]> git.proxmox.com Git - qemu.git/blob - hw/arm_gic.c
sun4u: implement interrupt clearing registers
[qemu.git] / hw / arm_gic.c
1 /*
2 * ARM Generic/Distributed Interrupt Controller
3 *
4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
6 *
7 * This code is licensed under the GPL.
8 */
9
10 /* This file contains implementation code for the RealView EB interrupt
11 * controller, MPCore distributed interrupt controller and ARMv7-M
12 * Nested Vectored Interrupt Controller.
13 * It is compiled in two ways:
14 * (1) as a standalone file to produce a sysbus device which is a GIC
15 * that can be used on the realview board and as one of the builtin
16 * private peripherals for the ARM MP CPUs (11MPCore, A9, etc)
17 * (2) by being directly #included into armv7m_nvic.c to produce the
18 * armv7m_nvic device.
19 */
20
21 #include "sysbus.h"
22
23 /* Maximum number of possible interrupts, determined by the GIC architecture */
24 #define GIC_MAXIRQ 1020
25 /* First 32 are private to each CPU (SGIs and PPIs). */
26 #define GIC_INTERNAL 32
27 /* Maximum number of possible CPU interfaces, determined by GIC architecture */
28 #ifdef NVIC
29 #define NCPU 1
30 #else
31 #define NCPU 8
32 #endif
33
34 //#define DEBUG_GIC
35
36 #ifdef DEBUG_GIC
37 #define DPRINTF(fmt, ...) \
38 do { printf("arm_gic: " fmt , ## __VA_ARGS__); } while (0)
39 #else
40 #define DPRINTF(fmt, ...) do {} while(0)
41 #endif
42
43 #ifdef NVIC
44 static const uint8_t gic_id[] =
45 { 0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1 };
46 /* The NVIC has 16 internal vectors. However these are not exposed
47 through the normal GIC interface. */
48 #define GIC_BASE_IRQ 32
49 #else
50 static const uint8_t gic_id[] =
51 { 0x90, 0x13, 0x04, 0x00, 0x0d, 0xf0, 0x05, 0xb1 };
52 #define GIC_BASE_IRQ 0
53 #endif
54
55 #define FROM_SYSBUSGIC(type, dev) \
56 DO_UPCAST(type, gic, FROM_SYSBUS(gic_state, dev))
57
58 typedef struct gic_irq_state
59 {
60 /* The enable bits are only banked for per-cpu interrupts. */
61 unsigned enabled:NCPU;
62 unsigned pending:NCPU;
63 unsigned active:NCPU;
64 unsigned level:NCPU;
65 unsigned model:1; /* 0 = N:N, 1 = 1:N */
66 unsigned trigger:1; /* nonzero = edge triggered. */
67 } gic_irq_state;
68
69 #define ALL_CPU_MASK ((unsigned)(((1 << NCPU) - 1)))
70 #if NCPU > 1
71 #define NUM_CPU(s) ((s)->num_cpu)
72 #else
73 #define NUM_CPU(s) 1
74 #endif
75
76 #define GIC_SET_ENABLED(irq, cm) s->irq_state[irq].enabled |= (cm)
77 #define GIC_CLEAR_ENABLED(irq, cm) s->irq_state[irq].enabled &= ~(cm)
78 #define GIC_TEST_ENABLED(irq, cm) ((s->irq_state[irq].enabled & (cm)) != 0)
79 #define GIC_SET_PENDING(irq, cm) s->irq_state[irq].pending |= (cm)
80 #define GIC_CLEAR_PENDING(irq, cm) s->irq_state[irq].pending &= ~(cm)
81 #define GIC_TEST_PENDING(irq, cm) ((s->irq_state[irq].pending & (cm)) != 0)
82 #define GIC_SET_ACTIVE(irq, cm) s->irq_state[irq].active |= (cm)
83 #define GIC_CLEAR_ACTIVE(irq, cm) s->irq_state[irq].active &= ~(cm)
84 #define GIC_TEST_ACTIVE(irq, cm) ((s->irq_state[irq].active & (cm)) != 0)
85 #define GIC_SET_MODEL(irq) s->irq_state[irq].model = 1
86 #define GIC_CLEAR_MODEL(irq) s->irq_state[irq].model = 0
87 #define GIC_TEST_MODEL(irq) s->irq_state[irq].model
88 #define GIC_SET_LEVEL(irq, cm) s->irq_state[irq].level = (cm)
89 #define GIC_CLEAR_LEVEL(irq, cm) s->irq_state[irq].level &= ~(cm)
90 #define GIC_TEST_LEVEL(irq, cm) ((s->irq_state[irq].level & (cm)) != 0)
91 #define GIC_SET_TRIGGER(irq) s->irq_state[irq].trigger = 1
92 #define GIC_CLEAR_TRIGGER(irq) s->irq_state[irq].trigger = 0
93 #define GIC_TEST_TRIGGER(irq) s->irq_state[irq].trigger
94 #define GIC_GET_PRIORITY(irq, cpu) (((irq) < GIC_INTERNAL) ? \
95 s->priority1[irq][cpu] : \
96 s->priority2[(irq) - GIC_INTERNAL])
97 #ifdef NVIC
98 #define GIC_TARGET(irq) 1
99 #else
100 #define GIC_TARGET(irq) s->irq_target[irq]
101 #endif
102
103 typedef struct gic_state
104 {
105 SysBusDevice busdev;
106 qemu_irq parent_irq[NCPU];
107 int enabled;
108 int cpu_enabled[NCPU];
109
110 gic_irq_state irq_state[GIC_MAXIRQ];
111 #ifndef NVIC
112 int irq_target[GIC_MAXIRQ];
113 #endif
114 int priority1[GIC_INTERNAL][NCPU];
115 int priority2[GIC_MAXIRQ - GIC_INTERNAL];
116 int last_active[GIC_MAXIRQ][NCPU];
117
118 int priority_mask[NCPU];
119 int running_irq[NCPU];
120 int running_priority[NCPU];
121 int current_pending[NCPU];
122
123 #if NCPU > 1
124 uint32_t num_cpu;
125 #endif
126
127 MemoryRegion iomem; /* Distributor */
128 #ifndef NVIC
129 /* This is just so we can have an opaque pointer which identifies
130 * both this GIC and which CPU interface we should be accessing.
131 */
132 struct gic_state *backref[NCPU];
133 MemoryRegion cpuiomem[NCPU+1]; /* CPU interfaces */
134 #endif
135 uint32_t num_irq;
136 } gic_state;
137
138 static inline int gic_get_current_cpu(gic_state *s)
139 {
140 #if NCPU > 1
141 if (s->num_cpu > 1) {
142 return cpu_single_env->cpu_index;
143 }
144 #endif
145 return 0;
146 }
147
148 /* TODO: Many places that call this routine could be optimized. */
149 /* Update interrupt status after enabled or pending bits have been changed. */
150 static void gic_update(gic_state *s)
151 {
152 int best_irq;
153 int best_prio;
154 int irq;
155 int level;
156 int cpu;
157 int cm;
158
159 for (cpu = 0; cpu < NUM_CPU(s); cpu++) {
160 cm = 1 << cpu;
161 s->current_pending[cpu] = 1023;
162 if (!s->enabled || !s->cpu_enabled[cpu]) {
163 qemu_irq_lower(s->parent_irq[cpu]);
164 return;
165 }
166 best_prio = 0x100;
167 best_irq = 1023;
168 for (irq = 0; irq < s->num_irq; irq++) {
169 if (GIC_TEST_ENABLED(irq, cm) && GIC_TEST_PENDING(irq, cm)) {
170 if (GIC_GET_PRIORITY(irq, cpu) < best_prio) {
171 best_prio = GIC_GET_PRIORITY(irq, cpu);
172 best_irq = irq;
173 }
174 }
175 }
176 level = 0;
177 if (best_prio <= s->priority_mask[cpu]) {
178 s->current_pending[cpu] = best_irq;
179 if (best_prio < s->running_priority[cpu]) {
180 DPRINTF("Raised pending IRQ %d\n", best_irq);
181 level = 1;
182 }
183 }
184 qemu_set_irq(s->parent_irq[cpu], level);
185 }
186 }
187
188 #ifdef NVIC
189 static void gic_set_pending_private(gic_state *s, int cpu, int irq)
190 {
191 int cm = 1 << cpu;
192
193 if (GIC_TEST_PENDING(irq, cm))
194 return;
195
196 DPRINTF("Set %d pending cpu %d\n", irq, cpu);
197 GIC_SET_PENDING(irq, cm);
198 gic_update(s);
199 }
200 #endif
201
202 /* Process a change in an external IRQ input. */
203 static void gic_set_irq(void *opaque, int irq, int level)
204 {
205 /* Meaning of the 'irq' parameter:
206 * [0..N-1] : external interrupts
207 * [N..N+31] : PPI (internal) interrupts for CPU 0
208 * [N+32..N+63] : PPI (internal interrupts for CPU 1
209 * ...
210 */
211 gic_state *s = (gic_state *)opaque;
212 int cm, target;
213 if (irq < (s->num_irq - GIC_INTERNAL)) {
214 /* The first external input line is internal interrupt 32. */
215 cm = ALL_CPU_MASK;
216 irq += GIC_INTERNAL;
217 target = GIC_TARGET(irq);
218 } else {
219 int cpu;
220 irq -= (s->num_irq - GIC_INTERNAL);
221 cpu = irq / GIC_INTERNAL;
222 irq %= GIC_INTERNAL;
223 cm = 1 << cpu;
224 target = cm;
225 }
226
227 if (level == GIC_TEST_LEVEL(irq, cm)) {
228 return;
229 }
230
231 if (level) {
232 GIC_SET_LEVEL(irq, cm);
233 if (GIC_TEST_TRIGGER(irq) || GIC_TEST_ENABLED(irq, cm)) {
234 DPRINTF("Set %d pending mask %x\n", irq, target);
235 GIC_SET_PENDING(irq, target);
236 }
237 } else {
238 GIC_CLEAR_LEVEL(irq, cm);
239 }
240 gic_update(s);
241 }
242
243 static void gic_set_running_irq(gic_state *s, int cpu, int irq)
244 {
245 s->running_irq[cpu] = irq;
246 if (irq == 1023) {
247 s->running_priority[cpu] = 0x100;
248 } else {
249 s->running_priority[cpu] = GIC_GET_PRIORITY(irq, cpu);
250 }
251 gic_update(s);
252 }
253
254 static uint32_t gic_acknowledge_irq(gic_state *s, int cpu)
255 {
256 int new_irq;
257 int cm = 1 << cpu;
258 new_irq = s->current_pending[cpu];
259 if (new_irq == 1023
260 || GIC_GET_PRIORITY(new_irq, cpu) >= s->running_priority[cpu]) {
261 DPRINTF("ACK no pending IRQ\n");
262 return 1023;
263 }
264 s->last_active[new_irq][cpu] = s->running_irq[cpu];
265 /* Clear pending flags for both level and edge triggered interrupts.
266 Level triggered IRQs will be reasserted once they become inactive. */
267 GIC_CLEAR_PENDING(new_irq, GIC_TEST_MODEL(new_irq) ? ALL_CPU_MASK : cm);
268 gic_set_running_irq(s, cpu, new_irq);
269 DPRINTF("ACK %d\n", new_irq);
270 return new_irq;
271 }
272
273 static void gic_complete_irq(gic_state * s, int cpu, int irq)
274 {
275 int update = 0;
276 int cm = 1 << cpu;
277 DPRINTF("EOI %d\n", irq);
278 if (irq >= s->num_irq) {
279 /* This handles two cases:
280 * 1. If software writes the ID of a spurious interrupt [ie 1023]
281 * to the GICC_EOIR, the GIC ignores that write.
282 * 2. If software writes the number of a non-existent interrupt
283 * this must be a subcase of "value written does not match the last
284 * valid interrupt value read from the Interrupt Acknowledge
285 * register" and so this is UNPREDICTABLE. We choose to ignore it.
286 */
287 return;
288 }
289 if (s->running_irq[cpu] == 1023)
290 return; /* No active IRQ. */
291 /* Mark level triggered interrupts as pending if they are still
292 raised. */
293 if (!GIC_TEST_TRIGGER(irq) && GIC_TEST_ENABLED(irq, cm)
294 && GIC_TEST_LEVEL(irq, cm) && (GIC_TARGET(irq) & cm) != 0) {
295 DPRINTF("Set %d pending mask %x\n", irq, cm);
296 GIC_SET_PENDING(irq, cm);
297 update = 1;
298 }
299 if (irq != s->running_irq[cpu]) {
300 /* Complete an IRQ that is not currently running. */
301 int tmp = s->running_irq[cpu];
302 while (s->last_active[tmp][cpu] != 1023) {
303 if (s->last_active[tmp][cpu] == irq) {
304 s->last_active[tmp][cpu] = s->last_active[irq][cpu];
305 break;
306 }
307 tmp = s->last_active[tmp][cpu];
308 }
309 if (update) {
310 gic_update(s);
311 }
312 } else {
313 /* Complete the current running IRQ. */
314 gic_set_running_irq(s, cpu, s->last_active[s->running_irq[cpu]][cpu]);
315 }
316 }
317
318 static uint32_t gic_dist_readb(void *opaque, target_phys_addr_t offset)
319 {
320 gic_state *s = (gic_state *)opaque;
321 uint32_t res;
322 int irq;
323 int i;
324 int cpu;
325 int cm;
326 int mask;
327
328 cpu = gic_get_current_cpu(s);
329 cm = 1 << cpu;
330 if (offset < 0x100) {
331 #ifndef NVIC
332 if (offset == 0)
333 return s->enabled;
334 if (offset == 4)
335 return ((s->num_irq / 32) - 1) | ((NUM_CPU(s) - 1) << 5);
336 if (offset < 0x08)
337 return 0;
338 if (offset >= 0x80) {
339 /* Interrupt Security , RAZ/WI */
340 return 0;
341 }
342 #endif
343 goto bad_reg;
344 } else if (offset < 0x200) {
345 /* Interrupt Set/Clear Enable. */
346 if (offset < 0x180)
347 irq = (offset - 0x100) * 8;
348 else
349 irq = (offset - 0x180) * 8;
350 irq += GIC_BASE_IRQ;
351 if (irq >= s->num_irq)
352 goto bad_reg;
353 res = 0;
354 for (i = 0; i < 8; i++) {
355 if (GIC_TEST_ENABLED(irq + i, cm)) {
356 res |= (1 << i);
357 }
358 }
359 } else if (offset < 0x300) {
360 /* Interrupt Set/Clear Pending. */
361 if (offset < 0x280)
362 irq = (offset - 0x200) * 8;
363 else
364 irq = (offset - 0x280) * 8;
365 irq += GIC_BASE_IRQ;
366 if (irq >= s->num_irq)
367 goto bad_reg;
368 res = 0;
369 mask = (irq < GIC_INTERNAL) ? cm : ALL_CPU_MASK;
370 for (i = 0; i < 8; i++) {
371 if (GIC_TEST_PENDING(irq + i, mask)) {
372 res |= (1 << i);
373 }
374 }
375 } else if (offset < 0x400) {
376 /* Interrupt Active. */
377 irq = (offset - 0x300) * 8 + GIC_BASE_IRQ;
378 if (irq >= s->num_irq)
379 goto bad_reg;
380 res = 0;
381 mask = (irq < GIC_INTERNAL) ? cm : ALL_CPU_MASK;
382 for (i = 0; i < 8; i++) {
383 if (GIC_TEST_ACTIVE(irq + i, mask)) {
384 res |= (1 << i);
385 }
386 }
387 } else if (offset < 0x800) {
388 /* Interrupt Priority. */
389 irq = (offset - 0x400) + GIC_BASE_IRQ;
390 if (irq >= s->num_irq)
391 goto bad_reg;
392 res = GIC_GET_PRIORITY(irq, cpu);
393 #ifndef NVIC
394 } else if (offset < 0xc00) {
395 /* Interrupt CPU Target. */
396 irq = (offset - 0x800) + GIC_BASE_IRQ;
397 if (irq >= s->num_irq)
398 goto bad_reg;
399 if (irq >= 29 && irq <= 31) {
400 res = cm;
401 } else {
402 res = GIC_TARGET(irq);
403 }
404 } else if (offset < 0xf00) {
405 /* Interrupt Configuration. */
406 irq = (offset - 0xc00) * 2 + GIC_BASE_IRQ;
407 if (irq >= s->num_irq)
408 goto bad_reg;
409 res = 0;
410 for (i = 0; i < 4; i++) {
411 if (GIC_TEST_MODEL(irq + i))
412 res |= (1 << (i * 2));
413 if (GIC_TEST_TRIGGER(irq + i))
414 res |= (2 << (i * 2));
415 }
416 #endif
417 } else if (offset < 0xfe0) {
418 goto bad_reg;
419 } else /* offset >= 0xfe0 */ {
420 if (offset & 3) {
421 res = 0;
422 } else {
423 res = gic_id[(offset - 0xfe0) >> 2];
424 }
425 }
426 return res;
427 bad_reg:
428 hw_error("gic_dist_readb: Bad offset %x\n", (int)offset);
429 return 0;
430 }
431
432 static uint32_t gic_dist_readw(void *opaque, target_phys_addr_t offset)
433 {
434 uint32_t val;
435 val = gic_dist_readb(opaque, offset);
436 val |= gic_dist_readb(opaque, offset + 1) << 8;
437 return val;
438 }
439
440 static uint32_t gic_dist_readl(void *opaque, target_phys_addr_t offset)
441 {
442 uint32_t val;
443 #ifdef NVIC
444 gic_state *s = (gic_state *)opaque;
445 uint32_t addr;
446 addr = offset;
447 if (addr < 0x100 || addr > 0xd00)
448 return nvic_readl(s, addr);
449 #endif
450 val = gic_dist_readw(opaque, offset);
451 val |= gic_dist_readw(opaque, offset + 2) << 16;
452 return val;
453 }
454
455 static void gic_dist_writeb(void *opaque, target_phys_addr_t offset,
456 uint32_t value)
457 {
458 gic_state *s = (gic_state *)opaque;
459 int irq;
460 int i;
461 int cpu;
462
463 cpu = gic_get_current_cpu(s);
464 if (offset < 0x100) {
465 #ifdef NVIC
466 goto bad_reg;
467 #else
468 if (offset == 0) {
469 s->enabled = (value & 1);
470 DPRINTF("Distribution %sabled\n", s->enabled ? "En" : "Dis");
471 } else if (offset < 4) {
472 /* ignored. */
473 } else if (offset >= 0x80) {
474 /* Interrupt Security Registers, RAZ/WI */
475 } else {
476 goto bad_reg;
477 }
478 #endif
479 } else if (offset < 0x180) {
480 /* Interrupt Set Enable. */
481 irq = (offset - 0x100) * 8 + GIC_BASE_IRQ;
482 if (irq >= s->num_irq)
483 goto bad_reg;
484 if (irq < 16)
485 value = 0xff;
486 for (i = 0; i < 8; i++) {
487 if (value & (1 << i)) {
488 int mask = (irq < GIC_INTERNAL) ? (1 << cpu) : GIC_TARGET(irq);
489 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
490
491 if (!GIC_TEST_ENABLED(irq + i, cm)) {
492 DPRINTF("Enabled IRQ %d\n", irq + i);
493 }
494 GIC_SET_ENABLED(irq + i, cm);
495 /* If a raised level triggered IRQ enabled then mark
496 is as pending. */
497 if (GIC_TEST_LEVEL(irq + i, mask)
498 && !GIC_TEST_TRIGGER(irq + i)) {
499 DPRINTF("Set %d pending mask %x\n", irq + i, mask);
500 GIC_SET_PENDING(irq + i, mask);
501 }
502 }
503 }
504 } else if (offset < 0x200) {
505 /* Interrupt Clear Enable. */
506 irq = (offset - 0x180) * 8 + GIC_BASE_IRQ;
507 if (irq >= s->num_irq)
508 goto bad_reg;
509 if (irq < 16)
510 value = 0;
511 for (i = 0; i < 8; i++) {
512 if (value & (1 << i)) {
513 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
514
515 if (GIC_TEST_ENABLED(irq + i, cm)) {
516 DPRINTF("Disabled IRQ %d\n", irq + i);
517 }
518 GIC_CLEAR_ENABLED(irq + i, cm);
519 }
520 }
521 } else if (offset < 0x280) {
522 /* Interrupt Set Pending. */
523 irq = (offset - 0x200) * 8 + GIC_BASE_IRQ;
524 if (irq >= s->num_irq)
525 goto bad_reg;
526 if (irq < 16)
527 irq = 0;
528
529 for (i = 0; i < 8; i++) {
530 if (value & (1 << i)) {
531 GIC_SET_PENDING(irq + i, GIC_TARGET(irq));
532 }
533 }
534 } else if (offset < 0x300) {
535 /* Interrupt Clear Pending. */
536 irq = (offset - 0x280) * 8 + GIC_BASE_IRQ;
537 if (irq >= s->num_irq)
538 goto bad_reg;
539 for (i = 0; i < 8; i++) {
540 /* ??? This currently clears the pending bit for all CPUs, even
541 for per-CPU interrupts. It's unclear whether this is the
542 corect behavior. */
543 if (value & (1 << i)) {
544 GIC_CLEAR_PENDING(irq + i, ALL_CPU_MASK);
545 }
546 }
547 } else if (offset < 0x400) {
548 /* Interrupt Active. */
549 goto bad_reg;
550 } else if (offset < 0x800) {
551 /* Interrupt Priority. */
552 irq = (offset - 0x400) + GIC_BASE_IRQ;
553 if (irq >= s->num_irq)
554 goto bad_reg;
555 if (irq < GIC_INTERNAL) {
556 s->priority1[irq][cpu] = value;
557 } else {
558 s->priority2[irq - GIC_INTERNAL] = value;
559 }
560 #ifndef NVIC
561 } else if (offset < 0xc00) {
562 /* Interrupt CPU Target. */
563 irq = (offset - 0x800) + GIC_BASE_IRQ;
564 if (irq >= s->num_irq)
565 goto bad_reg;
566 if (irq < 29)
567 value = 0;
568 else if (irq < GIC_INTERNAL)
569 value = ALL_CPU_MASK;
570 s->irq_target[irq] = value & ALL_CPU_MASK;
571 } else if (offset < 0xf00) {
572 /* Interrupt Configuration. */
573 irq = (offset - 0xc00) * 4 + GIC_BASE_IRQ;
574 if (irq >= s->num_irq)
575 goto bad_reg;
576 if (irq < GIC_INTERNAL)
577 value |= 0xaa;
578 for (i = 0; i < 4; i++) {
579 if (value & (1 << (i * 2))) {
580 GIC_SET_MODEL(irq + i);
581 } else {
582 GIC_CLEAR_MODEL(irq + i);
583 }
584 if (value & (2 << (i * 2))) {
585 GIC_SET_TRIGGER(irq + i);
586 } else {
587 GIC_CLEAR_TRIGGER(irq + i);
588 }
589 }
590 #endif
591 } else {
592 /* 0xf00 is only handled for 32-bit writes. */
593 goto bad_reg;
594 }
595 gic_update(s);
596 return;
597 bad_reg:
598 hw_error("gic_dist_writeb: Bad offset %x\n", (int)offset);
599 }
600
601 static void gic_dist_writew(void *opaque, target_phys_addr_t offset,
602 uint32_t value)
603 {
604 gic_dist_writeb(opaque, offset, value & 0xff);
605 gic_dist_writeb(opaque, offset + 1, value >> 8);
606 }
607
608 static void gic_dist_writel(void *opaque, target_phys_addr_t offset,
609 uint32_t value)
610 {
611 gic_state *s = (gic_state *)opaque;
612 #ifdef NVIC
613 uint32_t addr;
614 addr = offset;
615 if (addr < 0x100 || (addr > 0xd00 && addr != 0xf00)) {
616 nvic_writel(s, addr, value);
617 return;
618 }
619 #endif
620 if (offset == 0xf00) {
621 int cpu;
622 int irq;
623 int mask;
624
625 cpu = gic_get_current_cpu(s);
626 irq = value & 0x3ff;
627 switch ((value >> 24) & 3) {
628 case 0:
629 mask = (value >> 16) & ALL_CPU_MASK;
630 break;
631 case 1:
632 mask = ALL_CPU_MASK ^ (1 << cpu);
633 break;
634 case 2:
635 mask = 1 << cpu;
636 break;
637 default:
638 DPRINTF("Bad Soft Int target filter\n");
639 mask = ALL_CPU_MASK;
640 break;
641 }
642 GIC_SET_PENDING(irq, mask);
643 gic_update(s);
644 return;
645 }
646 gic_dist_writew(opaque, offset, value & 0xffff);
647 gic_dist_writew(opaque, offset + 2, value >> 16);
648 }
649
650 static const MemoryRegionOps gic_dist_ops = {
651 .old_mmio = {
652 .read = { gic_dist_readb, gic_dist_readw, gic_dist_readl, },
653 .write = { gic_dist_writeb, gic_dist_writew, gic_dist_writel, },
654 },
655 .endianness = DEVICE_NATIVE_ENDIAN,
656 };
657
658 #ifndef NVIC
659 static uint32_t gic_cpu_read(gic_state *s, int cpu, int offset)
660 {
661 switch (offset) {
662 case 0x00: /* Control */
663 return s->cpu_enabled[cpu];
664 case 0x04: /* Priority mask */
665 return s->priority_mask[cpu];
666 case 0x08: /* Binary Point */
667 /* ??? Not implemented. */
668 return 0;
669 case 0x0c: /* Acknowledge */
670 return gic_acknowledge_irq(s, cpu);
671 case 0x14: /* Running Priority */
672 return s->running_priority[cpu];
673 case 0x18: /* Highest Pending Interrupt */
674 return s->current_pending[cpu];
675 default:
676 hw_error("gic_cpu_read: Bad offset %x\n", (int)offset);
677 return 0;
678 }
679 }
680
681 static void gic_cpu_write(gic_state *s, int cpu, int offset, uint32_t value)
682 {
683 switch (offset) {
684 case 0x00: /* Control */
685 s->cpu_enabled[cpu] = (value & 1);
686 DPRINTF("CPU %d %sabled\n", cpu, s->cpu_enabled ? "En" : "Dis");
687 break;
688 case 0x04: /* Priority mask */
689 s->priority_mask[cpu] = (value & 0xff);
690 break;
691 case 0x08: /* Binary Point */
692 /* ??? Not implemented. */
693 break;
694 case 0x10: /* End Of Interrupt */
695 return gic_complete_irq(s, cpu, value & 0x3ff);
696 default:
697 hw_error("gic_cpu_write: Bad offset %x\n", (int)offset);
698 return;
699 }
700 gic_update(s);
701 }
702
703 /* Wrappers to read/write the GIC CPU interface for the current CPU */
704 static uint64_t gic_thiscpu_read(void *opaque, target_phys_addr_t addr,
705 unsigned size)
706 {
707 gic_state *s = (gic_state *)opaque;
708 return gic_cpu_read(s, gic_get_current_cpu(s), addr);
709 }
710
711 static void gic_thiscpu_write(void *opaque, target_phys_addr_t addr,
712 uint64_t value, unsigned size)
713 {
714 gic_state *s = (gic_state *)opaque;
715 gic_cpu_write(s, gic_get_current_cpu(s), addr, value);
716 }
717
718 /* Wrappers to read/write the GIC CPU interface for a specific CPU.
719 * These just decode the opaque pointer into gic_state* + cpu id.
720 */
721 static uint64_t gic_do_cpu_read(void *opaque, target_phys_addr_t addr,
722 unsigned size)
723 {
724 gic_state **backref = (gic_state **)opaque;
725 gic_state *s = *backref;
726 int id = (backref - s->backref);
727 return gic_cpu_read(s, id, addr);
728 }
729
730 static void gic_do_cpu_write(void *opaque, target_phys_addr_t addr,
731 uint64_t value, unsigned size)
732 {
733 gic_state **backref = (gic_state **)opaque;
734 gic_state *s = *backref;
735 int id = (backref - s->backref);
736 gic_cpu_write(s, id, addr, value);
737 }
738
739 static const MemoryRegionOps gic_thiscpu_ops = {
740 .read = gic_thiscpu_read,
741 .write = gic_thiscpu_write,
742 .endianness = DEVICE_NATIVE_ENDIAN,
743 };
744
745 static const MemoryRegionOps gic_cpu_ops = {
746 .read = gic_do_cpu_read,
747 .write = gic_do_cpu_write,
748 .endianness = DEVICE_NATIVE_ENDIAN,
749 };
750 #endif
751
752 static void gic_reset(DeviceState *dev)
753 {
754 gic_state *s = FROM_SYSBUS(gic_state, sysbus_from_qdev(dev));
755 int i;
756 memset(s->irq_state, 0, GIC_MAXIRQ * sizeof(gic_irq_state));
757 for (i = 0 ; i < NUM_CPU(s); i++) {
758 s->priority_mask[i] = 0xf0;
759 s->current_pending[i] = 1023;
760 s->running_irq[i] = 1023;
761 s->running_priority[i] = 0x100;
762 #ifdef NVIC
763 /* The NVIC doesn't have per-cpu interfaces, so enable by default. */
764 s->cpu_enabled[i] = 1;
765 #else
766 s->cpu_enabled[i] = 0;
767 #endif
768 }
769 for (i = 0; i < 16; i++) {
770 GIC_SET_ENABLED(i, ALL_CPU_MASK);
771 GIC_SET_TRIGGER(i);
772 }
773 #ifdef NVIC
774 /* The NVIC is always enabled. */
775 s->enabled = 1;
776 #else
777 s->enabled = 0;
778 #endif
779 }
780
781 static void gic_save(QEMUFile *f, void *opaque)
782 {
783 gic_state *s = (gic_state *)opaque;
784 int i;
785 int j;
786
787 qemu_put_be32(f, s->enabled);
788 for (i = 0; i < NUM_CPU(s); i++) {
789 qemu_put_be32(f, s->cpu_enabled[i]);
790 for (j = 0; j < GIC_INTERNAL; j++)
791 qemu_put_be32(f, s->priority1[j][i]);
792 for (j = 0; j < s->num_irq; j++)
793 qemu_put_be32(f, s->last_active[j][i]);
794 qemu_put_be32(f, s->priority_mask[i]);
795 qemu_put_be32(f, s->running_irq[i]);
796 qemu_put_be32(f, s->running_priority[i]);
797 qemu_put_be32(f, s->current_pending[i]);
798 }
799 for (i = 0; i < s->num_irq - GIC_INTERNAL; i++) {
800 qemu_put_be32(f, s->priority2[i]);
801 }
802 for (i = 0; i < s->num_irq; i++) {
803 #ifndef NVIC
804 qemu_put_be32(f, s->irq_target[i]);
805 #endif
806 qemu_put_byte(f, s->irq_state[i].enabled);
807 qemu_put_byte(f, s->irq_state[i].pending);
808 qemu_put_byte(f, s->irq_state[i].active);
809 qemu_put_byte(f, s->irq_state[i].level);
810 qemu_put_byte(f, s->irq_state[i].model);
811 qemu_put_byte(f, s->irq_state[i].trigger);
812 }
813 }
814
815 static int gic_load(QEMUFile *f, void *opaque, int version_id)
816 {
817 gic_state *s = (gic_state *)opaque;
818 int i;
819 int j;
820
821 if (version_id != 2)
822 return -EINVAL;
823
824 s->enabled = qemu_get_be32(f);
825 for (i = 0; i < NUM_CPU(s); i++) {
826 s->cpu_enabled[i] = qemu_get_be32(f);
827 for (j = 0; j < GIC_INTERNAL; j++)
828 s->priority1[j][i] = qemu_get_be32(f);
829 for (j = 0; j < s->num_irq; j++)
830 s->last_active[j][i] = qemu_get_be32(f);
831 s->priority_mask[i] = qemu_get_be32(f);
832 s->running_irq[i] = qemu_get_be32(f);
833 s->running_priority[i] = qemu_get_be32(f);
834 s->current_pending[i] = qemu_get_be32(f);
835 }
836 for (i = 0; i < s->num_irq - GIC_INTERNAL; i++) {
837 s->priority2[i] = qemu_get_be32(f);
838 }
839 for (i = 0; i < s->num_irq; i++) {
840 #ifndef NVIC
841 s->irq_target[i] = qemu_get_be32(f);
842 #endif
843 s->irq_state[i].enabled = qemu_get_byte(f);
844 s->irq_state[i].pending = qemu_get_byte(f);
845 s->irq_state[i].active = qemu_get_byte(f);
846 s->irq_state[i].level = qemu_get_byte(f);
847 s->irq_state[i].model = qemu_get_byte(f);
848 s->irq_state[i].trigger = qemu_get_byte(f);
849 }
850
851 return 0;
852 }
853
854 #if NCPU > 1
855 static void gic_init(gic_state *s, int num_cpu, int num_irq)
856 #else
857 static void gic_init(gic_state *s, int num_irq)
858 #endif
859 {
860 int i;
861
862 #if NCPU > 1
863 s->num_cpu = num_cpu;
864 if (s->num_cpu > NCPU) {
865 hw_error("requested %u CPUs exceeds GIC maximum %d\n",
866 num_cpu, NCPU);
867 }
868 #endif
869 s->num_irq = num_irq + GIC_BASE_IRQ;
870 if (s->num_irq > GIC_MAXIRQ) {
871 hw_error("requested %u interrupt lines exceeds GIC maximum %d\n",
872 num_irq, GIC_MAXIRQ);
873 }
874 /* ITLinesNumber is represented as (N / 32) - 1 (see
875 * gic_dist_readb) so this is an implementation imposed
876 * restriction, not an architectural one:
877 */
878 if (s->num_irq < 32 || (s->num_irq % 32)) {
879 hw_error("%d interrupt lines unsupported: not divisible by 32\n",
880 num_irq);
881 }
882
883 i = s->num_irq - GIC_INTERNAL;
884 #ifndef NVIC
885 /* For the GIC, also expose incoming GPIO lines for PPIs for each CPU.
886 * GPIO array layout is thus:
887 * [0..N-1] SPIs
888 * [N..N+31] PPIs for CPU 0
889 * [N+32..N+63] PPIs for CPU 1
890 * ...
891 */
892 i += (GIC_INTERNAL * num_cpu);
893 #endif
894 qdev_init_gpio_in(&s->busdev.qdev, gic_set_irq, i);
895 for (i = 0; i < NUM_CPU(s); i++) {
896 sysbus_init_irq(&s->busdev, &s->parent_irq[i]);
897 }
898 memory_region_init_io(&s->iomem, &gic_dist_ops, s, "gic_dist", 0x1000);
899 #ifndef NVIC
900 /* Memory regions for the CPU interfaces (NVIC doesn't have these):
901 * a region for "CPU interface for this core", then a region for
902 * "CPU interface for core 0", "for core 1", ...
903 * NB that the memory region size of 0x100 applies for the 11MPCore
904 * and also cores following the GIC v1 spec (ie A9).
905 * GIC v2 defines a larger memory region (0x1000) so this will need
906 * to be extended when we implement A15.
907 */
908 memory_region_init_io(&s->cpuiomem[0], &gic_thiscpu_ops, s,
909 "gic_cpu", 0x100);
910 for (i = 0; i < NUM_CPU(s); i++) {
911 s->backref[i] = s;
912 memory_region_init_io(&s->cpuiomem[i+1], &gic_cpu_ops, &s->backref[i],
913 "gic_cpu", 0x100);
914 }
915 #endif
916
917 register_savevm(NULL, "arm_gic", -1, 2, gic_save, gic_load, s);
918 }
919
920 #ifndef NVIC
921
922 static int arm_gic_init(SysBusDevice *dev)
923 {
924 /* Device instance init function for the GIC sysbus device */
925 int i;
926 gic_state *s = FROM_SYSBUS(gic_state, dev);
927 gic_init(s, s->num_cpu, s->num_irq);
928 /* Distributor */
929 sysbus_init_mmio(dev, &s->iomem);
930 /* cpu interfaces (one for "current cpu" plus one per cpu) */
931 for (i = 0; i <= NUM_CPU(s); i++) {
932 sysbus_init_mmio(dev, &s->cpuiomem[i]);
933 }
934 return 0;
935 }
936
937 static Property arm_gic_properties[] = {
938 DEFINE_PROP_UINT32("num-cpu", gic_state, num_cpu, 1),
939 DEFINE_PROP_UINT32("num-irq", gic_state, num_irq, 32),
940 DEFINE_PROP_END_OF_LIST(),
941 };
942
943 static void arm_gic_class_init(ObjectClass *klass, void *data)
944 {
945 DeviceClass *dc = DEVICE_CLASS(klass);
946 SysBusDeviceClass *sbc = SYS_BUS_DEVICE_CLASS(klass);
947 sbc->init = arm_gic_init;
948 dc->props = arm_gic_properties;
949 dc->reset = gic_reset;
950 dc->no_user = 1;
951 }
952
953 static TypeInfo arm_gic_info = {
954 .name = "arm_gic",
955 .parent = TYPE_SYS_BUS_DEVICE,
956 .instance_size = sizeof(gic_state),
957 .class_init = arm_gic_class_init,
958 };
959
960 static void arm_gic_register_types(void)
961 {
962 type_register_static(&arm_gic_info);
963 }
964
965 type_init(arm_gic_register_types)
966
967 #endif