]> git.proxmox.com Git - mirror_qemu.git/blob - hw/arm/virt.c
Merge tag 'for_upstream' of https://git.kernel.org/pub/scm/virt/kvm/mst/qemu into...
[mirror_qemu.git] / hw / arm / virt.c
1 /*
2 * ARM mach-virt emulation
3 *
4 * Copyright (c) 2013 Linaro Limited
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
17 *
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
29 */
30
31 #include "qemu/osdep.h"
32 #include "qemu/datadir.h"
33 #include "qemu/units.h"
34 #include "qemu/option.h"
35 #include "monitor/qdev.h"
36 #include "hw/sysbus.h"
37 #include "hw/arm/boot.h"
38 #include "hw/arm/primecell.h"
39 #include "hw/arm/virt.h"
40 #include "hw/block/flash.h"
41 #include "hw/vfio/vfio-calxeda-xgmac.h"
42 #include "hw/vfio/vfio-amd-xgbe.h"
43 #include "hw/display/ramfb.h"
44 #include "net/net.h"
45 #include "sysemu/device_tree.h"
46 #include "sysemu/numa.h"
47 #include "sysemu/runstate.h"
48 #include "sysemu/tpm.h"
49 #include "sysemu/tcg.h"
50 #include "sysemu/kvm.h"
51 #include "sysemu/hvf.h"
52 #include "sysemu/qtest.h"
53 #include "hw/loader.h"
54 #include "qapi/error.h"
55 #include "qemu/bitops.h"
56 #include "qemu/error-report.h"
57 #include "qemu/module.h"
58 #include "hw/pci-host/gpex.h"
59 #include "hw/virtio/virtio-pci.h"
60 #include "hw/core/sysbus-fdt.h"
61 #include "hw/platform-bus.h"
62 #include "hw/qdev-properties.h"
63 #include "hw/arm/fdt.h"
64 #include "hw/intc/arm_gic.h"
65 #include "hw/intc/arm_gicv3_common.h"
66 #include "hw/intc/arm_gicv3_its_common.h"
67 #include "hw/irq.h"
68 #include "kvm_arm.h"
69 #include "hw/firmware/smbios.h"
70 #include "qapi/visitor.h"
71 #include "qapi/qapi-visit-common.h"
72 #include "standard-headers/linux/input.h"
73 #include "hw/arm/smmuv3.h"
74 #include "hw/acpi/acpi.h"
75 #include "target/arm/internals.h"
76 #include "hw/mem/pc-dimm.h"
77 #include "hw/mem/nvdimm.h"
78 #include "hw/acpi/generic_event_device.h"
79 #include "hw/virtio/virtio-md-pci.h"
80 #include "hw/virtio/virtio-iommu.h"
81 #include "hw/char/pl011.h"
82 #include "qemu/guest-random.h"
83
84 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
85 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
86 void *data) \
87 { \
88 MachineClass *mc = MACHINE_CLASS(oc); \
89 virt_machine_##major##_##minor##_options(mc); \
90 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
91 if (latest) { \
92 mc->alias = "virt"; \
93 } \
94 } \
95 static const TypeInfo machvirt_##major##_##minor##_info = { \
96 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
97 .parent = TYPE_VIRT_MACHINE, \
98 .class_init = virt_##major##_##minor##_class_init, \
99 }; \
100 static void machvirt_machine_##major##_##minor##_init(void) \
101 { \
102 type_register_static(&machvirt_##major##_##minor##_info); \
103 } \
104 type_init(machvirt_machine_##major##_##minor##_init);
105
106 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
107 DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
108 #define DEFINE_VIRT_MACHINE(major, minor) \
109 DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
110
111
112 /* Number of external interrupt lines to configure the GIC with */
113 #define NUM_IRQS 256
114
115 #define PLATFORM_BUS_NUM_IRQS 64
116
117 /* Legacy RAM limit in GB (< version 4.0) */
118 #define LEGACY_RAMLIMIT_GB 255
119 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB)
120
121 /* Addresses and sizes of our components.
122 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
123 * 128MB..256MB is used for miscellaneous device I/O.
124 * 256MB..1GB is reserved for possible future PCI support (ie where the
125 * PCI memory window will go if we add a PCI host controller).
126 * 1GB and up is RAM (which may happily spill over into the
127 * high memory region beyond 4GB).
128 * This represents a compromise between how much RAM can be given to
129 * a 32 bit VM and leaving space for expansion and in particular for PCI.
130 * Note that devices should generally be placed at multiples of 0x10000,
131 * to accommodate guests using 64K pages.
132 */
133 static const MemMapEntry base_memmap[] = {
134 /* Space up to 0x8000000 is reserved for a boot ROM */
135 [VIRT_FLASH] = { 0, 0x08000000 },
136 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
137 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
138 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
139 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
140 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 },
141 [VIRT_GIC_HYP] = { 0x08030000, 0x00010000 },
142 [VIRT_GIC_VCPU] = { 0x08040000, 0x00010000 },
143 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
144 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 },
145 /* This redistributor space allows up to 2*64kB*123 CPUs */
146 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 },
147 [VIRT_UART] = { 0x09000000, 0x00001000 },
148 [VIRT_RTC] = { 0x09010000, 0x00001000 },
149 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 },
150 [VIRT_GPIO] = { 0x09030000, 0x00001000 },
151 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 },
152 [VIRT_SMMU] = { 0x09050000, 0x00020000 },
153 [VIRT_PCDIMM_ACPI] = { 0x09070000, MEMORY_HOTPLUG_IO_LEN },
154 [VIRT_ACPI_GED] = { 0x09080000, ACPI_GED_EVT_SEL_LEN },
155 [VIRT_NVDIMM_ACPI] = { 0x09090000, NVDIMM_ACPI_IO_LEN},
156 [VIRT_PVTIME] = { 0x090a0000, 0x00010000 },
157 [VIRT_SECURE_GPIO] = { 0x090b0000, 0x00001000 },
158 [VIRT_MMIO] = { 0x0a000000, 0x00000200 },
159 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
160 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 },
161 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 },
162 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 },
163 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 },
164 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 },
165 /* Actual RAM size depends on initial RAM and device memory settings */
166 [VIRT_MEM] = { GiB, LEGACY_RAMLIMIT_BYTES },
167 };
168
169 /*
170 * Highmem IO Regions: This memory map is floating, located after the RAM.
171 * Each MemMapEntry base (GPA) will be dynamically computed, depending on the
172 * top of the RAM, so that its base get the same alignment as the size,
173 * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is
174 * less than 256GiB of RAM, the floating area starts at the 256GiB mark.
175 * Note the extended_memmap is sized so that it eventually also includes the
176 * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last
177 * index of base_memmap).
178 *
179 * The memory map for these Highmem IO Regions can be in legacy or compact
180 * layout, depending on 'compact-highmem' property. With legacy layout, the
181 * PA space for one specific region is always reserved, even if the region
182 * has been disabled or doesn't fit into the PA space. However, the PA space
183 * for the region won't be reserved in these circumstances with compact layout.
184 */
185 static MemMapEntry extended_memmap[] = {
186 /* Additional 64 MB redist region (can contain up to 512 redistributors) */
187 [VIRT_HIGH_GIC_REDIST2] = { 0x0, 64 * MiB },
188 [VIRT_HIGH_PCIE_ECAM] = { 0x0, 256 * MiB },
189 /* Second PCIe window */
190 [VIRT_HIGH_PCIE_MMIO] = { 0x0, 512 * GiB },
191 };
192
193 static const int a15irqmap[] = {
194 [VIRT_UART] = 1,
195 [VIRT_RTC] = 2,
196 [VIRT_PCIE] = 3, /* ... to 6 */
197 [VIRT_GPIO] = 7,
198 [VIRT_SECURE_UART] = 8,
199 [VIRT_ACPI_GED] = 9,
200 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
201 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
202 [VIRT_SMMU] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */
203 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
204 };
205
206 static const char *valid_cpus[] = {
207 #ifdef CONFIG_TCG
208 ARM_CPU_TYPE_NAME("cortex-a7"),
209 ARM_CPU_TYPE_NAME("cortex-a15"),
210 ARM_CPU_TYPE_NAME("cortex-a35"),
211 ARM_CPU_TYPE_NAME("cortex-a55"),
212 ARM_CPU_TYPE_NAME("cortex-a72"),
213 ARM_CPU_TYPE_NAME("cortex-a76"),
214 ARM_CPU_TYPE_NAME("cortex-a710"),
215 ARM_CPU_TYPE_NAME("a64fx"),
216 ARM_CPU_TYPE_NAME("neoverse-n1"),
217 ARM_CPU_TYPE_NAME("neoverse-v1"),
218 ARM_CPU_TYPE_NAME("neoverse-n2"),
219 #endif
220 ARM_CPU_TYPE_NAME("cortex-a53"),
221 ARM_CPU_TYPE_NAME("cortex-a57"),
222 ARM_CPU_TYPE_NAME("host"),
223 ARM_CPU_TYPE_NAME("max"),
224 };
225
226 static bool cpu_type_valid(const char *cpu)
227 {
228 int i;
229
230 for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
231 if (strcmp(cpu, valid_cpus[i]) == 0) {
232 return true;
233 }
234 }
235 return false;
236 }
237
238 static void create_randomness(MachineState *ms, const char *node)
239 {
240 struct {
241 uint64_t kaslr;
242 uint8_t rng[32];
243 } seed;
244
245 if (qemu_guest_getrandom(&seed, sizeof(seed), NULL)) {
246 return;
247 }
248 qemu_fdt_setprop_u64(ms->fdt, node, "kaslr-seed", seed.kaslr);
249 qemu_fdt_setprop(ms->fdt, node, "rng-seed", seed.rng, sizeof(seed.rng));
250 }
251
252 static void create_fdt(VirtMachineState *vms)
253 {
254 MachineState *ms = MACHINE(vms);
255 int nb_numa_nodes = ms->numa_state->num_nodes;
256 void *fdt = create_device_tree(&vms->fdt_size);
257
258 if (!fdt) {
259 error_report("create_device_tree() failed");
260 exit(1);
261 }
262
263 ms->fdt = fdt;
264
265 /* Header */
266 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
267 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
268 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
269 qemu_fdt_setprop_string(fdt, "/", "model", "linux,dummy-virt");
270
271 /* /chosen must exist for load_dtb to fill in necessary properties later */
272 qemu_fdt_add_subnode(fdt, "/chosen");
273 if (vms->dtb_randomness) {
274 create_randomness(ms, "/chosen");
275 }
276
277 if (vms->secure) {
278 qemu_fdt_add_subnode(fdt, "/secure-chosen");
279 if (vms->dtb_randomness) {
280 create_randomness(ms, "/secure-chosen");
281 }
282 }
283
284 /* Clock node, for the benefit of the UART. The kernel device tree
285 * binding documentation claims the PL011 node clock properties are
286 * optional but in practice if you omit them the kernel refuses to
287 * probe for the device.
288 */
289 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
290 qemu_fdt_add_subnode(fdt, "/apb-pclk");
291 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
292 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
293 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
294 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
295 "clk24mhz");
296 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
297
298 if (nb_numa_nodes > 0 && ms->numa_state->have_numa_distance) {
299 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
300 uint32_t *matrix = g_malloc0(size);
301 int idx, i, j;
302
303 for (i = 0; i < nb_numa_nodes; i++) {
304 for (j = 0; j < nb_numa_nodes; j++) {
305 idx = (i * nb_numa_nodes + j) * 3;
306 matrix[idx + 0] = cpu_to_be32(i);
307 matrix[idx + 1] = cpu_to_be32(j);
308 matrix[idx + 2] =
309 cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
310 }
311 }
312
313 qemu_fdt_add_subnode(fdt, "/distance-map");
314 qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
315 "numa-distance-map-v1");
316 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
317 matrix, size);
318 g_free(matrix);
319 }
320 }
321
322 static void fdt_add_timer_nodes(const VirtMachineState *vms)
323 {
324 /* On real hardware these interrupts are level-triggered.
325 * On KVM they were edge-triggered before host kernel version 4.4,
326 * and level-triggered afterwards.
327 * On emulated QEMU they are level-triggered.
328 *
329 * Getting the DTB info about them wrong is awkward for some
330 * guest kernels:
331 * pre-4.8 ignore the DT and leave the interrupt configured
332 * with whatever the GIC reset value (or the bootloader) left it at
333 * 4.8 before rc6 honour the incorrect data by programming it back
334 * into the GIC, causing problems
335 * 4.8rc6 and later ignore the DT and always write "level triggered"
336 * into the GIC
337 *
338 * For backwards-compatibility, virt-2.8 and earlier will continue
339 * to say these are edge-triggered, but later machines will report
340 * the correct information.
341 */
342 ARMCPU *armcpu;
343 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
344 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
345 MachineState *ms = MACHINE(vms);
346
347 if (vmc->claim_edge_triggered_timers) {
348 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
349 }
350
351 if (vms->gic_version == VIRT_GIC_VERSION_2) {
352 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
353 GIC_FDT_IRQ_PPI_CPU_WIDTH,
354 (1 << MACHINE(vms)->smp.cpus) - 1);
355 }
356
357 qemu_fdt_add_subnode(ms->fdt, "/timer");
358
359 armcpu = ARM_CPU(qemu_get_cpu(0));
360 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
361 const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
362 qemu_fdt_setprop(ms->fdt, "/timer", "compatible",
363 compat, sizeof(compat));
364 } else {
365 qemu_fdt_setprop_string(ms->fdt, "/timer", "compatible",
366 "arm,armv7-timer");
367 }
368 qemu_fdt_setprop(ms->fdt, "/timer", "always-on", NULL, 0);
369 qemu_fdt_setprop_cells(ms->fdt, "/timer", "interrupts",
370 GIC_FDT_IRQ_TYPE_PPI,
371 INTID_TO_PPI(ARCH_TIMER_S_EL1_IRQ), irqflags,
372 GIC_FDT_IRQ_TYPE_PPI,
373 INTID_TO_PPI(ARCH_TIMER_NS_EL1_IRQ), irqflags,
374 GIC_FDT_IRQ_TYPE_PPI,
375 INTID_TO_PPI(ARCH_TIMER_VIRT_IRQ), irqflags,
376 GIC_FDT_IRQ_TYPE_PPI,
377 INTID_TO_PPI(ARCH_TIMER_NS_EL2_IRQ), irqflags);
378 }
379
380 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
381 {
382 int cpu;
383 int addr_cells = 1;
384 const MachineState *ms = MACHINE(vms);
385 const VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
386 int smp_cpus = ms->smp.cpus;
387
388 /*
389 * See Linux Documentation/devicetree/bindings/arm/cpus.yaml
390 * On ARM v8 64-bit systems value should be set to 2,
391 * that corresponds to the MPIDR_EL1 register size.
392 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
393 * in the system, #address-cells can be set to 1, since
394 * MPIDR_EL1[63:32] bits are not used for CPUs
395 * identification.
396 *
397 * Here we actually don't know whether our system is 32- or 64-bit one.
398 * The simplest way to go is to examine affinity IDs of all our CPUs. If
399 * at least one of them has Aff3 populated, we set #address-cells to 2.
400 */
401 for (cpu = 0; cpu < smp_cpus; cpu++) {
402 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
403
404 if (armcpu->mp_affinity & ARM_AFF3_MASK) {
405 addr_cells = 2;
406 break;
407 }
408 }
409
410 qemu_fdt_add_subnode(ms->fdt, "/cpus");
411 qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#address-cells", addr_cells);
412 qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#size-cells", 0x0);
413
414 for (cpu = smp_cpus - 1; cpu >= 0; cpu--) {
415 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
416 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
417 CPUState *cs = CPU(armcpu);
418
419 qemu_fdt_add_subnode(ms->fdt, nodename);
420 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "cpu");
421 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
422 armcpu->dtb_compatible);
423
424 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED && smp_cpus > 1) {
425 qemu_fdt_setprop_string(ms->fdt, nodename,
426 "enable-method", "psci");
427 }
428
429 if (addr_cells == 2) {
430 qemu_fdt_setprop_u64(ms->fdt, nodename, "reg",
431 armcpu->mp_affinity);
432 } else {
433 qemu_fdt_setprop_cell(ms->fdt, nodename, "reg",
434 armcpu->mp_affinity);
435 }
436
437 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
438 qemu_fdt_setprop_cell(ms->fdt, nodename, "numa-node-id",
439 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
440 }
441
442 if (!vmc->no_cpu_topology) {
443 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle",
444 qemu_fdt_alloc_phandle(ms->fdt));
445 }
446
447 g_free(nodename);
448 }
449
450 if (!vmc->no_cpu_topology) {
451 /*
452 * Add vCPU topology description through fdt node cpu-map.
453 *
454 * See Linux Documentation/devicetree/bindings/cpu/cpu-topology.txt
455 * In a SMP system, the hierarchy of CPUs can be defined through
456 * four entities that are used to describe the layout of CPUs in
457 * the system: socket/cluster/core/thread.
458 *
459 * A socket node represents the boundary of system physical package
460 * and its child nodes must be one or more cluster nodes. A system
461 * can contain several layers of clustering within a single physical
462 * package and cluster nodes can be contained in parent cluster nodes.
463 *
464 * Note: currently we only support one layer of clustering within
465 * each physical package.
466 */
467 qemu_fdt_add_subnode(ms->fdt, "/cpus/cpu-map");
468
469 for (cpu = smp_cpus - 1; cpu >= 0; cpu--) {
470 char *cpu_path = g_strdup_printf("/cpus/cpu@%d", cpu);
471 char *map_path;
472
473 if (ms->smp.threads > 1) {
474 map_path = g_strdup_printf(
475 "/cpus/cpu-map/socket%d/cluster%d/core%d/thread%d",
476 cpu / (ms->smp.clusters * ms->smp.cores * ms->smp.threads),
477 (cpu / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters,
478 (cpu / ms->smp.threads) % ms->smp.cores,
479 cpu % ms->smp.threads);
480 } else {
481 map_path = g_strdup_printf(
482 "/cpus/cpu-map/socket%d/cluster%d/core%d",
483 cpu / (ms->smp.clusters * ms->smp.cores),
484 (cpu / ms->smp.cores) % ms->smp.clusters,
485 cpu % ms->smp.cores);
486 }
487 qemu_fdt_add_path(ms->fdt, map_path);
488 qemu_fdt_setprop_phandle(ms->fdt, map_path, "cpu", cpu_path);
489
490 g_free(map_path);
491 g_free(cpu_path);
492 }
493 }
494 }
495
496 static void fdt_add_its_gic_node(VirtMachineState *vms)
497 {
498 char *nodename;
499 MachineState *ms = MACHINE(vms);
500
501 vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
502 nodename = g_strdup_printf("/intc/its@%" PRIx64,
503 vms->memmap[VIRT_GIC_ITS].base);
504 qemu_fdt_add_subnode(ms->fdt, nodename);
505 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
506 "arm,gic-v3-its");
507 qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
508 qemu_fdt_setprop_cell(ms->fdt, nodename, "#msi-cells", 1);
509 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
510 2, vms->memmap[VIRT_GIC_ITS].base,
511 2, vms->memmap[VIRT_GIC_ITS].size);
512 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
513 g_free(nodename);
514 }
515
516 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
517 {
518 MachineState *ms = MACHINE(vms);
519 char *nodename;
520
521 nodename = g_strdup_printf("/intc/v2m@%" PRIx64,
522 vms->memmap[VIRT_GIC_V2M].base);
523 vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
524 qemu_fdt_add_subnode(ms->fdt, nodename);
525 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
526 "arm,gic-v2m-frame");
527 qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
528 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
529 2, vms->memmap[VIRT_GIC_V2M].base,
530 2, vms->memmap[VIRT_GIC_V2M].size);
531 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
532 g_free(nodename);
533 }
534
535 static void fdt_add_gic_node(VirtMachineState *vms)
536 {
537 MachineState *ms = MACHINE(vms);
538 char *nodename;
539
540 vms->gic_phandle = qemu_fdt_alloc_phandle(ms->fdt);
541 qemu_fdt_setprop_cell(ms->fdt, "/", "interrupt-parent", vms->gic_phandle);
542
543 nodename = g_strdup_printf("/intc@%" PRIx64,
544 vms->memmap[VIRT_GIC_DIST].base);
545 qemu_fdt_add_subnode(ms->fdt, nodename);
546 qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 3);
547 qemu_fdt_setprop(ms->fdt, nodename, "interrupt-controller", NULL, 0);
548 qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 0x2);
549 qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 0x2);
550 qemu_fdt_setprop(ms->fdt, nodename, "ranges", NULL, 0);
551 if (vms->gic_version != VIRT_GIC_VERSION_2) {
552 int nb_redist_regions = virt_gicv3_redist_region_count(vms);
553
554 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
555 "arm,gic-v3");
556
557 qemu_fdt_setprop_cell(ms->fdt, nodename,
558 "#redistributor-regions", nb_redist_regions);
559
560 if (nb_redist_regions == 1) {
561 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
562 2, vms->memmap[VIRT_GIC_DIST].base,
563 2, vms->memmap[VIRT_GIC_DIST].size,
564 2, vms->memmap[VIRT_GIC_REDIST].base,
565 2, vms->memmap[VIRT_GIC_REDIST].size);
566 } else {
567 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
568 2, vms->memmap[VIRT_GIC_DIST].base,
569 2, vms->memmap[VIRT_GIC_DIST].size,
570 2, vms->memmap[VIRT_GIC_REDIST].base,
571 2, vms->memmap[VIRT_GIC_REDIST].size,
572 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base,
573 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size);
574 }
575
576 if (vms->virt) {
577 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
578 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
579 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
580 }
581 } else {
582 /* 'cortex-a15-gic' means 'GIC v2' */
583 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
584 "arm,cortex-a15-gic");
585 if (!vms->virt) {
586 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
587 2, vms->memmap[VIRT_GIC_DIST].base,
588 2, vms->memmap[VIRT_GIC_DIST].size,
589 2, vms->memmap[VIRT_GIC_CPU].base,
590 2, vms->memmap[VIRT_GIC_CPU].size);
591 } else {
592 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
593 2, vms->memmap[VIRT_GIC_DIST].base,
594 2, vms->memmap[VIRT_GIC_DIST].size,
595 2, vms->memmap[VIRT_GIC_CPU].base,
596 2, vms->memmap[VIRT_GIC_CPU].size,
597 2, vms->memmap[VIRT_GIC_HYP].base,
598 2, vms->memmap[VIRT_GIC_HYP].size,
599 2, vms->memmap[VIRT_GIC_VCPU].base,
600 2, vms->memmap[VIRT_GIC_VCPU].size);
601 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
602 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
603 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
604 }
605 }
606
607 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->gic_phandle);
608 g_free(nodename);
609 }
610
611 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
612 {
613 ARMCPU *armcpu = ARM_CPU(first_cpu);
614 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
615 MachineState *ms = MACHINE(vms);
616
617 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
618 assert(!object_property_get_bool(OBJECT(armcpu), "pmu", NULL));
619 return;
620 }
621
622 if (vms->gic_version == VIRT_GIC_VERSION_2) {
623 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
624 GIC_FDT_IRQ_PPI_CPU_WIDTH,
625 (1 << MACHINE(vms)->smp.cpus) - 1);
626 }
627
628 qemu_fdt_add_subnode(ms->fdt, "/pmu");
629 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
630 const char compat[] = "arm,armv8-pmuv3";
631 qemu_fdt_setprop(ms->fdt, "/pmu", "compatible",
632 compat, sizeof(compat));
633 qemu_fdt_setprop_cells(ms->fdt, "/pmu", "interrupts",
634 GIC_FDT_IRQ_TYPE_PPI,
635 INTID_TO_PPI(VIRTUAL_PMU_IRQ), irqflags);
636 }
637 }
638
639 static inline DeviceState *create_acpi_ged(VirtMachineState *vms)
640 {
641 DeviceState *dev;
642 MachineState *ms = MACHINE(vms);
643 int irq = vms->irqmap[VIRT_ACPI_GED];
644 uint32_t event = ACPI_GED_PWR_DOWN_EVT;
645
646 if (ms->ram_slots) {
647 event |= ACPI_GED_MEM_HOTPLUG_EVT;
648 }
649
650 if (ms->nvdimms_state->is_enabled) {
651 event |= ACPI_GED_NVDIMM_HOTPLUG_EVT;
652 }
653
654 dev = qdev_new(TYPE_ACPI_GED);
655 qdev_prop_set_uint32(dev, "ged-event", event);
656 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
657
658 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_ACPI_GED].base);
659 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, vms->memmap[VIRT_PCDIMM_ACPI].base);
660 sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(vms->gic, irq));
661
662 return dev;
663 }
664
665 static void create_its(VirtMachineState *vms)
666 {
667 const char *itsclass = its_class_name();
668 DeviceState *dev;
669
670 if (!strcmp(itsclass, "arm-gicv3-its")) {
671 if (!vms->tcg_its) {
672 itsclass = NULL;
673 }
674 }
675
676 if (!itsclass) {
677 /* Do nothing if not supported */
678 return;
679 }
680
681 dev = qdev_new(itsclass);
682
683 object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(vms->gic),
684 &error_abort);
685 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
686 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
687
688 fdt_add_its_gic_node(vms);
689 vms->msi_controller = VIRT_MSI_CTRL_ITS;
690 }
691
692 static void create_v2m(VirtMachineState *vms)
693 {
694 int i;
695 int irq = vms->irqmap[VIRT_GIC_V2M];
696 DeviceState *dev;
697
698 dev = qdev_new("arm-gicv2m");
699 qdev_prop_set_uint32(dev, "base-spi", irq);
700 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
701 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
702 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
703
704 for (i = 0; i < NUM_GICV2M_SPIS; i++) {
705 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
706 qdev_get_gpio_in(vms->gic, irq + i));
707 }
708
709 fdt_add_v2m_gic_node(vms);
710 vms->msi_controller = VIRT_MSI_CTRL_GICV2M;
711 }
712
713 static void create_gic(VirtMachineState *vms, MemoryRegion *mem)
714 {
715 MachineState *ms = MACHINE(vms);
716 /* We create a standalone GIC */
717 SysBusDevice *gicbusdev;
718 const char *gictype;
719 int i;
720 unsigned int smp_cpus = ms->smp.cpus;
721 uint32_t nb_redist_regions = 0;
722 int revision;
723
724 if (vms->gic_version == VIRT_GIC_VERSION_2) {
725 gictype = gic_class_name();
726 } else {
727 gictype = gicv3_class_name();
728 }
729
730 switch (vms->gic_version) {
731 case VIRT_GIC_VERSION_2:
732 revision = 2;
733 break;
734 case VIRT_GIC_VERSION_3:
735 revision = 3;
736 break;
737 case VIRT_GIC_VERSION_4:
738 revision = 4;
739 break;
740 default:
741 g_assert_not_reached();
742 }
743 vms->gic = qdev_new(gictype);
744 qdev_prop_set_uint32(vms->gic, "revision", revision);
745 qdev_prop_set_uint32(vms->gic, "num-cpu", smp_cpus);
746 /* Note that the num-irq property counts both internal and external
747 * interrupts; there are always 32 of the former (mandated by GIC spec).
748 */
749 qdev_prop_set_uint32(vms->gic, "num-irq", NUM_IRQS + 32);
750 if (!kvm_irqchip_in_kernel()) {
751 qdev_prop_set_bit(vms->gic, "has-security-extensions", vms->secure);
752 }
753
754 if (vms->gic_version != VIRT_GIC_VERSION_2) {
755 uint32_t redist0_capacity = virt_redist_capacity(vms, VIRT_GIC_REDIST);
756 uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
757
758 nb_redist_regions = virt_gicv3_redist_region_count(vms);
759
760 qdev_prop_set_uint32(vms->gic, "len-redist-region-count",
761 nb_redist_regions);
762 qdev_prop_set_uint32(vms->gic, "redist-region-count[0]", redist0_count);
763
764 if (!kvm_irqchip_in_kernel()) {
765 if (vms->tcg_its) {
766 object_property_set_link(OBJECT(vms->gic), "sysmem",
767 OBJECT(mem), &error_fatal);
768 qdev_prop_set_bit(vms->gic, "has-lpi", true);
769 }
770 }
771
772 if (nb_redist_regions == 2) {
773 uint32_t redist1_capacity =
774 virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2);
775
776 qdev_prop_set_uint32(vms->gic, "redist-region-count[1]",
777 MIN(smp_cpus - redist0_count, redist1_capacity));
778 }
779 } else {
780 if (!kvm_irqchip_in_kernel()) {
781 qdev_prop_set_bit(vms->gic, "has-virtualization-extensions",
782 vms->virt);
783 }
784 }
785 gicbusdev = SYS_BUS_DEVICE(vms->gic);
786 sysbus_realize_and_unref(gicbusdev, &error_fatal);
787 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
788 if (vms->gic_version != VIRT_GIC_VERSION_2) {
789 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
790 if (nb_redist_regions == 2) {
791 sysbus_mmio_map(gicbusdev, 2,
792 vms->memmap[VIRT_HIGH_GIC_REDIST2].base);
793 }
794 } else {
795 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
796 if (vms->virt) {
797 sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base);
798 sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base);
799 }
800 }
801
802 /* Wire the outputs from each CPU's generic timer and the GICv3
803 * maintenance interrupt signal to the appropriate GIC PPI inputs,
804 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
805 */
806 for (i = 0; i < smp_cpus; i++) {
807 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
808 int intidbase = NUM_IRQS + i * GIC_INTERNAL;
809 /* Mapping from the output timer irq lines from the CPU to the
810 * GIC PPI inputs we use for the virt board.
811 */
812 const int timer_irq[] = {
813 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
814 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
815 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
816 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
817 };
818
819 for (unsigned irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
820 qdev_connect_gpio_out(cpudev, irq,
821 qdev_get_gpio_in(vms->gic,
822 intidbase + timer_irq[irq]));
823 }
824
825 if (vms->gic_version != VIRT_GIC_VERSION_2) {
826 qemu_irq irq = qdev_get_gpio_in(vms->gic,
827 intidbase + ARCH_GIC_MAINT_IRQ);
828 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt",
829 0, irq);
830 } else if (vms->virt) {
831 qemu_irq irq = qdev_get_gpio_in(vms->gic,
832 intidbase + ARCH_GIC_MAINT_IRQ);
833 sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq);
834 }
835
836 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
837 qdev_get_gpio_in(vms->gic, intidbase
838 + VIRTUAL_PMU_IRQ));
839
840 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
841 sysbus_connect_irq(gicbusdev, i + smp_cpus,
842 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
843 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
844 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
845 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
846 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
847 }
848
849 fdt_add_gic_node(vms);
850
851 if (vms->gic_version != VIRT_GIC_VERSION_2 && vms->its) {
852 create_its(vms);
853 } else if (vms->gic_version == VIRT_GIC_VERSION_2) {
854 create_v2m(vms);
855 }
856 }
857
858 static void create_uart(const VirtMachineState *vms, int uart,
859 MemoryRegion *mem, Chardev *chr)
860 {
861 char *nodename;
862 hwaddr base = vms->memmap[uart].base;
863 hwaddr size = vms->memmap[uart].size;
864 int irq = vms->irqmap[uart];
865 const char compat[] = "arm,pl011\0arm,primecell";
866 const char clocknames[] = "uartclk\0apb_pclk";
867 DeviceState *dev = qdev_new(TYPE_PL011);
868 SysBusDevice *s = SYS_BUS_DEVICE(dev);
869 MachineState *ms = MACHINE(vms);
870
871 qdev_prop_set_chr(dev, "chardev", chr);
872 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
873 memory_region_add_subregion(mem, base,
874 sysbus_mmio_get_region(s, 0));
875 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
876
877 nodename = g_strdup_printf("/pl011@%" PRIx64, base);
878 qemu_fdt_add_subnode(ms->fdt, nodename);
879 /* Note that we can't use setprop_string because of the embedded NUL */
880 qemu_fdt_setprop(ms->fdt, nodename, "compatible",
881 compat, sizeof(compat));
882 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
883 2, base, 2, size);
884 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
885 GIC_FDT_IRQ_TYPE_SPI, irq,
886 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
887 qemu_fdt_setprop_cells(ms->fdt, nodename, "clocks",
888 vms->clock_phandle, vms->clock_phandle);
889 qemu_fdt_setprop(ms->fdt, nodename, "clock-names",
890 clocknames, sizeof(clocknames));
891
892 if (uart == VIRT_UART) {
893 qemu_fdt_setprop_string(ms->fdt, "/chosen", "stdout-path", nodename);
894 } else {
895 /* Mark as not usable by the normal world */
896 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
897 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
898
899 qemu_fdt_setprop_string(ms->fdt, "/secure-chosen", "stdout-path",
900 nodename);
901 }
902
903 g_free(nodename);
904 }
905
906 static void create_rtc(const VirtMachineState *vms)
907 {
908 char *nodename;
909 hwaddr base = vms->memmap[VIRT_RTC].base;
910 hwaddr size = vms->memmap[VIRT_RTC].size;
911 int irq = vms->irqmap[VIRT_RTC];
912 const char compat[] = "arm,pl031\0arm,primecell";
913 MachineState *ms = MACHINE(vms);
914
915 sysbus_create_simple("pl031", base, qdev_get_gpio_in(vms->gic, irq));
916
917 nodename = g_strdup_printf("/pl031@%" PRIx64, base);
918 qemu_fdt_add_subnode(ms->fdt, nodename);
919 qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
920 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
921 2, base, 2, size);
922 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
923 GIC_FDT_IRQ_TYPE_SPI, irq,
924 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
925 qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
926 qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
927 g_free(nodename);
928 }
929
930 static DeviceState *gpio_key_dev;
931 static void virt_powerdown_req(Notifier *n, void *opaque)
932 {
933 VirtMachineState *s = container_of(n, VirtMachineState, powerdown_notifier);
934
935 if (s->acpi_dev) {
936 acpi_send_event(s->acpi_dev, ACPI_POWER_DOWN_STATUS);
937 } else {
938 /* use gpio Pin 3 for power button event */
939 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
940 }
941 }
942
943 static void create_gpio_keys(char *fdt, DeviceState *pl061_dev,
944 uint32_t phandle)
945 {
946 gpio_key_dev = sysbus_create_simple("gpio-key", -1,
947 qdev_get_gpio_in(pl061_dev, 3));
948
949 qemu_fdt_add_subnode(fdt, "/gpio-keys");
950 qemu_fdt_setprop_string(fdt, "/gpio-keys", "compatible", "gpio-keys");
951
952 qemu_fdt_add_subnode(fdt, "/gpio-keys/poweroff");
953 qemu_fdt_setprop_string(fdt, "/gpio-keys/poweroff",
954 "label", "GPIO Key Poweroff");
955 qemu_fdt_setprop_cell(fdt, "/gpio-keys/poweroff", "linux,code",
956 KEY_POWER);
957 qemu_fdt_setprop_cells(fdt, "/gpio-keys/poweroff",
958 "gpios", phandle, 3, 0);
959 }
960
961 #define SECURE_GPIO_POWEROFF 0
962 #define SECURE_GPIO_RESET 1
963
964 static void create_secure_gpio_pwr(char *fdt, DeviceState *pl061_dev,
965 uint32_t phandle)
966 {
967 DeviceState *gpio_pwr_dev;
968
969 /* gpio-pwr */
970 gpio_pwr_dev = sysbus_create_simple("gpio-pwr", -1, NULL);
971
972 /* connect secure pl061 to gpio-pwr */
973 qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_RESET,
974 qdev_get_gpio_in_named(gpio_pwr_dev, "reset", 0));
975 qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_POWEROFF,
976 qdev_get_gpio_in_named(gpio_pwr_dev, "shutdown", 0));
977
978 qemu_fdt_add_subnode(fdt, "/gpio-poweroff");
979 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "compatible",
980 "gpio-poweroff");
981 qemu_fdt_setprop_cells(fdt, "/gpio-poweroff",
982 "gpios", phandle, SECURE_GPIO_POWEROFF, 0);
983 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "status", "disabled");
984 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "secure-status",
985 "okay");
986
987 qemu_fdt_add_subnode(fdt, "/gpio-restart");
988 qemu_fdt_setprop_string(fdt, "/gpio-restart", "compatible",
989 "gpio-restart");
990 qemu_fdt_setprop_cells(fdt, "/gpio-restart",
991 "gpios", phandle, SECURE_GPIO_RESET, 0);
992 qemu_fdt_setprop_string(fdt, "/gpio-restart", "status", "disabled");
993 qemu_fdt_setprop_string(fdt, "/gpio-restart", "secure-status",
994 "okay");
995 }
996
997 static void create_gpio_devices(const VirtMachineState *vms, int gpio,
998 MemoryRegion *mem)
999 {
1000 char *nodename;
1001 DeviceState *pl061_dev;
1002 hwaddr base = vms->memmap[gpio].base;
1003 hwaddr size = vms->memmap[gpio].size;
1004 int irq = vms->irqmap[gpio];
1005 const char compat[] = "arm,pl061\0arm,primecell";
1006 SysBusDevice *s;
1007 MachineState *ms = MACHINE(vms);
1008
1009 pl061_dev = qdev_new("pl061");
1010 /* Pull lines down to 0 if not driven by the PL061 */
1011 qdev_prop_set_uint32(pl061_dev, "pullups", 0);
1012 qdev_prop_set_uint32(pl061_dev, "pulldowns", 0xff);
1013 s = SYS_BUS_DEVICE(pl061_dev);
1014 sysbus_realize_and_unref(s, &error_fatal);
1015 memory_region_add_subregion(mem, base, sysbus_mmio_get_region(s, 0));
1016 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
1017
1018 uint32_t phandle = qemu_fdt_alloc_phandle(ms->fdt);
1019 nodename = g_strdup_printf("/pl061@%" PRIx64, base);
1020 qemu_fdt_add_subnode(ms->fdt, nodename);
1021 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1022 2, base, 2, size);
1023 qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
1024 qemu_fdt_setprop_cell(ms->fdt, nodename, "#gpio-cells", 2);
1025 qemu_fdt_setprop(ms->fdt, nodename, "gpio-controller", NULL, 0);
1026 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
1027 GIC_FDT_IRQ_TYPE_SPI, irq,
1028 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
1029 qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
1030 qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
1031 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", phandle);
1032
1033 if (gpio != VIRT_GPIO) {
1034 /* Mark as not usable by the normal world */
1035 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1036 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1037 }
1038 g_free(nodename);
1039
1040 /* Child gpio devices */
1041 if (gpio == VIRT_GPIO) {
1042 create_gpio_keys(ms->fdt, pl061_dev, phandle);
1043 } else {
1044 create_secure_gpio_pwr(ms->fdt, pl061_dev, phandle);
1045 }
1046 }
1047
1048 static void create_virtio_devices(const VirtMachineState *vms)
1049 {
1050 int i;
1051 hwaddr size = vms->memmap[VIRT_MMIO].size;
1052 MachineState *ms = MACHINE(vms);
1053
1054 /* We create the transports in forwards order. Since qbus_realize()
1055 * prepends (not appends) new child buses, the incrementing loop below will
1056 * create a list of virtio-mmio buses with decreasing base addresses.
1057 *
1058 * When a -device option is processed from the command line,
1059 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
1060 * order. The upshot is that -device options in increasing command line
1061 * order are mapped to virtio-mmio buses with decreasing base addresses.
1062 *
1063 * When this code was originally written, that arrangement ensured that the
1064 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
1065 * the first -device on the command line. (The end-to-end order is a
1066 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
1067 * guest kernel's name-to-address assignment strategy.)
1068 *
1069 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
1070 * the message, if not necessarily the code, of commit 70161ff336.
1071 * Therefore the loop now establishes the inverse of the original intent.
1072 *
1073 * Unfortunately, we can't counteract the kernel change by reversing the
1074 * loop; it would break existing command lines.
1075 *
1076 * In any case, the kernel makes no guarantee about the stability of
1077 * enumeration order of virtio devices (as demonstrated by it changing
1078 * between kernel versions). For reliable and stable identification
1079 * of disks users must use UUIDs or similar mechanisms.
1080 */
1081 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
1082 int irq = vms->irqmap[VIRT_MMIO] + i;
1083 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
1084
1085 sysbus_create_simple("virtio-mmio", base,
1086 qdev_get_gpio_in(vms->gic, irq));
1087 }
1088
1089 /* We add dtb nodes in reverse order so that they appear in the finished
1090 * device tree lowest address first.
1091 *
1092 * Note that this mapping is independent of the loop above. The previous
1093 * loop influences virtio device to virtio transport assignment, whereas
1094 * this loop controls how virtio transports are laid out in the dtb.
1095 */
1096 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
1097 char *nodename;
1098 int irq = vms->irqmap[VIRT_MMIO] + i;
1099 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
1100
1101 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
1102 qemu_fdt_add_subnode(ms->fdt, nodename);
1103 qemu_fdt_setprop_string(ms->fdt, nodename,
1104 "compatible", "virtio,mmio");
1105 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1106 2, base, 2, size);
1107 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
1108 GIC_FDT_IRQ_TYPE_SPI, irq,
1109 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1110 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1111 g_free(nodename);
1112 }
1113 }
1114
1115 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
1116
1117 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms,
1118 const char *name,
1119 const char *alias_prop_name)
1120 {
1121 /*
1122 * Create a single flash device. We use the same parameters as
1123 * the flash devices on the Versatile Express board.
1124 */
1125 DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
1126
1127 qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
1128 qdev_prop_set_uint8(dev, "width", 4);
1129 qdev_prop_set_uint8(dev, "device-width", 2);
1130 qdev_prop_set_bit(dev, "big-endian", false);
1131 qdev_prop_set_uint16(dev, "id0", 0x89);
1132 qdev_prop_set_uint16(dev, "id1", 0x18);
1133 qdev_prop_set_uint16(dev, "id2", 0x00);
1134 qdev_prop_set_uint16(dev, "id3", 0x00);
1135 qdev_prop_set_string(dev, "name", name);
1136 object_property_add_child(OBJECT(vms), name, OBJECT(dev));
1137 object_property_add_alias(OBJECT(vms), alias_prop_name,
1138 OBJECT(dev), "drive");
1139 return PFLASH_CFI01(dev);
1140 }
1141
1142 static void virt_flash_create(VirtMachineState *vms)
1143 {
1144 vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0");
1145 vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1");
1146 }
1147
1148 static void virt_flash_map1(PFlashCFI01 *flash,
1149 hwaddr base, hwaddr size,
1150 MemoryRegion *sysmem)
1151 {
1152 DeviceState *dev = DEVICE(flash);
1153
1154 assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE));
1155 assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
1156 qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
1157 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1158
1159 memory_region_add_subregion(sysmem, base,
1160 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
1161 0));
1162 }
1163
1164 static void virt_flash_map(VirtMachineState *vms,
1165 MemoryRegion *sysmem,
1166 MemoryRegion *secure_sysmem)
1167 {
1168 /*
1169 * Map two flash devices to fill the VIRT_FLASH space in the memmap.
1170 * sysmem is the system memory space. secure_sysmem is the secure view
1171 * of the system, and the first flash device should be made visible only
1172 * there. The second flash device is visible to both secure and nonsecure.
1173 * If sysmem == secure_sysmem this means there is no separate Secure
1174 * address space and both flash devices are generally visible.
1175 */
1176 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1177 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1178
1179 virt_flash_map1(vms->flash[0], flashbase, flashsize,
1180 secure_sysmem);
1181 virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize,
1182 sysmem);
1183 }
1184
1185 static void virt_flash_fdt(VirtMachineState *vms,
1186 MemoryRegion *sysmem,
1187 MemoryRegion *secure_sysmem)
1188 {
1189 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1190 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1191 MachineState *ms = MACHINE(vms);
1192 char *nodename;
1193
1194 if (sysmem == secure_sysmem) {
1195 /* Report both flash devices as a single node in the DT */
1196 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
1197 qemu_fdt_add_subnode(ms->fdt, nodename);
1198 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1199 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1200 2, flashbase, 2, flashsize,
1201 2, flashbase + flashsize, 2, flashsize);
1202 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1203 g_free(nodename);
1204 } else {
1205 /*
1206 * Report the devices as separate nodes so we can mark one as
1207 * only visible to the secure world.
1208 */
1209 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
1210 qemu_fdt_add_subnode(ms->fdt, nodename);
1211 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1212 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1213 2, flashbase, 2, flashsize);
1214 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1215 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1216 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1217 g_free(nodename);
1218
1219 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase + flashsize);
1220 qemu_fdt_add_subnode(ms->fdt, nodename);
1221 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1222 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1223 2, flashbase + flashsize, 2, flashsize);
1224 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1225 g_free(nodename);
1226 }
1227 }
1228
1229 static bool virt_firmware_init(VirtMachineState *vms,
1230 MemoryRegion *sysmem,
1231 MemoryRegion *secure_sysmem)
1232 {
1233 int i;
1234 const char *bios_name;
1235 BlockBackend *pflash_blk0;
1236
1237 /* Map legacy -drive if=pflash to machine properties */
1238 for (i = 0; i < ARRAY_SIZE(vms->flash); i++) {
1239 pflash_cfi01_legacy_drive(vms->flash[i],
1240 drive_get(IF_PFLASH, 0, i));
1241 }
1242
1243 virt_flash_map(vms, sysmem, secure_sysmem);
1244
1245 pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]);
1246
1247 bios_name = MACHINE(vms)->firmware;
1248 if (bios_name) {
1249 char *fname;
1250 MemoryRegion *mr;
1251 int image_size;
1252
1253 if (pflash_blk0) {
1254 error_report("The contents of the first flash device may be "
1255 "specified with -bios or with -drive if=pflash... "
1256 "but you cannot use both options at once");
1257 exit(1);
1258 }
1259
1260 /* Fall back to -bios */
1261
1262 fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1263 if (!fname) {
1264 error_report("Could not find ROM image '%s'", bios_name);
1265 exit(1);
1266 }
1267 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0);
1268 image_size = load_image_mr(fname, mr);
1269 g_free(fname);
1270 if (image_size < 0) {
1271 error_report("Could not load ROM image '%s'", bios_name);
1272 exit(1);
1273 }
1274 }
1275
1276 return pflash_blk0 || bios_name;
1277 }
1278
1279 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
1280 {
1281 MachineState *ms = MACHINE(vms);
1282 hwaddr base = vms->memmap[VIRT_FW_CFG].base;
1283 hwaddr size = vms->memmap[VIRT_FW_CFG].size;
1284 FWCfgState *fw_cfg;
1285 char *nodename;
1286
1287 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
1288 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus);
1289
1290 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
1291 qemu_fdt_add_subnode(ms->fdt, nodename);
1292 qemu_fdt_setprop_string(ms->fdt, nodename,
1293 "compatible", "qemu,fw-cfg-mmio");
1294 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1295 2, base, 2, size);
1296 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1297 g_free(nodename);
1298 return fw_cfg;
1299 }
1300
1301 static void create_pcie_irq_map(const MachineState *ms,
1302 uint32_t gic_phandle,
1303 int first_irq, const char *nodename)
1304 {
1305 int devfn, pin;
1306 uint32_t full_irq_map[4 * 4 * 10] = { 0 };
1307 uint32_t *irq_map = full_irq_map;
1308
1309 for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
1310 for (pin = 0; pin < 4; pin++) {
1311 int irq_type = GIC_FDT_IRQ_TYPE_SPI;
1312 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
1313 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
1314 int i;
1315
1316 uint32_t map[] = {
1317 devfn << 8, 0, 0, /* devfn */
1318 pin + 1, /* PCI pin */
1319 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
1320
1321 /* Convert map to big endian */
1322 for (i = 0; i < 10; i++) {
1323 irq_map[i] = cpu_to_be32(map[i]);
1324 }
1325 irq_map += 10;
1326 }
1327 }
1328
1329 qemu_fdt_setprop(ms->fdt, nodename, "interrupt-map",
1330 full_irq_map, sizeof(full_irq_map));
1331
1332 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupt-map-mask",
1333 cpu_to_be16(PCI_DEVFN(3, 0)), /* Slot 3 */
1334 0, 0,
1335 0x7 /* PCI irq */);
1336 }
1337
1338 static void create_smmu(const VirtMachineState *vms,
1339 PCIBus *bus)
1340 {
1341 char *node;
1342 const char compat[] = "arm,smmu-v3";
1343 int irq = vms->irqmap[VIRT_SMMU];
1344 int i;
1345 hwaddr base = vms->memmap[VIRT_SMMU].base;
1346 hwaddr size = vms->memmap[VIRT_SMMU].size;
1347 const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
1348 DeviceState *dev;
1349 MachineState *ms = MACHINE(vms);
1350
1351 if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
1352 return;
1353 }
1354
1355 dev = qdev_new(TYPE_ARM_SMMUV3);
1356
1357 object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus),
1358 &error_abort);
1359 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1360 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
1361 for (i = 0; i < NUM_SMMU_IRQS; i++) {
1362 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1363 qdev_get_gpio_in(vms->gic, irq + i));
1364 }
1365
1366 node = g_strdup_printf("/smmuv3@%" PRIx64, base);
1367 qemu_fdt_add_subnode(ms->fdt, node);
1368 qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
1369 qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg", 2, base, 2, size);
1370
1371 qemu_fdt_setprop_cells(ms->fdt, node, "interrupts",
1372 GIC_FDT_IRQ_TYPE_SPI, irq , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1373 GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1374 GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1375 GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1376
1377 qemu_fdt_setprop(ms->fdt, node, "interrupt-names", irq_names,
1378 sizeof(irq_names));
1379
1380 qemu_fdt_setprop(ms->fdt, node, "dma-coherent", NULL, 0);
1381
1382 qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
1383
1384 qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
1385 g_free(node);
1386 }
1387
1388 static void create_virtio_iommu_dt_bindings(VirtMachineState *vms)
1389 {
1390 const char compat[] = "virtio,pci-iommu\0pci1af4,1057";
1391 uint16_t bdf = vms->virtio_iommu_bdf;
1392 MachineState *ms = MACHINE(vms);
1393 char *node;
1394
1395 vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
1396
1397 node = g_strdup_printf("%s/virtio_iommu@%x,%x", vms->pciehb_nodename,
1398 PCI_SLOT(bdf), PCI_FUNC(bdf));
1399 qemu_fdt_add_subnode(ms->fdt, node);
1400 qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
1401 qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg",
1402 1, bdf << 8, 1, 0, 1, 0,
1403 1, 0, 1, 0);
1404
1405 qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
1406 qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
1407 g_free(node);
1408
1409 qemu_fdt_setprop_cells(ms->fdt, vms->pciehb_nodename, "iommu-map",
1410 0x0, vms->iommu_phandle, 0x0, bdf,
1411 bdf + 1, vms->iommu_phandle, bdf + 1, 0xffff - bdf);
1412 }
1413
1414 static void create_pcie(VirtMachineState *vms)
1415 {
1416 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1417 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
1418 hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base;
1419 hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size;
1420 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1421 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
1422 hwaddr base_ecam, size_ecam;
1423 hwaddr base = base_mmio;
1424 int nr_pcie_buses;
1425 int irq = vms->irqmap[VIRT_PCIE];
1426 MemoryRegion *mmio_alias;
1427 MemoryRegion *mmio_reg;
1428 MemoryRegion *ecam_alias;
1429 MemoryRegion *ecam_reg;
1430 DeviceState *dev;
1431 char *nodename;
1432 int i, ecam_id;
1433 PCIHostState *pci;
1434 MachineState *ms = MACHINE(vms);
1435 MachineClass *mc = MACHINE_GET_CLASS(ms);
1436
1437 dev = qdev_new(TYPE_GPEX_HOST);
1438 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1439
1440 ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
1441 base_ecam = vms->memmap[ecam_id].base;
1442 size_ecam = vms->memmap[ecam_id].size;
1443 nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
1444 /* Map only the first size_ecam bytes of ECAM space */
1445 ecam_alias = g_new0(MemoryRegion, 1);
1446 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1447 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1448 ecam_reg, 0, size_ecam);
1449 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1450
1451 /* Map the MMIO window into system address space so as to expose
1452 * the section of PCI MMIO space which starts at the same base address
1453 * (ie 1:1 mapping for that part of PCI MMIO space visible through
1454 * the window).
1455 */
1456 mmio_alias = g_new0(MemoryRegion, 1);
1457 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1458 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1459 mmio_reg, base_mmio, size_mmio);
1460 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1461
1462 if (vms->highmem_mmio) {
1463 /* Map high MMIO space */
1464 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1465
1466 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1467 mmio_reg, base_mmio_high, size_mmio_high);
1468 memory_region_add_subregion(get_system_memory(), base_mmio_high,
1469 high_mmio_alias);
1470 }
1471
1472 /* Map IO port space */
1473 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1474
1475 for (i = 0; i < GPEX_NUM_IRQS; i++) {
1476 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1477 qdev_get_gpio_in(vms->gic, irq + i));
1478 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
1479 }
1480
1481 pci = PCI_HOST_BRIDGE(dev);
1482 pci->bypass_iommu = vms->default_bus_bypass_iommu;
1483 vms->bus = pci->bus;
1484 if (vms->bus) {
1485 for (i = 0; i < nb_nics; i++) {
1486 pci_nic_init_nofail(&nd_table[i], pci->bus, mc->default_nic, NULL);
1487 }
1488 }
1489
1490 nodename = vms->pciehb_nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1491 qemu_fdt_add_subnode(ms->fdt, nodename);
1492 qemu_fdt_setprop_string(ms->fdt, nodename,
1493 "compatible", "pci-host-ecam-generic");
1494 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "pci");
1495 qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 3);
1496 qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 2);
1497 qemu_fdt_setprop_cell(ms->fdt, nodename, "linux,pci-domain", 0);
1498 qemu_fdt_setprop_cells(ms->fdt, nodename, "bus-range", 0,
1499 nr_pcie_buses - 1);
1500 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1501
1502 if (vms->msi_phandle) {
1503 qemu_fdt_setprop_cells(ms->fdt, nodename, "msi-map",
1504 0, vms->msi_phandle, 0, 0x10000);
1505 }
1506
1507 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1508 2, base_ecam, 2, size_ecam);
1509
1510 if (vms->highmem_mmio) {
1511 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
1512 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1513 2, base_pio, 2, size_pio,
1514 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1515 2, base_mmio, 2, size_mmio,
1516 1, FDT_PCI_RANGE_MMIO_64BIT,
1517 2, base_mmio_high,
1518 2, base_mmio_high, 2, size_mmio_high);
1519 } else {
1520 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
1521 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1522 2, base_pio, 2, size_pio,
1523 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1524 2, base_mmio, 2, size_mmio);
1525 }
1526
1527 qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 1);
1528 create_pcie_irq_map(ms, vms->gic_phandle, irq, nodename);
1529
1530 if (vms->iommu) {
1531 vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
1532
1533 switch (vms->iommu) {
1534 case VIRT_IOMMU_SMMUV3:
1535 create_smmu(vms, vms->bus);
1536 qemu_fdt_setprop_cells(ms->fdt, nodename, "iommu-map",
1537 0x0, vms->iommu_phandle, 0x0, 0x10000);
1538 break;
1539 default:
1540 g_assert_not_reached();
1541 }
1542 }
1543 }
1544
1545 static void create_platform_bus(VirtMachineState *vms)
1546 {
1547 DeviceState *dev;
1548 SysBusDevice *s;
1549 int i;
1550 MemoryRegion *sysmem = get_system_memory();
1551
1552 dev = qdev_new(TYPE_PLATFORM_BUS_DEVICE);
1553 dev->id = g_strdup(TYPE_PLATFORM_BUS_DEVICE);
1554 qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
1555 qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
1556 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1557 vms->platform_bus_dev = dev;
1558
1559 s = SYS_BUS_DEVICE(dev);
1560 for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
1561 int irq = vms->irqmap[VIRT_PLATFORM_BUS] + i;
1562 sysbus_connect_irq(s, i, qdev_get_gpio_in(vms->gic, irq));
1563 }
1564
1565 memory_region_add_subregion(sysmem,
1566 vms->memmap[VIRT_PLATFORM_BUS].base,
1567 sysbus_mmio_get_region(s, 0));
1568 }
1569
1570 static void create_tag_ram(MemoryRegion *tag_sysmem,
1571 hwaddr base, hwaddr size,
1572 const char *name)
1573 {
1574 MemoryRegion *tagram = g_new(MemoryRegion, 1);
1575
1576 memory_region_init_ram(tagram, NULL, name, size / 32, &error_fatal);
1577 memory_region_add_subregion(tag_sysmem, base / 32, tagram);
1578 }
1579
1580 static void create_secure_ram(VirtMachineState *vms,
1581 MemoryRegion *secure_sysmem,
1582 MemoryRegion *secure_tag_sysmem)
1583 {
1584 MemoryRegion *secram = g_new(MemoryRegion, 1);
1585 char *nodename;
1586 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1587 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1588 MachineState *ms = MACHINE(vms);
1589
1590 memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1591 &error_fatal);
1592 memory_region_add_subregion(secure_sysmem, base, secram);
1593
1594 nodename = g_strdup_printf("/secram@%" PRIx64, base);
1595 qemu_fdt_add_subnode(ms->fdt, nodename);
1596 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "memory");
1597 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 2, base, 2, size);
1598 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1599 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1600
1601 if (secure_tag_sysmem) {
1602 create_tag_ram(secure_tag_sysmem, base, size, "mach-virt.secure-tag");
1603 }
1604
1605 g_free(nodename);
1606 }
1607
1608 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1609 {
1610 const VirtMachineState *board = container_of(binfo, VirtMachineState,
1611 bootinfo);
1612 MachineState *ms = MACHINE(board);
1613
1614
1615 *fdt_size = board->fdt_size;
1616 return ms->fdt;
1617 }
1618
1619 static void virt_build_smbios(VirtMachineState *vms)
1620 {
1621 MachineClass *mc = MACHINE_GET_CLASS(vms);
1622 MachineState *ms = MACHINE(vms);
1623 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1624 uint8_t *smbios_tables, *smbios_anchor;
1625 size_t smbios_tables_len, smbios_anchor_len;
1626 struct smbios_phys_mem_area mem_array;
1627 const char *product = "QEMU Virtual Machine";
1628
1629 if (kvm_enabled()) {
1630 product = "KVM Virtual Machine";
1631 }
1632
1633 smbios_set_defaults("QEMU", product,
1634 vmc->smbios_old_sys_ver ? "1.0" : mc->name, false,
1635 true, SMBIOS_ENTRY_POINT_TYPE_64);
1636
1637 /* build the array of physical mem area from base_memmap */
1638 mem_array.address = vms->memmap[VIRT_MEM].base;
1639 mem_array.length = ms->ram_size;
1640
1641 smbios_get_tables(ms, &mem_array, 1,
1642 &smbios_tables, &smbios_tables_len,
1643 &smbios_anchor, &smbios_anchor_len,
1644 &error_fatal);
1645
1646 if (smbios_anchor) {
1647 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1648 smbios_tables, smbios_tables_len);
1649 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1650 smbios_anchor, smbios_anchor_len);
1651 }
1652 }
1653
1654 static
1655 void virt_machine_done(Notifier *notifier, void *data)
1656 {
1657 VirtMachineState *vms = container_of(notifier, VirtMachineState,
1658 machine_done);
1659 MachineState *ms = MACHINE(vms);
1660 ARMCPU *cpu = ARM_CPU(first_cpu);
1661 struct arm_boot_info *info = &vms->bootinfo;
1662 AddressSpace *as = arm_boot_address_space(cpu, info);
1663
1664 /*
1665 * If the user provided a dtb, we assume the dynamic sysbus nodes
1666 * already are integrated there. This corresponds to a use case where
1667 * the dynamic sysbus nodes are complex and their generation is not yet
1668 * supported. In that case the user can take charge of the guest dt
1669 * while qemu takes charge of the qom stuff.
1670 */
1671 if (info->dtb_filename == NULL) {
1672 platform_bus_add_all_fdt_nodes(ms->fdt, "/intc",
1673 vms->memmap[VIRT_PLATFORM_BUS].base,
1674 vms->memmap[VIRT_PLATFORM_BUS].size,
1675 vms->irqmap[VIRT_PLATFORM_BUS]);
1676 }
1677 if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) {
1678 exit(1);
1679 }
1680
1681 fw_cfg_add_extra_pci_roots(vms->bus, vms->fw_cfg);
1682
1683 virt_acpi_setup(vms);
1684 virt_build_smbios(vms);
1685 }
1686
1687 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1688 {
1689 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1690 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1691
1692 if (!vmc->disallow_affinity_adjustment) {
1693 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1694 * GIC's target-list limitations. 32-bit KVM hosts currently
1695 * always create clusters of 4 CPUs, but that is expected to
1696 * change when they gain support for gicv3. When KVM is enabled
1697 * it will override the changes we make here, therefore our
1698 * purposes are to make TCG consistent (with 64-bit KVM hosts)
1699 * and to improve SGI efficiency.
1700 */
1701 if (vms->gic_version == VIRT_GIC_VERSION_2) {
1702 clustersz = GIC_TARGETLIST_BITS;
1703 } else {
1704 clustersz = GICV3_TARGETLIST_BITS;
1705 }
1706 }
1707 return arm_cpu_mp_affinity(idx, clustersz);
1708 }
1709
1710 static inline bool *virt_get_high_memmap_enabled(VirtMachineState *vms,
1711 int index)
1712 {
1713 bool *enabled_array[] = {
1714 &vms->highmem_redists,
1715 &vms->highmem_ecam,
1716 &vms->highmem_mmio,
1717 };
1718
1719 assert(ARRAY_SIZE(extended_memmap) - VIRT_LOWMEMMAP_LAST ==
1720 ARRAY_SIZE(enabled_array));
1721 assert(index - VIRT_LOWMEMMAP_LAST < ARRAY_SIZE(enabled_array));
1722
1723 return enabled_array[index - VIRT_LOWMEMMAP_LAST];
1724 }
1725
1726 static void virt_set_high_memmap(VirtMachineState *vms,
1727 hwaddr base, int pa_bits)
1728 {
1729 hwaddr region_base, region_size;
1730 bool *region_enabled, fits;
1731 int i;
1732
1733 for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) {
1734 region_enabled = virt_get_high_memmap_enabled(vms, i);
1735 region_base = ROUND_UP(base, extended_memmap[i].size);
1736 region_size = extended_memmap[i].size;
1737
1738 vms->memmap[i].base = region_base;
1739 vms->memmap[i].size = region_size;
1740
1741 /*
1742 * Check each device to see if it fits in the PA space,
1743 * moving highest_gpa as we go. For compatibility, move
1744 * highest_gpa for disabled fitting devices as well, if
1745 * the compact layout has been disabled.
1746 *
1747 * For each device that doesn't fit, disable it.
1748 */
1749 fits = (region_base + region_size) <= BIT_ULL(pa_bits);
1750 *region_enabled &= fits;
1751 if (vms->highmem_compact && !*region_enabled) {
1752 continue;
1753 }
1754
1755 base = region_base + region_size;
1756 if (fits) {
1757 vms->highest_gpa = base - 1;
1758 }
1759 }
1760 }
1761
1762 static void virt_set_memmap(VirtMachineState *vms, int pa_bits)
1763 {
1764 MachineState *ms = MACHINE(vms);
1765 hwaddr base, device_memory_base, device_memory_size, memtop;
1766 int i;
1767
1768 vms->memmap = extended_memmap;
1769
1770 for (i = 0; i < ARRAY_SIZE(base_memmap); i++) {
1771 vms->memmap[i] = base_memmap[i];
1772 }
1773
1774 if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) {
1775 error_report("unsupported number of memory slots: %"PRIu64,
1776 ms->ram_slots);
1777 exit(EXIT_FAILURE);
1778 }
1779
1780 /*
1781 * !highmem is exactly the same as limiting the PA space to 32bit,
1782 * irrespective of the underlying capabilities of the HW.
1783 */
1784 if (!vms->highmem) {
1785 pa_bits = 32;
1786 }
1787
1788 /*
1789 * We compute the base of the high IO region depending on the
1790 * amount of initial and device memory. The device memory start/size
1791 * is aligned on 1GiB. We never put the high IO region below 256GiB
1792 * so that if maxram_size is < 255GiB we keep the legacy memory map.
1793 * The device region size assumes 1GiB page max alignment per slot.
1794 */
1795 device_memory_base =
1796 ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB);
1797 device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB;
1798
1799 /* Base address of the high IO region */
1800 memtop = base = device_memory_base + ROUND_UP(device_memory_size, GiB);
1801 if (memtop > BIT_ULL(pa_bits)) {
1802 error_report("Addressing limited to %d bits, but memory exceeds it by %llu bytes\n",
1803 pa_bits, memtop - BIT_ULL(pa_bits));
1804 exit(EXIT_FAILURE);
1805 }
1806 if (base < device_memory_base) {
1807 error_report("maxmem/slots too huge");
1808 exit(EXIT_FAILURE);
1809 }
1810 if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) {
1811 base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES;
1812 }
1813
1814 /* We know for sure that at least the memory fits in the PA space */
1815 vms->highest_gpa = memtop - 1;
1816
1817 virt_set_high_memmap(vms, base, pa_bits);
1818
1819 if (device_memory_size > 0) {
1820 machine_memory_devices_init(ms, device_memory_base, device_memory_size);
1821 }
1822 }
1823
1824 static VirtGICType finalize_gic_version_do(const char *accel_name,
1825 VirtGICType gic_version,
1826 int gics_supported,
1827 unsigned int max_cpus)
1828 {
1829 /* Convert host/max/nosel to GIC version number */
1830 switch (gic_version) {
1831 case VIRT_GIC_VERSION_HOST:
1832 if (!kvm_enabled()) {
1833 error_report("gic-version=host requires KVM");
1834 exit(1);
1835 }
1836
1837 /* For KVM, gic-version=host means gic-version=max */
1838 return finalize_gic_version_do(accel_name, VIRT_GIC_VERSION_MAX,
1839 gics_supported, max_cpus);
1840 case VIRT_GIC_VERSION_MAX:
1841 if (gics_supported & VIRT_GIC_VERSION_4_MASK) {
1842 gic_version = VIRT_GIC_VERSION_4;
1843 } else if (gics_supported & VIRT_GIC_VERSION_3_MASK) {
1844 gic_version = VIRT_GIC_VERSION_3;
1845 } else {
1846 gic_version = VIRT_GIC_VERSION_2;
1847 }
1848 break;
1849 case VIRT_GIC_VERSION_NOSEL:
1850 if ((gics_supported & VIRT_GIC_VERSION_2_MASK) &&
1851 max_cpus <= GIC_NCPU) {
1852 gic_version = VIRT_GIC_VERSION_2;
1853 } else if (gics_supported & VIRT_GIC_VERSION_3_MASK) {
1854 /*
1855 * in case the host does not support v2 emulation or
1856 * the end-user requested more than 8 VCPUs we now default
1857 * to v3. In any case defaulting to v2 would be broken.
1858 */
1859 gic_version = VIRT_GIC_VERSION_3;
1860 } else if (max_cpus > GIC_NCPU) {
1861 error_report("%s only supports GICv2 emulation but more than 8 "
1862 "vcpus are requested", accel_name);
1863 exit(1);
1864 }
1865 break;
1866 case VIRT_GIC_VERSION_2:
1867 case VIRT_GIC_VERSION_3:
1868 case VIRT_GIC_VERSION_4:
1869 break;
1870 }
1871
1872 /* Check chosen version is effectively supported */
1873 switch (gic_version) {
1874 case VIRT_GIC_VERSION_2:
1875 if (!(gics_supported & VIRT_GIC_VERSION_2_MASK)) {
1876 error_report("%s does not support GICv2 emulation", accel_name);
1877 exit(1);
1878 }
1879 break;
1880 case VIRT_GIC_VERSION_3:
1881 if (!(gics_supported & VIRT_GIC_VERSION_3_MASK)) {
1882 error_report("%s does not support GICv3 emulation", accel_name);
1883 exit(1);
1884 }
1885 break;
1886 case VIRT_GIC_VERSION_4:
1887 if (!(gics_supported & VIRT_GIC_VERSION_4_MASK)) {
1888 error_report("%s does not support GICv4 emulation, is virtualization=on?",
1889 accel_name);
1890 exit(1);
1891 }
1892 break;
1893 default:
1894 error_report("logic error in finalize_gic_version");
1895 exit(1);
1896 break;
1897 }
1898
1899 return gic_version;
1900 }
1901
1902 /*
1903 * finalize_gic_version - Determines the final gic_version
1904 * according to the gic-version property
1905 *
1906 * Default GIC type is v2
1907 */
1908 static void finalize_gic_version(VirtMachineState *vms)
1909 {
1910 const char *accel_name = current_accel_name();
1911 unsigned int max_cpus = MACHINE(vms)->smp.max_cpus;
1912 int gics_supported = 0;
1913
1914 /* Determine which GIC versions the current environment supports */
1915 if (kvm_enabled() && kvm_irqchip_in_kernel()) {
1916 int probe_bitmap = kvm_arm_vgic_probe();
1917
1918 if (!probe_bitmap) {
1919 error_report("Unable to determine GIC version supported by host");
1920 exit(1);
1921 }
1922
1923 if (probe_bitmap & KVM_ARM_VGIC_V2) {
1924 gics_supported |= VIRT_GIC_VERSION_2_MASK;
1925 }
1926 if (probe_bitmap & KVM_ARM_VGIC_V3) {
1927 gics_supported |= VIRT_GIC_VERSION_3_MASK;
1928 }
1929 } else if (kvm_enabled() && !kvm_irqchip_in_kernel()) {
1930 /* KVM w/o kernel irqchip can only deal with GICv2 */
1931 gics_supported |= VIRT_GIC_VERSION_2_MASK;
1932 accel_name = "KVM with kernel-irqchip=off";
1933 } else if (tcg_enabled() || hvf_enabled() || qtest_enabled()) {
1934 gics_supported |= VIRT_GIC_VERSION_2_MASK;
1935 if (module_object_class_by_name("arm-gicv3")) {
1936 gics_supported |= VIRT_GIC_VERSION_3_MASK;
1937 if (vms->virt) {
1938 /* GICv4 only makes sense if CPU has EL2 */
1939 gics_supported |= VIRT_GIC_VERSION_4_MASK;
1940 }
1941 }
1942 } else {
1943 error_report("Unsupported accelerator, can not determine GIC support");
1944 exit(1);
1945 }
1946
1947 /*
1948 * Then convert helpers like host/max to concrete GIC versions and ensure
1949 * the desired version is supported
1950 */
1951 vms->gic_version = finalize_gic_version_do(accel_name, vms->gic_version,
1952 gics_supported, max_cpus);
1953 }
1954
1955 /*
1956 * virt_cpu_post_init() must be called after the CPUs have
1957 * been realized and the GIC has been created.
1958 */
1959 static void virt_cpu_post_init(VirtMachineState *vms, MemoryRegion *sysmem)
1960 {
1961 int max_cpus = MACHINE(vms)->smp.max_cpus;
1962 bool aarch64, pmu, steal_time;
1963 CPUState *cpu;
1964
1965 aarch64 = object_property_get_bool(OBJECT(first_cpu), "aarch64", NULL);
1966 pmu = object_property_get_bool(OBJECT(first_cpu), "pmu", NULL);
1967 steal_time = object_property_get_bool(OBJECT(first_cpu),
1968 "kvm-steal-time", NULL);
1969
1970 if (kvm_enabled()) {
1971 hwaddr pvtime_reg_base = vms->memmap[VIRT_PVTIME].base;
1972 hwaddr pvtime_reg_size = vms->memmap[VIRT_PVTIME].size;
1973
1974 if (steal_time) {
1975 MemoryRegion *pvtime = g_new(MemoryRegion, 1);
1976 hwaddr pvtime_size = max_cpus * PVTIME_SIZE_PER_CPU;
1977
1978 /* The memory region size must be a multiple of host page size. */
1979 pvtime_size = REAL_HOST_PAGE_ALIGN(pvtime_size);
1980
1981 if (pvtime_size > pvtime_reg_size) {
1982 error_report("pvtime requires a %" HWADDR_PRId
1983 " byte memory region for %d CPUs,"
1984 " but only %" HWADDR_PRId " has been reserved",
1985 pvtime_size, max_cpus, pvtime_reg_size);
1986 exit(1);
1987 }
1988
1989 memory_region_init_ram(pvtime, NULL, "pvtime", pvtime_size, NULL);
1990 memory_region_add_subregion(sysmem, pvtime_reg_base, pvtime);
1991 }
1992
1993 CPU_FOREACH(cpu) {
1994 if (pmu) {
1995 assert(arm_feature(&ARM_CPU(cpu)->env, ARM_FEATURE_PMU));
1996 if (kvm_irqchip_in_kernel()) {
1997 kvm_arm_pmu_set_irq(cpu, VIRTUAL_PMU_IRQ);
1998 }
1999 kvm_arm_pmu_init(cpu);
2000 }
2001 if (steal_time) {
2002 kvm_arm_pvtime_init(cpu, pvtime_reg_base +
2003 cpu->cpu_index * PVTIME_SIZE_PER_CPU);
2004 }
2005 }
2006 } else {
2007 if (aarch64 && vms->highmem) {
2008 int requested_pa_size = 64 - clz64(vms->highest_gpa);
2009 int pamax = arm_pamax(ARM_CPU(first_cpu));
2010
2011 if (pamax < requested_pa_size) {
2012 error_report("VCPU supports less PA bits (%d) than "
2013 "requested by the memory map (%d)",
2014 pamax, requested_pa_size);
2015 exit(1);
2016 }
2017 }
2018 }
2019 }
2020
2021 static void machvirt_init(MachineState *machine)
2022 {
2023 VirtMachineState *vms = VIRT_MACHINE(machine);
2024 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
2025 MachineClass *mc = MACHINE_GET_CLASS(machine);
2026 const CPUArchIdList *possible_cpus;
2027 MemoryRegion *sysmem = get_system_memory();
2028 MemoryRegion *secure_sysmem = NULL;
2029 MemoryRegion *tag_sysmem = NULL;
2030 MemoryRegion *secure_tag_sysmem = NULL;
2031 int n, virt_max_cpus;
2032 bool firmware_loaded;
2033 bool aarch64 = true;
2034 bool has_ged = !vmc->no_ged;
2035 unsigned int smp_cpus = machine->smp.cpus;
2036 unsigned int max_cpus = machine->smp.max_cpus;
2037
2038 if (!cpu_type_valid(machine->cpu_type)) {
2039 error_report("mach-virt: CPU type %s not supported", machine->cpu_type);
2040 exit(1);
2041 }
2042
2043 possible_cpus = mc->possible_cpu_arch_ids(machine);
2044
2045 /*
2046 * In accelerated mode, the memory map is computed earlier in kvm_type()
2047 * to create a VM with the right number of IPA bits.
2048 */
2049 if (!vms->memmap) {
2050 Object *cpuobj;
2051 ARMCPU *armcpu;
2052 int pa_bits;
2053
2054 /*
2055 * Instantiate a temporary CPU object to find out about what
2056 * we are about to deal with. Once this is done, get rid of
2057 * the object.
2058 */
2059 cpuobj = object_new(possible_cpus->cpus[0].type);
2060 armcpu = ARM_CPU(cpuobj);
2061
2062 pa_bits = arm_pamax(armcpu);
2063
2064 object_unref(cpuobj);
2065
2066 virt_set_memmap(vms, pa_bits);
2067 }
2068
2069 /* We can probe only here because during property set
2070 * KVM is not available yet
2071 */
2072 finalize_gic_version(vms);
2073
2074 if (vms->secure) {
2075 /*
2076 * The Secure view of the world is the same as the NonSecure,
2077 * but with a few extra devices. Create it as a container region
2078 * containing the system memory at low priority; any secure-only
2079 * devices go in at higher priority and take precedence.
2080 */
2081 secure_sysmem = g_new(MemoryRegion, 1);
2082 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
2083 UINT64_MAX);
2084 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
2085 }
2086
2087 firmware_loaded = virt_firmware_init(vms, sysmem,
2088 secure_sysmem ?: sysmem);
2089
2090 /* If we have an EL3 boot ROM then the assumption is that it will
2091 * implement PSCI itself, so disable QEMU's internal implementation
2092 * so it doesn't get in the way. Instead of starting secondary
2093 * CPUs in PSCI powerdown state we will start them all running and
2094 * let the boot ROM sort them out.
2095 * The usual case is that we do use QEMU's PSCI implementation;
2096 * if the guest has EL2 then we will use SMC as the conduit,
2097 * and otherwise we will use HVC (for backwards compatibility and
2098 * because if we're using KVM then we must use HVC).
2099 */
2100 if (vms->secure && firmware_loaded) {
2101 vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
2102 } else if (vms->virt) {
2103 vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
2104 } else {
2105 vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
2106 }
2107
2108 /*
2109 * The maximum number of CPUs depends on the GIC version, or on how
2110 * many redistributors we can fit into the memory map (which in turn
2111 * depends on whether this is a GICv3 or v4).
2112 */
2113 if (vms->gic_version == VIRT_GIC_VERSION_2) {
2114 virt_max_cpus = GIC_NCPU;
2115 } else {
2116 virt_max_cpus = virt_redist_capacity(vms, VIRT_GIC_REDIST);
2117 if (vms->highmem_redists) {
2118 virt_max_cpus += virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2);
2119 }
2120 }
2121
2122 if (max_cpus > virt_max_cpus) {
2123 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
2124 "supported by machine 'mach-virt' (%d)",
2125 max_cpus, virt_max_cpus);
2126 if (vms->gic_version != VIRT_GIC_VERSION_2 && !vms->highmem_redists) {
2127 error_printf("Try 'highmem-redists=on' for more CPUs\n");
2128 }
2129
2130 exit(1);
2131 }
2132
2133 if (vms->secure && (kvm_enabled() || hvf_enabled())) {
2134 error_report("mach-virt: %s does not support providing "
2135 "Security extensions (TrustZone) to the guest CPU",
2136 current_accel_name());
2137 exit(1);
2138 }
2139
2140 if (vms->virt && (kvm_enabled() || hvf_enabled())) {
2141 error_report("mach-virt: %s does not support providing "
2142 "Virtualization extensions to the guest CPU",
2143 current_accel_name());
2144 exit(1);
2145 }
2146
2147 if (vms->mte && (kvm_enabled() || hvf_enabled())) {
2148 error_report("mach-virt: %s does not support providing "
2149 "MTE to the guest CPU",
2150 current_accel_name());
2151 exit(1);
2152 }
2153
2154 create_fdt(vms);
2155
2156 assert(possible_cpus->len == max_cpus);
2157 for (n = 0; n < possible_cpus->len; n++) {
2158 Object *cpuobj;
2159 CPUState *cs;
2160
2161 if (n >= smp_cpus) {
2162 break;
2163 }
2164
2165 cpuobj = object_new(possible_cpus->cpus[n].type);
2166 object_property_set_int(cpuobj, "mp-affinity",
2167 possible_cpus->cpus[n].arch_id, NULL);
2168
2169 cs = CPU(cpuobj);
2170 cs->cpu_index = n;
2171
2172 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
2173 &error_fatal);
2174
2175 aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
2176
2177 if (!vms->secure) {
2178 object_property_set_bool(cpuobj, "has_el3", false, NULL);
2179 }
2180
2181 if (!vms->virt && object_property_find(cpuobj, "has_el2")) {
2182 object_property_set_bool(cpuobj, "has_el2", false, NULL);
2183 }
2184
2185 if (vmc->kvm_no_adjvtime &&
2186 object_property_find(cpuobj, "kvm-no-adjvtime")) {
2187 object_property_set_bool(cpuobj, "kvm-no-adjvtime", true, NULL);
2188 }
2189
2190 if (vmc->no_kvm_steal_time &&
2191 object_property_find(cpuobj, "kvm-steal-time")) {
2192 object_property_set_bool(cpuobj, "kvm-steal-time", false, NULL);
2193 }
2194
2195 if (vmc->no_pmu && object_property_find(cpuobj, "pmu")) {
2196 object_property_set_bool(cpuobj, "pmu", false, NULL);
2197 }
2198
2199 if (vmc->no_tcg_lpa2 && object_property_find(cpuobj, "lpa2")) {
2200 object_property_set_bool(cpuobj, "lpa2", false, NULL);
2201 }
2202
2203 if (object_property_find(cpuobj, "reset-cbar")) {
2204 object_property_set_int(cpuobj, "reset-cbar",
2205 vms->memmap[VIRT_CPUPERIPHS].base,
2206 &error_abort);
2207 }
2208
2209 object_property_set_link(cpuobj, "memory", OBJECT(sysmem),
2210 &error_abort);
2211 if (vms->secure) {
2212 object_property_set_link(cpuobj, "secure-memory",
2213 OBJECT(secure_sysmem), &error_abort);
2214 }
2215
2216 if (vms->mte) {
2217 /* Create the memory region only once, but link to all cpus. */
2218 if (!tag_sysmem) {
2219 /*
2220 * The property exists only if MemTag is supported.
2221 * If it is, we must allocate the ram to back that up.
2222 */
2223 if (!object_property_find(cpuobj, "tag-memory")) {
2224 error_report("MTE requested, but not supported "
2225 "by the guest CPU");
2226 exit(1);
2227 }
2228
2229 tag_sysmem = g_new(MemoryRegion, 1);
2230 memory_region_init(tag_sysmem, OBJECT(machine),
2231 "tag-memory", UINT64_MAX / 32);
2232
2233 if (vms->secure) {
2234 secure_tag_sysmem = g_new(MemoryRegion, 1);
2235 memory_region_init(secure_tag_sysmem, OBJECT(machine),
2236 "secure-tag-memory", UINT64_MAX / 32);
2237
2238 /* As with ram, secure-tag takes precedence over tag. */
2239 memory_region_add_subregion_overlap(secure_tag_sysmem, 0,
2240 tag_sysmem, -1);
2241 }
2242 }
2243
2244 object_property_set_link(cpuobj, "tag-memory", OBJECT(tag_sysmem),
2245 &error_abort);
2246 if (vms->secure) {
2247 object_property_set_link(cpuobj, "secure-tag-memory",
2248 OBJECT(secure_tag_sysmem),
2249 &error_abort);
2250 }
2251 }
2252
2253 qdev_realize(DEVICE(cpuobj), NULL, &error_fatal);
2254 object_unref(cpuobj);
2255 }
2256 fdt_add_timer_nodes(vms);
2257 fdt_add_cpu_nodes(vms);
2258
2259 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base,
2260 machine->ram);
2261
2262 virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem);
2263
2264 create_gic(vms, sysmem);
2265
2266 virt_cpu_post_init(vms, sysmem);
2267
2268 fdt_add_pmu_nodes(vms);
2269
2270 create_uart(vms, VIRT_UART, sysmem, serial_hd(0));
2271
2272 if (vms->secure) {
2273 create_secure_ram(vms, secure_sysmem, secure_tag_sysmem);
2274 create_uart(vms, VIRT_SECURE_UART, secure_sysmem, serial_hd(1));
2275 }
2276
2277 if (tag_sysmem) {
2278 create_tag_ram(tag_sysmem, vms->memmap[VIRT_MEM].base,
2279 machine->ram_size, "mach-virt.tag");
2280 }
2281
2282 vms->highmem_ecam &= (!firmware_loaded || aarch64);
2283
2284 create_rtc(vms);
2285
2286 create_pcie(vms);
2287
2288 if (has_ged && aarch64 && firmware_loaded && virt_is_acpi_enabled(vms)) {
2289 vms->acpi_dev = create_acpi_ged(vms);
2290 } else {
2291 create_gpio_devices(vms, VIRT_GPIO, sysmem);
2292 }
2293
2294 if (vms->secure && !vmc->no_secure_gpio) {
2295 create_gpio_devices(vms, VIRT_SECURE_GPIO, secure_sysmem);
2296 }
2297
2298 /* connect powerdown request */
2299 vms->powerdown_notifier.notify = virt_powerdown_req;
2300 qemu_register_powerdown_notifier(&vms->powerdown_notifier);
2301
2302 /* Create mmio transports, so the user can create virtio backends
2303 * (which will be automatically plugged in to the transports). If
2304 * no backend is created the transport will just sit harmlessly idle.
2305 */
2306 create_virtio_devices(vms);
2307
2308 vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
2309 rom_set_fw(vms->fw_cfg);
2310
2311 create_platform_bus(vms);
2312
2313 if (machine->nvdimms_state->is_enabled) {
2314 const struct AcpiGenericAddress arm_virt_nvdimm_acpi_dsmio = {
2315 .space_id = AML_AS_SYSTEM_MEMORY,
2316 .address = vms->memmap[VIRT_NVDIMM_ACPI].base,
2317 .bit_width = NVDIMM_ACPI_IO_LEN << 3
2318 };
2319
2320 nvdimm_init_acpi_state(machine->nvdimms_state, sysmem,
2321 arm_virt_nvdimm_acpi_dsmio,
2322 vms->fw_cfg, OBJECT(vms));
2323 }
2324
2325 vms->bootinfo.ram_size = machine->ram_size;
2326 vms->bootinfo.board_id = -1;
2327 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
2328 vms->bootinfo.get_dtb = machvirt_dtb;
2329 vms->bootinfo.skip_dtb_autoload = true;
2330 vms->bootinfo.firmware_loaded = firmware_loaded;
2331 vms->bootinfo.psci_conduit = vms->psci_conduit;
2332 arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo);
2333
2334 vms->machine_done.notify = virt_machine_done;
2335 qemu_add_machine_init_done_notifier(&vms->machine_done);
2336 }
2337
2338 static bool virt_get_secure(Object *obj, Error **errp)
2339 {
2340 VirtMachineState *vms = VIRT_MACHINE(obj);
2341
2342 return vms->secure;
2343 }
2344
2345 static void virt_set_secure(Object *obj, bool value, Error **errp)
2346 {
2347 VirtMachineState *vms = VIRT_MACHINE(obj);
2348
2349 vms->secure = value;
2350 }
2351
2352 static bool virt_get_virt(Object *obj, Error **errp)
2353 {
2354 VirtMachineState *vms = VIRT_MACHINE(obj);
2355
2356 return vms->virt;
2357 }
2358
2359 static void virt_set_virt(Object *obj, bool value, Error **errp)
2360 {
2361 VirtMachineState *vms = VIRT_MACHINE(obj);
2362
2363 vms->virt = value;
2364 }
2365
2366 static bool virt_get_highmem(Object *obj, Error **errp)
2367 {
2368 VirtMachineState *vms = VIRT_MACHINE(obj);
2369
2370 return vms->highmem;
2371 }
2372
2373 static void virt_set_highmem(Object *obj, bool value, Error **errp)
2374 {
2375 VirtMachineState *vms = VIRT_MACHINE(obj);
2376
2377 vms->highmem = value;
2378 }
2379
2380 static bool virt_get_compact_highmem(Object *obj, Error **errp)
2381 {
2382 VirtMachineState *vms = VIRT_MACHINE(obj);
2383
2384 return vms->highmem_compact;
2385 }
2386
2387 static void virt_set_compact_highmem(Object *obj, bool value, Error **errp)
2388 {
2389 VirtMachineState *vms = VIRT_MACHINE(obj);
2390
2391 vms->highmem_compact = value;
2392 }
2393
2394 static bool virt_get_highmem_redists(Object *obj, Error **errp)
2395 {
2396 VirtMachineState *vms = VIRT_MACHINE(obj);
2397
2398 return vms->highmem_redists;
2399 }
2400
2401 static void virt_set_highmem_redists(Object *obj, bool value, Error **errp)
2402 {
2403 VirtMachineState *vms = VIRT_MACHINE(obj);
2404
2405 vms->highmem_redists = value;
2406 }
2407
2408 static bool virt_get_highmem_ecam(Object *obj, Error **errp)
2409 {
2410 VirtMachineState *vms = VIRT_MACHINE(obj);
2411
2412 return vms->highmem_ecam;
2413 }
2414
2415 static void virt_set_highmem_ecam(Object *obj, bool value, Error **errp)
2416 {
2417 VirtMachineState *vms = VIRT_MACHINE(obj);
2418
2419 vms->highmem_ecam = value;
2420 }
2421
2422 static bool virt_get_highmem_mmio(Object *obj, Error **errp)
2423 {
2424 VirtMachineState *vms = VIRT_MACHINE(obj);
2425
2426 return vms->highmem_mmio;
2427 }
2428
2429 static void virt_set_highmem_mmio(Object *obj, bool value, Error **errp)
2430 {
2431 VirtMachineState *vms = VIRT_MACHINE(obj);
2432
2433 vms->highmem_mmio = value;
2434 }
2435
2436
2437 static bool virt_get_its(Object *obj, Error **errp)
2438 {
2439 VirtMachineState *vms = VIRT_MACHINE(obj);
2440
2441 return vms->its;
2442 }
2443
2444 static void virt_set_its(Object *obj, bool value, Error **errp)
2445 {
2446 VirtMachineState *vms = VIRT_MACHINE(obj);
2447
2448 vms->its = value;
2449 }
2450
2451 static bool virt_get_dtb_randomness(Object *obj, Error **errp)
2452 {
2453 VirtMachineState *vms = VIRT_MACHINE(obj);
2454
2455 return vms->dtb_randomness;
2456 }
2457
2458 static void virt_set_dtb_randomness(Object *obj, bool value, Error **errp)
2459 {
2460 VirtMachineState *vms = VIRT_MACHINE(obj);
2461
2462 vms->dtb_randomness = value;
2463 }
2464
2465 static char *virt_get_oem_id(Object *obj, Error **errp)
2466 {
2467 VirtMachineState *vms = VIRT_MACHINE(obj);
2468
2469 return g_strdup(vms->oem_id);
2470 }
2471
2472 static void virt_set_oem_id(Object *obj, const char *value, Error **errp)
2473 {
2474 VirtMachineState *vms = VIRT_MACHINE(obj);
2475 size_t len = strlen(value);
2476
2477 if (len > 6) {
2478 error_setg(errp,
2479 "User specified oem-id value is bigger than 6 bytes in size");
2480 return;
2481 }
2482
2483 strncpy(vms->oem_id, value, 6);
2484 }
2485
2486 static char *virt_get_oem_table_id(Object *obj, Error **errp)
2487 {
2488 VirtMachineState *vms = VIRT_MACHINE(obj);
2489
2490 return g_strdup(vms->oem_table_id);
2491 }
2492
2493 static void virt_set_oem_table_id(Object *obj, const char *value,
2494 Error **errp)
2495 {
2496 VirtMachineState *vms = VIRT_MACHINE(obj);
2497 size_t len = strlen(value);
2498
2499 if (len > 8) {
2500 error_setg(errp,
2501 "User specified oem-table-id value is bigger than 8 bytes in size");
2502 return;
2503 }
2504 strncpy(vms->oem_table_id, value, 8);
2505 }
2506
2507
2508 bool virt_is_acpi_enabled(VirtMachineState *vms)
2509 {
2510 if (vms->acpi == ON_OFF_AUTO_OFF) {
2511 return false;
2512 }
2513 return true;
2514 }
2515
2516 static void virt_get_acpi(Object *obj, Visitor *v, const char *name,
2517 void *opaque, Error **errp)
2518 {
2519 VirtMachineState *vms = VIRT_MACHINE(obj);
2520 OnOffAuto acpi = vms->acpi;
2521
2522 visit_type_OnOffAuto(v, name, &acpi, errp);
2523 }
2524
2525 static void virt_set_acpi(Object *obj, Visitor *v, const char *name,
2526 void *opaque, Error **errp)
2527 {
2528 VirtMachineState *vms = VIRT_MACHINE(obj);
2529
2530 visit_type_OnOffAuto(v, name, &vms->acpi, errp);
2531 }
2532
2533 static bool virt_get_ras(Object *obj, Error **errp)
2534 {
2535 VirtMachineState *vms = VIRT_MACHINE(obj);
2536
2537 return vms->ras;
2538 }
2539
2540 static void virt_set_ras(Object *obj, bool value, Error **errp)
2541 {
2542 VirtMachineState *vms = VIRT_MACHINE(obj);
2543
2544 vms->ras = value;
2545 }
2546
2547 static bool virt_get_mte(Object *obj, Error **errp)
2548 {
2549 VirtMachineState *vms = VIRT_MACHINE(obj);
2550
2551 return vms->mte;
2552 }
2553
2554 static void virt_set_mte(Object *obj, bool value, Error **errp)
2555 {
2556 VirtMachineState *vms = VIRT_MACHINE(obj);
2557
2558 vms->mte = value;
2559 }
2560
2561 static char *virt_get_gic_version(Object *obj, Error **errp)
2562 {
2563 VirtMachineState *vms = VIRT_MACHINE(obj);
2564 const char *val;
2565
2566 switch (vms->gic_version) {
2567 case VIRT_GIC_VERSION_4:
2568 val = "4";
2569 break;
2570 case VIRT_GIC_VERSION_3:
2571 val = "3";
2572 break;
2573 default:
2574 val = "2";
2575 break;
2576 }
2577 return g_strdup(val);
2578 }
2579
2580 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
2581 {
2582 VirtMachineState *vms = VIRT_MACHINE(obj);
2583
2584 if (!strcmp(value, "4")) {
2585 vms->gic_version = VIRT_GIC_VERSION_4;
2586 } else if (!strcmp(value, "3")) {
2587 vms->gic_version = VIRT_GIC_VERSION_3;
2588 } else if (!strcmp(value, "2")) {
2589 vms->gic_version = VIRT_GIC_VERSION_2;
2590 } else if (!strcmp(value, "host")) {
2591 vms->gic_version = VIRT_GIC_VERSION_HOST; /* Will probe later */
2592 } else if (!strcmp(value, "max")) {
2593 vms->gic_version = VIRT_GIC_VERSION_MAX; /* Will probe later */
2594 } else {
2595 error_setg(errp, "Invalid gic-version value");
2596 error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
2597 }
2598 }
2599
2600 static char *virt_get_iommu(Object *obj, Error **errp)
2601 {
2602 VirtMachineState *vms = VIRT_MACHINE(obj);
2603
2604 switch (vms->iommu) {
2605 case VIRT_IOMMU_NONE:
2606 return g_strdup("none");
2607 case VIRT_IOMMU_SMMUV3:
2608 return g_strdup("smmuv3");
2609 default:
2610 g_assert_not_reached();
2611 }
2612 }
2613
2614 static void virt_set_iommu(Object *obj, const char *value, Error **errp)
2615 {
2616 VirtMachineState *vms = VIRT_MACHINE(obj);
2617
2618 if (!strcmp(value, "smmuv3")) {
2619 vms->iommu = VIRT_IOMMU_SMMUV3;
2620 } else if (!strcmp(value, "none")) {
2621 vms->iommu = VIRT_IOMMU_NONE;
2622 } else {
2623 error_setg(errp, "Invalid iommu value");
2624 error_append_hint(errp, "Valid values are none, smmuv3.\n");
2625 }
2626 }
2627
2628 static bool virt_get_default_bus_bypass_iommu(Object *obj, Error **errp)
2629 {
2630 VirtMachineState *vms = VIRT_MACHINE(obj);
2631
2632 return vms->default_bus_bypass_iommu;
2633 }
2634
2635 static void virt_set_default_bus_bypass_iommu(Object *obj, bool value,
2636 Error **errp)
2637 {
2638 VirtMachineState *vms = VIRT_MACHINE(obj);
2639
2640 vms->default_bus_bypass_iommu = value;
2641 }
2642
2643 static CpuInstanceProperties
2644 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2645 {
2646 MachineClass *mc = MACHINE_GET_CLASS(ms);
2647 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2648
2649 assert(cpu_index < possible_cpus->len);
2650 return possible_cpus->cpus[cpu_index].props;
2651 }
2652
2653 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
2654 {
2655 int64_t socket_id = ms->possible_cpus->cpus[idx].props.socket_id;
2656
2657 return socket_id % ms->numa_state->num_nodes;
2658 }
2659
2660 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
2661 {
2662 int n;
2663 unsigned int max_cpus = ms->smp.max_cpus;
2664 VirtMachineState *vms = VIRT_MACHINE(ms);
2665 MachineClass *mc = MACHINE_GET_CLASS(vms);
2666
2667 if (ms->possible_cpus) {
2668 assert(ms->possible_cpus->len == max_cpus);
2669 return ms->possible_cpus;
2670 }
2671
2672 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2673 sizeof(CPUArchId) * max_cpus);
2674 ms->possible_cpus->len = max_cpus;
2675 for (n = 0; n < ms->possible_cpus->len; n++) {
2676 ms->possible_cpus->cpus[n].type = ms->cpu_type;
2677 ms->possible_cpus->cpus[n].arch_id =
2678 virt_cpu_mp_affinity(vms, n);
2679
2680 assert(!mc->smp_props.dies_supported);
2681 ms->possible_cpus->cpus[n].props.has_socket_id = true;
2682 ms->possible_cpus->cpus[n].props.socket_id =
2683 n / (ms->smp.clusters * ms->smp.cores * ms->smp.threads);
2684 ms->possible_cpus->cpus[n].props.has_cluster_id = true;
2685 ms->possible_cpus->cpus[n].props.cluster_id =
2686 (n / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters;
2687 ms->possible_cpus->cpus[n].props.has_core_id = true;
2688 ms->possible_cpus->cpus[n].props.core_id =
2689 (n / ms->smp.threads) % ms->smp.cores;
2690 ms->possible_cpus->cpus[n].props.has_thread_id = true;
2691 ms->possible_cpus->cpus[n].props.thread_id =
2692 n % ms->smp.threads;
2693 }
2694 return ms->possible_cpus;
2695 }
2696
2697 static void virt_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2698 Error **errp)
2699 {
2700 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2701 const MachineState *ms = MACHINE(hotplug_dev);
2702 const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2703
2704 if (!vms->acpi_dev) {
2705 error_setg(errp,
2706 "memory hotplug is not enabled: missing acpi-ged device");
2707 return;
2708 }
2709
2710 if (vms->mte) {
2711 error_setg(errp, "memory hotplug is not enabled: MTE is enabled");
2712 return;
2713 }
2714
2715 if (is_nvdimm && !ms->nvdimms_state->is_enabled) {
2716 error_setg(errp, "nvdimm is not enabled: add 'nvdimm=on' to '-M'");
2717 return;
2718 }
2719
2720 pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), NULL, errp);
2721 }
2722
2723 static void virt_memory_plug(HotplugHandler *hotplug_dev,
2724 DeviceState *dev, Error **errp)
2725 {
2726 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2727 MachineState *ms = MACHINE(hotplug_dev);
2728 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2729
2730 pc_dimm_plug(PC_DIMM(dev), MACHINE(vms));
2731
2732 if (is_nvdimm) {
2733 nvdimm_plug(ms->nvdimms_state);
2734 }
2735
2736 hotplug_handler_plug(HOTPLUG_HANDLER(vms->acpi_dev),
2737 dev, &error_abort);
2738 }
2739
2740 static void virt_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2741 DeviceState *dev, Error **errp)
2742 {
2743 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2744
2745 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2746 virt_memory_pre_plug(hotplug_dev, dev, errp);
2747 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
2748 virtio_md_pci_pre_plug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp);
2749 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2750 hwaddr db_start = 0, db_end = 0;
2751 char *resv_prop_str;
2752
2753 if (vms->iommu != VIRT_IOMMU_NONE) {
2754 error_setg(errp, "virt machine does not support multiple IOMMUs");
2755 return;
2756 }
2757
2758 switch (vms->msi_controller) {
2759 case VIRT_MSI_CTRL_NONE:
2760 return;
2761 case VIRT_MSI_CTRL_ITS:
2762 /* GITS_TRANSLATER page */
2763 db_start = base_memmap[VIRT_GIC_ITS].base + 0x10000;
2764 db_end = base_memmap[VIRT_GIC_ITS].base +
2765 base_memmap[VIRT_GIC_ITS].size - 1;
2766 break;
2767 case VIRT_MSI_CTRL_GICV2M:
2768 /* MSI_SETSPI_NS page */
2769 db_start = base_memmap[VIRT_GIC_V2M].base;
2770 db_end = db_start + base_memmap[VIRT_GIC_V2M].size - 1;
2771 break;
2772 }
2773 resv_prop_str = g_strdup_printf("0x%"PRIx64":0x%"PRIx64":%u",
2774 db_start, db_end,
2775 VIRTIO_IOMMU_RESV_MEM_T_MSI);
2776
2777 object_property_set_uint(OBJECT(dev), "len-reserved-regions", 1, errp);
2778 object_property_set_str(OBJECT(dev), "reserved-regions[0]",
2779 resv_prop_str, errp);
2780 g_free(resv_prop_str);
2781 }
2782 }
2783
2784 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2785 DeviceState *dev, Error **errp)
2786 {
2787 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2788
2789 if (vms->platform_bus_dev) {
2790 MachineClass *mc = MACHINE_GET_CLASS(vms);
2791
2792 if (device_is_dynamic_sysbus(mc, dev)) {
2793 platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
2794 SYS_BUS_DEVICE(dev));
2795 }
2796 }
2797
2798 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2799 virt_memory_plug(hotplug_dev, dev, errp);
2800 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
2801 virtio_md_pci_plug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp);
2802 }
2803
2804 if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2805 PCIDevice *pdev = PCI_DEVICE(dev);
2806
2807 vms->iommu = VIRT_IOMMU_VIRTIO;
2808 vms->virtio_iommu_bdf = pci_get_bdf(pdev);
2809 create_virtio_iommu_dt_bindings(vms);
2810 }
2811 }
2812
2813 static void virt_dimm_unplug_request(HotplugHandler *hotplug_dev,
2814 DeviceState *dev, Error **errp)
2815 {
2816 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2817
2818 if (!vms->acpi_dev) {
2819 error_setg(errp,
2820 "memory hotplug is not enabled: missing acpi-ged device");
2821 return;
2822 }
2823
2824 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
2825 error_setg(errp, "nvdimm device hot unplug is not supported yet.");
2826 return;
2827 }
2828
2829 hotplug_handler_unplug_request(HOTPLUG_HANDLER(vms->acpi_dev), dev,
2830 errp);
2831 }
2832
2833 static void virt_dimm_unplug(HotplugHandler *hotplug_dev,
2834 DeviceState *dev, Error **errp)
2835 {
2836 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2837 Error *local_err = NULL;
2838
2839 hotplug_handler_unplug(HOTPLUG_HANDLER(vms->acpi_dev), dev, &local_err);
2840 if (local_err) {
2841 goto out;
2842 }
2843
2844 pc_dimm_unplug(PC_DIMM(dev), MACHINE(vms));
2845 qdev_unrealize(dev);
2846
2847 out:
2848 error_propagate(errp, local_err);
2849 }
2850
2851 static void virt_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2852 DeviceState *dev, Error **errp)
2853 {
2854 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2855 virt_dimm_unplug_request(hotplug_dev, dev, errp);
2856 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
2857 virtio_md_pci_unplug_request(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev),
2858 errp);
2859 } else {
2860 error_setg(errp, "device unplug request for unsupported device"
2861 " type: %s", object_get_typename(OBJECT(dev)));
2862 }
2863 }
2864
2865 static void virt_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2866 DeviceState *dev, Error **errp)
2867 {
2868 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2869 virt_dimm_unplug(hotplug_dev, dev, errp);
2870 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
2871 virtio_md_pci_unplug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp);
2872 } else {
2873 error_setg(errp, "virt: device unplug for unsupported device"
2874 " type: %s", object_get_typename(OBJECT(dev)));
2875 }
2876 }
2877
2878 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
2879 DeviceState *dev)
2880 {
2881 MachineClass *mc = MACHINE_GET_CLASS(machine);
2882
2883 if (device_is_dynamic_sysbus(mc, dev) ||
2884 object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2885 object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI) ||
2886 object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2887 return HOTPLUG_HANDLER(machine);
2888 }
2889 return NULL;
2890 }
2891
2892 /*
2893 * for arm64 kvm_type [7-0] encodes the requested number of bits
2894 * in the IPA address space
2895 */
2896 static int virt_kvm_type(MachineState *ms, const char *type_str)
2897 {
2898 VirtMachineState *vms = VIRT_MACHINE(ms);
2899 int max_vm_pa_size, requested_pa_size;
2900 bool fixed_ipa;
2901
2902 max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa);
2903
2904 /* we freeze the memory map to compute the highest gpa */
2905 virt_set_memmap(vms, max_vm_pa_size);
2906
2907 requested_pa_size = 64 - clz64(vms->highest_gpa);
2908
2909 /*
2910 * KVM requires the IPA size to be at least 32 bits.
2911 */
2912 if (requested_pa_size < 32) {
2913 requested_pa_size = 32;
2914 }
2915
2916 if (requested_pa_size > max_vm_pa_size) {
2917 error_report("-m and ,maxmem option values "
2918 "require an IPA range (%d bits) larger than "
2919 "the one supported by the host (%d bits)",
2920 requested_pa_size, max_vm_pa_size);
2921 return -1;
2922 }
2923 /*
2924 * We return the requested PA log size, unless KVM only supports
2925 * the implicit legacy 40b IPA setting, in which case the kvm_type
2926 * must be 0.
2927 */
2928 return fixed_ipa ? 0 : requested_pa_size;
2929 }
2930
2931 static void virt_machine_class_init(ObjectClass *oc, void *data)
2932 {
2933 MachineClass *mc = MACHINE_CLASS(oc);
2934 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2935
2936 mc->init = machvirt_init;
2937 /* Start with max_cpus set to 512, which is the maximum supported by KVM.
2938 * The value may be reduced later when we have more information about the
2939 * configuration of the particular instance.
2940 */
2941 mc->max_cpus = 512;
2942 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
2943 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
2944 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
2945 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM);
2946 #ifdef CONFIG_TPM
2947 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_TPM_TIS_SYSBUS);
2948 #endif
2949 mc->block_default_type = IF_VIRTIO;
2950 mc->no_cdrom = 1;
2951 mc->pci_allow_0_address = true;
2952 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
2953 mc->minimum_page_bits = 12;
2954 mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
2955 mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
2956 #ifdef CONFIG_TCG
2957 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
2958 #else
2959 mc->default_cpu_type = ARM_CPU_TYPE_NAME("max");
2960 #endif
2961 mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
2962 mc->kvm_type = virt_kvm_type;
2963 assert(!mc->get_hotplug_handler);
2964 mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
2965 hc->pre_plug = virt_machine_device_pre_plug_cb;
2966 hc->plug = virt_machine_device_plug_cb;
2967 hc->unplug_request = virt_machine_device_unplug_request_cb;
2968 hc->unplug = virt_machine_device_unplug_cb;
2969 mc->nvdimm_supported = true;
2970 mc->smp_props.clusters_supported = true;
2971 mc->auto_enable_numa_with_memhp = true;
2972 mc->auto_enable_numa_with_memdev = true;
2973 /* platform instead of architectural choice */
2974 mc->cpu_cluster_has_numa_boundary = true;
2975 mc->default_ram_id = "mach-virt.ram";
2976 mc->default_nic = "virtio-net-pci";
2977
2978 object_class_property_add(oc, "acpi", "OnOffAuto",
2979 virt_get_acpi, virt_set_acpi,
2980 NULL, NULL);
2981 object_class_property_set_description(oc, "acpi",
2982 "Enable ACPI");
2983 object_class_property_add_bool(oc, "secure", virt_get_secure,
2984 virt_set_secure);
2985 object_class_property_set_description(oc, "secure",
2986 "Set on/off to enable/disable the ARM "
2987 "Security Extensions (TrustZone)");
2988
2989 object_class_property_add_bool(oc, "virtualization", virt_get_virt,
2990 virt_set_virt);
2991 object_class_property_set_description(oc, "virtualization",
2992 "Set on/off to enable/disable emulating a "
2993 "guest CPU which implements the ARM "
2994 "Virtualization Extensions");
2995
2996 object_class_property_add_bool(oc, "highmem", virt_get_highmem,
2997 virt_set_highmem);
2998 object_class_property_set_description(oc, "highmem",
2999 "Set on/off to enable/disable using "
3000 "physical address space above 32 bits");
3001
3002 object_class_property_add_bool(oc, "compact-highmem",
3003 virt_get_compact_highmem,
3004 virt_set_compact_highmem);
3005 object_class_property_set_description(oc, "compact-highmem",
3006 "Set on/off to enable/disable compact "
3007 "layout for high memory regions");
3008
3009 object_class_property_add_bool(oc, "highmem-redists",
3010 virt_get_highmem_redists,
3011 virt_set_highmem_redists);
3012 object_class_property_set_description(oc, "highmem-redists",
3013 "Set on/off to enable/disable high "
3014 "memory region for GICv3 or GICv4 "
3015 "redistributor");
3016
3017 object_class_property_add_bool(oc, "highmem-ecam",
3018 virt_get_highmem_ecam,
3019 virt_set_highmem_ecam);
3020 object_class_property_set_description(oc, "highmem-ecam",
3021 "Set on/off to enable/disable high "
3022 "memory region for PCI ECAM");
3023
3024 object_class_property_add_bool(oc, "highmem-mmio",
3025 virt_get_highmem_mmio,
3026 virt_set_highmem_mmio);
3027 object_class_property_set_description(oc, "highmem-mmio",
3028 "Set on/off to enable/disable high "
3029 "memory region for PCI MMIO");
3030
3031 object_class_property_add_str(oc, "gic-version", virt_get_gic_version,
3032 virt_set_gic_version);
3033 object_class_property_set_description(oc, "gic-version",
3034 "Set GIC version. "
3035 "Valid values are 2, 3, 4, host and max");
3036
3037 object_class_property_add_str(oc, "iommu", virt_get_iommu, virt_set_iommu);
3038 object_class_property_set_description(oc, "iommu",
3039 "Set the IOMMU type. "
3040 "Valid values are none and smmuv3");
3041
3042 object_class_property_add_bool(oc, "default-bus-bypass-iommu",
3043 virt_get_default_bus_bypass_iommu,
3044 virt_set_default_bus_bypass_iommu);
3045 object_class_property_set_description(oc, "default-bus-bypass-iommu",
3046 "Set on/off to enable/disable "
3047 "bypass_iommu for default root bus");
3048
3049 object_class_property_add_bool(oc, "ras", virt_get_ras,
3050 virt_set_ras);
3051 object_class_property_set_description(oc, "ras",
3052 "Set on/off to enable/disable reporting host memory errors "
3053 "to a KVM guest using ACPI and guest external abort exceptions");
3054
3055 object_class_property_add_bool(oc, "mte", virt_get_mte, virt_set_mte);
3056 object_class_property_set_description(oc, "mte",
3057 "Set on/off to enable/disable emulating a "
3058 "guest CPU which implements the ARM "
3059 "Memory Tagging Extension");
3060
3061 object_class_property_add_bool(oc, "its", virt_get_its,
3062 virt_set_its);
3063 object_class_property_set_description(oc, "its",
3064 "Set on/off to enable/disable "
3065 "ITS instantiation");
3066
3067 object_class_property_add_bool(oc, "dtb-randomness",
3068 virt_get_dtb_randomness,
3069 virt_set_dtb_randomness);
3070 object_class_property_set_description(oc, "dtb-randomness",
3071 "Set off to disable passing random or "
3072 "non-deterministic dtb nodes to guest");
3073
3074 object_class_property_add_bool(oc, "dtb-kaslr-seed",
3075 virt_get_dtb_randomness,
3076 virt_set_dtb_randomness);
3077 object_class_property_set_description(oc, "dtb-kaslr-seed",
3078 "Deprecated synonym of dtb-randomness");
3079
3080 object_class_property_add_str(oc, "x-oem-id",
3081 virt_get_oem_id,
3082 virt_set_oem_id);
3083 object_class_property_set_description(oc, "x-oem-id",
3084 "Override the default value of field OEMID "
3085 "in ACPI table header."
3086 "The string may be up to 6 bytes in size");
3087
3088
3089 object_class_property_add_str(oc, "x-oem-table-id",
3090 virt_get_oem_table_id,
3091 virt_set_oem_table_id);
3092 object_class_property_set_description(oc, "x-oem-table-id",
3093 "Override the default value of field OEM Table ID "
3094 "in ACPI table header."
3095 "The string may be up to 8 bytes in size");
3096
3097 }
3098
3099 static void virt_instance_init(Object *obj)
3100 {
3101 VirtMachineState *vms = VIRT_MACHINE(obj);
3102 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
3103
3104 /* EL3 is disabled by default on virt: this makes us consistent
3105 * between KVM and TCG for this board, and it also allows us to
3106 * boot UEFI blobs which assume no TrustZone support.
3107 */
3108 vms->secure = false;
3109
3110 /* EL2 is also disabled by default, for similar reasons */
3111 vms->virt = false;
3112
3113 /* High memory is enabled by default */
3114 vms->highmem = true;
3115 vms->highmem_compact = !vmc->no_highmem_compact;
3116 vms->gic_version = VIRT_GIC_VERSION_NOSEL;
3117
3118 vms->highmem_ecam = !vmc->no_highmem_ecam;
3119 vms->highmem_mmio = true;
3120 vms->highmem_redists = true;
3121
3122 if (vmc->no_its) {
3123 vms->its = false;
3124 } else {
3125 /* Default allows ITS instantiation */
3126 vms->its = true;
3127
3128 if (vmc->no_tcg_its) {
3129 vms->tcg_its = false;
3130 } else {
3131 vms->tcg_its = true;
3132 }
3133 }
3134
3135 /* Default disallows iommu instantiation */
3136 vms->iommu = VIRT_IOMMU_NONE;
3137
3138 /* The default root bus is attached to iommu by default */
3139 vms->default_bus_bypass_iommu = false;
3140
3141 /* Default disallows RAS instantiation */
3142 vms->ras = false;
3143
3144 /* MTE is disabled by default. */
3145 vms->mte = false;
3146
3147 /* Supply kaslr-seed and rng-seed by default */
3148 vms->dtb_randomness = true;
3149
3150 vms->irqmap = a15irqmap;
3151
3152 virt_flash_create(vms);
3153
3154 vms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6);
3155 vms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8);
3156 }
3157
3158 static const TypeInfo virt_machine_info = {
3159 .name = TYPE_VIRT_MACHINE,
3160 .parent = TYPE_MACHINE,
3161 .abstract = true,
3162 .instance_size = sizeof(VirtMachineState),
3163 .class_size = sizeof(VirtMachineClass),
3164 .class_init = virt_machine_class_init,
3165 .instance_init = virt_instance_init,
3166 .interfaces = (InterfaceInfo[]) {
3167 { TYPE_HOTPLUG_HANDLER },
3168 { }
3169 },
3170 };
3171
3172 static void machvirt_machine_init(void)
3173 {
3174 type_register_static(&virt_machine_info);
3175 }
3176 type_init(machvirt_machine_init);
3177
3178 static void virt_machine_8_2_options(MachineClass *mc)
3179 {
3180 }
3181 DEFINE_VIRT_MACHINE_AS_LATEST(8, 2)
3182
3183 static void virt_machine_8_1_options(MachineClass *mc)
3184 {
3185 virt_machine_8_2_options(mc);
3186 compat_props_add(mc->compat_props, hw_compat_8_1, hw_compat_8_1_len);
3187 }
3188 DEFINE_VIRT_MACHINE(8, 1)
3189
3190 static void virt_machine_8_0_options(MachineClass *mc)
3191 {
3192 virt_machine_8_1_options(mc);
3193 compat_props_add(mc->compat_props, hw_compat_8_0, hw_compat_8_0_len);
3194 }
3195 DEFINE_VIRT_MACHINE(8, 0)
3196
3197 static void virt_machine_7_2_options(MachineClass *mc)
3198 {
3199 virt_machine_8_0_options(mc);
3200 compat_props_add(mc->compat_props, hw_compat_7_2, hw_compat_7_2_len);
3201 }
3202 DEFINE_VIRT_MACHINE(7, 2)
3203
3204 static void virt_machine_7_1_options(MachineClass *mc)
3205 {
3206 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3207
3208 virt_machine_7_2_options(mc);
3209 compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len);
3210 /* Compact layout for high memory regions was introduced with 7.2 */
3211 vmc->no_highmem_compact = true;
3212 }
3213 DEFINE_VIRT_MACHINE(7, 1)
3214
3215 static void virt_machine_7_0_options(MachineClass *mc)
3216 {
3217 virt_machine_7_1_options(mc);
3218 compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len);
3219 }
3220 DEFINE_VIRT_MACHINE(7, 0)
3221
3222 static void virt_machine_6_2_options(MachineClass *mc)
3223 {
3224 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3225
3226 virt_machine_7_0_options(mc);
3227 compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len);
3228 vmc->no_tcg_lpa2 = true;
3229 }
3230 DEFINE_VIRT_MACHINE(6, 2)
3231
3232 static void virt_machine_6_1_options(MachineClass *mc)
3233 {
3234 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3235
3236 virt_machine_6_2_options(mc);
3237 compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len);
3238 mc->smp_props.prefer_sockets = true;
3239 vmc->no_cpu_topology = true;
3240
3241 /* qemu ITS was introduced with 6.2 */
3242 vmc->no_tcg_its = true;
3243 }
3244 DEFINE_VIRT_MACHINE(6, 1)
3245
3246 static void virt_machine_6_0_options(MachineClass *mc)
3247 {
3248 virt_machine_6_1_options(mc);
3249 compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len);
3250 }
3251 DEFINE_VIRT_MACHINE(6, 0)
3252
3253 static void virt_machine_5_2_options(MachineClass *mc)
3254 {
3255 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3256
3257 virt_machine_6_0_options(mc);
3258 compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
3259 vmc->no_secure_gpio = true;
3260 }
3261 DEFINE_VIRT_MACHINE(5, 2)
3262
3263 static void virt_machine_5_1_options(MachineClass *mc)
3264 {
3265 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3266
3267 virt_machine_5_2_options(mc);
3268 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
3269 vmc->no_kvm_steal_time = true;
3270 }
3271 DEFINE_VIRT_MACHINE(5, 1)
3272
3273 static void virt_machine_5_0_options(MachineClass *mc)
3274 {
3275 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3276
3277 virt_machine_5_1_options(mc);
3278 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
3279 mc->numa_mem_supported = true;
3280 vmc->acpi_expose_flash = true;
3281 mc->auto_enable_numa_with_memdev = false;
3282 }
3283 DEFINE_VIRT_MACHINE(5, 0)
3284
3285 static void virt_machine_4_2_options(MachineClass *mc)
3286 {
3287 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3288
3289 virt_machine_5_0_options(mc);
3290 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
3291 vmc->kvm_no_adjvtime = true;
3292 }
3293 DEFINE_VIRT_MACHINE(4, 2)
3294
3295 static void virt_machine_4_1_options(MachineClass *mc)
3296 {
3297 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3298
3299 virt_machine_4_2_options(mc);
3300 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
3301 vmc->no_ged = true;
3302 mc->auto_enable_numa_with_memhp = false;
3303 }
3304 DEFINE_VIRT_MACHINE(4, 1)
3305
3306 static void virt_machine_4_0_options(MachineClass *mc)
3307 {
3308 virt_machine_4_1_options(mc);
3309 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
3310 }
3311 DEFINE_VIRT_MACHINE(4, 0)
3312
3313 static void virt_machine_3_1_options(MachineClass *mc)
3314 {
3315 virt_machine_4_0_options(mc);
3316 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
3317 }
3318 DEFINE_VIRT_MACHINE(3, 1)
3319
3320 static void virt_machine_3_0_options(MachineClass *mc)
3321 {
3322 virt_machine_3_1_options(mc);
3323 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
3324 }
3325 DEFINE_VIRT_MACHINE(3, 0)
3326
3327 static void virt_machine_2_12_options(MachineClass *mc)
3328 {
3329 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3330
3331 virt_machine_3_0_options(mc);
3332 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
3333 vmc->no_highmem_ecam = true;
3334 mc->max_cpus = 255;
3335 }
3336 DEFINE_VIRT_MACHINE(2, 12)
3337
3338 static void virt_machine_2_11_options(MachineClass *mc)
3339 {
3340 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3341
3342 virt_machine_2_12_options(mc);
3343 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
3344 vmc->smbios_old_sys_ver = true;
3345 }
3346 DEFINE_VIRT_MACHINE(2, 11)
3347
3348 static void virt_machine_2_10_options(MachineClass *mc)
3349 {
3350 virt_machine_2_11_options(mc);
3351 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
3352 /* before 2.11 we never faulted accesses to bad addresses */
3353 mc->ignore_memory_transaction_failures = true;
3354 }
3355 DEFINE_VIRT_MACHINE(2, 10)
3356
3357 static void virt_machine_2_9_options(MachineClass *mc)
3358 {
3359 virt_machine_2_10_options(mc);
3360 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
3361 }
3362 DEFINE_VIRT_MACHINE(2, 9)
3363
3364 static void virt_machine_2_8_options(MachineClass *mc)
3365 {
3366 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3367
3368 virt_machine_2_9_options(mc);
3369 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
3370 /* For 2.8 and earlier we falsely claimed in the DT that
3371 * our timers were edge-triggered, not level-triggered.
3372 */
3373 vmc->claim_edge_triggered_timers = true;
3374 }
3375 DEFINE_VIRT_MACHINE(2, 8)
3376
3377 static void virt_machine_2_7_options(MachineClass *mc)
3378 {
3379 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3380
3381 virt_machine_2_8_options(mc);
3382 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
3383 /* ITS was introduced with 2.8 */
3384 vmc->no_its = true;
3385 /* Stick with 1K pages for migration compatibility */
3386 mc->minimum_page_bits = 0;
3387 }
3388 DEFINE_VIRT_MACHINE(2, 7)
3389
3390 static void virt_machine_2_6_options(MachineClass *mc)
3391 {
3392 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3393
3394 virt_machine_2_7_options(mc);
3395 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
3396 vmc->disallow_affinity_adjustment = true;
3397 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
3398 vmc->no_pmu = true;
3399 }
3400 DEFINE_VIRT_MACHINE(2, 6)