]> git.proxmox.com Git - mirror_qemu.git/blob - hw/arm/virt.c
hw/arm: Validate cluster and NUMA node boundary
[mirror_qemu.git] / hw / arm / virt.c
1 /*
2 * ARM mach-virt emulation
3 *
4 * Copyright (c) 2013 Linaro Limited
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
17 *
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
29 */
30
31 #include "qemu/osdep.h"
32 #include "qemu/datadir.h"
33 #include "qemu/units.h"
34 #include "qemu/option.h"
35 #include "monitor/qdev.h"
36 #include "hw/sysbus.h"
37 #include "hw/arm/boot.h"
38 #include "hw/arm/primecell.h"
39 #include "hw/arm/virt.h"
40 #include "hw/block/flash.h"
41 #include "hw/vfio/vfio-calxeda-xgmac.h"
42 #include "hw/vfio/vfio-amd-xgbe.h"
43 #include "hw/display/ramfb.h"
44 #include "net/net.h"
45 #include "sysemu/device_tree.h"
46 #include "sysemu/numa.h"
47 #include "sysemu/runstate.h"
48 #include "sysemu/tpm.h"
49 #include "sysemu/tcg.h"
50 #include "sysemu/kvm.h"
51 #include "sysemu/hvf.h"
52 #include "sysemu/qtest.h"
53 #include "hw/loader.h"
54 #include "qapi/error.h"
55 #include "qemu/bitops.h"
56 #include "qemu/error-report.h"
57 #include "qemu/module.h"
58 #include "hw/pci-host/gpex.h"
59 #include "hw/virtio/virtio-pci.h"
60 #include "hw/core/sysbus-fdt.h"
61 #include "hw/platform-bus.h"
62 #include "hw/qdev-properties.h"
63 #include "hw/arm/fdt.h"
64 #include "hw/intc/arm_gic.h"
65 #include "hw/intc/arm_gicv3_common.h"
66 #include "hw/irq.h"
67 #include "kvm_arm.h"
68 #include "hw/firmware/smbios.h"
69 #include "qapi/visitor.h"
70 #include "qapi/qapi-visit-common.h"
71 #include "standard-headers/linux/input.h"
72 #include "hw/arm/smmuv3.h"
73 #include "hw/acpi/acpi.h"
74 #include "target/arm/internals.h"
75 #include "hw/mem/memory-device.h"
76 #include "hw/mem/pc-dimm.h"
77 #include "hw/mem/nvdimm.h"
78 #include "hw/acpi/generic_event_device.h"
79 #include "hw/virtio/virtio-mem-pci.h"
80 #include "hw/virtio/virtio-iommu.h"
81 #include "hw/char/pl011.h"
82 #include "qemu/guest-random.h"
83
84 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
85 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
86 void *data) \
87 { \
88 MachineClass *mc = MACHINE_CLASS(oc); \
89 virt_machine_##major##_##minor##_options(mc); \
90 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
91 if (latest) { \
92 mc->alias = "virt"; \
93 } \
94 } \
95 static const TypeInfo machvirt_##major##_##minor##_info = { \
96 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
97 .parent = TYPE_VIRT_MACHINE, \
98 .class_init = virt_##major##_##minor##_class_init, \
99 }; \
100 static void machvirt_machine_##major##_##minor##_init(void) \
101 { \
102 type_register_static(&machvirt_##major##_##minor##_info); \
103 } \
104 type_init(machvirt_machine_##major##_##minor##_init);
105
106 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
107 DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
108 #define DEFINE_VIRT_MACHINE(major, minor) \
109 DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
110
111
112 /* Number of external interrupt lines to configure the GIC with */
113 #define NUM_IRQS 256
114
115 #define PLATFORM_BUS_NUM_IRQS 64
116
117 /* Legacy RAM limit in GB (< version 4.0) */
118 #define LEGACY_RAMLIMIT_GB 255
119 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB)
120
121 /* Addresses and sizes of our components.
122 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
123 * 128MB..256MB is used for miscellaneous device I/O.
124 * 256MB..1GB is reserved for possible future PCI support (ie where the
125 * PCI memory window will go if we add a PCI host controller).
126 * 1GB and up is RAM (which may happily spill over into the
127 * high memory region beyond 4GB).
128 * This represents a compromise between how much RAM can be given to
129 * a 32 bit VM and leaving space for expansion and in particular for PCI.
130 * Note that devices should generally be placed at multiples of 0x10000,
131 * to accommodate guests using 64K pages.
132 */
133 static const MemMapEntry base_memmap[] = {
134 /* Space up to 0x8000000 is reserved for a boot ROM */
135 [VIRT_FLASH] = { 0, 0x08000000 },
136 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
137 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
138 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
139 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
140 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 },
141 [VIRT_GIC_HYP] = { 0x08030000, 0x00010000 },
142 [VIRT_GIC_VCPU] = { 0x08040000, 0x00010000 },
143 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
144 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 },
145 /* This redistributor space allows up to 2*64kB*123 CPUs */
146 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 },
147 [VIRT_UART] = { 0x09000000, 0x00001000 },
148 [VIRT_RTC] = { 0x09010000, 0x00001000 },
149 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 },
150 [VIRT_GPIO] = { 0x09030000, 0x00001000 },
151 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 },
152 [VIRT_SMMU] = { 0x09050000, 0x00020000 },
153 [VIRT_PCDIMM_ACPI] = { 0x09070000, MEMORY_HOTPLUG_IO_LEN },
154 [VIRT_ACPI_GED] = { 0x09080000, ACPI_GED_EVT_SEL_LEN },
155 [VIRT_NVDIMM_ACPI] = { 0x09090000, NVDIMM_ACPI_IO_LEN},
156 [VIRT_PVTIME] = { 0x090a0000, 0x00010000 },
157 [VIRT_SECURE_GPIO] = { 0x090b0000, 0x00001000 },
158 [VIRT_MMIO] = { 0x0a000000, 0x00000200 },
159 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
160 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 },
161 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 },
162 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 },
163 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 },
164 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 },
165 /* Actual RAM size depends on initial RAM and device memory settings */
166 [VIRT_MEM] = { GiB, LEGACY_RAMLIMIT_BYTES },
167 };
168
169 /*
170 * Highmem IO Regions: This memory map is floating, located after the RAM.
171 * Each MemMapEntry base (GPA) will be dynamically computed, depending on the
172 * top of the RAM, so that its base get the same alignment as the size,
173 * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is
174 * less than 256GiB of RAM, the floating area starts at the 256GiB mark.
175 * Note the extended_memmap is sized so that it eventually also includes the
176 * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last
177 * index of base_memmap).
178 *
179 * The memory map for these Highmem IO Regions can be in legacy or compact
180 * layout, depending on 'compact-highmem' property. With legacy layout, the
181 * PA space for one specific region is always reserved, even if the region
182 * has been disabled or doesn't fit into the PA space. However, the PA space
183 * for the region won't be reserved in these circumstances with compact layout.
184 */
185 static MemMapEntry extended_memmap[] = {
186 /* Additional 64 MB redist region (can contain up to 512 redistributors) */
187 [VIRT_HIGH_GIC_REDIST2] = { 0x0, 64 * MiB },
188 [VIRT_HIGH_PCIE_ECAM] = { 0x0, 256 * MiB },
189 /* Second PCIe window */
190 [VIRT_HIGH_PCIE_MMIO] = { 0x0, 512 * GiB },
191 };
192
193 static const int a15irqmap[] = {
194 [VIRT_UART] = 1,
195 [VIRT_RTC] = 2,
196 [VIRT_PCIE] = 3, /* ... to 6 */
197 [VIRT_GPIO] = 7,
198 [VIRT_SECURE_UART] = 8,
199 [VIRT_ACPI_GED] = 9,
200 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
201 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
202 [VIRT_SMMU] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */
203 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
204 };
205
206 static const char *valid_cpus[] = {
207 #ifdef CONFIG_TCG
208 ARM_CPU_TYPE_NAME("cortex-a7"),
209 ARM_CPU_TYPE_NAME("cortex-a15"),
210 ARM_CPU_TYPE_NAME("cortex-a35"),
211 ARM_CPU_TYPE_NAME("cortex-a55"),
212 ARM_CPU_TYPE_NAME("cortex-a72"),
213 ARM_CPU_TYPE_NAME("cortex-a76"),
214 ARM_CPU_TYPE_NAME("a64fx"),
215 ARM_CPU_TYPE_NAME("neoverse-n1"),
216 #endif
217 ARM_CPU_TYPE_NAME("cortex-a53"),
218 ARM_CPU_TYPE_NAME("cortex-a57"),
219 ARM_CPU_TYPE_NAME("host"),
220 ARM_CPU_TYPE_NAME("max"),
221 };
222
223 static bool cpu_type_valid(const char *cpu)
224 {
225 int i;
226
227 for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
228 if (strcmp(cpu, valid_cpus[i]) == 0) {
229 return true;
230 }
231 }
232 return false;
233 }
234
235 static void create_randomness(MachineState *ms, const char *node)
236 {
237 struct {
238 uint64_t kaslr;
239 uint8_t rng[32];
240 } seed;
241
242 if (qemu_guest_getrandom(&seed, sizeof(seed), NULL)) {
243 return;
244 }
245 qemu_fdt_setprop_u64(ms->fdt, node, "kaslr-seed", seed.kaslr);
246 qemu_fdt_setprop(ms->fdt, node, "rng-seed", seed.rng, sizeof(seed.rng));
247 }
248
249 static void create_fdt(VirtMachineState *vms)
250 {
251 MachineState *ms = MACHINE(vms);
252 int nb_numa_nodes = ms->numa_state->num_nodes;
253 void *fdt = create_device_tree(&vms->fdt_size);
254
255 if (!fdt) {
256 error_report("create_device_tree() failed");
257 exit(1);
258 }
259
260 ms->fdt = fdt;
261
262 /* Header */
263 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
264 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
265 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
266 qemu_fdt_setprop_string(fdt, "/", "model", "linux,dummy-virt");
267
268 /* /chosen must exist for load_dtb to fill in necessary properties later */
269 qemu_fdt_add_subnode(fdt, "/chosen");
270 if (vms->dtb_randomness) {
271 create_randomness(ms, "/chosen");
272 }
273
274 if (vms->secure) {
275 qemu_fdt_add_subnode(fdt, "/secure-chosen");
276 if (vms->dtb_randomness) {
277 create_randomness(ms, "/secure-chosen");
278 }
279 }
280
281 /* Clock node, for the benefit of the UART. The kernel device tree
282 * binding documentation claims the PL011 node clock properties are
283 * optional but in practice if you omit them the kernel refuses to
284 * probe for the device.
285 */
286 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
287 qemu_fdt_add_subnode(fdt, "/apb-pclk");
288 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
289 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
290 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
291 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
292 "clk24mhz");
293 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
294
295 if (nb_numa_nodes > 0 && ms->numa_state->have_numa_distance) {
296 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
297 uint32_t *matrix = g_malloc0(size);
298 int idx, i, j;
299
300 for (i = 0; i < nb_numa_nodes; i++) {
301 for (j = 0; j < nb_numa_nodes; j++) {
302 idx = (i * nb_numa_nodes + j) * 3;
303 matrix[idx + 0] = cpu_to_be32(i);
304 matrix[idx + 1] = cpu_to_be32(j);
305 matrix[idx + 2] =
306 cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
307 }
308 }
309
310 qemu_fdt_add_subnode(fdt, "/distance-map");
311 qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
312 "numa-distance-map-v1");
313 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
314 matrix, size);
315 g_free(matrix);
316 }
317 }
318
319 static void fdt_add_timer_nodes(const VirtMachineState *vms)
320 {
321 /* On real hardware these interrupts are level-triggered.
322 * On KVM they were edge-triggered before host kernel version 4.4,
323 * and level-triggered afterwards.
324 * On emulated QEMU they are level-triggered.
325 *
326 * Getting the DTB info about them wrong is awkward for some
327 * guest kernels:
328 * pre-4.8 ignore the DT and leave the interrupt configured
329 * with whatever the GIC reset value (or the bootloader) left it at
330 * 4.8 before rc6 honour the incorrect data by programming it back
331 * into the GIC, causing problems
332 * 4.8rc6 and later ignore the DT and always write "level triggered"
333 * into the GIC
334 *
335 * For backwards-compatibility, virt-2.8 and earlier will continue
336 * to say these are edge-triggered, but later machines will report
337 * the correct information.
338 */
339 ARMCPU *armcpu;
340 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
341 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
342 MachineState *ms = MACHINE(vms);
343
344 if (vmc->claim_edge_triggered_timers) {
345 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
346 }
347
348 if (vms->gic_version == VIRT_GIC_VERSION_2) {
349 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
350 GIC_FDT_IRQ_PPI_CPU_WIDTH,
351 (1 << MACHINE(vms)->smp.cpus) - 1);
352 }
353
354 qemu_fdt_add_subnode(ms->fdt, "/timer");
355
356 armcpu = ARM_CPU(qemu_get_cpu(0));
357 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
358 const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
359 qemu_fdt_setprop(ms->fdt, "/timer", "compatible",
360 compat, sizeof(compat));
361 } else {
362 qemu_fdt_setprop_string(ms->fdt, "/timer", "compatible",
363 "arm,armv7-timer");
364 }
365 qemu_fdt_setprop(ms->fdt, "/timer", "always-on", NULL, 0);
366 qemu_fdt_setprop_cells(ms->fdt, "/timer", "interrupts",
367 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
368 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
369 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
370 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
371 }
372
373 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
374 {
375 int cpu;
376 int addr_cells = 1;
377 const MachineState *ms = MACHINE(vms);
378 const VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
379 int smp_cpus = ms->smp.cpus;
380
381 /*
382 * See Linux Documentation/devicetree/bindings/arm/cpus.yaml
383 * On ARM v8 64-bit systems value should be set to 2,
384 * that corresponds to the MPIDR_EL1 register size.
385 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
386 * in the system, #address-cells can be set to 1, since
387 * MPIDR_EL1[63:32] bits are not used for CPUs
388 * identification.
389 *
390 * Here we actually don't know whether our system is 32- or 64-bit one.
391 * The simplest way to go is to examine affinity IDs of all our CPUs. If
392 * at least one of them has Aff3 populated, we set #address-cells to 2.
393 */
394 for (cpu = 0; cpu < smp_cpus; cpu++) {
395 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
396
397 if (armcpu->mp_affinity & ARM_AFF3_MASK) {
398 addr_cells = 2;
399 break;
400 }
401 }
402
403 qemu_fdt_add_subnode(ms->fdt, "/cpus");
404 qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#address-cells", addr_cells);
405 qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#size-cells", 0x0);
406
407 for (cpu = smp_cpus - 1; cpu >= 0; cpu--) {
408 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
409 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
410 CPUState *cs = CPU(armcpu);
411
412 qemu_fdt_add_subnode(ms->fdt, nodename);
413 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "cpu");
414 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
415 armcpu->dtb_compatible);
416
417 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED && smp_cpus > 1) {
418 qemu_fdt_setprop_string(ms->fdt, nodename,
419 "enable-method", "psci");
420 }
421
422 if (addr_cells == 2) {
423 qemu_fdt_setprop_u64(ms->fdt, nodename, "reg",
424 armcpu->mp_affinity);
425 } else {
426 qemu_fdt_setprop_cell(ms->fdt, nodename, "reg",
427 armcpu->mp_affinity);
428 }
429
430 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
431 qemu_fdt_setprop_cell(ms->fdt, nodename, "numa-node-id",
432 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
433 }
434
435 if (!vmc->no_cpu_topology) {
436 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle",
437 qemu_fdt_alloc_phandle(ms->fdt));
438 }
439
440 g_free(nodename);
441 }
442
443 if (!vmc->no_cpu_topology) {
444 /*
445 * Add vCPU topology description through fdt node cpu-map.
446 *
447 * See Linux Documentation/devicetree/bindings/cpu/cpu-topology.txt
448 * In a SMP system, the hierarchy of CPUs can be defined through
449 * four entities that are used to describe the layout of CPUs in
450 * the system: socket/cluster/core/thread.
451 *
452 * A socket node represents the boundary of system physical package
453 * and its child nodes must be one or more cluster nodes. A system
454 * can contain several layers of clustering within a single physical
455 * package and cluster nodes can be contained in parent cluster nodes.
456 *
457 * Note: currently we only support one layer of clustering within
458 * each physical package.
459 */
460 qemu_fdt_add_subnode(ms->fdt, "/cpus/cpu-map");
461
462 for (cpu = smp_cpus - 1; cpu >= 0; cpu--) {
463 char *cpu_path = g_strdup_printf("/cpus/cpu@%d", cpu);
464 char *map_path;
465
466 if (ms->smp.threads > 1) {
467 map_path = g_strdup_printf(
468 "/cpus/cpu-map/socket%d/cluster%d/core%d/thread%d",
469 cpu / (ms->smp.clusters * ms->smp.cores * ms->smp.threads),
470 (cpu / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters,
471 (cpu / ms->smp.threads) % ms->smp.cores,
472 cpu % ms->smp.threads);
473 } else {
474 map_path = g_strdup_printf(
475 "/cpus/cpu-map/socket%d/cluster%d/core%d",
476 cpu / (ms->smp.clusters * ms->smp.cores),
477 (cpu / ms->smp.cores) % ms->smp.clusters,
478 cpu % ms->smp.cores);
479 }
480 qemu_fdt_add_path(ms->fdt, map_path);
481 qemu_fdt_setprop_phandle(ms->fdt, map_path, "cpu", cpu_path);
482
483 g_free(map_path);
484 g_free(cpu_path);
485 }
486 }
487 }
488
489 static void fdt_add_its_gic_node(VirtMachineState *vms)
490 {
491 char *nodename;
492 MachineState *ms = MACHINE(vms);
493
494 vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
495 nodename = g_strdup_printf("/intc/its@%" PRIx64,
496 vms->memmap[VIRT_GIC_ITS].base);
497 qemu_fdt_add_subnode(ms->fdt, nodename);
498 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
499 "arm,gic-v3-its");
500 qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
501 qemu_fdt_setprop_cell(ms->fdt, nodename, "#msi-cells", 1);
502 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
503 2, vms->memmap[VIRT_GIC_ITS].base,
504 2, vms->memmap[VIRT_GIC_ITS].size);
505 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
506 g_free(nodename);
507 }
508
509 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
510 {
511 MachineState *ms = MACHINE(vms);
512 char *nodename;
513
514 nodename = g_strdup_printf("/intc/v2m@%" PRIx64,
515 vms->memmap[VIRT_GIC_V2M].base);
516 vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
517 qemu_fdt_add_subnode(ms->fdt, nodename);
518 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
519 "arm,gic-v2m-frame");
520 qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
521 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
522 2, vms->memmap[VIRT_GIC_V2M].base,
523 2, vms->memmap[VIRT_GIC_V2M].size);
524 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
525 g_free(nodename);
526 }
527
528 static void fdt_add_gic_node(VirtMachineState *vms)
529 {
530 MachineState *ms = MACHINE(vms);
531 char *nodename;
532
533 vms->gic_phandle = qemu_fdt_alloc_phandle(ms->fdt);
534 qemu_fdt_setprop_cell(ms->fdt, "/", "interrupt-parent", vms->gic_phandle);
535
536 nodename = g_strdup_printf("/intc@%" PRIx64,
537 vms->memmap[VIRT_GIC_DIST].base);
538 qemu_fdt_add_subnode(ms->fdt, nodename);
539 qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 3);
540 qemu_fdt_setprop(ms->fdt, nodename, "interrupt-controller", NULL, 0);
541 qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 0x2);
542 qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 0x2);
543 qemu_fdt_setprop(ms->fdt, nodename, "ranges", NULL, 0);
544 if (vms->gic_version != VIRT_GIC_VERSION_2) {
545 int nb_redist_regions = virt_gicv3_redist_region_count(vms);
546
547 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
548 "arm,gic-v3");
549
550 qemu_fdt_setprop_cell(ms->fdt, nodename,
551 "#redistributor-regions", nb_redist_regions);
552
553 if (nb_redist_regions == 1) {
554 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
555 2, vms->memmap[VIRT_GIC_DIST].base,
556 2, vms->memmap[VIRT_GIC_DIST].size,
557 2, vms->memmap[VIRT_GIC_REDIST].base,
558 2, vms->memmap[VIRT_GIC_REDIST].size);
559 } else {
560 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
561 2, vms->memmap[VIRT_GIC_DIST].base,
562 2, vms->memmap[VIRT_GIC_DIST].size,
563 2, vms->memmap[VIRT_GIC_REDIST].base,
564 2, vms->memmap[VIRT_GIC_REDIST].size,
565 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base,
566 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size);
567 }
568
569 if (vms->virt) {
570 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
571 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
572 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
573 }
574 } else {
575 /* 'cortex-a15-gic' means 'GIC v2' */
576 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
577 "arm,cortex-a15-gic");
578 if (!vms->virt) {
579 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
580 2, vms->memmap[VIRT_GIC_DIST].base,
581 2, vms->memmap[VIRT_GIC_DIST].size,
582 2, vms->memmap[VIRT_GIC_CPU].base,
583 2, vms->memmap[VIRT_GIC_CPU].size);
584 } else {
585 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
586 2, vms->memmap[VIRT_GIC_DIST].base,
587 2, vms->memmap[VIRT_GIC_DIST].size,
588 2, vms->memmap[VIRT_GIC_CPU].base,
589 2, vms->memmap[VIRT_GIC_CPU].size,
590 2, vms->memmap[VIRT_GIC_HYP].base,
591 2, vms->memmap[VIRT_GIC_HYP].size,
592 2, vms->memmap[VIRT_GIC_VCPU].base,
593 2, vms->memmap[VIRT_GIC_VCPU].size);
594 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
595 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
596 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
597 }
598 }
599
600 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->gic_phandle);
601 g_free(nodename);
602 }
603
604 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
605 {
606 ARMCPU *armcpu = ARM_CPU(first_cpu);
607 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
608 MachineState *ms = MACHINE(vms);
609
610 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
611 assert(!object_property_get_bool(OBJECT(armcpu), "pmu", NULL));
612 return;
613 }
614
615 if (vms->gic_version == VIRT_GIC_VERSION_2) {
616 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
617 GIC_FDT_IRQ_PPI_CPU_WIDTH,
618 (1 << MACHINE(vms)->smp.cpus) - 1);
619 }
620
621 qemu_fdt_add_subnode(ms->fdt, "/pmu");
622 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
623 const char compat[] = "arm,armv8-pmuv3";
624 qemu_fdt_setprop(ms->fdt, "/pmu", "compatible",
625 compat, sizeof(compat));
626 qemu_fdt_setprop_cells(ms->fdt, "/pmu", "interrupts",
627 GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
628 }
629 }
630
631 static inline DeviceState *create_acpi_ged(VirtMachineState *vms)
632 {
633 DeviceState *dev;
634 MachineState *ms = MACHINE(vms);
635 int irq = vms->irqmap[VIRT_ACPI_GED];
636 uint32_t event = ACPI_GED_PWR_DOWN_EVT;
637
638 if (ms->ram_slots) {
639 event |= ACPI_GED_MEM_HOTPLUG_EVT;
640 }
641
642 if (ms->nvdimms_state->is_enabled) {
643 event |= ACPI_GED_NVDIMM_HOTPLUG_EVT;
644 }
645
646 dev = qdev_new(TYPE_ACPI_GED);
647 qdev_prop_set_uint32(dev, "ged-event", event);
648
649 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_ACPI_GED].base);
650 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, vms->memmap[VIRT_PCDIMM_ACPI].base);
651 sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(vms->gic, irq));
652
653 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
654
655 return dev;
656 }
657
658 static void create_its(VirtMachineState *vms)
659 {
660 const char *itsclass = its_class_name();
661 DeviceState *dev;
662
663 if (!strcmp(itsclass, "arm-gicv3-its")) {
664 if (!vms->tcg_its) {
665 itsclass = NULL;
666 }
667 }
668
669 if (!itsclass) {
670 /* Do nothing if not supported */
671 return;
672 }
673
674 dev = qdev_new(itsclass);
675
676 object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(vms->gic),
677 &error_abort);
678 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
679 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
680
681 fdt_add_its_gic_node(vms);
682 vms->msi_controller = VIRT_MSI_CTRL_ITS;
683 }
684
685 static void create_v2m(VirtMachineState *vms)
686 {
687 int i;
688 int irq = vms->irqmap[VIRT_GIC_V2M];
689 DeviceState *dev;
690
691 dev = qdev_new("arm-gicv2m");
692 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
693 qdev_prop_set_uint32(dev, "base-spi", irq);
694 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
695 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
696
697 for (i = 0; i < NUM_GICV2M_SPIS; i++) {
698 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
699 qdev_get_gpio_in(vms->gic, irq + i));
700 }
701
702 fdt_add_v2m_gic_node(vms);
703 vms->msi_controller = VIRT_MSI_CTRL_GICV2M;
704 }
705
706 static void create_gic(VirtMachineState *vms, MemoryRegion *mem)
707 {
708 MachineState *ms = MACHINE(vms);
709 /* We create a standalone GIC */
710 SysBusDevice *gicbusdev;
711 const char *gictype;
712 int i;
713 unsigned int smp_cpus = ms->smp.cpus;
714 uint32_t nb_redist_regions = 0;
715 int revision;
716
717 if (vms->gic_version == VIRT_GIC_VERSION_2) {
718 gictype = gic_class_name();
719 } else {
720 gictype = gicv3_class_name();
721 }
722
723 switch (vms->gic_version) {
724 case VIRT_GIC_VERSION_2:
725 revision = 2;
726 break;
727 case VIRT_GIC_VERSION_3:
728 revision = 3;
729 break;
730 case VIRT_GIC_VERSION_4:
731 revision = 4;
732 break;
733 default:
734 g_assert_not_reached();
735 }
736 vms->gic = qdev_new(gictype);
737 qdev_prop_set_uint32(vms->gic, "revision", revision);
738 qdev_prop_set_uint32(vms->gic, "num-cpu", smp_cpus);
739 /* Note that the num-irq property counts both internal and external
740 * interrupts; there are always 32 of the former (mandated by GIC spec).
741 */
742 qdev_prop_set_uint32(vms->gic, "num-irq", NUM_IRQS + 32);
743 if (!kvm_irqchip_in_kernel()) {
744 qdev_prop_set_bit(vms->gic, "has-security-extensions", vms->secure);
745 }
746
747 if (vms->gic_version != VIRT_GIC_VERSION_2) {
748 uint32_t redist0_capacity = virt_redist_capacity(vms, VIRT_GIC_REDIST);
749 uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
750
751 nb_redist_regions = virt_gicv3_redist_region_count(vms);
752
753 qdev_prop_set_uint32(vms->gic, "len-redist-region-count",
754 nb_redist_regions);
755 qdev_prop_set_uint32(vms->gic, "redist-region-count[0]", redist0_count);
756
757 if (!kvm_irqchip_in_kernel()) {
758 if (vms->tcg_its) {
759 object_property_set_link(OBJECT(vms->gic), "sysmem",
760 OBJECT(mem), &error_fatal);
761 qdev_prop_set_bit(vms->gic, "has-lpi", true);
762 }
763 }
764
765 if (nb_redist_regions == 2) {
766 uint32_t redist1_capacity =
767 virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2);
768
769 qdev_prop_set_uint32(vms->gic, "redist-region-count[1]",
770 MIN(smp_cpus - redist0_count, redist1_capacity));
771 }
772 } else {
773 if (!kvm_irqchip_in_kernel()) {
774 qdev_prop_set_bit(vms->gic, "has-virtualization-extensions",
775 vms->virt);
776 }
777 }
778 gicbusdev = SYS_BUS_DEVICE(vms->gic);
779 sysbus_realize_and_unref(gicbusdev, &error_fatal);
780 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
781 if (vms->gic_version != VIRT_GIC_VERSION_2) {
782 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
783 if (nb_redist_regions == 2) {
784 sysbus_mmio_map(gicbusdev, 2,
785 vms->memmap[VIRT_HIGH_GIC_REDIST2].base);
786 }
787 } else {
788 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
789 if (vms->virt) {
790 sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base);
791 sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base);
792 }
793 }
794
795 /* Wire the outputs from each CPU's generic timer and the GICv3
796 * maintenance interrupt signal to the appropriate GIC PPI inputs,
797 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
798 */
799 for (i = 0; i < smp_cpus; i++) {
800 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
801 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
802 int irq;
803 /* Mapping from the output timer irq lines from the CPU to the
804 * GIC PPI inputs we use for the virt board.
805 */
806 const int timer_irq[] = {
807 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
808 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
809 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
810 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
811 };
812
813 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
814 qdev_connect_gpio_out(cpudev, irq,
815 qdev_get_gpio_in(vms->gic,
816 ppibase + timer_irq[irq]));
817 }
818
819 if (vms->gic_version != VIRT_GIC_VERSION_2) {
820 qemu_irq irq = qdev_get_gpio_in(vms->gic,
821 ppibase + ARCH_GIC_MAINT_IRQ);
822 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt",
823 0, irq);
824 } else if (vms->virt) {
825 qemu_irq irq = qdev_get_gpio_in(vms->gic,
826 ppibase + ARCH_GIC_MAINT_IRQ);
827 sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq);
828 }
829
830 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
831 qdev_get_gpio_in(vms->gic, ppibase
832 + VIRTUAL_PMU_IRQ));
833
834 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
835 sysbus_connect_irq(gicbusdev, i + smp_cpus,
836 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
837 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
838 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
839 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
840 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
841 }
842
843 fdt_add_gic_node(vms);
844
845 if (vms->gic_version != VIRT_GIC_VERSION_2 && vms->its) {
846 create_its(vms);
847 } else if (vms->gic_version == VIRT_GIC_VERSION_2) {
848 create_v2m(vms);
849 }
850 }
851
852 static void create_uart(const VirtMachineState *vms, int uart,
853 MemoryRegion *mem, Chardev *chr)
854 {
855 char *nodename;
856 hwaddr base = vms->memmap[uart].base;
857 hwaddr size = vms->memmap[uart].size;
858 int irq = vms->irqmap[uart];
859 const char compat[] = "arm,pl011\0arm,primecell";
860 const char clocknames[] = "uartclk\0apb_pclk";
861 DeviceState *dev = qdev_new(TYPE_PL011);
862 SysBusDevice *s = SYS_BUS_DEVICE(dev);
863 MachineState *ms = MACHINE(vms);
864
865 qdev_prop_set_chr(dev, "chardev", chr);
866 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
867 memory_region_add_subregion(mem, base,
868 sysbus_mmio_get_region(s, 0));
869 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
870
871 nodename = g_strdup_printf("/pl011@%" PRIx64, base);
872 qemu_fdt_add_subnode(ms->fdt, nodename);
873 /* Note that we can't use setprop_string because of the embedded NUL */
874 qemu_fdt_setprop(ms->fdt, nodename, "compatible",
875 compat, sizeof(compat));
876 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
877 2, base, 2, size);
878 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
879 GIC_FDT_IRQ_TYPE_SPI, irq,
880 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
881 qemu_fdt_setprop_cells(ms->fdt, nodename, "clocks",
882 vms->clock_phandle, vms->clock_phandle);
883 qemu_fdt_setprop(ms->fdt, nodename, "clock-names",
884 clocknames, sizeof(clocknames));
885
886 if (uart == VIRT_UART) {
887 qemu_fdt_setprop_string(ms->fdt, "/chosen", "stdout-path", nodename);
888 } else {
889 /* Mark as not usable by the normal world */
890 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
891 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
892
893 qemu_fdt_setprop_string(ms->fdt, "/secure-chosen", "stdout-path",
894 nodename);
895 }
896
897 g_free(nodename);
898 }
899
900 static void create_rtc(const VirtMachineState *vms)
901 {
902 char *nodename;
903 hwaddr base = vms->memmap[VIRT_RTC].base;
904 hwaddr size = vms->memmap[VIRT_RTC].size;
905 int irq = vms->irqmap[VIRT_RTC];
906 const char compat[] = "arm,pl031\0arm,primecell";
907 MachineState *ms = MACHINE(vms);
908
909 sysbus_create_simple("pl031", base, qdev_get_gpio_in(vms->gic, irq));
910
911 nodename = g_strdup_printf("/pl031@%" PRIx64, base);
912 qemu_fdt_add_subnode(ms->fdt, nodename);
913 qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
914 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
915 2, base, 2, size);
916 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
917 GIC_FDT_IRQ_TYPE_SPI, irq,
918 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
919 qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
920 qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
921 g_free(nodename);
922 }
923
924 static DeviceState *gpio_key_dev;
925 static void virt_powerdown_req(Notifier *n, void *opaque)
926 {
927 VirtMachineState *s = container_of(n, VirtMachineState, powerdown_notifier);
928
929 if (s->acpi_dev) {
930 acpi_send_event(s->acpi_dev, ACPI_POWER_DOWN_STATUS);
931 } else {
932 /* use gpio Pin 3 for power button event */
933 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
934 }
935 }
936
937 static void create_gpio_keys(char *fdt, DeviceState *pl061_dev,
938 uint32_t phandle)
939 {
940 gpio_key_dev = sysbus_create_simple("gpio-key", -1,
941 qdev_get_gpio_in(pl061_dev, 3));
942
943 qemu_fdt_add_subnode(fdt, "/gpio-keys");
944 qemu_fdt_setprop_string(fdt, "/gpio-keys", "compatible", "gpio-keys");
945
946 qemu_fdt_add_subnode(fdt, "/gpio-keys/poweroff");
947 qemu_fdt_setprop_string(fdt, "/gpio-keys/poweroff",
948 "label", "GPIO Key Poweroff");
949 qemu_fdt_setprop_cell(fdt, "/gpio-keys/poweroff", "linux,code",
950 KEY_POWER);
951 qemu_fdt_setprop_cells(fdt, "/gpio-keys/poweroff",
952 "gpios", phandle, 3, 0);
953 }
954
955 #define SECURE_GPIO_POWEROFF 0
956 #define SECURE_GPIO_RESET 1
957
958 static void create_secure_gpio_pwr(char *fdt, DeviceState *pl061_dev,
959 uint32_t phandle)
960 {
961 DeviceState *gpio_pwr_dev;
962
963 /* gpio-pwr */
964 gpio_pwr_dev = sysbus_create_simple("gpio-pwr", -1, NULL);
965
966 /* connect secure pl061 to gpio-pwr */
967 qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_RESET,
968 qdev_get_gpio_in_named(gpio_pwr_dev, "reset", 0));
969 qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_POWEROFF,
970 qdev_get_gpio_in_named(gpio_pwr_dev, "shutdown", 0));
971
972 qemu_fdt_add_subnode(fdt, "/gpio-poweroff");
973 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "compatible",
974 "gpio-poweroff");
975 qemu_fdt_setprop_cells(fdt, "/gpio-poweroff",
976 "gpios", phandle, SECURE_GPIO_POWEROFF, 0);
977 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "status", "disabled");
978 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "secure-status",
979 "okay");
980
981 qemu_fdt_add_subnode(fdt, "/gpio-restart");
982 qemu_fdt_setprop_string(fdt, "/gpio-restart", "compatible",
983 "gpio-restart");
984 qemu_fdt_setprop_cells(fdt, "/gpio-restart",
985 "gpios", phandle, SECURE_GPIO_RESET, 0);
986 qemu_fdt_setprop_string(fdt, "/gpio-restart", "status", "disabled");
987 qemu_fdt_setprop_string(fdt, "/gpio-restart", "secure-status",
988 "okay");
989 }
990
991 static void create_gpio_devices(const VirtMachineState *vms, int gpio,
992 MemoryRegion *mem)
993 {
994 char *nodename;
995 DeviceState *pl061_dev;
996 hwaddr base = vms->memmap[gpio].base;
997 hwaddr size = vms->memmap[gpio].size;
998 int irq = vms->irqmap[gpio];
999 const char compat[] = "arm,pl061\0arm,primecell";
1000 SysBusDevice *s;
1001 MachineState *ms = MACHINE(vms);
1002
1003 pl061_dev = qdev_new("pl061");
1004 /* Pull lines down to 0 if not driven by the PL061 */
1005 qdev_prop_set_uint32(pl061_dev, "pullups", 0);
1006 qdev_prop_set_uint32(pl061_dev, "pulldowns", 0xff);
1007 s = SYS_BUS_DEVICE(pl061_dev);
1008 sysbus_realize_and_unref(s, &error_fatal);
1009 memory_region_add_subregion(mem, base, sysbus_mmio_get_region(s, 0));
1010 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
1011
1012 uint32_t phandle = qemu_fdt_alloc_phandle(ms->fdt);
1013 nodename = g_strdup_printf("/pl061@%" PRIx64, base);
1014 qemu_fdt_add_subnode(ms->fdt, nodename);
1015 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1016 2, base, 2, size);
1017 qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
1018 qemu_fdt_setprop_cell(ms->fdt, nodename, "#gpio-cells", 2);
1019 qemu_fdt_setprop(ms->fdt, nodename, "gpio-controller", NULL, 0);
1020 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
1021 GIC_FDT_IRQ_TYPE_SPI, irq,
1022 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
1023 qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
1024 qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
1025 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", phandle);
1026
1027 if (gpio != VIRT_GPIO) {
1028 /* Mark as not usable by the normal world */
1029 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1030 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1031 }
1032 g_free(nodename);
1033
1034 /* Child gpio devices */
1035 if (gpio == VIRT_GPIO) {
1036 create_gpio_keys(ms->fdt, pl061_dev, phandle);
1037 } else {
1038 create_secure_gpio_pwr(ms->fdt, pl061_dev, phandle);
1039 }
1040 }
1041
1042 static void create_virtio_devices(const VirtMachineState *vms)
1043 {
1044 int i;
1045 hwaddr size = vms->memmap[VIRT_MMIO].size;
1046 MachineState *ms = MACHINE(vms);
1047
1048 /* We create the transports in forwards order. Since qbus_realize()
1049 * prepends (not appends) new child buses, the incrementing loop below will
1050 * create a list of virtio-mmio buses with decreasing base addresses.
1051 *
1052 * When a -device option is processed from the command line,
1053 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
1054 * order. The upshot is that -device options in increasing command line
1055 * order are mapped to virtio-mmio buses with decreasing base addresses.
1056 *
1057 * When this code was originally written, that arrangement ensured that the
1058 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
1059 * the first -device on the command line. (The end-to-end order is a
1060 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
1061 * guest kernel's name-to-address assignment strategy.)
1062 *
1063 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
1064 * the message, if not necessarily the code, of commit 70161ff336.
1065 * Therefore the loop now establishes the inverse of the original intent.
1066 *
1067 * Unfortunately, we can't counteract the kernel change by reversing the
1068 * loop; it would break existing command lines.
1069 *
1070 * In any case, the kernel makes no guarantee about the stability of
1071 * enumeration order of virtio devices (as demonstrated by it changing
1072 * between kernel versions). For reliable and stable identification
1073 * of disks users must use UUIDs or similar mechanisms.
1074 */
1075 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
1076 int irq = vms->irqmap[VIRT_MMIO] + i;
1077 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
1078
1079 sysbus_create_simple("virtio-mmio", base,
1080 qdev_get_gpio_in(vms->gic, irq));
1081 }
1082
1083 /* We add dtb nodes in reverse order so that they appear in the finished
1084 * device tree lowest address first.
1085 *
1086 * Note that this mapping is independent of the loop above. The previous
1087 * loop influences virtio device to virtio transport assignment, whereas
1088 * this loop controls how virtio transports are laid out in the dtb.
1089 */
1090 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
1091 char *nodename;
1092 int irq = vms->irqmap[VIRT_MMIO] + i;
1093 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
1094
1095 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
1096 qemu_fdt_add_subnode(ms->fdt, nodename);
1097 qemu_fdt_setprop_string(ms->fdt, nodename,
1098 "compatible", "virtio,mmio");
1099 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1100 2, base, 2, size);
1101 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
1102 GIC_FDT_IRQ_TYPE_SPI, irq,
1103 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1104 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1105 g_free(nodename);
1106 }
1107 }
1108
1109 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
1110
1111 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms,
1112 const char *name,
1113 const char *alias_prop_name)
1114 {
1115 /*
1116 * Create a single flash device. We use the same parameters as
1117 * the flash devices on the Versatile Express board.
1118 */
1119 DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
1120
1121 qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
1122 qdev_prop_set_uint8(dev, "width", 4);
1123 qdev_prop_set_uint8(dev, "device-width", 2);
1124 qdev_prop_set_bit(dev, "big-endian", false);
1125 qdev_prop_set_uint16(dev, "id0", 0x89);
1126 qdev_prop_set_uint16(dev, "id1", 0x18);
1127 qdev_prop_set_uint16(dev, "id2", 0x00);
1128 qdev_prop_set_uint16(dev, "id3", 0x00);
1129 qdev_prop_set_string(dev, "name", name);
1130 object_property_add_child(OBJECT(vms), name, OBJECT(dev));
1131 object_property_add_alias(OBJECT(vms), alias_prop_name,
1132 OBJECT(dev), "drive");
1133 return PFLASH_CFI01(dev);
1134 }
1135
1136 static void virt_flash_create(VirtMachineState *vms)
1137 {
1138 vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0");
1139 vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1");
1140 }
1141
1142 static void virt_flash_map1(PFlashCFI01 *flash,
1143 hwaddr base, hwaddr size,
1144 MemoryRegion *sysmem)
1145 {
1146 DeviceState *dev = DEVICE(flash);
1147
1148 assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE));
1149 assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
1150 qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
1151 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1152
1153 memory_region_add_subregion(sysmem, base,
1154 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
1155 0));
1156 }
1157
1158 static void virt_flash_map(VirtMachineState *vms,
1159 MemoryRegion *sysmem,
1160 MemoryRegion *secure_sysmem)
1161 {
1162 /*
1163 * Map two flash devices to fill the VIRT_FLASH space in the memmap.
1164 * sysmem is the system memory space. secure_sysmem is the secure view
1165 * of the system, and the first flash device should be made visible only
1166 * there. The second flash device is visible to both secure and nonsecure.
1167 * If sysmem == secure_sysmem this means there is no separate Secure
1168 * address space and both flash devices are generally visible.
1169 */
1170 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1171 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1172
1173 virt_flash_map1(vms->flash[0], flashbase, flashsize,
1174 secure_sysmem);
1175 virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize,
1176 sysmem);
1177 }
1178
1179 static void virt_flash_fdt(VirtMachineState *vms,
1180 MemoryRegion *sysmem,
1181 MemoryRegion *secure_sysmem)
1182 {
1183 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1184 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1185 MachineState *ms = MACHINE(vms);
1186 char *nodename;
1187
1188 if (sysmem == secure_sysmem) {
1189 /* Report both flash devices as a single node in the DT */
1190 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
1191 qemu_fdt_add_subnode(ms->fdt, nodename);
1192 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1193 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1194 2, flashbase, 2, flashsize,
1195 2, flashbase + flashsize, 2, flashsize);
1196 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1197 g_free(nodename);
1198 } else {
1199 /*
1200 * Report the devices as separate nodes so we can mark one as
1201 * only visible to the secure world.
1202 */
1203 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
1204 qemu_fdt_add_subnode(ms->fdt, nodename);
1205 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1206 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1207 2, flashbase, 2, flashsize);
1208 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1209 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1210 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1211 g_free(nodename);
1212
1213 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase + flashsize);
1214 qemu_fdt_add_subnode(ms->fdt, nodename);
1215 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1216 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1217 2, flashbase + flashsize, 2, flashsize);
1218 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1219 g_free(nodename);
1220 }
1221 }
1222
1223 static bool virt_firmware_init(VirtMachineState *vms,
1224 MemoryRegion *sysmem,
1225 MemoryRegion *secure_sysmem)
1226 {
1227 int i;
1228 const char *bios_name;
1229 BlockBackend *pflash_blk0;
1230
1231 /* Map legacy -drive if=pflash to machine properties */
1232 for (i = 0; i < ARRAY_SIZE(vms->flash); i++) {
1233 pflash_cfi01_legacy_drive(vms->flash[i],
1234 drive_get(IF_PFLASH, 0, i));
1235 }
1236
1237 virt_flash_map(vms, sysmem, secure_sysmem);
1238
1239 pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]);
1240
1241 bios_name = MACHINE(vms)->firmware;
1242 if (bios_name) {
1243 char *fname;
1244 MemoryRegion *mr;
1245 int image_size;
1246
1247 if (pflash_blk0) {
1248 error_report("The contents of the first flash device may be "
1249 "specified with -bios or with -drive if=pflash... "
1250 "but you cannot use both options at once");
1251 exit(1);
1252 }
1253
1254 /* Fall back to -bios */
1255
1256 fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1257 if (!fname) {
1258 error_report("Could not find ROM image '%s'", bios_name);
1259 exit(1);
1260 }
1261 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0);
1262 image_size = load_image_mr(fname, mr);
1263 g_free(fname);
1264 if (image_size < 0) {
1265 error_report("Could not load ROM image '%s'", bios_name);
1266 exit(1);
1267 }
1268 }
1269
1270 return pflash_blk0 || bios_name;
1271 }
1272
1273 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
1274 {
1275 MachineState *ms = MACHINE(vms);
1276 hwaddr base = vms->memmap[VIRT_FW_CFG].base;
1277 hwaddr size = vms->memmap[VIRT_FW_CFG].size;
1278 FWCfgState *fw_cfg;
1279 char *nodename;
1280
1281 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
1282 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus);
1283
1284 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
1285 qemu_fdt_add_subnode(ms->fdt, nodename);
1286 qemu_fdt_setprop_string(ms->fdt, nodename,
1287 "compatible", "qemu,fw-cfg-mmio");
1288 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1289 2, base, 2, size);
1290 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1291 g_free(nodename);
1292 return fw_cfg;
1293 }
1294
1295 static void create_pcie_irq_map(const MachineState *ms,
1296 uint32_t gic_phandle,
1297 int first_irq, const char *nodename)
1298 {
1299 int devfn, pin;
1300 uint32_t full_irq_map[4 * 4 * 10] = { 0 };
1301 uint32_t *irq_map = full_irq_map;
1302
1303 for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
1304 for (pin = 0; pin < 4; pin++) {
1305 int irq_type = GIC_FDT_IRQ_TYPE_SPI;
1306 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
1307 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
1308 int i;
1309
1310 uint32_t map[] = {
1311 devfn << 8, 0, 0, /* devfn */
1312 pin + 1, /* PCI pin */
1313 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
1314
1315 /* Convert map to big endian */
1316 for (i = 0; i < 10; i++) {
1317 irq_map[i] = cpu_to_be32(map[i]);
1318 }
1319 irq_map += 10;
1320 }
1321 }
1322
1323 qemu_fdt_setprop(ms->fdt, nodename, "interrupt-map",
1324 full_irq_map, sizeof(full_irq_map));
1325
1326 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupt-map-mask",
1327 cpu_to_be16(PCI_DEVFN(3, 0)), /* Slot 3 */
1328 0, 0,
1329 0x7 /* PCI irq */);
1330 }
1331
1332 static void create_smmu(const VirtMachineState *vms,
1333 PCIBus *bus)
1334 {
1335 char *node;
1336 const char compat[] = "arm,smmu-v3";
1337 int irq = vms->irqmap[VIRT_SMMU];
1338 int i;
1339 hwaddr base = vms->memmap[VIRT_SMMU].base;
1340 hwaddr size = vms->memmap[VIRT_SMMU].size;
1341 const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
1342 DeviceState *dev;
1343 MachineState *ms = MACHINE(vms);
1344
1345 if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
1346 return;
1347 }
1348
1349 dev = qdev_new(TYPE_ARM_SMMUV3);
1350
1351 object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus),
1352 &error_abort);
1353 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1354 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
1355 for (i = 0; i < NUM_SMMU_IRQS; i++) {
1356 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1357 qdev_get_gpio_in(vms->gic, irq + i));
1358 }
1359
1360 node = g_strdup_printf("/smmuv3@%" PRIx64, base);
1361 qemu_fdt_add_subnode(ms->fdt, node);
1362 qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
1363 qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg", 2, base, 2, size);
1364
1365 qemu_fdt_setprop_cells(ms->fdt, node, "interrupts",
1366 GIC_FDT_IRQ_TYPE_SPI, irq , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1367 GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1368 GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1369 GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1370
1371 qemu_fdt_setprop(ms->fdt, node, "interrupt-names", irq_names,
1372 sizeof(irq_names));
1373
1374 qemu_fdt_setprop(ms->fdt, node, "dma-coherent", NULL, 0);
1375
1376 qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
1377
1378 qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
1379 g_free(node);
1380 }
1381
1382 static void create_virtio_iommu_dt_bindings(VirtMachineState *vms)
1383 {
1384 const char compat[] = "virtio,pci-iommu\0pci1af4,1057";
1385 uint16_t bdf = vms->virtio_iommu_bdf;
1386 MachineState *ms = MACHINE(vms);
1387 char *node;
1388
1389 vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
1390
1391 node = g_strdup_printf("%s/virtio_iommu@%x,%x", vms->pciehb_nodename,
1392 PCI_SLOT(bdf), PCI_FUNC(bdf));
1393 qemu_fdt_add_subnode(ms->fdt, node);
1394 qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
1395 qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg",
1396 1, bdf << 8, 1, 0, 1, 0,
1397 1, 0, 1, 0);
1398
1399 qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
1400 qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
1401 g_free(node);
1402
1403 qemu_fdt_setprop_cells(ms->fdt, vms->pciehb_nodename, "iommu-map",
1404 0x0, vms->iommu_phandle, 0x0, bdf,
1405 bdf + 1, vms->iommu_phandle, bdf + 1, 0xffff - bdf);
1406 }
1407
1408 static void create_pcie(VirtMachineState *vms)
1409 {
1410 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1411 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
1412 hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base;
1413 hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size;
1414 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1415 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
1416 hwaddr base_ecam, size_ecam;
1417 hwaddr base = base_mmio;
1418 int nr_pcie_buses;
1419 int irq = vms->irqmap[VIRT_PCIE];
1420 MemoryRegion *mmio_alias;
1421 MemoryRegion *mmio_reg;
1422 MemoryRegion *ecam_alias;
1423 MemoryRegion *ecam_reg;
1424 DeviceState *dev;
1425 char *nodename;
1426 int i, ecam_id;
1427 PCIHostState *pci;
1428 MachineState *ms = MACHINE(vms);
1429 MachineClass *mc = MACHINE_GET_CLASS(ms);
1430
1431 dev = qdev_new(TYPE_GPEX_HOST);
1432 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1433
1434 ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
1435 base_ecam = vms->memmap[ecam_id].base;
1436 size_ecam = vms->memmap[ecam_id].size;
1437 nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
1438 /* Map only the first size_ecam bytes of ECAM space */
1439 ecam_alias = g_new0(MemoryRegion, 1);
1440 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1441 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1442 ecam_reg, 0, size_ecam);
1443 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1444
1445 /* Map the MMIO window into system address space so as to expose
1446 * the section of PCI MMIO space which starts at the same base address
1447 * (ie 1:1 mapping for that part of PCI MMIO space visible through
1448 * the window).
1449 */
1450 mmio_alias = g_new0(MemoryRegion, 1);
1451 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1452 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1453 mmio_reg, base_mmio, size_mmio);
1454 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1455
1456 if (vms->highmem_mmio) {
1457 /* Map high MMIO space */
1458 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1459
1460 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1461 mmio_reg, base_mmio_high, size_mmio_high);
1462 memory_region_add_subregion(get_system_memory(), base_mmio_high,
1463 high_mmio_alias);
1464 }
1465
1466 /* Map IO port space */
1467 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1468
1469 for (i = 0; i < GPEX_NUM_IRQS; i++) {
1470 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1471 qdev_get_gpio_in(vms->gic, irq + i));
1472 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
1473 }
1474
1475 pci = PCI_HOST_BRIDGE(dev);
1476 pci->bypass_iommu = vms->default_bus_bypass_iommu;
1477 vms->bus = pci->bus;
1478 if (vms->bus) {
1479 for (i = 0; i < nb_nics; i++) {
1480 NICInfo *nd = &nd_table[i];
1481
1482 if (!nd->model) {
1483 nd->model = g_strdup(mc->default_nic);
1484 }
1485
1486 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1487 }
1488 }
1489
1490 nodename = vms->pciehb_nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1491 qemu_fdt_add_subnode(ms->fdt, nodename);
1492 qemu_fdt_setprop_string(ms->fdt, nodename,
1493 "compatible", "pci-host-ecam-generic");
1494 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "pci");
1495 qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 3);
1496 qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 2);
1497 qemu_fdt_setprop_cell(ms->fdt, nodename, "linux,pci-domain", 0);
1498 qemu_fdt_setprop_cells(ms->fdt, nodename, "bus-range", 0,
1499 nr_pcie_buses - 1);
1500 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1501
1502 if (vms->msi_phandle) {
1503 qemu_fdt_setprop_cells(ms->fdt, nodename, "msi-map",
1504 0, vms->msi_phandle, 0, 0x10000);
1505 }
1506
1507 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1508 2, base_ecam, 2, size_ecam);
1509
1510 if (vms->highmem_mmio) {
1511 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
1512 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1513 2, base_pio, 2, size_pio,
1514 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1515 2, base_mmio, 2, size_mmio,
1516 1, FDT_PCI_RANGE_MMIO_64BIT,
1517 2, base_mmio_high,
1518 2, base_mmio_high, 2, size_mmio_high);
1519 } else {
1520 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
1521 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1522 2, base_pio, 2, size_pio,
1523 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1524 2, base_mmio, 2, size_mmio);
1525 }
1526
1527 qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 1);
1528 create_pcie_irq_map(ms, vms->gic_phandle, irq, nodename);
1529
1530 if (vms->iommu) {
1531 vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
1532
1533 switch (vms->iommu) {
1534 case VIRT_IOMMU_SMMUV3:
1535 create_smmu(vms, vms->bus);
1536 qemu_fdt_setprop_cells(ms->fdt, nodename, "iommu-map",
1537 0x0, vms->iommu_phandle, 0x0, 0x10000);
1538 break;
1539 default:
1540 g_assert_not_reached();
1541 }
1542 }
1543 }
1544
1545 static void create_platform_bus(VirtMachineState *vms)
1546 {
1547 DeviceState *dev;
1548 SysBusDevice *s;
1549 int i;
1550 MemoryRegion *sysmem = get_system_memory();
1551
1552 dev = qdev_new(TYPE_PLATFORM_BUS_DEVICE);
1553 dev->id = g_strdup(TYPE_PLATFORM_BUS_DEVICE);
1554 qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
1555 qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
1556 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1557 vms->platform_bus_dev = dev;
1558
1559 s = SYS_BUS_DEVICE(dev);
1560 for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
1561 int irq = vms->irqmap[VIRT_PLATFORM_BUS] + i;
1562 sysbus_connect_irq(s, i, qdev_get_gpio_in(vms->gic, irq));
1563 }
1564
1565 memory_region_add_subregion(sysmem,
1566 vms->memmap[VIRT_PLATFORM_BUS].base,
1567 sysbus_mmio_get_region(s, 0));
1568 }
1569
1570 static void create_tag_ram(MemoryRegion *tag_sysmem,
1571 hwaddr base, hwaddr size,
1572 const char *name)
1573 {
1574 MemoryRegion *tagram = g_new(MemoryRegion, 1);
1575
1576 memory_region_init_ram(tagram, NULL, name, size / 32, &error_fatal);
1577 memory_region_add_subregion(tag_sysmem, base / 32, tagram);
1578 }
1579
1580 static void create_secure_ram(VirtMachineState *vms,
1581 MemoryRegion *secure_sysmem,
1582 MemoryRegion *secure_tag_sysmem)
1583 {
1584 MemoryRegion *secram = g_new(MemoryRegion, 1);
1585 char *nodename;
1586 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1587 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1588 MachineState *ms = MACHINE(vms);
1589
1590 memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1591 &error_fatal);
1592 memory_region_add_subregion(secure_sysmem, base, secram);
1593
1594 nodename = g_strdup_printf("/secram@%" PRIx64, base);
1595 qemu_fdt_add_subnode(ms->fdt, nodename);
1596 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "memory");
1597 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 2, base, 2, size);
1598 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1599 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1600
1601 if (secure_tag_sysmem) {
1602 create_tag_ram(secure_tag_sysmem, base, size, "mach-virt.secure-tag");
1603 }
1604
1605 g_free(nodename);
1606 }
1607
1608 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1609 {
1610 const VirtMachineState *board = container_of(binfo, VirtMachineState,
1611 bootinfo);
1612 MachineState *ms = MACHINE(board);
1613
1614
1615 *fdt_size = board->fdt_size;
1616 return ms->fdt;
1617 }
1618
1619 static void virt_build_smbios(VirtMachineState *vms)
1620 {
1621 MachineClass *mc = MACHINE_GET_CLASS(vms);
1622 MachineState *ms = MACHINE(vms);
1623 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1624 uint8_t *smbios_tables, *smbios_anchor;
1625 size_t smbios_tables_len, smbios_anchor_len;
1626 struct smbios_phys_mem_area mem_array;
1627 const char *product = "QEMU Virtual Machine";
1628
1629 if (kvm_enabled()) {
1630 product = "KVM Virtual Machine";
1631 }
1632
1633 smbios_set_defaults("QEMU", product,
1634 vmc->smbios_old_sys_ver ? "1.0" : mc->name, false,
1635 true, SMBIOS_ENTRY_POINT_TYPE_64);
1636
1637 /* build the array of physical mem area from base_memmap */
1638 mem_array.address = vms->memmap[VIRT_MEM].base;
1639 mem_array.length = ms->ram_size;
1640
1641 smbios_get_tables(ms, &mem_array, 1,
1642 &smbios_tables, &smbios_tables_len,
1643 &smbios_anchor, &smbios_anchor_len,
1644 &error_fatal);
1645
1646 if (smbios_anchor) {
1647 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1648 smbios_tables, smbios_tables_len);
1649 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1650 smbios_anchor, smbios_anchor_len);
1651 }
1652 }
1653
1654 static
1655 void virt_machine_done(Notifier *notifier, void *data)
1656 {
1657 VirtMachineState *vms = container_of(notifier, VirtMachineState,
1658 machine_done);
1659 MachineState *ms = MACHINE(vms);
1660 ARMCPU *cpu = ARM_CPU(first_cpu);
1661 struct arm_boot_info *info = &vms->bootinfo;
1662 AddressSpace *as = arm_boot_address_space(cpu, info);
1663
1664 /*
1665 * If the user provided a dtb, we assume the dynamic sysbus nodes
1666 * already are integrated there. This corresponds to a use case where
1667 * the dynamic sysbus nodes are complex and their generation is not yet
1668 * supported. In that case the user can take charge of the guest dt
1669 * while qemu takes charge of the qom stuff.
1670 */
1671 if (info->dtb_filename == NULL) {
1672 platform_bus_add_all_fdt_nodes(ms->fdt, "/intc",
1673 vms->memmap[VIRT_PLATFORM_BUS].base,
1674 vms->memmap[VIRT_PLATFORM_BUS].size,
1675 vms->irqmap[VIRT_PLATFORM_BUS]);
1676 }
1677 if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) {
1678 exit(1);
1679 }
1680
1681 fw_cfg_add_extra_pci_roots(vms->bus, vms->fw_cfg);
1682
1683 virt_acpi_setup(vms);
1684 virt_build_smbios(vms);
1685 }
1686
1687 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1688 {
1689 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1690 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1691
1692 if (!vmc->disallow_affinity_adjustment) {
1693 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1694 * GIC's target-list limitations. 32-bit KVM hosts currently
1695 * always create clusters of 4 CPUs, but that is expected to
1696 * change when they gain support for gicv3. When KVM is enabled
1697 * it will override the changes we make here, therefore our
1698 * purposes are to make TCG consistent (with 64-bit KVM hosts)
1699 * and to improve SGI efficiency.
1700 */
1701 if (vms->gic_version == VIRT_GIC_VERSION_2) {
1702 clustersz = GIC_TARGETLIST_BITS;
1703 } else {
1704 clustersz = GICV3_TARGETLIST_BITS;
1705 }
1706 }
1707 return arm_cpu_mp_affinity(idx, clustersz);
1708 }
1709
1710 static inline bool *virt_get_high_memmap_enabled(VirtMachineState *vms,
1711 int index)
1712 {
1713 bool *enabled_array[] = {
1714 &vms->highmem_redists,
1715 &vms->highmem_ecam,
1716 &vms->highmem_mmio,
1717 };
1718
1719 assert(ARRAY_SIZE(extended_memmap) - VIRT_LOWMEMMAP_LAST ==
1720 ARRAY_SIZE(enabled_array));
1721 assert(index - VIRT_LOWMEMMAP_LAST < ARRAY_SIZE(enabled_array));
1722
1723 return enabled_array[index - VIRT_LOWMEMMAP_LAST];
1724 }
1725
1726 static void virt_set_high_memmap(VirtMachineState *vms,
1727 hwaddr base, int pa_bits)
1728 {
1729 hwaddr region_base, region_size;
1730 bool *region_enabled, fits;
1731 int i;
1732
1733 for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) {
1734 region_enabled = virt_get_high_memmap_enabled(vms, i);
1735 region_base = ROUND_UP(base, extended_memmap[i].size);
1736 region_size = extended_memmap[i].size;
1737
1738 vms->memmap[i].base = region_base;
1739 vms->memmap[i].size = region_size;
1740
1741 /*
1742 * Check each device to see if it fits in the PA space,
1743 * moving highest_gpa as we go. For compatibility, move
1744 * highest_gpa for disabled fitting devices as well, if
1745 * the compact layout has been disabled.
1746 *
1747 * For each device that doesn't fit, disable it.
1748 */
1749 fits = (region_base + region_size) <= BIT_ULL(pa_bits);
1750 *region_enabled &= fits;
1751 if (vms->highmem_compact && !*region_enabled) {
1752 continue;
1753 }
1754
1755 base = region_base + region_size;
1756 if (fits) {
1757 vms->highest_gpa = base - 1;
1758 }
1759 }
1760 }
1761
1762 static void virt_set_memmap(VirtMachineState *vms, int pa_bits)
1763 {
1764 MachineState *ms = MACHINE(vms);
1765 hwaddr base, device_memory_base, device_memory_size, memtop;
1766 int i;
1767
1768 vms->memmap = extended_memmap;
1769
1770 for (i = 0; i < ARRAY_SIZE(base_memmap); i++) {
1771 vms->memmap[i] = base_memmap[i];
1772 }
1773
1774 if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) {
1775 error_report("unsupported number of memory slots: %"PRIu64,
1776 ms->ram_slots);
1777 exit(EXIT_FAILURE);
1778 }
1779
1780 /*
1781 * !highmem is exactly the same as limiting the PA space to 32bit,
1782 * irrespective of the underlying capabilities of the HW.
1783 */
1784 if (!vms->highmem) {
1785 pa_bits = 32;
1786 }
1787
1788 /*
1789 * We compute the base of the high IO region depending on the
1790 * amount of initial and device memory. The device memory start/size
1791 * is aligned on 1GiB. We never put the high IO region below 256GiB
1792 * so that if maxram_size is < 255GiB we keep the legacy memory map.
1793 * The device region size assumes 1GiB page max alignment per slot.
1794 */
1795 device_memory_base =
1796 ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB);
1797 device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB;
1798
1799 /* Base address of the high IO region */
1800 memtop = base = device_memory_base + ROUND_UP(device_memory_size, GiB);
1801 if (memtop > BIT_ULL(pa_bits)) {
1802 error_report("Addressing limited to %d bits, but memory exceeds it by %llu bytes\n",
1803 pa_bits, memtop - BIT_ULL(pa_bits));
1804 exit(EXIT_FAILURE);
1805 }
1806 if (base < device_memory_base) {
1807 error_report("maxmem/slots too huge");
1808 exit(EXIT_FAILURE);
1809 }
1810 if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) {
1811 base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES;
1812 }
1813
1814 /* We know for sure that at least the memory fits in the PA space */
1815 vms->highest_gpa = memtop - 1;
1816
1817 virt_set_high_memmap(vms, base, pa_bits);
1818
1819 if (device_memory_size > 0) {
1820 ms->device_memory = g_malloc0(sizeof(*ms->device_memory));
1821 ms->device_memory->base = device_memory_base;
1822 memory_region_init(&ms->device_memory->mr, OBJECT(vms),
1823 "device-memory", device_memory_size);
1824 }
1825 }
1826
1827 static VirtGICType finalize_gic_version_do(const char *accel_name,
1828 VirtGICType gic_version,
1829 int gics_supported,
1830 unsigned int max_cpus)
1831 {
1832 /* Convert host/max/nosel to GIC version number */
1833 switch (gic_version) {
1834 case VIRT_GIC_VERSION_HOST:
1835 if (!kvm_enabled()) {
1836 error_report("gic-version=host requires KVM");
1837 exit(1);
1838 }
1839
1840 /* For KVM, gic-version=host means gic-version=max */
1841 return finalize_gic_version_do(accel_name, VIRT_GIC_VERSION_MAX,
1842 gics_supported, max_cpus);
1843 case VIRT_GIC_VERSION_MAX:
1844 if (gics_supported & VIRT_GIC_VERSION_4_MASK) {
1845 gic_version = VIRT_GIC_VERSION_4;
1846 } else if (gics_supported & VIRT_GIC_VERSION_3_MASK) {
1847 gic_version = VIRT_GIC_VERSION_3;
1848 } else {
1849 gic_version = VIRT_GIC_VERSION_2;
1850 }
1851 break;
1852 case VIRT_GIC_VERSION_NOSEL:
1853 if ((gics_supported & VIRT_GIC_VERSION_2_MASK) &&
1854 max_cpus <= GIC_NCPU) {
1855 gic_version = VIRT_GIC_VERSION_2;
1856 } else if (gics_supported & VIRT_GIC_VERSION_3_MASK) {
1857 /*
1858 * in case the host does not support v2 emulation or
1859 * the end-user requested more than 8 VCPUs we now default
1860 * to v3. In any case defaulting to v2 would be broken.
1861 */
1862 gic_version = VIRT_GIC_VERSION_3;
1863 } else if (max_cpus > GIC_NCPU) {
1864 error_report("%s only supports GICv2 emulation but more than 8 "
1865 "vcpus are requested", accel_name);
1866 exit(1);
1867 }
1868 break;
1869 case VIRT_GIC_VERSION_2:
1870 case VIRT_GIC_VERSION_3:
1871 case VIRT_GIC_VERSION_4:
1872 break;
1873 }
1874
1875 /* Check chosen version is effectively supported */
1876 switch (gic_version) {
1877 case VIRT_GIC_VERSION_2:
1878 if (!(gics_supported & VIRT_GIC_VERSION_2_MASK)) {
1879 error_report("%s does not support GICv2 emulation", accel_name);
1880 exit(1);
1881 }
1882 break;
1883 case VIRT_GIC_VERSION_3:
1884 if (!(gics_supported & VIRT_GIC_VERSION_3_MASK)) {
1885 error_report("%s does not support GICv3 emulation", accel_name);
1886 exit(1);
1887 }
1888 break;
1889 case VIRT_GIC_VERSION_4:
1890 if (!(gics_supported & VIRT_GIC_VERSION_4_MASK)) {
1891 error_report("%s does not support GICv4 emulation, is virtualization=on?",
1892 accel_name);
1893 exit(1);
1894 }
1895 break;
1896 default:
1897 error_report("logic error in finalize_gic_version");
1898 exit(1);
1899 break;
1900 }
1901
1902 return gic_version;
1903 }
1904
1905 /*
1906 * finalize_gic_version - Determines the final gic_version
1907 * according to the gic-version property
1908 *
1909 * Default GIC type is v2
1910 */
1911 static void finalize_gic_version(VirtMachineState *vms)
1912 {
1913 const char *accel_name = current_accel_name();
1914 unsigned int max_cpus = MACHINE(vms)->smp.max_cpus;
1915 int gics_supported = 0;
1916
1917 /* Determine which GIC versions the current environment supports */
1918 if (kvm_enabled() && kvm_irqchip_in_kernel()) {
1919 int probe_bitmap = kvm_arm_vgic_probe();
1920
1921 if (!probe_bitmap) {
1922 error_report("Unable to determine GIC version supported by host");
1923 exit(1);
1924 }
1925
1926 if (probe_bitmap & KVM_ARM_VGIC_V2) {
1927 gics_supported |= VIRT_GIC_VERSION_2_MASK;
1928 }
1929 if (probe_bitmap & KVM_ARM_VGIC_V3) {
1930 gics_supported |= VIRT_GIC_VERSION_3_MASK;
1931 }
1932 } else if (kvm_enabled() && !kvm_irqchip_in_kernel()) {
1933 /* KVM w/o kernel irqchip can only deal with GICv2 */
1934 gics_supported |= VIRT_GIC_VERSION_2_MASK;
1935 accel_name = "KVM with kernel-irqchip=off";
1936 } else if (tcg_enabled() || hvf_enabled() || qtest_enabled()) {
1937 gics_supported |= VIRT_GIC_VERSION_2_MASK;
1938 if (module_object_class_by_name("arm-gicv3")) {
1939 gics_supported |= VIRT_GIC_VERSION_3_MASK;
1940 if (vms->virt) {
1941 /* GICv4 only makes sense if CPU has EL2 */
1942 gics_supported |= VIRT_GIC_VERSION_4_MASK;
1943 }
1944 }
1945 } else {
1946 error_report("Unsupported accelerator, can not determine GIC support");
1947 exit(1);
1948 }
1949
1950 /*
1951 * Then convert helpers like host/max to concrete GIC versions and ensure
1952 * the desired version is supported
1953 */
1954 vms->gic_version = finalize_gic_version_do(accel_name, vms->gic_version,
1955 gics_supported, max_cpus);
1956 }
1957
1958 /*
1959 * virt_cpu_post_init() must be called after the CPUs have
1960 * been realized and the GIC has been created.
1961 */
1962 static void virt_cpu_post_init(VirtMachineState *vms, MemoryRegion *sysmem)
1963 {
1964 int max_cpus = MACHINE(vms)->smp.max_cpus;
1965 bool aarch64, pmu, steal_time;
1966 CPUState *cpu;
1967
1968 aarch64 = object_property_get_bool(OBJECT(first_cpu), "aarch64", NULL);
1969 pmu = object_property_get_bool(OBJECT(first_cpu), "pmu", NULL);
1970 steal_time = object_property_get_bool(OBJECT(first_cpu),
1971 "kvm-steal-time", NULL);
1972
1973 if (kvm_enabled()) {
1974 hwaddr pvtime_reg_base = vms->memmap[VIRT_PVTIME].base;
1975 hwaddr pvtime_reg_size = vms->memmap[VIRT_PVTIME].size;
1976
1977 if (steal_time) {
1978 MemoryRegion *pvtime = g_new(MemoryRegion, 1);
1979 hwaddr pvtime_size = max_cpus * PVTIME_SIZE_PER_CPU;
1980
1981 /* The memory region size must be a multiple of host page size. */
1982 pvtime_size = REAL_HOST_PAGE_ALIGN(pvtime_size);
1983
1984 if (pvtime_size > pvtime_reg_size) {
1985 error_report("pvtime requires a %" HWADDR_PRId
1986 " byte memory region for %d CPUs,"
1987 " but only %" HWADDR_PRId " has been reserved",
1988 pvtime_size, max_cpus, pvtime_reg_size);
1989 exit(1);
1990 }
1991
1992 memory_region_init_ram(pvtime, NULL, "pvtime", pvtime_size, NULL);
1993 memory_region_add_subregion(sysmem, pvtime_reg_base, pvtime);
1994 }
1995
1996 CPU_FOREACH(cpu) {
1997 if (pmu) {
1998 assert(arm_feature(&ARM_CPU(cpu)->env, ARM_FEATURE_PMU));
1999 if (kvm_irqchip_in_kernel()) {
2000 kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ));
2001 }
2002 kvm_arm_pmu_init(cpu);
2003 }
2004 if (steal_time) {
2005 kvm_arm_pvtime_init(cpu, pvtime_reg_base +
2006 cpu->cpu_index * PVTIME_SIZE_PER_CPU);
2007 }
2008 }
2009 } else {
2010 if (aarch64 && vms->highmem) {
2011 int requested_pa_size = 64 - clz64(vms->highest_gpa);
2012 int pamax = arm_pamax(ARM_CPU(first_cpu));
2013
2014 if (pamax < requested_pa_size) {
2015 error_report("VCPU supports less PA bits (%d) than "
2016 "requested by the memory map (%d)",
2017 pamax, requested_pa_size);
2018 exit(1);
2019 }
2020 }
2021 }
2022 }
2023
2024 static void machvirt_init(MachineState *machine)
2025 {
2026 VirtMachineState *vms = VIRT_MACHINE(machine);
2027 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
2028 MachineClass *mc = MACHINE_GET_CLASS(machine);
2029 const CPUArchIdList *possible_cpus;
2030 MemoryRegion *sysmem = get_system_memory();
2031 MemoryRegion *secure_sysmem = NULL;
2032 MemoryRegion *tag_sysmem = NULL;
2033 MemoryRegion *secure_tag_sysmem = NULL;
2034 int n, virt_max_cpus;
2035 bool firmware_loaded;
2036 bool aarch64 = true;
2037 bool has_ged = !vmc->no_ged;
2038 unsigned int smp_cpus = machine->smp.cpus;
2039 unsigned int max_cpus = machine->smp.max_cpus;
2040
2041 if (!cpu_type_valid(machine->cpu_type)) {
2042 error_report("mach-virt: CPU type %s not supported", machine->cpu_type);
2043 exit(1);
2044 }
2045
2046 possible_cpus = mc->possible_cpu_arch_ids(machine);
2047
2048 /*
2049 * In accelerated mode, the memory map is computed earlier in kvm_type()
2050 * to create a VM with the right number of IPA bits.
2051 */
2052 if (!vms->memmap) {
2053 Object *cpuobj;
2054 ARMCPU *armcpu;
2055 int pa_bits;
2056
2057 /*
2058 * Instantiate a temporary CPU object to find out about what
2059 * we are about to deal with. Once this is done, get rid of
2060 * the object.
2061 */
2062 cpuobj = object_new(possible_cpus->cpus[0].type);
2063 armcpu = ARM_CPU(cpuobj);
2064
2065 pa_bits = arm_pamax(armcpu);
2066
2067 object_unref(cpuobj);
2068
2069 virt_set_memmap(vms, pa_bits);
2070 }
2071
2072 /* We can probe only here because during property set
2073 * KVM is not available yet
2074 */
2075 finalize_gic_version(vms);
2076
2077 if (vms->secure) {
2078 /*
2079 * The Secure view of the world is the same as the NonSecure,
2080 * but with a few extra devices. Create it as a container region
2081 * containing the system memory at low priority; any secure-only
2082 * devices go in at higher priority and take precedence.
2083 */
2084 secure_sysmem = g_new(MemoryRegion, 1);
2085 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
2086 UINT64_MAX);
2087 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
2088 }
2089
2090 firmware_loaded = virt_firmware_init(vms, sysmem,
2091 secure_sysmem ?: sysmem);
2092
2093 /* If we have an EL3 boot ROM then the assumption is that it will
2094 * implement PSCI itself, so disable QEMU's internal implementation
2095 * so it doesn't get in the way. Instead of starting secondary
2096 * CPUs in PSCI powerdown state we will start them all running and
2097 * let the boot ROM sort them out.
2098 * The usual case is that we do use QEMU's PSCI implementation;
2099 * if the guest has EL2 then we will use SMC as the conduit,
2100 * and otherwise we will use HVC (for backwards compatibility and
2101 * because if we're using KVM then we must use HVC).
2102 */
2103 if (vms->secure && firmware_loaded) {
2104 vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
2105 } else if (vms->virt) {
2106 vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
2107 } else {
2108 vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
2109 }
2110
2111 /*
2112 * The maximum number of CPUs depends on the GIC version, or on how
2113 * many redistributors we can fit into the memory map (which in turn
2114 * depends on whether this is a GICv3 or v4).
2115 */
2116 if (vms->gic_version == VIRT_GIC_VERSION_2) {
2117 virt_max_cpus = GIC_NCPU;
2118 } else {
2119 virt_max_cpus = virt_redist_capacity(vms, VIRT_GIC_REDIST);
2120 if (vms->highmem_redists) {
2121 virt_max_cpus += virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2);
2122 }
2123 }
2124
2125 if (max_cpus > virt_max_cpus) {
2126 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
2127 "supported by machine 'mach-virt' (%d)",
2128 max_cpus, virt_max_cpus);
2129 if (vms->gic_version != VIRT_GIC_VERSION_2 && !vms->highmem_redists) {
2130 error_printf("Try 'highmem-redists=on' for more CPUs\n");
2131 }
2132
2133 exit(1);
2134 }
2135
2136 if (vms->secure && (kvm_enabled() || hvf_enabled())) {
2137 error_report("mach-virt: %s does not support providing "
2138 "Security extensions (TrustZone) to the guest CPU",
2139 current_accel_name());
2140 exit(1);
2141 }
2142
2143 if (vms->virt && (kvm_enabled() || hvf_enabled())) {
2144 error_report("mach-virt: %s does not support providing "
2145 "Virtualization extensions to the guest CPU",
2146 current_accel_name());
2147 exit(1);
2148 }
2149
2150 if (vms->mte && (kvm_enabled() || hvf_enabled())) {
2151 error_report("mach-virt: %s does not support providing "
2152 "MTE to the guest CPU",
2153 current_accel_name());
2154 exit(1);
2155 }
2156
2157 create_fdt(vms);
2158
2159 assert(possible_cpus->len == max_cpus);
2160 for (n = 0; n < possible_cpus->len; n++) {
2161 Object *cpuobj;
2162 CPUState *cs;
2163
2164 if (n >= smp_cpus) {
2165 break;
2166 }
2167
2168 cpuobj = object_new(possible_cpus->cpus[n].type);
2169 object_property_set_int(cpuobj, "mp-affinity",
2170 possible_cpus->cpus[n].arch_id, NULL);
2171
2172 cs = CPU(cpuobj);
2173 cs->cpu_index = n;
2174
2175 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
2176 &error_fatal);
2177
2178 aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
2179
2180 if (!vms->secure) {
2181 object_property_set_bool(cpuobj, "has_el3", false, NULL);
2182 }
2183
2184 if (!vms->virt && object_property_find(cpuobj, "has_el2")) {
2185 object_property_set_bool(cpuobj, "has_el2", false, NULL);
2186 }
2187
2188 if (vmc->kvm_no_adjvtime &&
2189 object_property_find(cpuobj, "kvm-no-adjvtime")) {
2190 object_property_set_bool(cpuobj, "kvm-no-adjvtime", true, NULL);
2191 }
2192
2193 if (vmc->no_kvm_steal_time &&
2194 object_property_find(cpuobj, "kvm-steal-time")) {
2195 object_property_set_bool(cpuobj, "kvm-steal-time", false, NULL);
2196 }
2197
2198 if (vmc->no_pmu && object_property_find(cpuobj, "pmu")) {
2199 object_property_set_bool(cpuobj, "pmu", false, NULL);
2200 }
2201
2202 if (vmc->no_tcg_lpa2 && object_property_find(cpuobj, "lpa2")) {
2203 object_property_set_bool(cpuobj, "lpa2", false, NULL);
2204 }
2205
2206 if (object_property_find(cpuobj, "reset-cbar")) {
2207 object_property_set_int(cpuobj, "reset-cbar",
2208 vms->memmap[VIRT_CPUPERIPHS].base,
2209 &error_abort);
2210 }
2211
2212 object_property_set_link(cpuobj, "memory", OBJECT(sysmem),
2213 &error_abort);
2214 if (vms->secure) {
2215 object_property_set_link(cpuobj, "secure-memory",
2216 OBJECT(secure_sysmem), &error_abort);
2217 }
2218
2219 if (vms->mte) {
2220 /* Create the memory region only once, but link to all cpus. */
2221 if (!tag_sysmem) {
2222 /*
2223 * The property exists only if MemTag is supported.
2224 * If it is, we must allocate the ram to back that up.
2225 */
2226 if (!object_property_find(cpuobj, "tag-memory")) {
2227 error_report("MTE requested, but not supported "
2228 "by the guest CPU");
2229 exit(1);
2230 }
2231
2232 tag_sysmem = g_new(MemoryRegion, 1);
2233 memory_region_init(tag_sysmem, OBJECT(machine),
2234 "tag-memory", UINT64_MAX / 32);
2235
2236 if (vms->secure) {
2237 secure_tag_sysmem = g_new(MemoryRegion, 1);
2238 memory_region_init(secure_tag_sysmem, OBJECT(machine),
2239 "secure-tag-memory", UINT64_MAX / 32);
2240
2241 /* As with ram, secure-tag takes precedence over tag. */
2242 memory_region_add_subregion_overlap(secure_tag_sysmem, 0,
2243 tag_sysmem, -1);
2244 }
2245 }
2246
2247 object_property_set_link(cpuobj, "tag-memory", OBJECT(tag_sysmem),
2248 &error_abort);
2249 if (vms->secure) {
2250 object_property_set_link(cpuobj, "secure-tag-memory",
2251 OBJECT(secure_tag_sysmem),
2252 &error_abort);
2253 }
2254 }
2255
2256 qdev_realize(DEVICE(cpuobj), NULL, &error_fatal);
2257 object_unref(cpuobj);
2258 }
2259 fdt_add_timer_nodes(vms);
2260 fdt_add_cpu_nodes(vms);
2261
2262 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base,
2263 machine->ram);
2264 if (machine->device_memory) {
2265 memory_region_add_subregion(sysmem, machine->device_memory->base,
2266 &machine->device_memory->mr);
2267 }
2268
2269 virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem);
2270
2271 create_gic(vms, sysmem);
2272
2273 virt_cpu_post_init(vms, sysmem);
2274
2275 fdt_add_pmu_nodes(vms);
2276
2277 create_uart(vms, VIRT_UART, sysmem, serial_hd(0));
2278
2279 if (vms->secure) {
2280 create_secure_ram(vms, secure_sysmem, secure_tag_sysmem);
2281 create_uart(vms, VIRT_SECURE_UART, secure_sysmem, serial_hd(1));
2282 }
2283
2284 if (tag_sysmem) {
2285 create_tag_ram(tag_sysmem, vms->memmap[VIRT_MEM].base,
2286 machine->ram_size, "mach-virt.tag");
2287 }
2288
2289 vms->highmem_ecam &= (!firmware_loaded || aarch64);
2290
2291 create_rtc(vms);
2292
2293 create_pcie(vms);
2294
2295 if (has_ged && aarch64 && firmware_loaded && virt_is_acpi_enabled(vms)) {
2296 vms->acpi_dev = create_acpi_ged(vms);
2297 } else {
2298 create_gpio_devices(vms, VIRT_GPIO, sysmem);
2299 }
2300
2301 if (vms->secure && !vmc->no_secure_gpio) {
2302 create_gpio_devices(vms, VIRT_SECURE_GPIO, secure_sysmem);
2303 }
2304
2305 /* connect powerdown request */
2306 vms->powerdown_notifier.notify = virt_powerdown_req;
2307 qemu_register_powerdown_notifier(&vms->powerdown_notifier);
2308
2309 /* Create mmio transports, so the user can create virtio backends
2310 * (which will be automatically plugged in to the transports). If
2311 * no backend is created the transport will just sit harmlessly idle.
2312 */
2313 create_virtio_devices(vms);
2314
2315 vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
2316 rom_set_fw(vms->fw_cfg);
2317
2318 create_platform_bus(vms);
2319
2320 if (machine->nvdimms_state->is_enabled) {
2321 const struct AcpiGenericAddress arm_virt_nvdimm_acpi_dsmio = {
2322 .space_id = AML_AS_SYSTEM_MEMORY,
2323 .address = vms->memmap[VIRT_NVDIMM_ACPI].base,
2324 .bit_width = NVDIMM_ACPI_IO_LEN << 3
2325 };
2326
2327 nvdimm_init_acpi_state(machine->nvdimms_state, sysmem,
2328 arm_virt_nvdimm_acpi_dsmio,
2329 vms->fw_cfg, OBJECT(vms));
2330 }
2331
2332 vms->bootinfo.ram_size = machine->ram_size;
2333 vms->bootinfo.board_id = -1;
2334 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
2335 vms->bootinfo.get_dtb = machvirt_dtb;
2336 vms->bootinfo.skip_dtb_autoload = true;
2337 vms->bootinfo.firmware_loaded = firmware_loaded;
2338 vms->bootinfo.psci_conduit = vms->psci_conduit;
2339 arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo);
2340
2341 vms->machine_done.notify = virt_machine_done;
2342 qemu_add_machine_init_done_notifier(&vms->machine_done);
2343 }
2344
2345 static bool virt_get_secure(Object *obj, Error **errp)
2346 {
2347 VirtMachineState *vms = VIRT_MACHINE(obj);
2348
2349 return vms->secure;
2350 }
2351
2352 static void virt_set_secure(Object *obj, bool value, Error **errp)
2353 {
2354 VirtMachineState *vms = VIRT_MACHINE(obj);
2355
2356 vms->secure = value;
2357 }
2358
2359 static bool virt_get_virt(Object *obj, Error **errp)
2360 {
2361 VirtMachineState *vms = VIRT_MACHINE(obj);
2362
2363 return vms->virt;
2364 }
2365
2366 static void virt_set_virt(Object *obj, bool value, Error **errp)
2367 {
2368 VirtMachineState *vms = VIRT_MACHINE(obj);
2369
2370 vms->virt = value;
2371 }
2372
2373 static bool virt_get_highmem(Object *obj, Error **errp)
2374 {
2375 VirtMachineState *vms = VIRT_MACHINE(obj);
2376
2377 return vms->highmem;
2378 }
2379
2380 static void virt_set_highmem(Object *obj, bool value, Error **errp)
2381 {
2382 VirtMachineState *vms = VIRT_MACHINE(obj);
2383
2384 vms->highmem = value;
2385 }
2386
2387 static bool virt_get_compact_highmem(Object *obj, Error **errp)
2388 {
2389 VirtMachineState *vms = VIRT_MACHINE(obj);
2390
2391 return vms->highmem_compact;
2392 }
2393
2394 static void virt_set_compact_highmem(Object *obj, bool value, Error **errp)
2395 {
2396 VirtMachineState *vms = VIRT_MACHINE(obj);
2397
2398 vms->highmem_compact = value;
2399 }
2400
2401 static bool virt_get_highmem_redists(Object *obj, Error **errp)
2402 {
2403 VirtMachineState *vms = VIRT_MACHINE(obj);
2404
2405 return vms->highmem_redists;
2406 }
2407
2408 static void virt_set_highmem_redists(Object *obj, bool value, Error **errp)
2409 {
2410 VirtMachineState *vms = VIRT_MACHINE(obj);
2411
2412 vms->highmem_redists = value;
2413 }
2414
2415 static bool virt_get_highmem_ecam(Object *obj, Error **errp)
2416 {
2417 VirtMachineState *vms = VIRT_MACHINE(obj);
2418
2419 return vms->highmem_ecam;
2420 }
2421
2422 static void virt_set_highmem_ecam(Object *obj, bool value, Error **errp)
2423 {
2424 VirtMachineState *vms = VIRT_MACHINE(obj);
2425
2426 vms->highmem_ecam = value;
2427 }
2428
2429 static bool virt_get_highmem_mmio(Object *obj, Error **errp)
2430 {
2431 VirtMachineState *vms = VIRT_MACHINE(obj);
2432
2433 return vms->highmem_mmio;
2434 }
2435
2436 static void virt_set_highmem_mmio(Object *obj, bool value, Error **errp)
2437 {
2438 VirtMachineState *vms = VIRT_MACHINE(obj);
2439
2440 vms->highmem_mmio = value;
2441 }
2442
2443
2444 static bool virt_get_its(Object *obj, Error **errp)
2445 {
2446 VirtMachineState *vms = VIRT_MACHINE(obj);
2447
2448 return vms->its;
2449 }
2450
2451 static void virt_set_its(Object *obj, bool value, Error **errp)
2452 {
2453 VirtMachineState *vms = VIRT_MACHINE(obj);
2454
2455 vms->its = value;
2456 }
2457
2458 static bool virt_get_dtb_randomness(Object *obj, Error **errp)
2459 {
2460 VirtMachineState *vms = VIRT_MACHINE(obj);
2461
2462 return vms->dtb_randomness;
2463 }
2464
2465 static void virt_set_dtb_randomness(Object *obj, bool value, Error **errp)
2466 {
2467 VirtMachineState *vms = VIRT_MACHINE(obj);
2468
2469 vms->dtb_randomness = value;
2470 }
2471
2472 static char *virt_get_oem_id(Object *obj, Error **errp)
2473 {
2474 VirtMachineState *vms = VIRT_MACHINE(obj);
2475
2476 return g_strdup(vms->oem_id);
2477 }
2478
2479 static void virt_set_oem_id(Object *obj, const char *value, Error **errp)
2480 {
2481 VirtMachineState *vms = VIRT_MACHINE(obj);
2482 size_t len = strlen(value);
2483
2484 if (len > 6) {
2485 error_setg(errp,
2486 "User specified oem-id value is bigger than 6 bytes in size");
2487 return;
2488 }
2489
2490 strncpy(vms->oem_id, value, 6);
2491 }
2492
2493 static char *virt_get_oem_table_id(Object *obj, Error **errp)
2494 {
2495 VirtMachineState *vms = VIRT_MACHINE(obj);
2496
2497 return g_strdup(vms->oem_table_id);
2498 }
2499
2500 static void virt_set_oem_table_id(Object *obj, const char *value,
2501 Error **errp)
2502 {
2503 VirtMachineState *vms = VIRT_MACHINE(obj);
2504 size_t len = strlen(value);
2505
2506 if (len > 8) {
2507 error_setg(errp,
2508 "User specified oem-table-id value is bigger than 8 bytes in size");
2509 return;
2510 }
2511 strncpy(vms->oem_table_id, value, 8);
2512 }
2513
2514
2515 bool virt_is_acpi_enabled(VirtMachineState *vms)
2516 {
2517 if (vms->acpi == ON_OFF_AUTO_OFF) {
2518 return false;
2519 }
2520 return true;
2521 }
2522
2523 static void virt_get_acpi(Object *obj, Visitor *v, const char *name,
2524 void *opaque, Error **errp)
2525 {
2526 VirtMachineState *vms = VIRT_MACHINE(obj);
2527 OnOffAuto acpi = vms->acpi;
2528
2529 visit_type_OnOffAuto(v, name, &acpi, errp);
2530 }
2531
2532 static void virt_set_acpi(Object *obj, Visitor *v, const char *name,
2533 void *opaque, Error **errp)
2534 {
2535 VirtMachineState *vms = VIRT_MACHINE(obj);
2536
2537 visit_type_OnOffAuto(v, name, &vms->acpi, errp);
2538 }
2539
2540 static bool virt_get_ras(Object *obj, Error **errp)
2541 {
2542 VirtMachineState *vms = VIRT_MACHINE(obj);
2543
2544 return vms->ras;
2545 }
2546
2547 static void virt_set_ras(Object *obj, bool value, Error **errp)
2548 {
2549 VirtMachineState *vms = VIRT_MACHINE(obj);
2550
2551 vms->ras = value;
2552 }
2553
2554 static bool virt_get_mte(Object *obj, Error **errp)
2555 {
2556 VirtMachineState *vms = VIRT_MACHINE(obj);
2557
2558 return vms->mte;
2559 }
2560
2561 static void virt_set_mte(Object *obj, bool value, Error **errp)
2562 {
2563 VirtMachineState *vms = VIRT_MACHINE(obj);
2564
2565 vms->mte = value;
2566 }
2567
2568 static char *virt_get_gic_version(Object *obj, Error **errp)
2569 {
2570 VirtMachineState *vms = VIRT_MACHINE(obj);
2571 const char *val;
2572
2573 switch (vms->gic_version) {
2574 case VIRT_GIC_VERSION_4:
2575 val = "4";
2576 break;
2577 case VIRT_GIC_VERSION_3:
2578 val = "3";
2579 break;
2580 default:
2581 val = "2";
2582 break;
2583 }
2584 return g_strdup(val);
2585 }
2586
2587 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
2588 {
2589 VirtMachineState *vms = VIRT_MACHINE(obj);
2590
2591 if (!strcmp(value, "4")) {
2592 vms->gic_version = VIRT_GIC_VERSION_4;
2593 } else if (!strcmp(value, "3")) {
2594 vms->gic_version = VIRT_GIC_VERSION_3;
2595 } else if (!strcmp(value, "2")) {
2596 vms->gic_version = VIRT_GIC_VERSION_2;
2597 } else if (!strcmp(value, "host")) {
2598 vms->gic_version = VIRT_GIC_VERSION_HOST; /* Will probe later */
2599 } else if (!strcmp(value, "max")) {
2600 vms->gic_version = VIRT_GIC_VERSION_MAX; /* Will probe later */
2601 } else {
2602 error_setg(errp, "Invalid gic-version value");
2603 error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
2604 }
2605 }
2606
2607 static char *virt_get_iommu(Object *obj, Error **errp)
2608 {
2609 VirtMachineState *vms = VIRT_MACHINE(obj);
2610
2611 switch (vms->iommu) {
2612 case VIRT_IOMMU_NONE:
2613 return g_strdup("none");
2614 case VIRT_IOMMU_SMMUV3:
2615 return g_strdup("smmuv3");
2616 default:
2617 g_assert_not_reached();
2618 }
2619 }
2620
2621 static void virt_set_iommu(Object *obj, const char *value, Error **errp)
2622 {
2623 VirtMachineState *vms = VIRT_MACHINE(obj);
2624
2625 if (!strcmp(value, "smmuv3")) {
2626 vms->iommu = VIRT_IOMMU_SMMUV3;
2627 } else if (!strcmp(value, "none")) {
2628 vms->iommu = VIRT_IOMMU_NONE;
2629 } else {
2630 error_setg(errp, "Invalid iommu value");
2631 error_append_hint(errp, "Valid values are none, smmuv3.\n");
2632 }
2633 }
2634
2635 static bool virt_get_default_bus_bypass_iommu(Object *obj, Error **errp)
2636 {
2637 VirtMachineState *vms = VIRT_MACHINE(obj);
2638
2639 return vms->default_bus_bypass_iommu;
2640 }
2641
2642 static void virt_set_default_bus_bypass_iommu(Object *obj, bool value,
2643 Error **errp)
2644 {
2645 VirtMachineState *vms = VIRT_MACHINE(obj);
2646
2647 vms->default_bus_bypass_iommu = value;
2648 }
2649
2650 static CpuInstanceProperties
2651 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2652 {
2653 MachineClass *mc = MACHINE_GET_CLASS(ms);
2654 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2655
2656 assert(cpu_index < possible_cpus->len);
2657 return possible_cpus->cpus[cpu_index].props;
2658 }
2659
2660 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
2661 {
2662 int64_t socket_id = ms->possible_cpus->cpus[idx].props.socket_id;
2663
2664 return socket_id % ms->numa_state->num_nodes;
2665 }
2666
2667 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
2668 {
2669 int n;
2670 unsigned int max_cpus = ms->smp.max_cpus;
2671 VirtMachineState *vms = VIRT_MACHINE(ms);
2672 MachineClass *mc = MACHINE_GET_CLASS(vms);
2673
2674 if (ms->possible_cpus) {
2675 assert(ms->possible_cpus->len == max_cpus);
2676 return ms->possible_cpus;
2677 }
2678
2679 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2680 sizeof(CPUArchId) * max_cpus);
2681 ms->possible_cpus->len = max_cpus;
2682 for (n = 0; n < ms->possible_cpus->len; n++) {
2683 ms->possible_cpus->cpus[n].type = ms->cpu_type;
2684 ms->possible_cpus->cpus[n].arch_id =
2685 virt_cpu_mp_affinity(vms, n);
2686
2687 assert(!mc->smp_props.dies_supported);
2688 ms->possible_cpus->cpus[n].props.has_socket_id = true;
2689 ms->possible_cpus->cpus[n].props.socket_id =
2690 n / (ms->smp.clusters * ms->smp.cores * ms->smp.threads);
2691 ms->possible_cpus->cpus[n].props.has_cluster_id = true;
2692 ms->possible_cpus->cpus[n].props.cluster_id =
2693 (n / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters;
2694 ms->possible_cpus->cpus[n].props.has_core_id = true;
2695 ms->possible_cpus->cpus[n].props.core_id =
2696 (n / ms->smp.threads) % ms->smp.cores;
2697 ms->possible_cpus->cpus[n].props.has_thread_id = true;
2698 ms->possible_cpus->cpus[n].props.thread_id =
2699 n % ms->smp.threads;
2700 }
2701 return ms->possible_cpus;
2702 }
2703
2704 static void virt_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2705 Error **errp)
2706 {
2707 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2708 const MachineState *ms = MACHINE(hotplug_dev);
2709 const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2710
2711 if (!vms->acpi_dev) {
2712 error_setg(errp,
2713 "memory hotplug is not enabled: missing acpi-ged device");
2714 return;
2715 }
2716
2717 if (vms->mte) {
2718 error_setg(errp, "memory hotplug is not enabled: MTE is enabled");
2719 return;
2720 }
2721
2722 if (is_nvdimm && !ms->nvdimms_state->is_enabled) {
2723 error_setg(errp, "nvdimm is not enabled: add 'nvdimm=on' to '-M'");
2724 return;
2725 }
2726
2727 pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), NULL, errp);
2728 }
2729
2730 static void virt_memory_plug(HotplugHandler *hotplug_dev,
2731 DeviceState *dev, Error **errp)
2732 {
2733 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2734 MachineState *ms = MACHINE(hotplug_dev);
2735 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2736
2737 pc_dimm_plug(PC_DIMM(dev), MACHINE(vms));
2738
2739 if (is_nvdimm) {
2740 nvdimm_plug(ms->nvdimms_state);
2741 }
2742
2743 hotplug_handler_plug(HOTPLUG_HANDLER(vms->acpi_dev),
2744 dev, &error_abort);
2745 }
2746
2747 static void virt_virtio_md_pci_pre_plug(HotplugHandler *hotplug_dev,
2748 DeviceState *dev, Error **errp)
2749 {
2750 HotplugHandler *hotplug_dev2 = qdev_get_bus_hotplug_handler(dev);
2751 Error *local_err = NULL;
2752
2753 if (!hotplug_dev2 && dev->hotplugged) {
2754 /*
2755 * Without a bus hotplug handler, we cannot control the plug/unplug
2756 * order. We should never reach this point when hotplugging on ARM.
2757 * However, it's nice to add a safety net, similar to what we have
2758 * on x86.
2759 */
2760 error_setg(errp, "hotplug of virtio based memory devices not supported"
2761 " on this bus.");
2762 return;
2763 }
2764 /*
2765 * First, see if we can plug this memory device at all. If that
2766 * succeeds, branch of to the actual hotplug handler.
2767 */
2768 memory_device_pre_plug(MEMORY_DEVICE(dev), MACHINE(hotplug_dev), NULL,
2769 &local_err);
2770 if (!local_err && hotplug_dev2) {
2771 hotplug_handler_pre_plug(hotplug_dev2, dev, &local_err);
2772 }
2773 error_propagate(errp, local_err);
2774 }
2775
2776 static void virt_virtio_md_pci_plug(HotplugHandler *hotplug_dev,
2777 DeviceState *dev, Error **errp)
2778 {
2779 HotplugHandler *hotplug_dev2 = qdev_get_bus_hotplug_handler(dev);
2780 Error *local_err = NULL;
2781
2782 /*
2783 * Plug the memory device first and then branch off to the actual
2784 * hotplug handler. If that one fails, we can easily undo the memory
2785 * device bits.
2786 */
2787 memory_device_plug(MEMORY_DEVICE(dev), MACHINE(hotplug_dev));
2788 if (hotplug_dev2) {
2789 hotplug_handler_plug(hotplug_dev2, dev, &local_err);
2790 if (local_err) {
2791 memory_device_unplug(MEMORY_DEVICE(dev), MACHINE(hotplug_dev));
2792 }
2793 }
2794 error_propagate(errp, local_err);
2795 }
2796
2797 static void virt_virtio_md_pci_unplug_request(HotplugHandler *hotplug_dev,
2798 DeviceState *dev, Error **errp)
2799 {
2800 /* We don't support hot unplug of virtio based memory devices */
2801 error_setg(errp, "virtio based memory devices cannot be unplugged.");
2802 }
2803
2804
2805 static void virt_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2806 DeviceState *dev, Error **errp)
2807 {
2808 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2809
2810 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2811 virt_memory_pre_plug(hotplug_dev, dev, errp);
2812 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MEM_PCI)) {
2813 virt_virtio_md_pci_pre_plug(hotplug_dev, dev, errp);
2814 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2815 hwaddr db_start = 0, db_end = 0;
2816 char *resv_prop_str;
2817
2818 if (vms->iommu != VIRT_IOMMU_NONE) {
2819 error_setg(errp, "virt machine does not support multiple IOMMUs");
2820 return;
2821 }
2822
2823 switch (vms->msi_controller) {
2824 case VIRT_MSI_CTRL_NONE:
2825 return;
2826 case VIRT_MSI_CTRL_ITS:
2827 /* GITS_TRANSLATER page */
2828 db_start = base_memmap[VIRT_GIC_ITS].base + 0x10000;
2829 db_end = base_memmap[VIRT_GIC_ITS].base +
2830 base_memmap[VIRT_GIC_ITS].size - 1;
2831 break;
2832 case VIRT_MSI_CTRL_GICV2M:
2833 /* MSI_SETSPI_NS page */
2834 db_start = base_memmap[VIRT_GIC_V2M].base;
2835 db_end = db_start + base_memmap[VIRT_GIC_V2M].size - 1;
2836 break;
2837 }
2838 resv_prop_str = g_strdup_printf("0x%"PRIx64":0x%"PRIx64":%u",
2839 db_start, db_end,
2840 VIRTIO_IOMMU_RESV_MEM_T_MSI);
2841
2842 object_property_set_uint(OBJECT(dev), "len-reserved-regions", 1, errp);
2843 object_property_set_str(OBJECT(dev), "reserved-regions[0]",
2844 resv_prop_str, errp);
2845 g_free(resv_prop_str);
2846 }
2847 }
2848
2849 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2850 DeviceState *dev, Error **errp)
2851 {
2852 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2853
2854 if (vms->platform_bus_dev) {
2855 MachineClass *mc = MACHINE_GET_CLASS(vms);
2856
2857 if (device_is_dynamic_sysbus(mc, dev)) {
2858 platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
2859 SYS_BUS_DEVICE(dev));
2860 }
2861 }
2862 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2863 virt_memory_plug(hotplug_dev, dev, errp);
2864 }
2865
2866 if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MEM_PCI)) {
2867 virt_virtio_md_pci_plug(hotplug_dev, dev, errp);
2868 }
2869
2870 if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2871 PCIDevice *pdev = PCI_DEVICE(dev);
2872
2873 vms->iommu = VIRT_IOMMU_VIRTIO;
2874 vms->virtio_iommu_bdf = pci_get_bdf(pdev);
2875 create_virtio_iommu_dt_bindings(vms);
2876 }
2877 }
2878
2879 static void virt_dimm_unplug_request(HotplugHandler *hotplug_dev,
2880 DeviceState *dev, Error **errp)
2881 {
2882 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2883
2884 if (!vms->acpi_dev) {
2885 error_setg(errp,
2886 "memory hotplug is not enabled: missing acpi-ged device");
2887 return;
2888 }
2889
2890 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
2891 error_setg(errp, "nvdimm device hot unplug is not supported yet.");
2892 return;
2893 }
2894
2895 hotplug_handler_unplug_request(HOTPLUG_HANDLER(vms->acpi_dev), dev,
2896 errp);
2897 }
2898
2899 static void virt_dimm_unplug(HotplugHandler *hotplug_dev,
2900 DeviceState *dev, Error **errp)
2901 {
2902 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2903 Error *local_err = NULL;
2904
2905 hotplug_handler_unplug(HOTPLUG_HANDLER(vms->acpi_dev), dev, &local_err);
2906 if (local_err) {
2907 goto out;
2908 }
2909
2910 pc_dimm_unplug(PC_DIMM(dev), MACHINE(vms));
2911 qdev_unrealize(dev);
2912
2913 out:
2914 error_propagate(errp, local_err);
2915 }
2916
2917 static void virt_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2918 DeviceState *dev, Error **errp)
2919 {
2920 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2921 virt_dimm_unplug_request(hotplug_dev, dev, errp);
2922 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MEM_PCI)) {
2923 virt_virtio_md_pci_unplug_request(hotplug_dev, dev, errp);
2924 } else {
2925 error_setg(errp, "device unplug request for unsupported device"
2926 " type: %s", object_get_typename(OBJECT(dev)));
2927 }
2928 }
2929
2930 static void virt_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2931 DeviceState *dev, Error **errp)
2932 {
2933 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2934 virt_dimm_unplug(hotplug_dev, dev, errp);
2935 } else {
2936 error_setg(errp, "virt: device unplug for unsupported device"
2937 " type: %s", object_get_typename(OBJECT(dev)));
2938 }
2939 }
2940
2941 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
2942 DeviceState *dev)
2943 {
2944 MachineClass *mc = MACHINE_GET_CLASS(machine);
2945
2946 if (device_is_dynamic_sysbus(mc, dev) ||
2947 object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2948 object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MEM_PCI) ||
2949 object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2950 return HOTPLUG_HANDLER(machine);
2951 }
2952 return NULL;
2953 }
2954
2955 /*
2956 * for arm64 kvm_type [7-0] encodes the requested number of bits
2957 * in the IPA address space
2958 */
2959 static int virt_kvm_type(MachineState *ms, const char *type_str)
2960 {
2961 VirtMachineState *vms = VIRT_MACHINE(ms);
2962 int max_vm_pa_size, requested_pa_size;
2963 bool fixed_ipa;
2964
2965 max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa);
2966
2967 /* we freeze the memory map to compute the highest gpa */
2968 virt_set_memmap(vms, max_vm_pa_size);
2969
2970 requested_pa_size = 64 - clz64(vms->highest_gpa);
2971
2972 /*
2973 * KVM requires the IPA size to be at least 32 bits.
2974 */
2975 if (requested_pa_size < 32) {
2976 requested_pa_size = 32;
2977 }
2978
2979 if (requested_pa_size > max_vm_pa_size) {
2980 error_report("-m and ,maxmem option values "
2981 "require an IPA range (%d bits) larger than "
2982 "the one supported by the host (%d bits)",
2983 requested_pa_size, max_vm_pa_size);
2984 exit(1);
2985 }
2986 /*
2987 * We return the requested PA log size, unless KVM only supports
2988 * the implicit legacy 40b IPA setting, in which case the kvm_type
2989 * must be 0.
2990 */
2991 return fixed_ipa ? 0 : requested_pa_size;
2992 }
2993
2994 static void virt_machine_class_init(ObjectClass *oc, void *data)
2995 {
2996 MachineClass *mc = MACHINE_CLASS(oc);
2997 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2998
2999 mc->init = machvirt_init;
3000 /* Start with max_cpus set to 512, which is the maximum supported by KVM.
3001 * The value may be reduced later when we have more information about the
3002 * configuration of the particular instance.
3003 */
3004 mc->max_cpus = 512;
3005 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
3006 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
3007 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
3008 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM);
3009 #ifdef CONFIG_TPM
3010 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_TPM_TIS_SYSBUS);
3011 #endif
3012 mc->block_default_type = IF_VIRTIO;
3013 mc->no_cdrom = 1;
3014 mc->pci_allow_0_address = true;
3015 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
3016 mc->minimum_page_bits = 12;
3017 mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
3018 mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
3019 #ifdef CONFIG_TCG
3020 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
3021 #else
3022 mc->default_cpu_type = ARM_CPU_TYPE_NAME("max");
3023 #endif
3024 mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
3025 mc->kvm_type = virt_kvm_type;
3026 assert(!mc->get_hotplug_handler);
3027 mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
3028 hc->pre_plug = virt_machine_device_pre_plug_cb;
3029 hc->plug = virt_machine_device_plug_cb;
3030 hc->unplug_request = virt_machine_device_unplug_request_cb;
3031 hc->unplug = virt_machine_device_unplug_cb;
3032 mc->nvdimm_supported = true;
3033 mc->smp_props.clusters_supported = true;
3034 mc->auto_enable_numa_with_memhp = true;
3035 mc->auto_enable_numa_with_memdev = true;
3036 /* platform instead of architectural choice */
3037 mc->cpu_cluster_has_numa_boundary = true;
3038 mc->default_ram_id = "mach-virt.ram";
3039 mc->default_nic = "virtio-net-pci";
3040
3041 object_class_property_add(oc, "acpi", "OnOffAuto",
3042 virt_get_acpi, virt_set_acpi,
3043 NULL, NULL);
3044 object_class_property_set_description(oc, "acpi",
3045 "Enable ACPI");
3046 object_class_property_add_bool(oc, "secure", virt_get_secure,
3047 virt_set_secure);
3048 object_class_property_set_description(oc, "secure",
3049 "Set on/off to enable/disable the ARM "
3050 "Security Extensions (TrustZone)");
3051
3052 object_class_property_add_bool(oc, "virtualization", virt_get_virt,
3053 virt_set_virt);
3054 object_class_property_set_description(oc, "virtualization",
3055 "Set on/off to enable/disable emulating a "
3056 "guest CPU which implements the ARM "
3057 "Virtualization Extensions");
3058
3059 object_class_property_add_bool(oc, "highmem", virt_get_highmem,
3060 virt_set_highmem);
3061 object_class_property_set_description(oc, "highmem",
3062 "Set on/off to enable/disable using "
3063 "physical address space above 32 bits");
3064
3065 object_class_property_add_bool(oc, "compact-highmem",
3066 virt_get_compact_highmem,
3067 virt_set_compact_highmem);
3068 object_class_property_set_description(oc, "compact-highmem",
3069 "Set on/off to enable/disable compact "
3070 "layout for high memory regions");
3071
3072 object_class_property_add_bool(oc, "highmem-redists",
3073 virt_get_highmem_redists,
3074 virt_set_highmem_redists);
3075 object_class_property_set_description(oc, "highmem-redists",
3076 "Set on/off to enable/disable high "
3077 "memory region for GICv3 or GICv4 "
3078 "redistributor");
3079
3080 object_class_property_add_bool(oc, "highmem-ecam",
3081 virt_get_highmem_ecam,
3082 virt_set_highmem_ecam);
3083 object_class_property_set_description(oc, "highmem-ecam",
3084 "Set on/off to enable/disable high "
3085 "memory region for PCI ECAM");
3086
3087 object_class_property_add_bool(oc, "highmem-mmio",
3088 virt_get_highmem_mmio,
3089 virt_set_highmem_mmio);
3090 object_class_property_set_description(oc, "highmem-mmio",
3091 "Set on/off to enable/disable high "
3092 "memory region for PCI MMIO");
3093
3094 object_class_property_add_str(oc, "gic-version", virt_get_gic_version,
3095 virt_set_gic_version);
3096 object_class_property_set_description(oc, "gic-version",
3097 "Set GIC version. "
3098 "Valid values are 2, 3, 4, host and max");
3099
3100 object_class_property_add_str(oc, "iommu", virt_get_iommu, virt_set_iommu);
3101 object_class_property_set_description(oc, "iommu",
3102 "Set the IOMMU type. "
3103 "Valid values are none and smmuv3");
3104
3105 object_class_property_add_bool(oc, "default-bus-bypass-iommu",
3106 virt_get_default_bus_bypass_iommu,
3107 virt_set_default_bus_bypass_iommu);
3108 object_class_property_set_description(oc, "default-bus-bypass-iommu",
3109 "Set on/off to enable/disable "
3110 "bypass_iommu for default root bus");
3111
3112 object_class_property_add_bool(oc, "ras", virt_get_ras,
3113 virt_set_ras);
3114 object_class_property_set_description(oc, "ras",
3115 "Set on/off to enable/disable reporting host memory errors "
3116 "to a KVM guest using ACPI and guest external abort exceptions");
3117
3118 object_class_property_add_bool(oc, "mte", virt_get_mte, virt_set_mte);
3119 object_class_property_set_description(oc, "mte",
3120 "Set on/off to enable/disable emulating a "
3121 "guest CPU which implements the ARM "
3122 "Memory Tagging Extension");
3123
3124 object_class_property_add_bool(oc, "its", virt_get_its,
3125 virt_set_its);
3126 object_class_property_set_description(oc, "its",
3127 "Set on/off to enable/disable "
3128 "ITS instantiation");
3129
3130 object_class_property_add_bool(oc, "dtb-randomness",
3131 virt_get_dtb_randomness,
3132 virt_set_dtb_randomness);
3133 object_class_property_set_description(oc, "dtb-randomness",
3134 "Set off to disable passing random or "
3135 "non-deterministic dtb nodes to guest");
3136
3137 object_class_property_add_bool(oc, "dtb-kaslr-seed",
3138 virt_get_dtb_randomness,
3139 virt_set_dtb_randomness);
3140 object_class_property_set_description(oc, "dtb-kaslr-seed",
3141 "Deprecated synonym of dtb-randomness");
3142
3143 object_class_property_add_str(oc, "x-oem-id",
3144 virt_get_oem_id,
3145 virt_set_oem_id);
3146 object_class_property_set_description(oc, "x-oem-id",
3147 "Override the default value of field OEMID "
3148 "in ACPI table header."
3149 "The string may be up to 6 bytes in size");
3150
3151
3152 object_class_property_add_str(oc, "x-oem-table-id",
3153 virt_get_oem_table_id,
3154 virt_set_oem_table_id);
3155 object_class_property_set_description(oc, "x-oem-table-id",
3156 "Override the default value of field OEM Table ID "
3157 "in ACPI table header."
3158 "The string may be up to 8 bytes in size");
3159
3160 }
3161
3162 static void virt_instance_init(Object *obj)
3163 {
3164 VirtMachineState *vms = VIRT_MACHINE(obj);
3165 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
3166
3167 /* EL3 is disabled by default on virt: this makes us consistent
3168 * between KVM and TCG for this board, and it also allows us to
3169 * boot UEFI blobs which assume no TrustZone support.
3170 */
3171 vms->secure = false;
3172
3173 /* EL2 is also disabled by default, for similar reasons */
3174 vms->virt = false;
3175
3176 /* High memory is enabled by default */
3177 vms->highmem = true;
3178 vms->highmem_compact = !vmc->no_highmem_compact;
3179 vms->gic_version = VIRT_GIC_VERSION_NOSEL;
3180
3181 vms->highmem_ecam = !vmc->no_highmem_ecam;
3182 vms->highmem_mmio = true;
3183 vms->highmem_redists = true;
3184
3185 if (vmc->no_its) {
3186 vms->its = false;
3187 } else {
3188 /* Default allows ITS instantiation */
3189 vms->its = true;
3190
3191 if (vmc->no_tcg_its) {
3192 vms->tcg_its = false;
3193 } else {
3194 vms->tcg_its = true;
3195 }
3196 }
3197
3198 /* Default disallows iommu instantiation */
3199 vms->iommu = VIRT_IOMMU_NONE;
3200
3201 /* The default root bus is attached to iommu by default */
3202 vms->default_bus_bypass_iommu = false;
3203
3204 /* Default disallows RAS instantiation */
3205 vms->ras = false;
3206
3207 /* MTE is disabled by default. */
3208 vms->mte = false;
3209
3210 /* Supply kaslr-seed and rng-seed by default */
3211 vms->dtb_randomness = true;
3212
3213 vms->irqmap = a15irqmap;
3214
3215 virt_flash_create(vms);
3216
3217 vms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6);
3218 vms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8);
3219 }
3220
3221 static const TypeInfo virt_machine_info = {
3222 .name = TYPE_VIRT_MACHINE,
3223 .parent = TYPE_MACHINE,
3224 .abstract = true,
3225 .instance_size = sizeof(VirtMachineState),
3226 .class_size = sizeof(VirtMachineClass),
3227 .class_init = virt_machine_class_init,
3228 .instance_init = virt_instance_init,
3229 .interfaces = (InterfaceInfo[]) {
3230 { TYPE_HOTPLUG_HANDLER },
3231 { }
3232 },
3233 };
3234
3235 static void machvirt_machine_init(void)
3236 {
3237 type_register_static(&virt_machine_info);
3238 }
3239 type_init(machvirt_machine_init);
3240
3241 static void virt_machine_8_1_options(MachineClass *mc)
3242 {
3243 }
3244 DEFINE_VIRT_MACHINE_AS_LATEST(8, 1)
3245
3246 static void virt_machine_8_0_options(MachineClass *mc)
3247 {
3248 virt_machine_8_1_options(mc);
3249 compat_props_add(mc->compat_props, hw_compat_8_0, hw_compat_8_0_len);
3250 }
3251 DEFINE_VIRT_MACHINE(8, 0)
3252
3253 static void virt_machine_7_2_options(MachineClass *mc)
3254 {
3255 virt_machine_8_0_options(mc);
3256 compat_props_add(mc->compat_props, hw_compat_7_2, hw_compat_7_2_len);
3257 }
3258 DEFINE_VIRT_MACHINE(7, 2)
3259
3260 static void virt_machine_7_1_options(MachineClass *mc)
3261 {
3262 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3263
3264 virt_machine_7_2_options(mc);
3265 compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len);
3266 /* Compact layout for high memory regions was introduced with 7.2 */
3267 vmc->no_highmem_compact = true;
3268 }
3269 DEFINE_VIRT_MACHINE(7, 1)
3270
3271 static void virt_machine_7_0_options(MachineClass *mc)
3272 {
3273 virt_machine_7_1_options(mc);
3274 compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len);
3275 }
3276 DEFINE_VIRT_MACHINE(7, 0)
3277
3278 static void virt_machine_6_2_options(MachineClass *mc)
3279 {
3280 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3281
3282 virt_machine_7_0_options(mc);
3283 compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len);
3284 vmc->no_tcg_lpa2 = true;
3285 }
3286 DEFINE_VIRT_MACHINE(6, 2)
3287
3288 static void virt_machine_6_1_options(MachineClass *mc)
3289 {
3290 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3291
3292 virt_machine_6_2_options(mc);
3293 compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len);
3294 mc->smp_props.prefer_sockets = true;
3295 vmc->no_cpu_topology = true;
3296
3297 /* qemu ITS was introduced with 6.2 */
3298 vmc->no_tcg_its = true;
3299 }
3300 DEFINE_VIRT_MACHINE(6, 1)
3301
3302 static void virt_machine_6_0_options(MachineClass *mc)
3303 {
3304 virt_machine_6_1_options(mc);
3305 compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len);
3306 }
3307 DEFINE_VIRT_MACHINE(6, 0)
3308
3309 static void virt_machine_5_2_options(MachineClass *mc)
3310 {
3311 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3312
3313 virt_machine_6_0_options(mc);
3314 compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
3315 vmc->no_secure_gpio = true;
3316 }
3317 DEFINE_VIRT_MACHINE(5, 2)
3318
3319 static void virt_machine_5_1_options(MachineClass *mc)
3320 {
3321 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3322
3323 virt_machine_5_2_options(mc);
3324 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
3325 vmc->no_kvm_steal_time = true;
3326 }
3327 DEFINE_VIRT_MACHINE(5, 1)
3328
3329 static void virt_machine_5_0_options(MachineClass *mc)
3330 {
3331 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3332
3333 virt_machine_5_1_options(mc);
3334 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
3335 mc->numa_mem_supported = true;
3336 vmc->acpi_expose_flash = true;
3337 mc->auto_enable_numa_with_memdev = false;
3338 }
3339 DEFINE_VIRT_MACHINE(5, 0)
3340
3341 static void virt_machine_4_2_options(MachineClass *mc)
3342 {
3343 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3344
3345 virt_machine_5_0_options(mc);
3346 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
3347 vmc->kvm_no_adjvtime = true;
3348 }
3349 DEFINE_VIRT_MACHINE(4, 2)
3350
3351 static void virt_machine_4_1_options(MachineClass *mc)
3352 {
3353 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3354
3355 virt_machine_4_2_options(mc);
3356 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
3357 vmc->no_ged = true;
3358 mc->auto_enable_numa_with_memhp = false;
3359 }
3360 DEFINE_VIRT_MACHINE(4, 1)
3361
3362 static void virt_machine_4_0_options(MachineClass *mc)
3363 {
3364 virt_machine_4_1_options(mc);
3365 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
3366 }
3367 DEFINE_VIRT_MACHINE(4, 0)
3368
3369 static void virt_machine_3_1_options(MachineClass *mc)
3370 {
3371 virt_machine_4_0_options(mc);
3372 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
3373 }
3374 DEFINE_VIRT_MACHINE(3, 1)
3375
3376 static void virt_machine_3_0_options(MachineClass *mc)
3377 {
3378 virt_machine_3_1_options(mc);
3379 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
3380 }
3381 DEFINE_VIRT_MACHINE(3, 0)
3382
3383 static void virt_machine_2_12_options(MachineClass *mc)
3384 {
3385 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3386
3387 virt_machine_3_0_options(mc);
3388 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
3389 vmc->no_highmem_ecam = true;
3390 mc->max_cpus = 255;
3391 }
3392 DEFINE_VIRT_MACHINE(2, 12)
3393
3394 static void virt_machine_2_11_options(MachineClass *mc)
3395 {
3396 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3397
3398 virt_machine_2_12_options(mc);
3399 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
3400 vmc->smbios_old_sys_ver = true;
3401 }
3402 DEFINE_VIRT_MACHINE(2, 11)
3403
3404 static void virt_machine_2_10_options(MachineClass *mc)
3405 {
3406 virt_machine_2_11_options(mc);
3407 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
3408 /* before 2.11 we never faulted accesses to bad addresses */
3409 mc->ignore_memory_transaction_failures = true;
3410 }
3411 DEFINE_VIRT_MACHINE(2, 10)
3412
3413 static void virt_machine_2_9_options(MachineClass *mc)
3414 {
3415 virt_machine_2_10_options(mc);
3416 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
3417 }
3418 DEFINE_VIRT_MACHINE(2, 9)
3419
3420 static void virt_machine_2_8_options(MachineClass *mc)
3421 {
3422 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3423
3424 virt_machine_2_9_options(mc);
3425 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
3426 /* For 2.8 and earlier we falsely claimed in the DT that
3427 * our timers were edge-triggered, not level-triggered.
3428 */
3429 vmc->claim_edge_triggered_timers = true;
3430 }
3431 DEFINE_VIRT_MACHINE(2, 8)
3432
3433 static void virt_machine_2_7_options(MachineClass *mc)
3434 {
3435 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3436
3437 virt_machine_2_8_options(mc);
3438 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
3439 /* ITS was introduced with 2.8 */
3440 vmc->no_its = true;
3441 /* Stick with 1K pages for migration compatibility */
3442 mc->minimum_page_bits = 0;
3443 }
3444 DEFINE_VIRT_MACHINE(2, 7)
3445
3446 static void virt_machine_2_6_options(MachineClass *mc)
3447 {
3448 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3449
3450 virt_machine_2_7_options(mc);
3451 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
3452 vmc->disallow_affinity_adjustment = true;
3453 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
3454 vmc->no_pmu = true;
3455 }
3456 DEFINE_VIRT_MACHINE(2, 6)