRT_GPIO].base;
805 hwaddr size = vms->memmap[VIRT_GPIO].size;
806 int irq = vms->irqmap[VIRT_GPIO];
807 const char compat[] = "arm,pl061\0arm,primecell";
808
809 pl061_dev = sysbus_create_simple("pl061", base, pic[irq]);
810
811 uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt);
812 nodename = g_strdup_printf("/pl061@%" PRIx64, base);
813 qemu_fdt_add_subnode(vms->fdt, nodename);
814 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
815 2, base, 2, size);
816 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
817 qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2);
818 qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0);
819 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
820 GIC_FDT_IRQ_TYPE_SPI, irq,
821 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
822 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
823 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
824 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle);
825
826 gpio_key_dev = sysbus_create_simple("gpio-key", -1,
827 qdev_get_gpio_in(pl061_dev, 3));
828 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys");
829 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys");
830 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0);
831 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1);
832
833 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff");
834 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff",
835 "label", "GPIO Key Poweroff");
836 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code",
837 KEY_POWER);
838 qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff",
839 "gpios", phandle, 3, 0);
840 g_free(nodename);
841 }
842
843 static void create_virtio_devices(const VirtMachineState *vms, qemu_irq *pic)
844 {
845 int i;
846 hwaddr size = vms->memmap[VIRT_MMIO].size;
847
848 /* We create the transports in forwards order. Since qbus_realize()
849 * prepends (not appends) new child buses, the incrementing loop below will
850 * create a list of virtio-mmio buses with decreasing base addresses.
851 *
852 * When a -device option is processed from the command line,
853 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
854 * order. The upshot is that -device options in increasing command line
855 * order are mapped to virtio-mmio buses with decreasing base addresses.
856 *
857 * When this code was originally written, that arrangement ensured that the
858 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
859 * the first -device on the command line. (The end-to-end order is a
860 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
861 * guest kernel's name-to-address assignment strategy.)
862 *
863 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
864 * the message, if not necessarily the code, of commit 70161ff336.
865 * Therefore the loop now establishes the inverse of the original intent.
866 *
867 * Unfortunately, we can't counteract the kernel change by reversing the
868 * loop; it would break existing command lines.
869 *
870 * In any case, the kernel makes no guarantee about the stability of
871 * enumeration order of virtio devices (as demonstrated by it changing
872 * between kernel versions). For reliable and stable identification
873 * of disks users must use UUIDs or similar mechanisms.
874 */
875 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
876 int irq = vms->irqmap[VIRT_MMIO] + i;
877 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
878
879 sysbus_create_simple("virtio-mmio", base, pic[irq]);
880 }
881
882 /* We add dtb nodes in reverse order so that they appear in the finished
883 * device tree lowest address first.
884 *
885 * Note that this mapping is independent of the loop above. The previous
886 * loop influences virtio device to virtio transport assignment, whereas
887 * this loop controls how virtio transports are laid out in the dtb.
888 */
889 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
890 char *nodename;
891 int irq = vms->irqmap[VIRT_MMIO] + i;
892 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
893
894 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
895 qemu_fdt_add_subnode(vms->fdt, nodename);
896 qemu_fdt_setprop_string(vms->fdt, nodename,
897 "compatible", "virtio,mmio");
898 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
899 2, base, 2, size);
900 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
901 GIC_FDT_IRQ_TYPE_SPI, irq,
902 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
903 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
904 g_free(nodename);
905 }
906 }
907
908 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
909
910 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms,
911 const char *name,
912 const char *alias_prop_name)
913 {
914 /*
915 * Create a single flash device. We use the same parameters as
916 * the flash devices on the Versatile Express board.
917 */
918 DeviceState *dev = qdev_create(NULL, TYPE_PFLASH_CFI01);
919
920 qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
921 qdev_prop_set_uint8(dev, "width", 4);
922 qdev_prop_set_uint8(dev, "device-width", 2);
923 qdev_prop_set_bit(dev, "big-endian", false);
924 qdev_prop_set_uint16(dev, "id0", 0x89);
925 qdev_prop_set_uint16(dev, "id1", 0x18);
926 qdev_prop_set_uint16(dev, "id2", 0x00);
927 qdev_prop_set_uint16(dev, "id3", 0x00);
928 qdev_prop_set_string(dev, "name", name);
929 object_property_add_child(OBJECT(vms), name, OBJECT(dev),
930 &error_abort);
931 object_property_add_alias(OBJECT(vms), alias_prop_name,
932 OBJECT(dev), "drive", &error_abort);
933 return PFLASH_CFI01(dev);
934 }
935
936 static void virt_flash_create(VirtMachineState *vms)
937 {
938 vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0");
939 vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1");
940 }
941
942 static void virt_flash_map1(PFlashCFI01 *flash,
943 hwaddr base, hwaddr size,
944 MemoryRegion *sysmem)
945 {
946 DeviceState *dev = DEVICE(flash);
947
948 assert(size % VIRT_FLASH_SECTOR_SIZE == 0);
949 assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
950 qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
951 qdev_init_nofail(dev);
952
953 memory_region_add_subregion(sysmem, base,
954 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
955 0));
956 }
957
958 static void virt_flash_map(VirtMachineState *vms,
959 MemoryRegion *sysmem,
960 MemoryRegion *secure_sysmem)
961 {
962 /*
963 * Map two flash devices to fill the VIRT_FLASH space in the memmap.
964 * sysmem is the system memory space. secure_sysmem is the secure view
965 * of the system, and the first flash device should be made visible only
966 * there. The second flash device is visible to both secure and nonsecure.
967 * If sysmem == secure_sysmem this means there is no separate Secure
968 * address space and both flash devices are generally visible.
969 */
970 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
971 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
972
973 virt_flash_map1(vms->flash[0], flashbase, flashsize,
974 secure_sysmem);
975 virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize,
976 sysmem);
977 }
978
979 static void virt_flash_fdt(VirtMachineState *vms,
980 MemoryRegion *sysmem,
981 MemoryRegion *secure_sysmem)
982 {
983 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
984 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
985 char *nodename;
986
987 if (sysmem == secure_sysmem) {
988 /* Report both flash devices as a single node in the DT */
989 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
990 qemu_fdt_add_subnode(vms->fdt, nodename);
991 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
992 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
993 2, flashbase, 2, flashsize,
994 2, flashbase + flashsize, 2, flashsize);
995 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
996 g_free(nodename);
997 } else {
998 /*
999 * Report the devices as separate nodes so we can mark one as
1000 * only visible to the secure world.
1001 */
1002 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
1003 qemu_fdt_add_subnode(vms->fdt, nodename);
1004 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
1005 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1006 2, flashbase, 2, flashsize);
1007 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
1008 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
1009 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
1010 g_free(nodename);
1011
1012 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
1013 qemu_fdt_add_subnode(vms->fdt, nodename);
1014 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
1015 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1016 2, flashbase + flashsize, 2, flashsize);
1017 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
1018 g_free(nodename);
1019 }
1020 }
1021
1022 static bool virt_firmware_init(VirtMachineState *vms,
1023 MemoryRegion *sysmem,
1024 MemoryRegion *secure_sysmem)
1025 {
1026 int i;
1027 BlockBackend *pflash_blk0;
1028
1029 /* Map legacy -drive if=pflash to machine properties */
1030 for (i = 0; i < ARRAY_SIZE(vms->flash); i++) {
1031 pflash_cfi01_legacy_drive(vms->flash[i],
1032 drive_get(IF_PFLASH, 0, i));
1033 }
1034
1035 virt_flash_map(vms, sysmem, secure_sysmem);
1036
1037 pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]);
1038
1039 if (bios_name) {
1040 char *fname;
1041 MemoryRegion *mr;
1042 int image_size;
1043
1044 if (pflash_blk0) {
1045 error_report("The contents of the first flash device may be "
1046 "specified with -bios or with -drive if=pflash... "
1047 "but you cannot use both options at once");
1048 exit(1);
1049 }
1050
1051 /* Fall back to -bios */
1052
1053 fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1054 if (!fname) {
1055 error_report("Could not find ROM image '%s'", bios_name);
1056 exit(1);
1057 }
1058 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0);
1059 image_size = load_image_mr(fname, mr);
1060 g_free(fname);
1061 if (image_size < 0) {
1062 error_report("Could not load ROM image '%s'", bios_name);
1063 exit(1);
1064 }
1065 }
1066
1067 return pflash_blk0 || bios_name;
1068 }
1069
1070 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
1071 {
1072 MachineState *ms = MACHINE(vms);
1073 hwaddr base = vms->memmap[VIRT_FW_CFG].base;
1074 hwaddr size = vms->memmap[VIRT_FW_CFG].size;
1075 FWCfgState *fw_cfg;
1076 char *nodename;
1077
1078 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
1079 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus);
1080
1081 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
1082 qemu_fdt_add_subnode(vms->fdt, nodename);
1083 qemu_fdt_setprop_string(vms->fdt, nodename,
1084 "compatible", "qemu,fw-cfg-mmio");
1085 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1086 2, base, 2, size);
1087 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1088 g_free(nodename);
1089 return fw_cfg;
1090 }
1091
1092 static void create_pcie_irq_map(const VirtMachineState *vms,
1093 uint32_t gic_phandle,
1094 int first_irq, const char *nodename)
1095 {
1096 int devfn, pin;
1097 uint32_t full_irq_map[4 * 4 * 10] = { 0 };
1098 uint32_t *irq_map = full_irq_map;
1099
1100 for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
1101 for (pin = 0; pin < 4; pin++) {
1102 int irq_type = GIC_FDT_IRQ_TYPE_SPI;
1103 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
1104 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
1105 int i;
1106
1107 uint32_t map[] = {
1108 devfn << 8, 0, 0, /* devfn */
1109 pin + 1, /* PCI pin */
1110 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
1111
1112 /* Convert map to big endian */
1113 for (i = 0; i < 10; i++) {
1114 irq_map[i] = cpu_to_be32(map[i]);
1115 }
1116 irq_map += 10;
1117 }
1118 }
1119
1120 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map",
1121 full_irq_map, sizeof(full_irq_map));
1122
1123 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask",
1124 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
1125 0x7 /* PCI irq */);
1126 }
1127
1128 static void create_smmu(const VirtMachineState *vms, qemu_irq *pic,
1129 PCIBus *bus)
1130 {
1131 char *node;
1132 const char compat[] = "arm,smmu-v3";
1133 int irq = vms->irqmap[VIRT_SMMU];
1134 int i;
1135 hwaddr base = vms->memmap[VIRT_SMMU].base;
1136 hwaddr size = vms->memmap[VIRT_SMMU].size;
1137 const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
1138 DeviceState *dev;
1139
1140 if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
1141 return;
1142 }
1143
1144 dev = qdev_create(NULL, "arm-smmuv3");
1145
1146 object_property_set_link(OBJECT(dev), OBJECT(bus), "primary-bus",
1147 &error_abort);
1148 qdev_init_nofail(dev);
1149 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
1150 for (i = 0; i < NUM_SMMU_IRQS; i++) {
1151 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1152 }
1153
1154 node = g_strdup_printf("/smmuv3@%" PRIx64, base);
1155 qemu_fdt_add_subnode(vms->fdt, node);
1156 qemu_fdt_setprop(vms->fdt, node, "compatible", compat, sizeof(compat));
1157 qemu_fdt_setprop_sized_cells(vms->fdt, node, "reg", 2, base, 2, size);
1158
1159 qemu_fdt_setprop_cells(vms->fdt, node, "interrupts",
1160 GIC_FDT_IRQ_TYPE_SPI, irq , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1161 GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1162 GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1163 GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1164
1165 qemu_fdt_setprop(vms->fdt, node, "interrupt-names", irq_names,
1166 sizeof(irq_names));
1167
1168 qemu_fdt_setprop_cell(vms->fdt, node, "clocks", vms->clock_phandle);
1169 qemu_fdt_setprop_string(vms->fdt, node, "clock-names", "apb_pclk");
1170 qemu_fdt_setprop(vms->fdt, node, "dma-coherent", NULL, 0);
1171
1172 qemu_fdt_setprop_cell(vms->fdt, node, "#iommu-cells", 1);
1173
1174 qemu_fdt_setprop_cell(vms->fdt, node, "phandle", vms->iommu_phandle);
1175 g_free(node);
1176 }
1177
1178 static void create_pcie(VirtMachineState *vms, qemu_irq *pic)
1179 {
1180 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1181 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
1182 hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base;
1183 hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size;
1184 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1185 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
1186 hwaddr base_ecam, size_ecam;
1187 hwaddr base = base_mmio;
1188 int nr_pcie_buses;
1189 int irq = vms->irqmap[VIRT_PCIE];
1190 MemoryRegion *mmio_alias;
1191 MemoryRegion *mmio_reg;
1192 MemoryRegion *ecam_alias;
1193 MemoryRegion *ecam_reg;
1194 DeviceState *dev;
1195 char *nodename;
1196 int i, ecam_id;
1197 PCIHostState *pci;
1198
1199 dev = qdev_create(NULL, TYPE_GPEX_HOST);
1200 qdev_init_nofail(dev);
1201
1202 ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
1203 base_ecam = vms->memmap[ecam_id].base;
1204 size_ecam = vms->memmap[ecam_id].size;
1205 nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
1206 /* Map only the first size_ecam bytes of ECAM space */
1207 ecam_alias = g_new0(MemoryRegion, 1);
1208 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1209 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1210 ecam_reg, 0, size_ecam);
1211 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1212
1213 /* Map the MMIO window into system address space so as to expose
1214 * the section of PCI MMIO space which starts at the same base address
1215 * (ie 1:1 mapping for that part of PCI MMIO space visible through
1216 * the window).
1217 */
1218 mmio_alias = g_new0(MemoryRegion, 1);
1219 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1220 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1221 mmio_reg, base_mmio, size_mmio);
1222 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1223
1224 if (vms->highmem) {
1225 /* Map high MMIO space */
1226 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1227
1228 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1229 mmio_reg, base_mmio_high, size_mmio_high);
1230 memory_region_add_subregion(get_system_memory(), base_mmio_high,
1231 high_mmio_alias);
1232 }
1233
1234 /* Map IO port space */
1235 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1236
1237 for (i = 0; i < GPEX_NUM_IRQS; i++) {
1238 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1239 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
1240 }
1241
1242 pci = PCI_HOST_BRIDGE(dev);
1243 if (pci->bus) {
1244 for (i = 0; i < nb_nics; i++) {
1245 NICInfo *nd = &nd_table[i];
1246
1247 if (!nd->model) {
1248 nd->model = g_strdup("virtio");
1249 }
1250
1251 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1252 }
1253 }
1254
1255 nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1256 qemu_fdt_add_subnode(vms->fdt, nodename);
1257 qemu_fdt_setprop_string(vms->fdt, nodename,
1258 "compatible", "pci-host-ecam-generic");
1259 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci");
1260 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3);
1261 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2);
1262 qemu_fdt_setprop_cell(vms->fdt, nodename, "linux,pci-domain", 0);
1263 qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0,
1264 nr_pcie_buses - 1);
1265 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1266
1267 if (vms->msi_phandle) {
1268 qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent",
1269 vms->msi_phandle);
1270 }
1271
1272 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1273 2, base_ecam, 2, size_ecam);
1274
1275 if (vms->highmem) {
1276 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1277 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1278 2, base_pio, 2, size_pio,
1279 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1280 2, base_mmio, 2, size_mmio,
1281 1, FDT_PCI_RANGE_MMIO_64BIT,
1282 2, base_mmio_high,
1283 2, base_mmio_high, 2, size_mmio_high);
1284 } else {
1285 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1286 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1287 2, base_pio, 2, size_pio,
1288 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1289 2, base_mmio, 2, size_mmio);
1290 }
1291
1292 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1);
1293 create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename);
1294
1295 if (vms->iommu) {
1296 vms->iommu_phandle = qemu_fdt_alloc_phandle(vms->fdt);
1297
1298 create_smmu(vms, pic, pci->bus);
1299
1300 qemu_fdt_setprop_cells(vms->fdt, nodename, "iommu-map",
1301 0x0, vms->iommu_phandle, 0x0, 0x10000);
1302 }
1303
1304 g_free(nodename);
1305 }
1306
1307 static void create_platform_bus(VirtMachineState *vms, qemu_irq *pic)
1308 {
1309 DeviceState *dev;
1310 SysBusDevice *s;
1311 int i;
1312 MemoryRegion *sysmem = get_system_memory();
1313
1314 dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
1315 dev->id = TYPE_PLATFORM_BUS_DEVICE;
1316 qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
1317 qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
1318 qdev_init_nofail(dev);
1319 vms->platform_bus_dev = dev;
1320
1321 s = SYS_BUS_DEVICE(dev);
1322 for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
1323 int irqn = vms->irqmap[VIRT_PLATFORM_BUS] + i;
1324 sysbus_connect_irq(s, i, pic[irqn]);
1325 }
1326
1327 memory_region_add_subregion(sysmem,
1328 vms->memmap[VIRT_PLATFORM_BUS].base,
1329 sysbus_mmio_get_region(s, 0));
1330 }
1331
1332 static void create_secure_ram(VirtMachineState *vms,
1333 MemoryRegion *secure_sysmem)
1334 {
1335 MemoryRegion *secram = g_new(MemoryRegion, 1);
1336 char *nodename;
1337 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1338 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1339
1340 memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1341 &error_fatal);
1342 memory_region_add_subregion(secure_sysmem, base, secram);
1343
1344 nodename = g_strdup_printf("/secram@%" PRIx64, base);
1345 qemu_fdt_add_subnode(vms->fdt, nodename);
1346 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory");
1347 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size);
1348 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
1349 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
1350
1351 g_free(nodename);
1352 }
1353
1354 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1355 {
1356 const VirtMachineState *board = container_of(binfo, VirtMachineState,
1357 bootinfo);
1358
1359 *fdt_size = board->fdt_size;
1360 return board->fdt;
1361 }
1362
1363 static void virt_build_smbios(VirtMachineState *vms)
1364 {
1365 MachineClass *mc = MACHINE_GET_CLASS(vms);
1366 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1367 uint8_t *smbios_tables, *smbios_anchor;
1368 size_t smbios_tables_len, smbios_anchor_len;
1369 const char *product = "QEMU Virtual Machine";
1370
1371 if (kvm_enabled()) {
1372 product = "KVM Virtual Machine";
1373 }
1374
1375 smbios_set_defaults("QEMU", product,
1376 vmc->smbios_old_sys_ver ? "1.0" : mc->name, false,
1377 true, SMBIOS_ENTRY_POINT_30);
1378
1379 smbios_get_tables(MACHINE(vms), NULL, 0, &smbios_tables, &smbios_tables_len,
1380 &smbios_anchor, &smbios_anchor_len);
1381
1382 if (smbios_anchor) {
1383 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1384 smbios_tables, smbios_tables_len);
1385 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1386 smbios_anchor, smbios_anchor_len);
1387 }
1388 }
1389
1390 static
1391 void virt_machine_done(Notifier *notifier, void *data)
1392 {
1393 VirtMachineState *vms = container_of(notifier, VirtMachineState,
1394 machine_done);
1395 MachineState *ms = MACHINE(vms);
1396 ARMCPU *cpu = ARM_CPU(first_cpu);
1397 struct arm_boot_info *info = &vms->bootinfo;
1398 AddressSpace *as = arm_boot_address_space(cpu, info);
1399
1400 /*
1401 * If the user provided a dtb, we assume the dynamic sysbus nodes
1402 * already are integrated there. This corresponds to a use case where
1403 * the dynamic sysbus nodes are complex and their generation is not yet
1404 * supported. In that case the user can take charge of the guest dt
1405 * while qemu takes charge of the qom stuff.
1406 */
1407 if (info->dtb_filename == NULL) {
1408 platform_bus_add_all_fdt_nodes(vms->fdt, "/intc",
1409 vms->memmap[VIRT_PLATFORM_BUS].base,
1410 vms->memmap[VIRT_PLATFORM_BUS].size,
1411 vms->irqmap[VIRT_PLATFORM_BUS]);
1412 }
1413 if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) {
1414 exit(1);
1415 }
1416
1417 virt_acpi_setup(vms);
1418 virt_build_smbios(vms);
1419 }
1420
1421 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1422 {
1423 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1424 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1425
1426 if (!vmc->disallow_affinity_adjustment) {
1427 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1428 * GIC's target-list limitations. 32-bit KVM hosts currently
1429 * always create clusters of 4 CPUs, but that is expected to
1430 * change when they gain support for gicv3. When KVM is enabled
1431 * it will override the changes we make here, therefore our
1432 * purposes are to make TCG consistent (with 64-bit KVM hosts)
1433 * and to improve SGI efficiency.
1434 */
1435 if (vms->gic_version == 3) {
1436 clustersz = GICV3_TARGETLIST_BITS;
1437 } else {
1438 clustersz = GIC_TARGETLIST_BITS;
1439 }
1440 }
1441 return arm_cpu_mp_affinity(idx, clustersz);
1442 }
1443
1444 static void virt_set_memmap(VirtMachineState *vms)
1445 {
1446 MachineState *ms = MACHINE(vms);
1447 hwaddr base, device_memory_base, device_memory_size;
1448 int i;
1449
1450 vms->memmap = extended_memmap;
1451
1452 for (i = 0; i < ARRAY_SIZE(base_memmap); i++) {
1453 vms->memmap[i] = base_memmap[i];
1454 }
1455
1456 if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) {
1457 error_report("unsupported number of memory slots: %"PRIu64,
1458 ms->ram_slots);
1459 exit(EXIT_FAILURE);
1460 }
1461
1462 /*
1463 * We compute the base of the high IO region depending on the
1464 * amount of initial and device memory. The device memory start/size
1465 * is aligned on 1GiB. We never put the high IO region below 256GiB
1466 * so that if maxram_size is < 255GiB we keep the legacy memory map.
1467 * The device region size assumes 1GiB page max alignment per slot.
1468 */
1469 device_memory_base =
1470 ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB);
1471 device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB;
1472
1473 /* Base address of the high IO region */
1474 base = device_memory_base + ROUND_UP(device_memory_size, GiB);
1475 if (base < device_memory_base) {
1476 error_report("maxmem/slots too huge");
1477 exit(EXIT_FAILURE);
1478 }
1479 if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) {
1480 base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES;
1481 }
1482
1483 for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) {
1484 hwaddr size = extended_memmap[i].size;
1485
1486 base = ROUND_UP(base, size);
1487 vms->memmap[i].base = base;
1488 vms->memmap[i].size = size;
1489 base += size;
1490 }
1491 vms->highest_gpa = base - 1;
1492 if (device_memory_size > 0) {
1493 ms->device_memory = g_malloc0(sizeof(*ms->device_memory));
1494 ms->device_memory->base = device_memory_base;
1495 memory_region_init(&ms->device_memory->mr, OBJECT(vms),
1496 "device-memory", device_memory_size);
1497 }
1498 }
1499
1500 static void machvirt_init(MachineState *machine)
1501 {
1502 VirtMachineState *vms = VIRT_MACHINE(machine);
1503 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
1504 MachineClass *mc = MACHINE_GET_CLASS(machine);
1505 const CPUArchIdList *possible_cpus;
1506 qemu_irq pic[NUM_IRQS];
1507 MemoryRegion *sysmem = get_system_memory();
1508 MemoryRegion *secure_sysmem = NULL;
1509 int n, virt_max_cpus;
1510 MemoryRegion *ram = g_new(MemoryRegion, 1);
1511 bool firmware_loaded;
1512 bool aarch64 = true;
1513 bool has_ged = !vmc->no_ged;
1514 unsigned int smp_cpus = machine->smp.cpus;
1515 unsigned int max_cpus = machine->smp.max_cpus;
1516
1517 /*
1518 * In accelerated mode, the memory map is computed earlier in kvm_type()
1519 * to create a VM with the right number of IPA bits.
1520 */
1521 if (!vms->memmap) {
1522 virt_set_memmap(vms);
1523 }
1524
1525 /* We can probe only here because during property set
1526 * KVM is not available yet
1527 */
1528 if (vms->gic_version <= 0) {
1529 /* "host" or "max" */
1530 if (!kvm_enabled()) {
1531 if (vms->gic_version == 0) {
1532 error_report("gic-version=host requires KVM");
1533 exit(1);
1534 } else {
1535 /* "max": currently means 3 for TCG */
1536 vms->gic_version = 3;
1537 }
1538 } else {
1539 vms->gic_version = kvm_arm_vgic_probe();
1540 if (!vms->gic_version) {
1541 error_report(
1542 "Unable to determine GIC version supported by host");
1543 exit(1);
1544 }
1545 }
1546 }
1547
1548 if (!cpu_type_valid(machine->cpu_type)) {
1549 error_report("mach-virt: CPU type %s not supported", machine->cpu_type);
1550 exit(1);
1551 }
1552
1553 if (vms->secure) {
1554 if (kvm_enabled()) {
1555 error_report("mach-virt: KVM does not support Security extensions");
1556 exit(1);
1557 }
1558
1559 /*
1560 * The Secure view of the world is the same as the NonSecure,
1561 * but with a few extra devices. Create it as a container region
1562 * containing the system memory at low priority; any secure-only
1563 * devices go in at higher priority and take precedence.
1564 */
1565 secure_sysmem = g_new(MemoryRegion, 1);
1566 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1567 UINT64_MAX);
1568 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1569 }
1570
1571 firmware_loaded = virt_firmware_init(vms, sysmem,
1572 secure_sysmem ?: sysmem);
1573
1574 /* If we have an EL3 boot ROM then the assumption is that it will
1575 * implement PSCI itself, so disable QEMU's internal implementation
1576 * so it doesn't get in the way. Instead of starting secondary
1577 * CPUs in PSCI powerdown state we will start them all running and
1578 * let the boot ROM sort them out.
1579 * The usual case is that we do use QEMU's PSCI implementation;
1580 * if the guest has EL2 then we will use SMC as the conduit,
1581 * and otherwise we will use HVC (for backwards compatibility and
1582 * because if we're using KVM then we must use HVC).
1583 */
1584 if (vms->secure && firmware_loaded) {
1585 vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
1586 } else if (vms->virt) {
1587 vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
1588 } else {
1589 vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
1590 }
1591
1592 /* The maximum number of CPUs depends on the GIC version, or on how
1593 * many redistributors we can fit into the memory map.
1594 */
1595 if (vms->gic_version == 3) {
1596 virt_max_cpus =
1597 vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
1598 virt_max_cpus +=
1599 vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE;
1600 } else {
1601 virt_max_cpus = GIC_NCPU;
1602 }
1603
1604 if (max_cpus > virt_max_cpus) {
1605 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1606 "supported by machine 'mach-virt' (%d)",
1607 max_cpus, virt_max_cpus);
1608 exit(1);
1609 }
1610
1611 vms->smp_cpus = smp_cpus;
1612
1613 if (vms->virt && kvm_enabled()) {
1614 error_report("mach-virt: KVM does not support providing "
1615 "Virtualization extensions to the guest CPU");
1616 exit(1);
1617 }
1618
1619 create_fdt(vms);
1620
1621 possible_cpus = mc->possible_cpu_arch_ids(machine);
1622 for (n = 0; n < possible_cpus->len; n++) {
1623 Object *cpuobj;
1624 CPUState *cs;
1625
1626 if (n >= smp_cpus) {
1627 break;
1628 }
1629
1630 cpuobj = object_new(possible_cpus->cpus[n].type);
1631 object_property_set_int(cpuobj, possible_cpus->cpus[n].arch_id,
1632 "mp-affinity", NULL);
1633
1634 cs = CPU(cpuobj);
1635 cs->cpu_index = n;
1636
1637 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
1638 &error_fatal);
1639
1640 aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
1641
1642 if (!vms->secure) {
1643 object_property_set_bool(cpuobj, false, "has_el3", NULL);
1644 }
1645
1646 if (!vms->virt && object_property_find(cpuobj, "has_el2", NULL)) {
1647 object_property_set_bool(cpuobj, false, "has_el2", NULL);
1648 }
1649
1650 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
1651 object_property_set_int(cpuobj, vms->psci_conduit,
1652 "psci-conduit", NULL);
1653
1654 /* Secondary CPUs start in PSCI powered-down state */
1655 if (n > 0) {
1656 object_property_set_bool(cpuobj, true,
1657 "start-powered-off", NULL);
1658 }
1659 }
1660
1661 if (vmc->no_pmu && object_property_find(cpuobj, "pmu", NULL)) {
1662 object_property_set_bool(cpuobj, false, "pmu", NULL);
1663 }
1664
1665 if (object_property_find(cpuobj, "reset-cbar", NULL)) {
1666 object_property_set_int(cpuobj, vms->memmap[VIRT_CPUPERIPHS].base,
1667 "reset-cbar", &error_abort);
1668 }
1669
1670 object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
1671 &error_abort);
1672 if (vms->secure) {
1673 object_property_set_link(cpuobj, OBJECT(secure_sysmem),
1674 "secure-memory", &error_abort);
1675 }
1676
1677 object_property_set_bool(cpuobj, true, "realized", &error_fatal);
1678 object_unref(cpuobj);
1679 }
1680 fdt_add_timer_nodes(vms);
1681 fdt_add_cpu_nodes(vms);
1682
1683 if (!kvm_enabled()) {
1684 ARMCPU *cpu = ARM_CPU(first_cpu);
1685 bool aarch64 = object_property_get_bool(OBJECT(cpu), "aarch64", NULL);
1686
1687 if (aarch64 && vms->highmem) {
1688 int requested_pa_size, pamax = arm_pamax(cpu);
1689
1690 requested_pa_size = 64 - clz64(vms->highest_gpa);
1691 if (pamax < requested_pa_size) {
1692 error_report("VCPU supports less PA bits (%d) than requested "
1693 "by the memory map (%d)", pamax, requested_pa_size);
1694 exit(1);
1695 }
1696 }
1697 }
1698
1699 memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
1700 machine->ram_size);
1701 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, ram);
1702 if (machine->device_memory) {
1703 memory_region_add_subregion(sysmem, machine->device_memory->base,
1704 &machine->device_memory->mr);
1705 }
1706
1707 virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem);
1708
1709 create_gic(vms, pic);
1710
1711 fdt_add_pmu_nodes(vms);
1712
1713 create_uart(vms, pic, VIRT_UART, sysmem, serial_hd(0));
1714
1715 if (vms->secure) {
1716 create_secure_ram(vms, secure_sysmem);
1717 create_uart(vms, pic, VIRT_SECURE_UART, secure_sysmem, serial_hd(1));
1718 }
1719
1720 vms->highmem_ecam &= vms->highmem && (!firmware_loaded || aarch64);
1721
1722 create_rtc(vms, pic);
1723
1724 create_pcie(vms, pic);
1725
1726 create_gpio(vms, pic);
1727
1728 if (has_ged && aarch64 && firmware_loaded && acpi_enabled) {
1729 vms->acpi_dev = create_acpi_ged(vms, pic);
1730 }
1731
1732 /* connect powerdown request */
1733 vms->powerdown_notifier.notify = virt_powerdown_req;
1734 qemu_register_powerdown_notifier(&vms->powerdown_notifier);
1735
1736 /* Create mmio transports, so the user can create virtio backends
1737 * (which will be automatically plugged in to the transports). If
1738 * no backend is created the transport will just sit harmlessly idle.
1739 */
1740 create_virtio_devices(vms, pic);
1741
1742 vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
1743 rom_set_fw(vms->fw_cfg);
1744
1745 create_platform_bus(vms, pic);
1746
1747 vms->bootinfo.ram_size = machine->ram_size;
1748 vms->bootinfo.nb_cpus = smp_cpus;
1749 vms->bootinfo.board_id = -1;
1750 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
1751 vms->bootinfo.get_dtb = machvirt_dtb;
1752 vms->bootinfo.skip_dtb_autoload = true;
1753 vms->bootinfo.firmware_loaded = firmware_loaded;
1754 arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo);
1755
1756 vms->machine_done.notify = virt_machine_done;
1757 qemu_add_machine_init_done_notifier(&vms->machine_done);
1758 }
1759
1760 static bool virt_get_secure(Object *obj, Error **errp)
1761 {
1762 VirtMachineState *vms = VIRT_MACHINE(obj);
1763
1764 return vms->secure;
1765 }
1766
1767 static void virt_set_secure(Object *obj, bool value, Error **errp)
1768 {
1769 VirtMachineState *vms = VIRT_MACHINE(obj);
1770
1771 vms->secure = value;
1772 }
1773
1774 static bool virt_get_virt(Object *obj, Error **errp)
1775 {
1776 VirtMachineState *vms = VIRT_MACHINE(obj);
1777
1778 return vms->virt;
1779 }
1780
1781 static void virt_set_virt(Object *obj, bool value, Error **errp)
1782 {
1783 VirtMachineState *vms = VIRT_MACHINE(obj);
1784
1785 vms->virt = value;
1786 }
1787
1788 static bool virt_get_highmem(Object *obj, Error **errp)
1789 {
1790 VirtMachineState *vms = VIRT_MACHINE(obj);
1791
1792 return vms->highmem;
1793 }
1794
1795 static void virt_set_highmem(Object *obj, bool value, Error **errp)
1796 {
1797 VirtMachineState *vms = VIRT_MACHINE(obj);
1798
1799 vms->highmem = value;
1800 }
1801
1802 static bool virt_get_its(Object *obj, Error **errp)
1803 {
1804 VirtMachineState *vms = VIRT_MACHINE(obj);
1805
1806 return vms->its;
1807 }
1808
1809 static void virt_set_its(Object *obj, bool value, Error **errp)
1810 {
1811 VirtMachineState *vms = VIRT_MACHINE(obj);
1812
1813 vms->its = value;
1814 }
1815
1816 static char *virt_get_gic_version(Object *obj, Error **errp)
1817 {
1818 VirtMachineState *vms = VIRT_MACHINE(obj);
1819 const char *val = vms->gic_version == 3 ? "3" : "2";
1820
1821 return g_strdup(val);
1822 }
1823
1824 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
1825 {
1826 VirtMachineState *vms = VIRT_MACHINE(obj);
1827
1828 if (!strcmp(value, "3")) {
1829 vms->gic_version = 3;
1830 } else if (!strcmp(value, "2")) {
1831 vms->gic_version = 2;
1832 } else if (!strcmp(value, "host")) {
1833 vms->gic_version = 0; /* Will probe later */
1834 } else if (!strcmp(value, "max")) {
1835 vms->gic_version = -1; /* Will probe later */
1836 } else {
1837 error_setg(errp, "Invalid gic-version value");
1838 error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
1839 }
1840 }
1841
1842 static char *virt_get_iommu(Object *obj, Error **errp)
1843 {
1844 VirtMachineState *vms = VIRT_MACHINE(obj);
1845
1846 switch (vms->iommu) {
1847 case VIRT_IOMMU_NONE:
1848 return g_strdup("none");
1849 case VIRT_IOMMU_SMMUV3:
1850 return g_strdup("smmuv3");
1851 default:
1852 g_assert_not_reached();
1853 }
1854 }
1855
1856 static void virt_set_iommu(Object *obj, const char *value, Error **errp)
1857 {
1858 VirtMachineState *vms = VIRT_MACHINE(obj);
1859
1860 if (!strcmp(value, "smmuv3")) {
1861 vms->iommu = VIRT_IOMMU_SMMUV3;
1862 } else if (!strcmp(value, "none")) {
1863 vms->iommu = VIRT_IOMMU_NONE;
1864 } else {
1865 error_setg(errp, "Invalid iommu value");
1866 error_append_hint(errp, "Valid values are none, smmuv3.\n");
1867 }
1868 }
1869
1870 static CpuInstanceProperties
1871 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
1872 {
1873 MachineClass *mc = MACHINE_GET_CLASS(ms);
1874 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
1875
1876 assert(cpu_index < possible_cpus->len);
1877 return possible_cpus->cpus[cpu_index].props;
1878 }
1879
1880 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
1881 {
1882 return idx % ms->numa_state->num_nodes;
1883 }
1884
1885 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
1886 {
1887 int n;
1888 unsigned int max_cpus = ms->smp.max_cpus;
1889 VirtMachineState *vms = VIRT_MACHINE(ms);
1890
1891 if (ms->possible_cpus) {
1892 assert(ms->possible_cpus->len == max_cpus);
1893 return ms->possible_cpus;
1894 }
1895
1896 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
1897 sizeof(CPUArchId) * max_cpus);
1898 ms->possible_cpus->len = max_cpus;
1899 for (n = 0; n < ms->possible_cpus->len; n++) {
1900 ms->possible_cpus->cpus[n].type = ms->cpu_type;
1901 ms->possible_cpus->cpus[n].arch_id =
1902 virt_cpu_mp_affinity(vms, n);
1903 ms->possible_cpus->cpus[n].props.has_thread_id = true;
1904 ms->possible_cpus->cpus[n].props.thread_id = n;
1905 }
1906 return ms->possible_cpus;
1907 }
1908
1909 static void virt_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
1910 Error **errp)
1911 {
1912 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
1913 const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
1914
1915 if (is_nvdimm) {
1916 error_setg(errp, "nvdimm is not yet supported");
1917 return;
1918 }
1919
1920 if (!vms->acpi_dev) {
1921 error_setg(errp,
1922 "memory hotplug is not enabled: missing acpi-ged device");
1923 return;
1924 }
1925
1926 pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), NULL, errp);
1927 }
1928
1929 static void virt_memory_plug(HotplugHandler *hotplug_dev,
1930 DeviceState *dev, Error **errp)
1931 {
1932 HotplugHandlerClass *hhc;
1933 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
1934 Error *local_err = NULL;
1935
1936 pc_dimm_plug(PC_DIMM(dev), MACHINE(vms), &local_err);
1937 if (local_err) {
1938 goto out;
1939 }
1940
1941 hhc = HOTPLUG_HANDLER_GET_CLASS(vms->acpi_dev);
1942 hhc->plug(HOTPLUG_HANDLER(vms->acpi_dev), dev, &error_abort);
1943 out:
1944 error_propagate(errp, local_err);
1945 }
1946
1947 static void virt_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
1948 DeviceState *dev, Error **errp)
1949 {
1950 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1951 virt_memory_pre_plug(hotplug_dev, dev, errp);
1952 }
1953 }
1954
1955 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
1956 DeviceState *dev, Error **errp)
1957 {
1958 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
1959
1960 if (vms->platform_bus_dev) {
1961 if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) {
1962 platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
1963 SYS_BUS_DEVICE(dev));
1964 }
1965 }
1966 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1967 virt_memory_plug(hotplug_dev, dev, errp);
1968 }
1969 }
1970
1971 static void virt_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
1972 DeviceState *dev, Error **errp)
1973 {
1974 error_setg(errp, "device unplug request for unsupported device"
1975 " type: %s", object_get_typename(OBJECT(dev)));
1976 }
1977
1978 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
1979 DeviceState *dev)
1980 {
1981 if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE) ||
1982 (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM))) {
1983 return HOTPLUG_HANDLER(machine);
1984 }
1985
1986 return NULL;
1987 }
1988
1989 /*
1990 * for arm64 kvm_type [7-0] encodes the requested number of bits
1991 * in the IPA address space
1992 */
1993 static int virt_kvm_type(MachineState *ms, const char *type_str)
1994 {
1995 VirtMachineState *vms = VIRT_MACHINE(ms);
1996 int max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms);
1997 int requested_pa_size;
1998
1999 /* we freeze the memory map to compute the highest gpa */
2000 virt_set_memmap(vms);
2001
2002 requested_pa_size = 64 - clz64(vms->highest_gpa);
2003
2004 if (requested_pa_size > max_vm_pa_size) {
2005 error_report("-m and ,maxmem option values "
2006 "require an IPA range (%d bits) larger than "
2007 "the one supported by the host (%d bits)",
2008 requested_pa_size, max_vm_pa_size);
2009 exit(1);
2010 }
2011 /*
2012 * By default we return 0 which corresponds to an implicit legacy
2013 * 40b IPA setting. Otherwise we return the actual requested PA
2014 * logsize
2015 */
2016 return requested_pa_size > 40 ? requested_pa_size : 0;
2017 }
2018
2019 static void virt_machine_class_init(ObjectClass *oc, void *data)
2020 {
2021 MachineClass *mc = MACHINE_CLASS(oc);
2022 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2023
2024 mc->init = machvirt_init;
2025 /* Start with max_cpus set to 512, which is the maximum supported by KVM.
2026 * The value may be reduced later when we have more information about the
2027 * configuration of the particular instance.
2028 */
2029 mc->max_cpus = 512;
2030 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
2031 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
2032 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
2033 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM);
2034 mc->block_default_type = IF_VIRTIO;
2035 mc->no_cdrom = 1;
2036 mc->pci_allow_0_address = true;
2037 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
2038 mc->minimum_page_bits = 12;
2039 mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
2040 mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
2041 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
2042 mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
2043 mc->kvm_type = virt_kvm_type;
2044 assert(!mc->get_hotplug_handler);
2045 mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
2046 hc->pre_plug = virt_machine_device_pre_plug_cb;
2047 hc->plug = virt_machine_device_plug_cb;
2048 hc->unplug_request = virt_machine_device_unplug_request_cb;
2049 mc->numa_mem_supported = true;
2050 mc->auto_enable_numa_with_memhp = true;
2051 }
2052
2053 static void virt_instance_init(Object *obj)
2054 {
2055 VirtMachineState *vms = VIRT_MACHINE(obj);
2056 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
2057
2058 /* EL3 is disabled by default on virt: this makes us consistent
2059 * between KVM and TCG for this board, and it also allows us to
2060 * boot UEFI blobs which assume no TrustZone support.
2061 */
2062 vms->secure = false;
2063 object_property_add_bool(obj, "secure", virt_get_secure,
2064 virt_set_secure, NULL);
2065 object_property_set_description(obj, "secure",
2066 "Set on/off to enable/disable the ARM "
2067 "Security Extensions (TrustZone)",
2068 NULL);
2069
2070 /* EL2 is also disabled by default, for similar reasons */
2071 vms->virt = false;
2072 object_property_add_bool(obj, "virtualization", virt_get_virt,
2073 virt_set_virt, NULL);
2074 object_property_set_description(obj, "virtualization",
2075 "Set on/off to enable/disable emulating a "
2076 "guest CPU which implements the ARM "
2077 "Virtualization Extensions",
2078 NULL);
2079
2080 /* High memory is enabled by default */
2081 vms->highmem = true;
2082 object_property_add_bool(obj, "highmem", virt_get_highmem,
2083 virt_set_highmem, NULL);
2084 object_property_set_description(obj, "highmem",
2085 "Set on/off to enable/disable using "
2086 "physical address space above 32 bits",
2087 NULL);
2088 /* Default GIC type is v2 */
2089 vms->gic_version = 2;
2090 object_property_add_str(obj, "gic-version", virt_get_gic_version,
2091 virt_set_gic_version, NULL);
2092 object_property_set_description(obj, "gic-version",
2093 "Set GIC version. "
2094 "Valid values are 2, 3 and host", NULL);
2095
2096 vms->highmem_ecam = !vmc->no_highmem_ecam;
2097
2098 if (vmc->no_its) {
2099 vms->its = false;
2100 } else {
2101 /* Default allows ITS instantiation */
2102 vms->its = true;
2103 object_property_add_bool(obj, "its", virt_get_its,
2104 virt_set_its, NULL);
2105 object_property_set_description(obj, "its",
2106 "Set on/off to enable/disable "
2107 "ITS instantiation",
2108 NULL);
2109 }
2110
2111 /* Default disallows iommu instantiation */
2112 vms->iommu = VIRT_IOMMU_NONE;
2113 object_property_add_str(obj, "iommu", virt_get_iommu, virt_set_iommu, NULL);
2114 object_property_set_description(obj, "iommu",
2115 "Set the IOMMU type. "
2116 "Valid values are none and smmuv3",
2117 NULL);
2118
2119 vms->irqmap = a15irqmap;
2120
2121 virt_flash_create(vms);
2122 }
2123
2124 static const TypeInfo virt_machine_info = {
2125 .name = TYPE_VIRT_MACHINE,
2126 .parent = TYPE_MACHINE,
2127 .abstract = true,
2128 .instance_size = sizeof(VirtMachineState),
2129 .class_size = sizeof(VirtMachineClass),
2130 .class_init = virt_machine_class_init,
2131 .instance_init = virt_instance_init,
2132 .interfaces = (InterfaceInfo[]) {
2133 { TYPE_HOTPLUG_HANDLER },
2134 { }
2135 },
2136 };
2137
2138 static void machvirt_machine_init(void)
2139 {
2140 type_register_static(&virt_machine_info);
2141 }
2142 type_init(machvirt_machine_init);
2143
2144 static void virt_machine_4_2_options(MachineClass *mc)
2145 {
2146 }
2147 DEFINE_VIRT_MACHINE_AS_LATEST(4, 2)
2148
2149 static void virt_machine_4_1_options(MachineClass *mc)
2150 {
2151 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2152
2153 virt_machine_4_2_options(mc);
2154 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
2155 vmc->no_ged = true;
2156 mc->auto_enable_numa_with_memhp = false;
2157 }
2158 DEFINE_VIRT_MACHINE(4, 1)
2159
2160 static void virt_machine_4_0_options(MachineClass *mc)
2161 {
2162 virt_machine_4_1_options(mc);
2163 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
2164 }
2165 DEFINE_VIRT_MACHINE(4, 0)
2166
2167 static void virt_machine_3_1_options(MachineClass *mc)
2168 {
2169 virt_machine_4_0_options(mc);
2170 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
2171 }
2172 DEFINE_VIRT_MACHINE(3, 1)
2173
2174 static void virt_machine_3_0_options(MachineClass *mc)
2175 {
2176 virt_machine_3_1_options(mc);
2177 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
2178 }
2179 DEFINE_VIRT_MACHINE(3, 0)
2180
2181 static void virt_machine_2_12_options(MachineClass *mc)
2182 {
2183 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2184
2185 virt_machine_3_0_options(mc);
2186 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
2187 vmc->no_highmem_ecam = true;
2188 mc->max_cpus = 255;
2189 }
2190 DEFINE_VIRT_MACHINE(2, 12)
2191
2192 static void virt_machine_2_11_options(MachineClass *mc)
2193 {
2194 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2195
2196 virt_machine_2_12_options(mc);
2197 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
2198 vmc->smbios_old_sys_ver = true;
2199 }
2200 DEFINE_VIRT_MACHINE(2, 11)
2201
2202 static void virt_machine_2_10_options(MachineClass *mc)
2203 {
2204 virt_machine_2_11_options(mc);
2205 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
2206 /* before 2.11 we never faulted accesses to bad addresses */
2207 mc->ignore_memory_transaction_failures = true;
2208 }
2209 DEFINE_VIRT_MACHINE(2, 10)
2210
2211 static void virt_machine_2_9_options(MachineClass *mc)
2212 {
2213 virt_machine_2_10_options(mc);
2214 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
2215 }
2216 DEFINE_VIRT_MACHINE(2, 9)
2217
2218 static void virt_machine_2_8_options(MachineClass *mc)
2219 {
2220 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2221
2222 virt_machine_2_9_options(mc);
2223 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
2224 /* For 2.8 and earlier we falsely claimed in the DT that
2225 * our timers were edge-triggered, not level-triggered.
2226 */
2227 vmc->claim_edge_triggered_timers = true;
2228 }
2229 DEFINE_VIRT_MACHINE(2, 8)
2230
2231 static void virt_machine_2_7_options(MachineClass *mc)
2232 {
2233 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2234
2235 virt_machine_2_8_options(mc);
2236 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
2237 /* ITS was introduced with 2.8 */
2238 vmc->no_its = true;
2239 /* Stick with 1K pages for migration compatibility */
2240 mc->minimum_page_bits = 0;
2241 }
2242 DEFINE_VIRT_MACHINE(2, 7)
2243
2244 static void virt_machine_2_6_options(MachineClass *mc)
2245 {
2246 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2247
2248 virt_machine_2_7_options(mc);
2249 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
2250 vmc->disallow_affinity_adjustment = true;
2251 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
2252 vmc->no_pmu = true;
2253 }
2254 DEFINE_VIRT_MACHINE(2, 6)