]> git.proxmox.com Git - mirror_qemu.git/blob - hw/arm/virt.c
Merge remote-tracking branch 'remotes/ericb/tags/pull-nbd-2019-05-07' into staging
[mirror_qemu.git] / hw / arm / virt.c
1 /*
2 * ARM mach-virt emulation
3 *
4 * Copyright (c) 2013 Linaro Limited
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
17 *
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
29 */
30
31 #include "qemu/osdep.h"
32 #include "qemu/units.h"
33 #include "qemu/option.h"
34 #include "qapi/error.h"
35 #include "hw/sysbus.h"
36 #include "hw/arm/arm.h"
37 #include "hw/arm/primecell.h"
38 #include "hw/arm/virt.h"
39 #include "hw/block/flash.h"
40 #include "hw/vfio/vfio-calxeda-xgmac.h"
41 #include "hw/vfio/vfio-amd-xgbe.h"
42 #include "hw/display/ramfb.h"
43 #include "net/net.h"
44 #include "sysemu/device_tree.h"
45 #include "sysemu/numa.h"
46 #include "sysemu/sysemu.h"
47 #include "sysemu/kvm.h"
48 #include "hw/loader.h"
49 #include "exec/address-spaces.h"
50 #include "qemu/bitops.h"
51 #include "qemu/error-report.h"
52 #include "hw/pci-host/gpex.h"
53 #include "hw/arm/sysbus-fdt.h"
54 #include "hw/platform-bus.h"
55 #include "hw/arm/fdt.h"
56 #include "hw/intc/arm_gic.h"
57 #include "hw/intc/arm_gicv3_common.h"
58 #include "kvm_arm.h"
59 #include "hw/firmware/smbios.h"
60 #include "qapi/visitor.h"
61 #include "standard-headers/linux/input.h"
62 #include "hw/arm/smmuv3.h"
63 #include "hw/acpi/acpi.h"
64 #include "target/arm/internals.h"
65
66 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
67 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
68 void *data) \
69 { \
70 MachineClass *mc = MACHINE_CLASS(oc); \
71 virt_machine_##major##_##minor##_options(mc); \
72 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
73 if (latest) { \
74 mc->alias = "virt"; \
75 } \
76 } \
77 static const TypeInfo machvirt_##major##_##minor##_info = { \
78 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
79 .parent = TYPE_VIRT_MACHINE, \
80 .class_init = virt_##major##_##minor##_class_init, \
81 }; \
82 static void machvirt_machine_##major##_##minor##_init(void) \
83 { \
84 type_register_static(&machvirt_##major##_##minor##_info); \
85 } \
86 type_init(machvirt_machine_##major##_##minor##_init);
87
88 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
89 DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
90 #define DEFINE_VIRT_MACHINE(major, minor) \
91 DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
92
93
94 /* Number of external interrupt lines to configure the GIC with */
95 #define NUM_IRQS 256
96
97 #define PLATFORM_BUS_NUM_IRQS 64
98
99 /* Legacy RAM limit in GB (< version 4.0) */
100 #define LEGACY_RAMLIMIT_GB 255
101 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB)
102
103 /* Addresses and sizes of our components.
104 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
105 * 128MB..256MB is used for miscellaneous device I/O.
106 * 256MB..1GB is reserved for possible future PCI support (ie where the
107 * PCI memory window will go if we add a PCI host controller).
108 * 1GB and up is RAM (which may happily spill over into the
109 * high memory region beyond 4GB).
110 * This represents a compromise between how much RAM can be given to
111 * a 32 bit VM and leaving space for expansion and in particular for PCI.
112 * Note that devices should generally be placed at multiples of 0x10000,
113 * to accommodate guests using 64K pages.
114 */
115 static const MemMapEntry base_memmap[] = {
116 /* Space up to 0x8000000 is reserved for a boot ROM */
117 [VIRT_FLASH] = { 0, 0x08000000 },
118 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
119 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
120 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
121 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
122 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 },
123 [VIRT_GIC_HYP] = { 0x08030000, 0x00010000 },
124 [VIRT_GIC_VCPU] = { 0x08040000, 0x00010000 },
125 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
126 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 },
127 /* This redistributor space allows up to 2*64kB*123 CPUs */
128 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 },
129 [VIRT_UART] = { 0x09000000, 0x00001000 },
130 [VIRT_RTC] = { 0x09010000, 0x00001000 },
131 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 },
132 [VIRT_GPIO] = { 0x09030000, 0x00001000 },
133 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 },
134 [VIRT_SMMU] = { 0x09050000, 0x00020000 },
135 [VIRT_MMIO] = { 0x0a000000, 0x00000200 },
136 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
137 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 },
138 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 },
139 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 },
140 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 },
141 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 },
142 /* Actual RAM size depends on initial RAM and device memory settings */
143 [VIRT_MEM] = { GiB, LEGACY_RAMLIMIT_BYTES },
144 };
145
146 /*
147 * Highmem IO Regions: This memory map is floating, located after the RAM.
148 * Each MemMapEntry base (GPA) will be dynamically computed, depending on the
149 * top of the RAM, so that its base get the same alignment as the size,
150 * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is
151 * less than 256GiB of RAM, the floating area starts at the 256GiB mark.
152 * Note the extended_memmap is sized so that it eventually also includes the
153 * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last
154 * index of base_memmap).
155 */
156 static MemMapEntry extended_memmap[] = {
157 /* Additional 64 MB redist region (can contain up to 512 redistributors) */
158 [VIRT_HIGH_GIC_REDIST2] = { 0x0, 64 * MiB },
159 [VIRT_HIGH_PCIE_ECAM] = { 0x0, 256 * MiB },
160 /* Second PCIe window */
161 [VIRT_HIGH_PCIE_MMIO] = { 0x0, 512 * GiB },
162 };
163
164 static const int a15irqmap[] = {
165 [VIRT_UART] = 1,
166 [VIRT_RTC] = 2,
167 [VIRT_PCIE] = 3, /* ... to 6 */
168 [VIRT_GPIO] = 7,
169 [VIRT_SECURE_UART] = 8,
170 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
171 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
172 [VIRT_SMMU] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */
173 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
174 };
175
176 static const char *valid_cpus[] = {
177 ARM_CPU_TYPE_NAME("cortex-a15"),
178 ARM_CPU_TYPE_NAME("cortex-a53"),
179 ARM_CPU_TYPE_NAME("cortex-a57"),
180 ARM_CPU_TYPE_NAME("cortex-a72"),
181 ARM_CPU_TYPE_NAME("host"),
182 ARM_CPU_TYPE_NAME("max"),
183 };
184
185 static bool cpu_type_valid(const char *cpu)
186 {
187 int i;
188
189 for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
190 if (strcmp(cpu, valid_cpus[i]) == 0) {
191 return true;
192 }
193 }
194 return false;
195 }
196
197 static void create_fdt(VirtMachineState *vms)
198 {
199 void *fdt = create_device_tree(&vms->fdt_size);
200
201 if (!fdt) {
202 error_report("create_device_tree() failed");
203 exit(1);
204 }
205
206 vms->fdt = fdt;
207
208 /* Header */
209 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
210 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
211 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
212
213 /* /chosen must exist for load_dtb to fill in necessary properties later */
214 qemu_fdt_add_subnode(fdt, "/chosen");
215
216 /* Clock node, for the benefit of the UART. The kernel device tree
217 * binding documentation claims the PL011 node clock properties are
218 * optional but in practice if you omit them the kernel refuses to
219 * probe for the device.
220 */
221 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
222 qemu_fdt_add_subnode(fdt, "/apb-pclk");
223 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
224 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
225 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
226 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
227 "clk24mhz");
228 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
229
230 if (have_numa_distance) {
231 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
232 uint32_t *matrix = g_malloc0(size);
233 int idx, i, j;
234
235 for (i = 0; i < nb_numa_nodes; i++) {
236 for (j = 0; j < nb_numa_nodes; j++) {
237 idx = (i * nb_numa_nodes + j) * 3;
238 matrix[idx + 0] = cpu_to_be32(i);
239 matrix[idx + 1] = cpu_to_be32(j);
240 matrix[idx + 2] = cpu_to_be32(numa_info[i].distance[j]);
241 }
242 }
243
244 qemu_fdt_add_subnode(fdt, "/distance-map");
245 qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
246 "numa-distance-map-v1");
247 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
248 matrix, size);
249 g_free(matrix);
250 }
251 }
252
253 static void fdt_add_timer_nodes(const VirtMachineState *vms)
254 {
255 /* On real hardware these interrupts are level-triggered.
256 * On KVM they were edge-triggered before host kernel version 4.4,
257 * and level-triggered afterwards.
258 * On emulated QEMU they are level-triggered.
259 *
260 * Getting the DTB info about them wrong is awkward for some
261 * guest kernels:
262 * pre-4.8 ignore the DT and leave the interrupt configured
263 * with whatever the GIC reset value (or the bootloader) left it at
264 * 4.8 before rc6 honour the incorrect data by programming it back
265 * into the GIC, causing problems
266 * 4.8rc6 and later ignore the DT and always write "level triggered"
267 * into the GIC
268 *
269 * For backwards-compatibility, virt-2.8 and earlier will continue
270 * to say these are edge-triggered, but later machines will report
271 * the correct information.
272 */
273 ARMCPU *armcpu;
274 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
275 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
276
277 if (vmc->claim_edge_triggered_timers) {
278 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
279 }
280
281 if (vms->gic_version == 2) {
282 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
283 GIC_FDT_IRQ_PPI_CPU_WIDTH,
284 (1 << vms->smp_cpus) - 1);
285 }
286
287 qemu_fdt_add_subnode(vms->fdt, "/timer");
288
289 armcpu = ARM_CPU(qemu_get_cpu(0));
290 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
291 const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
292 qemu_fdt_setprop(vms->fdt, "/timer", "compatible",
293 compat, sizeof(compat));
294 } else {
295 qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible",
296 "arm,armv7-timer");
297 }
298 qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0);
299 qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts",
300 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
301 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
302 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
303 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
304 }
305
306 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
307 {
308 int cpu;
309 int addr_cells = 1;
310 const MachineState *ms = MACHINE(vms);
311
312 /*
313 * From Documentation/devicetree/bindings/arm/cpus.txt
314 * On ARM v8 64-bit systems value should be set to 2,
315 * that corresponds to the MPIDR_EL1 register size.
316 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
317 * in the system, #address-cells can be set to 1, since
318 * MPIDR_EL1[63:32] bits are not used for CPUs
319 * identification.
320 *
321 * Here we actually don't know whether our system is 32- or 64-bit one.
322 * The simplest way to go is to examine affinity IDs of all our CPUs. If
323 * at least one of them has Aff3 populated, we set #address-cells to 2.
324 */
325 for (cpu = 0; cpu < vms->smp_cpus; cpu++) {
326 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
327
328 if (armcpu->mp_affinity & ARM_AFF3_MASK) {
329 addr_cells = 2;
330 break;
331 }
332 }
333
334 qemu_fdt_add_subnode(vms->fdt, "/cpus");
335 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells);
336 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0);
337
338 for (cpu = vms->smp_cpus - 1; cpu >= 0; cpu--) {
339 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
340 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
341 CPUState *cs = CPU(armcpu);
342
343 qemu_fdt_add_subnode(vms->fdt, nodename);
344 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu");
345 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
346 armcpu->dtb_compatible);
347
348 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED
349 && vms->smp_cpus > 1) {
350 qemu_fdt_setprop_string(vms->fdt, nodename,
351 "enable-method", "psci");
352 }
353
354 if (addr_cells == 2) {
355 qemu_fdt_setprop_u64(vms->fdt, nodename, "reg",
356 armcpu->mp_affinity);
357 } else {
358 qemu_fdt_setprop_cell(vms->fdt, nodename, "reg",
359 armcpu->mp_affinity);
360 }
361
362 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
363 qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id",
364 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
365 }
366
367 g_free(nodename);
368 }
369 }
370
371 static void fdt_add_its_gic_node(VirtMachineState *vms)
372 {
373 char *nodename;
374
375 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
376 nodename = g_strdup_printf("/intc/its@%" PRIx64,
377 vms->memmap[VIRT_GIC_ITS].base);
378 qemu_fdt_add_subnode(vms->fdt, nodename);
379 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
380 "arm,gic-v3-its");
381 qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0);
382 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
383 2, vms->memmap[VIRT_GIC_ITS].base,
384 2, vms->memmap[VIRT_GIC_ITS].size);
385 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle);
386 g_free(nodename);
387 }
388
389 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
390 {
391 char *nodename;
392
393 nodename = g_strdup_printf("/intc/v2m@%" PRIx64,
394 vms->memmap[VIRT_GIC_V2M].base);
395 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
396 qemu_fdt_add_subnode(vms->fdt, nodename);
397 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
398 "arm,gic-v2m-frame");
399 qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0);
400 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
401 2, vms->memmap[VIRT_GIC_V2M].base,
402 2, vms->memmap[VIRT_GIC_V2M].size);
403 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle);
404 g_free(nodename);
405 }
406
407 static void fdt_add_gic_node(VirtMachineState *vms)
408 {
409 char *nodename;
410
411 vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt);
412 qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle);
413
414 nodename = g_strdup_printf("/intc@%" PRIx64,
415 vms->memmap[VIRT_GIC_DIST].base);
416 qemu_fdt_add_subnode(vms->fdt, nodename);
417 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 3);
418 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-controller", NULL, 0);
419 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 0x2);
420 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 0x2);
421 qemu_fdt_setprop(vms->fdt, nodename, "ranges", NULL, 0);
422 if (vms->gic_version == 3) {
423 int nb_redist_regions = virt_gicv3_redist_region_count(vms);
424
425 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
426 "arm,gic-v3");
427
428 qemu_fdt_setprop_cell(vms->fdt, nodename,
429 "#redistributor-regions", nb_redist_regions);
430
431 if (nb_redist_regions == 1) {
432 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
433 2, vms->memmap[VIRT_GIC_DIST].base,
434 2, vms->memmap[VIRT_GIC_DIST].size,
435 2, vms->memmap[VIRT_GIC_REDIST].base,
436 2, vms->memmap[VIRT_GIC_REDIST].size);
437 } else {
438 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
439 2, vms->memmap[VIRT_GIC_DIST].base,
440 2, vms->memmap[VIRT_GIC_DIST].size,
441 2, vms->memmap[VIRT_GIC_REDIST].base,
442 2, vms->memmap[VIRT_GIC_REDIST].size,
443 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base,
444 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size);
445 }
446
447 if (vms->virt) {
448 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
449 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
450 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
451 }
452 } else {
453 /* 'cortex-a15-gic' means 'GIC v2' */
454 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
455 "arm,cortex-a15-gic");
456 if (!vms->virt) {
457 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
458 2, vms->memmap[VIRT_GIC_DIST].base,
459 2, vms->memmap[VIRT_GIC_DIST].size,
460 2, vms->memmap[VIRT_GIC_CPU].base,
461 2, vms->memmap[VIRT_GIC_CPU].size);
462 } else {
463 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
464 2, vms->memmap[VIRT_GIC_DIST].base,
465 2, vms->memmap[VIRT_GIC_DIST].size,
466 2, vms->memmap[VIRT_GIC_CPU].base,
467 2, vms->memmap[VIRT_GIC_CPU].size,
468 2, vms->memmap[VIRT_GIC_HYP].base,
469 2, vms->memmap[VIRT_GIC_HYP].size,
470 2, vms->memmap[VIRT_GIC_VCPU].base,
471 2, vms->memmap[VIRT_GIC_VCPU].size);
472 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
473 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
474 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
475 }
476 }
477
478 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->gic_phandle);
479 g_free(nodename);
480 }
481
482 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
483 {
484 CPUState *cpu;
485 ARMCPU *armcpu;
486 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
487
488 CPU_FOREACH(cpu) {
489 armcpu = ARM_CPU(cpu);
490 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
491 return;
492 }
493 if (kvm_enabled()) {
494 if (kvm_irqchip_in_kernel()) {
495 kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ));
496 }
497 kvm_arm_pmu_init(cpu);
498 }
499 }
500
501 if (vms->gic_version == 2) {
502 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
503 GIC_FDT_IRQ_PPI_CPU_WIDTH,
504 (1 << vms->smp_cpus) - 1);
505 }
506
507 armcpu = ARM_CPU(qemu_get_cpu(0));
508 qemu_fdt_add_subnode(vms->fdt, "/pmu");
509 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
510 const char compat[] = "arm,armv8-pmuv3";
511 qemu_fdt_setprop(vms->fdt, "/pmu", "compatible",
512 compat, sizeof(compat));
513 qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts",
514 GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
515 }
516 }
517
518 static void create_its(VirtMachineState *vms, DeviceState *gicdev)
519 {
520 const char *itsclass = its_class_name();
521 DeviceState *dev;
522
523 if (!itsclass) {
524 /* Do nothing if not supported */
525 return;
526 }
527
528 dev = qdev_create(NULL, itsclass);
529
530 object_property_set_link(OBJECT(dev), OBJECT(gicdev), "parent-gicv3",
531 &error_abort);
532 qdev_init_nofail(dev);
533 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
534
535 fdt_add_its_gic_node(vms);
536 }
537
538 static void create_v2m(VirtMachineState *vms, qemu_irq *pic)
539 {
540 int i;
541 int irq = vms->irqmap[VIRT_GIC_V2M];
542 DeviceState *dev;
543
544 dev = qdev_create(NULL, "arm-gicv2m");
545 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
546 qdev_prop_set_uint32(dev, "base-spi", irq);
547 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
548 qdev_init_nofail(dev);
549
550 for (i = 0; i < NUM_GICV2M_SPIS; i++) {
551 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
552 }
553
554 fdt_add_v2m_gic_node(vms);
555 }
556
557 static void create_gic(VirtMachineState *vms, qemu_irq *pic)
558 {
559 /* We create a standalone GIC */
560 DeviceState *gicdev;
561 SysBusDevice *gicbusdev;
562 const char *gictype;
563 int type = vms->gic_version, i;
564 uint32_t nb_redist_regions = 0;
565
566 gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
567
568 gicdev = qdev_create(NULL, gictype);
569 qdev_prop_set_uint32(gicdev, "revision", type);
570 qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
571 /* Note that the num-irq property counts both internal and external
572 * interrupts; there are always 32 of the former (mandated by GIC spec).
573 */
574 qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
575 if (!kvm_irqchip_in_kernel()) {
576 qdev_prop_set_bit(gicdev, "has-security-extensions", vms->secure);
577 }
578
579 if (type == 3) {
580 uint32_t redist0_capacity =
581 vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
582 uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
583
584 nb_redist_regions = virt_gicv3_redist_region_count(vms);
585
586 qdev_prop_set_uint32(gicdev, "len-redist-region-count",
587 nb_redist_regions);
588 qdev_prop_set_uint32(gicdev, "redist-region-count[0]", redist0_count);
589
590 if (nb_redist_regions == 2) {
591 uint32_t redist1_capacity =
592 vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE;
593
594 qdev_prop_set_uint32(gicdev, "redist-region-count[1]",
595 MIN(smp_cpus - redist0_count, redist1_capacity));
596 }
597 } else {
598 if (!kvm_irqchip_in_kernel()) {
599 qdev_prop_set_bit(gicdev, "has-virtualization-extensions",
600 vms->virt);
601 }
602 }
603 qdev_init_nofail(gicdev);
604 gicbusdev = SYS_BUS_DEVICE(gicdev);
605 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
606 if (type == 3) {
607 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
608 if (nb_redist_regions == 2) {
609 sysbus_mmio_map(gicbusdev, 2,
610 vms->memmap[VIRT_HIGH_GIC_REDIST2].base);
611 }
612 } else {
613 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
614 if (vms->virt) {
615 sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base);
616 sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base);
617 }
618 }
619
620 /* Wire the outputs from each CPU's generic timer and the GICv3
621 * maintenance interrupt signal to the appropriate GIC PPI inputs,
622 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
623 */
624 for (i = 0; i < smp_cpus; i++) {
625 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
626 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
627 int irq;
628 /* Mapping from the output timer irq lines from the CPU to the
629 * GIC PPI inputs we use for the virt board.
630 */
631 const int timer_irq[] = {
632 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
633 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
634 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
635 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
636 };
637
638 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
639 qdev_connect_gpio_out(cpudev, irq,
640 qdev_get_gpio_in(gicdev,
641 ppibase + timer_irq[irq]));
642 }
643
644 if (type == 3) {
645 qemu_irq irq = qdev_get_gpio_in(gicdev,
646 ppibase + ARCH_GIC_MAINT_IRQ);
647 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt",
648 0, irq);
649 } else if (vms->virt) {
650 qemu_irq irq = qdev_get_gpio_in(gicdev,
651 ppibase + ARCH_GIC_MAINT_IRQ);
652 sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq);
653 }
654
655 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
656 qdev_get_gpio_in(gicdev, ppibase
657 + VIRTUAL_PMU_IRQ));
658
659 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
660 sysbus_connect_irq(gicbusdev, i + smp_cpus,
661 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
662 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
663 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
664 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
665 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
666 }
667
668 for (i = 0; i < NUM_IRQS; i++) {
669 pic[i] = qdev_get_gpio_in(gicdev, i);
670 }
671
672 fdt_add_gic_node(vms);
673
674 if (type == 3 && vms->its) {
675 create_its(vms, gicdev);
676 } else if (type == 2) {
677 create_v2m(vms, pic);
678 }
679 }
680
681 static void create_uart(const VirtMachineState *vms, qemu_irq *pic, int uart,
682 MemoryRegion *mem, Chardev *chr)
683 {
684 char *nodename;
685 hwaddr base = vms->memmap[uart].base;
686 hwaddr size = vms->memmap[uart].size;
687 int irq = vms->irqmap[uart];
688 const char compat[] = "arm,pl011\0arm,primecell";
689 const char clocknames[] = "uartclk\0apb_pclk";
690 DeviceState *dev = qdev_create(NULL, "pl011");
691 SysBusDevice *s = SYS_BUS_DEVICE(dev);
692
693 qdev_prop_set_chr(dev, "chardev", chr);
694 qdev_init_nofail(dev);
695 memory_region_add_subregion(mem, base,
696 sysbus_mmio_get_region(s, 0));
697 sysbus_connect_irq(s, 0, pic[irq]);
698
699 nodename = g_strdup_printf("/pl011@%" PRIx64, base);
700 qemu_fdt_add_subnode(vms->fdt, nodename);
701 /* Note that we can't use setprop_string because of the embedded NUL */
702 qemu_fdt_setprop(vms->fdt, nodename, "compatible",
703 compat, sizeof(compat));
704 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
705 2, base, 2, size);
706 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
707 GIC_FDT_IRQ_TYPE_SPI, irq,
708 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
709 qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks",
710 vms->clock_phandle, vms->clock_phandle);
711 qemu_fdt_setprop(vms->fdt, nodename, "clock-names",
712 clocknames, sizeof(clocknames));
713
714 if (uart == VIRT_UART) {
715 qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename);
716 } else {
717 /* Mark as not usable by the normal world */
718 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
719 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
720
721 qemu_fdt_add_subnode(vms->fdt, "/secure-chosen");
722 qemu_fdt_setprop_string(vms->fdt, "/secure-chosen", "stdout-path",
723 nodename);
724 }
725
726 g_free(nodename);
727 }
728
729 static void create_rtc(const VirtMachineState *vms, qemu_irq *pic)
730 {
731 char *nodename;
732 hwaddr base = vms->memmap[VIRT_RTC].base;
733 hwaddr size = vms->memmap[VIRT_RTC].size;
734 int irq = vms->irqmap[VIRT_RTC];
735 const char compat[] = "arm,pl031\0arm,primecell";
736
737 sysbus_create_simple("pl031", base, pic[irq]);
738
739 nodename = g_strdup_printf("/pl031@%" PRIx64, base);
740 qemu_fdt_add_subnode(vms->fdt, nodename);
741 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
742 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
743 2, base, 2, size);
744 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
745 GIC_FDT_IRQ_TYPE_SPI, irq,
746 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
747 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
748 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
749 g_free(nodename);
750 }
751
752 static DeviceState *gpio_key_dev;
753 static void virt_powerdown_req(Notifier *n, void *opaque)
754 {
755 /* use gpio Pin 3 for power button event */
756 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
757 }
758
759 static Notifier virt_system_powerdown_notifier = {
760 .notify = virt_powerdown_req
761 };
762
763 static void create_gpio(const VirtMachineState *vms, qemu_irq *pic)
764 {
765 char *nodename;
766 DeviceState *pl061_dev;
767 hwaddr base = vms->memmap[VIRT_GPIO].base;
768 hwaddr size = vms->memmap[VIRT_GPIO].size;
769 int irq = vms->irqmap[VIRT_GPIO];
770 const char compat[] = "arm,pl061\0arm,primecell";
771
772 pl061_dev = sysbus_create_simple("pl061", base, pic[irq]);
773
774 uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt);
775 nodename = g_strdup_printf("/pl061@%" PRIx64, base);
776 qemu_fdt_add_subnode(vms->fdt, nodename);
777 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
778 2, base, 2, size);
779 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
780 qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2);
781 qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0);
782 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
783 GIC_FDT_IRQ_TYPE_SPI, irq,
784 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
785 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
786 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
787 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle);
788
789 gpio_key_dev = sysbus_create_simple("gpio-key", -1,
790 qdev_get_gpio_in(pl061_dev, 3));
791 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys");
792 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys");
793 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0);
794 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1);
795
796 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff");
797 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff",
798 "label", "GPIO Key Poweroff");
799 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code",
800 KEY_POWER);
801 qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff",
802 "gpios", phandle, 3, 0);
803
804 /* connect powerdown request */
805 qemu_register_powerdown_notifier(&virt_system_powerdown_notifier);
806
807 g_free(nodename);
808 }
809
810 static void create_virtio_devices(const VirtMachineState *vms, qemu_irq *pic)
811 {
812 int i;
813 hwaddr size = vms->memmap[VIRT_MMIO].size;
814
815 /* We create the transports in forwards order. Since qbus_realize()
816 * prepends (not appends) new child buses, the incrementing loop below will
817 * create a list of virtio-mmio buses with decreasing base addresses.
818 *
819 * When a -device option is processed from the command line,
820 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
821 * order. The upshot is that -device options in increasing command line
822 * order are mapped to virtio-mmio buses with decreasing base addresses.
823 *
824 * When this code was originally written, that arrangement ensured that the
825 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
826 * the first -device on the command line. (The end-to-end order is a
827 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
828 * guest kernel's name-to-address assignment strategy.)
829 *
830 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
831 * the message, if not necessarily the code, of commit 70161ff336.
832 * Therefore the loop now establishes the inverse of the original intent.
833 *
834 * Unfortunately, we can't counteract the kernel change by reversing the
835 * loop; it would break existing command lines.
836 *
837 * In any case, the kernel makes no guarantee about the stability of
838 * enumeration order of virtio devices (as demonstrated by it changing
839 * between kernel versions). For reliable and stable identification
840 * of disks users must use UUIDs or similar mechanisms.
841 */
842 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
843 int irq = vms->irqmap[VIRT_MMIO] + i;
844 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
845
846 sysbus_create_simple("virtio-mmio", base, pic[irq]);
847 }
848
849 /* We add dtb nodes in reverse order so that they appear in the finished
850 * device tree lowest address first.
851 *
852 * Note that this mapping is independent of the loop above. The previous
853 * loop influences virtio device to virtio transport assignment, whereas
854 * this loop controls how virtio transports are laid out in the dtb.
855 */
856 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
857 char *nodename;
858 int irq = vms->irqmap[VIRT_MMIO] + i;
859 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
860
861 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
862 qemu_fdt_add_subnode(vms->fdt, nodename);
863 qemu_fdt_setprop_string(vms->fdt, nodename,
864 "compatible", "virtio,mmio");
865 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
866 2, base, 2, size);
867 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
868 GIC_FDT_IRQ_TYPE_SPI, irq,
869 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
870 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
871 g_free(nodename);
872 }
873 }
874
875 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
876
877 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms,
878 const char *name,
879 const char *alias_prop_name)
880 {
881 /*
882 * Create a single flash device. We use the same parameters as
883 * the flash devices on the Versatile Express board.
884 */
885 DeviceState *dev = qdev_create(NULL, TYPE_PFLASH_CFI01);
886
887 qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
888 qdev_prop_set_uint8(dev, "width", 4);
889 qdev_prop_set_uint8(dev, "device-width", 2);
890 qdev_prop_set_bit(dev, "big-endian", false);
891 qdev_prop_set_uint16(dev, "id0", 0x89);
892 qdev_prop_set_uint16(dev, "id1", 0x18);
893 qdev_prop_set_uint16(dev, "id2", 0x00);
894 qdev_prop_set_uint16(dev, "id3", 0x00);
895 qdev_prop_set_string(dev, "name", name);
896 object_property_add_child(OBJECT(vms), name, OBJECT(dev),
897 &error_abort);
898 object_property_add_alias(OBJECT(vms), alias_prop_name,
899 OBJECT(dev), "drive", &error_abort);
900 return PFLASH_CFI01(dev);
901 }
902
903 static void virt_flash_create(VirtMachineState *vms)
904 {
905 vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0");
906 vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1");
907 }
908
909 static void virt_flash_map1(PFlashCFI01 *flash,
910 hwaddr base, hwaddr size,
911 MemoryRegion *sysmem)
912 {
913 DeviceState *dev = DEVICE(flash);
914
915 assert(size % VIRT_FLASH_SECTOR_SIZE == 0);
916 assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
917 qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
918 qdev_init_nofail(dev);
919
920 memory_region_add_subregion(sysmem, base,
921 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
922 0));
923 }
924
925 static void virt_flash_map(VirtMachineState *vms,
926 MemoryRegion *sysmem,
927 MemoryRegion *secure_sysmem)
928 {
929 /*
930 * Map two flash devices to fill the VIRT_FLASH space in the memmap.
931 * sysmem is the system memory space. secure_sysmem is the secure view
932 * of the system, and the first flash device should be made visible only
933 * there. The second flash device is visible to both secure and nonsecure.
934 * If sysmem == secure_sysmem this means there is no separate Secure
935 * address space and both flash devices are generally visible.
936 */
937 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
938 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
939
940 virt_flash_map1(vms->flash[0], flashbase, flashsize,
941 secure_sysmem);
942 virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize,
943 sysmem);
944 }
945
946 static void virt_flash_fdt(VirtMachineState *vms,
947 MemoryRegion *sysmem,
948 MemoryRegion *secure_sysmem)
949 {
950 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
951 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
952 char *nodename;
953
954 if (sysmem == secure_sysmem) {
955 /* Report both flash devices as a single node in the DT */
956 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
957 qemu_fdt_add_subnode(vms->fdt, nodename);
958 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
959 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
960 2, flashbase, 2, flashsize,
961 2, flashbase + flashsize, 2, flashsize);
962 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
963 g_free(nodename);
964 } else {
965 /*
966 * Report the devices as separate nodes so we can mark one as
967 * only visible to the secure world.
968 */
969 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
970 qemu_fdt_add_subnode(vms->fdt, nodename);
971 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
972 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
973 2, flashbase, 2, flashsize);
974 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
975 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
976 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
977 g_free(nodename);
978
979 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
980 qemu_fdt_add_subnode(vms->fdt, nodename);
981 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
982 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
983 2, flashbase + flashsize, 2, flashsize);
984 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
985 g_free(nodename);
986 }
987 }
988
989 static bool virt_firmware_init(VirtMachineState *vms,
990 MemoryRegion *sysmem,
991 MemoryRegion *secure_sysmem)
992 {
993 int i;
994 BlockBackend *pflash_blk0;
995
996 /* Map legacy -drive if=pflash to machine properties */
997 for (i = 0; i < ARRAY_SIZE(vms->flash); i++) {
998 pflash_cfi01_legacy_drive(vms->flash[i],
999 drive_get(IF_PFLASH, 0, i));
1000 }
1001
1002 virt_flash_map(vms, sysmem, secure_sysmem);
1003
1004 pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]);
1005
1006 if (bios_name) {
1007 char *fname;
1008 MemoryRegion *mr;
1009 int image_size;
1010
1011 if (pflash_blk0) {
1012 error_report("The contents of the first flash device may be "
1013 "specified with -bios or with -drive if=pflash... "
1014 "but you cannot use both options at once");
1015 exit(1);
1016 }
1017
1018 /* Fall back to -bios */
1019
1020 fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1021 if (!fname) {
1022 error_report("Could not find ROM image '%s'", bios_name);
1023 exit(1);
1024 }
1025 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0);
1026 image_size = load_image_mr(fname, mr);
1027 g_free(fname);
1028 if (image_size < 0) {
1029 error_report("Could not load ROM image '%s'", bios_name);
1030 exit(1);
1031 }
1032 }
1033
1034 return pflash_blk0 || bios_name;
1035 }
1036
1037 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
1038 {
1039 hwaddr base = vms->memmap[VIRT_FW_CFG].base;
1040 hwaddr size = vms->memmap[VIRT_FW_CFG].size;
1041 FWCfgState *fw_cfg;
1042 char *nodename;
1043
1044 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
1045 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus);
1046
1047 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
1048 qemu_fdt_add_subnode(vms->fdt, nodename);
1049 qemu_fdt_setprop_string(vms->fdt, nodename,
1050 "compatible", "qemu,fw-cfg-mmio");
1051 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1052 2, base, 2, size);
1053 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1054 g_free(nodename);
1055 return fw_cfg;
1056 }
1057
1058 static void create_pcie_irq_map(const VirtMachineState *vms,
1059 uint32_t gic_phandle,
1060 int first_irq, const char *nodename)
1061 {
1062 int devfn, pin;
1063 uint32_t full_irq_map[4 * 4 * 10] = { 0 };
1064 uint32_t *irq_map = full_irq_map;
1065
1066 for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
1067 for (pin = 0; pin < 4; pin++) {
1068 int irq_type = GIC_FDT_IRQ_TYPE_SPI;
1069 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
1070 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
1071 int i;
1072
1073 uint32_t map[] = {
1074 devfn << 8, 0, 0, /* devfn */
1075 pin + 1, /* PCI pin */
1076 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
1077
1078 /* Convert map to big endian */
1079 for (i = 0; i < 10; i++) {
1080 irq_map[i] = cpu_to_be32(map[i]);
1081 }
1082 irq_map += 10;
1083 }
1084 }
1085
1086 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map",
1087 full_irq_map, sizeof(full_irq_map));
1088
1089 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask",
1090 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
1091 0x7 /* PCI irq */);
1092 }
1093
1094 static void create_smmu(const VirtMachineState *vms, qemu_irq *pic,
1095 PCIBus *bus)
1096 {
1097 char *node;
1098 const char compat[] = "arm,smmu-v3";
1099 int irq = vms->irqmap[VIRT_SMMU];
1100 int i;
1101 hwaddr base = vms->memmap[VIRT_SMMU].base;
1102 hwaddr size = vms->memmap[VIRT_SMMU].size;
1103 const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
1104 DeviceState *dev;
1105
1106 if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
1107 return;
1108 }
1109
1110 dev = qdev_create(NULL, "arm-smmuv3");
1111
1112 object_property_set_link(OBJECT(dev), OBJECT(bus), "primary-bus",
1113 &error_abort);
1114 qdev_init_nofail(dev);
1115 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
1116 for (i = 0; i < NUM_SMMU_IRQS; i++) {
1117 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1118 }
1119
1120 node = g_strdup_printf("/smmuv3@%" PRIx64, base);
1121 qemu_fdt_add_subnode(vms->fdt, node);
1122 qemu_fdt_setprop(vms->fdt, node, "compatible", compat, sizeof(compat));
1123 qemu_fdt_setprop_sized_cells(vms->fdt, node, "reg", 2, base, 2, size);
1124
1125 qemu_fdt_setprop_cells(vms->fdt, node, "interrupts",
1126 GIC_FDT_IRQ_TYPE_SPI, irq , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1127 GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1128 GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1129 GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1130
1131 qemu_fdt_setprop(vms->fdt, node, "interrupt-names", irq_names,
1132 sizeof(irq_names));
1133
1134 qemu_fdt_setprop_cell(vms->fdt, node, "clocks", vms->clock_phandle);
1135 qemu_fdt_setprop_string(vms->fdt, node, "clock-names", "apb_pclk");
1136 qemu_fdt_setprop(vms->fdt, node, "dma-coherent", NULL, 0);
1137
1138 qemu_fdt_setprop_cell(vms->fdt, node, "#iommu-cells", 1);
1139
1140 qemu_fdt_setprop_cell(vms->fdt, node, "phandle", vms->iommu_phandle);
1141 g_free(node);
1142 }
1143
1144 static void create_pcie(VirtMachineState *vms, qemu_irq *pic)
1145 {
1146 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1147 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
1148 hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base;
1149 hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size;
1150 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1151 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
1152 hwaddr base_ecam, size_ecam;
1153 hwaddr base = base_mmio;
1154 int nr_pcie_buses;
1155 int irq = vms->irqmap[VIRT_PCIE];
1156 MemoryRegion *mmio_alias;
1157 MemoryRegion *mmio_reg;
1158 MemoryRegion *ecam_alias;
1159 MemoryRegion *ecam_reg;
1160 DeviceState *dev;
1161 char *nodename;
1162 int i, ecam_id;
1163 PCIHostState *pci;
1164
1165 dev = qdev_create(NULL, TYPE_GPEX_HOST);
1166 qdev_init_nofail(dev);
1167
1168 ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
1169 base_ecam = vms->memmap[ecam_id].base;
1170 size_ecam = vms->memmap[ecam_id].size;
1171 nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
1172 /* Map only the first size_ecam bytes of ECAM space */
1173 ecam_alias = g_new0(MemoryRegion, 1);
1174 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1175 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1176 ecam_reg, 0, size_ecam);
1177 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1178
1179 /* Map the MMIO window into system address space so as to expose
1180 * the section of PCI MMIO space which starts at the same base address
1181 * (ie 1:1 mapping for that part of PCI MMIO space visible through
1182 * the window).
1183 */
1184 mmio_alias = g_new0(MemoryRegion, 1);
1185 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1186 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1187 mmio_reg, base_mmio, size_mmio);
1188 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1189
1190 if (vms->highmem) {
1191 /* Map high MMIO space */
1192 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1193
1194 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1195 mmio_reg, base_mmio_high, size_mmio_high);
1196 memory_region_add_subregion(get_system_memory(), base_mmio_high,
1197 high_mmio_alias);
1198 }
1199
1200 /* Map IO port space */
1201 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1202
1203 for (i = 0; i < GPEX_NUM_IRQS; i++) {
1204 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1205 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
1206 }
1207
1208 pci = PCI_HOST_BRIDGE(dev);
1209 if (pci->bus) {
1210 for (i = 0; i < nb_nics; i++) {
1211 NICInfo *nd = &nd_table[i];
1212
1213 if (!nd->model) {
1214 nd->model = g_strdup("virtio");
1215 }
1216
1217 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1218 }
1219 }
1220
1221 nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1222 qemu_fdt_add_subnode(vms->fdt, nodename);
1223 qemu_fdt_setprop_string(vms->fdt, nodename,
1224 "compatible", "pci-host-ecam-generic");
1225 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci");
1226 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3);
1227 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2);
1228 qemu_fdt_setprop_cell(vms->fdt, nodename, "linux,pci-domain", 0);
1229 qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0,
1230 nr_pcie_buses - 1);
1231 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1232
1233 if (vms->msi_phandle) {
1234 qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent",
1235 vms->msi_phandle);
1236 }
1237
1238 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1239 2, base_ecam, 2, size_ecam);
1240
1241 if (vms->highmem) {
1242 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1243 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1244 2, base_pio, 2, size_pio,
1245 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1246 2, base_mmio, 2, size_mmio,
1247 1, FDT_PCI_RANGE_MMIO_64BIT,
1248 2, base_mmio_high,
1249 2, base_mmio_high, 2, size_mmio_high);
1250 } else {
1251 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1252 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1253 2, base_pio, 2, size_pio,
1254 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1255 2, base_mmio, 2, size_mmio);
1256 }
1257
1258 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1);
1259 create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename);
1260
1261 if (vms->iommu) {
1262 vms->iommu_phandle = qemu_fdt_alloc_phandle(vms->fdt);
1263
1264 create_smmu(vms, pic, pci->bus);
1265
1266 qemu_fdt_setprop_cells(vms->fdt, nodename, "iommu-map",
1267 0x0, vms->iommu_phandle, 0x0, 0x10000);
1268 }
1269
1270 g_free(nodename);
1271 }
1272
1273 static void create_platform_bus(VirtMachineState *vms, qemu_irq *pic)
1274 {
1275 DeviceState *dev;
1276 SysBusDevice *s;
1277 int i;
1278 MemoryRegion *sysmem = get_system_memory();
1279
1280 dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
1281 dev->id = TYPE_PLATFORM_BUS_DEVICE;
1282 qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
1283 qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
1284 qdev_init_nofail(dev);
1285 vms->platform_bus_dev = dev;
1286
1287 s = SYS_BUS_DEVICE(dev);
1288 for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
1289 int irqn = vms->irqmap[VIRT_PLATFORM_BUS] + i;
1290 sysbus_connect_irq(s, i, pic[irqn]);
1291 }
1292
1293 memory_region_add_subregion(sysmem,
1294 vms->memmap[VIRT_PLATFORM_BUS].base,
1295 sysbus_mmio_get_region(s, 0));
1296 }
1297
1298 static void create_secure_ram(VirtMachineState *vms,
1299 MemoryRegion *secure_sysmem)
1300 {
1301 MemoryRegion *secram = g_new(MemoryRegion, 1);
1302 char *nodename;
1303 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1304 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1305
1306 memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1307 &error_fatal);
1308 memory_region_add_subregion(secure_sysmem, base, secram);
1309
1310 nodename = g_strdup_printf("/secram@%" PRIx64, base);
1311 qemu_fdt_add_subnode(vms->fdt, nodename);
1312 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory");
1313 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size);
1314 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
1315 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
1316
1317 g_free(nodename);
1318 }
1319
1320 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1321 {
1322 const VirtMachineState *board = container_of(binfo, VirtMachineState,
1323 bootinfo);
1324
1325 *fdt_size = board->fdt_size;
1326 return board->fdt;
1327 }
1328
1329 static void virt_build_smbios(VirtMachineState *vms)
1330 {
1331 MachineClass *mc = MACHINE_GET_CLASS(vms);
1332 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1333 uint8_t *smbios_tables, *smbios_anchor;
1334 size_t smbios_tables_len, smbios_anchor_len;
1335 const char *product = "QEMU Virtual Machine";
1336
1337 if (kvm_enabled()) {
1338 product = "KVM Virtual Machine";
1339 }
1340
1341 smbios_set_defaults("QEMU", product,
1342 vmc->smbios_old_sys_ver ? "1.0" : mc->name, false,
1343 true, SMBIOS_ENTRY_POINT_30);
1344
1345 smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len,
1346 &smbios_anchor, &smbios_anchor_len);
1347
1348 if (smbios_anchor) {
1349 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1350 smbios_tables, smbios_tables_len);
1351 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1352 smbios_anchor, smbios_anchor_len);
1353 }
1354 }
1355
1356 static
1357 void virt_machine_done(Notifier *notifier, void *data)
1358 {
1359 VirtMachineState *vms = container_of(notifier, VirtMachineState,
1360 machine_done);
1361 ARMCPU *cpu = ARM_CPU(first_cpu);
1362 struct arm_boot_info *info = &vms->bootinfo;
1363 AddressSpace *as = arm_boot_address_space(cpu, info);
1364
1365 /*
1366 * If the user provided a dtb, we assume the dynamic sysbus nodes
1367 * already are integrated there. This corresponds to a use case where
1368 * the dynamic sysbus nodes are complex and their generation is not yet
1369 * supported. In that case the user can take charge of the guest dt
1370 * while qemu takes charge of the qom stuff.
1371 */
1372 if (info->dtb_filename == NULL) {
1373 platform_bus_add_all_fdt_nodes(vms->fdt, "/intc",
1374 vms->memmap[VIRT_PLATFORM_BUS].base,
1375 vms->memmap[VIRT_PLATFORM_BUS].size,
1376 vms->irqmap[VIRT_PLATFORM_BUS]);
1377 }
1378 if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as) < 0) {
1379 exit(1);
1380 }
1381
1382 virt_acpi_setup(vms);
1383 virt_build_smbios(vms);
1384 }
1385
1386 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1387 {
1388 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1389 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1390
1391 if (!vmc->disallow_affinity_adjustment) {
1392 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1393 * GIC's target-list limitations. 32-bit KVM hosts currently
1394 * always create clusters of 4 CPUs, but that is expected to
1395 * change when they gain support for gicv3. When KVM is enabled
1396 * it will override the changes we make here, therefore our
1397 * purposes are to make TCG consistent (with 64-bit KVM hosts)
1398 * and to improve SGI efficiency.
1399 */
1400 if (vms->gic_version == 3) {
1401 clustersz = GICV3_TARGETLIST_BITS;
1402 } else {
1403 clustersz = GIC_TARGETLIST_BITS;
1404 }
1405 }
1406 return arm_cpu_mp_affinity(idx, clustersz);
1407 }
1408
1409 static void virt_set_memmap(VirtMachineState *vms)
1410 {
1411 MachineState *ms = MACHINE(vms);
1412 hwaddr base, device_memory_base, device_memory_size;
1413 int i;
1414
1415 vms->memmap = extended_memmap;
1416
1417 for (i = 0; i < ARRAY_SIZE(base_memmap); i++) {
1418 vms->memmap[i] = base_memmap[i];
1419 }
1420
1421 if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) {
1422 error_report("unsupported number of memory slots: %"PRIu64,
1423 ms->ram_slots);
1424 exit(EXIT_FAILURE);
1425 }
1426
1427 /*
1428 * We compute the base of the high IO region depending on the
1429 * amount of initial and device memory. The device memory start/size
1430 * is aligned on 1GiB. We never put the high IO region below 256GiB
1431 * so that if maxram_size is < 255GiB we keep the legacy memory map.
1432 * The device region size assumes 1GiB page max alignment per slot.
1433 */
1434 device_memory_base =
1435 ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB);
1436 device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB;
1437
1438 /* Base address of the high IO region */
1439 base = device_memory_base + ROUND_UP(device_memory_size, GiB);
1440 if (base < device_memory_base) {
1441 error_report("maxmem/slots too huge");
1442 exit(EXIT_FAILURE);
1443 }
1444 if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) {
1445 base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES;
1446 }
1447
1448 for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) {
1449 hwaddr size = extended_memmap[i].size;
1450
1451 base = ROUND_UP(base, size);
1452 vms->memmap[i].base = base;
1453 vms->memmap[i].size = size;
1454 base += size;
1455 }
1456 vms->highest_gpa = base - 1;
1457 if (device_memory_size > 0) {
1458 ms->device_memory = g_malloc0(sizeof(*ms->device_memory));
1459 ms->device_memory->base = device_memory_base;
1460 memory_region_init(&ms->device_memory->mr, OBJECT(vms),
1461 "device-memory", device_memory_size);
1462 }
1463 }
1464
1465 static void machvirt_init(MachineState *machine)
1466 {
1467 VirtMachineState *vms = VIRT_MACHINE(machine);
1468 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
1469 MachineClass *mc = MACHINE_GET_CLASS(machine);
1470 const CPUArchIdList *possible_cpus;
1471 qemu_irq pic[NUM_IRQS];
1472 MemoryRegion *sysmem = get_system_memory();
1473 MemoryRegion *secure_sysmem = NULL;
1474 int n, virt_max_cpus;
1475 MemoryRegion *ram = g_new(MemoryRegion, 1);
1476 bool firmware_loaded;
1477 bool aarch64 = true;
1478
1479 /*
1480 * In accelerated mode, the memory map is computed earlier in kvm_type()
1481 * to create a VM with the right number of IPA bits.
1482 */
1483 if (!vms->memmap) {
1484 virt_set_memmap(vms);
1485 }
1486
1487 /* We can probe only here because during property set
1488 * KVM is not available yet
1489 */
1490 if (vms->gic_version <= 0) {
1491 /* "host" or "max" */
1492 if (!kvm_enabled()) {
1493 if (vms->gic_version == 0) {
1494 error_report("gic-version=host requires KVM");
1495 exit(1);
1496 } else {
1497 /* "max": currently means 3 for TCG */
1498 vms->gic_version = 3;
1499 }
1500 } else {
1501 vms->gic_version = kvm_arm_vgic_probe();
1502 if (!vms->gic_version) {
1503 error_report(
1504 "Unable to determine GIC version supported by host");
1505 exit(1);
1506 }
1507 }
1508 }
1509
1510 if (!cpu_type_valid(machine->cpu_type)) {
1511 error_report("mach-virt: CPU type %s not supported", machine->cpu_type);
1512 exit(1);
1513 }
1514
1515 if (vms->secure) {
1516 if (kvm_enabled()) {
1517 error_report("mach-virt: KVM does not support Security extensions");
1518 exit(1);
1519 }
1520
1521 /*
1522 * The Secure view of the world is the same as the NonSecure,
1523 * but with a few extra devices. Create it as a container region
1524 * containing the system memory at low priority; any secure-only
1525 * devices go in at higher priority and take precedence.
1526 */
1527 secure_sysmem = g_new(MemoryRegion, 1);
1528 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1529 UINT64_MAX);
1530 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1531 }
1532
1533 firmware_loaded = virt_firmware_init(vms, sysmem,
1534 secure_sysmem ?: sysmem);
1535
1536 /* If we have an EL3 boot ROM then the assumption is that it will
1537 * implement PSCI itself, so disable QEMU's internal implementation
1538 * so it doesn't get in the way. Instead of starting secondary
1539 * CPUs in PSCI powerdown state we will start them all running and
1540 * let the boot ROM sort them out.
1541 * The usual case is that we do use QEMU's PSCI implementation;
1542 * if the guest has EL2 then we will use SMC as the conduit,
1543 * and otherwise we will use HVC (for backwards compatibility and
1544 * because if we're using KVM then we must use HVC).
1545 */
1546 if (vms->secure && firmware_loaded) {
1547 vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
1548 } else if (vms->virt) {
1549 vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
1550 } else {
1551 vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
1552 }
1553
1554 /* The maximum number of CPUs depends on the GIC version, or on how
1555 * many redistributors we can fit into the memory map.
1556 */
1557 if (vms->gic_version == 3) {
1558 virt_max_cpus =
1559 vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
1560 virt_max_cpus +=
1561 vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE;
1562 } else {
1563 virt_max_cpus = GIC_NCPU;
1564 }
1565
1566 if (max_cpus > virt_max_cpus) {
1567 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1568 "supported by machine 'mach-virt' (%d)",
1569 max_cpus, virt_max_cpus);
1570 exit(1);
1571 }
1572
1573 vms->smp_cpus = smp_cpus;
1574
1575 if (vms->virt && kvm_enabled()) {
1576 error_report("mach-virt: KVM does not support providing "
1577 "Virtualization extensions to the guest CPU");
1578 exit(1);
1579 }
1580
1581 create_fdt(vms);
1582
1583 possible_cpus = mc->possible_cpu_arch_ids(machine);
1584 for (n = 0; n < possible_cpus->len; n++) {
1585 Object *cpuobj;
1586 CPUState *cs;
1587
1588 if (n >= smp_cpus) {
1589 break;
1590 }
1591
1592 cpuobj = object_new(possible_cpus->cpus[n].type);
1593 object_property_set_int(cpuobj, possible_cpus->cpus[n].arch_id,
1594 "mp-affinity", NULL);
1595
1596 cs = CPU(cpuobj);
1597 cs->cpu_index = n;
1598
1599 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
1600 &error_fatal);
1601
1602 aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
1603
1604 if (!vms->secure) {
1605 object_property_set_bool(cpuobj, false, "has_el3", NULL);
1606 }
1607
1608 if (!vms->virt && object_property_find(cpuobj, "has_el2", NULL)) {
1609 object_property_set_bool(cpuobj, false, "has_el2", NULL);
1610 }
1611
1612 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
1613 object_property_set_int(cpuobj, vms->psci_conduit,
1614 "psci-conduit", NULL);
1615
1616 /* Secondary CPUs start in PSCI powered-down state */
1617 if (n > 0) {
1618 object_property_set_bool(cpuobj, true,
1619 "start-powered-off", NULL);
1620 }
1621 }
1622
1623 if (vmc->no_pmu && object_property_find(cpuobj, "pmu", NULL)) {
1624 object_property_set_bool(cpuobj, false, "pmu", NULL);
1625 }
1626
1627 if (object_property_find(cpuobj, "reset-cbar", NULL)) {
1628 object_property_set_int(cpuobj, vms->memmap[VIRT_CPUPERIPHS].base,
1629 "reset-cbar", &error_abort);
1630 }
1631
1632 object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
1633 &error_abort);
1634 if (vms->secure) {
1635 object_property_set_link(cpuobj, OBJECT(secure_sysmem),
1636 "secure-memory", &error_abort);
1637 }
1638
1639 object_property_set_bool(cpuobj, true, "realized", &error_fatal);
1640 object_unref(cpuobj);
1641 }
1642 fdt_add_timer_nodes(vms);
1643 fdt_add_cpu_nodes(vms);
1644
1645 if (!kvm_enabled()) {
1646 ARMCPU *cpu = ARM_CPU(first_cpu);
1647 bool aarch64 = object_property_get_bool(OBJECT(cpu), "aarch64", NULL);
1648
1649 if (aarch64 && vms->highmem) {
1650 int requested_pa_size, pamax = arm_pamax(cpu);
1651
1652 requested_pa_size = 64 - clz64(vms->highest_gpa);
1653 if (pamax < requested_pa_size) {
1654 error_report("VCPU supports less PA bits (%d) than requested "
1655 "by the memory map (%d)", pamax, requested_pa_size);
1656 exit(1);
1657 }
1658 }
1659 }
1660
1661 memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
1662 machine->ram_size);
1663 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, ram);
1664 if (machine->device_memory) {
1665 memory_region_add_subregion(sysmem, machine->device_memory->base,
1666 &machine->device_memory->mr);
1667 }
1668
1669 virt_flash_fdt(vms, sysmem, secure_sysmem);
1670
1671 create_gic(vms, pic);
1672
1673 fdt_add_pmu_nodes(vms);
1674
1675 create_uart(vms, pic, VIRT_UART, sysmem, serial_hd(0));
1676
1677 if (vms->secure) {
1678 create_secure_ram(vms, secure_sysmem);
1679 create_uart(vms, pic, VIRT_SECURE_UART, secure_sysmem, serial_hd(1));
1680 }
1681
1682 vms->highmem_ecam &= vms->highmem && (!firmware_loaded || aarch64);
1683
1684 create_rtc(vms, pic);
1685
1686 create_pcie(vms, pic);
1687
1688 create_gpio(vms, pic);
1689
1690 /* Create mmio transports, so the user can create virtio backends
1691 * (which will be automatically plugged in to the transports). If
1692 * no backend is created the transport will just sit harmlessly idle.
1693 */
1694 create_virtio_devices(vms, pic);
1695
1696 vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
1697 rom_set_fw(vms->fw_cfg);
1698
1699 create_platform_bus(vms, pic);
1700
1701 vms->bootinfo.ram_size = machine->ram_size;
1702 vms->bootinfo.kernel_filename = machine->kernel_filename;
1703 vms->bootinfo.kernel_cmdline = machine->kernel_cmdline;
1704 vms->bootinfo.initrd_filename = machine->initrd_filename;
1705 vms->bootinfo.nb_cpus = smp_cpus;
1706 vms->bootinfo.board_id = -1;
1707 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
1708 vms->bootinfo.get_dtb = machvirt_dtb;
1709 vms->bootinfo.skip_dtb_autoload = true;
1710 vms->bootinfo.firmware_loaded = firmware_loaded;
1711 arm_load_kernel(ARM_CPU(first_cpu), &vms->bootinfo);
1712
1713 vms->machine_done.notify = virt_machine_done;
1714 qemu_add_machine_init_done_notifier(&vms->machine_done);
1715 }
1716
1717 static bool virt_get_secure(Object *obj, Error **errp)
1718 {
1719 VirtMachineState *vms = VIRT_MACHINE(obj);
1720
1721 return vms->secure;
1722 }
1723
1724 static void virt_set_secure(Object *obj, bool value, Error **errp)
1725 {
1726 VirtMachineState *vms = VIRT_MACHINE(obj);
1727
1728 vms->secure = value;
1729 }
1730
1731 static bool virt_get_virt(Object *obj, Error **errp)
1732 {
1733 VirtMachineState *vms = VIRT_MACHINE(obj);
1734
1735 return vms->virt;
1736 }
1737
1738 static void virt_set_virt(Object *obj, bool value, Error **errp)
1739 {
1740 VirtMachineState *vms = VIRT_MACHINE(obj);
1741
1742 vms->virt = value;
1743 }
1744
1745 static bool virt_get_highmem(Object *obj, Error **errp)
1746 {
1747 VirtMachineState *vms = VIRT_MACHINE(obj);
1748
1749 return vms->highmem;
1750 }
1751
1752 static void virt_set_highmem(Object *obj, bool value, Error **errp)
1753 {
1754 VirtMachineState *vms = VIRT_MACHINE(obj);
1755
1756 vms->highmem = value;
1757 }
1758
1759 static bool virt_get_its(Object *obj, Error **errp)
1760 {
1761 VirtMachineState *vms = VIRT_MACHINE(obj);
1762
1763 return vms->its;
1764 }
1765
1766 static void virt_set_its(Object *obj, bool value, Error **errp)
1767 {
1768 VirtMachineState *vms = VIRT_MACHINE(obj);
1769
1770 vms->its = value;
1771 }
1772
1773 static char *virt_get_gic_version(Object *obj, Error **errp)
1774 {
1775 VirtMachineState *vms = VIRT_MACHINE(obj);
1776 const char *val = vms->gic_version == 3 ? "3" : "2";
1777
1778 return g_strdup(val);
1779 }
1780
1781 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
1782 {
1783 VirtMachineState *vms = VIRT_MACHINE(obj);
1784
1785 if (!strcmp(value, "3")) {
1786 vms->gic_version = 3;
1787 } else if (!strcmp(value, "2")) {
1788 vms->gic_version = 2;
1789 } else if (!strcmp(value, "host")) {
1790 vms->gic_version = 0; /* Will probe later */
1791 } else if (!strcmp(value, "max")) {
1792 vms->gic_version = -1; /* Will probe later */
1793 } else {
1794 error_setg(errp, "Invalid gic-version value");
1795 error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
1796 }
1797 }
1798
1799 static char *virt_get_iommu(Object *obj, Error **errp)
1800 {
1801 VirtMachineState *vms = VIRT_MACHINE(obj);
1802
1803 switch (vms->iommu) {
1804 case VIRT_IOMMU_NONE:
1805 return g_strdup("none");
1806 case VIRT_IOMMU_SMMUV3:
1807 return g_strdup("smmuv3");
1808 default:
1809 g_assert_not_reached();
1810 }
1811 }
1812
1813 static void virt_set_iommu(Object *obj, const char *value, Error **errp)
1814 {
1815 VirtMachineState *vms = VIRT_MACHINE(obj);
1816
1817 if (!strcmp(value, "smmuv3")) {
1818 vms->iommu = VIRT_IOMMU_SMMUV3;
1819 } else if (!strcmp(value, "none")) {
1820 vms->iommu = VIRT_IOMMU_NONE;
1821 } else {
1822 error_setg(errp, "Invalid iommu value");
1823 error_append_hint(errp, "Valid values are none, smmuv3.\n");
1824 }
1825 }
1826
1827 static CpuInstanceProperties
1828 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
1829 {
1830 MachineClass *mc = MACHINE_GET_CLASS(ms);
1831 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
1832
1833 assert(cpu_index < possible_cpus->len);
1834 return possible_cpus->cpus[cpu_index].props;
1835 }
1836
1837 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
1838 {
1839 return idx % nb_numa_nodes;
1840 }
1841
1842 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
1843 {
1844 int n;
1845 VirtMachineState *vms = VIRT_MACHINE(ms);
1846
1847 if (ms->possible_cpus) {
1848 assert(ms->possible_cpus->len == max_cpus);
1849 return ms->possible_cpus;
1850 }
1851
1852 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
1853 sizeof(CPUArchId) * max_cpus);
1854 ms->possible_cpus->len = max_cpus;
1855 for (n = 0; n < ms->possible_cpus->len; n++) {
1856 ms->possible_cpus->cpus[n].type = ms->cpu_type;
1857 ms->possible_cpus->cpus[n].arch_id =
1858 virt_cpu_mp_affinity(vms, n);
1859 ms->possible_cpus->cpus[n].props.has_thread_id = true;
1860 ms->possible_cpus->cpus[n].props.thread_id = n;
1861 }
1862 return ms->possible_cpus;
1863 }
1864
1865 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
1866 DeviceState *dev, Error **errp)
1867 {
1868 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
1869
1870 if (vms->platform_bus_dev) {
1871 if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) {
1872 platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
1873 SYS_BUS_DEVICE(dev));
1874 }
1875 }
1876 }
1877
1878 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
1879 DeviceState *dev)
1880 {
1881 if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) {
1882 return HOTPLUG_HANDLER(machine);
1883 }
1884
1885 return NULL;
1886 }
1887
1888 /*
1889 * for arm64 kvm_type [7-0] encodes the requested number of bits
1890 * in the IPA address space
1891 */
1892 static int virt_kvm_type(MachineState *ms, const char *type_str)
1893 {
1894 VirtMachineState *vms = VIRT_MACHINE(ms);
1895 int max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms);
1896 int requested_pa_size;
1897
1898 /* we freeze the memory map to compute the highest gpa */
1899 virt_set_memmap(vms);
1900
1901 requested_pa_size = 64 - clz64(vms->highest_gpa);
1902
1903 if (requested_pa_size > max_vm_pa_size) {
1904 error_report("-m and ,maxmem option values "
1905 "require an IPA range (%d bits) larger than "
1906 "the one supported by the host (%d bits)",
1907 requested_pa_size, max_vm_pa_size);
1908 exit(1);
1909 }
1910 /*
1911 * By default we return 0 which corresponds to an implicit legacy
1912 * 40b IPA setting. Otherwise we return the actual requested PA
1913 * logsize
1914 */
1915 return requested_pa_size > 40 ? requested_pa_size : 0;
1916 }
1917
1918 static void virt_machine_class_init(ObjectClass *oc, void *data)
1919 {
1920 MachineClass *mc = MACHINE_CLASS(oc);
1921 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
1922
1923 mc->init = machvirt_init;
1924 /* Start with max_cpus set to 512, which is the maximum supported by KVM.
1925 * The value may be reduced later when we have more information about the
1926 * configuration of the particular instance.
1927 */
1928 mc->max_cpus = 512;
1929 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
1930 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
1931 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
1932 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM);
1933 mc->block_default_type = IF_VIRTIO;
1934 mc->no_cdrom = 1;
1935 mc->pci_allow_0_address = true;
1936 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
1937 mc->minimum_page_bits = 12;
1938 mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
1939 mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
1940 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
1941 mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
1942 mc->kvm_type = virt_kvm_type;
1943 assert(!mc->get_hotplug_handler);
1944 mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
1945 hc->plug = virt_machine_device_plug_cb;
1946 }
1947
1948 static void virt_instance_init(Object *obj)
1949 {
1950 VirtMachineState *vms = VIRT_MACHINE(obj);
1951 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1952
1953 /* EL3 is disabled by default on virt: this makes us consistent
1954 * between KVM and TCG for this board, and it also allows us to
1955 * boot UEFI blobs which assume no TrustZone support.
1956 */
1957 vms->secure = false;
1958 object_property_add_bool(obj, "secure", virt_get_secure,
1959 virt_set_secure, NULL);
1960 object_property_set_description(obj, "secure",
1961 "Set on/off to enable/disable the ARM "
1962 "Security Extensions (TrustZone)",
1963 NULL);
1964
1965 /* EL2 is also disabled by default, for similar reasons */
1966 vms->virt = false;
1967 object_property_add_bool(obj, "virtualization", virt_get_virt,
1968 virt_set_virt, NULL);
1969 object_property_set_description(obj, "virtualization",
1970 "Set on/off to enable/disable emulating a "
1971 "guest CPU which implements the ARM "
1972 "Virtualization Extensions",
1973 NULL);
1974
1975 /* High memory is enabled by default */
1976 vms->highmem = true;
1977 object_property_add_bool(obj, "highmem", virt_get_highmem,
1978 virt_set_highmem, NULL);
1979 object_property_set_description(obj, "highmem",
1980 "Set on/off to enable/disable using "
1981 "physical address space above 32 bits",
1982 NULL);
1983 /* Default GIC type is v2 */
1984 vms->gic_version = 2;
1985 object_property_add_str(obj, "gic-version", virt_get_gic_version,
1986 virt_set_gic_version, NULL);
1987 object_property_set_description(obj, "gic-version",
1988 "Set GIC version. "
1989 "Valid values are 2, 3 and host", NULL);
1990
1991 vms->highmem_ecam = !vmc->no_highmem_ecam;
1992
1993 if (vmc->no_its) {
1994 vms->its = false;
1995 } else {
1996 /* Default allows ITS instantiation */
1997 vms->its = true;
1998 object_property_add_bool(obj, "its", virt_get_its,
1999 virt_set_its, NULL);
2000 object_property_set_description(obj, "its",
2001 "Set on/off to enable/disable "
2002 "ITS instantiation",
2003 NULL);
2004 }
2005
2006 /* Default disallows iommu instantiation */
2007 vms->iommu = VIRT_IOMMU_NONE;
2008 object_property_add_str(obj, "iommu", virt_get_iommu, virt_set_iommu, NULL);
2009 object_property_set_description(obj, "iommu",
2010 "Set the IOMMU type. "
2011 "Valid values are none and smmuv3",
2012 NULL);
2013
2014 vms->irqmap = a15irqmap;
2015
2016 virt_flash_create(vms);
2017 }
2018
2019 static const TypeInfo virt_machine_info = {
2020 .name = TYPE_VIRT_MACHINE,
2021 .parent = TYPE_MACHINE,
2022 .abstract = true,
2023 .instance_size = sizeof(VirtMachineState),
2024 .class_size = sizeof(VirtMachineClass),
2025 .class_init = virt_machine_class_init,
2026 .instance_init = virt_instance_init,
2027 .interfaces = (InterfaceInfo[]) {
2028 { TYPE_HOTPLUG_HANDLER },
2029 { }
2030 },
2031 };
2032
2033 static void machvirt_machine_init(void)
2034 {
2035 type_register_static(&virt_machine_info);
2036 }
2037 type_init(machvirt_machine_init);
2038
2039 static void virt_machine_4_1_options(MachineClass *mc)
2040 {
2041 }
2042 DEFINE_VIRT_MACHINE_AS_LATEST(4, 1)
2043
2044 static void virt_machine_4_0_options(MachineClass *mc)
2045 {
2046 virt_machine_4_1_options(mc);
2047 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
2048 }
2049 DEFINE_VIRT_MACHINE(4, 0)
2050
2051 static void virt_machine_3_1_options(MachineClass *mc)
2052 {
2053 virt_machine_4_0_options(mc);
2054 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
2055 }
2056 DEFINE_VIRT_MACHINE(3, 1)
2057
2058 static void virt_machine_3_0_options(MachineClass *mc)
2059 {
2060 virt_machine_3_1_options(mc);
2061 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
2062 }
2063 DEFINE_VIRT_MACHINE(3, 0)
2064
2065 static void virt_machine_2_12_options(MachineClass *mc)
2066 {
2067 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2068
2069 virt_machine_3_0_options(mc);
2070 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
2071 vmc->no_highmem_ecam = true;
2072 mc->max_cpus = 255;
2073 }
2074 DEFINE_VIRT_MACHINE(2, 12)
2075
2076 static void virt_machine_2_11_options(MachineClass *mc)
2077 {
2078 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2079
2080 virt_machine_2_12_options(mc);
2081 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
2082 vmc->smbios_old_sys_ver = true;
2083 }
2084 DEFINE_VIRT_MACHINE(2, 11)
2085
2086 static void virt_machine_2_10_options(MachineClass *mc)
2087 {
2088 virt_machine_2_11_options(mc);
2089 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
2090 /* before 2.11 we never faulted accesses to bad addresses */
2091 mc->ignore_memory_transaction_failures = true;
2092 }
2093 DEFINE_VIRT_MACHINE(2, 10)
2094
2095 static void virt_machine_2_9_options(MachineClass *mc)
2096 {
2097 virt_machine_2_10_options(mc);
2098 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
2099 }
2100 DEFINE_VIRT_MACHINE(2, 9)
2101
2102 static void virt_machine_2_8_options(MachineClass *mc)
2103 {
2104 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2105
2106 virt_machine_2_9_options(mc);
2107 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
2108 /* For 2.8 and earlier we falsely claimed in the DT that
2109 * our timers were edge-triggered, not level-triggered.
2110 */
2111 vmc->claim_edge_triggered_timers = true;
2112 }
2113 DEFINE_VIRT_MACHINE(2, 8)
2114
2115 static void virt_machine_2_7_options(MachineClass *mc)
2116 {
2117 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2118
2119 virt_machine_2_8_options(mc);
2120 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
2121 /* ITS was introduced with 2.8 */
2122 vmc->no_its = true;
2123 /* Stick with 1K pages for migration compatibility */
2124 mc->minimum_page_bits = 0;
2125 }
2126 DEFINE_VIRT_MACHINE(2, 7)
2127
2128 static void virt_machine_2_6_options(MachineClass *mc)
2129 {
2130 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2131
2132 virt_machine_2_7_options(mc);
2133 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
2134 vmc->disallow_affinity_adjustment = true;
2135 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
2136 vmc->no_pmu = true;
2137 }
2138 DEFINE_VIRT_MACHINE(2, 6)